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Abstract

We work towards solving the Simultaneous Localization and Mapping (SLAM)
problem using a Probabilistic Programming System (PPS). After surveying ex-
isting SLAM methods, we choose FastSLAM as the most promising candi-
date. FastSLAM uses ad-hoc methods for data association, and does not en-
force mutual exclusion between observations arriving at the same timestep. This
leads to poor accuracy on an example dataset. We propose a new probabilis-
tic model for SLAM that handles association uncertainty and mutual exclusion.
We then propose an algorithm for doing inference in this model: FastSLAM-
DA (FastSLAM with Data Association), which uses a particle filter with a
custom data-driven proposal. We show that FastSLAM-DA performs well on
the example where FastSLAM previously failed. However, the new algorithm
produces inaccurate maps when there is a high rate of false detections. To rem-
edy this, we propose FastSLAM-DA-RM (FastSLAM with Data Association
and Resample-Move), which adds MCMC moves on the recent association vari-
ables. We show that FastSLAM-DA-RM performs well where FastSLAM-DA
previously failed. Our two new algorithms use no heuristics other than custom
proposals, so they are suitable for implementation in a PPS. As a step in this
direction, we implement a general-purpose resample-move particle filter in the
BLOG PPS, and demonstrate it on a simplified SLAM problem.
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1 Introduction

AI systems use probabilistic models to deal with the uncertainty in their envi-
ronment. A probabilistic model is often described using a combination of math-
ematical notation and natural language. The model is then converted manually
into code that performs inference in that specific model. Writing inference code
by hand is error prone and time consuming, and this process has to be repeated
every time the model changes (e.g., when the agent gets a new sensor, or the
researcher refines the environment model).

A Probabilistic Programming System (PPS) aims to facilitate the model-
building process described above. First, a PPS provides a formal language for
specifying probabilistic models in a compact and unambiguous way. Second, a
PPS provides a set of generic inference procedures that work on large classes
of models. With a sufficiently advanced PPS, the researcher should be able to
quickly write a model for a new problem, run inference, and then refine the model
and run inference again, all while having to write little or no custom inference
code.

For a PPS to be useful in the real world, its language must be expressive
enough to support the types of models that researchers want to write, and its
automatic inference procedures must be general enough to perform efficient in-
ference in those models. In the past decade we have seen the emergence of very
expressive PPSs [19,29], but efficient inference continues to be a challenge. Hence,
one research avenue for advancing PPSs is to examine a sufficiently complicated
class of models, and see what it would take to do efficient inference in these
models using a PPS.

In this thesis, we will examine a set of probabilistic models that arise from the
Simultaneous Localization and Mapping (SLAM) problem in robotics. In SLAM,
a robot is navigating in an unknown environment. The robot seeks to build a map
of the environment, and simultaneously localize itself within this map. SLAM
is a key requirement for building autonomous robots [30, 41]. There are many
existing solutions to SLAM (which we will review in the next section), and our
goal is not to beat these existing solutions. Instead, our goal is to understand
how to solve SLAM using a PPS, and to illuminate the building blocks that a
PPS needs in order to do efficient inference in non-trivial temporal models.

In section 2 we provide the background for our work. We discuss the building
blocks available in a PPS and the main existing methods for solving SLAM. We
also review the literature on data association in SLAM, which will become a
central topic of this thesis. In section 3 we discuss FastSLAM, the existing
SLAM algorithm which we will build upon. We point out the ad-hoc methods
that FastSLAM uses for data association and map management. These ad-hoc
methods make FastSLAM unsuitable for a PPS, and cause poor accuracy on a
dataset with large association uncertainty.

We begin to address FastSLAM’s limitations in section 4. We present a
probabilistic model for SLAM with data association uncertainty and mutual ex-
clusion constraints between observations arriving at the same timestep. We then
develop a new algorithm for performing inference in this model: FastSLAM-DA



(FastSLAM with Data Association), which is based on particle filtering with a
data-driven proposal. This new algorithm beats FastSLAM on a dataset with
large association uncertainty, but produces inaccurate maps if there is a high rate
of false detections. We address the latter limitation in section 5, by developing
a new algorithm called FastSLAM-DA-RM (FastSLAM with Data Associa-
tion and Resample-Move). This algorithm uses a resample-move particle filter,
which augments FastSLAM-DA with MCMC moves on the recent association
variables. This improvement allows FastSLAM-DA-RM to produce accurate
maps even when there is a high rate of false detections.

In section 6 we discuss the building blocks that we would need to add to a
PPS in order to support algorithms like FastSLAM-DA and FastSLAM-DA-
RM. We take the first step in this direction by implementing a general-purpose
resample-move particle filter in the BLOG PPS, and showing that it beats the
regular particle filter on a simplified grid-world SLAM problem. In section 7 we
summarize our conclusions and discuss ideas for future work.

This thesis makes the following contributions:

1. A probabilistic model for SLAM with data association uncertainty (section
4.1), which removes the need for many of the heuristics and approximations
in FastSLAM.

2. Two algorithms for performing inference in this model: FastSLAM-DA
(section 4) and FastSLAM-DA-RM (section 5), and examples in different
regimes where one algorithm performs better than the others.

3. A general-purpose implementation of resample-move particle filtering in the
BLOG PPS (section 6).
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2 Background and Related Work

Our work is at the intersection of probabilistic programming, SLAM, and data
association. In this section we place our work in context, by briefly surveying
these three fields and reviewing the relevant literature. In section 2.1 we discuss
our target PPS, BLOG, and why it guides us towards a sampling-based SLAM
solution. In section 2.2 we define the SLAM problem in probabilistic terms. In
section 2.3 we describe the three main paradigms for solving SLAM, and our
reasons for focusing on particle-based methods. In section 2.4 we discuss data
association in SLAM, which will be one of the main concerns of this thesis.

2.1 The BLOG Probabilistic Programming System

Bayesian Logic (BLOG) [29] is a PPS consisting of a powerful language to de-
scribe probabilistic models and a set of generic algorithms to perform inference
in such models.

The BLOG language provides a compact way to define probability distribu-
tions over complicated outcome spaces, such as worlds with an unknown number
of objects. BLOG also supports first-order-logic relationships, unlike earlier sys-
tems like BUGS [26] and JAGS [37], which only supported propositional models
using a fixed set of variables.

For atemporal models, BLOG provides three generic inference algorithms:
a rejection sampler, a likelihood-weighting sampler, and a Metropolis–Hastings
(MH) sampler, which is a flavor of Markov chain Monte Carlo (MCMC). Good
introductions to these types of samplers exist elsewhere [4, 24]. BLOG’s MH
sampler allows the user to plug in a custom proposal distribution. The default
proposal simply picks a variable from the model uniformly at random and pro-
poses a new value for that variable given the values of its parents.

For temporal models, BLOG provides a generic particle filtering algorithm.
Additionally, BLOG provides a Liu-West filtering algorithm [25] for temporal
models with static parameters. Both of these algorithms are based on the Se-
quential Monte Carlo (SMC) framework, which represents a probability distri-
bution using a set of samples and efficiently updates this representation in an
online fashion as new observations arrive [12,14].

For our purposes, it is important to keep in mind that all of BLOG’s inference
algorithms are based on sampling: simple methods like rejection sampling and
likelihood weighting, and more powerful and general methods like MCMC and
SMC. Other PPSs such as Church, Venture, and Anglican also perform infer-
ence using MCMC and closely related techniques [27,43,44]. This puts a strong
constraint on our desired goal: if we want to solve SLAM using BLOG, we need
to express SLAM as a probabilistic model in BLOG, and then perform infer-
ence in this model using some kind of sampling-based method. We could extend
BLOG to support Rao-Blackwellization, or conjugate analysis like in BUGS and
JAGS [26,37], or EM and numerical optimization like in AutoBayes [16], but this
would require a substantial re-engineering effort, since BLOG was not designed
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to provide these techniques as building blocks. We will keep these constraints in
mind as we consider various approaches to SLAM, below.

Our work was originally motivated by the PPAML SLAM challenge problem
[2]. To our knowledge, there have not been any attempts to solve SLAM with a
PPS before this challenge problem.

2.2 SLAM Problem Definition

We start by describing the SLAM problem from a probabilistic perspective. We
divide time into discrete chunks called timesteps. For simplicity, we assume that
the duration of a timestep is fixed, but it is easy to extend the models below to
the case where timesteps have different durations.

We represent the pose (location) of the robot at timestep t by a random vari-
able xt. For example, a car’s pose might contain an x coordinate, a y coordinate,
and an angle for the orientation. We assume that the pose at the initial timestep
is known:

x1 = xinit

At each subsequent timestep, the robot receives controls ut. If we had a perfect
model of the robot’s dynamics, we could predict the pose xt precisely based on
the previous pose xt−1 and the controls ut. But usually the dynamics model
is not perfectly accurate, so we get a probability distribution over the pose xt,
instead of an exact value:

p(xt|xt−1, ut)

We represent the true map of the environment by θ. The map can include
features such as landmarks, walls, etc. The robot has a set of sensors through
which it can observe its environment. At each timestep, the observations are
given by:

p(yt|xt, θ)

The goal of SLAM is to infer the trajectory of the robot and the true map of
the environment from the observations received. In the offline SLAM problem,
we collect all the observations and then estimate the posterior over the entire
trajectory and map:

p(x1:t, θ|u1:t, y1:t)

In the online SLAM problem, we process observations one at a time, and estimate
the posterior over the current pose and map, rather than the full trajectory:

p(xt, θ|u1:t, y1:t)

Besides the offline vs. online distinction, the SLAM problem can be further
categorized along the following dimensions [41]:

– Volumetric SLAM (where the map is an occupancy grid) vs. feature-based
SLAM (where the map is a set of sparse features extracted from the raw
observations).

4



– Topological SLAM (where the map captures qualitative relationships be-
tween places, such as “room A is next to room B”) vs. metric SLAM (where
the map captures exact distances between features).

– SLAM with known data association (where it is known a priori which land-
mark generated which observation, e.g., because the landmarks have unique
colors) vs. SLAM with unknown data association (where there is ambiguity
about which landmark generated which observation).

– SLAM in a static environment (where the true map doesn’t change) vs.
SLAM in a dynamic environment (where the true map changes over time).

– SLAM that requires loop closure (i.e., the robot reaches a previously visited
location after a long loop, and needs to recognize that it is back on familiar
territory), vs. SLAM that does not require loop closure.

– Active SLAM (where the robot actively explores the environment in an at-
tempt to build an accurate map) vs. passive SLAM (where the SLAM algo-
rithm is observing but not controlling the motion of the robot).

– Single-robot SLAM vs. multi-robot SLAM (where multiple robots cooperate
to build a common map and help localize each other).

In the rest of this thesis we will focus on online, feature-based SLAM with
unknown data association. The map will be static and metric, there will be a
single robot involved, and the robot will not perform active exploration.

2.3 Paradigms for Solving SLAM

There are three main paradigms for solving SLAM [41]: Extended Kalman Fil-
ters, Graph-Based Methods, and Particle Methods. In this section we will ex-
amine each of these paradigms and consider whether they are suitable for a
PPS-based solution to SLAM.

The Extended Kalman Filter (EKF) approach tracks the joint distri-
bution of the robot pose and the landmark locations as a single multivariate
Gaussian distribution with mean µ and covariance Σ. As the robot moves and
new observations arrive, the mean and covariance of this distribution are up-
dated using the EKF formulas obtained by linearizing the dynamics model and
the observation model. The main advantage of EKF SLAM is that it tracks the
covariance between robot pose and landmark locations jointly, so that when the
pose uncertainty decreases (e.g., because the robot sees an old landmark again),
the landmark location uncertainty decreases as well. An example of this can be
seen in the Probabilistic Robotics textbook [40, figure 10.3]. However, updating
the quadratic covariance matrix can be expensive, and it is sometimes necessary
to split the map into submaps that are updated separately [41].

EKF SLAM requires knowing the data association (which landmark gener-
ated which observation). When the data association is unknown, EKF SLAM
uses heuristics to “guess” the correct data association. We will discuss some of
these data association heuristics in the next section. EKF SLAM is very sen-
sitive to data association errors. A single data association error can make the
EKF map estimate diverge, causing the pose estimate to diverge as well [6]. It
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would be possible to duplicate the EKF and track multiple hypotheses whenever
there is data association ambiguity, but this has not been pursued because of
the large computational cost [6].

The mathematics for EKF SLAM assumes that the number of landmarks is
known and fixed. To support a variable number of landmarks in practice, EKF
SLAM adds unexplained observations to a provisional landmark list [11, 41].
When a provisional landmark accumulates enough observations to be considered
confirmed, EKF SLAM simply enlarges the µ vector and the Σ matrix to include
the new landmark.

Graph-based methods take a completely different approach. These meth-
ods build a sparse graph, with nodes for the robot pose at each timestep and for
the location of each landmark. The edges in this graph encode soft geometric con-
straints between the nodes. We can think of the graph as a spring-mass model,
whose state of minimal energy is exactly the MAP solution to SLAM [41]. Graph-
based methods are inherently offline: first they accumulate all the observations
into a graph, then they use optimization techniques to find the full trajectory
and map that best explain the observations.

Since graph-based methods have access to the full history of observations,
they can compute the probability that two features (nodes in the graph) have
the same world coordinates (i.e., represent the same landmark). This allows
graph-based methods to perform data association iteratively, either in a greedy
way [40, chapter 11], or using RANSAC or branch-and-bound [41].

One sub-flavor of graph-based methods is scan-matching, which tries to
match laser readings from one timestep to the next one, therefore inferring the
displacement in the robot’s location between the two timesteps. Related to scan-
matching are visual SLAM methods, which do the same timestep-to-timestep
matching using images instead of laser readings [39].

Particle-based methods such as FastSLAM are a third major category
of SLAM solutions. These methods are based on particle filtering, which ap-
proximate a probability distribution using a set of samples called particles.
Particle-based methods are typically used to solve the online SLAM problem.
The key insight in FastSLAM is that the SLAM posterior factorizes into in-
dependent landmark location estimation problems, if we condition on the robot
poses [13,30–32]. This means that instead of maintaining a Gaussian distribution
over all the landmarks jointly, like EKF SLAM, we can just store an individ-
ual Gaussian distribution for each landmark. This insight allows FastSLAM to
scale to much larger maps than the EKF methods.

Like EKF methods, particle-based methods require knowing the data asso-
ciation. If the data association is unknown, particle methods use heuristics to
“guess” the correct data association. We will discuss some of these heuristics in
the next section. Particle-based SLAM is more robust to data association errors
than EKF SLAM, because each particle makes its own data association decision,
so it is possible to recover from an association error, as long as at least some
particles got the correct association.
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Also similar to the EKF methods, the mathematics for the particle-based
methods does not handle the uncertainty about the number of landmarks in the
environment. Instead, FastSLAM uses heuristics to decide when to add and
when to remove a landmark from the map. We will discuss these heuristics in
more detail in section 3.

Of the three paradigms described in this section, particle-based methods are
the most suitable for a PPS-based SLAM solution, because particle filtering is
one of the building blocks available in a PPS. In contrast, EKF methods and
graph-based methods do not fit into the sampling paradigm of a PPS. Moreover,
we would like our PPS-based SLAM solution to handle data association uncer-
tainty in a principled way, and particle-based methods are an elegant way to do
this, since each particle can carry its own data association hypothesis.

In the rest of this thesis we will focus on a specific particle-based method
(FastSLAM) aiming to understand the heuristics that this method uses, so that
we can work towards a PPS SLAM solution.

2.4 Data Association in SLAM

Multiple authors have argued that data association is a central problem in SLAM
[5, 6, 35]. Good surveys of data associations in SLAM are given in Tim Bailey’s
PhD thesis [5, chapter 3] and a tutorial article by Bailey and Durrant-Whyte [6].
Data association approaches fall into two categories: individual association and
batch association.

In individual association, each observation–landmark association is con-
sidered independently. An observation is assigned to a particular landmark if
the distance between them is below a fixed threshold. This approach is also
known as nearest-neighbor association, or maximum-likelihood association. This
is the simplest possible data association method, and the one used in early EKF
SLAM [11] and FastSLAM [30] implementations. As we illustrate in Figure 1,
individual association fails when the pose uncertainty is larger than the distance
between landmarks, when false detections occur near the landmark locations,
or when an observation could plausibly be associated to more than one land-
mark [33].

A simple way to extend FastSLAM to cases with large association uncer-
tainty is as follows: When there are multiple plausible association hypotheses,
split each particle into one particle per hypothesis [35]. The particles with the
wrong association hypotheses will die eventually, because they will have lower
weights than the particles with the correct association hypothesis. Another ap-
proach to reducing association uncertainty is to associate landmarks not only
based on their location, but also based on a “signature” or “fingerprint”, such
as color, shape, or image patch [9,17]. Yet another approach is to perform data
association lazily, by maintaining a tree of possible association decisions, rather
than a single association hypothesis [22]. Each node in the tree stores the likeli-
hood of the association decisions up to that point, and tree nodes are expanded
in a manner similar to A* search.
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In batch association, the observation–landmark associations for all obser-
vations received at a single timestep are considered together. The two main
approaches are Joint Compatibility Branch and Bound [33] and Combined Con-
straint Data Association [5], which are based on tree search and graph search
respectively. These methods are not based on sampling, and it is hard to see
how they could be integrated with a PPS. In sections 4 and 5 we will present
sampling-based methods for batch association that could be implemented in a
PPS.

The data association problem has been studied extensively in the context of
Multi-Target Tracking (MTT). In MTT, we have targets moving independently
of each other in a region of surveillance. We get noisy observation of their loca-
tions over some period of time, and the goal is to infer the trajectories of the
targets. The MTT problem is similar to the SLAM problem: the SLAM land-
marks can be seen as targets that simply do not move. Additionally, in MTT
the observer is typically stationary, whereas in SLAM the observer moves. These
differences are important, because in MTT the target locations are independent,
whereas in SLAM they are correlated through the unknown robot pose.

Well-studied approaches to MTT include Multiple Hypothesis Tracking (MHT)
[38], which maintains multiple Kalman Filters for the different plausible hy-
potheses, Joint Probabilistic Data Association (JPDA) [7, 8], which computes
the probability of all target-observation pairs, and often requires approxima-
tions to reduce the exponential number of association hypotheses considered,
and MCMC Data Association (MCMCDA) [36], which uses a reversible-jump
MCMC to sample from the posterior over associations and elegantly handles the
case where the number of targets is unknown. MCMCDA will be an important
component of the algorithm we will develop in section 5. MCMC approaches to
MTT have also been extended to the case where targets interact [23].

Another source of ideas for data association techniques is the Structure From
Motion (SFM) problem in computer vision. In SFM, we have a collection of pho-
tographs of the same scene (e.g., the Coliseum in Rome), and the goal is to recon-
struct the 3D geometry of the scene. In the process, we end up also estimating
the pose of the camera that took each photograph. The SFM problem is similar
to the SLAM problem: the scene we are trying to reconstruct corresponds to the
map in SLAM, and the pose of the camera in each photograph corresponds to
the pose of the robot at each timestep. The main difference is that in SLAM,
the robot pose is constrained by the dynamics model, whereas in SFM, the cam-
era locations are completely unconstrained. For this reason, the data association
problem (also known as the correspondence problem in computer vision) is much
harder in SFM than it is in SLAM.

There are efficient MCMC methods for sampling the correspondence between
features in a pair of images [10]. SFM scales to very large applications, such as
reconstructing the 3D geometry of an entire city from hundreds of thousands
of photographs [3]. Achieving this kind of scale requires careful engineering and
many different layers of approximations to keep the amount of computation
tractable.
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Fig. 1: Examples of individual nearest-neighbor association. Each landmark (+)
has an association region (ellipse), based on the uncertainty in that landmark’s
location and the noise in the observation model. Each observation (×) is asso-
ciated to its nearest landmark, if the observation falls in that landmark’s asso-
ciation region. If there are multiple observations falling in the same landmark’s
association region, the nearest is chosen. This strategy may choose incorrect
associations if there are many false alarms (top right), if there is large pose
uncertainty (bottom left), or if an observation falls in the association region of
multiple landmarks (bottom right).
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3 FastSLAM and Its Limitations

In this section we aim to understand FastSLAM and the limitations that get
in the way of implementing it in a PPS. In section 3.1 we describe the proba-
bilistic model used by FastSLAM, and in section 3.2 we discuss the inference
algorithm. In section 3.3 we summarize the heuristics that FastSLAM uses and
the approximations it makes. To illustrate FastSLAM’s limitations, we design
an environment with large data association uncertainty, which we present in sec-
tion 3.4. We discuss the error metrics used for SLAM in section 3.5, and evaluate
FastSLAM in the aforementioned environment in section 3.6. Its poor accuracy
points to improvements we will make in section 4.

3.1 The FastSLAM Probabilistic Model

FastSLAM uses a probabilistic model that is very similar to the general SLAM
model discussed in section 2.2. The initial pose is known:

x1 = xinit

The pose at the next timestep is obtained by evaluating the dynamics model
and adding some Gaussian noise:

xt|xt−1, ut ∼ N (f(xt−1, ut), Σpose) (1)

where the dynamics model f(xt−1, ut) is a deterministic function that takes the
previous pose xt−1 and the controls ut and returns the new pose of the robot.

The robot’s sensors typically produce multiple observations at each timestep;
for example, there are multiple obstacles visible in a single laser rangefinder
scan. FastSLAM considers these observations one at a time. This means that
a single sensor reading with 5 observations corresponds to 5 separate timesteps
in FastSLAM, 4 of which have zero time elapsed between them and leave the
pose unchanged.

The variable ωt denotes the landmark that generated the observation yt.
Each observation is equally likely a priori to be generated by any of the Nt−1
landmarks known up to that point:

ωt ∼ Uniform({1, ..., Nt−1})

The map θ is a list of landmark locations θj , each of which has a uniform
prior over W , the world region that the robot is operating in:

θj ∼ Uniform(W )

Each observation is obtained by evaluating the observation model and adding
some Gaussian noise:

yt|xt, ωt, θ ∼ N (g(xt, θωt), Σobs)
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where the observation model g(xt, θj) is a deterministic function that takes the
pose xt and the landmark location θj and returns the observation corresponding
to that landmark from that pose.

Taken together, the above equations describe the probabilistic model used
by FastSLAM. We can visualize this model as a Dynamic Bayesian Network
(DBN), shown in Figure 2a. For a particular association ω1:t, we can illustrate
the model more clearly by drawing a separate node for each landmark, as shown
in Figure 2b. Since the controls ut are always observed, we do not add them
as nodes in the graphical model, but instead encode them into the probability
distributions on the edges xt−1 → xt.

3.2 The FastSLAM Algorithm

The key insight in the FastSLAM algorithm [30] is that given the observations
y1:t, the associations ω1:t, and the robot poses x1:t, the problems of estimating
the landmark locations θj become decoupled from each other. This can be easily
seen from Figure 2b: θ1 and θ2 are conditionally independent given x1:t, ω1:t,
and y1:t.

FastSLAM works by running a particle filter to track the pose of the robot,
xt. Instead of storing a concrete value for each landmark’s location θj , Fast-
SLAM approximates each landmark location distribution using a Gaussian:

p(θj |x1:t, ω1:t, y1:t) ≈ N (µj,t, Σj,t)

and stores only the sufficient statistics µj,t and Σj,t for each landmark j. When
a new observation for landmark j arrives, FastSLAM updates these sufficient
statistics in closed form, which is equivalent to running the measurement update
in an Extended Kalman Filter. (If the observation model is linear in θj , then no
linearization is required, and we can use a plain Kalman Filter.)

At timestep t, each particle stores a concrete value for the pose xt, and a dis-
tribution for each landmark: µj,t, Σj,t. Thus FastSLAM is a Rao-Blackwellized
particle filter [30, 31], where the pose distribution is represented using particles
and the landmark location distributions are represented analytically.

The final question is that of data association: How do we determine which
landmark generated each observation? The FastSLAM model captures the
source of observation yt using the association variable ωt. The FastSLAM algo-
rithm simply imputes concrete values for ωt using the maximum likelihood prin-
ciple. When a new observation yt comes in, FastSLAM computes the likelihood
that it was generated by each known landmark, and sets ωt to the landmark with
the highest likelihood. If the highest likelihood is below a threshold τnew, Fast-
SLAM adds a new landmark to the map, and associates the observation to that
new landmark.

Since every observation is associated to an existing landmark or to a new
landmark, any false detections will cause spurious landmarks to be added to
the map. To remedy this, FastSLAM keeps track of a “seen count” cj for each
landmark j in each particle. When processing a batch of observations from the
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(a) Three time slices in the FastSLAM DBN. The x nodes are the poses, ω are the
associations, y are the observations, and θ is the map, shown here as a single node.

(b) A particular association ω in the FastSLAM DBN. The landmark locations θ1 and
θ2 are shown as separate nodes.

Fig. 2: The FastSLAM DBN.

same sensor reading, cj is incremented for the landmarks that were seen and
decremented for the landmarks that were in the field of view but were not seen.
If cj drops below zero, FastSLAM removes landmark j from the map. (This
assumes that there are no detection failures. If the probability of detection pdet
is less than one, we can modify the counters cj to maintain the log-odds of a
landmark’s existence [40].) This ad-hoc method allows FastSLAM to remove
landmarks that were added to the map because of false detections.
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Figure 3 shows one timestep of the FastSLAM algorithm. The Probabilistic
Robotics textbook [40, chapter 13] provides more detailed pseudocode for the
algorithm, which is a good blueprint for a first implementation. (Make sure to
check the online errata, since the printed version has a few typos.)

3.3 Heuristics and Approximations

FastSLAM is very successful and robust in practice, but it uses some ad-hoc
techniques that make it difficult to implement in a PPS. In this section we
summarize these heuristics and approximations, so that we have a clear idea of
what we need to change in order to make FastSLAM suitable for a PPS.

– Maximum-likelihood data association. FastSLAM associates each ob-
servation greedily to the landmark that most likely generated it, and does
not consider other association hypotheses.

– Mutual exclusion constraint not enforced. When multiple observations
arrive at the same timestep, FastSLAM processes them sequentially and
independently from each other. This means that multiple simultaneous ob-
servations can be associated to the same landmark, which is logically incon-
sistent with the fact that at each timestep, each landmark produces at most
one observation. FastSLAM implementations either ignore this constraint,
or use a heuristic “repair” step to fix inconsistent associations [40, section
7.8].

– Hard threshold for adding a new landmark. When an observation’s
best association has likelihood under a certain threshold, FastSLAM uses
that observation to initialize an EKF for a new landmark, and does not
consider other possible explanations for that observation.

– Heuristics for incorporating negative information. FastSLAM main-
tains a “seen count” cj for each landmark j. When the landmark is observed,
its counter is incremented. When the landmark is in the field of view but it is
not observed, its counter is decremented. When the counter drops below zero,
the landmark is deleted from the map. This heuristic allows FastSLAM to
remove false landmarks from the map. However, this does not fully incorpo-
rate negative information. When not observing a landmark, our belief that
it lies outside the field of view should increase. But FastSLAM does not
update a landmark’s location belief in the absence of an observation.

– Other heuristics for map management. When the rate of false detec-
tions is high, FastSLAM requires additional heuristics to prevent polluting
the map with false landmarks. It is common to keep a provisional map [40,
section 13.6], and promote landmarks from the provisional map to the main
map only after they have been observed a sufficient number of times.

The heuristics described above are necessary for a practical implementa-
tion of FastSLAM. Unfortunately, they are not suitable for a PPS solution to
SLAM, because they do not have clean probabilistic interpretations in a genera-
tive model. Moreover, in cases where there is significant association uncertainty,
these heuristics actually hurt the accuracy of FastSLAM, as we show next.
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Inputs:

– A list Bt−1 of N particles approximately distributed according to
p(x1:t−1 | y1:t−1).

– The new observations yt.
– Parameters for the model: controls, noises.

Output:

– A list Bt of N particles approximately distributed according to p(x1:t | y1:t).

Algorithm:

1. Advance step
For each particle i:

Propose the new pose x
(i)
t from the prior (equation 1).

Set the association ω
(i)
t to the landmark that maximizes the likeli-

hood of the observation:

ω
(i)
t = arg

Nt−1
max
j=1

p(y
(i)
t |x

(i)
t , ω

(i)
t = j, θ(i))

If the observation likelihood with the best association is less than
τnew, create a new landmark by setting ω

(i)
t = Nt−1 + 1.

Compute the weight of the particle, which is equal to the observation
likelihood:

w
(i)
t = p(y

(i)
t |x

(i)
t , ω

(i)
t , θ(i))

2. Resample step
Resample N particles from Bt in proportion to their weights.

3. Exact step
For each particle, update the sufficient statistics for the location distri-

bution of the landmark θ
(i)
j , where j = ω

(i)
t is the landmark to which the

latest observation was associated.
4. Map management step

(runs once after every batch of observations from a single sensor reading)
Update “seen counts” for each particle i:

Increment c
(i)
j for the landmarks j that received observations.

Decrement c
(i)
j for the landmarks j that were in the field of view,

but did not receive observations.
Delete from the map any landmarks j with c

(i)
j < 0.

Fig. 3: The FastSLAM algorithm for timestep t.
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3.4 mutex: A Dataset with High Observation Noise

To show the limitations of FastSLAM, we design an environment with large
data-association uncertainty. The mutex dataset represents a robot moving in
a 2D environment. First, we will describe the motion model. The state vector
has 3 dimensions: x, y, and the orientation γ. The controls are the steering α
and velocity v at every timestep, obtained from the robot’s odometry sensors.
(Thus it would be more accurate to call this an odometry model, rather than
a dynamics model.) The robot moves according to the kinematic model used
in the PPAML SLAM challenge problem [2,21]. There is independent Gaussian
noise on each of the 3 state components, with standard deviations σx = 0.001,
σy = 0.001, and σγ = 0.03 respectively. We chose a higher amount of rotational
noise to increase localization uncertainty.

Figure 4a shows the true trajectory of the robot, as well as the dead-reckoning
trajectory obtained by applying the controls with no noise. We can see that
because of the high rotational noise, the true trajectory diverges quite a bit
from the dead-reckoning trajectory. Figure 4b shows several trajectories sampled
from the motion prior, i.e., trajectories obtained by applying the controls with
noise. We can see that after a few timesteps, there is a lot of uncertainty about
the robot’s position and orientation. The hope is that SLAM will be able to
reduce this uncertainty by localizing the robot with respect to landmarks in the
environment.

We will now describe the observation model. There are two circular land-
marks in the environment, indicated by the green circles in 4a. Each landmark
generates a point observation dx, dy indicating its location relative to the robot.
(This is equivalent to converting range-and-bearing observations into Cartesian
coordinates. Typically range-and-bearing observations are extracted from the
readings of some other sensor, such as a laser rangefinder. To keep this example
as simple as possible, we assume that this extraction step has been performed
already, and the point observations dx, dy are given to the SLAM algorithm
directly.)

For simplicity, we assume that both landmarks are detected in every timestep
and that there are no false detections elsewhere in the viewing area. There is
independent Gaussian noise on each of the 2 dimensions of the observations,
with standard deviations σdx = 0.2 and σdy = 0.2 respectively. The high ob-
servation noise introduces a lot of data-association uncertainty. Figure 4c shows
the observations plotted with respect to the ground-truth trajectory, and figure
4d shows the ground-truth data association.

Figure 4c makes it intuitively clear why this is a difficult dataset. The ob-
servations appear to form a single cluster, and the only indication that there
are actually two landmarks is that at every timestep, we get two observations
instead of one. But FastSLAM cannot take advantage of this knowledge, be-
cause it processes each observation individually and does not enforce the mutual
exclusion constraint.
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(a) The ground-truth and dead-
reckoning trajectories.

(b) Some trajectories sampled from the
motion prior.

(c) Observations from both landmarks,
without color coding.

(d) Observations color-coded by their
source landmark.

Fig. 4: The mutex dataset, with high rotational noise and high observation noise,
resulting in large association uncertainty.

3.5 Error Metrics for Measuring SLAM Accuracy

We use a set of common metrics for evaluating SLAM accuracy throughout this
thesis. To obtain the predicted trajectory, we take the mean of the filtering
distribution at each timestep. At timestep t, the predicted pose is:

x̂t =
1

N

N∑
i=1

x
(i)
t
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Then if x1:T represents the ground-truth trajectory, we compute the error as:

trajectory error =

√√√√ T∑
t=1

(xt − x̂t)2

To obtain the predicted map, we simply take the map from an arbitrary
particle. Since all particles have equal weights after the resample step, this is
equivalent to taking one sample from the posterior distribution over maps. By
the end of a SLAM run, this posterior distribution is usually peaked, so a single
sample represents it well. (In cases where there is still a lot of map uncertainty
at the end of the run, it would be better to take multiple samples from the
posterior, i.e., to consider the maps from multiple particles instead of just one.)

For the map accuracy we report two values: the number of spurious landmarks
and a measure of map dissimilarity. The number of spurious landmarks is the
difference between the number of landmarks in the SLAM map and the number
of landmarks in the ground-truth map. (So if the SLAM map has more landmarks
than the true map, this number will be positive, and if the SLAM map has fewer
landmarks than the true map, this number will be negative. Zero is the best
value.)

The map dissimilarity measure is a bit more tricky, since it has to compare
maps with different numbers of landmarks. Let P be the set of ground-truth
landmarks, and P̂ be the set of predicted landmarks from the SLAM map. We
will define a grid of points L that cover the map. At each of these grid points
q ∈ L, we will quantify the “influence” of P or P̂ on that point:

µq(P ) = max
p∈P

(
exp

(
−||q − p||2

2

))
The total map error is simply the sum of “influence” differences at each point
on the grid:

map error =
∑

(x,y)∈L

|µx,y(P )− µx,y(P̂ )|

The PPAML documentation [1] provides additional details and an example.

3.6 Results on the mutex Dataset

Figure 5 shows the results of running FastSLAM on the mutex dataset for 10
trials using 1000 particles. (We verified that increasing the number of particles
beyond 1000 does not help.) We show results for different values of the τnew
parameter, which controls how willing FastSLAM is to create new landmarks.
(FastSLAM creates a new landmark for an observation when its best association
has log-likelihood less than τnew.)

When τnew is very small, FastSLAM always prefers to associate observations
to existing landmarks. Figure 6a shows a typical map produced in this scenario.
The observations for both landmarks are “mixed” into a single landmark, result-
ing in an inaccurate map. The resulting trajectory is still very good, showing
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that the localization part of FastSLAM is robust to this kind of error. (It is
like looking at two sources of light without your glasses: You perceive them as a
single source of light, but you can still localize yourself with respect to them.)

When τnew is slightly higher, FastSLAM creates a new landmark for an
observation that is sufficiently far from existing landmarks. Figure 6b shows a
typical map produced in this case. Observations get “mixed” into one landmark,
as before, but then a distant observation creates a second landmark. After that,
FastSLAM begins associating observations to both landmarks, but because of
false data associations in the past, the landmark locations are incorrect, causing
the trajectory to drift.

When τnew is even higher, FastSLAM is even more willing to create new
landmarks instead of associating observations to existing landmarks. Figure 6c
shows a typical map produced in this case, where the observations are split into
three landmarks, and the resulting confusion again causes the trajectory to drift.

When τnew is extremely high, FastSLAM always prefers to create a new
landmark, rather than associate an observation to an existing landmark. This
means that each landmark is observed only once. The map-management heuris-
tics kick in and delete the landmark from the map. Thus, numerous landmarks
are added and then swiftly removed from the map, never reaching the threshold
to be confirmed. We end up with an empty map, as shown in Figure 6d. Since
we have no landmarks to help localize the robot, all particles have equal weights,
so the mean trajectory is the same as the dead-reckoning trajectory (because we
are just averaging zero-mean noise).
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Fig. 5: FastSLAM results on the mutex dataset, with 1000 particles and differ-
ent values for the τnew parameter. Top: histogram showing number of spurious
(positive) or undetected (negative) landmarks. Center: average and standard
deviation of map error. Bottom: average and standard deviation of trajectory
error. All statistics are based on 10 trials.
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(a) τnew = −16 (b) τnew = −9

(c) τnew = −4 (d) τnew = 0

Fig. 6: Typical maps produced by FastSLAM on the mutex dataset, for different
values of the τnew parameter.
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4 FastSLAM-DA: Sampling Data Associations

In the last section we described FastSLAM and demonstrated its limitations on
an example dataset. FastSLAM has limited accuracy because it does not enforce
the mutual exclusion constraint between observations. Additionally, FastSLAM
uses heuristic methods for data association and map management, which make
it unsuitable for implementation in a PPS.

In this section we present a new algorithm, FastSLAM-DA (FastSLAM
with Data Association), which addresses these limitations. In section 4.1 we
describe a probabilistic model that makes it possible to enforce the mutual ex-
clusion constraint. Then in section 4.2 we explain why the forward-sampling
proposal is ineffective in this model, and suggest a smart (data-driven) proposal
instead. We describe the full FastSLAM-DA algorithm in section 4.3. In section
4.4 we evaluate the results of FastSLAM-DA on the mutex dataset, and show
that it beats FastSLAM. Finally, in sections 4.5 and 4.6 we show an example
dataset for another regime, where FastSLAM-DA does not do so well. This
paves the way for the improvements that we will make in section 5.

4.1 A Probabilistic Model for SLAM with Association Uncertainty

We modify the FastSLAM probabilistic model by handling multiple observa-
tions at the same timestep, which allows us to enforce the mutual exclusion
constraint. We also have a different probability distribution on the association
variables, which allows us to handle new landmarks without relying on ad-hoc
methods. The initial pose is known, as before:

x1 = xinit (2)

The pose at the next timestep is given by the dynamics model with Gaussian
noise, as in FastSLAM:

xt|xt−1, ut ∼ N (f(xt−1, ut), Σpose) (3)

We now describe the observation model. Suppose that at timestep t we re-
ceived Kt observations: yt = (yt[1], ..., yt[Kt]). Furthermore, suppose that we
already knew the association vector at = (at[1], ..., at[Kt]) indicating the source
of every observation. For an observation coming from a previously existing land-
mark θj , we denote at[k] = j, and the observation is given by the Gaussian
observation model:

yt[k] | xt, θj ∼ N (g(xt, θj), Σobs) (4)

For an observation coming from a landmark that appears for the first time at
this timestep, we denote at[k] = +, and the observation is uniform over the
visible region R:

yt[k] | xt ∼ Uniform(R(xt)) (5)

21



For a false detection, we denote at[k] = 0, and the observation is again uniform
over the visible region:

yt[k] | xt ∼ Uniform(R(xt)) (6)

We now need to specify a generative process for the association vectors at.
Informally, at timestep t, each of the landmarks existing at the previous timestep
produces an observation with probability pdet, otherwise it produces no obser-
vation (missed detection). In addition, a number of new landmarks mt appear
(possibly zero), and each of them produces an observation. Finally, a number
of false detections ft occur (possibly zero), and each of them also causes an
observation.

Formalizing this generative process involves a bit of gnarly notation. We have
to go through this exercise to ensure that we have a valid probabilistic model.
(Afterwards, we will show an example to make things more clear.) Suppose there
are Nt−1 landmarks existing at the previous timestep. At timestep t, for each
pre-existing landmark i ∈ {1, ..., Nt−1}, there is a variable

di,t ∼ Bernoulli(pdet)

that indicates whether that landmark was detected. Let

Sold
t = {i|i ∈ {1, ..., Nt−1} s.t. di,t = 1}

be the set of previously existing landmarks detected at timestep t. The number
of new landmarks is

mt ∼ Poisson(λnew)

where λnew is the rate of new landmarks appearing. Let

Snew
t = {+1, ...,+mt}

be the set of new landmarks appearing at timestep t, where +i are arbitrary
unique labels. The number of false detections is

ft ∼ Poisson(λfalse)

where λfalse is the rate of false detections occurring. Let

Sfalse
t = {01, ..., 0ft}

be the set of “false landmarks” at timestep t, where 0i are arbitrary unique labels
different from the +i labels in Snew

t . The set of sources producing observations
at timestep t is then the union of these three sets:

St = Sold
t ∪ Snew

t ∪ Sfalse
t

To generate the association vector at, we choose a random permutation of St:

at|St ∼ Uniform(Permutations(St))
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and drop the subscripts on the labels +i and 0i.
The generative process described above sounds complicated, but we can sim-

plify the notation by defining the association variable ωt = (Nt−1; at), which
contains the number of pre-existing landmarks and the association vector at
timestep t. A value ωt determines the values of variables di,t, mt, ft, as well
as the sets St, S

old
t , Snew

t , and Sfalse
t . For example, consider the value ωt =

(5; 0, 2, 0,+, 4). We immediately read off Nt−1 = 5 and at = [0, 2, 0,+, 4]. Since
we know Nt−1, we have that Sold

t = {1, 2, 3, 4, 5}. By seeing which past land-
marks (positive integers) appear in at, we get d1,t = 0, d2,t = 1, d3,t = 0,
d4,t = 1, and d5,t = 0. By counting the number of new landmarks (+s) and
false detections (0s) in at, we get mt = 1 and ft = 2. From here, we get that
Snew
t = {+1} and Sfalse

t = {01, 02}, and St = {1, 2, 3, 4, 5,+1, 01, 02}. And finally,
Nt = Nt−1 +mt = 6.

The probability distribution for the association variable ωt can now be ex-
pressed as:

p(ωt|ωt−1) =

Nt−1∏
i=1

p(di,t)

 p(mt)p(ft)p(at|St)

= (pdet)
ndet
t · (1− pdet)n

undet
t ·

(
λmt
new

mt!
e−λnew

)
·

(
λftfalse
ft!

e−λfalse

)
· 1

|St|!
(7)

where ndett = |Sold
t | is the number of previous landmarks that were detected,

and nundett = Nt−1 − ndett is the number of previous landmarks that were not
detected.

Suppose that we have Kt observations at timestep t. It is possible for the
generative process on associations to produce an association vector at that ex-
pects a different number of observations, i.e. Kt 6= length(at). In that case, we
simply set the probability of observations to zero. Therefore the probability of
the observations is:

p (yt = (yt[1], ..., yt[Kt]) | xt, ωt = (Nt−1; at), θ)

=

{∏Kt

k=1 p(yt[k] | xt, at[k], θ) if Kt = length(at)

0 if Kt 6= length(at)
(8)

Each of the terms p(yt[k] | xt, at[k], θ) is given by equation 4, 5, or 6, depending
on the association at[k].

Figure 7 shows the DBN for the probabilistic model we just described. As
in FastSLAM, we omit the controls ut, which are always observed. For the
association variables, we include only ωt, since as we have shown, di,t, mt, ft can
be determined unambiguously from ωt. The conditional probability distributions
on the nodes of this DBN are given by equations 3, 7, and 8. The initial pose
is given by equation 2. The only distributions left to specify are the association
prior p(ω1) and the location prior p(θj) for each landmark j. The association
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Fig. 7: The FastSLAM-DA DBN, showing three time slices. The x nodes are
the poses, ω are the associations, y are the observations, and θ is the map, shown
here as a single node.

prior at the first timestep can be expressed using equation 7, if we define the
dummy variable ω0 = (0; ):

P (ω1) = P (ω1|ω0)

Alternatively, if we expect a large number of landmarks to be visible from the
beginning, we can define ω1 using a different rate λinit that is higher than λnew.

In our model, whenever the association variable creates a new landmark (i.e.
there is a + in at), a new node θj for the location of that landmark is added at
timestep t, where j is the next available index. The prior on landmark locations
is uniform over the 2D world that the robot is operating in:

θj ∼ Uniform(W )

Alternatively, if the visible region is much smaller than the entire world, we can
define θj |xt ∼ Uniform(R(xt)), where the function R gives the visible region
from a particular pose. In this case, we would have to add an edge from the xt
node to any landmarks created at timestep t.

To gain a concrete understanding of our probabilistic model of associations,
we show a small example. For illustration purposes, we assume that the robot
is stationary, and the observations are one-dimensional. Suppose we receive the
observations shown in Figure 8a, where the colors indicate the correct associa-
tion. Then the true association hypothesis is as shown in Table 1. The DBN for
this specific example is shown in Figure 8b. The nodes θ1 and θ2 are created at
timesteps 1 and 2 respectively, when the association variable contains +s. Once
a landmark node θj is created, it will exist for all future timesteps.

This model automatically enforces the mutual exclusion constraint. An asso-
ciation such as ωt = (4; 1, 1, 2, 3), which assigns both yt[1] and yt[2] to landmark
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θ1, has probability zero. This is because the association vector at = [1, 1, 2, 3]
cannot arise from the generative process described above, since the set of sources
St cannot contain the element 1 more than once.

(a) Example scenario with two landmarks. The colors indicate the correct association.
False detections are shown in gray. The observations at each timestep are in an arbitrary
order (i.e. they are not ordered by distance / angle / etc).

(b) The FastSLAM-DA DBN for the correct association hypothesis, showing the land-
mark locations θ1 and θ2 as separate nodes.

Fig. 8: Example illustrating how the association variables work.
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timestep association interpretation
t = 1 ω1 = (0; +, 0) there are 0 previous landmarks;

y1[1] comes from a new landmark θ1;
y1[2] is a false detection

t = 2 ω2 = (1; 1,+) there is 1 previous landmark;
y2[1] comes from the existing landmark θ1;
y2[2] comes from a new landmark θ2

t = 3 ω3 = (2; 0, 2) there are 2 previous landmarks;
y3[1] is a false detection;
y3[2] comes from the existing landmark θ2

t = 4 ω4 = (2; 0) there are 2 previous landmarks;
y4[1] is a false detection

t = 5 ω5 = (2; 0, 1, 0) there are 2 previous landmarks;
y5[1] is a false detection;
y5[2] comes from the existing landmark θ1;
y5[3] is a false detection

t = 6 ω6 = (2; 2, 1) there are 2 previous landmarks;
y6[1] comes from the existing landmark θ2;
y6[2] comes from the existing landmark θ1

Table 1: The correct association hypothesis for the example in Figure 8a.

4.2 A Smart Proposal for Associations

The obvious inference algorithm for our new model would be a Rao-Blackwellized
particle filter similar to FastSLAM. We would maintain Rao-Blackwellized dis-
tributions for each landmark θj in each particle. In the advance step, we would
sample the pose xt and the association ωt from their transition models. In the
resample step, we would use the observations yt to compute the weight of each
particle.

In the FastSLAM model, where each DBN time slice contains a single ob-
servation, this would be a feasible approach. Indeed, it is possible to spawn
a new particle for every possible data-association hypothesis [35], and let the
particles with poor data association die off naturally because they have lower
weights. If there are N known landmarks, then for each observation there are
N + 2 hypotheses: one for associating the observation to each of the N existing
landmarks, one for associating the observation to a new landmark, and one for
treating the observation as a false detection.

But in the FastSLAM-DA model, each DBN time slice contains all obser-
vations received at a particular timestep. The number of association hypotheses
to consider grows exponentially with the number of known landmarks. If there
are Nt−1 known landmarks and Kt observations, and ignoring the possibility of

false detections and new landmarks, there are Nt−1!
(Nt−1−Kt)!

association hypotheses.

The transition model P (ωt|ωt−1) places equal mass on these hypotheses, since

26



all landmarks are equally likely to generate observations, and the observations
are equally likely to arrive in any order. If we proposed associations ωt from the
transition model, for Nt−1 = 6 and Kt = 6, only 1 in 6! = 720 particles will
have the correct association, and all other particles will have low weights and
will be killed in the resample step. This will make the particle filter perform very
poorly, since it loses all particle diversity at every timestep.

To find a way around this problem, recall that the particle filtering framework
is not restricted to proposing from the transition model, but instead allows other
proposal distributions [12]. In our model, the most general proposal takes the
form

q(xt, ωt | x1:t−1, ω1:t−1, y1:t)

and the weight w (not to be confused with the association ω) of particle i is
computed as

w(i) ∝
p(x

(i)
t |x

(i)
t−1) · p(ω(i)

t |ω
(i)
t−1) · p(yt|x(i)1:t, ω

(i)
1:t, y1:t−1)

q(x
(i)
t , ω

(i)
t | x

(i)
1:t−1, ω

(i)
1:t−1, y1:t)

To keep the notation light, we will omit the (i) superscript where it does not
lead to confusion. The forward-sampling (“bootstrap filter”) proposal is

qforward(xt, ωt | x1:t−1, ω1:t−1, y1:t) = p(xt|xt−1) · p(ωt|ωt−1)

which makes the weight formula simplify to

wforward ∝ p(yt|x1:t, ω1:t, y1:t−1)

As we have shown above, this proposal ignores the latest observations yt, which
leads to many poor associations being proposed. This in turn leads to a loss of
particle diversity, and poor accuracy of the particle filter.

We now define our smart proposal as an alternative to the forward-sampling
proposal. We will propose the pose xt by forward sampling, as before. But when
we propose the association ωt, we will take into account the latest observations
yt, by preferring associations that lead to a high observation likelihood. If we
have Kt observations at timestep t, our smart proposal takes the form

qsmart(xt, ωt | x1:t−1, ω1:t−1, y1:t) =

p(xt|xt−1) ·
Kt∏
k=1

π(ωt[k] | x1:t, ω1:t−1, y1:t) (9)

Therefore the weight of a particle can be computed as

wsmart ∝
p(ωt|ωt−1) · p(yt|x1:t, ω1:t, y1:t−1)

qsmart(xt, ωt | x1:t−1, ω1:t−1, y1:t)
(10)

The only term left to specify is the proposal for an individual association,
π(ωt[k] | x1:t, ω1:t−1, y1:t). The variable ωt[k] may take any value from the set
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Ct = {1, ..., Nt−1,+, 0}, corresponding to an association to an existing landmark,
a new landmark, and a false detection, respectively. We define

π(ωt[k] = c | x1:t, ω1:t−1, y1:t) =
score(ωt[k] = c | x1:t, ω1:t−1, y1:t)∑

c′∈Ct
score(ωt[k] = c′ | x1:t, ω1:t−1, y1:t)

For an association to a past landmark, the score is given by the likelihood of
that landmark generating the observation yt[k]:

score(ωt[k] = j | x1:t, ω1:t−1, y1:t) = p(yt[k] | xt, ωt[k] = j, x1:t−1, ω1:t−1, y1:t−1)

To compute this likelihood we use αt−1[j], the Rao-Blackwellized distribution
parameters (mean and variance) for the position of landmark j after incorporat-
ing all observations associated to that landmark in timesteps 1 : t−1. Therefore,
with a slight abuse of notation, we can say:

score(ωt[k] = j | x1:t, ω1:t−1, y1:t) = p(yt[k] | xt, αt−1[j])

For the remaining two hypotheses (new landmark and false detection), the scores
are given by respective constants, which are tunable parameters of the proposal:

score(ωt[k] = + | x1:t, ω1:t−1, y1:t) = exp(φnew)

score(ωt[k] = 0 | x1:t, ω1:t−1, y1:t) = exp(φfa)

Our smart proposal in equation 9 proposes an association for each observation
independently of the others. This means that it can propose associations that
violate the mutual exclusion constraint. This is not a problem, since in equation
10, the term p(ωt|ωt−1) will be zero for any ωt that violates the mutual exclusion
constraint. Therefore, particles that violate the mutual exclusion constraint will
automatically get a weight of zero.

The smart proposal is data-driven, meaning that it takes into account the
latest observations yt when proposing the association ωt. A greedy data-driven
proposal has been suggested before for multi-target tracking [15]. The greedy
proposal considers targets in a fixed order, and enforces the mutual exclusion
constraint. This means that if observation yt[k] can be explained equally well
by targets θi and θj with i < j, the greedy proposal will be biased in favor of
θi, since it considers θi before θj . By proposing associations independently from
each other and then assigning weight zero to associations violating the mutual
exclusion constraint, our proposal avoids this bias.

Our proposal can be qualitatively summarized as follows: If there is a single
“obvious” association for observation yt[k], that association will have a high
likelihood score, so it will be chosen with high probability. If there are multiple
plausible associations for the observation, the proposal will choose among them
in proportion to their likelihood scores. If there are no plausible associations, then
all past landmarks will have low scores, and the proposal will choose between
the + (new landmark) and 0 (false detection) hypotheses, in accordance to the
relative magnitude of the parameters φnew and φfa.
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4.3 The FastSLAM-DA Algorithm

The FastSLAM-DA algorithm is an application of Rao-Blackwellized particle
filtering [31] on the probabilistic model described in section 4.1, using the smart
proposal described in section 4.2. Figure 9 shows one timestep of the algorithm.

Recall that it is possible for the proposal to suggest associations that violate
the mutual exclusion constraint. This means that after advancing N particles,
some of them have a weight of zero, and do not survive the resampling step.
We modify the textbook particle filter slightly, to prevent this loss of particle
diversity. In particular, instead of simply advancing the N existing particles,
we repeat the entire advance step until we have at least N resulting particles
with non-zero weight. This is equivalent to making k copies of each particle
before the advance step. It is easy to show that this maintains the correctness of
the particle filter: Since the particles have uniform weights before the advance
step, the original N particles and the copied kN particles represent the same
distribution.

It is possible to view our advance step as a rejection sampler, which sam-
ples from the proposal again and again until it has at least N non-zero-weight
particles. One concern is that there could be too many rejections, which would
slow down the particle filter. Rejections occur especially when observations are
close to each other, thus “competing” for being explained by the same landmark.
In our case, the observations are extracted from laser rangefinder data, so two
observations are rarely very close to each other. (If two sources were that close
to each other, one of them would occlude the other, and we would only get one
observation.) This explains why we haven’t seen large amounts of rejections in
our experiments with FastSLAM-DA. If a different observation model were
used, we might need some other technique to avoid excessive rejections.

FastSLAM-DA differs from FastSLAM in the following ways:

– FastSLAM performs heuristic data association (choose the landmark with
maximum likelihood, and use a hard to decide when to add a new landmark).
FastSLAM-DA samples data associations instead.

– FastSLAM processes one observation at a time, and does not enforce the
mutual exclusion constraint. FastSLAM-DA processes all observations at
a timestep together, and disallows associations that violate the mutual ex-
clusion constraint.

– FastSLAM uses map-management heuristics to remove spurious landmarks
from the map. FastSLAM-DA does not use such heuristics, instead relying
on particle diversity to prune away map hypotheses that are not supported
by the data. Particles with spurious landmarks will have smaller weights,
because those landmarks are not detected in subsequent timesteps.

FastSLAM-DA would be straightforward to implement in a PPS that sup-
ported Rao-Blackwellized particle filtering with an interface for specifying a cus-
tom proposal. This is a big improvement over FastSLAM, which cannot be
implemented in a PPS because of its ad-hoc heuristic techniques.
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Inputs:

– A list Bt−1 of N particles approximately distributed according to
p(x1:t−1, ω1:t−1 | y1:t−1).

– The new observations yt.
– Parameters for the model: controls, noises, etc.
– Parameters for the proposal: φnew and φfa.

Output:

– A list Bt of N particles approximately distributed according to
p(x1:t, ω1:t | y1:t).

Algorithm:

1. Advance step
Let Bt be an empty list.
While length(Bt) < N :

For each particle (x
(i)
1:t−1, ω

(i)
1:t−1) in Bt−1:

Propose (x
(i)
t , ω

(i)
t ) according to equation 9.

Compute the weight w
(i)
t according to equation 10.

If w
(i)
t > 0, add the new particle to Bt.

2. Resample step
Resample N particles from Bt in proportion to their weights.

3. Exact step
Update the Rao-Blackwellized distributions on landmark locations in
each particle, according to any new observations that were associated to
those landmarks.

Fig. 9: The FastSLAM-DA algorithm for timestep t.

4.4 Results on the mutex Dataset

In section 3.4, we introduced the mutex dataset, on which FastSLAM does
not do very well because it ignores the mutual exclusion constraint and uses a
hard threshold to decide when to add new landmarks to the map. We expect
FastSLAM-DA to do better on this dataset, because it chooses associations by
sampling, and because it handles mutual exclusion properly. In this section we
investigate the accuracy of FastSLAM-DA on the mutex dataset.

Figure 11 shows the results of running FastSLAM-DA with 1000 particles
on the mutex dataset. (We verified that there is no significant improvement in
accuracy from using more than 1000 particles.) Since this dataset has no false
detections, we set φfa = −∞, which causes false-detection hypotheses to never be
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proposed. We vary φnew to see how it influences accuracy. We superimpose these
results on the FastSLAM results from Figure 5 for comparison. (The Fast-
SLAM parameter τnew and the FastSLAM-DA parameter φnew have slightly
different semantics, due to the normalization constants elided when computing
particle weights. For this reason we consider a large range for these parameters,
to see how the two algorithms behave across this range.)

We can clearly see that FastSLAM-DA achieves a trajectory accuracy
that is as good as FastSLAM with the best settings of τnew, while produc-
ing maps that are much more accurate. The increased map accuracy is thanks to
FastSLAM-DA’s ability to enforce the mutual exclusion constraint. FastSLAM-
DA works well for many settings of the φnew parameter, and only fails when φnew
is so high that the “new landmark” hypotheses wins over the “associate to ex-
isting landmark” hypothesis. Figure 10 shows some typical maps produced by
FastSLAM-DA. With a good setting of φnew, FastSLAM-DA recovers a near-
perfect map and trajectory (Figure 10a). With a setting of φnew that is too high,
FastSLAM-DA adds too many false landmarks to the map, and loses its ability
to localize the robot accurately (Figure 10b).

(a) φnew = −8 (b) φnew = +2

Fig. 10: Typical maps produced by FastSLAM-DA on the mutex dataset, for
different values of the φnew parameter.
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Fig. 11: FastSLAM-DA results on the mutex dataset, with 1000 particles and
different values for the φnew parameter. Top: histogram showing number of spuri-
ous (positive) or undetected (negative) landmarks. Center: average and standard
deviation of map error. Bottom: average and standard deviation of trajectory
error. All statistics are based on 10 trials. We also show the FastSLAM results
for comparison.
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4.5 highfa: A Dataset with a High Rate of False Detections

In the mutex dataset, the data-association uncertainty comes from high rota-
tional noise in the dynamics model and high observation noise in the sensor
model. But there is another scenario with high association uncertainty: when
there are many false detections, a SLAM algorithm might add false landmarks
to the map. To explore whether this is a problem, we design an environment
with a high rate of false detections.

The highfa dataset is generated with the same dynamics model as the mutex
dataset. We reduce the observation noise from σdx = σdy = 0.2 to σdx = σdy =
0.1. In addition, we generate false detections with a Poisson rate of λfa = 5.0
per timestep. In the real world, these false detections may be caused by laser
sensor errors, or by temporary obstructions, such as people walking in front of
the robot. When a false detection occurs, it may occlude any landmarks that are
behind it.

There are four landmarks in the highfa dataset, shown in Figure 12a to-
gether with the ground-truth and dead-reckoning trajectories. The high rate
of false detections causes a lot of data-association uncertainty, since any set
of false detections that cluster together in time and space could be confused
for a landmark. Figure 12b shows the observations plotted with respect to the
ground-truth trajectory, and the colors show the ground-truth data association.
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(a) The ground-truth and dead-reckoning trajectories.

(b) Observations color-coded by their source landmark.

Fig. 12: The highfa dataset, with high rotational noise and a high rate of false
detections, resulting in large association uncertainty.

4.6 Results on the highfa Dataset

First we consider FastSLAM on the highfa dataset. As expected, FastSLAM
does very poorly, because each false detection adds a new landmark to the map.
Many of these landmarks eventually get deleted, because their “seen counts”
cj drop below zero, but some of them remain in the final map. It is possible
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to obtain reasonable maps using FastSLAM only by introducing additional
heuristics. For example, we could post-process the resulting maps by removing
all landmarks that were observed fewer than 20 times. Or we could introduce a
provisional map separate from the main map, as mentioned in section 3.3.

We now investigate the accuracy of FastSLAM-DA on the highfa dataset,
as a function of the parameters φnew and φfa, and the number of particles used.
First, we fixed the number of particles to 1000. Running a preliminary grid
search, we obtained reasonable results with φfa = −5 and φnew = −15. We then
altered these parameters one at a time, to see how they influence accuracy.

The φnew parameter controls how willing FastSLAM-DA is to explain an
observation by creating a new landmark. Figure 13 shows how this parameter
influences the accuracy of FastSLAM-DA. If φnew is too low, then FastSLAM-
DA explains all observations as false detections, and fails to localize the robot. If
φnew is too high, FastSLAM-DA explains some false detections as landmarks,
and adds these false landmarks to the map. We found no value of φnew that
achieved a satisfactory balance between these two behaviors. FastSLAM-DA
either added spurious landmarks, or failed to add true landmarks, as shown in
the examples in Figure 14.

The φfa parameter controls how willing FastSLAM-DA is to disregard an
observation as a false detection. Extreme values of this parameter caused bad
accuracy (empty map, or map full of false landmarks), and we found no value of
φfa that gave us results better on average than those shown in Figure 13.

Using the best values found so far, φfa = −5 and φnew = −15, we increased
the number of particles up to 50000, but we did not see improved accuracy
beyond 1000 particles. Shouldn’t the particles with the correct map survive, and
the ones with an incorrect map die during the resampling step?

To understand why FastSLAM-DA on this dataset nearly always produces
maps with spurious landmarks, consider the case in Figure 15. In this simplified
example, the observations are one-dimensional, and the robot is stationary. There
is a single true landmark, shown in green. In timesteps 1:3, three false detections
(shown in red) occur relatively near one another. Our model assigns very high
probability to the hypothesis that these three detections come from a second
landmark. In fact, after timestep 3, the hypothesis that there is a single landmark
has probability 0.0000011, and the hypothesis that there are two landmarks
has probability 0.9999989. This means that even with one million particles, on
average only one particle will carry the one-landmark hypothesis.

After seeing additional observations in timesteps 4:10, we fail to see any
more observations supporting the existence of the second landmark. Our model
adjusts its belief accordingly, assigning probability 0.187 to the two-landmark
hypothesis and 0.813 to the one-landmark hypothesis. However, if after timestep
3, all particles contain two landmarks, then there is no way for the particle filter
to return to the one-landmark hypothesis. In FastSLAM, the map manage-
ment heuristics would remove the false landmark some timesteps later, but in
FastSLAM-DA, there is no mechanism to do so. We will address this limitation
in the next section.
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Fig. 13: FastSLAM-DA results on the highfa dataset, with 1000 particles,
φfa = −5, and different values for φnew parameter. Top: histogram showing num-
ber of spurious (positive) or undetected (negative) landmarks. Center: average
and standard deviation of map error. Bottom: average and standard deviation
of trajectory error. All statistics are based on 10 trials.

36



(a) φnew = −16 (b) φnew = −15

Fig. 14: Typical maps produced by FastSLAM-DA on the highfa dataset, with
a good setting of φnew.

Fig. 15: An example showing how FastSLAM-DA adds a false landmark and
is then unable to remove it. The true landmark is shown in green, and the false
landmark is shown in red.
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5 FastSLAM-DA-RM: Changing the Past

In the last section we described FastSLAM-DA, an algorithm that fixes many
of the limitations in FastSLAM. FastSLAM-DA achieves better accuracy on
the mutex dataset, and it removes the data-association and map-management
heuristics. This makes it more suitable for implementation in a PPS. On the
other hand, we have shown that FastSLAM-DA produces inaccurate maps on
a dataset with a high rate of false detections. In this section, we present an
algorithm that removes the latter limitation.

FastSLAM-DA relies on particle diversity to prune away inaccurate maps.
As shown at the end of section 4.6, in a scenario with many false detections, it
is possible for FastSLAM-DA to reach a state where all particles have a false
landmark in their map. Subsequently, FastSLAM-DA has no way to remove
that false landmark. This is an instance of sample degeneracy, a common problem
in particle filters [14]. Intuitively, the particle filter cannot change its mind about
decisions made in the past. When processing timestep t in particle i, the particle

filter samples x
(i)
t and ω

(i)
t , but it cannot alter x

(i)
1:t−1 or ω

(i)
1:t−1. This is illustrated

in Figure 16a.
One way to avoid degeneracy in a particle filter is to introduce MCMC moves.

After the resample step, the particles are approximately distributed according
to p(x1:t, ω1:t|y1:t). If we pass the particles through an MCMC transition ker-
nel with stationary distribution p(x1:t, ω1:t|y1:t), they will still be approximately
distributed according to the same distribution, thus maintaining the correctness
of the particle filter. The MCMC moves introduce some diversity in the parti-
cles, which can alleviate the degeneracy problem. This technique is known as
Resample-Move [14,18].

Our new algorithm, FastSLAM-DA-RM (FastSLAM with Data Associa-
tion and Resample-Move), is obtained by applying the Resample-Move technique
to the FastSLAM-DA algorithm. Instead of designing an MCMC to alter the
full trajectory x1:t and association history ω1:t, we will follow the existing work
on MCMC for data association [36], and only allow changing the association over
a moving window of L timesteps: ωt−L+1:t. This is illustrated in Figure 16b.

In section 5.1 we describe the proposal in our MCMC algorithm, which is
based on a set of reversible move pairs. In section 5.2 we show how to evaluate
the target distribution in order to compute the acceptance ratio. In section 5.3
we verify the correctness of our MCMC algorithm on a small example where it is
possible to compute the exact posterior by exhaustive search. Finally, we present
the FastSLAM-DA-RM algorithm in section 5.4 and evaluate its results on the
highfa dataset in section 5.5.

5.1 An MCMC Algorithm for Associations

The state of our Markov chain is given by the association variables in the
past L timesteps: s = ωt−L+1:t. The target probability distribution is π(s) =
p(x1:t, ω1:t|y1:t). (We will show exactly how to evaluate this target distribution
in the next section.) Our MCMC algorithm is a standard Metropolis–Hastings
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(a) FastSLAM-DA

(b) FastSLAM-DA-RM

Fig. 16: The nodes whose values change at the current timestep.

(MH) sampler [4] that uses a proposal distribution q(s′|s). The basic algorithm
is shown in Figure 17.

The meat of the MCMC algorithm is in the proposal distribution q(s′|s).
Inspired by existing work on MCMC for multi-target tracking [36], we will define
a set of reversible move pairs that change the association ωt−L+1:t. We refer to
the timesteps 1 : t − L as the past and to the timesteps t − L + 1 : t as the
present. This allows us to categorize landmarks into past-only, present-only, and
past-and-present, as shown in Figure 18. We define the following move pairs,
which we illustrate in Figure 19.

– Birth: Pick a group of false detections from the present and associate them
to a new landmark. We select the false detections sequentially, just like the
birth move in the MCMCDA algorithm [36].

Death: Pick a present-only landmark and delete it, associating all its ob-
servations to false detections.

– Push: Pick a false detection o and associate it to an existing landmark l.
This is possible only if the landmark l has no other observation at the same
timestep as o.

Pop: Pick an observation associated to a landmark and associate it to a false
detection. Since a landmark with a single observation is indistinguishable
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Input:

– An initial state s(i).

Output:

– The next state s(i+1).

Algorithm:

1. Sample a proposed state s′ ∼ q(s′|s(i)).
2. Compute the acceptance ratio α = min

(
1, π(s′)·q(s(i)|s′)

π(s(i))·q(s′|s(i))

)
.

3. Sample a random value u ∼ Uniform(0, 1).
If u < α, accept the proposed state, and return s(i+1) = s′.
Otherwise, reject the proposed state, and return s(i+1) = s(i).

Fig. 17: The Metropolis–Hastings sampler.

Fig. 18: An example association hypothesis, showing a past-only landmark, a
present-only landmark, and a past-and-present landmark.
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from a false detection, this move is possible only if the original landmark has
at least 3 observations.

– Merge: Pick two landmarks l1 and l2, and merge them into a single land-
mark. One landmark must be present-only, while the other may be present-
only or past-and-present. The two landmarks must have observations at dis-
joint timesteps.
Split: Pick a landmark l and split it into two landmarks l1 and l2, by as-
signing each (present) observation in l randomly to either l1 or l2. Both l1
and l2 must end up with at least two observations each.

– PastMerge: Pick a present-only landmark and a past-only landmark, and
merge them into a single past-and-present landmark.
PastSplit: Pick a past-and-present landmark and split it into a past-only
landmark and a present-only landmark.

Fig. 19: Reversible move pairs for the MCMC proposal.

For the present timesteps t − L + 1 : t, we store all of the observations and
robot poses. For the past timesteps 1 : t − L, we only store a list of landmarks
and the parameters (mean and covariance) of their location distribution. Thus,
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the space complexity of our algorithm is linear in L and constant with respect to
the total number of timesteps t. Because past landmarks and present landmarks
are represented differently in our implementation, we found it easier to have
Merge, Split, PastMerge, and PastSplit moves, instead of just having Merge and
Split moves that handled both past and present landmarks.

Our MCMC proposal q(s′|s) first picks a type of move, and then generates
a move of that type. If there are no valid moves of that type, the proposal
defaults to a NoopMove, which makes no changes to the current association.
A NoopMove has the acceptance ratio α = 1, so it is always accepted.

5.2 Evaluating the MCMC Target Distribution

To finish the description of our MCMC algorithm, we need to specify how we
evaluate the target distribution π(s) = p(x1:t, ω1:t|y1:t) up to a normalization
constant. Since the MCMC is only allowed to change ωt−L+1:t, the target distri-
bution simplifies as follows:

p(x1:t, ω1:t|y1:t) = p(x1:t, ω1:t−L|y1:t) · p(ωt−L+1:t|x1:t, ω1:t−L, y1:t)

∝ p(ωt−L+1:t|x1:t, ω1:t−L, y1:t)

since the first term is a constant with respect to ωt−L+1:t. By applying Bayes’
rule and then taking advantage of the conditional independences in our model,
we can decompose this target distribution into the product of an association
prior term and an observation likelihood term:

p(ωt−L+1:t|x1:t, ω1:t−L, y1:t)

∝ p(ωt−L+1:t|x1:t, ω1:t−L, y1:t−L) · p(yt−L+1:t|x1:t, ω1:t, y1:t−L)

∝ p(ωt−L+1:t|ωt−L) · p(yt−L+1:t|x1:t, ω1:t, y1:t−L)

The association prior term decomposes into a product, where each term can
be evaluated using equation 7:

p(ωt−L+1:t|ωt−L) =

t∏
i=t−L+1

p(ωi|ωi−1)

The observation likelihood term also decomposes into a product, and by the
conditional independences in our model we get:

p(yt−L+1:t|x1:t, ω1:t, y1:t−L) =

t∏
i=t−L+1

p(yi|x1:t, ω1:t, y1:i−1)

=

t∏
i=t−L+1

p(yi|x1:i, ω1:i, y1:i−1)
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Each term in the above product can be rewritten by reintroducing the Rao-
Blackwellized variable θ, and marginalizing over it:

p(yi|x1:i, ω1:i, y1:i−1) =

∫
θ

p(yi, θ|x1:i, ω1:i, y1:i−1) dθ

=

∫
θ

p(θ|x1:i, ω1:i, y1:i−1) p(yi|θ, x1:i, ω1:i, y1:i−1) dθ

=

∫
θ

p(θ|x1:i−1, ω1:i−1, y1:i−1) p(yi|xi, ωi, θ) dθ

where we got the second line using the chain rule of probability, and the third line
by applying the conditional independences in our model. In the final integral, the
first term p(θ|x1:i−1, ω1:i−1, y1:i−1) is the Gaussian distribution over landmark
locations, after incorporating observations up to timestep i − 1. The second
term p(yi|xi, ωi, θ) is simply the observation probability in our model, given
by equation 8. Therefore, we can evaluate the integral in closed form, since it is
equivalent to computing the observation likelihood in the EKF for each landmark
that appears in ωi.

5.3 Verifying the MCMC Sampler

To verify the implementation of the MCMC sampler, we picked a small example
with a stationary robot, 10 timesteps, and 12 observations, similar to Figure 15.
Every possible association hypothesis is a partition of the set of observations,
so there are at most B12 = 4, 213, 597 possible associations, where Bi is the ith

Bell number. Some of these associations are invalid in our model, because they
put two observations at the same timestep in the same partition, thus violating
the mutual exclusion constraint.

We exhaustively listed all valid associations (there were 2, 504, 665 of them),
and computed the target probability p(x1:t, ω1:t|y1:t) for each association up to
a proportionality constant, as described in the previous section. Normalizing the
resulting distribution, we obtained that hypothesis A with one track accounted
for 0.81329 of the probability mass, and hypothesis B with two tracks accounted
for 0.18671 of the probability mass. All other hypotheses had negligible mass
(less than 10−6).

We then ran on our MCMC sampler on the same example, starting from an
initial state that associated every observation to a false detection. Figure 20 plots
the (unnormalized) log probability of the current state of the Markov chain for
the first 5000 iterations. In this small example, the chain converges to the true
posterior very quickly (in less than 100 iterations), and then efficiently switches
between the two modes of the posterior. Running 10 trials with one million
iterations, the MCMC visited state A with average frequency 0.81324 and state
B with average frequency 0.18676 (the standard deviation was 0.00168). These
numbers match the exact posterior very closely, indicating that the MCMC
samples from the correct distribution.
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Fig. 20: The mixing behavior of our MCMC sampler on a small example.

5.4 The FastSLAM-DA-RM Algorithm

The FastSLAM-DA-RM algorithm is obtained by taking FastSLAM-DA and
adding MCMC moves after the resample step, using the MCMC sampler de-
scribed in the sections above. In the particle filtering part, we still use the smart
proposal from section 4.2. Since a landmark with a single observation is indis-
tinguishable from a false detection, we can reduce the number of parameters by
setting φnew = −∞. This means that the proposal will associate observations to
existing landmarks or to false detections, but it will never create new landmarks.
The job of creating new landmarks falls on the MCMC in the move step. Figure
21 shows one timestep of this algorithm.

Both FastSLAM-DA and FastSLAM-DA-RM are true online algorithms,
meaning that their time and space complexity is bounded and does not grow
with the total number of timesteps t. In FastSLAM-DA, the variables from
timestep t− 1 are “forgotten” as soon as timestep t is processed. After timestep
t, each FastSLAM-DA particle contains:

– The robot pose xt.
– The association ωt.
– The mean and covariance for the landmark location distributions, incorpo-

rating observations up to the current timestep: p(θ|x1:t, ω1:t, y1:t).

Since FastSLAM-DA-RM allows changing the recent past, the particle defi-
nition is more complicated. After timestep t, each FastSLAM-DA-RM particle
contains:

– The robot pose for the current window: xt−L+1:t.
– The association for the current window: ωt−L+1:t.
– The mean and covariance for the landmark location distributions, incorpo-

rating all observations before the current window: p(θ|x1:t−L, ω1:t−L, y1:t−L).
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Inputs:

– A list Bt−1 of N particles approximately distributed according to
p(x1:t−1, ω1:t−1 | y1:t−1).

– The new observations yt.
– Parameters for the model: controls, noises, etc.
– Parameters for the proposal: φfa.
– Parameters for the move step: the window length L and the number M of

MH iterations in each move step.

Output:

– A list Bt of N particles approximately distributed according to
p(x1:t, ω1:t | y1:t).

Algorithm:

1. Advance step
Let Bt be an empty list.
While length(Bt) < N :

For each particle (x
(i)
1:t−1, ω

(i)
1:t−1) in Bt−1:

Propose (x
(i)
t , ω

(i)
t ) according to equation 9.

Compute the weight w
(i)
t according to equation 10.

If w
(i)
t > 0, add the new particle to Bt.

2. Resample step
Resample N particles from Bt in proportion to their weights.

3. Move step
Pass each particle through M iterations of the MCMC kernel with target
distribution p(x1:t, ω1:t|y1:t).

4. Exact step
Update the Rao-Blackwellized distributions on landmark locations in
each particle, according to which observations were associated to those
landmarks.

Fig. 21: The FastSLAM-DA-RM algorithm for timestep t.

– The observations for the current window: yt−L+1:t. These are needed for
evaluating the target distribution in the move step.

When processing timestep t + 1, the window is extended to t − L + 1 :
t + 1. After the move step, the landmark location distribution is updated from
p(θ|x1:t−L, ω1:t−L, y1:t−L) to p(θ|x1:t−L+1, ω1:t−L+1, y1:t−L+1), and the variables
xt−L+1, ωt−L+1, yt−L+1 are “forgotten”, since they can never be changed in the
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future. This reduces the window to t − L + 2 : t + 1, maintaining the window
length invariant for the next timestep.

5.5 Results on the highfa Dataset

FastSLAM-DA-RM has too many parameters to do a grid search over their
entire space. We set φnew = −∞ as described in the previous section, and φfa =
−5, which achieved the best results for FastSLAM-DA. We then fixed the
number of particles to 100, and did a preliminary grid search on the remaining
two parameters. We got good results with a window of length L = 30 andM = 20
MH iterations.

Recall from section 4.6 that the main limitation of FastSLAM-DA on the
highfa dataset is its inability to remove spurious landmarks. Thanks to the move
step, FastSLAM-DA-RM is able to remove spurious landmarks, as long as their
observations are all in the sliding window. The window length L directly con-
trols how far into the past FastSLAM-DA-RM can look. Figure 23 shows how
this parameter influences the accuracy of FastSLAM-DA-RM. As expected,
if the window is long enough, FastSLAM-DA-RM easily beats FastSLAM-
DA in terms of map accuracy, and the trajectory accuracy improves a bit as
well. Figure 22 shows some typical maps produced by FastSLAM-DA-RM.
With an insufficiently large window, FastSLAM-DA-RM performs similarly
to FastSLAM-DA (Figure 22a). With a large enough window, FastSLAM-
DA-RM removes the spurious landmark and produces a near-perfect map and
trajectory (Figure 22b).

(a) L = 20 (b) L = 30

Fig. 22: Typical maps produced by FastSLAM-DA-RM on the highfa dataset,
for different window lengths L.
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The effect of M , the number of MH iterations per move step, was less pro-
nounced. Accuracy suffered with less than 10 iterations, but was essentially
stable for any M ≥ 10. This shows that the move step can achieve its purpose of
removing spurious landmarks even with very few MCMC iterations. This makes
sense, because the initial state of the MCMC is near the mode of the target
distribution, so no burn-in is necessary. In a scenario like Figure 15, all that
is needed is for the MCMC to propose and accept a Death move for the false
landmark.

One might argue that FastSLAM-DA-RM should get better as we increase
M , because the move step would fix other association errors, besides just re-
moving false landmarks. While it is true that the move step can improve the
association ωt−L+1:t, it cannot change the trajectory xt−L+1:t. Therefore, be-
sides removing false landmarks, the best that the move step can do is to slightly
improve the accuracy of the landmark location beliefs. We conclude that on
highfa, the main benefit of adding MCMC moves is the ability to “look back
in time” and remove landmarks that seemed plausible in the past, but are no
longer supported by evidence.

Finally we considered the effect of the number of particles N . As expected,
map and trajectory accuracy improved with more particles, reaching a plateau
for N ≥ 100. In contrast, FastSLAM-DA reached a plateau for N ≥ 1000. This
shows that fewer particles are required when using resample-move. However, a
FastSLAM-DA-RM iteration is more expensive than a FastSLAM-DA iter-
ation, because it performs M MH iterations in an inner loop. FastSLAM-DA
is recommended on datasets where “changing the past” is not necessary, since it
is faster and much easier to implement than FastSLAM-DA-RM.
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Fig. 23: FastSLAM-DA-RM results on the highfa dataset, with 100 particles,
φnew = −∞, φfa = −5, M = 20 MH iterations per move step, and different
values for the window length L. Top: histogram showing number of spurious
(positive) or undetected (negative) landmarks. Center: average and standard
deviation of map error. Bottom: average and standard deviation of trajectory
error. All statistics are based on 10 trials. We also show the best result from
FastSLAM-DA for comparison. 48



6 Towards an Implementation in BLOG

To implement FastSLAM-DA in BLOG, we would need the PPS to support
the following features:

– Particle filtering with a custom proposal distribution. The user
should be able to plug in a custom proposal distribution for use with the
particle filter. The particle filter then needs to compute the particle weights
correctly for the custom proposal.

– Rao-Blackwellization of variables. This means that each particle stores
sufficient statistics for the distribution of the Rao-Blackwellized variables,
instead of storing concrete values for them. We need to be able to initial-
ize these sufficient statistics, update them when conditioning on new evi-
dence, and compute the likelihood of the evidence conditioned on the Rao-
Blackwellized variables.

To implement FastSLAM-DA-RM in BLOG, we would need an additional
feature:

– Resample-Move particle filtering. This means adding a move step after
the resample step of the particle filter. The move step could use the MCMC
sampler built into BLOG, or it could allow the user to specify a custom
MCMC sampler to use.

BLOG already has support for custom proposals in the particle filter. The
user can implement a custom proposal by creating a subclass of Sampler and
defining methods to generate a sample from the proposal distribution, and to
evaluate the likelihood of a sample according to the proposal distribution. The
user can then run the particle filter with the custom sampler by passing the
samplerClass property at construction time.

Adding support for Rao-Blackwellization in BLOG would be a large effort.
We could require the user to write the Rao-Blackwellization code (such as the
integrals in section 5.2) themselves, but then there would be little benefit from
using BLOG, since the user would still have had to write most of the inference
code by hand. The alternative is to have BLOG automatically determine how to
initialize and update the sufficient statistics for the Rao-Blackwellized variables,
how to sample child variables when one or more parents are Rao-Blackwellized,
and how to evaluate the likelihood of child variables when one or more parents
are Rao-Blackwellized. We would need to build a library of combinations of dis-
tributions where these operations are possible in closed form, e.g., Gaussians for
the continuous case and categorical distributions for the discrete case. Because
of the amount of effort involved, we decided that adding Rao-Blackwellization
to BLOG is out of scope for this thesis.

We thus decided to focus on the third component: adding Resample-Move
particle filtering to BLOG. We created a new inference engine ResampleMovePF,
which behaves just like the ParticleFilter, except that it passes the parti-
cles through an MCMC transition kernel after the resample step. We use the
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Metropolis–Hastings (MH) sampler built into BLOG for the MCMC transition
kernel. By default, the MH sampler uses a proposal that picks a variable in the
DBN uniformly at random, and then samples a new value for it based on the
values of its parents. Thanks to this default proposal, the user can try Resample-
Move on their model without having to write any custom inference code. If the
parent-sampling proposal is insufficient, the user can specify a custom proposal
for the MH sampler, by creating a subclass of the AbstractProposer class, and
implementing methods to generate the next sample and compute its acceptance
ratio.

The move step in ResampleMovePF has the ability to change any variable
defined in the model. In contrast, the move step in FastSLAM-DA-RM only
changes some of the variables (the associations ω) at some timesteps (at most L
timesteps into the past). We can achieve the same behavior with ResampleMovePF

using a custom proposal that only changes a subset of the variables. If the pro-
posal guarantees never to change variables from more than L timesteps ago,
we can extend ResampleMovePF to “forget” older variables, thus operating in
constant space, like FastSLAM-DA-RM.

FastSLAM-DA and FastSLAM-DA-RM require Rao-Blackwellization for
the landmark location variables. Parent-sampling these variables is hopeless,
since most samples would place the landmarks in locations that do not agree with
the observations. For this reason, we cannot demonstrate FastSLAM-DA or
FastSLAM-DA-RM in BLOG until we have support for Rao-Blackwellization.
However, we can demonstrate the benefit of Resample-Move on a toy SLAM
problem that does not require Rao-Blackwellization. In section 6.1 we define
the toy problem and express it as a BLOG model. Then in section 6.2 we show
results comparing the existing ParticleFilter with the new ResampleMovePF

on this BLOG model.

6.1 gridworld: A One-dimensional SLAM Problem

Our grid-world example is based on the one-dimensional SLAM problem de-
scribed by Murphy and Russell [31]. We have a one-dimensional grid world with
ncells cells, each of which is either black (0) or white (1). When the robot is in
cell i, it observes the true color of cell i with probability 1 − pobs fail, and the
opposite color with probability pobs fail. The robot tries to move left or right at
each timestep, according to a fixed control policy. If the move is valid (i.e. it
does not cause the robot to fall off the edge of the world), it succeeds with prob-
ability 1− pmove fail and fails with probability pmove fail. If the move is invalid, it
fails with probability one. When a move fails, the robot stays in its current cell.
When a move succeeds, the robot moves one cell to the right or left, depending
on the current controls.

In our particular example, we set ncells = 8 and used the map shown in
Figure 24a. We set pmove fail = 0.05 and pobs fail = 0.2. We fixed a control policy
as shown in Figure 24b, and generated a scenario by sampling from the generative
process described above. In this scenario there are four observation failures and
one move failure, as shown in Figure 24b.
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(a) The map.

timestep controls true loc true color obs color comments
0 - 0 0 0 initial loc known
1 → 1 1 0 obs failure
2 → 2 0 0
3 → 2 0 0 move failure
4 → 3 1 1
5 → 4 0 0
6 → 5 1 1
7 → 6 0 0
8 → 7 1 1
9 ← 6 0 0
10 ← 5 1 0 obs failure
11 ← 4 0 1 obs failure
12 ← 3 1 1
13 → 4 0 0
14 → 5 1 1
15 → 6 0 0
16 → 7 1 0 obs failure
17 → 7 1 1
18 ← 6 0 0
19 ← 5 1 1
20 ← 4 0 0
21 ← 3 1 1
22 ← 2 0 0
23 ← 1 1 1
24 ← 0 0 0
25 ← 0 0 0

(b) The control policy and observations.

Fig. 24: The gridworld SLAM problem.

The goal of SLAM is to infer the true map and the location of the robot at
each timestep. It is easy to formulate this problem as an inference problem in a
BLOG model. First we write the model encoding the generative process for our
world, as shown in Figure 25. We pick a map prior that says each cell is a priori
equally likely to be black or white, independently of all other cells. The prior on
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the controls is a DontCare, a special “distribution” indicating that all control
values will be observed. We then describe the specifics of our inference problem,
as shown in Figure 26. We observe the controls and noisy colors, and query the
location at each timestep and the color at every cell.

type Control;

distinct Control Left, Right;

random Integer color(Integer c) ~ Bernoulli(0.5);

random Integer noisyColor(Timestep t) ~

Categorical({

color(location(t)) -> 1 - p_obs_fail,

(1 - color(location(t))) -> p_obs_fail

});

fixed Integer left_of(Integer c) =

if c == min_cell then min_cell

else c - 1;

fixed Integer right_of(Integer c) =

if c == max_cell then max_cell

else c + 1;

random Integer location(Timestep t) ~

if (t == first_timestep) then start_cell

else if control(t) == Left then Categorical({

left_of(location(t - 1)) -> 1 - p_move_fail,

location(t - 1) -> p_move_fail

}) else Categorical({

right_of(location(t - 1)) -> 1 - p_move_fail,

location(t - 1) -> p_move_fail

});

random Control control(Timestep t) ~ DontCare();

Fig. 25: The BLOG model for the gridworld problem.
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fixed Timestep first_timestep = @0;

fixed Integer start_cell = 0;

fixed Integer min_cell = 0;

fixed Integer max_cell = 7;

fixed Real p_move_fail = 0.05;

fixed Real p_obs_fail = 0.2;

obs control(@1) = Right;

obs control(@2) = Right;

obs control(@3) = Right;

...

obs control(@25) = Left;

obs noisyColor(@0) = 0;

obs noisyColor(@1) = 0;

obs noisyColor(@2) = 0;

...

obs noisyColor(@25) = 0;

query location(@0);

query location(@1);

query location(@2);

...

query location(@25);

query color(0);

query color(1);

query color(2);

...

query color(7);

Fig. 26: The BLOG evidence and queries for the gridworld problem.

6.2 BLOG Resample-Move Results on gridworld

The gridworld example is small enough that we can perform filtering by exact
inference. There are 28 = 256 possible maps and 8 possible locations for the
robot, so there are only 2048 possible worlds. We perform exact inference by
keeping track of the probability that we could be in each of those possible worlds
in each timestep, which is equivalent to doing a forward pass in a discrete Hidden
Markov Model (HMM). We show the exact location posterior at each timestep
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in Figure 27a, and the exact map color marginals at each timestep in Figure
28a.

With 100 particles, the built-in ParticleFilter in BLOG fails to track
the true map and location posterior, as shown in Figures 27b and 28b. In this
problem, the map is a static (atemporal) parameter. Once a particle samples the
color for every cell, those colors will be fixed for the entire lifetime of the particle.
Since particles get resampled, the total number of map hypotheses considered
by the particle filter decreases. This is another form of the degeneracy problem
that we encountered in section 5.

The new ResampleMovePF addresses the degeneracy problem by resampling
the cell colors in the move step. This is similar to “changing the past” in
FastSLAM-DA-RM, except that instead of sampling the association variables
ωt−L+1:t, we sample the atemporal variables color(0), ..., color(7). With 100
particles and 10 MH iterations per move step, ResampleMovePF in BLOG suc-
cessfully tracks the exact posterior, as shown in Figures 27c and 28c.

54



(a) Exact inference.

(b) PF with 100 particles.

(c) Resample-move PF with 100 particles and 10 MH iterations per move step.

Fig. 27: Robot location belief at each timestep.
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(a) Exact inference.

(b) PF with 100 particles.

(c) Resample-move PF with 100 particles and 10 MH iterations per move step.

Fig. 28: Cell color belief marginals at each timestep.
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7 Conclusions and Future Work

Our goal was to understand how to solve SLAM using a PPS. We started by
surveying existing SLAM approaches, and focusing on FastSLAM as the most
promising candidate (section 2). Upon closer examination of FastSLAM, we
learned that it uses ad-hoc techniques for data association, which impede a
PPS implementation. We also showed that FastSLAM performs poorly on the
mutex dataset, because of its inability to enforce the mutual exclusion constraint
(section 3).

Our first contribution was a new probabilistic model for SLAM with data
association uncertainty (section 4.1). This model handles the mutual exclusion
constraint, and the uncertainty over the number of landmarks in the environ-
ment. We developed FastSLAM-DA, an algorithm for performing inference in
this model (the rest of section 4). This new algorithm fits cleanly into the SMC
framework, without requiring ad-hoc heuristics like FastSLAM. We showed that
FastSLAM-DA beats FastSLAM on the mutex dataset. On the other hand,
FastSLAM-DA adds false landmarks to the map on the highfa dataset, where
there is a high rate of false detections. To fix this, we developed FastSLAM-
DA-RM, an algorithm based on resample-move particle filtering, which performs
MCMC moves on the recent association variables (section 5). This final algorithm
beats FastSLAM-DA on the highfa dataset. The two algorithms, FastSLAM-
DA and FastSLAM-DA-RM, form our second contribution. Our third contri-
bution is a general-purpose resample-move particle filter in BLOG (section 6).
This is a first step towards being able to run algorithms like FastSLAM-DA
and FastSLAM-DA-RM in BLOG.

One avenue for future work is to extend our model by capturing more relevant
aspects of the environment. Currently our model does not account for occlusion
or out-of-sight landmarks. This means that we “pay” (in terms of likelihood)
for not detecting a landmark, even when it is occluded or behind us. The ob-
vious way to handle occlusion and out-of-sight landmarks is to add edges from
θ and xt to ωt (see Figure 7). However, this would mean adding an edge from
a Rao-Blackwellized variable to a non-Rao-Blackwellized variable, which makes
inference intractable [31]. Adding support for occlusion in a principled way while
keeping inference tractable is an open question.

Another avenue for future work is to extend FastSLAM-DA-RM so that
the move step changes not only the associations ωt−L+1:t, but also the poses
xt−L+1:t. Currently the move step allows recovering from association errors that
have spread through all particles. If we allowed the move step to alter the poses,
it would also allow the algorithm to recover from pose errors that have spread
through all particles. This could allow the algorithm to run with fewer particles
overall. Another intriguing idea is to switch to a Decayed MCMC framework [28],
where the MCMC would do all the work, and there would be no need for a
particle filter with a smart proposal.

It would also be beneficial to evaluate our algorithms on larger-scale datasets,
especially ones collected from real robots. FastSLAM-like algorithms often have
difficulties closing loops in large environments, i.e., recognizing that they are in a
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place that they have seen a long time ago. This problem has given rise to dozens
of ad-hoc solutions in different SLAM domains [20,22,34,42, and the references
therein]. It would be interesting to solve the loop closure problem in a principled
Bayesian way, without relying on ad-hoc heuristics.

Finally, to truly solve SLAM in BLOG, we would need to add support for
Rao-Blackwellized variables in the PPS. It is an open question to define the
boundary between what the PPS can do automatically, and what requires input
from the user (e.g., in the form of hand-written code to compute integrals). Even
in simple cases where all the DBN nodes are linear-Gaussian, extending the
BLOG inference engines to support Rao-Blackwellization requires a substantial
effort.
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