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Abstract

Fault-tolerant distributed systems are difficult to get
right because they must deal with concurrency and fail-
ures. Despite decades of research, current approaches for
a more rigorous way of building robust distributed sys-
tems are unsatisfactory. In this paper, we present P, a
new approach that makes it easier to build, specify, and
test distributed systems. Our programming framework
provides two important features. First, we provide a
high-level language for formally specifying implementa-
tions, abstractions, and specifications of protocols. The
P compiler automatically generates efficient C code from
the input program. Second, we provide a tool for com-
positional systematic testing of a P program. Together,
these attributes have the power to generate and repro-
duce within minutes, executions that could take months
or even years to manifest in a live distributed system.

1 Introduction

Fault-tolerant distributed systems must reliably han-
dle concurrency and failures. Programming with
concurrency and failures is challenging because of
the need to reason about numerous program control
paths. These control paths result from two sources of
nondeterminism—interleaving of event handlers and un-
expected failures. Not surprisingly, programmers find it
difficult to reason about the correctness of their imple-
mentations. Even worse, it is extremely difficult to test
distributed systems; unlike sequential programs whose
execution can be controlled via the input, controlling the
execution of a distributed program requires fine-grained
control over the timing of the execution of event han-
dlers and fault injection. In the absence of such control,
most control paths remain untested and serious bugs lie
dormant for months or even years subsequent to deploy-
ment. Finally, bugs that occur during testing or after
deployment tend to be Heisenbugs; they are notoriously
difficult to reproduce because their manifestation re-
quires timing requirements that might not hold from one
execution to another. These problems are well-known
and have been highlighted by creators of large-scale dis-
tributed systems [8]. Unfortunately, despite decades of
research in verification techniques oriented towards dis-

tributed systems, the practice of programming such sys-
tems “in-the-wild” has not changed.

Existing validation methods for distributed systems
fall into two broad categories. On one hand, we have sys-
tems such as TLA+ [36], a mathematical logic for spec-
ifying distributed protocols. Although TLA+ supports
rich specification and validation via model checking, the
realm of logical specifications is far removed from the
imperative languages preferred by programmers of dis-
tributed systems. Consequently, there is no formal con-
nection between the specification being checked and the
code being executed. On the other hand, we have sys-
tems such as MODIST [35], a model checker that oper-
ates directly on the implementation of a distributed sys-
tem. This approach validates real executions but lacks
scalability in the face of the daunting complexity of re-
alistic distributed systems.

In this paper, we present P, a scalable approach to im-
plement, specify, and test distributed systems. P rests
on two important pillars. First, we provide a high-
level language for describing the implementation of a
distributed system. This language has precise opera-
tional semantics and is based on the computation model
of asynchronously-communicating state machines, where
each state machine is equipped with an input buffer con-
taining messages to be processed. We provide a compiler
that automatically generates efficient C code from the
input program and a runtime to execute the compiled
program on a cluster of computing nodes. Since the
management of state machines and event buffers is han-
dled automatically by the runtime, P programs tend to
resemble high-level protocol specifications that are sig-
nificantly more compact than corresponding C imple-
mentations. The conformance of the semantics of P pro-
grams to executing code ensures that programmers do
not have to worry about the high-level protocol specifi-
cation diverging from the low-level implementation.

Second, we provide a tool for compositional systematic
testing of a formally-specified protocol. Systematic test-
ing means that protocol executions are generated auto-
matically by enumerating all sources of non-determinism
in the formal specification. Compositional testing means
that the executions of a protocol are tested in isolation
by abstracting the environment in which the protocol
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Figure 1: Overview of P

executes. Large distributed systems are typically com-
posed of many protocols interacting with each other.
For example, fault-tolerant distributed transaction com-
mit [14], uses State Machine Replication (SMR) to make
two-phase commit fault-tolerant; protocols for SMR, like
Multi-Paxos [22] and Chain Replication [32], in turn use
other protocols like leader election, failure detectors, and
network channels. Thus, the environment of a protocol
often consists of other protocols. We introduce primi-
tives in our programming language for writing protocol
abstractions, which are exploited by our tool to test each
protocol separately. Compositional reasoning boosts the
scalability of our testing framework and provides much
greater behavior coverage per unit of computation de-
voted to testing. Compositional systematic testing has
the power to generate and reproduce within minutes, ex-
ecutions that could take months or even years to mani-
fest in a live distributed system.

We use P to implement two distributed services: (i)
distributed atomic commit of updates to decentralized,
partitioned data using two-phase commit, and (ii) dis-
tributed data structures such as hashtables and lists.
These services use State Machine Replication (SMR)
protocols, like Multi-Paxos and Chain Replication writ-
ten in P, for fault-tolerance.

We summarize the contributions of the paper:

e We have designed the P language for succinctly and
precisely describing the implementation of a dis-
tributed system. Our language compiler and run-
time automatically map the semantics of P pro-
grams to code executing on a cluster.

e We introduce language primitives in P for express-
ing specifications and abstractions of protocols in
a distributed system. We exploit these specifica-
tions to test each protocol in the system separately,
thereby trememdously increasing the scalability of

our testing framework.

e We present an empirical evaluation of systematic
testing and runtime performance in P using two dis-
tributed services that combine ten different proto-
cols, thus demonstrating that our framework can
validate complex real-world distributed services.

2 P Overview

Figure 1 provides an pictorial overview of the P archi-
tecture. There are three main building blocks of the
P framework—a programming language for implement-
ing and specifying a distributed system, a testing tool
for efficiently exploring the nondeterminism in a P pro-
gram, and a runtime library for efficiently executing the
program.

P program: A P program consists of four main com-
ponents, implementation, specification, abstraction and
the test-driver. The implementation block contains the
protocols implementing the distributed system. The
computational model underlying a P program is state
machines communicating via messages, an approach
commonly used in building networked and distributed
systems [6, 20, 21, 29, 34]. Each state machine has an
input queue, event handlers, and machine-local store for
a collection of variables. The state machines run con-
currently with each other, each executing an event han-
dling loop that dequeues a message from the input queue,
examines the local store, and can execute a sequence
of operations. Each operation either updates the local
store, sends messages to other machines, or creates new
machines. In P, a send operation is non-blocking; the
message is simply enqueued into the input queue of the
target machine.

The specification block captures the correctness prop-
erties of the implementation. The specifications of the



system are implemented in the form of monitors. Each
monitor is a state machine that maintains necessary
state for asserting a temporal safety or liveness require-
ment [3]. The implementation is instrumented to send
relevant events to each monitor enabling it to check if
the system satisfies the specification.

Testing a large distributed system is not scalable as
the number of possible executions is extremely large. In-
stead, P allows the programmer to test each protocol
in the system separately, a methodology we call com-
positional testing. It is not possible to test a protocol
in isolation because it interacts with other protocols.
These interactions must be modeled accurately to en-
sure no false positives during testing and abstractly to
ensure that testing a protocol in isolation is simpler than
testing the entire system. P solves this problem by al-
lowing the programmer to specify protocol abstractions
also as state machines. These abstract machines, known
as model machines constitute the abstraction block in a
P program. While testing a particular protocol, the P
testing tool automatically replaces any protocols in its
environment with the appropriate abstractions.

The test-driver block is key to scalable systematic test-
ing of a P program. Each protocol has a separate test-
driver to capture the set of executions that must be ex-
plored during systematic testing of that protocol. The
driver uses P features to compactly specify a large set
of executions to be tested. These executions are then
automatically generated by the systematic testing tool
in P.

Systematic testing: Our tool for systematic testing
of P programs is implemented in two parts. The P
compiler generates a translation of the program into
the Zing modeling language [4]. Next, the Zinger tool
takes as input the generated Zing model and systemat-
ically enumerates executions resulting from scheduling
and explicit nondeterministic choices. Together, these
two steps create a single-process interpreter and explorer
for the nondeterministic semantics of a P program. A
programmer typically spends the initial part of proto-
col development in the iterative edit-compile-test-debug
loop enabled by our systematic testing tool (see the feed-
back loop in Figure 1). The feedback from the tool is an
error trace that picks a particular sequence of nondeter-
ministic choices leading to the error. Since all nonde-
terministic choices are explicitly indicated by the tool,
the process of debugging becomes considerably simpler
that the current practice of correlating logs created at
different machines in a live execution.

Execution: The P compiler also generates C code that
is compiled by a standard C compiler and linked against
the P runtime to generate the executable of the dis-
tributed service. The application is deployed on a col-

Listing 1 Timer.

// events from client to timer

event START;

// eac

event TIMEOUT:

event CANCEL_SUCCESS: machine;
event CANCEL_FAILURE: machine;
// local event for control transfer within timer
event Unit;
model Timer {
var client: machine;
start state Init {
entry {
client = payload as machine;
raise Unit; // goto handler of Unit

}
on Unit goto WaitForReq;
}
state WaitForReq {
on CANCEL goto WaitForReqg with ({
send client, CANCEL_FAILURE, this;
Vi
on START goto WaitForCancel;
}
state WaitForCancel {
on START do { };
on CANCEL goto WaitForReqg with ({
if (8
send client, CANCEL_SUCCESS, this;
} else {
send client, CANCEL_FAILURE, this;
send client, TIMEOUT, this;
}
Vi
// if there is no START or CANCEL
on null goto WaitForReq with {
send client, TIMEOUT, this;
i

event

lection of machines in a cluster by the P deployment
tool. Runtime ensures that the behavior of a P program
matches the semantics validated by the systematic test-
ing.

3 Modeling asynchronous inter-

action and failures

The goal of P is to enable development of distributed
systems in a manner that facilitates systematic testing
of unexpected executions that result from asynchronous
interaction and failures. In this section, we show that
suitable combination of two primitives of the P program-
ming language, concurrently-executing state machines
and nondeterministic choice, can precisely and succinctly
model these features of distributed systems.

Asynchronous interaction is modeled naturally in P
by implementing a distributed system as a collection
of concurrently-executing state machines that commu-
nicate using buffered non-blocking sends. To systemati-
cally test distributed systems, we need to capture inter-
actions with external libraries, such as OS timers and file
systems, not implemented in P. In addition to describing
the implementation of a distributed system, state ma-



Listing 2 Unreliable send.

Listing 3 Fault injector.

machine Sender ({

model fun DoRPC(val:any, segNum:int): bool ({
if (E) return false;
send dst, RECVY,
(from=this, val=val, segNum=segNum) ;
return [§;
}

chines also enable us to write abstractions (models) of
external libraries. We capture such components in P ei-
ther as model state machines (asynchronous interaction)
or as model functions (synchronous interaction). As an
added benefit, abstractions also model P implementa-
tions and enable compositional testing. When testing a
protocol in isolation, we replace the other protocol imple-
mentations it interacts with by an appropriate abstrac-
tion to reduce the search space that must be explored by
the testing tool.

To illustrate how asynchronous interaction is modeled
in P, we consider a client program using a timer, a basic
OS primitive required for distributed programming. To
start a timer the client makes an asynchronous call to
StartTimer (10, Callback). This call tells the OS
to invoke the function Callback after 10 ms, but the
Callback can happen anytime because of asynchrony.
Subsequently, the client program may cancel the timer
with a system call CancelTimer (). Timer cancellation
may not succeed if the timer has expired or is about
to expire. The timer library guarantees that if timer
cancellation succeeds, then Callback is never invoked.

Since StartTimer is an asynchronous callback, we
must model the client and the timer as concurrently ex-
ecuting processes. Further, to avoid reasoning about real
time and the detailed internal state of the timer library,
we must introduce nondeterministic choice while mod-
eling the timer behavior from the client’s perspective.
Thus, we allow Callback to start executing any time
after StartTimer is invoked.

Listing 1 shows a timer model machine in P to il-
lustrates how we can precisely express the behavior de-
scribed above. This example also introduce key features
of the P language useful for understanding other exam-
ples described later in the paper.

A client machine with a local variable t imer may cre-
ate an instance of the Timer state machine via a con-
structor call timer = new Timer (this), passing its
own id as an argument so that the timer can later send
events to the client. The code for Timer state machine
contains variables and states. For each state, event han-
dlers may be specified for specific events; the appropriate
handler is executed upon dequeueing an event from the
input queue of the machine. The variables are local to

model FaultInjector {
var nodes: seq[machine];
var i: int;
start state Init {
entry {
nodes = payload as seqg[machine];
raise Unit;
}
on Unit goto Fail;
}
state Fail {

entry {
if (sizeof (nodes) == 0)
return;
i = 0;
while (i < sizeof (nodes)) {
if () o
send nodes[i], halt;
nodes —-= 1i;
raise Unit;
} else {
i=1+1;

}
}
}
on Unit goto Fail;
}

an instance of Timer but global to all event handlers
across all states.

A freshly-created Timer machine starts in the state
Init; upon entering Init the entry action is executed
to initialize the client variable. The assignment per-
forming this initialization uses the keyword payload to
access the argument to the constructor. The payload
is allowed to be of any type; in particular, it could be a
tuple to send multiple arguments. This keyword is also
used to access the data value attached to an event sent
from one machine to another.

In addition to Init, Timer has two other
states—WaitForReq and WaitForCancel. In state
WaitForCancel, nondeterminism ($) is used in the
handler for CANCEL event to model success or failure
of the cancellation request. In case of success, timer re-
ponds with CANCEL_SUCCESS; in case of failure, timer
responds with CANCEL_FAILURE followed by TIMEOUT.

Finally, nondeterminism and state machines are also
useful for modeling failures, consequences of physical
processes occurring in the environment of a distributed
system. Listing 2 shows how we model link failures us-
ing a model function DoRPC. Machine Sender uses this
function to send a network message; the model nondeter-
ministically either drops the message (and returns false)
or sends the message (and returns either true or false).

Listing 3 shows how we model node failure using a
model machine FaultInjector. This machine main-
tains a sequence nodes of machines for which we want to
model crash failures; the initial sequence is passed to the
machine when it is created and stashed in the variable
nodes. The loop in state Fail chooses an index i in



Listing 4 Reliable, FIFO, no-dup channel.

event SEND: (dst:machine, val:any);
event RECV: (src:machine, val:any, segNum:int);
event DELIVER: any;
machine Sender {
var segNumMap: [machine, int];
var dst: machine;
start state Init {
on SEND do SendHandler;
}
fun SendHandler () {
dst = payload.dst;
monitor SendRecvSpec, M_SEND,
(src=this, dst=dst, val=payload.val);
if ! (dst in segNumMap)
segNumMap [dst] = 0;
segNumMap [dst] = segNumMap [dst] + 1;
while (true) {
b = DoRPC(dst, payload.val, segNumMap[dst]);
if (b) break;
}
}

}
machine Receiver {

var client: machine;

var segNumMap: [machine, int];

var src: machine;

start state Init {
entry {

client = payload as machine;

}
on RECV do ReceiveHandler;

}

fun ReceiveHandler () {
src = payload.src;
if (src in segNumMap &&

segqNumMap [src] <= payload.segNum)
return; // ignore duplicates
segNumMap [src] = payload.segNum;
send client, DELIVER, payload.val;
monitor SendRecvSpec, M_DELIVER,
(src=src, dst=this, val=payload.val);

the range [0, sizeof (nodes)) nondeterministically,
enqueues the halt event to nodes [1], and removes the
i-th entry from nodes. To model unexpected failure,
nodes [1] should not handle the event halt; therefore,
it will be terminated as soon as halt is dequeued.

4 A P program: Four-part har-
mony

We illustrate how the four parts of a typical P program—
implementations, abstractions, specifications, and test
drivers— come together. We use the example of a sim-
ple protocol for sending messages reliably with no dupli-
cation and in FIFO order atop a potentially unreliable
network channel. Such a reliable network channel is a
useful building block used by other protocols, such as
Chain Replication, as we show in Section 6.

1. Implementation: The protocol implementation
is shown in Listing 4. It uses two machine declara-
tions, Sender and Receiver. KEach client machine
that wants to use the protocol creates one instance each

of Sender and Receiver to act as a proxy for send-
ing and receiving messages, respectively. We use host,
sender, and receiver to refer to this troika of machines.
The machine receiver has a reference to its host machine
and the host machine has a reference to its sender ma-
chine. When host; wants to send a message to hosts, it
sends the message to receivers instead.

The protocol uses three event declarations, SEND,
RECV, and DELIVER. Events can have payloads associ-
ated with them, and the send operation can attach any
value to a event that is a subtype of the payload type in
the event declaration. On the sending end, host uses the
SEND event to tell sender the message it wants delivered.
The SEND event has a named-tuple payload attached to
it; the fields dst and val are the destination machine
and value to be sent, respectively. The type any of val
is an abstract type that can be instantiated with any
concrete type at runtime.

The machine sender handles a SEND request in the
function SendHandler which invokes DoRPC (List-
ing 2), a model of the RPC implementation provided
by the OS. A loop in SendHandler repeatedly invokes
DoRPC until true is returned. Clearly, this implemen-
tation can cause duplicate messages at the receiver end;
therefore, increasing sequence numbers are used to guard
against duplication. The send operation inside DoRPC
attaches a named tuple comprising the sender id, the
value being sent, and the sequence number as the pay-
load to RECV event. The current sequence number for a
particular destination machine is maintained in the map
segNumMap.

On the receiving end, receiver maintains the se-
quence number for a particular source machine in its
own segNumMap. It handles a RECV event by check-
ing for duplicates, updating the sequence number in
segNumMap, and delivering the message to host using
the DELIVER event.

2. Specification: Listing 5 shows a monitor that en-
codes the safety specification for the reliable network
channel described above. The monitor SendRecvSpec,
also written as a state machine, accepts two events
M_SEND and M_DELIVER. The payload for both events is
a named tuple comprising the source machine id, the des-
tination machine id, and the value to be delivered. The
monitor maintains in a map, pending, the sequence of
values that have been sent but not received yet. The
correctness checking enforced by this monitor is closely
tied to how it is invoked in the implementation (List-
ing 4): First, the event M_SEND is sent to the monitor
when sender receives a SEND request from its host; Sec-
ond, the event M.DELIVER is sent to the monitor when
receiver delivers a value to its host; Third, the assertion
in the handler for M.\DELIVER checks that the value be-
ing delivered matches the value at the first entry in the



Listing 5 Channel safety specification.

Listing 6 Channel liveness specification.

event M_SEND:
(src: machine, dst: machine, wval: any);
event M_DELIVER:
(src: machine, dst: machine, val: any);
monitor SendRecvSpec {
var pending:
map [ (src: machine, dst: machine), seqglany]];
var key: (src: machine, dst: machine);
start state Init {
on M_SEND do {

key = (src=payload.src, dst=payload.dst);
pending(key] +=
(sizeof (pendinglkey]), payload.val);

}
on M_DELIVER do {

key = (src=payload.src, dst=payload.dst);
assert pendinglkey] [0] == payload.val;
pendinglkey] -= (0, payload.val);

}

pending sequence.

In addition to safety, P can also check liveness specifi-
cations. A violation to a liveness property is an infinite
execution of the program. Infinite executions may arise
in a P program because of nondeterministic choices in
abstractions, e.g., the loop in SendHandler (Listing 4)
may not terminate if every invocation of DoRPC returns
false. Not all infinite executions are erroneous though.
An infinite execution that happens because of unfairness
either in process scheduling or in resolving nondetermin-
istic choice is simply a modeling artifact. The liveness
checker in P performs fair scheduling of machines; fur-
thermore, the programmer may specify fair nondeter-
ministic choices using $$ (replacing $ with $$ in the
code of DoRPC). The use of $$, as opposed to $, indi-
cates that if the choice is made infinitely often, it must
resolve to both true and false infinitely often.

Fairness allows P programmers to specify the space of
valid infinite executions compactly. Among these execu-
tions, the specification of erroneous infinite executions
is done via a liveness monitor (Listing 6). The monitor
SendRecvSpecLiveness captures the property that
any send request made to the Sender machine is eventu-
ally delivered to the Receiver. An instance of the mon-
itor is created with a particular sequence number as the
payload. The monitor waits in the state WaitForRecv
for an event indicating that the message corresponding to
that sequence number has been delivered to Receiver.
This state is annotated as hot to indicate that it is an
error to remain in this state infinitely often.

With only hot states, a monitor can specify “even-
tually” properties, i.e., something good happens eventu-
ally. To generalize liveness monitors to “infinitely-often”
properties and in fact to all w-regular properties [30], we
introduce the annotation cold on states as well. A mon-
itor with both hot and cold states specifies an erroneous
execution as one which visits some hot state infinitely

monitor SendRecvSpecLiveness {
var segNum: int;
start state SendDone {
entry {
segNum = payload as int;
raise UNIT;
}
on UNIT goto WaitForRecv;
}
hot state WaitForRecv ({
on M_RECV do {
if (segNum == payload)
raise UNIT;
i
on UNIT goto RecvDone;
}
state RecvDone {

}

often and visits all cold states only finitely often.

3. Abstraction: In Listing 7, we show SenderAbs
and ReceiverAbs, abstractions of Sender and
Receiver respectively, from the point of view of the
client of the protocol. These abstractions are consider-
ably simpler than the implementations. The machine
SenderAbs sends the message directly to the destina-
tion without using RPC or sequence numbers; the ma-
chine ReceiverAbs simply forwards the messages it
receives to the host.

To scale systematic testing to complex protocol stacks,
when testing a protocol that is a client of the network
layer, we would like to use the abstractions SenderAbs
and ReceiverAbs rather than the implementation ma-
chines Sender and Receiver. The P language provide
a variation on the new primitive to achieve this substitu-
tion. The constructor “new A (e) for B” tells the P
compiler to use the machine A for systematic testing but
the machine B for real execution. This language feature
allows a client of the network layer to be programmed
using: “new SenderAbs for Sender;”
ReceiverAbs (this) for Receiver;”. An imple-

and “new

Listing 7 Abstraction of a reliable channel.

model SenderAbs {
start state Init {
on SEND do ({
send payload.dst, RECV,
(src=null, val=payload.val, segNum=0);

Vi
}
}
model ReceiverAbs {
var client: machine;
start state Init {
entry {
client = payload as machine;
}
on RECV do ({
send client, DELIVER, payload.valj;
Vi




Listing 8 Channel driver.

event Unit;
main model Test {
var i: int;
start state Init {
entry {
sender = new Sender();
receiver = new Receiver (this);
new SendRecvSpec();
i=0;
raise Unit;
}
on Unit goto SendReq;
}
state SendReqg ({
entry {
if (i == 10) return;
i=1i+1;
send sender, SEND, (dst=receiver, val:E);
raise Unit;
}
on Unit goto SendReq;
on DELIVER { };
}

mentation can have more than one behavioral abstrac-
tions and a client can choose a particular abstraction
pertinent to its view of the implementation.

4. Test driver: To check the code of Sender and
Recelver against its specification SendRecvSpec, we
need to create a test driver that models a client of the
protocol. Listing 8 shows such a test driver specified as
a model machine Test. The main keyword attached
to Test indicates that execution starts with a single
instance of Test. This instance creates a sender and
a receiver machine and sends 10 SEND requests to the
sender. Thus, Test specifies a bounded-input nondeter-
ministic program, whose executions depend on machine
scheduling choices and explicit nondeterministic choices
made by $. The testing tool accompanying P systemati-
cally explores all the executions created by these choices
looking for violations to the assertion inside the monitor
SendRecvSpec. If a violation is found, a fully repro-
ducible error trace is provided to the programmer.

5 P toolchain

We describe the runtime, compiler,and tools that make
it easy to deploy a P service on a cluster.! The compiler
converts every state machine in the P program into a
state machine represented in C. The runtime executes
the P program according to the program’s operational
semantics by using the C representation of the state ma-
chines. Thus, the compiler and runtime together ensure
that the runtime behavior of a P program matches the
semantics validated by the systematic testing.

1Together, we call these P tools Fulliautomatyz, a tip of the
hat to the epic works of Goscinny and Uderzo.
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Figure 2: Components of P runtime

5.1 Runtime

Figure 2 shows the structure of a P service executing
on a cluster of nodes. Each node hosts a collection
of Container processes. Containers are collection of P
state machines that interact closely with each other and
reside in a common fault domain. Each node runs a
NodeManager process which listens for requests to cre-
ate new Container processes. Similarly, each Container
hosts a single ContainerManager that manages the state
machines in that Container. In the common case, each
node has one NodeManager process and one Container
process executing on it, but P also supports a collection
of Containers per node enabling emulation of large-scale
services running on only a handful of nodes.

A state machine can create another state machine in
a new Container, on a remote node, by invoking new
with appropriate parameters. The caller expects a new
state machine ¢d in return. This call is implemented by
contacting the ClusterManager. The ClusterManager in
turn contacts an appropriate NodeManager to create a
new Container process and a new state machine within
it. The id of a state machine running in a Container
is a 3-tuple of the form <ip, port, mid>, where ip is
the NodeManager’s IP address, port is the Container’s
unique RPC server port number, mid is the state ma-
chine’s unique ID withing the Container.

Each Container process hosts an RPC server which is
used to forward P events to its state machines, includ-
ing the ContainerManager. The ContainerManager han-
dles CreateMachine events whose payload contains
the state machine (SM) to be created and the value to
be passed to the SM upon creation. It instantiates SM,
together with its accompanying sender and receiver state
machines (network protocol), and returns the id of the
receiver to the source of the event.

The Container runtime, implemented in 7K lines of



C code, has the capability to (1) create, destroy and
execute state machines, (2) create and destroy runtime
representations of P types and values, (3) start an RPC
server to listen to events from machines in a different
Container, and (4) serialize data values before send and
deserialize them after receive.

Although the operational semantics of a P program
is that all machines run concurrently, the runtime does
not use a separate thread for running each machine in-
side a Container. Rather, the machines are run in the
context of a thread from the thread pool that services
the Container’s RPC server. Any remote procedure call
to a Container results in a thread invoking a function
to enqueue an event in the appropriate state machine
running inside the Container. This function not only
enqueues the event but also executes the event handling
loop of the target state-machine. In this loop, events are
dequeued and their handlers are executed to completion.
If the handler enqueues an event into another machine
in the same Container, the event handling loop of that
machine is executed, and so on. If the handler tries to
send an event to a machine in a different Container, the
message is serialized and an RPC call is performed. The
runtime uses efficient fine grain locking to guard against
race conditions where more than one thread tries to ex-
ecute a handler for a machine; such races, if allowed,
would violate the operational semantics of P.

5.2 Compiler

The P compiler converts the source-level syntax of a
P program into C code. This code contains separate
statically-defined C array-of-structs for the events, ma-
chines, states, and transitions in the program. It also
contains translations of all event handlers as C functions;
the link between states and transtions and the appro-
priate handler is established via function pointers stored
inside the C array-of-structs. The compiler is written us-
ing 3.5K lines of C# code and 3.3K lines of Formula [17]
code.

The P compiler does not generate C code for mon-
itors, model machines, and model functions. In cases
where model functions and model machines are used for
capture the interaction with the environment (e.g., timer
and RPC send in Section 3), appropriate stub functions
are generated for the programmer to provide a concrete
implementation of these interactions.

The P compiler provides a simple module system that
enables code reuse. A large program comprising many
different protocols can be split into multiple P source
files using the include directive. Starting from a root
file, a preprocessor collects all dependent source files re-
cursively, ensuring that each file is included exactly once.

5.3 Systematic testing

Our tool for systematic testing of P programs is imple-
mented in two parts. First, in addition to generating
C code for execution, the P compiler also generates a
translation of the program into the Zing modeling lan-
guage [4]. This part of the compiler comprises 3.5K lines
of C# code for translating the P program and 1.5K lines
of Zing code for modeling the semantics of the P run-
time. Next, the Zinger tool takes as input the generated
Zing model and systematically enumerates executions
resulting from scheduling and explicit nondeterministic
choices. Together, these two steps create a single-process
interpreter and explorer for the nondeterministic seman-
tics of a P program.

Clearly, the search problem faced by Zinger is enor-
mous, even for a P program with a bounded-input driver
(Listing 8). For example, if the driver creates n P ma-
chines and terminates in at most k steps, the number of
possible executions is on the order of n*. We use many
techniques to combat this combinatorial explosion. The
most important and a key contribution of this paper is
compositional testing enabled by the abstractions speci-
fied by the programmer (e.g., Listing 7). There are other
important optimizations [12] for searching executions of
concurrent programs that are implemented in the Zinger
tool itself; we exploit all of them to make efficient use of
bounded testing resources.

As we have indicated before, P allows checking of live-
ness monitors as well. Liveness checking is considerably
more difficult than safety checking. A safety violation is
detected via reachability of a bad state, but a liveness
violation is detected via reachability of a bad cycle that
satisfies all fairness conditions [9]. To detect bad reach-
able cycles, Zinger implements iterative deepening over
two algorithms—mnested DFS [11] and maximum accept-
ing predecessor [7]. We exploit this capability in Zinger
to enable validation of general liveness monitors.

6 Building & testing distributed
services compositionally

So far, we have seen the implementation, abstraction,
specification, and driver of a single protocol for network
transmission. To build a real distributed application,
in general, many other protocols will need to be imple-
mented, potentially stacked on top of the network layer.

In P, building these protocols compositionally, a prac-
tice advocated for networked systems [27, 33], and using
abstractions in place of implementations in the proto-
col tree, enables developers to scale systematic testing.
Furthermore, two protocols that share a common ab-
straction, and that are tested independently, can be used
interchangeably by a client that is tested against their
common abstraction.
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Figure 3: Protocol Composition. Circles are ab-
stractions. A — B indicates that B uses A. A= B
indicates that A implements B.

Figure 3 shows a collection of protocols that we im-
plemented in P with the goal of enabling two distributed
services: (i) distributed atomic commit of updates to
decentralized, partitioned data using two-phase com-
mit [5, 13, 24, 26], and (ii) distributed data structures
such as hashtables and lists. These distributed ser-
vices use State Machine Replication (SMR) for fault-
tolerance [14, 21, 29]. Protocols for SMR, like Multi-
Paxos and Chain Replication, in turn use other proto-
cols like leader election, failure detectors, and network
channels.

Each protocol shown above has an abstraction that is
used in testing its client. For example, in Section 4, we
showed the abstraction for reliable channels, used here
by other protocols. In the remainder of this section, we
focus on SingleNode and Learner abstractions.

Single node abstraction: SMR protocols, such as
Multi-Paxos [22] and Chain Replication [32], are used
to make services fault-tolerant. For example, the Paxos
Commit protocol for distributed transaction commit,
proposed by Gray and Lamport, uses SMR to make two-
phase commit fault-tolerant [14].

To understand why Muti-Paxos and Chain Replica-
tion use different sub-protocols (Figure 3), it is impor-
tant to understand the settings they are designed for.
Multi-Paxos is designed for asynchronous setting (not to
be confused with non-blocking operations) and it uses
2n+ 1 replicas to tolerate n failures. On the other hand,
Chain Replication exploits a failure detector to use only
n + 1 replicas for tolerating n failures. Although Chain
Replication is designed for a synchronous, fail-stop set-
ting [28], where reliable detection of crash failures is pos-
sible, it has built-in safeguards that ensure correctness

Listing 9 Single node abstraction.

event REQ: (client: machine, reqgid: int, op: any);
event RESP: (reqgid: int, val: any, commitid: int);
model SingleNode<L> {

var learner: machine;

var commitid: int;

var pending: seq[ (client: machine, regid: int)];

start state Init {

entry {
if (learner == null) learner =

1t ix of requ

// respc to a
while ([§ && 0 <
// respond to

zeof (pending)) {

first req

2 1¢

send learner, REQ, (client=this,
regid=pending[0] .reqgid,
op=pending[0].op);
push WaitForResponse;
pending -= 0;
commitid = commitid + 1;
}
}
on REQ goto Init with {
// put request at nondeterministic position
if () ¢
pending += (Choose(),
(client=payload.client,
reqgid=payload.reqgid));
}
i
}
fun Choose():
var i: int;

int {

i=0;
while ([§| && i < sizeof (pending)) ({
i=1+ 1;
}
return i;
}
state WaitForResponse {
on RESP do {
send pending[0].client, RESP,
(reqgid=payload.reqid, val=payload.val,
commitid=commitid) ;

even with unreliable failure detection in an asynchronous
real-world setting. With such safeguards, such as mem-
bership view-changes and dropping messages from older
views, an imperfect failure detector can only affect per-
formance and not correctness. The reliability of failure
detectors can be enhanced by using spies across various
layers of the systems stack to accurately detect failures
and kill if needed [2, 25].

Despite their differences, both Multi-Paxos and Chain
Replication ensure that the replicated state machine be-
haves logically identical to a single remote state ma-
chine that never crashes [16]. Listing 9 shows this
abstraction as the model SingleNode, which main-
tains a sequence of pending requests. A fresh re-
quest is added at a nondeterministic position in the
sequence but the responses are delivered in sequence
order. To systematically test clients of SMR, such as
two-phase commit and fault-tolerant data structures,
we can ignore the specifics of SMR protocols and in-
stead replace them with a SingleNode state ma-



Listing 10 Learner abstraction.

model Learner {
var pending: seqg[(client:
start state Init {
on REQ do {
send payload.client, RESP,
(id=payload.id, val=null, commitid=0);

machine, reqgid: int)];

bi
}
}

chine. For example, a P two-phase commit implementa-
tion can use “new SingleNode<Participant> for
MultiPaxos<Participant>"; this tells the P com-
piler to use SingleNode for systematic testing but
MultiPaxos for real execution. Our compositional ap-
proach has the benefit of separating the validation of
clients of SMR from the validation of Multi-Paxos and
Chain Replication protocols. Thus, the problem of sys-
tematically testing clients, like two-phase commit, be-
comes much simpler.

The P implementations of Multi-Paxos and Chain
Replication are validated separately from each other,
each with its own protocol-specific safety and live-
ness specifications. In addition to those specifications,
they share a common specification, adherence to which
guarantees that they implement the SingleNode ab-
straction. Thus, clients tested with the SingleNode
abstraction can interchangeably use Multi-Paxos and
Chain Replication.

Learner abstraction: SMR protocols, such as Multi-
Paxos and Chain Replication, ensure that the set of repli-
cas agree on a common order of operations to be per-
formed. The semantics of these operations is opaque to
the replicas in these protocols. Each replica is associated
with a learner state machine that executes these opera-
tions. Specific learners could be a hashtable that serves
PUT and GET requests and maintains the hashtable state
in memory or on disk. Learner in Listing 10 is an ab-
straction for this state machine that is independent of
the semantics of the operations; it receives a REQ event
and immediately responds to it with a RESP event. The
systematic testing of both Multi-Paxos and Chain Repli-
cation uses this abstraction for the learner. The learner
state-machine should be deterministic for the correct-
ness of SMR, protocols; thus for a sequence of REQs,
the learner should always produces the same sequence
of RESPs and end up in the same state.

7 Evaluation

We evaluate P along three dimensions: 1) we compo-
sitionally test the protocols described in Figure 3 (Sec-
tion 7.1), 2) we classify the bugs found by our frame-
work (Section 7.2), and 3) we evaluate the performance
of the distributed services built using P by deploying and
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Protocols Impl Spec | Abstr- Driver | Total
Components action

2PC 230 90 88 30 438

Chain Repl. 360 220 90 130 800

Multi-Paxos 410 160 140 120 830

Basic Paxos 168 95 20 19 302

Leader Election 89 10 45 24 168

Dispatcher 138 65 48 37 288

Network Layer 75 25 30 21 151

Table 1: P LOC for different protocols.

benchmarking them on a cluster (Section 7.3).

Experimental setup: We perform all systematic test-
ing on an Intel Xeon E5-2440, 2.40GHz, 12 cores
(24 threads), 160GB machine running 64 bit Windows
Server 2008 R2. Zinger’s parallel iterative depth-first
search algorithm efficiently uses multi-core machines. All
experiments that benchmark distributed services built
using P run on A2 VM instances on Windows Azure.
The VMs have a 2-core Intel Xeon E5-2660 2.20GHz Pro-
cessor, 3.5GB RAM, 2 virtual hard disks running 64 bit
Windows Server 2012 R2.

Table 1 shows a four-part breakdown, in source lines
of code, of our P implementations of all the protocols
shown in Figure 3. Dispatcher here refers to front-end
nodes that forward client requests to appropriate nodes
in a replica group.

7.1 Compositional Testing

When testing a protocol in isolation, the P compiler com-
poses it with the appropriate abstractions of other proto-
cols and external libraries it interacts with, as specified
by the programmer. Multiple test drivers for each pro-
tocol test for various corner cases and scenarios. The P
framework automatically tests each component and pro-
duces a counter example if a bug is found. The counter
example is a sequence of global interactions that lead to
an error state.

Table 2 presents the number of bugs caught by our
testing framework. We report only hard-to-find bugs
that take Zinger more than a minute to find and ignore
simple errors like invalid type-cast or variable initializa-
tion which are caught easily (within few seconds). Us-
ing the search prioritization techniques implemented in
Zinger [12], we are able find most of these bugs within
few minutes. This allows developers to go through many
iterations of protocol development and testing, with each
iteration converging on protocol correctness with respect
to a specification and test driver. Without the compo-
sitional approach, Zinger fails to find these bugs in the
allocated time budget of 2 hours.

After fixing all the bugs that could be quickly caught
by the testing framework, we verify each protocol com-
positionally (for a given finite test driver). Table 3
shows the amount of time taken by Zinger to exhaus-



Protocols Unhandled Spec. Violation
Components Event Safety Liveness
2 PC 20 15 4
Chain Repl. 26 10 7
Multi-Paxos 10 22 3
Basic Paxos 6 6 -
Leader Election 9 - -
Dispatcher 10 8 1
Network Layer 2 1 -
Total 83 62 15

Total bugs found = 160

Table 2: Bugs found during the development process

tively search the entire state space for different proto-
cols. Though we exhaustively explore protocols with
only small number of nodes (3 to 7), it still gives enough
confidence about the correctness of the system. With-
out using the compositional approach, the state space
explodes faster and Zinger is unable to finish exploring
the state space in 24 hours and runs out of memory.

7.2 Classification of bugs

The bugs we found during the development process of all
the distributed protocols can be classified into the two
categories:

1. Unhandled event violations: If an event e arrives
in a state n, and there is no transition defined for e, then
the verifier flags an unhandled event violation. There are
certain circumstances under which the programmer may
choose to delay handling of specific events or ignore the
events by dropping them. These need to be specified
explicitly so that they are not flagged by the verifier
as unhandled. In our experience these kinds of bugs
appear either when the programmer forgets to handle a
particular event appropriately in a state or makes a false
assumption about the possible events that other state
machines can send. Bugs of these kind can lead to a
system crash because of an unhandled event.

2. Specification violations: We implement both
safety and liveness specifications of all the protocols as
described in their respective papers [13, 22, 24, 32]. Ta-
ble 4 shows examples of specifications checked for some
of the distributed protocols. In our experience, writing
these protocol level specifications along with the correct
abstractions for compositional testing helps in better un-

Protocols Time for exhaustive state
(total number of nodes) | space exploration (hh :mm)
2PC (5) 5:03
Chain Repl. (7) 4:02
Multi-Paxos (7) 10:39
Basic Paxos (7) 3:48
Leader Election (5) 0:43
Dispatcher (3) 0:20
Network Layer (3) 0:22

Table 3: Time for exhaustive exploration of dis-
tributed protocols.
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Proto. Safety Spec Liveness Spec (for < N failures)
2PC Atomicity Coordinator makes progress
Chain All invariants in [32], | With stable head node, every
Repl. cmd-log consistency cmd is eventually responded to
Multi- All  consensus re- With stable leader, every pro-
Paxos quirements in [23], posal is always eventually learnt
log consistency [31] by learners

Basic All  consensus re- With distinguished proposer, a
Paxos quirements in [23] proposal is eventually chosen

Table 4: Example specifications checked for each
protocol. SMR protocols are configured to be N
fault-tolerant

derstanding of the system. We found severe correctness
bugs in our implementations which were caught by the
safety and liveness monitors (Table 2). Some of these
bugs require subtle interleaving of the failure injector
(multiple failures) which would have been hard to cap-
ture in a simulated testing environment.

7.3 Performance Evaluation

In this section, we evaluate the performance of the code
generated by P for two distributed services: the fault-
tolerant hashtable and fault-tolerant atomic commit.
Specifically, we measure their peak throughput when us-
ing Multi-Paxos and Chain Replication.

Steady state throughput: To measure update
throughput when there are no node failures in the sys-
tem, clients pump in requests in a closed loop; on get-
ting a response for an outstanding request, they go right
back to sending another request. We scale the number
of clients to ensure that services always have requests to
process. Here we report numbers when using 3 clients.

The clients send their request to a dispatcher which
maintains a versioned copy of replica membership. To
make the services fault-tolerant, we use either Multi-
Paxos or Chain Replication as described earlier. For
Multi-Paxos, the dispatcher can send a request to any
replica; replicas then forward requests to the distin-
guished leader. For Chain Replication, updates go the
head of the chain. We configure Multi-Paxos and Chain
Replication to use the HashTable and 2PC participant
learners as appropriate.

Figure 4 shows the peak throughput, measured at the
replica that responds to clients, for one and two fault-
tolerant configurations. Thus, for Multi-Paxos, MP-1FT
and MP-2FT have 3 and 5 replicas respectively. Simi-
larly, for Chain Replication, CR-1FT and CR-2FT have
2 and 3 replicas respectively.

We highlight two observations, consistent with the na-
ture of the protocols. First, MP configurations have
slightly lower throughput than their corresponding CR
configurations, consistent with the rounds of message ex-
changes in these protocols. Second, 2FT configurations
are slower than their corresponding 1FT configurations
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due to more state machines involved in the critical path
of a command being processed.

Throughput during reconfiguration: Figure 5
shows the throughput (responses every 10ms), over a 10
second interval, of a fault-tolerant hashtable using Chain
Replication with 3 replicas. At the 5 seconds mark, a
replica failure causes a stall in update processing. Once
the chain is repaired the throughput shoots back up,
initially processing buffered requests, and quiesces at a
higher rate than before as one lesser replica is in the
critical path of update processing.

8 Related Work

We have discussed related work throughout the paper.
In this section, we pay particular attention to those ef-
forts that are most closely related to the techniques used
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in P. We begin with acknowledging SPIN [1] and many
other model checkers as the inspiration for the search
techniques underlying P, particularly those related to
liveness checking.

The Mace [18, 19] and P [10] programming languages
are closest in spirit to the goals of P. Similar to our
work, both languages are based on the computational
model of communicating state machines and provide a
tool for exploring program executions. The most impor-
tant advance made by our work is scalable compositional
testing enabled by first-class support for abstractions as
model machines. There are also many differences in the
language primitives for writing specifications. Neither
Mace nor P support explicit safety and liveness moni-
tors. In particular, P allows the programmer to test for
violations to any w-regular liveness specification.

MODIST [35] was the first system to provide sup-
port for systematic testing of existing distributed sys-
tems programmed in C/C++. The Demeter [15] system
improves the scalability of MODIST by exploiting the
structure of a large distributed system as a collection of
protocols. While exploring the executions of the entire
system, Demeter attempts to infer interfaces for each
component protocol. In contrast, P allows the program-
mer to specify these interfaces as model machines and
the compiler automatically replaces the implementation
with the abstraction during systematic testing. In our
experience, specifying the interfaces for protocols in a
large system has the important benefit of making ex-
plicit the assumptions protocols make about each other;
in our approach, these assumptions live in the code as
model machines and act as formal documentation. To
get a better understanding of the tradeoffs, an inter-
esting avenue for future work would be to compare the
interfaces inferred automatically by Demeter with those
specified by the programmer.

9 Conclusion

P is a new approach that makes it easier to build, specify,
and test distributed systems. We used P to design and
implement two distributed services that combine ten dif-
ferent protocols. Our experience indicates that the use
of P significantly improved our productivity in arriving
at a correct design.
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