
Surface Web Semantics for Structured Natural Language
Processing

Mohit Bansal

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-20
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-20.html

May 1, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Surface Web Semantics for Structured Natural Language Processing

by

Mohit Bansal

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dan Klein, Chair
Professor Marti Hearst

Professor Line Mikkelsen
Professor Nelson Morgan

Fall 2013

Surface Web Semantics for Structured Natural Language Processing

Copyright 2013
by

Mohit Bansal

1

Abstract

Surface Web Semantics for Structured Natural Language Processing

by

Mohit Bansal

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

Research in natural language processing (NLP) is aimed at making machines automatically un-
derstand natural language. Incorporating world knowledge semantics is becoming an increasingly
crucial requirement for resolving deep, complex decisions in most NLP tasks today, e.g., ques-
tion answering, syntactic parsing, coreference resolution, and relation extraction. Structured NLP
corpora such as treebanks are too small to encode much of this knowledge, so instead, we turn to
the vast Web, and access its information via a diverse collection of Web n-gram counts (of size
4 billion, and ∼500x larger than Wikipedia). Shallow cues from this large n-gram dataset, when
harnessed in a structured learning setting, help reveal deep semantics.

In this thesis, we address various important facets of the semantics problem – from indi-
rect semantics for sentence-level syntactic ambiguities, and semantics as specific knowledge for
discourse-level coreference ambiguities, to structured acquisition of semantic taxonomies from
text, and fine-grained semantics such as intensity order. These facets represent structured NLP
tasks which have a combinatorially large decision space. Hence, in general, we adopt a struc-
tured learning approach, incorporating surface Web-based semantic cues as intuitive features on
the full space of decisions. The feature weights are then learned automatically based on a discrim-
inative training approach. Empirically, for each facet, we see significant improvements over the
corresponding state-of-the-art.

In the first part of this thesis, we show how Web-based features can be powerful cues to re-
solving complex syntactic ambiguities. We develop surface n-gram features over the full range of
syntactic attachments, encoding both lexical affinities as well as paraphrase-based cues to syntactic
structure. These features, when encoded into full-scale, discriminative dependency and constituent
parsers, correct a range of error types.

In the next part, we address semantic ambiguities in discourse-level coreference resolution,
again using Web n-gram features that capture a range of world knowledge cues to hypernymy, se-
mantic compatibility, and semantic context, as well as general lexical co-occurrence. When added
to a state-of-the-art coreference baseline, these Web features provide significant improvements on
multiple datasets and metrics.

2

In the third part, we acquire the semantics itself via structured learning of hypernymy tax-
onomies. We adopt a probabilistic graphical model formulation which incorporates heterogeneous
relational evidence about both hypernymy and siblinghood, captured by surface features based on
patterns and statistics from Web n-grams and Wikipedia abstracts. Inference is based on loopy be-
lief propagation and spanning tree algorithms. The system is discriminatively trained on WordNet
sub-structures using adaptive subgradient stochastic optimization. On the task of reproducing sub-
hierarchies of WordNet, this approach achieves substantial error reductions over previous work.

Finally, we discuss a fine-grained semantic facet – intensity order, where the relative ranks of
near-synonyms such as good, great, and excellent are predicted using Web statistics of phrases like
good but not excellent. We employ linear programming to jointly infer the positions on a single
scale, such that individual decisions benefit from global information. When ranking English near-
synonymous adjectives, this global approach gets substantial improvements over previous work on
both pairwise and rank correlation metrics.

i

To my family, for always being there for me and believing in me.

ii

Contents

Contents ii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Current State of NLP . 1

1.2 Incorporating World Knowledge . 2

1.3 This Thesis: Surface Web Semantics in Structured Learning 3

1.4 Outline and Contributions . 3

2 Semantics for Syntactic Ambiguities 5

2.1 Web Features . 8

2.1.1 Affinity Features . 8

2.1.2 Paraphrase Features . 9

2.2 Efficiently Working with Web n-Grams . 10

2.3 Experiments . 11

2.3.1 Dependency Parsing . 12

2.3.2 Constituent Parsing . 13

iii

2.4 Analysis . 14

3 Semantics for Coreference Ambiguities 20

3.1 Baseline System . 21

3.1.1 Reconcile . 21

3.1.2 Decision Tree Classifier . 22

3.2 Web Features . 22

3.2.1 General Co-occurrence . 23

3.2.2 Hypernymy Co-occurrence . 24

3.2.3 Entity-based Context Compatibility . 25

3.2.4 Distributional Clustering . 25

3.2.5 Pronoun Context Compatibility . 26

3.3 Experiments . 27

3.3.1 Data . 27

3.3.2 Evaluation Metrics . 28

3.3.3 Results . 28

3.4 Analysis . 30

4 Acquiring Semantics as Taxonomies 32

4.1 Structured Taxonomy Induction . 34

4.1.1 Factor Types . 34

4.1.2 Inference via Belief Propagation . 36

4.1.2.1 Loopy Belief Propagation . 38

4.1.3 Training . 38

4.1.4 Decoding . 39

4.1.4.1 Relationship to Dependency Parsing 39

iv

4.2 Features . 40

4.2.1 Surface Features . 41

4.2.2 Semantic Features . 41

4.2.2.1 Web n-gram Features . 41

4.2.2.2 Wikipedia Abstract Features . 42

4.2.3 Sibling Features . 42

4.3 Related Work . 43

4.4 Experiments . 44

4.4.1 Data and Experimental Regime . 44

4.4.2 Evaluation Metrics . 45

4.4.3 Results . 46

4.5 Analysis . 48

5 Deeper Semantics via Intensity Ordering 50

5.1 Method . 51

5.1.1 Web-based Scoring Model . 51

5.1.1.1 Intensity Scales . 51

5.1.1.2 Intensity Patterns . 51

5.1.1.3 Pairwise Scores . 53

5.1.2 Global Ordering with an MILP . 54

5.1.2.1 Objective and Constraints . 54

5.1.2.2 Discussion . 56

5.2 Related Work . 57

5.3 Experiments . 58

5.3.1 Data . 58

5.3.2 Metrics . 60

v

5.3.2.1 Pairwise Accuracy . 60

5.3.2.2 Ranking Correlation Coefficients 61

5.3.2.3 Inter-annotator agreement . 62

5.3.3 Results . 62

5.3.4 Analysis . 64

5.4 Extension to Multilingual Ordering . 66

5.4.1 Cross-lingual Pattern Projection . 67

5.4.2 Cross-lingual MILP . 67

6 Conclusions 69

Bibliography 71

vi

List of Figures

2.1 Example prepositional phrase (PP) attachment error. 6

2.2 Different kinds of syntactic attachment errors. 6

2.3 Features factored over head-argument pairs or dependency attachments. 7

2.4 Efficient mining of Web n-gram statistics via a trie-based batch approach. 10

4.1 An excerpt of WordNet’s vertebrates taxonomy. 33

4.2 Factor graph representation of our taxonomy induction model. 35

4.3 A mammal taxonomy subtree and its equivalent dependency tree. 40

4.4 Excerpt from the predicted butterfly taxonomy tree. 49

4.5 Excerpt from the predicted bottle taxonomy tree . 49

5.1 The input weak-strong data may contain cycles, so the final ranking chooses which

input scores to honor. 55

5.2 Knowing which terms are synonyms gives additional equivalence information to the

MILP. 56

5.3 The histogram of the adjective cluster sizes after partitioning. 59

5.4 The histogram of adjective cluster sizes in the test set. 60

vii

List of Tables

2.1 Results for dependency parsing. 12

2.2 Oracle F1-scores for k-best lists of Berkeley parser. 13

2.3 Results for constituent reranking. 14

2.4 Error reduction for attachments of various argument types. 15

2.5 Error reduction for various head types for a given argument type. 15

2.6 The highest-weight affinity features for constituent reranking. 16

2.7 The highest-weight mid-word paraphrase features for constituent reranking (of type

verb→ preposition). 17

2.8 The highest-weight before-word paraphrase features for constituent reranking (of type

noun→ preposition). 18

2.9 The highest-weight conjunction mid-word paraphrase features for constituent reranking. 19

2.10 The high-weight, high-count mid-word and before-word paraphrase features for con-

stituent reranking. 19

3.1 Dataset characteristics for coreference resolution. 27

3.2 Incremental development results for coreference resolution with Web features. 28

3.3 Primary test results and comparison for coreference resolution. 31

4.1 Main results on the general setup for taxonomy induction. 46

viii

4.2 Main results on the comparison setup for taxonomy induction. 47

4.3 Highest-weight hypernymy and siblinghood features for taxonomy induction. 48

5.1 Ranking patterns used for computing intensity order Web scores. 52

5.2 Examples of intensity-based phrases from the Web-scale corpus. 52

5.3 The main test results on global intensity ordering for adjectives. 63

5.4 The confusion matrix for the Web baseline output. 64

5.5 The confusion matrix for the MILP output. 64

5.6 Examples (of bad, average and good accuracy) of the MILP predictions. 65

5.7 Examples of German intensity patterns projected directly from the English patterns. . . 66

ix

Acknowledgments

During my PhD and the process of this thesis, I spent five amazing years in Berkeley and I
would like to thank the various folks who made it an enriching and enjoyable journey for me. The
list to be thanked is huge, and cannot possibly be covered here completely, but I will try to mention
as many people as I can.

I will start with my adviser Dan Klein, the person who shaped me as a researcher and made
this thesis possible. His combined expertise in the fields of artificial intelligence, linguistics, and
algorithms makes him one of the smartest researchers in the field of natural language processing,
and I have been incredibly fortunate to be advised by him. The passion with which he conducts
research and inspires his students to do the same made my gradate school experience a fulfilling
one. He taught me how to effectively and efficiently formulate, investigate, and evaluate NLP
problems, quickly discard an idea if needed, and think about high-impact and long-term research.
I also benefitted from his extraordinarily high standards on writing papers and giving presenta-
tions. Moreover, Dan is an exceptional teacher, and his classes and students are one of his biggest
priorities. I was lucky enough to experience and cultivate the joy of teaching when I was a grad-
uate student instructor for two of his classes. However, I will most admiringly remember Dan for
being an all-round mentor – he was always available for healthily discussing, sharing his views,
and giving advice on any topic that might concern me from any phase of life.

Having Dan as a mentor had the added bonus of getting to be a part of an awesome research
group – the Berkeley NLP group. I learned a lot from the outstanding colleagues in this group, via
research collaborations, lively discussions on every possible agenda under the sun, and various fun
outings. Taylor Berg-Kirkpatrick, John Blitzer, Alexandre Bouchard-Côté, David Burkett, John
DeNero, Greg Durrett, Dave Golland, Aria Haghighi, David Hall, Jonathan Kummerfeld, Percy
Liang, Adam Pauls, and Slav Petrov – I would like to earnestly thank each and every one of them
for the positive impact on my graduate life.

I also had the privilege of collaborating with some brilliant external researchers – I did my first
industrial research internship at Microsoft Research with Chris Quirk and Bob Moore, and it was
a rewarding experience. My second internship experience at Google Research, with John DeNero
(which fortunately gave me a chance to continue working with him after he graduated) and Dekang
Lin, was also fabulous. The fellow interns and other researchers at these places added much joy
to the great summers. I also enjoyed collaborating with Gerard de Melo at ICSI Berkeley. Marti
Hearst, Line Mikkelsen, and Nelson Morgan deserve a special acknowledgment for serving on
my qualifier and dissertation committees, and providing valuable advice and feedback at various
stages of my graduate career.

My friends outside work have been a constant source of support and refreshment in my graduate
life – Abhijeet, Mobin, Kavitha, Anuj, Debanjan, Aditya, Brinda, Sharanya, Prateek, and the list
goes on. Berkeley (and the surrounding San Francisco region), I believe, is one of the best places
to pursue an arduous task such as a PhD. This city has played a significant role in this dissertation
by keeping me stimulated via a ton of fun activities, delectable cuisines, and scenic places to visit,
and I am grateful for this.

x

Last but definitely one of the most, I would like to acknowledge a deep gratitude towards my
family. My parents and my sister have always had unwavering faith in me and provided endless
motivation and support throughout this process. My wife, Shikha, has been the most patient,
loving, enthusiastic, and supportive companion I could ever hope for on this journey, and she saw
me through the thick and thin of the entire process. I cannot imagine having successfully (and
more importantly, happily) completed my PhD without her by my side.

Again, I would like to wholeheartedly thank every person who made these five years such a
worthwhile experience for me. I will always cherish your support.

1

Chapter 1

Introduction

1.1 Current State of NLP
Research in natural language processing (NLP) is aimed at making machines understand and gen-
erate natural language. There has been a lot of progress in this field. One of the latest successes is
the IBM Watson question answering system (Ferrucci et al., 2010), that recently won the game of
‘Jeopardy’ against the best human players. Search engines today also use similar NLP techniques
to return the best results for a query. There have also been great advances in the tasks of machine
translation (automatically converting text in one language to another) and speech recognition (au-
tomatically converting human speech to text), both of which have become accurate enough for day
to day usage on our mobile phones.

We have come a long way as a field, but NLP is still not accurate enough for us to have open-
ended, fluent conversations with machines. One of the biggest challenges is resolving the many
deep and complex semantic ambiguities that are an inherent property of natural language, and
prevalent in most standard NLP tasks such as question answering, syntactic parsing, coreference
resolution, relation extraction, textual entailment, etc. For example, the phrase spent time with
family is ambiguous and has two very different syntactic analyses (or bracketings), and hence, two
very different meanings. Similarly, consider the following document:

Obama met Jobs to discuss the economy, technology, and education. After the
meeting, he signed a bill to introduce [...]

Here, we need to automatically predict that the correct referent of the pronoun he is Obama and
not Jobs, which in turn would need the world knowledge that presidents sign bills, and not CEOs.

Predicting the semantic relationship between the entities themselves, e.g., rat is a rodent, also
requires resolving various semantic ambiguities. Automatic detection and generation of non-literal
language constructions such as metaphors and idioms present us with even bigger challenges. In-
corporating missing contextual world knowledge can help resolve many such intricate NLP deci-
sions and this is the main goal of this thesis.

CHAPTER 1. INTRODUCTION 2

1.2 Incorporating World Knowledge
World knowledge can be a deep and subtle thing, but, in practice, shallow surface cues can go a
long way towards robustly resolving various complex semantic ambiguities – if you have enough
data and if you mine it well. Structured NLP corpora such as parsing treebanks are too small to
encode much of this knowledge, so instead, we turn to the vast Web which contains large amounts
of information on almost every topic in the world.

Previous work has effectively demonstrated that counts from large corpora and the Web can
help correct errors in a variety of NLP problems. One of the earliest uses of such large corpus
counts was for the problem of prepositional phrase (PP) attachment disambiguation (Hindle and
Rooth, 1993; Volk, 2001). They formulated the problem as a binary decision task with the config-
uration where a verb takes a noun complement that is followed by a prepositional-phrase (PP), i.e.,
verb noun1 preposition noun2. The binary decision to make is whether the PP preposition noun2

attaches to verb or noun1. For this, they compared surface co-occurrence counts and probabilities
of the competing tuples. For example, to resolve the ambiguity in the tuple spent time with family,
we compare P (with|spent) versus P (with|time) based on counts in a large corpus, and the former
is higher than the latter, which signals that the preposition with attaches to the verb spent. While
this ‘affinity’ is only a surface correlation, (Volk, 2001) showed that comparing such counts can
often correctly resolve tricky PP attachments.

This basic idea led to a great deal of successful work on disambiguating binary PP attach-
ments. Nakov and Hearst (2005b) showed that Web-based paraphrase and context cues can fur-
ther improve PP attachment accuracy in the tuples described above. For example, the existence
of reworded phrases like spent it with on the Web further add evidence of a verbal attachment for
the preposition with in the previous example. Other work has exploited Web counts for similar
isolated syntactic ambiguities such as those in noun phrase (NP) coordination (Nakov and Hearst,
2005b) and noun compound bracketing (Nakov and Hearst, 2005a; Pitler et al., 2010). In NP co-
ordination, previous work considered configurations of the form noun1 and/or noun2 head-noun,
e.g., president and chief executive, where the ambiguity is between the two bracketing’s ((president
and chief) executive) versus (president and (chief executive)). In noun compound bracketing, a se-
quence of nouns is considered and the task is to disambiguate the bracketing options, for example,
‘liver cell antibody’ can be bracketed as ((liver cell) antibody) or (liver (cell antibody)).

In addition to the syntactic ambiguities above, counts from large corpora have also been suc-
cessfully used for various other tasks such as machine translation candidate selection, spelling
correction, adjective ordering (Lapata and Keller, 2004; Bergsma et al., 2010), multiple problems
and subtasks in coreference resolution, e.g., bridging anaphora, other anaphora, definite NP refer-
ence, pronoun resolution (Poesio et al., 2004; Markert and Nissim, 2005; Yang et al., 2005; Daumé
III and Marcu, 2005; Bergsma and Lin, 2006; Yang and Su, 2007; Kobdani et al., 2011; Rahman
and Ng, 2011), relation extraction and taxonomy induction (Lin and Pantel, 2002; Pasca, 2004;
Davidov and Rappoport, 2006; Pantel and Pennacchiotti, 2006; Snow et al., 2006; Yamada et al.,
2009; Ritter et al., 2009; Hovy et al., 2009; Kozareva and Hovy, 2010; Navigli et al., 2011), etc.1

1Details of previous work are discussed in the corresponding subsequent chapters.

CHAPTER 1. INTRODUCTION 3

As an example of using surface Web counts for pronoun resolution, the count of Obama signed a
bill being higher than that of Jobs signed a bill indicates that the pronoun he in our example above
refers to Obama.

1.3 This Thesis: Surface Web Semantics in Structured
Learning

Most previous work has either used hand-designed templates for extracting Web statistics, or ap-
plied the Web statistics to isolated subtasks or tasks with a relatively small and simple decision
space (e.g., PP attachment, NP coordination). The primary contribution and direction of this the-
sis is to automatically learn all the useful Web-based surface cues, and to use them to resolve
complex, deep decisions in end-to-end, full-scale, structured NLP tasks such as syntactic parsing
(dependency and constituent), coreference resolution and taxonomy induction. Such tasks involve
a combinatorial number of decisions. Hence, in general, we adopt a structured learning approach
which allows us to directly work with the full combinatorial space appropriate for the particular
problem. The surface Web-based information is incorporated in the learning paradigm as intu-
itive features on the full space of decisions, and their weights are learned automatically based on a
discriminative training approach.

Moreover, in order to harness the information on the large Web without presupposing a deep
understanding of all Web text, we use a diverse collection of Web n-gram counts (of size 4 billion,
and ∼500x larger than Wikipedia). A majority of previous approaches have used search engines
to collect counts or the number of page hits (Lapata and Keller, 2004; Nakov and Hearst, 2005b),
but these will lead to unstable and irreproducible statistics and results (Kilgarriff, 2007)). Other
approaches (e.g., Nakov and Hearst (2008)) adopt post-processing of the top result snippets of a
search engine. However, this method also has multiple issues such as daily query limits, speed,
quality of post-processed search results, etc. This is why we use an offline, static Web corpus
such as the Google n-grams dataset (Brants and Franz, 2006) – which contains English n-grams
(n = 1 to 5) and their observed frequency counts, generated from nearly 1 trillion word tokens
and 95 billion sentences. This corpus allows us to efficiently access huge amounts of Web-derived
information in a compressed way, though in the process it limits us to local, short-distance queries.
For this reason, we also use other resources, e.g., Wikipedia abstracts, where essential.

Empirically, we find that surface cues from the large Web n-gram dataset, when harnessed
as features in a structured learning setting, help reveal deep semantics and achieve substantial
improvements over the previous state-of-the-art.

1.4 Outline and Contributions
The outline of this thesis is as follows. In Chapter 2, we resolve sentence-level syntactic ambigu-
ities via Web n-gram features, based on Bansal and Klein (2011). In Chapter 3, we develop Web
n-gram features to address document-level coreference resolution ambiguities, based on Bansal

CHAPTER 1. INTRODUCTION 4

and Klein (2012). Chapter 4 describes structured taxonomy induction with Web-based hypernymy
and siblinghood features, based on Bansal et al. (2013). Finally, in Chapter 5, we discuss a fine-
grained semantic facet – intensity order, based on De Melo and Bansal (2013).

The specific contributions of this thesis are:

• Web n-gram features (over the full range of syntactic attachments) that exploit affinity and
paraphrase cues to address syntactic ambiguities.

• Integration of these features into full-scale, state-of-the-art constituent and dependency parsers
via discriminative learning.

• Web n-gram features that exploit co-occurrence, hypernymy, compatibility, and context cues
to address discourse-level coreference ambiguities.

• Integration of these features into a full-scale, state-of-the-art coreference resolution system
via decision tree classification.

• Acquiring hypernymy relations (as a taxonomy) via a probabilistic graphical model that
incorporates heterogeneous relational evidence about hypernymy and siblinghood.

• Web n-gram and Wikipedia features, based on patterns and their statistics, to capture the
hypernymy and siblinghood evidence.

• Loopy belief propagation and directed spanning tree algorithms for efficient inference over
taxonomy structures, and adaptive subgradient stochastic optimization for discriminative
learning.

• Web n-gram intensity patterns (e.g., good but not great) and their statistics to compute pair-
wise intensity ordering scores for near-synonyms such as good, great, and excellent.

• Incorporating these pairwise scores into a mixed integer linear program to globally infer the
collective ranks of near-synonyms on a continuous scale.

• Thorough empirical investigation via all the appropriate datasets, metrics, baselines and pre-
vious systems for each semantic facet.

• Substantial empirical improvements over the corresponding state-of-the-art previous work
for each semantic facet.

• Analysis of the errors resolved, the remaining errors, the features assigned the highest weights
by the learning mechanism, etc. for each semantic facet.

• Efficient extraction of all types of statistics from the large Web n-grams corpus using a trie-
based batch approach for each semantic facet.

5

Chapter 2

Semantics for Syntactic Ambiguities

In this chapter, we focus on developing Web-based surface cues for resolving complex, sentence-
level syntactic ambiguities.1 Current state-of-the art syntactic parsers have achieved accuracies in
the range of 90% F1 on the standard Penn Treebank (Marcus et al., 1993), but a range of errors
remain. From a dependency viewpoint, structural errors can be cast as incorrect attachments, even
for constituent (phrase-structure) parsers. For example, in the Berkeley parser (Petrov et al., 2006),
about 20% of the errors are prepositional phrase (PP) attachment errors, where a preposition-
headed (IN) phrase was assigned an incorrect parent in the implied dependency tree. Figure 2.1
illustrates an example of the classic (canonical) PP attachment ambiguities. Here, the Berkeley
parser (solid blue edges) incorrectly attaches from debt to the noun phrase $ 30 billion whereas
the correct attachment (dashed gold edges) is to the verb raising. However, there are a range of
error types, as shown in Figure 2.2. Here, (a) is a non-canonical PP attachment ambiguity where
by yesterday afternoon should attach to had already, (b) is an NP-internal ambiguity where half a
should attach to dozen and not to newspapers, and (c) is an adverb attachment ambiguity, where
just should modify fine and not the verb ’s.

Resolving many of these errors requires information that is simply not present in the approx-
imately 1M words on which the parser was trained. One way to access more information is to
exploit surface counts from large corpora like the Web (Volk, 2001; Lapata and Keller, 2004). For
example, the phrase raising from is much more frequent on the Web than $ x billion from. While
this co-occurrence count or ‘affinity’ is only a surface correlation, Volk (2001) showed that com-
paring such counts can often correctly resolve tricky PP attachments. This basic idea has led to
a good deal of successful work on disambiguating isolated, binary PP attachments. For example,
Nakov and Hearst (2005b) showed that looking for paraphrase counts, i.e., counts of special con-
text cues, can further improve PP resolution. In this case, the existence of reworded phrases like
raising it from on the Web also imply a verbal attachment. Still other work has exploited Web
counts for other isolated ambiguities, such as NP coordination (Nakov and Hearst, 2005b) and
noun-sequence bracketing (Nakov and Hearst, 2005a; Pitler et al., 2010). For example, in (b), half
dozen is more frequent than half newspapers.

1The work described in this chapter was originally presented at ACL in 2011 (Bansal and Klein, 2011).

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 6

!"#$

VP

NP

NP !

"!#$!%&''&()!

PP

* !

Figure 2.1: A prepositional phrase (PP) attachment error in the parse output of the Berkeley parser
(on Penn Treebank). Guess edges are in solid blue, gold edges are in dashed gold and edges
common in guess and gold parses are in black.

S

NP

NP PP

! "#!#$%&$'()#!)*&$'+,,+!

VP

!
!"#$

NP

!

"#$

)!

!"#$

(,-$+!

!"#$

+$.%/)/$'%!

QP
%&'$

VP

!

!"#$%

(&$

01%&!

!"&$%

))$

*2+$!

A DJP

(a) (b) (c)

Figure 2.2: Different kinds of attachment errors in the parse output of the Berkeley parser (on
Penn Treebank). Guess edges are in solid blue, gold edges are in dashed gold and edges common
in guess and gold parses are in black.

In our work, we show how to apply these ideas to all attachments in full-scale parsing. Doing
so requires three main issues to be addressed. First, we show how features can be generated
for arbitrary head-argument configurations. Affinity features are relatively straightforward, but
paraphrase features, which have been hand-developed in the past, are more complex. Second,
we integrate our features into full-scale parsing systems. For dependency parsing, we augment
the features in the second-order parser of McDonald and Pereira (2006). For constituent parsing,
we rerank the output of the Berkeley parser (Petrov et al., 2006). Third, past systems have usually
gotten their counts from Web search APIs, which does not scale to quadratically-many attachments
in each sentence. Instead, we consider how to efficiently mine a large, static Web-scale corpus –

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 7

raising $ from debt

raising from $ from

 a

Figure 2.3: Features factored over head-argument pairs or dependency attachments.

the Google n-grams corpus (Brants and Franz, 2006).
Given the success of Web counts for isolated ambiguities, there is relatively little previous re-

search in this direction. The most similar work is Pitler et al. (2010), which use Web-scale n-gram
counts for multi-way noun bracketing decisions, though that work considers only sequences of
nouns and uses only affinity-based Web features. Yates et al. (2006) use Web counts to filter out
certain ‘semantically bad’ parses from extraction candidate sets but are not concerned with distin-
guishing amongst top parses. In an important contrast, Koo et al. (2008) smooth the sparseness
of lexical features in a discriminative dependency parser by using cluster-based word-senses as
intermediate abstractions in addition to POS tags (also see Finkel et al. (2008)). Their work also
gives a way to tap into corpora beyond the training data, through cluster membership rather than
explicit corpus counts and paraphrases.

This work uses a large Web-scale corpus (Google n-grams) to compute features for the full
parsing task. To show end-to-end effectiveness, we incorporate our features into state-of-the-art
dependency and constituent parsers. For the dependency case, we can integrate them into the
dynamic program of a base parser; we use the discriminatively-trained MST (maximum spanning
tree) dependency parser (McDonald et al., 2005; McDonald and Pereira, 2006). Our first-order
Web-features give 7.0% relative error reduction over the second-order dependency baseline of
McDonald and Pereira (2006). For constituent parsing, we use a reranking framework (Charniak
and Johnson, 2005; Collins and Koo, 2005; Collins, 2000) and show 9.2% relative error reduction
over the Berkeley parser baseline. In the same framework, we also achieve 3.4% error reduction
over the non-local syntactic features used in Huang (2008). Our Web-scale features reduce errors
for a range of attachment types. On analyzing the influential features, we find that we not only
reproduce features suggested in previous work but also discover a range of new ones.

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 8

2.1 Web Features
Structural errors in the output of state-of-the-art parsers, constituent or dependency, can be viewed
as attachment errors, examples of which are Figure 2.1 and Figure 2.2.2 One way to address
attachment errors is through features which factor over head-argument pairs, as is standard in the
dependency parsing literature (see Figure 2.3). Here, we discuss which Web-count based features
φ(h, a) should fire (i.e., get activated) over a given head-argument pair (we consider the words h
and a to be indexed, and so features can be sensitive to their order and distance, as is also standard).

2.1.1 Affinity Features
Affinity statistics, such as lexical co-occurrence counts from large corpora, have been used previ-
ously for resolving individual attachments at least as far back as Lauer (1995) for noun-compound
bracketing, and later for PP attachment (Volk, 2001; Lapata and Keller, 2004) and coordination
ambiguity (Nakov and Hearst, 2005b). The approach of Lauer (1995), for example, would be to
take an ambiguous noun sequence like hydrogen ion exchange and compare the various counts (or
associated conditional probabilities) of n-grams like hydrogen ion and hydrogen exchange. The
attachment with the greater score is chosen. More recently, Pitler et al. (2010) use Web-scale
n-grams to compute similar association statistics for longer sequences of nouns.

Our affinity features closely follow this basic idea of association statistics. However, because a
real parser will not have access to gold-standard knowledge of the competing attachment sites (see
Atterer and Schutze (2007)’s criticism of previous work), we must instead compute features for
all possible head-argument pairs from our Web corpus. Moreover, when there are only two com-
peting attachment options, one can do things like directly compare two count-based heuristics and
choose the larger. Integration into a parser requires features to be functions of single attachments,
not pairwise comparisons between alternatives. A learning algorithm can then assign weights to
features so that they compare appropriately across parses.

When designing the affinity features, one can use varying specificity. The basic feature is the
core adjacency count feature ADJ, which fires for all (h, a) pairs. What is specific to a particular
(h, a) is the value of the feature, not its identity. For example, in a naive approach, the value of
the ADJ feature might be the count of the query issued to the Web corpus – the 2-gram q = ha
or q = ah depending on the order of h and a in the sentence. However, it turns out that there
are several problems with this approach. First, rather than a single all-purpose feature like ADJ,
the utility of such query counts will vary according to aspects like the parts-of-speech of h and a
(because a high adjacency count is not equally informative for all kinds of attachments). Hence,
we found that it is better to use more refined affinity features that are specific to each pair of
POS tags, i.e. ADJ ∧ POS(h) ∧ POS(a). The values of these POS-specific features, however, are
still derived from the same queries as before. Second, using real-valued features did not perform
as accurately as first taking the log-value and binning the query-counts3 and then firing indicator

2For constituent parsers, there can be minor tree variations which can result in the same set of induced dependen-
cies, but these are rare in comparison.

3For binning, we placed the log-counts into size-5 bins: b = floor(logr(count)/5) ∗ 5.

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 9

features ADJ ∧ POS(h) ∧ POS(a) ∧ b for values of b defined by the query count. Finally, we also
conjoin to the preceding features the order of the words h and a as they occur in the sentence,
and the (binned) distance between them. These highest specificity features are the final features
used in our experiments. Also, for these distance-marked features, wildcards (?) are used in the
query q = h ? a, where the number of wildcards allowed in the query is proportional to the binned
distance between h and a in the sentence. We also include unigram variants of the above features,
which are sensitive to only one of the head or argument. Moreover, we add cumulative variants of
all the features used, where indicators are fired for all count bins b′ up to query count bin b.

2.1.2 Paraphrase Features
In addition to measuring counts of the words present in the sentence, there exist clever ways in
which paraphrases and other accidental indicators (e.g., surface-level markers such as capitaliza-
tion and punctuation) can help resolve specific ambiguities, some of which are discussed in Nakov
and Hearst (2005a), Nakov and Hearst (2005b). For example, finding attestations of eat : spaghetti
with sauce suggests a nominal attachment in Jean ate spaghetti with sauce, because separation by
a punctuation cue (colon) suggests that spaghetti with sauce is a constituent to be bracketed, which
in turn means that with modifies spaghetti. As another example, one clue that the example in Fig-
ure 2.1 is a verbal attachment is that the proform paraphrase raising it from is commonly attested.
This is a clue because unlike common nouns, pronouns cannot take prepositional dependents and
hence, the preposition from must modify the verb raising. Similarly, the attestation of be noun
preposition suggests nominal attachment.

These paraphrase features hint at the correct attachment decision by looking for Web n-grams
with special contexts that reveal syntax superficially. Again, while effective in their isolated dis-
ambiguation tasks, past work has been limited by both the range of attachments considered and the
need to intuit these special contexts. For instance, frequency of the pattern The noun preposition
suggests noun attachment and of the pattern verb adverb preposition suggests verb attachment for
the preposition in the phrase verb noun preposition, but these features were not in the manually
brainstormed list.

In this work, we automatically generate a large number of paraphrase-style features for arbi-
trary attachment ambiguities. To induce our list of features, we first mine useful context words. We
take each (correct) training dependency relation (h, a) and consider Web n-grams of the form cha,
hca, and hac. Aggregating over all h and a (of a given POS pair), we determine which context
words c are most frequent in each position. For example, for h = raising and a = from (see Fig-
ure 2.1), we look at Web n-grams of the form raising c from and see that one of the most frequent
values of c on the Web turns out to be the word it.

Once we have collected context words (for each position p in {BEFORE, MIDDLE, AFTER}),
we turn each context word c into a collection of features of the form PARA ∧ POS(h) ∧ POS(a) ∧ c
∧ p ∧ dir, where dir is the linear order of the attachment in the sentence. Note that h and a are head
and argument words and so actually occur in the sentence, but c is a context word that generally
does not. For such features, the queries that determine their values are then of the form cha, hca,
and so on. Continuing the previous example, if the test set has a possible attachment of two words

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 10

!

!

Web N-grams Query Count-Trie

counts

!

!

!

!

!

"#
$%

!

 hash

 hash

Figure 2.4: Efficient mining of Web n-gram statistics via a trie-based batch approach.

like h = lowering and a = with, we will fire a feature PARA ∧ VBG ∧ IN ∧ it ∧ MIDDLE ∧ →
with value (indicator bins) set according to the results of the query lowering it with. The idea is that
if frequent occurrences of raising it from indicated a correct attachment between raising and from,
frequent occurrences of lowering it with will indicate the correctness of an attachment between
lowering and with. Finally, to handle the cases where no induced context word is helpful, we also
construct abstracted versions of these paraphrase features where the context words c are collapsed
to their parts-of-speech POS(c), obtained using a unigram-tagger trained on the parser training set.
As discussed in Section 2.4, the top features learned by our learning algorithm duplicate the hand-
crafted configurations used in previous work (Nakov and Hearst, 2005b) but also add numerous
others, and, of course, apply to many more attachment types.

2.2 Efficiently Working with Web n-Grams
Previous approaches have generally used search engines to collect count statistics (Lapata and
Keller, 2004; Nakov and Hearst, 2005b; Nakov and Hearst, 2008). Lapata and Keller (2004) uses
the number of page hits as the Web-count of the queried n-gram (which is problematic according
to Kilgarriff (2007)). Nakov and Hearst (2008) post-processes the first 1000 result snippets. One
challenge with this approach is that an external search API is now embedded into the parser, raising
issues of both speed and daily query limits, especially if all possible attachments trigger queries.
Such methods also create a dependence on the quality and post-processing of the search results,
limitations of the query process (for instance, search engines can ignore punctuation (Nakov and
Hearst, 2005b)).

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 11

Rather than working through a search API (or scraper), we use an offline Web corpus – the
Google n-gram corpus (Brants and Franz, 2006) – which contains English n-grams (n = 1 to 5)
and their observed frequency counts, generated from nearly 1 trillion word tokens and 95 billion
sentences. This corpus allows us to efficiently access huge amounts of Web-derived information
in a compressed way, though in the process it limits us to local queries. In particular, we only use
counts of n-grams of the form x ? y where the gap length is ≤ 3.

Our system requires the counts from a large collection of these n-gram queries (around 4.5
million). The most basic queries are counts of head-argument pairs in contiguous h a and gapped
h ? a configurations.4 Here, we describe how we process queries of the form (q1, q2) with some
number of wildcards in between. We first collect all such queries over all trees in preprocessing
(so a new test set requires a new query-extraction phase). Next, we exploit a simple but efficient
trie-based hashing algorithm to efficiently answer all of them in one pass over the n-grams corpus.

Consider Figure 2.4, which illustrates the data structure which holds our queries. We first create
a trie of the queries in the form of a nested hashmap. The key of the outer hashmap is the first word
q1 of the query. The entry for q1 points to an inner hashmap whose key is the final word q2 of the
query bigram. The values of the inner map is an array of 4 counts, to accumulate each of (q1q2),
(q1 ?q2), (q1 ??q2), and (q1 ???q2), respectively. We use k-grams to collect counts of (q1...q2) with
gap length = k − 2, i.e. 2-grams to get count(q1q2), 3-grams to get count(q1 ? q2) and so on. With
this representation of our collection of queries, we go through the Web n-grams (n = 2 to 5) one
by one. For an n-gram w1...wn, if the first n-gram word w1 doesn’t occur in the outer hashmap,
we move on. If it does match (say q̄1 = w1), then we look into the inner map for q̄1 and check for
the final word wn. If we have a match, we increment the appropriate query’s result value.

In similar ways, we also mine the most frequent words that occur before, in between and after
the head and argument query pairs. For example, to collect mid words, we go through the 3-grams
w1w2w3; if w1 matches q̄1 in the outer hashmap and w3 occurs in the inner hashmap for q̄1, then
we store w2 and the count of the 3-gram. After the sweep, we sort the context words in decreasing
order of count. We also collect unigram counts of the head and argument words by sweeping over
the unigrams once.

In this way, our work is linear in the size of the n-gram corpus, but essentially constant in the
number of queries. Of course, if the number of queries is expected to be small, such as for a one-off
parse of a single sentence, other solutions might be more appropriate; in our case, a large-batch
setting, the number of queries was such that this formulation was chosen. Our main experiments
(with no parallelization) took 115 minutes to sweep over the 3.8 billion n-grams (n = 1 to 5) to
compute the answers to 4.5 million queries, much less than the time required to train the baseline
parsers.

2.3 Experiments
Our features are designed to be used in full-sentence parsing rather than for limited decisions about
isolated ambiguities. We first integrate our features into a discriminatively-trained dependency

4Paraphrase features give situations where we query ? h a and h a ?; these are handled similarly.

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 12

Order 2 Baseline + Web features Relative Error Reduction
Dev (sec 22) 92.1 92.7 7.6%
Test (sec 23) 91.4 92.0 7.0%

Table 2.1: UAS results for English WSJ dependency parsing. Dev is WSJ section 22 (all sentences)
and Test is WSJ section 23 (all sentences). The order 2 baseline represents McDonald and Pereira
(2006).

parser, where the integration is more natural and pushes all the way into the underlying dynamic
program. We then add them to a constituent parser in a discriminative reranking approach. We also
verify that our features contribute on top of standard reranking features. All reported experiments
are run on all sentences, i.e. without any length limit.

2.3.1 Dependency Parsing
For dependency parsing, we use the discriminatively-trained MSTParser5, an implementation of
first and second order MST (maximum spanning tree) parsing models of McDonald et al. (2005)
and McDonald and Pereira (2006). We use the standard splits of Penn Treebank into training (sec-
tions 2-21), development (section 22) and test (section 23). We used the ‘pennconverter’6 tool to
convert Penn trees from constituent format to dependency format. Following Koo et al. (2008), we
used the MXPOST tagger (Ratnaparkhi, 1996) trained on the full training data to provide part-of-
speech tags for the development and the test set, and we used 10-way jackknifing to generate tags
for the training set.

We added our first-order Web-scale features to the MSTParser system to evaluate improvement
over the results of McDonald and Pereira (2006).7 Table 2.1 shows unlabeled attachments scores
(UAS) for their second-order projective parser and the improved numbers resulting from the addi-
tion of our Web-scale features. Our first-order Web-scale features show significant improvement
even over their non-local second-order features. Additionally, our Web-scale features are at least
an order of magnitude fewer in number than even their first-order base features. Work such as
Smith and Eisner (2008), Martins et al. (2009), Koo and Collins (2010) has been exploring more
non-local features for dependency parsing. It will be interesting to see how these features interact
with our Web features.

5http://sourceforge.net/projects/mstparser
6This supersedes ‘Penn2Malt’ and is available at http://nlp.cs.lth.se/software/treebank converter. We follow its

recommendation to patch WSJ data with NP bracketing by Vadas and Curran (2007).
7Their README specifies ‘training-k:5 iters:10 loss-type:nopunc decode-type:proj’, which we used for all final

experiments; we used the faster ‘training-k:1 iters:5’ setting for most development experiments.

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 13

k = 1 k = 2 k = 10 k = 25 k = 50 k = 100
Dev (sec 22) 90.6 92.3 95.1 95.8 96.2 96.5
Test (sec 23) 90.2 91.8 94.7 95.6 96.1 96.4

Table 2.2: Oracle F1-scores for k-best lists output by Berkeley parser for English WSJ parsing
(Dev is section 22 and Test is section 23, all lengths).

2.3.2 Constituent Parsing
We also evaluate the utility of Web-scale features on top of a state-of-the-art constituent parser
– the Berkeley parser (Petrov et al., 2006), an unlexicalized phrase-structure parser. Because the
underlying parser does not factor along lexical attachments, we instead adopt the discriminative
reranking framework, where we generate the top-k candidates from the baseline system and then
rerank this k-best list using (generally non-local) features.

Our baseline system is the Berkeley parser, from which we obtain k-best lists for the develop-
ment set (WSJ section 22) and test set (WSJ section 23) using a grammar trained on all the training
data (WSJ sections 2-21).8 To get k-best lists for the training set, we use 3-fold jackknifing where
we train a grammar on 2 folds to get parses for the third fold.9 The oracle scores of the k-best lists
(for different values of k) for the development and test sets are shown in Table 2.2. Based on these
results, we used 50-best lists in our experiments. For discriminative learning, we used the averaged
perceptron (Collins, 2002; Huang, 2008).

Our core feature is the log conditional likelihood of the underlying parser.10 All other features
are indicator features. First, we add all the Web-scale features as defined above. These features
alone achieve a 9.2% relative error reduction. The affinity and paraphrase features contribute
about two-fifths and three-fifths of this improvement, respectively. Next, we rerank with only
the features (both local and non-local) from Huang (2008), a simplified merge of Charniak and
Johnson (2005) and Collins (2000) (here configurational). These features alone achieve around the
same improvements over the baseline as our Web-scale features, even though they are highly non-
local and extensive. Finally, we rerank with both our Web-scale features and the configurational
features. When combined, our Web-scale features give a further error reduction of 3.4% over
the configurational reranker (and a combined error reduction of 12.2%). All results are shown in
Table 2.3. Note that the head words are found using the lexical head rules defined in Collins (1999)
and Collins (2003).

8Settings: 6 iterations of split and merge with smoothing.
9Default: we ran the Berkeley parser in its default ‘fast’ mode; the output k-best lists are ordered by max-rule-

score.
10This is output by the flag -confidence. Note that baseline results with just this feature are slightly worse than

1-best results because the k-best lists are generated by max-rule-score. We report both numbers in Table 2.3.

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 14

Dev (sec 22) Test (sec 23)
Parsing Model F1 EX F1 EX
Baseline (1-best) 90.6 39.4 90.2 37.3
log p(t|w) 90.4 38.9 89.9 37.3
+ Web features 91.6 42.5 91.1 40.6
+ Configurational features 91.8 43.8 91.1 40.6
+ Web + Configurational features 92.1 44.0 91.4 41.4

Table 2.3: Parsing results for reranking 50-best lists of Berkeley parser (Dev is WSJ section 22
and Test is WSJ section 23, all lengths).

2.4 Analysis
Table 2.4 shows error counts and relative reductions that our Web features provide over the 2nd-
order dependency baseline. While we do see substantial gains for classic prepositional (IN) at-
tachment cases, we see equal or greater error reductions for a range of attachment types. Further,
Table 2.5 shows how the total errors break down by gold head. For example, the 12.1% total er-
ror reduction for attachments of an IN argument (which includes PPs as well as complementized
SBARs) includes many errors where the gold attachments are to both noun and verb heads. Sim-
ilarly, for an NN-headed argument, the major corrections are for attachments to noun and verb
heads, which includes both object-attachment ambiguities and coordination ambiguities.

We next investigate the features that were given high weight by our learning algorithm (in the
constituent parsing case). We first threshold features by a minimum training count of 400 to focus
on frequently-firing ones (recall that our features are not bilexical indicators and so are quite a bit
more frequent). We then sort them by descending (signed) weight.

Table 2.6 shows which affinity features received the highest weights, as well as examples of
training set attachments for which the feature fired (for concreteness), suppressing both features
involving punctuation and the features’ count and distance bins. With the standard caveats that in-
terpreting feature weights in isolation is always to be taken for what it is, the first feature (RB→IN)
indicates that high counts for an adverb occurring adjacent to a preposition (like back into the spot-
light) is a useful indicator that the adverb actually modifies that preposition. The second row
(NN→IN) indicates that whether a preposition is appropriate to attach to a noun is well captured
by how often that preposition follows that noun. The fifth row (VB→NN) indicates that when
considering an NP as the object of a verb, it is a good sign if that NP’s head frequently occurs
immediately following that verb. All of these features essentially state cases where local surface
counts are good indicators of (possibly non-adjacent) attachments.

A subset of paraphrase features, which in the automatically-extracted case don’t really corre-
spond to paraphrases at all, are shown in Table 2.7. Here we show features for verbal heads and

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 15

Argument Tag # Attachments # Correct (Baseline) # Correct (This Work) Rel. Error Redn.
NN 5725 5387 5429 12.4

NNP 4043 3780 3804 9.1
IN 4026 3416 3490 12.1
DT 3511 3424 3429 5.8

NNS 2504 2319 2348 15.7
JJ 2472 2310 2329 11.7

CD 1845 1739 1738 -0.9
VBD 1705 1571 1580 6.7
RB 1308 1097 1100 1.4
CC 1000 855 854 -0.7
VB 983 940 945 11.6
TO 868 761 776 14.0

VBN 850 776 786 13.5
VBZ 705 633 629 -5.6
PRP 612 603 606 33.3

Table 2.4: Error reduction for attachments of various child (argument) categories. The columns
depict the tag, its total attachments as argument, number of correct ones in baseline (McDonald
and Pereira, 2006) and this work, and the relative error reduction. Results are for dependency
parsing on the dev set for iters:5,training-k:1.

Argument Tag Relative Error Reduction (%) for Various Parent Tags
NN IN: 18, NN: 23, VB: 30, NNP:20, VBN: 33
IN NN: 11, VBD: 11, NNS: 20, VB:18, VBG: 23

NNS IN: 9, VBD: 29, VBP: 21, VB:15, CC: 33

Table 2.5: Error reduction for each type of parent attachment for a given child in Table 2.4.

IN arguments. The mid-words m which rank highly are those where the occurrence of hma as an
n-gram is a good indicator that a attaches to h (m of course does not have to actually occur in the
sentence). Interestingly, the top such features capture exactly the intuition from Nakov and Hearst
(2005b), namely that if the verb h and the preposition a occur with a pronoun in between, we have
evidence that a attaches to h (it certainly can’t attach to the pronoun). However, we also see other
indicators that the preposition is selected for by the verb, such as adverbs like directly.

As another example of known useful features being learned automatically, Table 2.8 shows

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 16

POShead POSarg Example (head, arg)
RB IN back→ into
NN IN review→ of
NN DT The← rate

NNP IN Regulation→ of
VB NN limit→ access

VBD NN government← cleared
NNP NNP Dean← Inc
NN TO ability→ to
JJ IN active→ for

NNS TO reasons→ to
IN NN under→ pressure

NNS IN reports→ on
NN NNP Warner← studio

NNS JJ few← plants

Table 2.6: The highest-weight features (thresholded at a count of 400) of the affinity schema. We
list only the head and argument POS and the direction (arrow from head to arg). We omit features
involving punctuation.

the previous-context-word paraphrase features for a noun head and preposition argument (N →
IN). Nakov and Hearst (2005b) suggested that the attestation of be N IN is a good indicator of
attachment to the noun (the IN cannot generally attach to forms of auxiliaries). One such feature
occurs on this top list – for the context word have – and others occur farther down. We also find
their surface marker / punctuation cues of : and , preceding the noun. However, we additionally
find other cues, most notably that if the N IN sequence occurs following a capitalized determiner,
it tends to indicate a nominal attachment (in the n-gram, the preposition cannot attach leftward to
anything else because of the beginning of the sentence).

In Table 2.9, we see the top-weight paraphrase features that had a conjunction as a middle-word
cue. These features essentially say that if two heads w1 and w2 occur in the direct coordination n-
gramw1 and w2, then they are good heads to coordinate (coordination unfortunately looks the same
as complementation or modification to a basic dependency model). These features are relevant to
a range of coordination ambiguities.

Finally, Table 2.10 depicts the high-weight, high-count general paraphrase-cue features for
arbitrary head and argument categories, with those shown in previous tables suppressed. Again,
many interpretable features appear. For example, the top entry (the JJ NNS) shows that when
considering attaching an adjective a to a noun h, it is a good sign if the trigram the a h is frequent –
in that trigram, the adjective attaches to the noun. The second entry (NN - NN) shows that one noun

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 17

POShead middle-word POSarg Example (head, arg)
VBN this IN learned, from
VB this IN publish, in

VBG him IN using, as
VBG them IN joining, in
VBD directly IN converted, into
VBD held IN was, in
VBN jointly IN offered, by
VBZ it IN passes, in
VBG only IN consisting, of
VBN primarily IN developed, for
VB us IN exempt, from

VBG this IN using, as
VBD more IN looked, like
VB here IN stay, for

VBN themselves IN launched, into
VBG down IN lying, on

Table 2.7: The highest-weight features (thresholded at a count of 400) of the mid-word schema
for a verb head and preposition argument (with head on left of argument).

is a good modifier of another if they frequently appear together hyphenated (another punctuation-
based cue mentioned in previous work on noun bracketing, see Nakov and Hearst (2005a)). While
they were motivated on separate grounds, these features can also compensate for inapplicability
of the affinity features. For example, the third entry (VBD this NN) is a case where even if the
head (a VBD like adopted) actually selects strongly for the argument (a NN like plan), the bigram
adopted plan may not be as frequent as expected, because it requires a determiner in its minimal
analogous form adopted the plan.

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 18

before-word POShead POSarg Example (head, arg)
second NN IN season, in

The NN IN role, of
strong NN IN background, in

our NNS IN representatives, in
any NNS IN rights, against
A NN IN review, of
: NNS IN Results, in

three NNS IN years, in
In NN IN return, for
no NN IN argument, about

current NN IN head, of
no NNS IN plans, for

public NN IN appearance, at
from NNS IN sales, of
net NN IN revenue, of
, NNS IN names, of

you NN IN leave, in
have NN IN time, for
some NN IN money, for

annual NNS IN reports, on

Table 2.8: The highest-weight features (thresholded at a count of 400) of the before-word schema
for a noun head and preposition argument (with head on left of argument).

CHAPTER 2. SEMANTICS FOR SYNTACTIC AMBIGUITIES 19

POShead middle-CC POSarg Example (head, arg)
NNS and NNS purchases, sales
VB and VB buy, sell
NN and NN president, officer
NN and NNS public, media

VBD and VBD said, added
VBZ and VBZ makes, distributes

JJ and JJ deep, lasting
IN and IN before, during

VBD and RB named, now
VBP and VBP offer, need

Table 2.9: The highest-weight features (thresholded at a count of 400) of the mid-word schema
where the mid-word was a conjunction. For variety, for a given head-argument POS pair, we only
list features corresponding to the and conjunction and h→ a direction.

POSh POSa middle/before-word Example (h, a)
NNS JJ b = the other← things
NN NN m = - auto← maker

VBD NN m = this adopted→ plan
NNS NN b = of computer← products
NN DT m = current the← proposal

VBG IN b = of going→ into
NNS IN m = ” clusters→ of
IN NN m = your In→ review
TO VB b = used to→ ease

VBZ NN m = that issue← has
IN NNS m = two than→ minutes
IN NN b = used as→ tool
IN VBD m = they since→ were
VB TO b = will fail→ to

Table 2.10: The high-weight high-count (thresholded at a count of 2000) general features of the
mid and before paraphrase schema (examples show head and arg in linear order with arrow from
head to arg).

20

Chapter 3

Semantics for Coreference Ambiguities

In this chapter, we shift our focus from developing Web-based surface cues for sentence-level ambi-
guities to cues for document-level, discourse-based ambiguities in coreference resolution.1 Many
of the most difficult ambiguities in coreference resolution are semantic in nature. For instance,
consider the following example:

When Obama met Jobs, the president discussed the economy, technology,
and education. His election campaign is expected to [...]

For resolving coreference in this example, a system would benefit from the world knowledge that
Obama is the president. Also, to resolve the pronoun his to the correct antecedent Obama, we can
use the knowledge that Obama has an election campaign while Jobs does not. Such ambiguities
are difficult to resolve on purely syntactic or configurational grounds.

There have been multiple previous systems that incorporate some form of world knowledge in
coreference resolution tasks. Most work (Poesio et al., 2004; Markert and Nissim, 2005; Yang et
al., 2005; Bergsma and Lin, 2006) addresses special cases and subtasks such as bridging anaphora,
other anaphora, definite NP reference, and pronoun resolution, computing semantic compatibility
via Web-hits and counts from large corpora. There is also work on end-to-end coreference reso-
lution that uses large noun-similarity lists (Daumé III and Marcu, 2005) or structured knowledge
bases such as Wikipedia (Yang and Su, 2007; Haghighi and Klein, 2009; Kobdani et al., 2011) and
YAGO (Rahman and Ng, 2011). However, such structured knowledge bases are of limited scope,
and, while Haghighi and Klein (2010) self-acquires knowledge about coreference, it does so only
via reference constructions and on a limited scale.

In our work, we look to the Web for broader if shallower sources of semantics. In order to har-
ness the information on the Web without presupposing a deep understanding of all Web text, we
instead turn to a diverse collection of Web n-gram counts (Brants and Franz, 2006) which, in aggre-
gate, contain diffuse and indirect, but often robust, cues to reference. For example, we can collect

1The work described in this chapter was originally presented at ACL in 2012 (Bansal and Klein, 2012).

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 21

the co-occurrence statistics of an anaphor with various candidate antecedents to judge relative sur-
face affinities (i.e., (Obama, president) versus (Jobs, president)). We can also count co-occurrence
statistics of competing antecedents (with surrounding context) when placed in the position of an
anaphoric pronoun (i.e., Obama’s election campaign versus Jobs’ election campaign).

All of our features begin with a pair of head words (corresponding to the lexical heads of con-
stituents in syntax, defined in Collins (1999) and Collins (2003)) from candidate mention pairs
and compute statistics derived from various potentially informative queries’ counts. We explore
five major categories of semantically informative Web features, based on (1) general lexical affini-
ties (via generic co-occurrence statistics), (2) lexical relations via Hearst-style hypernymy patterns
(Hearst, 1992), (3) similarity of entity-based context (e.g., common values of y for which h is a y
is attested), (4) matches of distributional soft cluster ids, and (5) attested substitutions of candidate
antecedents in the context of a pronominal anaphor.

We first describe a strong baseline consisting of the mention-pair model of the Reconcile sys-
tem (Stoyanov et al., 2009; Stoyanov et al., 2010) using a decision tree (DT) as its pairwise classi-
fier. To this baseline system, we add our suite of features in turn, each class of features providing
substantial gains. Altogether, our final system achieves state-of-the-art results on end-to-end coref-
erence resolution (with automatically detected system mentions) on multiple data sets (ACE 2004
and ACE 2005) and metrics (MUC and B3), with significant improvements over the Reconcile DT
baseline and over the results of Haghighi and Klein (2010).

3.1 Baseline System
Before describing our semantic Web features, we first describe our baseline. The core inference
and features come from the Reconcile package (Stoyanov et al., 2009; Stoyanov et al., 2010), with
modifications described below. Our baseline differs most substantially from Stoyanov et al. (2009)
in using a decision tree classifier rather than an averaged linear perceptron.

3.1.1 Reconcile
Reconcile is one of the best implementations of the mention-pair model (Soon et al., 2001) of
coreference resolution. The mention-pair model relies on a pairwise function to determine whether
or not two mentions are coreferent. Pairwise predictions are then consolidated by transitive closure
(or some other clustering method) to form the final set of coreference clusters (chains). While our
Web features could be adapted to entity-mention systems, their current form was most directly
applicable to the mention-pair approach, making Reconcile a particularly well-suited platform for
this investigation.

The Reconcile system provides baseline features, learning mechanisms, and resolution proce-
dures that already achieve near state-of-the-art results on multiple popular datasets using multiple
standard metrics. It includes over 80 core features that exploit various automatically generated
annotations such as named entity tags, syntactic parses, and WordNet classes, inspired by Soon

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 22

et al. (2001), Ng and Cardie (2002), and Bengtson and Roth (2008). The Reconcile system also
facilitates standardized empirical evaluation to past work.2

In this work, we develop a suite of simple semantic Web features based on pairs of mention
headwords which stack with the default Reconcile features to surpass past state-of-the-art results.

3.1.2 Decision Tree Classifier
Among the various learning algorithms that Reconcile supports, we chose the decision tree classi-
fier, available in Weka (Hall et al., 2009) as J48, an open source Java implementation of the C4.5
algorithm of Quinlan (1993).

The C4.5 algorithm builds decision trees by incrementally maximizing information gain. The
training data is a set of already classified samples, where each sample is a vector of attributes or
features. At each node of the tree, C4.5 splits the data on an attribute that most effectively splits its
set of samples into more ordered subsets, and then recurses on these smaller subsets. The decision
tree can then be used to classify a new sample by following a path from the root downward based
on the attribute values of the sample.

We find the decision tree classifier to work better than the default averaged perceptron (used by
Stoyanov et al. (2009)), on multiple datasets using multiple metrics (see Section 3.3.3). Many ad-
vantages have been claimed for decision tree classifiers, including interpretability and robustness.
However, we suspect that the aspect most relevant to our case is that decision trees can capture non-
linear interactions between features. For example, recency is very important for pronoun reference
but much less so for nominal reference.

3.2 Web Features
Our Web features for coreference resolution are simple and capture a range of diffuse world knowl-
edge. Given a mention pair, we use the head finder in Reconcile to find the lexical heads of both
mentions (for example, the head of the Palestinian territories is the word territories). Next, we
take each headword pair (h1, h2) and compute various Web-count functions on it that can signal
whether or not this mention pair is coreferent.

As the source of Web information, we use the Google n-grams corpus (Brants and Franz,
2006) which contains English n-grams (n = 1 to 5) and their Web frequency counts, derived
from nearly 1 trillion word tokens and 95 billion sentences. Because we have many queries that
must be run against this corpus, we apply the trie-based hashing algorithm described in Chapter 2
(Section 2.2) to efficiently answer all of them in one pass over it. The features that require word
clusters (Section 3.2.4) use the output of Lin et al. (2010).3

We describe our five types of features in turn. The first four types are most intuitive for men-
tion pairs where both members are non-pronominal, but, aside from the general co-occurrence

2We use the default configuration settings of Reconcile (Stoyanov et al., 2010) unless mentioned otherwise.
3These clusters are derived from the V2 Google n-grams corpus. The V2 corpus itself is not publicly available,

but the clusters are available at http://old-site.clsp.jhu.edu/˜sbergsma/PhrasalClusters

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 23

group, helped for all mention pair types. The fifth feature group applies only to pairs in which the
anaphor is a pronoun but the antecedent is a non-pronoun. Related work for each feature category
is discussed inline.

3.2.1 General Co-occurrence
These features capture co-occurrence statistics of the two headwords, i.e., how often h1 and h2
are seen adjacent or nearly adjacent on the Web. This count can be a useful coreference signal
because, in general, mentions referring to the same entity will co-occur more frequently (in large
corpora) than those that do not. Using the n-grams corpus (for n = 1 to 5), we collect co-occurrence
Web-counts by allowing a varying number of wildcards between h1 and h2 in the query. The co-
occurrence value is:

bin

(
log10

(
c12
c1 · c2

))
where

c12 = count(“h1 ? h2”)

+ count(“h1 ? ? h2”)

+ count(“h1 ? ? ? h2”),

c1 = count(“h1”), and
c2 = count(“h2”).

We normalize the overall co-occurrence count of the headword pair c12 by the unigram counts
of the individual headwords c1 and c2, so that high-frequency headwords do not unfairly get a
high feature value (this is similar to computing scaled mutual information MI (Church and Hanks,
1989)).4 This normalized value is quantized by taking its log10 and binning (by dividing into fixed-
sized intervals and rounding off). The actual feature that fires is an indicator of which quantized
bin the query produced. As a real example from our development set, the co-occurrence count c12
for the headword pair (leader, president) is 11383, while it is only 95 for the headword pair (voter,
president); after normalization and log10, the values are -10.9 and -12.0, respectively.

These kinds of general Web co-occurrence statistics have been previously used for other NLP
tasks (via supervised and unsupervised methods) such as adjective ordering, spelling correction,
verb part-of-speech disambiguation, prepositional phrase attachment disambiguation, noun com-
pound bracketing, and syntactic parsing (Nakov and Hearst, 2005a; Nakov and Hearst, 2005b;
Bergsma et al., 2010; Pitler et al., 2010; Bansal and Klein, 2011). In coreference, similar word-
association scores were used by Kobdani et al. (2011), but their scores were computed using
Wikipedia and employed in a bootstrapping-based self-training framework.

4We also tried adding count(“h1 h2”) to c12 but this decreases performance, perhaps because truly adjacent
occurrences are often not grammatical.

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 24

3.2.2 Hypernymy Co-occurrence
These features capture templated co-occurrence of the two headwords h1 and h2 in the Web-scale
corpus. Here, we only collect statistics of the headwords co-occurring with a generalized Hearst-
style hypernymy pattern (Hearst, 1992) in between. Hypernymy patterns capture various lexical
semantic relations between items. For example, seeing X is a Y or X and other Y indicates hyper-
nymy and also tends to cue coreference. The specific patterns we use are:

• h1 {is | are | was | were} {a | an | the}? h2
• h1 {and | or} {other | the other | another} h2
• h1 other than {a | an | the}? h2
• h1 such as {a | an | the}? h2
• h1 , including {a | an | the}? h2
• h1 , especially {a | an | the}? h2
• h1 of {the| all}? h2

For this feature, we again use a quantized normalized count as in Section 3.2.1, but c12 here is
restricted to n-grams where one of the above patterns occurs in between the headwords. We did
not allow wildcards in between the headwords and the hypernymy patterns because this introduced
a significant amount of noise. Also, we do not constrain the order of h1 and h2 for these features
because the hypernymy patterns can hold for either direction of coreference.5 As a real example
from our development set, the c12 count for the headword pair (leader, president) is 752, while for
(voter, president), it is 0.

Hypernymy-based semantic compatibility for coreference is intuitive and has been explored in
varying forms by previous work. Modjeska et al. (2003), Markert et al. (2003), Poesio et al. (2004),
and Markert and Nissim (2005) employ a subset of the Hearst-style patterns we list above and
search engine hits for the subtasks of bridging anaphora, other-anaphora, and definite noun phrase
coreference resolution. Others such as Daumé III and Marcu (2005), Haghighi and Klein (2009),
and Rahman and Ng (2011) use similar relations, e.g., ISA, appositives, predicate-nominative,
TYPE, and MEANS, to extract compatibility statistics from noun-similarity lists (Ravichandran
et al., 2005), Wikipedia, YAGO (Suchanek et al., 2007), and FrameNet (Baker et al., 1998). Yang
and Su (2007) use Wikipedia and a set of coreferential NP seed pairs to automatically extract
semantic patterns via bootstrapping, which are then used as features in a learning setup. Instead of
extracting patterns from the training data, we use all the above patterns, which helps us generalize
to new datasets for end-to-end coreference resolution (see Section 3.3.3).

5Two minor variants not listed above are h1 including h2 and h1 especially h2.

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 25

3.2.3 Entity-based Context Compatibility
For each headword h, we first collect context seeds y using the pattern

• h {is | are | was | were} {a | an | the}? y

taking seeds y in order of decreasing Web count. The corresponding ordered seed list Y = {y}
gives us useful information about the headword’s entity type. For example, for h = president,
the top 30 seeds (and their parts of speech) include important cues such as president is elected
(verb), president is authorized (verb), president is responsible (adjective), president is the chief
(adjective), president is above (preposition), and president is the head (noun).

Matches in the seed lists of two headwords can be a strong signal that they are coreferent. For
example, in the top 30 seed lists for the headword pair (leader, president), we get matches including
elected, responsible, and expected. To capture this effect, we create a feature that indicates whether
there is a match in the top k seeds of the two headwords (where k is a hyperparameter to tune).

We create another feature that indicates whether the dominant parts of speech in the seed lists
matches for the headword pair. We first collect the POS tags (using length 2 character prefixes to
indicate coarse parts of speech) of the seeds matched in the top k′ seed lists of the two headwords,
where k′ is another hyperparameter to tune. If the dominant tags match and are in a small list
of important tags ({JJ, NN, RB, VB}), we fire an indicator feature specifying the matched tag,
otherwise we fire a no-match indicator. To obtain POS tags for the seeds, we use a unigram-based
POS tagger trained on the WSJ treebank training set.

3.2.4 Distributional Clustering
The distributional hypothesis of Harris (1954) says that words that occur in similar contexts tend
to have a similar linguistic behavior. Here, we design features with the idea that this hypothesis
extends to reference: mentions occurring in similar contexts in large document sets such as the
Web tend to be compatible for coreference. Instead of collecting the contexts of each mention
and creating sparse features from them, we use Web-scale distributional clustering to summarize
compatibility.

Specifically, we begin with the phrase-based clusters from Lin et al. (2010), which were created
using the Google n-grams V2 corpus. These clusters come from distributionalK-Means clustering
(withK = 1000) on phrases, using the n-gram context as features. The cluster data contains almost
10 million phrases and their soft cluster memberships. Up to twenty cluster ids with the highest
centroid similarities are included for each phrase in this dataset (Lin et al., 2010).

Our cluster-based features assume that if the headwords of the two mentions have matches in
their cluster id lists, then they are more compatible for coreference. We check the match of not just
the top 1 cluster ids, but also farther down in the 20 sized lists because, as discussed in Lin and
Wu (2009), the soft cluster assignments often reveal different senses of a word. However, we also
assume that higher-ranked matches tend to imply closer meanings. To this end, we fire a feature
indicating the value bin(i+ j), where i and j are the earliest match positions in the cluster id lists

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 26

of h1 and h2. Binning here means that match positions in a close range generally trigger the same
feature.

Recent previous work has used clustering information to improve the performance of super-
vised NLP tasks such as named entity recognition (NER) and query classification (Lin and Wu,
2009), and dependency-based syntactic parsing (Koo et al., 2008). However, to our knowledge, the
only related work in coreference resolution is Daumé III and Marcu (2005), who use class-based
features derived from a large Web corpus via a clustering process described in Ravichandran et al.
(2005).

3.2.5 Pronoun Context Compatibility
Our last feature category specifically addresses pronoun reference, for cases when the anaphoric
mention NP2 (and hence its headword h2) is a pronoun, while the candidate antecedent mention
NP1 (and hence its headword h1) is not. For such a headword pair (h1, h2), the idea is to substitute
the non-pronoun h1 into h2’s position and see whether the result is attested on the Web.

If the anaphoric pronominal mention is h2 and its sentential context is l’ l h2 r r’, then the sub-
stituted phrase will be l’ l h1 r r’. Possessive pronouns are replaced with an additional apostrophe,
i.e., h1 ’s. We also use features (e.g., R1Gap) that allow wildcards (?) in between the headword and
the context when collecting Web-counts, in order to allow for determiners and other filler words.
High Web counts of substituted phrases tend to indicate semantic compatibility. Perhaps unsur-
prisingly for English, only the right context was useful in this capacity. We chose the following
three context types, based on performance on a development set:

• h1 r (R1)

• h1 r r’ (R2)

• h1 ? r (R1Gap)

As an example of the R1Gap feature, if the anaphor h2 + context is his victory and one candidate
antecedent h1 is Bush, then we compute the normalized value

count(“Bush ′s ? victory”)

count(“ ? ′s ? victory”)count(“Bush”)

In general, we compute

count(“h1
′s ? r”)

count(“ ? ′s ? r”)count(“h1”)

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 27

Dataset # docs dev split test split # mentions # chains
ACE04 128 63/27 90/38 3037 1332
ACE05 81 40/17 57/24 1991 775

ACE05-ALL 599 337/145 482/117 9217 3050

Table 3.1: Dataset characteristics – the total number of documents, the train/test split during devel-
opment, the train/test split during testing, the number of gold mentions in the test split, the number
of coreference chains in the test split.

The final feature value is again a normalized count converted to log10 and then binned. Normal-
ization helps us with two kinds of balancing. First, we divide by the count of the antecedent so that
when choosing the best antecedent for a fixed anaphor, we are not biased towards more frequently
occurring antecedents. Second, we divide by the count of the context so that across anaphora,
an anaphor with rarer context does not get smaller values (for all its candidate antecedents) than
another anaphor with a more common context. We have three separate features for the R1, R2, and
R1Gap context types. We tune a separate bin-size hyperparameter for each of these three features.

These pronoun resolution features are similar to selectional preference work by Yang et al.
(2005) and Bergsma and Lin (2006), who compute semantic compatibility for pronouns in specific
syntactic relationships such as possessive-noun, subject-verb, and verb-object, and in automatically
bootstrapped syntactic paths, respectively. In our case, we directly use the general context of any
pronominal anaphor to find its most compatible antecedent.

Note that all our above features are designed to be non-sparse by firing indicators of the quan-
tized Web statistics and not the lexical- or class-based identities of the mention pair. This keeps
the total number of features small, which is important for the relatively small datasets used for
coreference resolution. We go from around 100 features in the Reconcile baseline to around 165
features after adding all our Web features.

3.3 Experiments

3.3.1 Data
We show results on three popular and large coreference resolution data sets – the ACE04, ACE05,
and ACE05-ALL datasets from the ACE Program (NIST, 2004). In ACE04 and ACE05, we have
only the newswire portion (of the original ACE 2004 and 2005 training sets) and use the standard
train/test splits reported in Stoyanov et al. (2009) and Haghighi and Klein (2010). In ACE05-ALL,
we have the full ACE 2005 training set and use the standard train/test splits reported in Rahman
and Ng (2009) and Haghighi and Klein (2010). Note that most previous work does not report (or
need) a standard development set; hence, for tuning our features and its hyper-parameters, we

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 28

MUC B3

Feature P R F1 P R F1
Averaged Perceptron 69.0 63.1 65.9 82.2 69.9 75.5
Decision Tree 80.9 61.0 69.5 89.5 69.0 77.9
+ General Co-occurence 79.8 62.1 69.8 88.7 69.8 78.1
+ Hypernymy Co-occurence 80.0 62.3 70.0 89.1 70.1 78.5
+ Entity-based Context Compatibility 79.4 63.2 70.4 88.1 70.9 78.6
+ Distributional Clustering 79.5 63.6 70.7 87.9 71.2 78.6
+ Pronoun Context Compatibility 79.9 64.3 71.3 88.0 71.6 79.0

Table 3.2: Incremental results for the Web features on the ACE04 development set: the averaged
perceptron baseline, the decision tree baseline, and the +Feature rows showing the effect of adding
a particular feature incrementally (not in isolation) to the decision tree baseline. The feature cate-
gories correspond to those described in Section 3.2.

randomly split the original training data into a training and development set with a 70/30 ratio (and
then use the full original training set during testing). Details of the corpora are shown in Table 3.1.
Note that the development set is used only for ACE04, because for ACE05, and ACE05-ALL, we
directly test using the features tuned on ACE04.

Details of the Web-scale corpora used for extracting features are discussed in Section 3.2.

3.3.2 Evaluation Metrics
We evaluated our work on both MUC (Vilain et al., 1995) and B3 (Bagga and Baldwin, 1998). Both
scorers are available in the Reconcile infrastructure. MUC measures how many predicted clusters
need to be merged to cover the true gold clusters. B3 computes precision and recall for each
mention by computing the intersection of its predicted and gold cluster and dividing by the size of
the predicted and gold cluster, respectively. It is well known (Recasens and Hovy, 2010; Ng, 2010;
Kobdani et al., 2011) that MUC is biased towards large clusters (chains) whereas B3 is biased
towards singleton clusters. Therefore, for a more balanced evaluation, we show improvements
on both metrics simultaneously. Note that B3 has two versions which handle twinless (spurious)
mentions in different ways (see Stoyanov et al. (2009) for details). We use the B3All version,
unless mentioned otherwise.

3.3.3 Results
We start with the Reconcile baseline but employ the decision tree (DT) classifier, because it has
significantly better performance than the default averaged perceptron classifier used in Stoyanov

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 29

et al. (2009).6 Table 3.2 compares the baseline perceptron results to the DT results and then shows
the incremental addition of the Web features to the DT baseline (on the ACE04 development set).

The DT classifier, in general, is precision-biased. The Web features somewhat balance this by
increasing the recall and decreasing precision to a lesser extent, improving overall F1. Each feature
type incrementally increases both MUC and B3 F1-measures, showing that they are not taking
advantage of any bias of either metric. The incremental improvements also show that each Web
feature type brings in some additional benefit over the information already present in the Reconcile
baseline, which includes alias, animacy, named entity, and WordNet class / sense information.7

Table 3.3 shows our primary test results on the ACE04, ACE05, and ACE05-ALL datasets, for
the MUC and B3 metrics. All systems reported use automatically detected mentions. We report our
results (the 3 rows marked ‘This Work’) on the perceptron baseline, the DT baseline, and the Web
features added to the DT baseline. We also report statistical significance of the improvements from
the Web features on the DT baseline. All improvements are significant, except on the small ACE05
dataset with the MUC metric (where it is weak, at p < 0.12). However, on the larger version of
this dataset, ACE05-ALL, we get improvements which are both larger and more significant (at
p < 0.001). For significance testing, we use the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1993).

Our main comparison is against Haghighi and Klein (2010), a mostly-unsupervised generative
approach that models latent entity types, which generate specific entities that in turn render indi-
vidual mentions. They learn on large datasets including Wikipedia, and their results are state-of-
the-art in coreference resolution. We outperform their system on most datasets and metrics (except
on ACE05-ALL for the MUC metric). The other systems we compare to and outperform are the
perceptron-based Reconcile system of Stoyanov et al. (2009), the strong deterministic system of
Haghighi and Klein (2009), and the cluster-ranking model of Rahman and Ng (2009).

We develop our features and tune their hyper-parameter values on the ACE04 development set
and then use these on the ACE04 test set.8 On the ACE05 and ACE05-ALL datasets, we directly
transfer our Web features and their hyper-parameter values from the ACE04 dev-set, without any
retuning. The test improvements we get on all the datasets (see Table 3.3) suggest that our features
are generally useful across datasets and metrics.9

6Moreover, a DT classifier takes roughly the same amount of time and memory as a perceptron on our ACE04 de-
velopment experiments. It is, however, slower and more memory-intensive (∼3x) on the bigger ACE05-ALL dataset.

7We also initially experimented with smaller datasets (MUC6 and MUC7) and an averaged perceptron baseline,
and we did see similar improvements, arguing that these features are useful independently of the learning algorithm
and dataset.

8Note that for the ACE04 dataset only, we use the ‘SmartInstanceGenerator’ (SIG) filter of Reconcile that uses
only a filtered set of mention-pairs (based on distance and other properties of the pair) instead of the ‘AllPairs’ (AP)
setting that uses all pairs of mentions, and makes training and tuning very slow.

9For the ACE05 and ACE05-ALL datasets, we revert to the ‘AllPairs’ (AP) setting of Reconcile because this gives
us baselines competitive with Haghighi and Klein (2010). Since we did not need to retune on these datasets, training
and tuning speed were not a bottleneck. Moreover, the improvements from our Web features are similar even when
tried over the SIG baseline; hence, the filter choice doesn’t affect the performance gain from the Web features.

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 30

3.4 Analysis
In this section, we briefly discuss errors (in the DT baseline) corrected by our Web features, and
analyze the decision tree classifier built during training (based on the ACE04 development experi-
ments).

To study error correction, we begin with the mention pairs that are coreferent according to
the gold-standard annotation (after matching the system mentions to the gold ones). We consider
the pairs that are wrongly predicted to be non-coreferent by the baseline DT system but correctly
predicted to be coreferent when we add our Web features. Some examples of such pairs include:

Iran ; the country
the EPA ; the agency

athletic director ; Mulcahy
Democrat Al Gore ; the vice president
Barry Bonds ; the best baseball player

Vojislav Kostunica ; the pro-democracy leader
its closest rival ; the German magazine Das Motorrad

One of those difficult-to-dislodge judges ; John Marshall

These pairs are cases where our features on hypernymy co-occurrence and entity-based context-
match are informative and help discriminate in favor of the correct antecedents. One advantage
of using Web-based features is that the Web has a surprising amount of information on even rare
entities such as proper names. Our features also correct coreference for various cases of pronominal
anaphora, but these corrections are harder to convey out of context.

Next, we analyze the decision tree built after training the classifier (with all our Web features
included). Nearly 30.4% (213 out of 1023) of the non-terminal decision tree nodes and 32.2%
(165 out of 512) of the terminal decision tree leaves correspond to Web features. The average
classification error at the decision tree leaves corresponding to Web features is only around 2.5%,
suggesting that our features are strongly discriminative for pairwise coreference decisions. When
we look for strong decision nodes (and leaves) that best split the training instances at that node into
the two coreferent (+) and non-coreferent (-) groups with zero or negligible error, we notice that
many such useful nodes and leaves correspond to Web features. Some of the most discriminative
nodes correspond to the general co-occurrence feature for most (binned) log-count values, the
Hearst-style co-occurrence feature for its zero-count value, the cluster-match feature for its zero-
match value, and the R2 pronoun context feature for certain (binned) log-count values (e.g., -3 and
-5).

CHAPTER 3. SEMANTICS FOR COREFERENCE AMBIGUITIES 31

MUC B3

System P R F1 P R F1
ACE04-TEST-RESULTS

Stoyanov et al. (2009) - - 62.0 - - 76.5
Haghighi and Klein (2009) 67.5 61.6 64.4 77.4 69.4 73.2
Haghighi and Klein (2010) 67.4 66.6 67.0 81.2 73.3 77.0
This Work: Perceptron Baseline 65.5 61.9 63.7 84.1 70.9 77.0
This Work: DT Baseline 76.0 60.7 67.5 89.6 70.3 78.8
This Work: DT + Web Features 74.8 64.2 69.1 87.5 73.7 80.0
This Work: ∆ of DT+Web over DT (p < 0.05) 1.7 (p < 0.005) 1.3

ACE05-TEST-RESULTS
Stoyanov et al. (2009) - - 67.4 - - 73.7
Haghighi and Klein (2009) 73.1 58.8 65.2 82.1 63.9 71.8
Haghighi and Klein (2010) 74.6 62.7 68.1 83.2 68.4 75.1
This Work: Perceptron Baseline 72.2 61.6 66.5 85.0 65.5 73.9
This Work: DT Baseline 79.6 59.7 68.2 89.4 64.2 74.7
This Work: DT + Web Features 75.0 64.7 69.5 81.1 70.8 75.6
This Work: ∆ of DT+Web over DT (p < 0.12) 1.3 (p < 0.1) 0.9

ACE05-ALL-TEST-RESULTS
Rahman and Ng (2009) 75.4 64.1 69.3 54.4 70.5 61.4
Haghighi and Klein (2009) 72.9 60.2 67.0 53.2 73.1 61.6
Haghighi and Klein (2010) 77.0 66.9 71.6 55.4 74.8 63.8
This Work: Perceptron Baseline 68.9 60.4 64.4 80.6 60.5 69.1
This Work: DT Baseline 78.0 60.4 68.1 85.1 60.4 70.6
This Work: DT + Web Features 77.6 64.0 70.2 80.7 65.9 72.5
This Work: ∆ of DT+Web over DT (p < 0.001) 2.1 (p < 0.001) 1.9

Table 3.3: Primary test results on the ACE04, ACE05, and ACE05-ALL datasets. All systems re-
ported here use automatically extracted system mentions. B3 here is the B3All version of Stoyanov
et al. (2009). We also report statistical significance of the improvements from the Web features
on the DT baseline, using the bootstrap test (Noreen, 1989; Efron and Tibshirani, 1993). The per-
ceptron baseline in this work (Reconcile settings: 15 iterations, threshold = 0.45, SIG for ACE04
and AP for ACE05, ACE05-ALL) has different results from Stoyanov et al. (2009) because their
current publicly available code is different from that used in their paper (p.c.). Also, the B3 variant
used by Rahman and Ng (2009) is slightly different from other systems (they remove all and only
the singleton twinless system mentions, so it is neither B3All nor B3None). For completeness, our
(untuned) B3None results (DT + Web) on the ACE05-ALL dataset are P=69.9|R=65.9|F1=67.8.

32

Chapter 4

Acquiring Semantics as Taxonomies

In previous chapters, we developed Web-based semantic cues to resolve ambiguities in text. Next,
in this chapter, we will acquire the semantics itself from the text, specifically via structured learn-
ing of hypernymy taxonomies.1 Many tasks in natural language understanding, such as question
answering, information extraction, and textual entailment, benefit from lexical semantic informa-
tion in the form of types and hypernyms. A recent example is IBM’s Jeopardy! system Watson
(Ferrucci et al., 2010), which used type information to restrict the set of answer candidates. In-
formation of this sort is present in term taxonomies (e.g., Figure 4.1), ontologies, and thesauri.
However, currently available taxonomies such as WordNet are incomplete in coverage (Pennac-
chiotti and Pantel, 2006; Hovy et al., 2009), unavailable in many domains and languages, and
time-intensive to create or extend manually. There has thus been considerable interest in building
lexical taxonomies automatically.

In our work, we focus on the task of taking collections of terms as input and predicting a
complete taxonomy structure over them as output. Our model takes a log-linear form and is repre-
sented using a factor graph (Kschischang et al., 2001) that includes both 1st-order scoring factors
on directed hypernymy edges (a parent and child in the taxonomy) and 2nd-order scoring factors
on sibling edge pairs (pairs of hypernym edges with a shared parent), as well as incorporating a
global (directed spanning tree) structural constraint.2 Inference for both learning and decoding uses
structured loopy belief propagation or BP (Murphy et al., 1999; MacKay, 2003; Smith and Eisner,
2008), incorporating standard spanning tree algorithms (Chu and Liu, 1965; Edmonds, 1967; Tutte,
1984). The belief propagation approach allows us to efficiently and effectively incorporate hetero-
geneous relational evidence via hypernymy and siblinghood (e.g., coordination) cues, which we
capture by semantic features based on simple surface patterns and statistics from Web n-grams
and Wikipedia abstracts. We train our model to maximize the likelihood of example ontologies
(such as WordNet) using stochastic optimization, automatically learning the most useful relational
patterns for full taxonomy induction.

As an example of the relational patterns that our system exploits, suppose we are interested in
1The work described in this chapter corresponds to Bansal et al. (2013).
2Here, 1st-order and 2nd-order factors refer to factors connected to a single edge and a pair of edges, respectively.

See Figure 4.2.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 33

vertebrate

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

reptile

diapsid

snake crocodilian

anapsid

chelonian

turtle

1

Figure 4.1: An excerpt of WordNet’s vertebrates taxonomy.

building a taxonomy for types of mammals (see Figure 4.1). Frequent attestation of hypernymy
patterns like rat is a rodent in large corpora is a strong signal of the link rodent→ rat. Moreover,
sibling or coordination cues like either rats or squirrels suggest that rat is a sibling of squirrel and
adds evidence for the links rodent→ rat and rodent→ squirrel. Our model captures exactly these
types of intuitions via features on edges and on sibling edge pairs, respectively, and automatically
learns not just the weighting but the heterogeneous relational patterns themselves.

Of course, there has been a great deal of previous work on taxonomy induction (see Section 4.3
for a more detailed overview), and some key aspects of our model have appeared in different forms
elsewhere. For example, Snow et al. (2006) introduced the use of 2nd-order sibling information
to improve hypernymy prediction in an incremental taxonomy induction system. There are also
two earlier systems, Kozareva and Hovy (2010) and Navigli et al. (2011), that, like ours, build
entire taxonomies from scratch instead of simply augmenting existing taxonomies, and Navigli
et al. (2011) also use a maximum spanning tree (MST) algorithm to ensure that the system outputs
a coherent taxonomy tree.

The main contribution of this work is that we present the first discriminatively trained, struc-
tured probabilistic model over the space of taxonomy trees, using a structured inference procedure
through both the learning and decoding phases. Our model is also the first to directly learn rela-
tional patterns as part of the process of training an end-to-end taxonomic induction system rather
than using patterns that were hand-selected or learned via pairwise classifiers, and it is the first
end-to-end (i.e., non-incremental) system to include sibling (e.g., coordination) patterns at all.
We also note that our approach falls at a different point in the space of performance trade-offs
from past work – by producing complete, highly articulated trees we naturally see a more even
balance between precision and recall, while past work generally focused on precision. While dif-
ferent applications will value precision and recall differently, and past work was often intentionally

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 34

precision-focused, it is certainly the case that an ideal solution would maximize both. To avoid pre-
sumption of a single optimal tradeoff, we present results for F1 along with recall (where we see
substantial gains) and precision (where we see a drop). Note, however, that our error reduction
results are based on F1.

We test our approach in two ways. First, on the task of recreating fragments of WordNet, we
achieve a 51% error reduction over a chance baseline, including a 15% error reduction due to the
non-hypernym-factored sibling features. Second, we also compare to the results of Kozareva and
Hovy (2010) by predicting the large animal subtree of WordNet. Here, we get a 28% relative error
reduction on ancestor-based F1 and a 12% relative error reduction on parent-based accuracy.

4.1 Structured Taxonomy Induction
Given an input term set x = {x1, x2, . . . , xn}, we wish to compute the conditional distribution over
taxonomy trees y. This distribution P (y|x) is represented using the graphical model formulation
shown in Figure 4.2. A taxonomy tree y is composed of a set of indicator random variables yij
(circles in Figure 4.2), where yij = on means that xi is the parent of xj in the taxonomy tree
(i.e. there exists a directed edge from xi to xj). One such variable exists for each pair (i, j) with
0 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j. We assume a special dummy root symbol x0.

In a factor graph formulation, a set of factors (squares and rectangles in Figure 4.2) determines
the probability of each possible variable assignment. Each factor F has an associated scoring
function φF , with the probability of a total assignment determined by the product of all these
scores:

P (y|x) ∝
∏
F

φF (y) (4.1)

4.1.1 Factor Types
In the models we present here, there are three types of factors: EDGE factors that score individual
edges in the taxonomy tree, SIBLING factors that score pairs of edges with a shared parent, and a
global TREE factor that imposes the structural constraint that y form a legal taxonomy tree (i.e., a
directed spanning tree).

EDGE Factors. For each edge variable yij in the model, there is a corresponding factor Eij (small
blue squares in Figure 4.2) that depends only on yij . We score each edge by extracting a set of
features f(xi, xj) and weighting them by the (learned) weight vector w. So, the factor scoring
function is:

φEij
(yij) =

{
exp(w · f(xi, xj)) yij = on
1 yij = off

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 35

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

T

(a) Edge Features Only

y01 y02 y0n

y1ny12

y21 y2n

yn1 yn2

E02E01 E0n

E1nE12

E21 E2n

En1 En2

S12n

S21n

Sn12

T

(b) Full Model

Figure 4.2: Factor graph representation of our model, both without (a) and with (b) SIBLING

factors.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 36

SIBLING Factors. Our second model also includes factors that permit 2nd-order features looking
at terms that are siblings in the taxonomy tree. For each triple (i, j, k) with i 6= j, i 6= k, and
j < k,3 we have a factor Sijk (green rectangles in Figure 4.2b) that depends on yij and yik, and
thus can be used to encode features that should be active whenever xj and xk share the same parent,
xi. The scoring function is similar to that for the EDGE factors:

φSijk
(yij, yik) =

{
exp(w · f(xi, xj, xk)) yij = yik = on
1 otherwise

TREE Factor. Of course, not all variable assignments y form legal taxonomy trees (i.e., directed
spanning trees). For example, the assignment ∀i, j, yij = on might get a high score, but would not
be a valid output of the model. Thus, we need to impose a structural constraint to ensure that such
illegal variable assignments are assigned 0 probability by the model. We encode this in our factor
graph setting using a single global factor T (shown as a large red square in Figure 4.2) with the
following scoring function:

φT (y) =

{
1 y forms a legal taxonomy tree
0 otherwise

For a given global assignment y, let

f(y) =
∑
i,j

yij=on

f(xi, xj) +
∑
i,j,k

yij=yik=on

f(xi, xj, xk)

Note that by substituting our model’s factor scoring functions into Equation 4.1, we get:

P (y|x) ∝

{
exp(w · f(y)) y is a tree
0 otherwise

Thus, our model has the form of a standard log-linear model with feature function f .

4.1.2 Inference via Belief Propagation
With the model defined, there are two main inference tasks we wish to accomplish: computing
expected feature counts and selecting a particular taxonomy tree for a given set of input terms

3Unlike in dependency parsing, the ordering of the siblings xj and xk doesn’t matter, so having separate factors
for (i, j, k) and (i, k, j) would be redundant.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 37

(decoding). As an initial step to each of these procedures, we wish to compute the marginal prob-
abilities of particular edges (and pairs of edges) being on. In a factor graph, the natural inference
procedure for computing marginals is belief propagation. Note that finding taxonomy trees is a
structurally identical problem to directed spanning trees (and thereby non-projective dependency
parsing), for which belief propagation has previously been worked out in depth (Smith and Eisner,
2008). However, we will briefly sketch the procedure here.

Belief propagation is a general-purpose inference method that computes marginals via mes-
sages that are passed between variables and factors in the factor graph. Messages are always
between an adjacent variable and factor in the graph, and take the form of (possibly unnormal-
ized) distributions over values of the variable. There are two types of messages, depending on the
direction (variable to factor or factor to variable), with mutually recursive definitions.

Let N(V) denote the set of factors neighboring variable V in the factor graph and N(F) the
set of variables neighboring F . The message from a variable V to a factor F is fairly simple, as it
simply collects the information that variable has received from all of its other adjacent factors:

mV→F (v) ∝
∏

F ′∈N(V)\{F}

mF ′→V (v)

The message from F to V collects information from other adjacent variables, but also includes the
factor’s own scoring function:

mF→V (v) ∝
∑

XF ,XF [V]=v

φF (XF)
∏

V ′∈N(F)\V

mV ′→F (XF [V ′]) (4.2)

where XF is a partial assignment of values to just the variables in N(F).
The idea behind Equation 4.2 is that if you’re computing the message for a specific value v, you

fix that value, then sum over all possible values of every other variable that F touches, multiplying
together the factor score (which depends on all these variables) and the messages for each other
variable to get the summand for each assignment. For example, if computing a message from a
SIBLING factor to an adjacent variable, the equation comes out to:

mSijk→Yij(yij) ∝
∑
yik

φSijk
(yij, yik)mYik→Sijk

(yik)

While the EDGE and SIBLING factors are simple enough to perform the computation in Equa-
tion 4.2 by brute force, performing the sum naı̈vely for computing messages from the TREE factor
would take exponential time. However, due to the structure of that particular factor, all of its out-
going messages can be computed simultaneously in O(n3) time by using an efficient adaptation of
Kirchhoff’s Matrix Tree Theorem (Tutte, 1984) which computes partition functions and marginals

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 38

for directed spanning trees. See Smith and Eisner (2008) for details on how to incorporate the
MTT into belief propagation.

Once message passing is completed, marginal beliefs are computed by merely multiplying
together all the messages received by a particular variable or factor:

bV (v) ∝
∏

F∈N(V)

mF→V (v) (4.3)

bF (vN(F)) ∝ φF (vN(F))
∏

V ∈N(F)

mV→F (v) (4.4)

4.1.2.1 Loopy Belief Propagation

Looking closely at Figure 4.2a, one can observe that the factor graph for the first version of our
model, containing only EDGE and TREE factors, is acyclic. In this special case, belief propagation
is exact: after one round of message passing,4 the beliefs computed by equations 4.3 and 4.4 will
be the true marginal probabilities under the current model. However, in the full model, shown
in Figure 4.2b, the SIBLING factors introduce cycles into the factor graph. When a factor graph
contains cycles, the messages that are being passed around often depend on each other and so they
will change as they are recomputed. The degree of dependency depends on the length of the cycles
in the graph and the strength of variable interactions in the factor scoring functions.

The process of iteratively recomputing messages based on earlier messages is known as loopy
belief propagation. This procedure only finds approximate marginal beliefs, and is not actually
guaranteed to converge, but in practice can be quite effective for finding workable marginals in
models for which exact inference is intractable, as is the case here. All else equal, the more rounds
of message passing that are performed, the closer the computed marginal beliefs will be to the true
marginals, though in practice, there are usually diminishing returns after the first few iterations. In
our experiments, we used a fairly conservative upper bound of 20 iterations, but in most cases, the
messages converged much earlier than that.

4.1.3 Training
We used gradient-based maximum likelihood training to learn the model parameters w. Since our
model has a log-linear form, the derivative of w with respect to the likelihood objective is computed
by just taking the gold feature vector and subtracting the vector of expected feature counts.

We have features from two types of factors (EDGE and SIBLING), but their expected counts
are computed in the same way. First, we run belief propagation until completion (one iteration
for the first model, several for the second). Then, for each factor in the model we simply read off

4Assuming messages are ordered appropriately along the graph.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 39

the marginal probability of that factor being active5 according to Equation 4.4, and accumulate a
partial count for each feature that’s fired by that factor. If the model permits exact inference, then
this will yield the exact gradient, whereas if the marginal beliefs are computed using loopy belief
propagation then the gradient will be an approximation, though hopefully a reasonable one.

This method of computing the gradient can be plugged into any gradient-based optimizer in
order to learn the weights w. In our experiments we used AdaGrad (Duchi et al., 2011), an adaptive
subgradient variant of standard stochastic gradient ascent for online learning.

4.1.4 Decoding
Finally, once the model parameters have been learned, we want to use the model to find taxon-
omy trees for particular sets of input terms. Note that if we limit our scores to be edge-factored,
then, as in non-projective dependency parsing, finding the highest scoring taxonomy tree becomes
an instance of the MST problem. Also known as the maximum arborescence problem (for the
directed case), the MST problem can be solved efficiently in quadratic time (Tarjan, 1977) us-
ing the greedy, recursive Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967). See
Georgiadis (2003) for a detailed algorithmic proof, and McDonald et al. (2005) for an illustrative
example. Also, we constrain the Chu-Liu-Edmonds MST algorithm to output only single-root
MSTs, where the (dummy) root has exactly one child (Koo et al., 2007), because multi-root span-
ning ‘forests’ are not applicable to our task.

Since the MST problem can be solved efficiently, the main challenge becomes finding a way
to ensure that our scores are edge-factored. In the first version of our model, we could simply
set the score of each edge to be w · f(xi, xj), and the MST recovered in this way would indeed
be the highest scoring tree: arg maxyP (y|x). However, this straightforward approach doesn’t
apply to the full model which also uses sibling features. Hence, at decoding time, we instead
start out by once more using belief propagation to find marginal beliefs. Once we have computed
marginal edge beliefs according to Equation 4.3, we set the score of each edge to be its belief odds
ratio:

bYij (on)

bYij (off) . The MST that is found using these edge scores is actually the minimum Bayes risk
tree (Goodman, 1996) for an edge accuracy loss function (Smith and Eisner, 2008).

4.1.4.1 Relationship to Dependency Parsing

Spanning trees are familiar from non-projective dependency parsing (McDonald et al., 2005).
However, there are some important differences between dependency parsing and taxonomy in-
duction (see Figure 4.3). First, where the linear order (i.e. the indexing) of the words is critical for
dependency parsing, it is purely notational for taxonomy induction, and so here no features will
refer to the indices’ order (such as the distance, linear direction, and in-between identity features
used in dependency parsing). Moreover, features based on lexical identities and syntactic word
classes, which are primary drivers for dependency parsing, are mostly uninformative here. Instead,

5By active we just mean that features are being extracted, so for Eij , active means that yij = on, whereas for
Sijk, active means that yij = yik = on.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 40

mammal

placental

cow rodent

squirrel rat

metatherian

marsupial

kangaroo

1

cow	

 kangaroo	

 mammal	

 marsupial	

 rodent	

rat	

placental	

 squirrel	

metatherian	

root	

Figure 4.3: A mammal taxonomy subtree and its equivalent dependency tree (non-projective). In
both cases, we have used the standard dependency notation of the arrow directed from parent to
child.

in taxonomy induction, we need to learn semantic relational preferences, for which we will next
present features that capture the relations based on co-occurrence patterns and statistics in large
corpora, in addition to surface features that capture string similarities.

4.2 Features
Inducing taxonomies requires world knowledge to capture the semantic relations between various
terms. Hence, configurational and word class features are mostly uninformative here. Instead,
we use semantic cues to hypernymy and siblinghood via simple surface patterns and statistics in
large text corpora.6 We fire features on both the edge and the sibling factors. We first describe all
the edge features in detail (Section 4.2.1 and Section 4.2.2), and then briefly describe the sibling
features (Section 4.2.3), which are very similar to the edge ones.

For each edge factor Eij , which represents the potential parent-child term pair (xi, xj), we fire
the surface and semantic features discussed below. Since edges are directed, we have separate

6Note that one could also add various complementary types of useful features presented by previous work, e.g.,
bootstrapping using syntactic heuristics (Phillips and Riloff, 2002), dependency patterns (Snow et al., 2006), doubly
anchored patterns (Kozareva et al., 2008; Hovy et al., 2009), and Web definition classifiers (Navigli et al., 2011).
However, in our work, we focus mainly on the structured learning aspect.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 41

features for the factors Eij versus Eji.

4.2.1 Surface Features
Capitalization: Checks which of xi and xj are capitalized, with one feature for each value of the
tuple (isCap(xj), isCap(xi)). The intuition is that leaves of a hypernymy taxonomy are often proper
names and hence capitalized. Therefore, the feature for (false, true) (i.e., parent capitalized but not
the child) gets a substantially negative weight.

Ends with: Checks if xj ends with xi, or not. The intuition is that various children nodes in a
hypernymy taxonomy are composed of their parent string as the suffix, e.g., pairs such as (nut,
chestnut), (bee, honeybee), and (salad, potato salad) in our data.

Contains: Checks if xj contains xi, or not. The intuition is that various children nodes in a
hypernymy taxonomy contain their parent string, e.g., pairs such as (bird, bird of prey), (terror,
bioterrorism), and (war, trench warfare) in our data.

Suffix match: Checks whether the k-length suffixes of xi and xj match, or not, for k = 1, 2, . . . , 7.
This feature has an intuition of general string match, especially of the suffix portions of the strings.

LCS: We compute the longest common substring of xi and xj and create indicator features for
rounded-off and binned values of |LCS|/((|xi|+ |xj|)/2). This feature also has a similar intuition
of general surface match between the two term strings, and can capture pairs such as (oratory,
peroration), (octopod, octopus), and (undertide, undertow) in our data.

Length difference: We compute the signed length difference between xj and xi, and create indi-
cator features for rounded-off and binned values of (|xj| − |xi|)/((|xi|+ |xj|)/2).7

4.2.2 Semantic Features
4.2.2.1 Web n-gram Features

Patterns and counts: Hypernymy for a term pair (P=xi, C=xj) is often signaled by the presence of
surface patterns like C is a P, P such as C in large text corpora, an observation going back to Hearst
(1992). Therefore, for each potential parent-child edge (xi, xj), we mine the top k patterns (based
on count) in which both xi and xj occur (we use k=200). We collect patterns in both directions,
which allows us to judge the correct direction of an edge (e.g., C is a P is a positive signal for
hypernymy whereas P is a C is a negative signal).8 Next, for each pattern in this top-k list, we

7Yang and Callan (2009) use a variant for learning a similarity metric.
8We also allow patterns with surrounding words, e.g., the C is a P and C , P of.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 42

compute its normalized pattern count c, and fire an indicator feature on the tuple (pattern, t), for
all thresholds t (in a fixed set) s.t. c ≥ t.

Pattern order: We fire features on the order (direction) in which the pair (xi, xj) found a pattern
(in its top-k list) – indicator features for boolean values of the four cases: P . . . C, C . . . P , neither
direction, and both directions.9

Individual counts: We also compute the individual Web-scale term counts cxi and cxj , and fire
a comparison feature (cxi>cxj), plus features on values of the signed count difference (|cxi| −
|cxj |)/((|cxi |+ |cxj |)/2), after rounding off, and binning at multiple granularities. The intuition is
that this feature could learn whether the relative popularity of the terms signals their hypernymy
direction.

4.2.2.2 Wikipedia Abstract Features

The Web n-grams corpus has broad coverage but is limited in length (up to 5-grams only), so it
may not contain pattern-based evidence for various multi-word terms and pairs. Therefore, we
supplement it with a full-sentence resource, namely Wikipedia abstracts, which are short, useful
descriptions of a large variety of world entities.

Presence and distance: For each potential edge (xi, xj), we mine patterns from all abstracts in
which the two terms co-occur in either order, allowing a maximum term distance of 20 (because
beyond that, co-occurrence may not imply a relation). We fire a presence feature based on whether
the process above found at least one pattern for that term pair, or not. We also fire features on
the value of the minimum distance dmin at which the two terms were found in some abstract (plus
thresholded versions).

Patterns: For each term pair, we take the top-k′ patterns (based on count) of length up to l from its
full list of patterns, and fire an indicator feature on each pattern string (without the counts). We use
k′=5, l=10. Similar to the Web n-grams case, we also fire Wikipedia-based pattern order features.

4.2.3 Sibling Features
We also fire similar features on sibling factors. For each sibling factor Sijk which represents
the potential parent-children term triple (xi, xj, xk) we consider the potential sibling term pair
(xj, xk). Siblinghood for this pair is frequently indicated by the presence of surface patterns such
as either C1 or C2, C1 is similar to C2 in large text corpora. Therefore, we fire Web n-gram pattern
features and Wikipedia presence, distance, and pattern features, similar to those described above,
on each potential sibling term pair.10 The main difference here from the edge factors is that the

9Ritter et al. (2009) used the ‘both’ case for hypernym discovery.
10One can also fire features on the full triple (xi, xj , xk) but most such features will be sparse.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 43

sibling factors are symmetric (in the sense that Sijk is redundant to Sikj) and hence the patterns
are undirected. Therefore, for each term pair, we first symmetrize the collected Web n-grams and
Wikipedia patterns by accumulating the counts of symmetric patterns like rats or squirrels and
squirrels or rats.

Note that the patterns and counts for all the Web and Wikipedia semantic features described
above (both for hypernymy and siblinghood) are extracted after stemming the words in the terms,
the n-grams, and the abstracts. Also, we threshold the features (to prune away the sparse ones) by
considering only those that fire for at least t trees in the training data (t = 4 in our experiments).

4.3 Related Work
In our work, we assume a known term set and do not address the problem of extracting terms from
text. However, a great deal of past work has considered automating this process, typically taking
one of two major approaches. The clustering-based approach (Lin, 1998; Lin and Pantel, 2002;
Davidov and Rappoport, 2006; Yamada et al., 2009) discovers relations based on the assumption
that similar concepts appear in similar contexts (Harris, 1954). The pattern-based approach uses
special lexico-syntactic patterns to extract pairwise relation lists (Phillips and Riloff, 2002; Girju
et al., 2003; Pantel and Pennacchiotti, 2006; Suchanek et al., 2007; Nakov and Hearst, 2008; Ritter
et al., 2009; Hovy et al., 2009; Baroni et al., 2010; Ponzetto and Strube, 2011) and semantic classes
or class-instance pairs (Riloff and Shepherd, 1997; Katz and Lin, 2003; Pasca, 2004; Etzioni et al.,
2005; Talukdar et al., 2008). More recent systems have combined the clustering and pattern based
methods (Snow et al., 2004; Davidov and Rappoport, 2008a; Pennacchiotti and Pantel, 2009; Yang
and Callan, 2009; Do and Roth, 2010) with stronger results.

Our work focuses on the second step of taxonomy induction, namely the structured organi-
zation of terms into a complete and coherent tree-like hierarchy.11 Early work on this task as-
sumes a starting partial taxonomy and inserts missing terms into it. Widdows (2003) use a class-
labeling algorithm to place an unknown word into a region of the starting taxonomy with the most
semantically-similar neighbors, where semantic neighbors of an unknown word are found using
latent semantic analysis combined with part-of-speech information. Snow et al. (2006) incremen-
tally add novel terms to a starting taxonomy by greedily maximizing the conditional probability of
a set of relational evidence (over the heterogeneous relationships of hypernymy and coordination)
given a taxonomy. Yang and Callan (2009) incrementally cluster terms based on an ontology met-
ric, which is a pairwise semantic distance score computed using various heterogeneous features
such as context, co-occurrence, and surface patterns. Lao et al. (2012) extend a large knowledge
base using a path-constrained random walk model that learns syntactic-semantic inference rules for
binary relations from a graph representation of a parsed Web-scale text corpus and the knowledge
base.

However, the task of inducing full taxonomies without assuming a substantial initial partial
taxonomy is relatively less well studied. There is some amount of prior work on the related task

11Determining the set of input terms is orthogonal to our work, and our method can be used in conjunction with
various term extraction approaches.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 44

of hierarchical clustering, or grouping together of semantically related words: some based on
formal concept analysis (Cimiano et al., 2005), some on formal statements and parsing (Poon and
Domingos, 2010), and some on random graphs (Fountain and Lapata, 2012). The task we focus
on, though, is the discovery of direct taxonomic relationships (e.g., hypernymy) between words.

We know of two previous systems, Kozareva and Hovy (2010) and Navigli et al. (2011), that
build full taxonomies from scratch, instead of relying on an initial seed taxonomy. Both of these
systems use a process that starts by finding basic level terms (leaves of the final taxonomy tree,
typically) and then using relational patterns (doubly-anchored, hand-selected ones in the case of
Kozareva and Hovy (2010) and ones learned separately by a supervised pairwise classifier in the
case of Navigli et al. (2011)) to find intermediate terms and all the attested hypernymy links be-
tween them.12 To prune down the resulting taxonomy graph, Kozareva and Hovy (2010) use a
procedure that iteratively retains the longest paths between root and leaf terms, removing conflict-
ing graph edges as they go. The end result is acyclic, though not necessarily a tree; Navigli et al.
(2011) instead use the longest path intuition to weight edges in the graph and then find the highest
weight taxonomic tree using a standard maximum spanning tree (MST) algorithm.

4.4 Experiments

4.4.1 Data and Experimental Regime
We considered two distinct experimental setups, one that illustrates the general performance of
our model by reproducing various medium-sized WordNet domains, and another that facilitates
comparison to previous work by reproducing the much larger animal subtree provided by Kozareva
and Hovy (2010).

General setup: In order to test the accuracy of structured prediction on medium-sized full-domain
taxonomies, we extracted from WordNet 3.0 all bottomed-out full subtrees which had a tree-height
of 3 (i.e., 4 nodes from root to leaf), and contained (10, 50] terms.13 This process gives 761 trees
which we partition into 70/15/15% (533/114/114 trees) train/dev/test splits.

Comparison setup: In order to facilitate comparison with previous work, we also tested on the
much larger animal subtree made available by Kozareva and Hovy (2010), who created this dataset
by selecting a set of ‘harvested’ terms and retrieving all the WordNet hypernyms between each
input term and the root that is animal, resulting in ∼700 terms and ∼4,300 is-a ancestor-child

12Unlike our system, which assumes a complete set of terms and only attempts to induce the taxonomic structure,
both these systems include term discovery in the taxonomy building process.

13Subtrees that had a smaller or larger tree height were discarded in order to avoid overlap between the training
and test divisions. This is a stricter setting than other tasks such as parsing, which usually has repeated sentences,
clauses and phrases. To project WordNet synsets to terms, we used the first (most frequent) word in each synset. A
few synsets in WordNet have multiple parents so we only keep the first of each such pair of overlapping trees. We also
discard a few trees with duplicate terms because this is mostly due to the projection of different synsets to the same
term, and theoretically makes the tree a graph.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 45

links.14 The training set for this animal test case was generated from WordNet using the following
process: First, we strictly remove the full animal subtree from WordNet in order to avoid any
possible overlap with the test data. Next, we create random 25-sized trees by picking random
nodes as singleton trees, and repeatedly adding child edges from WordNet to the tree. This process
gives us a total of ∼1600 training trees. We choose this training regimen as different from that of
the general setup (which contains only bottomed-out subtrees), so as to match the animal test tree,
which has a depth of 12 and intermediate nodes from higher up in WordNet.

Feature sources: The n-gram semantic features are extracted from the Google n-grams corpus
(Brants and Franz, 2006), a large collection of English n-grams (for n = 1 to 5) and their frequen-
cies computed from almost 1 trillion tokens (95 billion sentences) of Web text. The Wikipedia
abstracts are obtained via the publicly available dump, which contains almost ∼4.1 million ar-
ticles.15 Preprocessing includes standard XML parsing and tokenization. We use these offline
corpora as opposed to search engine APIs or # of page hits, which face multiple issues such as
daily query limits, speed, quality of post-processed search results, instability, and irreproducibil-
ity (Kilgarriff, 2007). That said, adding other large, complementary knowledge resources used by
previous work should increase our coverage and evidence, and provide better results.

Efficient collection of feature statistics is important because these must be extracted for millions
of query pairs (for each potential edge and sibling pair in each term set). For this, we use a hash-
trie on term pairs, and scan once through the n-gram (or abstract) set, skipping many n-grams (or
abstracts) based on fast checks of missing unigrams, exceeding length, suffix mismatches, etc.

4.4.2 Evaluation Metrics

Ancestor F1: Measures the precision, recall, and F1 of correctly predicted ancestors, i.e., pairwise
is-a relations:

P =
|isagold ∩ isapredicted|
|isapredicted|

R =
|isagold ∩ isapredicted|

|isagold|

F1 =
2P R

(P +R)

14This is somewhat different from our general setup where we work with any given set of terms; they start with
a large set of leaves which have substantial Web-based relational information based on their selected, hand-picked
patterns.
The gold standard data is provided only in the form of the is-a ancestor-child links, but in order to measure parent
accuracy, we find the corresponding exact WordNet tree (by removing redundant ancestor links and some minor clean-
ing). The data is available at http://www.isi.edu/˜kozareva/downloads.html. They also provide two other
datasets on plants and vehicles but these are much smaller, and seemed to have some incorrect pairs and inconsistent
terms.

15http://dumps.wikimedia.org/enwiki/20130102/enwiki-20130102-abstract.xml

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 46

Ancestor evaluation Parent evaluation
Precision Recall F1 Accuracy

Edges-Only Model
Baseline 5.9 8.3 6.9 3.6
Surface Features 17.5 41.3 24.6 28.8
Semantic Features 37.0 49.1 42.2 36.7
Surface + Semantic Features 41.1 54.4 46.8 45.3

Edges + Siblings Model
Surface + Semantic Features 53.1 56.6 54.8 46.4
Surface + Semantic Features (Test) 48.0 55.2 51.4 46.0

Table 4.1: Main results on our general setup: on the development set, we present incremental
results on the edges-only model where we start with the chance baseline, then use surface features
only, semantic features only, and both. Finally, we add sibling factors and features to get results for
the full, edges+siblings model with all features, and also report the final test result for this setting.

Parent Accuracy: We also evaluate on a different metric that more strictly evaluates the correct-
ness of direct parent attachments.

Accuracy =
nodes with correctly predicted parent

nodes

We compute the micro-averaged version of both the ancestor and parent metrics, where we first
collect the no. of correctly predicted links across all instances (trees), and then calculate an overall
P, R, and accuracy.

4.4.3 Results
Table 4.1 shows our main results for both ancestor-based F1 and parent-based accuracy on the
general setup. We present a development set ablation study where we start with the edges-only
model (Figure 4.2a) and its random tree baseline (which chooses any arbitrary spanning tree for
the term set). Next, we show results on the edges-only model with surface features, semantic
features, and both. We see that both surface and semantic features make substantial contributions.
Finally, we add the sibling factors and features (Figure 4.2b), which further improves the results
significantly (15% relative error reduction over the edges-only results on the ancestor F1 metric).

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 47

Ancestor evaluation Parent evaluation
System Precision Recall F1 Accuracy

Fixed Prediction
Kozareva and Hovy (2010) 98.6 36.2 52.9 20.8
This Work 84.6 54.3 66.2 30.5

Free Prediction
Navigli et al. (2011) 97.0? 43.7? 60.3? –
This Work 79.3 49.0 60.6 28.1

Table 4.2: Comparison results on the animal dataset of Kozareva and Hovy (2010). For appropriate
comparison to each previous work, we show results both for the ‘Fixed Prediction’ setup, which
assumes the true root and leaves, and for the ‘Free Prediction’ setup, which doesn’t assume any
prior information. The ? results represent a different data condition; see Section 4.4.3.

The last row shows the final test set results for the full model with all features.16

Table 4.2 shows our results for comparison to the larger animal dataset of Kozareva and Hovy
(2010).17 For appropriate comparison to each previous work, we show results for two different
setups. The first setup ‘Fixed Prediction’ assumes that the model knows the true root and leaves of
the taxonomy to provide for a fairer comparison to Kozareva and Hovy (2010). We get substantial
improvements over their results on ancestor-based recall and F1 (a 28% relative error reduction),
and also on parent-based accuracy (a 12% relative error reduction). The second setup ‘Free Predic-
tion’ assumes no prior knowledge and predicts the full tree (similar to the general setup case). On
this setup, we do compare as closely as possible to Navigli et al. (2011) and see a very small gain
in F1, but regardless, we should note that their results are somewhat incomparable because they
have a different data condition: their definition and hypernym extraction phase involves using the
Google define keyword, which often returns WordNet glosses. However, we should also note
that previous work achieves substantially higher ancestor precision, while our approach achieves
a more even balance between precision and recall. Of course, precision and recall should both
ideally be high, even if some applications weigh one over the other. This is why we chose to opti-
mize F1, which represents a neutral combination for comparison, but other Fα metrics could also
be optimized.

16Note that our results are based on tuning only on the ancestor metric, and one could obtain better parent-based
results than reported, with independent optimization.

17These results are for the 1st order model due to the scale of the taxonomy. The Kozareva and Hovy (2010)
ancestor results are obtained by using the output files provided on their webpage. The parent results are obtained by
converting their graph output to a tree by removing redundant ancestor links and then randomly choosing one parent
for any remaining terms with multiple parents.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 48

Hypernymy features
C and other P > P > C

C , P of C is a P
C , a P P , including C

C or other P P (C
C : a P C , american P

C - like P C , the P
Siblinghood features

C1 and C2 C1, C2 (
C1 or C2 of C1 and / or C2

, C1 , C2 and either C1 or C2

the C1 / C2 <s> C1 and C2 </s>

Table 4.3: Examples of high-weighted hypernymy and siblinghood features learned during devel-
opment.

4.5 Analysis
Table 4.3 shows some of the semantic hypernymy and siblinghood features given highest weight
by our model (in development experiments). The training process not only rediscovers most of the
standard Hearst-style hypernymy patterns (e.g., C and other P, C is a P), but also finds various
other intuitive patterns. For example, the pattern C, american P is popular because it captures
pairs like Lemmon, american actor and Bryon, american politician, etc. Another pattern > P
> C captures webpage navigation breadcrumb trails. Similarly, the algorithm also learns useful
siblinghood features, e.g., either C1 or C2, C1 and / or C2, etc.

Finally, we look at some specific output errors to give as concrete a sense as possible of some
system confusions, though of course any hand-chosen examples must be taken as illustrative. In
Figure 4.4, we attach white admiral to admiral, whereas the gold standard makes these two terms
siblings. In reality, however, white admirals are indeed a species of admirals, so WordNet’s ground
truth turns out to be incomplete. Another such example is that we place logistic assessment in the
evaluation subtree of judgment, but WordNet makes it a direct child of judgment. However, other
dictionaries do consider logistic assessments to be evaluations. Hence, this illustrates that there
may be more than one right answer, and that the low results on this task should only be interpreted
as such. In Figure 4.5, our algorithm did not recognize that thermos is a hyponym of vacuum
flask, and that jeroboam is a kind of wine bottle. Here, our Web pattern features from the Google
n-Grams (which only contain frequent n-grams) do not suffice. We would need to add richer Web
data for such world knowledge to be reflected in the features.

CHAPTER 4. ACQUIRING SEMANTICS AS TAXONOMIES 49

butterfly

copper

American copper

hairstreak

Strymon melinus

admiral

white admiral

1

Figure 4.4: Excerpt from the predicted butterfly tree. The terms attached erroneously according to
WordNet are marked in red and italicized.

bottle

flask

vacuum flask thermos Erlenmeyer flask

wine bottle jeroboam

1

Figure 4.5: Excerpt from the predicted bottle tree. The terms attached erroneously according to
WordNet are marked in red and italicized.

50

Chapter 5

Deeper Semantics via Intensity Ordering

Finally, in this chapter, we discuss a finer-grained semantic facet – intensity order.1 Current lexical
resources such as dictionaries and thesauri do not provide information about the intensity order of
words. For example, both WordNet (Miller, 1995) and Roget’s 21st Century Thesaurus present
acceptable, great, and superb as synonyms or similar words of the adjective good. However, a
native speaker knows that these words represent varying intensity and can in fact generally be
ranked by intensity as acceptable < good < great < superb. Similarly, warm < hot < scorching
are identified as synonyms or similar words in these resources. Ranking information, however, is
crucial because it allows us to differentiate e.g., between various intensities of an emotion, and is
hence very useful for humans when learning a language, as well as for automatic text understanding
and generation tasks such as sentiment analysis, question answering, summarization, and discourse
analysis.

Our work attempts to automatically rank sets of related words by intensity, focusing in partic-
ular on near-synonym adjectives. This is made possible by the vast amounts of world knowledge
that are now available. We use lexico-semantic information extracted from a Web-scale corpus
in conjunction with an algorithm based on a Mixed Integer Linear Program (MILP). Linguistic
analyses have identified phrases such as good but not great or hot and almost scorching in a text
corpus as sources of evidence about the relative intensities of words . However, pure information
extraction approaches often fail to provide enough coverage for real-world downstream applica-
tions (Tandon and de Melo, 2010), unless some form of advanced inference is used (Snow et al.,
2006; Suchanek et al., 2009). In our work, we address this sparsity issue in two ways. First, we
exploit large amounts of Web-scale data, using special intensity patterns and Web statistics to com-
pute pairwise intensity order scores. Second, we use a linear programming model that extends the
pairwise scores to a more complete joint ranking of words on a continuous scale, while maintaining
global constraints such as transitivity and giving more weight to the order of word pairs with higher
corpus evidence scores. Instead of considering intensity ranking as a pairwise decision process,
we thus exploit the fact that individual decisions may benefit from global information, e.g., about

1The work described in this chapter was originally presented at ACL in 2013 (De Melo and Bansal, 2013). Despite
the author order, this work represents an equal contribution of each author.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 51

how two words relate to some third word.
Previous work (Sheinman and Tokunaga, 2009; Schulam and Fellbaum, 2010; Sheinman et

al., 2012) has also used lexico-semantic patterns to order adjectives. They mainly evaluate their
algorithm on a set of pairwise decisions, but also present a partitioning approach that attempts
to form scales by placing each adjective to the left or right of pivot words. Unfortunately, this
approach often fails because many pairs lack order-based evidence even on the Web, as explained
in more detail in Section 5.2.

In contrast, our MILP jointly uses information from all relevant word pairs and captures com-
plex interactions and inferences to produce intensity scales. We can thus obtain an order between
two adjectives even when there is no explicit evidence in the corpus (using evidence for related
pairs and transitive inference). Our global MILP is flexible and can incorporate additional exact-
synonymy information if available (which helps the MILP find an even better ranking solution).
Our approach extends easily to new languages. We describe two approaches for this multilingual
extension: pattern projection and cross-lingual MILPs. Moreover, our approach can also straight-
forwardly be applied to other word classes (such as verbs).

We evaluate our predicted intensity rankings using both pairwise classification accuracy and
ranking correlation coefficients, achieving strong results, significantly better than the previous ap-
proach by Sheinman & Tokunaga (32% relative error reduction) and quite close to human-level
performance.

5.1 Method
In this section, we describe each step of our approach to ordering adjectives on a single, relative
scale. Our method can also be applied to other word classes and to languages other than English.

5.1.1 Web-based Scoring Model
5.1.1.1 Intensity Scales

Near-synonyms may differ in intensity, e.g., joy vs. euphoria, or drizzle vs. rain. This is particu-
larly true of adjectives, which can represent different degrees of a given quality or attribute such as
size or age. Many adjectives are gradable and thus allow for grading adverbial modifiers to express
such intensity degrees, e.g., a house can be very big or extremely big. Often, however, completely
different adjectives refer to varying degrees on the same scale, e.g., huge, gigantic, gargantuan.
Even adjectives like enormous (or superb, impossible) that are considered non-gradable from a
syntactic perspective can be placed on a such a scale.

5.1.1.2 Intensity Patterns

Linguistic studies have found lexical patterns like ‘? but not ?’ (e.g., good but not great) to reveal
order information between a pair of adjectives (Sheinman and Tokunaga, 2009). We assume that
we have two sets of lexical patterns that allow us to infer the most likely ordering between two

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 52

Weak-Strong Patterns Strong-Weak Patterns
? (,) but not ? not ? (,) just ?
? (,) if not ? not ? (,) but just ?

? (,) although not ? not ? (,) still ?
? (,) though not ? not ? (,) but still ?
? (,) (and/or) even ? not ? (,) although still ?
? (,) (and/or) almost ? not ? (,) though still ?

not only ? but ? ? (,) or very ?
not just ? but ?

Table 5.1: Ranking patterns used for computing intensity order Web scores. Among the patterns
represented by the regular expressions above, we use only those that capture less than or equal
to five words (to fit in the Google n-grams. Articles (a, an, the) are allowed to appear before the
wildcards wherever possible.

(good, great) (great, good) (small, minute)
good , but not great→ 24492.0 not great , just good→ 248.0 small , almost minute→ 97.0

good , if not great→ 1912.0 great or very good→ 89.0 small , even minute→ 41.0
good , though not great→ 504.0 not great but still good→ 47.0

good , or even great→ 338.0
not just good but great→ 181.0

good , almost great→ 156.0

Table 5.2: Some examples from the Web-scale corpus of useful intensity-based phrases on adjec-
tive pairs.

words when encountered in a corpus. A first pattern set, Pws, contains patterns that reflect a weak-
strong order between a pair of word (the first word is weaker than the second), and a second pattern
set, Psw, captures the strong-weak order. See Table 5.1 for the adjective patterns that we used in
this work (and see Section 5.3.1 for implementation details regarding our pattern collection). Many
of these patterns also apply to other parts of speech (e.g., ‘drizzle but not rain’, ‘running or even
sprinting’), with significant discrimination on the Web in the right direction.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 53

5.1.1.3 Pairwise Scores

Given an input set of words to be placed on a scale, we first collect evidence of their intensity order
by using the above-mentioned intensity patterns and a large, Web-scale text corpus.

Previous work on information extraction from limited-sized raw text corpora revealed that
coverage is often limited (Hearst, 1992; Hatzivassiloglou and McKeown, 1993). Some studies
(Chklovski and Pantel, 2004; Sheinman and Tokunaga, 2009) used hit counts from an online search
engine, but this is unstable and irreproducible (Kilgarriff, 2007). To avoid these issues, we use the
largest available static corpus of counts, the Google n-grams corpus (Brants and Franz, 2006),
which contains English n-grams (n = 1 to 5) and their observed frequency counts, generated from
nearly 1 trillion word tokens and 95 billion sentences.

We consider each pair of words (a1, a2) in the input set in turn. For each pattern p in the
two pattern sets (weak-strong Pws and strong-weak Psw), we insert the word pair into the pattern
as p(a1, a2) to get a phrasal query like “big but not huge”. This is done by replacing the two
wildcards in the pattern by the two words in order. Finally, we scan the Web n-grams corpus
in a batch approach as described in Chapter 2 (Section 2.2), and collect frequencies of all our
phrase queries. Table 5.2 depicts some examples of useful intensity-based phrase queries and their
frequencies in the Web-scale corpus. We also collect frequencies for the input word unigrams and
the patterns for normalization purposes. Given a word pair (a1, a2) and a corpus count function
cnt, we define

W1 =
1

P1

∑
p1∈Pws

cnt(p1(a1, a2))

S1 =
1

P2

∑
p2∈Psw

cnt(p2(a1, a2))

W2 =
1

P1

∑
p1∈Pws

cnt(p1(a2, a1))

S2 =
1

P2

∑
p2∈Psw

cnt(p2(a2, a1)) (5.1)

with

P1 =
∑

p1∈Pws

cnt(p1)

P2 =
∑

p2∈Psw

cnt(p2), (5.2)

such that the final overall weak-strong score is

score(a1, a2) =
(W1 − S1)− (W2 − S2)

cnt(a1) · cnt(a2)
. (5.3)

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 54

HereW1 and S1 represent Web evidence of a1 and a2 being in the weak-strong and strong-weak
relation, respectively. W2 and S2 fit the reverse pair (a2, a1) in the patterns and hence represent
the strong-weak and weak-strong relations, respectively, in the opposite direction. Hence, overall,
(W1−S1)−(W2−S2) represents the total weak-strong score of the pair (a1, a2), i.e. the score of a1
being on the left of a2 on a relative intensity scale, such that score(a1, a2) = −score(a2, a1). The
raw frequencies in the score are divided by counts of the patterns and by individual word unigram
counts to obtain a pointwise mutual information (PMI) style normalization and hence avoid any
bias in the score due to high-frequency patterns or word unigrams.2

5.1.2 Global Ordering with an MILP
5.1.2.1 Objective and Constraints

Given pairwise scores, we now aim at producing a global ranking of the input words that is much
more informative than the original pairwise scores. Joint inference from multiple word pairs allows
us to benefit from global information: Due to the sparsity of the pattern evidence, determining how
two adjectives relate to each other can sometimes e.g., only be inferred by observing how each of
them relate to some third adjective.

We assume that we are given N input words A = a1, . . . , aN that we wish to place on a linear
scale, say [0, 1]. Thus each word ai is to be assigned a position xi ∈ [0, 1] based on the pairwise
weak-strong weights score(ai, aj). A positive value for score(ai, aj) means that ai is supposedly
weaker than aj and hence we would like to obtain xi < xj . A negative value for score(ai, aj)
means that ai is assumed to be stronger than aj , so we would want to obtain xi > xj . Therefore,
intuitively, our goal corresponds to maximizing the objective∑

i,j

sgn(xj − xi) · score(ai, aj) (5.4)

Note that it is important to use the signum function sgn() here, because we only care about the
relative order of xi and xj . Maximizing

∑
ij(xj − xi) · score(ai, aj) would lead to all words being

placed at the edges of the scale, because the highest scores would dominate over all other ones.
We do include the score magnitudes in the objective, because they help resolve contradictions in
the pairwise scores (e.g., see Figure 5.1). This is discussed in more detail in Section 5.1.2.2.

In order to maximize this non-differentiable objective, we use Mixed Integer Linear Program-
ming (MILP), a variant of linear programming in which some but not all of the variables are
constrained to be integers. Using an MILP formalization, we can find a globally optimal solution
in the joint decision space, and unlike previous work, we jointly exploit global information rather
than just individual local (pairwise) scores. To encode the objective in a MILP, we need to intro-
duce additional variables dij , wij , sij to capture the effect of the signum function, as explained
below.

2In preliminary experiments on a development set, we also evaluated other intuitive forms of normalization.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 55

better great best

score(best, better) > 0

Figure 5.1: The input weak-strong data may contain one or more cycles, e.g., due to noisy patterns,
so the final ranking will have to choose which input scores to honor and which to remove.

We additionally also enable our MILP to make use of any external equivalence (synonymy)
information E ⊆ {1, . . . , N} × {1, . . . , N} that may be available. In this context, two words are
considered synonymous if they are close enough in meaning to be placed on (almost) the same
position in the intensity scale. If (i, j) ∈ E, we can safely assume that ai, aj have near-equivalent
intensity, so we should encourage xi, xj to remain close to each other. The MILP is defined as
follows:

maximize∑
(i,j)6∈E

(wij − sij) · score(ai, aj)

−
∑

(i,j)∈E

(wij + sij) C

subject to
dij = xj − xi ∀i, j ∈ {1, . . . , N}
dij − wijC ≤ 0 ∀i, j ∈ {1, . . . , N}
dij + (1− wij)C > 0 ∀i, j ∈ {1, . . . , N}
dij + sijC ≥ 0 ∀i, j ∈ {1, . . . , N}
dij − (1− sij)C < 0 ∀i, j ∈ {1, . . . , N}
xi ∈ [0, 1] ∀i ∈ {1, . . . , N}
wij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}
sij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}

The difference variables dij simply capture differences between xi, xj . C is any very large
constant greater than

∑
i,j |score(ai, aj)|; the exact value is irrelevant. The indicator variables wij

and sij are jointly used to determine the value of the signum function sgn(dij) = sgn(xj − xi).
Variables wij become 1 if and only if dij > 0 and hence serve as indicator variables for weak-

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 56

am an

a1 a2 a3

?

Figure 5.2: Equivalence Information: Knowing that am, a2 are synonyms gives the MILP an
indication of where to place an on the scale with respect to a1, a2, a3.

strong relationships in the output. Variables sij become 1 if and only if dij < 0 and hence serve as
indicator variables for a strong-weak relationship in the output. The objective encourages wij =
1 for score(ai, aj) > 0 and sij = 1 for score(ai, aj) < 0.3 When equivalence (synonymy)
information is available, then for (i, j) ∈ E both sij = 0 and wij = 0 are encouraged.

5.1.2.2 Discussion

Our MILP uses intensity evidence of all input pairs together and assimilates all the scores via global
transitivity constraints to determine the positions of the input words on a continuous real-valued
scale. Hence, our approach addresses drawbacks of local or divide-and-conquer approaches, where
adjectives are scored with respect to selected pivot words, and hence many adjectives that lack pair-
wise evidence with the pivots are not properly classified, although they may have order evidence
with some third adjective that could help establish the ranking. Optional synonymy information
can further help, as shown in Figure 5.2.

Moreover, our MILP also gives higher weight to pairs with higher scores, which is useful when
breaking global constraint cycles as in the simple example in Figure 5.1. If we need to break a
constraint violating triangle or cycle, we would have to make arbitrary choices if we were ranking
based on sgn(score(a, b)) alone. Instead, we can choose a better ranking based on the magnitude
of the pairwise scores. A stronger score between an adjective pair doesn’t necessarily mean that
they should be further apart in the ranking. It means that these two words are attested together on
the Web with respect to the intensity patterns more than with other candidate words. Therefore,
we try to respect the order of such word pairs more in the final ranking when we are breaking
constraint-violating cycles.

3In order to avoid numeric instability issues due to very small score(ai, aj) values after frequency normalization,
in practice we have found it necessary to rescale them by a factor of 1 over the smallest |score(ai, aj)| > 0.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 57

5.2 Related Work
Hatzivassiloglou and McKeown (1993) presented the first step towards automatic identification
of adjective scales, thoroughly discussing the background of adjective semantics and a means of
discovering clusters of adjectives that belong on the same scale, thus providing one way of creating
the input for our ranking algorithm.

Inkpen and Hirst (2006) study near-synonyms and nuances of meaning differentiation (such
as stylistic, attitudinal, etc.). They attempt to automatically acquire a knowledge base of near-
synonym differences via an unsupervised decision-list algorithm. However, their method depends
on a special dictionary of synonym differences to learn the extraction patterns, while we use only
a raw Web-scale corpus.

Mohammad et al. (2013) proposed a method of identifying whether two adjectives are antony-
mous. This problem is related but distinct, because the degree of antonymy does not necessarily
determine their position on an intensity scale. Antonyms (e.g., little, big) are not necessarily on
the extreme ends of scales.

Sheinman and Tokunaga (2009) and Sheinman et al. (2012) present the most closely related
previous work on adjective intensities. They collect lexico-semantic patterns via bootstrapping
from seed adjective pairs to obtain pairwise intensities, albeit using search engine ‘hits’, which
are unstable and problematic (Kilgarriff, 2007). While their approach is primarily evaluated in
terms of a local pairwise classification task, they also suggest the possibility of ordering adjectives
on a scale using a pivot-based partitioning approach. Although intuitive in theory, the extracted
pairwise scores are frequently too sparse for this to work. Thus, many adjectives have no score
with a particular headword. In our experiments, we reimplemented this approach and show that
our MILP method improves over it by allowing individual pairwise decisions to benefit more from
global information. Schulam and Fellbaum (2010) apply the approach of Sheinman and Tokunaga
(2009) to German adjectives. Our method extends easily to various foreign languages as described
in Section 5.4.

Another related task is the extraction of lexico-syntactic and lexico-semantic intensity-order
patterns from large text corpora. The seminal work by Hearst (1992) extracted patterns for the
hypernymy and meronymy relations. Later work (Chklovski and Pantel, 2004; Yang and Su, 2007;
Davidov and Rappoport, 2008b; Turney, 2008; Tandon and de Melo, 2010) explored similar pat-
terns for various other relations such as verb strengths, synonymy, antonymy, and coreference.
Sheinman and Tokunaga (2009) follows Davidov and Rappoport (2008b) to automatically boot-
strap adjective scaling patterns using seed adjectives and Web hits. These methods thus can be
used to provide the input patterns for our algorithm.

VerbOcean by Chklovski and Pantel (2004) extracts various fine-grained semantic relations
(including the stronger-than relation) between pairs of verbs, using lexico-syntactic patterns over
the Web. Our approach of jointly ranking a set of words using pairwise evidence is also applicable
to the VerbOcean pairs, and should help address similar sparsity issues of local pairwise decisions.
Such scales will again be quite useful for language learners and language understanding tools.

Marneffe et al. (2010) infer yes-or-no answers to questions with responses involving scalar
adjectives in a dialogue corpus. They correlate adjectives with ratings in a movie review corpus to

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 58

find that good appears in lower-rated reviews than excellent.
Finally, there has been a lot of work on measuring the general sentiment polarity of words

(Hatzivassiloglou and McKeown, 1997; Hatzivassiloglou and Wiebe, 2000; Turney and Littman,
2003; Liu and Seneff, 2009; Taboada et al., 2011; Yessenalina and Cardie, 2011; Pang and Lee,
2008). Our work instead aims at producing a large, unrestricted number of individual intensity
scales for different qualities and hence can help in fine-grained sentiment analysis with respect to
very particular content aspects.

5.3 Experiments

5.3.1 Data
Input Clusters In order to obtain input clusters for evaluation, we started out with the satellite
cluster or ‘dumbbell’ structure of adjectives in WordNet 3.0, which consists of two direct antonyms
as the poles and a number of other satellite adjectives that are semantically similar to each of the
poles (Gross and Miller, 1990). For each antonymy pair, we determined an extended dumbbell set
by looking up synonyms and words in related (satellite adjective and see-also) synonym sets. We
cut such an extended dumbbell into two antonymous halves and treated each of these halves as a
potential input adjective cluster.

Most of these WordNet clusters are noisy for the purpose of our task, i.e. they contain adjectives
that appear unrelatable on a single scale due to polysemy and semantic drift, e.g., violent with
respect to supernatural and affected. Motivated by Sheinman and Tokunaga (2009), we split such
hard-to-relate adjectives into smaller scale-specific subgroups using the corpus evidence4. For this,
we consider an undirected edge between each pair of adjectives that has a non-zero intensity score
(based on the Web-scale scoring procedure described in Section 5.1.1.3). The resulting graph is
then partitioned into connected components such that any adjectives in a subgraph are at least
indirectly connected via some path and thus much more likely to belong to the same intensity
scale. While this does break up partitions whenever there is no corpus evidence connecting them,
ordering the adjectives within each such partition remains a challenging task. This is because the
Web evidence will still not necessarily directly relate all adjectives (in a partition) to each other.
Additionally, the Web evidence may still indicate the wrong direction. Figure 5.3 shows the size
distribution of the resulting partitions.

Patterns To construct our intensity pattern set, we started with a couple of common rankable
adjective seed pairs such as (good, great) and (hot, boiling) and used the Web-scale n-grams corpus
(Brants and Franz, 2006) to collect the few most frequent patterns between and around these seed-
pairs (in both directions). Among these, we manually chose a small set of intuitive patterns that are
linguistically useful for ordering adjectives, several of which had not been discovered in previous

4Note that we do not use the WordNet dataset of Sheinman and Tokunaga (2009) for evaluation, as it does not
provide full scales. Instead, their annotators only made pairwise comparisons with select words, using a 5-way classi-
fication scheme (neutral, mild, very mild, intense, very intense).

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 59

438

115
60 35 19 12 14 5 4 3

0

100

200

300

400

500

2 3 4 5 6 7 8 9 10-14 15-17

of

 c
ha

in
s

Length of chain

Figure 5.3: The histogram of the adjective cluster sizes after partitioning.

work. These are shown in Table 5.1. Note that we only collected patterns that were not ambiguous
in the two orders, for example the pattern ’? , not ?’ is ambiguous because it can be used as both
’good, not great’ and ’great, not good’. Alternatively, one can easily also use fully-automatic
bootstrapping techniques based on seed word pairs (Hearst, 1992; Chklovski and Pantel, 2004;
Yang and Su, 2007; Turney, 2008; Davidov and Rappoport, 2008b). However, our semi-automatic
approach is a simple and fast process that extracts a small set of high-quality and very general
adjective-scaling patterns. This process can quickly be repeated from scratch in any other language.
Moreover, as described in Section 5.4.1, the English patterns can also be projected automatically
to patterns in other languages.

Development and Test Sets Section 5.1.1 describes the method for collecting the intensity scores
for adjective pairs, using Web-scale n-grams (Brants and Franz, 2006). We relied on a small devel-
opment set to test the MILP structure and the pairwise score setup. For this, we manually chose 5
representative adjective clusters from the full set of clusters.

The final test set, distinct from this development set, consists of 569 word pairs in 88 clusters,
each annotated by two native speakers of English. To arrive at this data, we randomly drew 30
clusters each for cluster sizes 3, 4, and 5+ from the histogram of partitioned adjective clusters in
Figure 5.3. While labeling a cluster, annotators could exclude words that they deemed unsuitable
to fit on a single shared intensity scale with the rest of the cluster. Fortunately, the partitioning
described earlier had already separated most such cases into distinct clusters. The annotators or-
dered the remaining words on a scale. Words that seemed indistinguishable in strength could share
positions in their annotation.

As our goal is to compare scale formation algorithms, we did not include trivial clusters of size

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 60

41

27

12
3 3 2

0

10

20

30

40

50

3 4 5 6 7 8

of

 c
ha

in
s

Length of chain

Figure 5.4: The histogram of adjective cluster sizes in the test set.

2. On such trivial clusters, the Web evidence alone determines the output and hence all algorithms,
including the baseline, obtain the same pairwise accuracy (defined below) of 93.3% on a separate
set of 30 random clusters of size 2.

Figure 5.4 shows the distribution of cluster sizes in our main gold set. The inter-annotator
agreement in terms of Cohen’s κ (Cohen, 1960) on the pairwise classification task with 3 labels
(weaker, stronger, or equal/unknown) was 0.64. In terms of pairwise accuracy, the agreement was
78.0%.

5.3.2 Metrics
In order to thoroughly evaluate the performance of our adjective ordering procedure, we rely on
both pairwise and ranking-correlation evaluation metrics. Consider a set of input words A =
{a1, a2, . . . , an} and two rankings for this set – a gold-standard ranking rG(A) and a predicted
ranking rP (A).

5.3.2.1 Pairwise Accuracy

For a pair of words ai, aj , we may consider the classification task of choosing one of three la-
bels (<, >, =?) for the case of ai being weaker, stronger, and equal (or unknown) in intensity,
respectively, compared to a2:

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 61

L(a1, a2) =


< if r(ai) < r(aj)
> if r(ai) > r(aj)
=? if r(ai) = r(aj)

For each pair (a1, a2), we compute gold-standard labelsLG(a1, a2) and predicted labelsLP (a1, a2)
as above, and then the pairwise accuracy PW (A) for a particular ordering on A is simply the
fraction of pairs that are correctly classified, i.e. for which the predicted label is same as the
gold-standard label:

PW (A) =

∑
i<j

1{LG(ai, aj) = LP (ai, aj)}∑
i<j

1

5.3.2.2 Ranking Correlation Coefficients

Our second type of evaluation assesses the rank correlation between two ranking permutations
(gold-standard and predicted). Many studies use Kendall’s tau (Kendall, 1938), which measures
the total number of pairwise inversions, while others prefer Spearman’s rho (Spearman, 1904),
which measures the L1 distance between ranks.

Kendall’s tau correlation coefficient We use the τb version of Kendall’s correlation metric, as
it incorporates a correction for ties (Kruskal, 1958; Dou et al., 2008):

τb =
P −Q√

(P +Q+X0) · (P +Q+ Y0)

where P is the number of concordant pairs, Q is the number of discordant pairs, X0 is the
number of pairs tied in the first ranking, Y0 is the number of pairs tied in the second ranking. Given
the two rankings of an adjective set A, the gold-standard ranking rG(A) and the predicted ranking
rP (A), two words ai, aj are:

• concordant iff both rankings have the same strict order of the two elements, i.e., rG(ai) >
rG(aj) and rP (ai) > rP (aj), or rG(ai) < rG(aj) and rP (ai) < rP (aj).
• discordant iff the two rankings have an inverted strict order of the two elements, i.e., rG(ai) >
rG(aj) and rP (ai) < rP (aj), or rG(ai) < rG(aj) and rP (ai) > rP (aj).
• tied iff rG(ai) = rG(aj) or rP (ai) = rP (aj).

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 62

Spearman’s rho correlation coefficient For two n-sized ranked lists {xi} and {yi}, the Spear-
man correlation coefficient is defined as the Pearson correlation coefficient between the ranks of
variables:

ρ =

∑
i

(xi − x̄) · (yi − ȳ)√∑
i

(xi − x̄)2 ·
∑
i

(yi − ȳ)2

Here, x̄ and ȳ denote the means of the values in the respective lists. We use the standard procedure
for handling ties correctly. Tied values are assigned the average of all ranks of items sharing the
same value in the ranked list sorted in ascending order of the values.

Handling Inversions While annotating, we sometimes observed that the ordering itself was very
clear but the annotators disagreed about which end of a particular scale was to count as the strong
one, e.g., when transitioning from soft to hard or from alpha to beta. We thus also report average
absolute values of both correlation coefficients, as these properly account for anticorrelations. Our
test set only contains clusters of size 3 or larger, so there is no need to account for inversions in
clusters of size 2.

5.3.2.3 Inter-annotator agreement

To measure the agreement between human annotators, we additionally report the standard Cohen’s
kappa coefficient (Cohen, 1960) on the pairwise classification task with 3 labels (as described
above):

κ =
Pr(a)− Pr(e)

1− Pr(e)

where Pr(a) is the relative observed agreement among raters, and Pr(e) is the hypothetical proba-
bility of chance agreement, using the observed data to calculate the probabilities of each observer
randomly selecting each category.

5.3.3 Results
In Table 5.3, we use the evaluation metrics mentioned above to compare several different ap-
proaches.

Web Baseline The first baseline simply reflects the original pairwise Web-based intensity scores.
We classify (with one of 3 labels) a given pair of adjectives using the Web-based intensity scores
(as described in Section 5.1.1.3) as follows:

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 63

Method Pairwise Accuracy Avg. τ Avg. |τ | Avg. ρ Avg. |ρ|
Web Baseline 48.2% N/A N/A N/A N/A
Divide-and-Conquer 50.6% 0.45 0.53 0.52 0.62
Sheinman and Tokunaga (2009) 55.5% N/A N/A N/A N/A
MILP 69.6% 0.57 0.65 0.64 0.73
MILP with synonymy 78.2% 0.57 0.66 0.67 0.80
Inter-Annotator Agreement 78.0% 0.67 0.76 0.75 0.86

Table 5.3: The main test results on global intensity ordering for adjectives.

Lbaseline(a1, a2) =


< if score(ai, aj) > 0
> if score(ai, aj) < 0
=? if score(ai, aj) = 0

Since score(ai, aj) represents the weak-strong score of the two adjectives, a more positive value
means a higher likelihood of ai being weaker (<, on the left) in intensity than aj .

In Table 5.3, we observe that the (micro-averaged) pairwise accuracy, as defined earlier, for the
original Web baseline is 48.2%, while the ranking measures are undefined because the individual
pairs do not lead to a coherent scale.

Divide-and-Conquer The divide-and-conquer baseline recursively splits a set of words into
three subgroups, placed to the left (weaker), on the same position (no evidence), or to the right
(stronger) of a given randomly chosen pivot word.

While this approach shows only a minor improvement in terms of the pairwise accuracy (50.6%),
its main benefit is that one obtains well-defined intensity scales rather than just a collection of pair-
wise scores.

Sheinman and Tokunaga The approach by Sheinman and Tokunaga (2009) involves a similar
divide-and-conquer based partitioning in the first phase, except that their method makes use of syn-
onymy information from WordNet and uses all synonyms in WordNet’s synset for the headword as
neutral pivot elements (if the headword is not in WordNet, then the word with the maximal unigram
frequency is chosen). In the second phase, their method performs pairwise comparisons within the
more intense and less intense subgroups. We reimplement their approach here, using the Google
N-Grams dataset instead of online Web search engine hits. We observe a small improvement over
the Web baseline in terms of pairwise accuracy. Note that the rank correlation measure scores are
undefined for their approach. This is because in some cases their method placed all words on the
same position in the scale, which these measures cannot handle even in their tie-corrected versions.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 64

Predicted Class
Weaker Tie Stronger

True Class
Weaker 117 127 15

Tie 5 42 15
Stronger 11 122 115

Table 5.4: The confusion matrix for the Web baseline output.

Predicted Class
Weaker Tie Stronger

True Class
Weaker 177 29 53

Tie 9 24 29
Stronger 15 38 195

Table 5.5: The confusion matrix for the MILP output.

Overall, the Sheinman and Tokunaga approach does not aggregate information sufficiently well at
the global level and often fails to make use of transitive inference.

MILP Our MILP exploits the same pairwise scores to induce significantly more accurate pair-
wise labels with 69.6% accuracy, a 41% relative error reduction over the Web baseline, 38% over
Divide-and-Conquer, and 32% over Sheinman and Tokunaga (2009). We further see that our MILP
method is able to exploit external synonymy (equivalence) information (using synonyms marked
by the annotators). The accuracy of the pairwise scores as well as the quality of the overall rank-
ing increase even further to 78.2%, approaching the human inter-annotator agreement. In terms
of average correlation coefficients, we observe similar improvement trends from the MILP, but of
different magnitudes, because these averages give small clusters the same weight as larger ones.

5.3.4 Analysis
Confusion Matrices For a given approach, we can study the confusion matrix obtained by cross-
tabulating the gold classification with the predicted classification of every unique pair of adjectives
in the ground truth data. Table 5.4 shows the confusion matrix for the Web baseline. We observe
that due to the sparsity of pairwise intensity order evidence, the baseline method predicts too many
ties.

Table 5.5 provides the confusion matrix for the MILP (without external equivalence informa-
tion) for comparison. Although the middle column still shows that the MILP predicts more ties

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 65

Accuracy Prediction Gold Standard

Good
hard

< painful
< hopeless

hard
< painful
< hopeless

full
< stuffed
< (overflowing,

overloaded)

full
< stuffed
< overflowing
< overloaded

unusual
< uncommon
< rare
< exceptional
< extraordinary

uncommon
< unusual
< rare
< extraordinary
< exceptional

Average creepy
< scary
< sinister
< frightening
< terrifying

creepy
< (scary, frightening)
< terrifying
< sinister

Bad
(awake, conscious)

< alive
< aware

alive
< awake
< (aware, conscious)

strange
< (unusual, weird)
< (funny, eerie)

(strange, funny)
< unusual
< weird
< eerie

Table 5.6: Some examples (of bad, average and good accuracy) of our MILP predictions (without
synonymy information) and the corresponding gold-standard annotation.

than humans annotators, we find that a clear majority of all unique pairs are now correctly placed
along the diagonal. This confirms that our MILP successfully infers new ordering decisions, al-
though it uses the same input (corpus evidence) as the baseline. The remaining ties are mostly just
the result of pairs for which there simply is no evidence at all in the input Web counts. Note that
this problem could for instance be circumvented by relying on a crowdsourcing approach: A few
dispersed tie-breakers are enough to allow our MILP to correct many other predictions.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 66

Weak-Strong Patterns Strong-Weak Patterns
English German English German
? but not ? ? aber nicht ? not ? just ? nicht ? gerade ?
? if not ? ? wenn nicht ? not ? but just ? nicht ? aber nur ?

? and almost ? ? und fast ? not ? though still ? nicht ? aber immer noch ?
not just ? but ? nicht nur ? sondern ? ? or very ? ? oder sehr ?

Table 5.7: Examples of German intensity patterns projected (translated) directly from the English
patterns.

Predicted Examples Finally, in Table 5.6, we provide a selection of real results obtained by our
algorithm. For instance, it correctly inferred that terrifying is more intense than creepy or scary,
although the Web pattern counts did not provide any explicit information about these words pairs.
In some cases, however, the Web evidence did not suffice to draw the right conclusions, or it was
misleading due to issues like polysemy (as for the word funny).

While we show results on gold-standard chains here for evaluation purposes, in practice one
can also recombine two [0, 1] chains for a pair of antonymic clusters to form a single scale from
[−1, 1] that visualizes the full spectrum of available adjectives along a dimension, from adjacent
all the way to removed, or from black to glaring.

5.4 Extension to Multilingual Ordering
Our method for globally ordering words on a scale can easily be applied to languages other than
English. The entire process is language-independent as long as the required resources are available
and a small number of patterns are chosen. For morphologically rich languages, the information
extraction step of course may require additional morphological analysis tools for stemming and
aggregating frequencies across different forms.

Alternatively, a cross-lingual projection approach is possible at multiple levels, utilizing infor-
mation from the English data and ranking. As the first step, the set of words in the target language
that we wish to rank can be projected from the English word set if necessary – e.g., as shown in
Melo and Weikum (2009). Next, we outline two projection methods for the ordering step. The first
method is based on projection of the English intensity-ordering patterns to the new language, and
then using the same MILP as described in Section 5.1.2. In the second method, we also change the
MILP and add cross-lingual constraints to better inform the target language’s adjective ranking. A
detailed empirical evaluation of these approaches remains future work.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 67

5.4.1 Cross-lingual Pattern Projection
Instead of creating new patterns, in many cases we obtain quite adequate intensity patterns by using
cross-lingual projection. We simply take several adjective pairs, instantiate the English patterns
with them, and obtain new patterns using a machine translation system. Filling the wildcards in a
pattern, say ‘? but not ?’, with good/excellent results in ‘good but not excellent’. This phrase is then
translated into the target language using the translation system, say into German ‘gut aber nicht
ausgezeichnet’. Finally, put back the wildcards in the place of the translations of the adjective
words, here gut and ausgezeichnet, to get the corresponding German pattern ‘? aber nicht ?’.
Table 5.7 shows various German intensity patterns that we obtain by projecting from the English
patterns as described. The process is repeated with multiple adjective pairs in case different variants
are returned, e.g., due to morphology. Most of these translations deliver useful results.

Now that we have the target language adjectives and the ranking patterns, we can compute the
pairwise intensity scores using large-scale data in that language. We can use the Google n-grams
corpora for 10 European languages (Brants and Franz, 2009), and also for Chinese (LDC2010T02)
and Japanese (LDC2009T08). For other languages, one can use available large raw-text corpora or
Web crawling tools.

5.4.2 Cross-lingual MILP
To improve the rankings for lesser-resourced languages, we can further use a joint MILP approach
for the new language we want to transfer this process to. Additional constraints between the En-
glish words and their corresponding target language translations, in combination with the English
ranking information, allow the algorithm to obtain better rankings for the target words whenever
the non-English target language corpus does not provide sufficient intensity order evidence.

In this case, the input set A contains words in multiple languages. The Web intensity scores
score(ai, aj) should be set to zero when comparing words across languages. We instead link them
using a translation table T ⊆ {1, . . . , N}×{1, . . . , N} from a translation dictionary or phrase table.
Here, (i, j) ∈ T signifies that ai is a translation of aj . We do not require a bijective relationship
between them (i.e., translations needn’t be unique). The objective function is augmented by adding
the new term ∑

(i,j)∈T

(w′
ij + s′ij)CT (5.5)

for a constant CT > 0 that determines how much weight we assign to translations as opposed
to the corpus count scores. The MILP is extended by adding the following extra constraints.

CHAPTER 5. DEEPER SEMANTICS VIA INTENSITY ORDERING 68

dij − w′
ijCT < −dmax ∀i, j ∈ {1, . . . , N}

dij + (1− w′
ij)CT ≥ −dmax ∀i, j ∈ {1, . . . , N}

dij + s′ijCT > dmax ∀i, j ∈ {1, . . . , N}
dij − (1− s′ij)CT ≤ dmax ∀i, j ∈ {1, . . . , N}
w′
ij ∈ {0, 1} ∀i, j ∈ T

s′ij ∈ {0, 1} ∀i, j ∈ T

The variables di,j , as before, encode distances between positions of words on the scale, but now
also include cross-lingual pairs of words in different languages. The new constraints encourage
translational equivalents to remain close to each other, preferably within a desired (but not strictly
enforced) maximum distance dmax. The new variables w′

ij , s
′
ij are similar to wij , sij in the standard

MILP. However, the w′
ij become 1 if and only if dij ≥ −dmax and the s′ij become 1 if and only if

dij ≤ dmax. If both w′
ij and s′ij are 1, then the two words have a small distance −dmax ≤ dij ≤

dmax. The augmented objective function explicitly encourages this for translational equivalents.
Overall, this approach thus allows evidence from a language with more Web evidence to improve
the process of adjective ordering in lesser-resourced languages.

69

Chapter 6

Conclusions

This thesis has discussed the idea of incorporating world knowledge in structured NLP tasks via
surface features from Web-scale corpora, especially a large n-gram corpus. We have found that
such shallow features are effective in resolving various complex semantic ambiguities in syntactic
parsing, coreference resolution, taxonomy induction, and intensity ordering.

When investigating syntactic ambiguities, our Web features capture useful cases where local
surface counts and context words are good indicators of attachments, e.g., an adverb next to a
preposition, a preposition next to a noun, a pronoun such as it between a verb and a preposition,
a capitalized determiner such as The before a noun and preposition, and so on. Our automatically
learned, highest-weight features rediscover most of the hand-designed cues discussed in previous
work and also discover various new, intuitive cues. Similarly, Web features for coreference reso-
lution are successful in correctly determining the referent of rare proper names, e.g., Mulcahy and
athletic director, Barry Bonds and the best baseball player, etc. For the task of taxonomy induc-
tion, our probabilistic, heterogeneous model learns a suite of useful hypernymy and siblinghood
features from the Web, e.g., C and other P, > P > C, either C1 or C2, and C1 and / or C2. Finally,
patterns like good but not great, not excellent but still great, and excellent or very good, and their
Web statistics capture pairwise ordering of near-synonyms like good, great, and excellent, which
when incorporated into a global inference method, achieves accurate semantic intensity orderings.

However, there are still various challenges that need to be addressed. For instance, we use an
n-gram version of the Web which has a major drawback of limiting us to short-distance queries
(which are of size 5 in our case). This especially becomes as issue when we are working with long,
multi-word terms and phrases, because these will usually not fit in 5-grams. For syntactic parsing
and coreference resolution, we chose to work with shorter representations of the full phrase, e.g.,
head words in this case. However, for the task of taxonomy induction, we need to work with
the exact full term, and hence, we included an additional, full-sentence dataset such as Wikipedia.
Therefore, adding broader, deeper, and larger Web-scale resources so as to overcome short-distance
limits and sparsity, is an important future direction.

Even more crucial is the handling of out-of-domain and specialized-domain scenarios in the
various semantic facets that we addressed. These scenarios bring in new challenges because rare
languages and domains seldom have large datasets to extract surface cues from, and hence, one

CHAPTER 6. CONCLUSIONS 70

might benefit from domain adaptation techniques. Moreover, deeper semantic ambiguities such
as those in detection of entailment (buy → own, murdered → dead), finer-grained -nymy rela-
tions (e.g., meronymy and troponymy), metaphors and idioms, pragmatics (meaning in context),
and grounded implicature (run → increased heart-rate, move from A to B) will need new world
knowledge cues and models, and these are exciting next directions.

71

Bibliography

Michaela Atterer and Hinrich Schutze (2007). Prepositional phrase attachment without oracles. In
Computational Linguistics 33(4), pp. 469–476.

Amit Bagga and Breck Baldwin (1998). Algorithms for scoring coreference chains. In Proceedings
of the International Conference on Language Resources and Evaluation Workshop on Linguis-
tics Coreference (LREC MUC).

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. (1998). The Berkeley Framenet project. In
Proceedings of the 17th International Conference on Computational Linguistics and the 36th
annual meeting of the Association for Computational Linguistics (COLING-ACL).

Mohit Bansal and Dan Klein (2011). Web-scale features for full-scale parsing. In Proceedings of
the Annual Meeting on Association for Computational Linguistics (ACL).

Mohit Bansal and Dan Klein (2012). Coreference semantics from Web features. In Proceedings of
the Annual Meeting on Association for Computational Linguistics (ACL).

Mohit Bansal, David Burkett, Gerard De Melo, and Dan Klein (2013). Structured learning for
taxonomy induction with belief propagation. In submission.

Marco Baroni, Brian Murphy, Eduard Barbu, and Massimo Poesio (2010). Strudel: A corpus-based
semantic model based on properties and types. In Cognitive Science 34.2, pp. 222–254.

Eric Bengtson and Dan Roth (2008). Understanding the value of features for coreference resolu-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Shane Bergsma and Dekang Lin (2006). Bootstrapping path-based pronoun resolution. In Proceed-
ings of the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics (COLING-ACL).

BIBLIOGRAPHY 72

Shane Bergsma, Emily Pitler, and Dekang Lin (2010). Creating robust supervised classifiers via
Web-scale n-gram data. In Proceedings of the Annual Meeting on Association for Computa-
tional Linguistics (ACL).

Thorsten Brants and Alex Franz (2006). The Google Web 1T 5-gram corpus version 1.1. In
LDC2006T13.

Thorsten Brants and Alex Franz (2009). Web 1T 5-gram, 10 European languages, version 1. In
LDC2009T25.

Eugene Charniak and Mark Johnson (2005). Coarse-to-fine n-best parsing and MaxEnt discrim-
inative reranking. In Proceedings of the Annual Meeting on Association for Computational
Linguistics (ACL).

Timothy Chklovski and Patrick Pantel (2004). VerbOcean: mining the Web for fine-grained seman-
tic verb relations. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Yoeng-Jin Chu and Tseng-Hong Liu (1965). On the shortest arborescence of a directed graph. In
Science Sinica 14.1396-1400, p. 270.

Kenneth Ward Church and Patrick Hanks (1989). Word association norms, mutual information,
and lexicography. In Proceedings of the Annual Meeting on Association for Computational
Linguistics (ACL).

Philipp Cimiano, Andreas Hotho, and Steffen Staab (2005). Learning concept hierarchies from
text corpora using formal concept analysis. In Journal of Artificial Intelligence Research 24.1,
pp. 305–339.

Jacob Cohen (1960). A coefficient of agreement for nominal scales. In Educational and Psycho-
logical Measurement 20(1), pp. 37–46.

Michael Collins (1999). Head-driven statistical models for natural language parsing. In Ph.D. the-
sis, University of Pennsylvania, Philadelphia.

Michael Collins (2000). Discriminative reranking for natural language parsing. In Proceedings of
the International Conference on Machine Learning (ICML).

BIBLIOGRAPHY 73

Michael Collins (2002). Discriminative training methods for Hidden Markov Models: Theory and
experiments with perceptron algorithms. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Michael Collins (2003). Head-driven statistical models for natural language parsing. In Computa-
tional linguistics 29.4, pp. 589–637.

Michael Collins and Terry Koo (2005). Discriminative reranking for natural language parsing. In
Computational Linguistics 31(1), pp. 25–70.

Hal Daumé III and Daniel Marcu (2005). A large-scale exploration of effective global features for
a joint entity detection and tracking model. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Dmitry Davidov and Ari Rappoport (2006). Efficient unsupervised discovery of word categories
using symmetric patterns and high frequency words. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the Association for
Computational Linguistics (COLING-ACL).

Dmitry Davidov and Ari Rappoport (2008a). Classification of semantic relationships between nom-
inals using pattern clusters. In Proceedings of the Annual Meeting on Association for Compu-
tational Linguistics (ACL).

Dmitry Davidov and Ari Rappoport (2008b). Unsupervised discovery of generic relationships us-
ing pattern clusters and its evaluation by automatically generated sat analogy questions. In
Proceedings of the Annual Meeting on Association for Computational Linguistics (ACL).

Gerard De Melo and Mohit Bansal (2013). Good, great, excellent: Global inference of semantic
intensities. In Proceedings of the Transactions of the Association for Computational Linguistics
(TACL).

Q.X. Do and D. Roth (2010). Constraints based taxonomic relation classification. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Zhicheng Dou, Ruihua Song, Xiaojie Yuan, and Ji-Rong Wen (2008). Are click-through data ade-
quate for learning Web search rankings? In Proceedings of the ACM International Conference
on Information and Knowledge Management (CIKM).

BIBLIOGRAPHY 74

John Duchi, Elad Hazan, and Yoram Singer (2011). Adaptive subgradient methods for online learn-
ing and stochastic optimization. In The Journal of Machine Learning Research 12, pp. 2121–
2159.

Jack Edmonds (1967). Optimum branchings. In Journal of Research of the National Bureau of
Standards B 71, pp. 233–240.

Bradley Efron and Robert Tibshirani (1993). An introduction to the bootstrap. In Chapman & Hall
CRC.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soder-
land, Daniel S. Weld, and Alexander Yates (2005). Unsupervised named-entity extraction from
the Web: An experimental study. In Artificial Intelligence 165.1, pp. 91–134.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John Prager, Nico Schlaefer, and Chris Welty
(2010). Building Watson: An overview of the DeepQA project. In AI magazine 31.3, pp. 59–
79.

Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning (2008). Efficient, feature-based,
conditional random field parsing. In Proceedings of the Annual Meeting on Association for
Computational Linguistics (ACL).

Trevor Fountain and Mirella Lapata (2012). Taxonomy induction using hierarchical random graphs.
In Proceedings of the North American Chapter of the Association for Computational Linguis-
tics (NAACL).

Leonidas Georgiadis (2003). Arborescence optimization problems solvable by Edmond’s algo-
rithm. In Theoretical Computer Science 301.1, pp. 427–437.

Roxana Girju, Adriana Badulescu, and Dan Moldovan (2003). Learning semantic constraints for
the automatic discovery of part-whole relations. In Proceedings of the North American Chapter
of the Association for Computational Linguistics (NAACL).

Joshua Goodman (1996). Parsing algorithms and metrics. In Proceedings of the Annual Meeting
on Association for Computational Linguistics (ACL).

Derek Gross and Katherine J. Miller (1990). Adjectives in WordNet. In International Journal of
Lexicography 3(4), pp. 265–277.

BIBLIOGRAPHY 75

Aria Haghighi and Dan Klein (2009). Simple coreference resolution with rich syntactic and se-
mantic features. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Aria Haghighi and Dan Klein (2010). Coreference resolution in a modular, entity-centered model.
In Proceedings of the Human Language Technologies and the North American Chapter of the
Association for Computational Linguistics (HLT-NAACL).

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Wit-
ten (2009). The WEKA data mining software: An update. In SIGKDD Explorations 11(1).

Zellig Harris (1954). Distributional structure. In Word 10(23), 146162.

Vasileios Hatzivassiloglou and Kathleen R. McKeown (1993). Towards the automatic identification
of adjectival scales: clustering adjectives according to meaning. In Proceedings of the Annual
Meeting on Association for Computational Linguistics (ACL).

Vasileios Hatzivassiloglou and Kathleen R. McKeown (1997). Predicting the semantic orientation
of adjectives. In Proceedings of the Annual Meeting on Association for Computational Lin-
guistics (ACL).

Vasileios Hatzivassiloglou and Janyce M. Wiebe (2000). Effects of adjective orientation and grad-
ability on sentence subjectivity. In Proceedings of the International Conference on Computa-
tional Linguistics (COLING).

Marti Hearst (1992). Automatic acquisition of hyponyms from large text corpora. In Proceedings
of the International Conference on Computational Linguistics (COLING).

Donald Hindle and Mats Rooth (1993). Structural ambiguity and lexical relations. In Computa-
tional Linguistics 19(1), 103120.

Eduard Hovy, Zornitsa Kozareva, and Ellen Riloff (2009). Toward completeness in concept ex-
traction and classification. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Liang Huang (2008). Forest reranking: Discriminative parsing with non-local features. In Proceed-
ings of the Annual Meeting on Association for Computational Linguistics (ACL).

Diana Inkpen and Graeme Hirst (2006). Building and using a lexical knowledge base of near-
synonym differences. In Computational Linguistics 32(2), 223262.

BIBLIOGRAPHY 76

Boris Katz and Jimmy Lin (2003). Selectively using relations to improve precision in question
answering. In Proceedings of the Workshop on NLP for Question Answering in the European
Chapter of the Association for Computational Linguistics (EACL).

Maurice G. Kendall (1938). A new measure of rank correlation. In Biometrika 30(1/2), pp. 81–93.

Adam Kilgarriff (2007). Googleology is bad science. In Computational Linguistics 33(1).

Hamidreza Kobdani, Hinrich Schutze, Michael Schiehlen, and Hans Kamp (2011). Bootstrapping
coreference resolution using word associations. In Proceedings of the Annual Meeting on As-
sociation for Computational Linguistics (ACL).

Terry Koo, Xavier Carreras, and Michael Collins (2008). Simple semi-supervised dependency
parsing. In Proceedings of the Annual Meeting on Association for Computational Linguistics
(ACL).

Terry Koo and Michael Collins (2010). Efficient third-order dependency parsers. In Proceedings
of the Annual Meeting on Association for Computational Linguistics (ACL).

Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins (2007). Structured prediction
models via the Matrix-Tree theorem. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing and the Conference on Computational Natural Language
Learning (EMNLP-CoNLL).

Zornitsa Kozareva and Eduard Hovy (2010). A semi-supervised method to learn and construct
taxonomies using the Web. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy (2008). Semantic class learning from the Web
with hyponym pattern linkage graphs. In Proceedings of the Annual Meeting on Association
for Computational Linguistics (ACL).

William H. Kruskal (1958). Ordinal measures of association. In Journal of the American Statistical
Association 53(284), pp. 814–861.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger (2001). Factor graphs and the sum-
product algorithm. In Information Theory, IEEE Transactions on 47.2, pp. 498–519.

BIBLIOGRAPHY 77

Ni Lao, Amarnag Subramanya, Fernando Pereira, and William W. Cohen (2012). Reading the Web
with learned syntactic-semantic inference rules. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Mirella Lapata and Frank Keller (2004). The Web as a baseline: Evaluating the performance of
unsupervised Web-based models for a range of NLP tasks. In Proceedings of the Human Lan-
guage Technologies and the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL).

Mark Lauer (1995). Corpus statistics meet the noun compound: Some empirical results. In Pro-
ceedings of the Annual Meeting on Association for Computational Linguistics (ACL).

Dekang Lin (1998). Automatic retrieval and clustering of similar words. In Proceedings of the
International Conference on Computational Linguistics (COLING).

Dekang Lin and Patrick Pantel (2002). Concept discovery from text. In Proceedings of the Inter-
national Conference on Computational Linguistics (COLING).

Dekang Lin and Xiaoyun Wu (2009). Phrase clustering for discriminative learning. In Proceedings
of the Annual Meeting on Association for Computational Linguistics (ACL).

Dekang Lin, Kenneth Church, Heng Ji, Satoshi Sekine, David Yarowsky, Shane Bergsma, Kailash
Patil, Emily Pitler, Rachel Lathbury, Vikram Rao, Kapil Dalwani, and Sushant Narsale (2010).
New tools for Web-scale n-grams. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC).

Jingjing Liu and Stephanie Seneff (2009). Review sentiment scoring via a parse-and-paraphrase
paradigm. In Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

David J.C. MacKay (2003). Information theory, inference, and learning algorithms. In Cambridge
University Press.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini (1993). Building a large
annotated corpus of English: The Penn Treebank. In Computational Linguistics.

Katja Markert and Malvina Nissim (2005). Comparing knowledge sources for nominal anaphora
resolution. In Computational Linguistics 31(3), pp. 367–402.

BIBLIOGRAPHY 78

Katja Markert, Malvina Nissim, and Natalia N. Modjeska (2003). Using the Web for nominal
anaphora resolution. In Proceedings of the Workshop on the Computational Treatment of Anaphora
in the European Chapter of the Association for Computational Linguistics (EACL).

Marie-Catherine de Marneffe, Christopher D. Manning, and Christopher Potts (2010). Was it
good? it was provocative. learning the meaning of scalar adjectives. In Proceedings of the
Annual Meeting on Association for Computational Linguistics (ACL).

André F. T. Martins, Noah A. Smith, and Eric P. Xing (2009). Concise integer linear programming
formulations for dependency parsing. In Proceedings of the Annual Meeting on Association
for Computational Linguistics and the International Joint Conference on Natural Language
Processing (ACL-IJCNLP).

Ryan McDonald, Koby Crammer, and Fernando Pereira (2005). Online large-margin training of
dependency parsers. In Proceedings of the Annual Meeting on Association for Computational
Linguistics (ACL).

Ryan McDonald and Fernando Pereira (2006). Online learning of approximate dependency parsing
algorithms. In Proceedings of the European Chapter of the Association for Computational
Linguistics (EACL).

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič (2005). Non-projective depen-
dency parsing using spanning tree algorithms. In Proceedings of the Human Language Tech-
nologies and the North American Chapter of the Association for Computational Linguistics
(HLT-NAACL).

Gerard de Melo and Gerhard Weikum (2009). Towards a universal WordNet by learning from
combined evidence. In Proceedings of the ACM International Conference on Information and
Knowledge Management (CIKM). ISBN: 978-1-60558-512-3. DOI: http://doi.acm.or
g/10.1145/1645953.1646020.

George A. Miller (1995). WordNet: A lexical database for English. In Communications of the ACM
38(11), pp. 39–41.

Natalia N. Modjeska, Katja Markert, and Malvina Nissim (2003). Using the Web in machine learn-
ing for other-anaphora resolution. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

BIBLIOGRAPHY 79

Said M. Mohammad, Bonnie J. Dorr, Graeme Hirst, and Peter D. Turney (2013). Computing lexical
contrast. In Computational Linguistics.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan (1999). Loopy belief propagation for ap-
proximate inference: An empirical study. In Proceedings of the Conference on Uncertainty in
Articial Intelligence (UAI).

Preslav Nakov and Marti Hearst (2005a). Search engine statistics beyond the n-gram: Application
to noun compound bracketing. In Proceedings of the Conference on Computational Natural
Language Learning (CoNLL).

Preslav Nakov and Marti Hearst (2005b). Using the Web as an implicit training set: Application
to structural ambiguity resolution. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Preslav Nakov and Marti Hearst (2008). Solving relational similarity problems using the Web as
a corpus. In Proceedings of the Annual Meeting on Association for Computational Linguistics
(ACL).

Roberto Navigli, Paola Velardi, and Stefano Faralli (2011). A graph-based algorithm for induc-
ing lexical taxonomies from scratch. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI).

Vincent Ng (2010). Supervised noun phrase coreference research: The first fifteen years. In Pro-
ceedings of the Annual Meeting on Association for Computational Linguistics (ACL).

Vincent Ng and Claire Cardie (2002). Improving machine learning approaches to coreference res-
olution. In Proceedings of the Annual Meeting on Association for Computational Linguistics
(ACL).

NIST (2004). The ACE evaluation plan. In US National Institute for Standards and Technology
(NIST).

Eric W. Noreen (1989). Computer intensive methods for hypothesis testing: An introduction. In
Wiley, New York.

Bo Pang and Lillian Lee (Jan. 2008). Opinion mining and sentiment analysis. In Foundations and
Trends in Information Retrieval 2.1-2, pp. 1–135. ISSN: 1554-0669. DOI: 10.1561/150000
0011. URL: http://dx.doi.org/10.1561/1500000011.

BIBLIOGRAPHY 80

Patrick Pantel and Marco Pennacchiotti (2006). Espresso: Leveraging generic patterns for auto-
matically harvesting semantic relations. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the Association for Computa-
tional Linguistics (COLING-ACL).

Marius Pasca (2004). Acquisition of categorized named entities for Web search. In Proceedings of
the ACM International Conference on Information and Knowledge Management (CIKM).

M. Pennacchiotti and P. Pantel (2009). Entity extraction via ensemble semantics. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Marco Pennacchiotti and Patrick Pantel (2006). Ontologizing semantic relations. In Proceedings of
the 21st International Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics (COLING-ACL).

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein (2006). Learning accurate, compact,
and interpretable tree annotation. In Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of the Association for Computational Lin-
guistics (COLING-ACL).

William Phillips and Ellen Riloff (2002). Exploiting strong syntactic heuristics and co-training to
learn semantic lexicons. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Emily Pitler, Shane Bergsma, Dekang Lin, and Kenneth Church (2010). Using Web-scale n-grams
to improve base NP parsing performance. In Proceedings of the International Conference on
Computational Linguistics (COLING).

Massimo Poesio, Rahul Mehta, Axel Maroudas, and Janet Hitzeman (2004). Learning to resolve
bridging references. In Proceedings of the Annual Meeting on Association for Computational
Linguistics (ACL).

Simone Paolo Ponzetto and Michael Strube (2011). Taxonomy induction based on a collaboratively
built knowledge repository. In Artificial Intelligence 175.9, pp. 1737–1756.

Hoifung Poon and Pedro Domingos (2010). Unsupervised ontology induction from text. In Pro-
ceedings of the Annual Meeting on Association for Computational Linguistics (ACL).

BIBLIOGRAPHY 81

John R. Quinlan (1993). C4.5: Programs for machine learning. In Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

Altaf Rahman and Vincent Ng (2009). Supervised models for coreference resolution. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Altaf Rahman and Vincent Ng (2011). Coreference resolution with world knowledge. In Proceed-
ings of the Annual Meeting on Association for Computational Linguistics (ACL).

Adwait Ratnaparkhi (1996). A maximum entropy model for part-of-speech tagging. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Deepak Ravichandran, Patrick Pantel, and Eduard Hovy (2005). Randomized algorithms and NLP:
Using locality sensitive hash functions for high speed noun clustering. In Proceedings of the
Annual Meeting on Association for Computational Linguistics (ACL).

Marta Recasens and Eduard Hovy (2010). Coreference resolution across corpora: Languages, cod-
ing schemes, and preprocessing information. In Proceedings of the Annual Meeting on Associ-
ation for Computational Linguistics (ACL).

Ellen Riloff and Jessica Shepherd (1997). A corpus-based approach for building semantic lexi-
cons. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Alan Ritter, Stephen Soderland, and Oren Etzioni (2009). What is this, anyway: Automatic hy-
pernym discovery. In Proceedings of AAAI Spring Symposium on Learning by Reading and
Learning to Read.

Peter F. Schulam and Christiane Fellbaum (2010). Automatically determining the semantic grada-
tion of German adjectives. In Proceedings of KONVENS.

Vera Sheinman and Takenobu Tokunaga (2009). AdjScales: Visualizing differences between adjec-
tives for language learners. In IEICE Transactions on Information and Systems 92(8), 15421550.

Vera Sheinman, Takenobu Tokunaga, Isaac Julien, Peter Schulam, and Christiane Fellbaum (2012).
Refining WordNet adjective dumbbells using intensity relations. In Proceedings of Global
WordNet Conference.

David A. Smith and Jason Eisner (2008). Dependency parsing by belief propagation. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

BIBLIOGRAPHY 82

R. Snow, D. Jurafsky, and A.Y. Ng (2004). Learning syntactic patterns for automatic hypernym
discovery. In Proceedings of Neural Information Processing Systems (NIPS).

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng (2006). Semantic taxonomy induction from het-
erogenous evidence. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational Linguistics
(COLING-ACL).

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim (2001). A machine learning approach
to coreference resolution of noun phrases. In Computational Linguistics 27(4), pp. 521–544.

Charles Spearman (1904). The proof and measurement of association between two things. In The
American Journal of Psychology 15(1), pp. 72–101.

Veselin Stoyanov, Nathan Gilbert, Claire Cardie, and Ellen Riloff (2009). Conundrums in noun
phrase coreference resolution: Making sense of the state-of-the-art. In Proceedings of the An-
nual Meeting on Association for Computational Linguistics and the International Joint Con-
ference on Natural Language Processing (ACL-IJCNLP).

Veselin Stoyanov, Claire Cardie, Nathan Gilbert, Ellen Riloff, David Buttler, and David Hysom
(2010). Reconcile: A coreference resolution research platform. In Technical report, Cornell
University.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum (2007). Yago: A core of semantic
knowledge. In Proceedings of the International Conference on World Wide Web (WWW).

Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum (2009). SOFIE: A self-organizing frame-
work for information extraction. In Proceedings of the International Conference on World Wide
Web (WWW).

Maite Taboada, Julian Brooke, Milan Tofiloskiy, and Kimberly Vollz (2011). Lexicon-based meth-
ods for sentiment analysis. In Computational Linguistics.

Partha Pratim Talukdar, Joseph Reisinger, Marius Paşca, Deepak Ravichandran, Rahul Bhagat, and
Fernando Pereira (2008). Weakly-supervised acquisition of labeled class instances using graph
random walks. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

BIBLIOGRAPHY 83

Niket Tandon and Gerard de Melo (2010). Information extraction from Web-scale n-gram data. In
Proceedings of the Web N-gram Workshop at the International ACM Conference on Research
and Development in Information Retrieval (SIGIR).

Robert E. Tarjan (1977). Finding optimum branchings. In Networks 7, pp. 25–35.

Peter D. Turney (2008). A uniform approach to analogies, synonyms, antonyms, and associations.
In Proceedings of the International Conference on Computational Linguistics (COLING).

Peter D. Turney and Michael L. Littman (Oct. 2003). Measuring praise and criticism: inference
of semantic orientation from association. In ACM Trans. Inf. Syst. 21.4, pp. 315–346. ISSN:
1046-8188. DOI: 10.1145/944012.944013. URL: http://doi.acm.org/10.114
5/944012.944013.

William T. Tutte (1984). Graph theory. In Addison-Wesley.

David Vadas and James R. Curran (2007). Adding noun phrase structure to the Penn Treebank. In
Proceedings of the Annual Meeting on Association for Computational Linguistics (ACL).

Marc Vilain, John Burger, John Aberdeen, Dennis Connolly, and Lynette Hirschman (1995). A
model-theoretic coreference scoring scheme. In Proceedings of the Conference on Message
Understanding (MUC).

Martin Volk (2001). Exploiting the WWW as a corpus to resolve PP attachment ambiguities. In
Proceedings of Corpus Linguistics.

Dominic Widdows (2003). Unsupervised methods for developing taxonomies by combining syn-
tactic and statistical information. In Proceedings of the Human Language Technologies and the
North American Chapter of the Association for Computational Linguistics (HLT-NAACL).

Ichiro Yamada, Kentaro Torisawa, Jun’ichi Kazama, Kow Kuroda, Masaki Murata, Stijn De Saeger,
Francis Bond, and Asuka Sumida (2009). Hypernym discovery based on distributional similar-
ity and hierarchical structures. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Hui Yang and Jamie Callan (2009). A metric-based framework for automatic taxonomy induction.
In Proceedings of the Annual Meeting on Association for Computational Linguistics and the
International Joint Conference on Natural Language Processing (ACL-IJCNLP).

BIBLIOGRAPHY 84

Xiaofeng Yang and Jian Su (2007). Coreference resolution using semantic relatedness information
from automatically discovered patterns. In Proceedings of the Annual Meeting on Association
for Computational Linguistics (ACL).

Xiaofeng Yang, Jian Su, and Chew Lim Tan (2005). Improving pronoun resolution using statistics-
based semantic compatibility information. In Proceedings of the Annual Meeting on Associa-
tion for Computational Linguistics (ACL).

Alexander Yates, Stefan Schoenmackers, and Oren Etzioni (2006). Detecting parser errors using
Web-based semantic filters. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Ainur Yessenalina and Claire Cardie (2011). Compositional matrix-space models for sentiment
analysis. In Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

