
XBOS: An Extensible Building Operating System

Gabriel Fierro
David E. Culler

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-197
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-197.html

September 9, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

XBOS: An Extensible Building Operating System

Gabe Fierro
UC Berkeley

fierro@eecs.berkeley.edu

David E. Culler
UC Berkeley

culler@cs.berkeley.edu

ABSTRACT
We present XBOS, an eXtensible Building Operating Sys-
tem for integrated management of previously isolated build-
ing subsystems. The key contribution of XBOS is the devel-
opment of the Building Profile, a canonical, executable de-
scription of a building and its subsystems that changes with
a building and evolves the control processes and applications
accordingly. We discuss the design and implementation of
XBOS in the context of 6 dimensions of an effective BAS
– hardware presentation layer, canonical metadata, control
process management, building evolution management, secu-
rity, scalable UX and API – and evaluate against several
recent building and sensor management systems. Lastly, we
examine the evolution of a real, 10 month deployment of
XBOS in a 7000 sq ft office building.

1. INTRODUCTION
Buildings have long been a focus of advanced automation
techniques to improve energy efficiency and occupant com-
fort, as they are the dominant electricity consumer and where
we spend most of our time. However, even in large commer-
cial buildings with advanced building management systems,
building subsystems remain largely siloed, with little inte-
gration of lighting control with HVAC or with appliance us-
age or with occupant calendars. Recent efforts have begun
to integrate building subsystems into unified, cyber-physical
solutions, but fail to capture comprehensive, evolvable and
sufficiently abstract representations of those systems.

This paper develops the principled design of a new, extensi-
ble building operating system. XBOS, based on six primary
dimensions of the BOS design space. In particular the design
captures the much bemoaned, longstanding challenge of sup-
port for the inevitable evolution of a building throughout its
lifecycle, which is only more acute with smart buildings [7].
Addressing this challenge impacts every aspect of BOS de-
sign. We present the XBOS design in detail along with a
comparative analysis across the design space.

2. DESIGN SPACE
Considerable research has investigated the design and im-
plementation of flexible, principled execution environments
for building monitoring, analysis, and control as alternative
to the rigid, ad hoc designs of traditional building man-
agement systems. Based on these investigations, it is now
possible to articulate the primary dimensions of the design
space of building operating systems (BOS). In our analysis,
there are six such dimensions:

• Hardware Presentation Layer
• Canonical Metadata Definition, Storage, and Usage
• Control Process Management
• Building Evolution Management
• Security: Authorization and Authentication
• Scalable UX and API

A high level mapping of the state-of-the-art relative to these
dimensions is provided in Table 1. The assessment yielding
the markings in the figure is provided in Section10 as part of
the evaluation of XBOS, after having developed its design.
Here we identify the core issues associated with each of these
dimensions to frame the design. While advancing in almost
every dimension, its primary contribution is graceful han-
dling of the evolution in operation over the building lifecyle,
which can be rich and vibrant with the artificial constraints
of traditional BMS removed. We seek to show how embrac-
ing change as a primary requirement impacts the design of
essentially every aspect of the system. The six dimensions
also serve to structure the presentation.

Hardware Presentation Layer (HPL): Traditional BMS solu-
tions are vertically integrated despite using open protocols
such as BACnet, often overlaying proprietary networks to
connect to vendor-specific control code. Introducing new
devices or control logic is a major effort requiring building
technology professionals to write proprietary glue code or in-
stall new hardware for devices from external vendors. Most
BOS solutions establish uniform read/write access to data
sources in a building, typically as RESTful web services or
agents, through a standard library or framework installed
on gateways and servers in the building. sMAP [5] helped
to introduce the idea of a uniform data plane for devices
in buildings. The XBOS HPL removes the reliance on any
particular heavyweight device client and expands the do-
main of devices that can natively interact with the building
operating system (Section 5).

Canonical Metadata: Standardized building metadata and
system representation is a subject of active research and
standardization [15] [13] [12] [10]. Traditional BMS typically
use proprietary, opaque descriptors on individual points in-
ternally and SCADA tags with naming conventions to cap-
ture the attributes of a point, such as its type, location, and
function. Operating on an abstracted representation of a
building simplifies and increases the portability of control
and application code. Several efforts standardize the repre-
sentation of building objects through attributes and links,
but permit arbitrary structures with little semantics. Build-

B
eM

O
S
S

B
A

S

B
O

S
S

S
en

so
r

A
n
d
re

w

H
o
m

eO
S

S
en

so
rA

ct

V
o
lt

tr
o
n

B
u
il
d
in

g
D

ep
o
t

v
2

T
ri

d
iu

m

X
B

O
S

HPL - X X - - - - - X +
Canonical Metadata - - - X +
Control Process Mgmt - X X - - - - +
Bldg Evolution Mgmt - - - +
Security - X X X X X - - X X
UX - - - X X - +
API - - - - - - - X - +
Supports BMS X X - X X X
No BMS, Non-res X X X - - X
Residential X X X - - - X
Open Tech Doc X + X + + +
Deployed At Scale + + + + + +

Table 1: Comparison of BOS features. This Table will be discussed in detail in Section 10. A blank cell means
that the BOS does not address the feature, a -means problem is addresed, but not sufficiently, a Xmeans
solution is not well-developed, and a +means that the BOS solution pushes the state-of-the-art 2

ingDepot2 [16] stands out in its ability to describe the hier-
archical subsystems typically present in a building. XBOS
extends this with the Building Profile, providing multiple
hierarchies (e.g. spatial, HVAC, lighting, electrical, moni-
toring) with strict structure and attributes to provide clear
semantics, but cross-links through dynamically computed
attribute relationships to provide flexibility (Section 3).

Control Process Management : Closed loop control in tradi-
tional BMS is typically hardcoded to a specific set of opaquely
described sensors and actuators and embedded in programmable
logic controllers (PLCs). Aside from requiring a specialized
technician to program, the ability of PLCs to adapt to new
hardware or logic is limited by the requirement that these
loops be hardcoded to a set of inputs and outputs described
by internal network identifiers. Advances in control the-
ory are often applied to individual buildings as “one-offs”
for lack of sufficient abstraction to describe those processes.
The BAS [11] and BOSS [6] approach to control processes
gives loops access to an abstract representation of the build-
ing, which enables code reuse and makes control logic eas-
ier to reason about. Furthering this idea, XBOS describes
the inputs and outputs of control processes using canonical
metadata, which lets these processes evolve naturally with
the building (Section 7).

Building Evolution Management : The classical lifecycle of
buildings, with changes in physical structure, components,
and usage, is a widely recognized challenge. When approached
as cyberphysical systems, change becomes more natural, but
the challenge is for the software operating on the building
to recognize changes and adapt. BuildingDepot2 was one of
the first to step away from hardcoded processes, leveraging
canonical metadata to describe control loops and applica-
tions. However, the processes themselves are tied to spe-
cific endpoints bound by resolving the metadata to points
statically. An instance of XBOS is constructed lazily us-
ing continuously-evaluated queries against the Building Pro-

2Sensor Andrew was extended to work on building as Mor-
tar.io, but there is no existing technical documentation for
the project

file rather than explicitly resolved by traversals of hierar-
chies. As the Building Profile evolves, so do the results of
the queries, and the processes and application in XBOS dy-
namically adapt (Section 3). Observe that such adaptation
is possible because control processes operate on canonical
metadata that is determined dynamically and evolves with
the building.

Security : Security is critical in all building management so-
lutions. The “state of the art” for authorization in com-
mercial building systems is user accounts in the BMS and
BACnet priority arrays, with access control lists (ACLs) im-
plemented in the equivalent of an overlay network. In most
BOS designs, authentication is addressed by TLS and au-
thorization is largely handled by user accounts and ACLs of
varying granularity on the components of a building. Senso-
rAct [3] advances a fine-grained, policy-oriented approach to
managing the array of sensors and actuators in a building
with user ACLs on a room and device basis. XBOS does
not innovate in this space, but recognizes that the state of
current solutions is far from a comprehensive approach to
security and provides a framework for future work in dis-
tributed delegation and management of trust.

User Experience and API : Besides environmental conditions,
the user interface for a building is the primary point of con-
tact between stakeholders and the building systems. User
interfaces for traditional BMS are typically animated me-
chanical diagrams of specific subsystems in buildings. While
helpful for HVAC engineers and other technical specialists,
these do not present views of holistic building state that are
vital for determining the health of building at a glance, nor
do they give the integrated, cross-subsystem view that is
most helpful for occupants (Section 11).

Classes of Intended Deployments: The main classes of build-
ings which a BOS can address are:

• large-scale commercial buildings characterized by one
or more incumbent BMS, typically with a full HVAC
system and multiple floors and rooms and administra-

tive domains
• small-medium commercial buildings, which have dis-

tinct, non-managed subsystems (thermostat wired di-
rectly to an RTU) but can potentially retrofit certain
systems, e.g. by installing a smart thermostat

• residential bulidings, which are usually very simple (1
HVAC zone) and are much easier to retrofit with net-
worked components

Most of the BOS solutions considered are written towards a
particular classes of buildings. Issues of scale directly effect
the design of the UX, e.g., a holistic view across HVAC,
lighting, and plug loads may be a single screen in a small
building, whereas large commercial buildings have hundreds
of zones and require various hierarchical views. But scale
also presents potential performance challenges for a BOS,
especially as relationships are resolved dynamically. XBOS
provides a framework for developing scalable interfaces and
tracks entity relationships to minimize dynamic resolution.

3. THE XBOS BUILDING PROFILE
The outstanding BOS challenge is mitigating the complexity
in describing and referencing the natural hierarchies inside a
building as they change over time. A building profile must
be able to manifest a representation of the building at a
point in time, gracefully handling changes in the building’s
description without substantial manual intervention. Tradi-
tional lifecycle changes involve retrofits which may change
floorplan and the HVAC layout, building system upgrades,
and new components. In a BOS, they may also be enhance-
ments to metadata as more is recorded or learned about the
building, new control algorithms or application deployed,
cross-system optimizations, and so on.

Standards, such as oBIX, Project Haystack, gbXML, IFC,
focus on how to construct the graph that represents an in-
stance of a building at a point in time. To effectively in-
corporate the lifecycle of the building, that graph must be
constructed from some underlying database that represents
the building as it evolves. In XBOS, the Building Profile
captures the family of relationships and builds the graph
automatically. These relationships offer a well-formed ab-
straction for implementing monitoring and control processes
in buildings, and inform the design of the XBOS architec-
ture.

As concrete example of building evolution, consider the ex-
pansion of a control loop around a thermostat. Upon in-
stallation, each thermostat is preprogrammed with a ba-
sic internal schedule. With several of these thermostats
installed in a building, the natural BOS progression is to
introduce a master schedule governing all thermostats in a
space. The scheduler is an open-loop control process and
the thermostats subscribe to its setpoint. After some time,
it may be discovered that the poor placement of a thermo-
stat causes a set of rooms to be overly cooled, prompting
the installation of temperature sensors in the other rooms
in that HVAC zone. A zone controller could be introduced
that subscribes to both the master schedule setpoint and
the temperatures of rooms in the HVAC zone to bias the
scheduled setpoint to account for the room temperature dif-
ferences. Occupancy sensors in the lighting control system
might then be used to avoid conditioning empty rooms. This

draws on relationships across distinct subsystem and evolves
as physical and executible components are added. The phys-
ical building has not changed, but its components and their
relationships evolve.

[/]

Metadata/Site = UC Berkeley

Metadata/Building = CIEE

[/spatial/floor/2]

Metadata/Floor = 2

[/spatial/floor/2/room/207]

Metadata/Room = 207

Metadata/Type = Room

Metadata/Name = Conference Room

[/hvac]

Metadata/System = HVAC

[/hvac/zones/zone2]

Metadata/HVAC/Zone = Zone2

Metadata/Name = South Offices

Metadata/Rooms = [200, 205, 206, 207, 208]

[/hvac/equipment/thermostats/tstat2]

Metadata/Name = Conference Room Thermostat

Metadata/HVAC/Zone = Zone2

Metadata/Equipment = RTU

Metadata/RTU = rtu2

Metadata/Location = Room

Metadata/Room = 207

type = smap.drivers.thermostats.CT80

[/hvac/equipment/thermostats/tstat2/temperature]

Properties/UnitofMeasure = C

Properties/UnitofTime = s

Metadata/Sensor/Measure = Temperature

Metadata/Sensor/Type = Sensor

Figure 1: Demonstrating a subset of Spatial and
HVAC hierarchies with key-value pairs applied.
Key-value pairs are implicitly inherited down the hi-
erarchy, so Metadata/System = HVAC will be applied to
everything under /hvac/.*. The type key references
an instantiation of a sMAP driver that will define
its own paths relative to its parent e.g. /temperature,
seen here

Each subsystem in a building – HVAC, lighting, spatial, elec-
trical, control, etc. – can be represented as a hierarchy of
entities and their relationships: a floor contains some rooms,
a VAV has a return air temperature sensor. Several methods
can represent these hierarchies (BuildingDepot 3, oBIX [15],
Project Haystack [13], gbXML [9], IFC [10]), but these fail
to capture relationships across subsystems. For example, an
HVAC control loop may need to find the temperature sensor
for any room in a zone, a relationship spanning the HVAC
and spatial hierarchies.

3.1 The Right Level of Abstraction
Building modeling solutions, such as Energy Plus [4] and
Modelica [8], rely on detailed descriptions of the components
within a building to construct an accurate simulation model
and thus abstract very little – usually just communication to
the component. Other detail-heavy schemes for describing
buildings include Industry Foundation Classes (IFCs [10])
and (more generally) Building Information Modeling (BIM),
which are intended for the physical construction of a build-
ing and can be used as input for Modelica or Energy Plus.
These models contain detailed information such as the ma-
terial and thickness of walls and the estimated BTU output
of an RTU – information not pertinent to general monitor-

3Only captures limited, predetermined relationships across
hierarchies

-- All temperature sensors on the 2nd floor
select * where Metadata/Sensor/Measure = Temperature and Metadata/Sensor/Type = "Sensor" and Metadata/Floor = 2;
-- The heating setpoint for Room 207
select data before now, Properties/UnitofMeasure where Metadata/Sensor/Measure = "Temperature" and

Metadata/Sensor/Type = "Setpoint" and Metadata/Sensor/Setpoint = "Heating" and Metadata/Room = 207;
-- How much energy is Room 207 using right now?
select data before now where Metadata/Sensor/Measure = "Power" and Metadata/Room = "207";
-- Which rooms in Building ABC have occupancy sensors
select Metadata/Room where Metadata/Building = "ABC" and Metadata/Sensor/Measure = "Occupancy";

Figure 2: Example XBOS queries against the Building Profile.

ing and control applications. Furthermore, each constructed
model is unique to its building and cannot be effectively
reused, introducing a significant cost for incorporating new
buildings.

Other solutions abstract to provide flexible, descriptive power,
but do not contain enough structure to allow applications
to make meaningful assumptions. The Web Ontology Lan-
guage (OWL) for the Semantic Web is intended to represent
knowledge about “things, groups of things and relations be-
tween things” 4, and is therefore able to describe a wide va-
riety of systems. However, with no assumptions about the
structure of the system, any usage of an OWL ontology re-
quires re-establishing the structure of required relationships.

Project Haystack [13] seeks to provide semantic structure
to the body of devices and components in buildings. Each
entity contains a flat list of tags from an established vo-
cabulary, and has a notion of a generic link between two
entities. However, few restrictions are placed on the rela-
tionships that can be established between entitites, so sim-
ilar relationships may be represented in different ways in
different buildings. And with few complete building exam-
ples openly available, even idiomatic conventions are hard
to establish.

3.2 XBOS Building Profile
The XBOS Building Profile models building subsystem hi-
erarchies as paths. It has a collection of pre-defined path
templates for the HVAC, lighting, spatial, electrical and ad-
ministrative subsystems; new custom hierarchies are easily
added. Descriptive key-value pairs are applied to a point in a
path and are inherited down to all prefixed children. When
the profile is instantiated, these key-value pairs propagate
down the paths. The resulting sets of key-value pairs are
associated with a globally unique identifier (UUID) – rep-
resenting a unique timeseries of <timestamp,value> pairs
called a point – and stored in a flat namespace. These points
can be referenced and manipulated by SQL-like operations
on the key-value pairs, the UUID, or prefixes of the path
used to describe the point.

Key names are drawn from a well-defined namespace, though
a profile may define its own keys, e.g. Metadata/HVAC/Zone

for an HVAC Zone and Metadata/Sensor/Measure for iden-
tifying the target quantity for a sensor. More keys can be
found in the XBOS Building Profile example in Figure 1.
The use of keys, such as Metadata/HVAC/Zone, is not lim-

4http://www.w3.org/2001/sw/wiki/OWL

ited to a single hierarchy. Keys can be used in multiple
hierarchies and are used by the query language as foreign
keys to perform “joins” between points to establish ad-hoc
relational views.

The partial example of a profile in Figure 1 expands parts
of the Spatial and HVAC hierarchies for a deployment de-
scribed in Section 11. Key-value pairs applied at a “path”
are inherited to all children that share that prefix. For
example, pairs applied at [/hvac] will be applied down
to /hvac/equipment/thermostats/tstat2. Likewise, the
Building and Site keys applied at the “root” of the hierarchy,
[/], are applied to all paths in the profile. This figure is not
the internal representation, but is resolved statically at boot
time by sMAP and sent to the XBOS Kernel.

The key-value pairs at /spatial/floor/2/room/207 and
/hvac/equipment/thermostats/tstat2 both contain the key-
value pair Metadata/Room = 207, which can be used by the
query language to treat Metadata/Room as a foreign key re-
lationship between the thermostat and room. Furthermore,
because Metadata/Room is inherited to all children of the
thermostat, a query could associate a channel of the ther-
mostat with the room as a generic termperature sensor. This
same query could perform the association whether the tem-
perature sensor was from a thermostat, a VAV return air
sensor, or a wireless embedded temperature sensor, since all
of these would use the same metadata key.

This collection of paths and key-value pairs is specified in a
plain-text configuration file like the one in Figure 1 that can
be easily kept under version control. Upon the execution
of this file by an XBOS process, the key-value pair inheri-
tance is performed and the resulting points are loaded via
the XBOS Kernel into the metadata store (described in Sec-
tion 6) where they can be utilized by the query processor.

3.3 Query Language
The XBOS query language captures ad-hoc relations be-
tween collections of points, either as one-time results or as
continuously evaluated relational views. Because continu-
ous views operate over the building profile, as the profile
changes, so does the evaluation of a continuous query as a
view. These queries are the basis for the XBOS system,
and the architecture of XBOS is designed around lever-
aging continuous views so the system can gracefully react
to changes in the building. The XBOS query language is
a backwards-compatible complete re-implementation of the
SQL-like sMAP query language that supports an expanded
set of predicates on metadata and contains an explicit ab-

Light
Controller

Light
Controller

Temp.
Sensor

Cloud
 Data
API

Push
API

RESTful API

Endpoint for
WSN

Native
driver on
embedded
system

Interface to
BMS, e.g.
Siemens
Apogee

Poll external
API, e.g.
weather report

Push endpoint
for cloud
service, e.g.
IFTTT

XBOS Context
XBOS Kernel

Metadata
Store

Timeseries
Store

M
sg

Pa
ck

JS
O

N

Building
Profile

Q
ue

ry
 P

ro
ce

ss
or

Pl
ug
in

Zone
Controller SchedulerZone

Controller
Master

Scheduler

Thermo-
stat

Temp.
Sensor

Occupancy
Sensor

Weather
Source

Plug
Strip

Connection Formed
by XBOS Query

SUBSCRIBE where Metadata/Sensor/Measure = "Temperature"
 and Metadata/Sensor/Type = "Sensor"
 and Metadata/HVAC/Zone = "Zone 4"; XBOS API

XBOS Applications and Dashboard
SUBSCRIBE where Metadata/Sensor/Measure = "Temperature"
 and Metadata/Sensor/Type = "Setpoint"
 and Metadata/Sensor/Setpoint = "Heating"
 and Metadata/HVAC/Zone = "Zone 4";

sMAP
Driver

Incorporation
into XBOS Context

Gateway sMAP
Driver

sMAP
Driver

Temp.
Sensor

Light
Controller

Integrated
Building

Dashboard

HVAC
Energy
Report

sMAP
Driver

sMAP
Driver

sMAP
Driver

Vendor gateway
for lighting
system

Light
Controller

Light
ControllerVAV

Light
Controller

Light
Controller

Light
Controller M

es
sa

ge
 B

ro
ke

r +
 K

er
ne

l A
PI

XBOS Canonical
Interface

Monitored
Process

XBOS Application

Figure 3: XBOS system architecture. Drivers can present more than 1 interface, and more than 1 instantiation
of those interfaces, such as a lighting controller gateway or a smart plug strip

stract syntax tree used by the XBOS Kernel for intelligent
reevaluations.

A query has two main components: a select clause and
a where clause. The select-clause defines the desired out-
put of a query or the contents of the materialized view 5.
A select-clause can extract key-value pairs, paths, UUIDs
or timeseries data. The where-clause describes a predicate
over key-value pairs, paths and/or UUIDs that conducts a
join between hierarchies and points. Some example XBOS
queries for the building from Figure 1 can be found in Fig-
ure 2.

Continuous views are handled by the XBOS Kernel pub-
sub broker. When a continuous query is excecuted by a
client, the query initially behaves like a traditional execute-
once query, but then continues to give the client updates
on changes in the set of metadata or points that match the
view. These updates are delivered in real-time as changes in
metadata are executed against the building profile. It is up
to the client to maintain state and apply changes; after the
initial delivery of the query evaluation, the XBOS Kernel
delivers “diffs” on the set of matching points. The mecha-
nism behind efficient reevaluation of continuous queries and
implementation details of the query language is discussed in
Section 6.

4. XBOS ARCHITECTURE
The architecture of XBOS centers on the Building Profile,
which defines the interface to the underlying building and
building systems and the means by which controllers and

5the language also supports set and delete queries that also
use where clauses. These are evaluated once, not continu-
ously

applications discover each other and describe their inputs
and outputs, as illustrated in Figure 3. The XBOS architec-
ture is a variation on the typical layered architectures seen
in academic BOS (BEMOSS and BOSS) as well as industrial
solutions (Tridium [14]):

• Devices: at the bottom of Figure 3 are the physical
devices in the building, such as sensors, VAVS, ther-
mostats and lighting controllers. “devices” can also be
external data sources such as a weather API or physi-
cal resources in a building such as rooms or cubicles.

• Drivers: the HPL consists of continuously running
processes that conform the representations of the un-
derlying “devices” to the XBOS Building Profile (Sec-
tion 5).

• XBOS Kernel : the central component of XBOS. The
Kernel is the data historian for both metadata and
timeseries data and contains the query processor and
the pub-sub broker. All connections between XBOS
components take place via the XBOS Kernel (Sec-
tion 6).

• XBOS Services: Building operation logic is handled by
continuously running processes that manifest higher-
level logic and interconnections between drivers, the
XBOS Kernel and the Building Profile (Section 7).

• Applications + Dashboard : XBOS applications includ-
ing the building dashboard are written over the XBOS
API, which is automatically generated from the Build-
ing Profile and facilitates application portability. The
building dashboard provides integrated monitoring and
control of all building subsystems. Implementation of
these applications is discussed in Section 8.

Drivers, services, applications and the kernel operate within
the “XBOS Context”, in which all descriptions are in terms
of the XBOS Building Profile and all communication is done
via the XBOS Kernel. A sample organization of a real-world
XBOS deployment is in Figure 4. The XBOS architecture
places no strict requirements on the placement of its com-
ponents, though recommendations for network topology are
mentioned in Section 9.

Figure 3 shows the relationships between components in an
instance of XBOS at a stage in the scenario of evolution
discussed in Section 3. Within the XBOS context – that
is, through continuous views executed against the XBOS
Kernel – a zone controller subscribes to the outputs of a
mesh of temperature sensors and an occupancy sensor as well
as a scheduler process. This zone controller computes the
temperature bias introduced by the measured temperatures
of occupied rooms and then pushes the calculated setpoint
to the thermostat in the space.

5. HARDWARE PRESENTATION LAYER
There are two tiers of interoperability addressed by the HPL:
“logical” or syntactic interoperability – the ability to speak
the same protocol – and semantic interoperability – the abil-
ity to discover and understand the interface to another de-
vice. Large commercial BMS typically have multiple sub-
systems (such as HVAC and lighting) controlled by differ-
ent vendors each with their own protocol and description
semantics. In small-medium commercial buildings and resi-
dential, there is typically a collection of vertically-integrated,
vendor-specific gateways controlling separate subsystems; a
single building may contain Nest (HVAC), LIFX (lighting)
and PG&E SmartMeters (electrical).

A HPL solution also needs to support building evolution.
When a device is added to or removed from the HPL, the
system needs to recognize that change at the higher levels of
the system. The XBOS HPL captures both metadata and
timeseries data of each possible entity in a building manage-
ment system, and pushes this unified description into the
Building Profile.

XBOS leverages earlier work by sMAP to define a profile
that mandates what information should be contained in a
description (semantic) rather than the structure of that de-
scription (syntactic). This means that the XBOS HPL can
function over arbitrary protocols, provided that an adapter
exists on the XBOS Kernel (detail in Section 6).

5.1 XBOS HPL
The XBOS HPL is a set of drivers that expose canonical in-
terfaces that adhere to the XBOS Building Profile. Drivers
are continuously running processes that represent the under-
lying features of API of a device as a set of canonical inter-
faces. An XBOS driver publishes the state of its devices to
the archiver by writing to a specific port on the kernel (de-
pending on which protocol the client is using). Actuations,
metadata updates and other subscription-based information
are pushed to the client through the socket’s connection to
the kernel pub-sub broker.

The XBOS profile (Table 2) mirrors the sMAP profile and
dictates what information should be included in all messages

sent from a driver to the kernel. The simple key-value struc-
ture is trivial to construct in most protocols, which simplifies
client code. Metadata, Properties and the Path follow an
“upsert” policy on the archiver – this simplifies update se-
mantics, but is also beneficial for clients with network con-
straints. The Readings field is delivered to the timeseries
database.

XBOS supports actuation through NATs: upon instantia-
tion, drivers initiate a subscription to a specific actuation
stream. The kernel pushes published actuation “commands”
(actually readings on that stream) to the subscribed driver,
which can then take action. The properties of each stream
help determine if any translation must take place, such as
unit conversion.

Two examples of drivers can be found online for the CT-80
RTA WiFi Thermostat 6 and the IMT550C Ethernet Ther-
mostat 7. The IMT550c thermostat exposes an API very
similar to the canonical interface expected by XBOS, so the
driver performs a simple passthrough. However, the CT-80
API does not allow a user to alter the deadband and keep
the thermostat in AUTO mode simultaneously, so the driver
manages that state internally to expose the expected behav-
ior.

Key (Prefix) Description
Path the hierarchical path that determined the

inheritance of key-value pairs for this point
UUID globally unique identifier for this point
Readings list of <timestamp, value> pairs to be

archived
Metadata set of key-value pairs that adhere to XBOS

Building Profile
Properties set of key-value pairs for describing the

point, e.g. units, timezone, time resolution

Table 2: Contents of XBOS profile messages, which
follow the same structure as sMAP messages.

6. XBOS KERNEL
The adaptibility of the XBOS building profile to changes
in the building is made possible because it operates on a
family of relationships that are not captured in any table.
Each continuous view establishes its own foreign-key rela-
tionships on demand rather than operating over a strict,
predetermined schema that prevents the representation of
the building from evolving. The benefit of using a predefined
schema is that a BOS can make use of existing performant
tools for executing queries – this includes Object Relational
Models, which are a convenient abstaraction for forming re-
lationships between entities. However, we have found that
the strict relational model prevents the system from realiz-
ing emerging relationships required by controllers but not
reflected in the schema. While these lifecycle changes to
the building system are not frequent, they are essential, and
designing the system around automatically handling such

6
https://github.com/SoftwareDefinedBuildings/smap/blob/

unitoftime/python/smap/drivers/thermostats/ct80.py
7
https://github.com/SoftwareDefinedBuildings/smap/blob/

unitoftime/python/smap/drivers/thermostats/imt550c.py

Access
PointBorder

Router

WiFi
Network

802.15.4
Network

WiFi Thermostat
VLAN

Internet

Switch

Timeseries
Store

Metadata
Store

XBOS Kernel

XBOS Drivers
Web Server

Local Server

Ethernet
Thermostat

Lighting
Controller
Gateway

Zigbee
Network

Wireless Sensor Mesh

Networked Lights

Networked
Plugstrip

Building Dashboard
Application

Client

HVAC Energy Profile
Application

Client

Client

VLANClient

Figure 4: XBOS distributed system organization. XBOS is designed to scale up and down, and places no
strict requirements on the location of its components. Illustrated here is a partial view of the deployment
described in Section 11

“migrations” greatly increases the practicality of handling
building evolution.

The XBOS Kernel contains a high-performance, broker-integrated
query processor that takes a family of foreign key relations
from the building profile and constructs new tables dynami-
cally. We demonstrate in Figure 5 that the performance cost
of dynamically forming these relationships at runtime does
not introduce substantial overhead. The cost is mitigated
by caching the results of queries and intelligently choosing
which views to reevaluate by traversing the abstract syntax
tree of pending metadata changes. The XBOS Kernel imple-
ments these mechanisms that allow the rest of the system
to handle changes in building data, and presents the API
and HPL to users of the system. The XBOS Kernel is writ-
ten in the Go programming language [1] and is backwards-
compatible with the sMAP ecosystem, but introduces sev-
eral new features including scalability, ease of deployment,
multiprotocol plugin support, an expanded query language
and support for continuous relational views.

Multiprotocol support: The XBOS Kernel exposes interfaces
over multiple encodings and transports to lower the im-
plementation barrier for constrained clients and to obviate
middleware for common but specialized tasks such as real-
time web applications or an embedded program subscrib-
ing to a query. Transports and encodings currently sup-
ported by the kernel are MsgPack/UDP, JSON/HTTP(S),
ProtoBuf/TCP, CapnProto/TCP and JSON/WebSockets,
but this can be easily extended with the kernel’s simple plu-
gin model.

Continuous View: Continuous views are ultimately resolved
as queries against an underlying metadata store (indicated
in Figure 3). The current XBOS Kernel is backed by a Mon-
goDB instance, but other DBMS can be used with a small
kernel plugin. In contrast to the relational model of other
BOS, XBOS does not store the trees of hierarchically struc-
tured metadata, nor does it store the relationships between
trees. All key-value pairs are applied down hierarchies and

each point is stored in the metadata database in a flat name
space, with a Path field designating the point’s position in
a hierarchy.

To realize continuous relational views, the XBOS Kernel
maintains a mapping of where-clauses (which define the con-
tents of a view) to the list of clients subscribed to that clause.
The kernel further decomposes each where-clause into the
set of keys in that clause. Processes only access the meta-
data database through the kernel, so whenever a new piece
of metadata arrives at the kernel – as part of a new source,
changed metadata, or otherwise – the kernel extracts the set
of affected keys and selectively re-evaluates the queries that
are concerned with those keys. The re-evaluation is cached
in kernel memory as a list of publishers for each subscrip-
tion. The XBOS Kernel delivers metadata events as well
as timeseries events, so the evolution of the building profile
and the streams of data within is completely transparent to
the client.

7. XBOS SERVICES
Services in XBOS can be used to implement both closed-
and open-loop control over an evolvable representation of a
building. These services use the same structure as the driver
execution containers in the HPL and communicate using
the same profile. XBOS controllers can exist anywhere in
a deployment, using continuous views executed against the
XBOS Kernel to operate on the most recent version of a
building.

The outputs for a controller are analogous to “channels” for
a sensor or timeseries endpoints of a sMAP driver: they are
a stream of data identified by a UUID and have associated
properties (units, etc) and metadata. In XBOS, services are
first-class citizens of the Building Profile, meaning they are
described in the same way as devices or other entities. Other
systems such as BuildingDepot2 have a separate notion of
a “virtual sensor” which is an aggregate of multiple data
sources, but this is generalized in XBOS as a subscription
(continuous view).

For example, an XBOS controller that wishes to
bind the state of the lights in a specific room to
an occupancy sensor would execute a view with the
clause Metadata/Sensor/Measure = "Occupancy" and

Metadata/Sensor/Type = "Sensor" and Metadata/Room

= 410 which would deliver in real-time the values of all
occupancy sensors in Room 410 to the controller. This
subscription allows the control process to remain agnostic
both to the number of occupancy sensors that match the
query but also the semantics of those sensors, thanks to
XBOS’s notion of canonical interfaces.

8. UX AND API
XBOS has a dynamic, implicitly constructed API generated
from the set of devices and services in an installation of
XBOS, tied together by the Building Profile and query lan-
guage. The query language enables discovery of metadata
and devices, so that users of the API can adapt to the de-
ployment target.

A solid example of the expressive power of the XBOS API
is the integrated building dashboard app (not shown here).
The XBOS building dashboard presents a modern alterna-
tive to the standard building management system. The
dashboard makes full-building energy management and con-
figuration of the building’s schedules immediately available
from the main page. Each of the building subsystems is also
represented in the dashboard; the HVAC, lighting, electri-
cal and spatial subsystems are all traversable from the main
page of the dashboard, allowing a user to “drill-down” from
a high-level system view to the status of individual devices.

The XBOS building dashboard is effectively a self-contained
building management system that is dynamically created
entirely from the Building Profile. It does not make any
assumptions about the construction of the building or the
underlying hardware, but rather uses the relationships de-
fined by the building profile to handle building administra-
tion from commissioning to maintenance.

9. SECURITY
Many commercial BMS systems make the (sometimes valid)
assumption that a building management system will be de-
ployed within some trusted domain on a private network, iso-
lated from the public internet and from unauthorized users.
XBOS can operate on the same premise, but also provides
transport security. The simple plugin infrastructure for the
XBOS kernel means the system can leverage HTTPS (e.g.
for sMAP drivers) or AES encryption (e.g. for embedded
systems).

Each stream of data corresponding to a point (UUID) in
XBOS is allocated a unique API key, and any process at-
tempting to publish data to that stream or change the meta-
data for that stream must be in posession of that API key.
For actuatable points, a special subscription is initiated through
the XBOS kernel to a specific stream that also has an API
key. API keys can mark streams as public or private for
reading. XBOS manages these API keys and enforces the
security policies over them, leaving the creation and man-
agement of user accounts and ACLs over the points to the
application layer.

10. EVALUATION
Table 1 provides a framework for a comparative analysis of
XBOS relative to prior designs. Our metrics of evaluation
are drawn directly from the six established dimensions of
the BOS design space.

HPL: XBOS substantially reduces the demands placed on
devices to support the HPL. Tridium requires the purchase
and installation of a Java-based JACE controller for connec-
tivity. BAS and BOSS require the client to implement JSON
over HTTP or to have a proxy do so on its behalf. The Build-
ingDepot2 HPL is the Data Connector layer, which requires
devices to submit HTTP POST requests to the system if
they do not expose their own API, with the additional re-
quirement of handling proper authentication. Both present
serious problems in receiving notifications through a NAT
or firewall, severely complicating deployment and recovery.
Agent-based peer-to-peer solutions, such as BEMOSS, over-
come NAT restrictions, but require both a Python and Ze-
roMQ installation on every device. These place unneces-
sary restrictions on computational resources for the emerg-
ing class of embedded IoT devices. In constrast, the XBOS
HPL only requires a process with network connectivity to
the XBOS Kernel that has the ability to send key-value pairs
using one of many lean application transports.

Canonical Metadata: Sensor Andrew only defines sufficient
metadata to describe data types on sensor channels, simi-
lar to sMAP timeseries properties or Project Haystack sen-
sor tags. BEMOSS does not provide contextual metadata
above a basic HPL. Tridium uses the oBIX [15] standard,
which is a semantically complete, but cannot cleanly evolve
in real-time. BuildingDepot2 is able to model and link be-
tween building subsystems but these links are predetermined
by building templates, which make certain non-scalable as-
sumptions such as “assuming that [an] HVAC zone contains
only one end-space” [2]. The XBOS metadata encapsulates
canonical descriptions of all building subsystems – spatial,
eletrical, lighting, HVAC, administrative, etc – and defines
a methodology for including new subsystems. This gives
XBOS the ability to support applications that operate en-
tirely on the canonical metadata and building profile, rather
than depending on out-of-band information.

Control Process Management: SensorAct deploys lightweight
nonblocking Lua “tasklets” for periodic or event-driven ac-
tions; these processes are deployed over a resource-intensive
Java Runtime Environment and require explicit lists of input
and output streams, and thus cannot adapt to changes in the
building. BAS and BOSS describe controller inputs using a
fuzzy query language that adapts to changes in building in-
frastructure, but still require a Python environment and spe-
cific client library, which limits where control processes can
be deployed. BEMOSS does not provide a mechanism for
control beyond actuation of explicitly designated points, and
even this requires a full VOLTTRON agent for each process.
Tridium’s Niagra AX framework is heavily architected and
non-portable, allowing purportedly rapid but ultimately lim-
ited development. Conversely, framework-agnostic XBOS
control processes are written against continuous views of the
building and can naturally adapt to changes in the available
set of sensors and transducers.

Building Evolution Management: BeMOSS has no model of
the building so it cannot evolve, meaning all apps must be
hardwired to the set of devices in a building. BAS and BOSS
query on functional relationships, which are mostly indepen-
dent of changes to the composition of a building, but are
implemented over the sMAP archiver which does not offer
continuously evaluated subscriptions, requiring manual in-
tervention on behalf of the control process to check for build-
ing changes. BuildingDepot2 uses building templates to des-
ignate hierarchies, and traverses these hierarchies explicitly
in applications, making it likely that apps will require some
rewriting if the nature of those hierarchies change. The tem-
plates are versioned, but because applications must target
specific versions, they are not fully agnostic to the build-
ing. In XBOS, all interactions with the building operate
in a continuously updated context of the building, and can
adapt naturally to such changes. Additionally, this mecha-
nism can be used to “revert” a building to an earlier version,
so applications can operate over the series of configuration
changes.

Security: Tridium, BeMOSS, BuildingDepot and Sensor An-
drew all combine ACLs with user accounts. BAS and Build-
ingDepot2 take the approach that each application must be
approved by the building manager in order to run (although
BuildingDepot2 also supports authorization of individual ac-
tuation points), and thus do not scale for larger buildings. In
BOSS, applications receive permissions instead of users, and
applications are restricted by location, value and schedule.
SensorAct manifests fine-grained, guard-rule permissions in
middleware, but at significant performance cost. XBOS sup-
ports fine-grained read/write control to individual actuators
and sensors through a collection of API keys, and defers user
accounts and ACLs to applications implemented over the
XBOS API.

User Experience (UX): BEMOSS simply provides a flat list
of devices and does not identify the context of those devices
in relation to the building. Other solutions such as Sen-
sor Andrew’s Sense View and BuildingDepot2’s BuildingViz
require manual construction of flashy graphical representa-
tions of buildings that also fail to capture immediately use-
ful information across multiple building subsystems. The
XBOS building dashboard offers a integrated, full-building
view that is completely autogenerated from the building pro-
file and gives users the option of exploring subsystems in de-
tail. Because the UI is constructed from the building profile,
the dashboard dynamically reflects any building evolution.

Classes of Intended Deployments: As seen in Table 1, only
a handful of proposed building operating systems are appro-
priate for multiple classes of buildings. There are many other
solutions that touch on the space of building management,
e.g. BuildingIQ for analytics or SensorAct for device con-
nectivity, but do not address the larger problem of holistic
building management. For example, BEMOSS claims to be
a “platform for optimizing electricity usage and implement-
ing demand response” [2], which are concerns that require a
building management system to already be in place. Com-
mercial BMS systems, including the recent Tridium system,
are not appropriate for small-scale installations in small-
medium commercial buildings or residential homes because
of the amount of required physical infrastructure and finan-

Figure 5: Continuous view re-evaluation latency
during accelerated building evolution. Over 75%
of building evolutions did not require reevaluation,
and at peak, the system averaged 16ms per change
(amortized 88µs per query over 180 zone controllers)

cial cost.

Continuous Views: Figure 5 illustrates the performance of
the XBOS Kernel when re-evaluating continuous views for
the accelerated evolution of a hypothetical 10 floor, 200 zone,
500 room building. Following the sample evolution from
Section 3, one thermostat is introduced for each zone. A
zone controller is introduced for each floor that subscribes
to all temperature sensors before adding a temperature sen-
sor to each room. Then, a new controller is installed for
each HVAC zone that subscribes to all occupancy sensors,
followed by the installation of an occupancy sensor in each
room. The system scales linearly with the number of matched
streams. During the accelerated evolution, the XBOS Ker-
nel averaged 1% CPU usage, and 284 MB of memory (Unique
Resident Set Size).

11. DEPLOYMENT: CIEE
XBOS has been fully deployed in a 7000 square foot office
building and has been used by the occupants to control the
building for 10 months. The building was retrofitted with 2
different models of networked thermostat, 4 models of net-
worked light, 2 models of smart plug strips components and
a 28-node sensor network.

As an anecdote, despite the lack of an individual dedicated
to monitoring the health of the building, an occupant was
able to identify, replicate and report anomalous behavior in
the building by using the building dashboard to verify in
real-time that although a thermostat was calling for heat,
the temperature was still dropping. She attached a screen-
shot of the dashboard demonstrating behavior (Figure 6) in
an email, drastically shortening the administrative overhead
of verifying the problem, and leading to the discovery of a
broken RTU damper.

An earlier version of XBOS was originally deployed at the
site, but the progressive nature of the building retrofit iden-
tified problems with how the system handled removing or

Figure 6: When the heating setpoint was raised
above the current temperature, the thermostat
called for heating, but the temperature decreased.

even moving devices. Hardcoded control loops needed to
be changed as new sensors were added, and replacing the
old thermostats with new meant that the building meta-
data needed to progressively adapt to new HVAC zones,
which complicated the development of the building dash-
board. The building was later re-retrofitted with XBOS;
the use of continuous views to render the dashboard and
write the control logic removed must of the manual effort
previously associated with bringing new devices online.

The deployment, partially illustrated in Figure 4, ran on
a small, on-premises server with a cloud-hosted timeseries
database.

12. CONCLUSION
This paper presents the design of XBOS, an extensible build-
ing operating system, as influenced across the 6 dimensions
of BOS design by the need to gracefully handle the natural
lifecycle of a building and its subsystems.

The XBOS Building Profile captures a family of relation-
ships across building subsystem hierarchies that functions
as a canonical metadata for multiple classes of buildings and
provides a descriptive basis for the system. All components
of the XBOS design are tied together by a query processor
embedded in a robust kernel that materializes continuous
views of the building constructed in an ad-hoc manner by
applications and control processes.

XBOS provides an extensible platform for studying further
aspects of building management systems including appropri-
ate security models and advanced controls leveraging ubiq-
uitous sensing capabilities.

13. ACKNOWLEDGMENTS
This material is based upon work supported in part by the
National Science Foundation under grant CPS-1239552 and
the California Energy Commission under grant PIR-12-026
as well as industrial partners including Takenaka Corpora-
tion and Intel Corporation.

14. REFERENCES
[1] Go programming language. http://golang.org/.

[2] B. Akyol and J. Haack. Conceptual architecture of
building energy management open source software
(bemoss).

[3] P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh, and
M. B. Srivastava. Sensoract: a privacy and security
aware federated middleware for building management.

In Proceedings of the Fourth ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in
Buildings, pages 80–87. ACM, 2012.

[4] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann,
W. F. Buhl, Y. J. Huang, C. O. Pedersen, R. K.
Strand, R. J. Liesen, D. E. Fisher, M. J. Witte, et al.
Energyplus: creating a new-generation building energy
simulation program. Energy and buildings,
33(4):319–331, 2001.

[5] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler. smap: a simple measurement and actuation
profile for physical information. In Proceedings of the
8th ACM Conference on Embedded Networked Sensor
Systems, pages 197–210. ACM, 2010.

[6] S. Dawson-Haggerty, A. Krioukov, J. Taneja,
S. Karandikar, G. Fierro, N. Kitaev, and D. E. Culler.
BOSS: Building Operating System Services. In NSDI,
volume 13, pages 443–458, 2013.

[7] H. Friedman, D. Claridge, C. Toole, M. Frank,
K. Heinemeier, K. Crossman, E. Crowe, and
D. Choinière. Annex 47 Report 3: Commissioning
Cost-Benefit and Persistence of Savings. Energy
Conservation in Buildings and Community (ECBCS)
Program, 2010.

[8] P. Fritzson and V. Engelson. Modelica - a unified
object-oriented language for system modeling and
simulation. In ECOOP ’98 Object-Oriented
Programming, pages 67–90. Springer, 1998.

[9] Green building xml. http://gbxml.org/.

[10] ISO. Industry Foundation Classes (IFC) for data
sharing in the construction and facility management
industries. ISO 16739, International Organization for
Standardization, Geneva, Switzerland, 2013.

[11] A. Krioukov, G. Fierro, N. Kitaev, and D. Culler.
Building application stack (BAS). In Proceedings of
the Fourth ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, pages
72–79. ACM, 2012.

[12] OPC Task Force. OPC common definitions and
interfaces, 1998.

[13] Project Haystack Corporation. Project Haystack.
http://project-haystack.org/, 2015.

[14] T. Samad and B. Frank. Leveraging the web: A
universal framework for building automation. In
American Control Conference, 2007. ACC’07, pages
4382–4387. IEEE, 2007.

[15] O. Standard. Open building information exchange
(obix) 1.0, 2006.

[16] T. Weng, A. Nwokafor, and Y. Agarwal.
Buildingdepot 2.0: An integrated management system
for building analysis and control. In Proceedings of the
5th ACM Workshop on Embedded Systems For
Energy-Efficient Buildings, pages 1–8. ACM, 2013.

