
Aircraft Design Optimization as a Geometric Program

Warren Hoburg

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-22
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-22.html

May 1, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

This work was supported by a National Science Foundation Graduate
Research Fellowship.

Aircraft Design Optimization as a Geometric Program

by

Warren Woodrow Hoburg

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Alexandre Bayen

Professor Laurent El Ghaoui
Professor Andrew Packard

Fall 2013

Aircraft Design Optimization as a Geometric Program

Copyright 2013

by

Warren Woodrow Hoburg

1

Abstract

Aircraft Design Optimization as a Geometric Program

by

Warren Woodrow Hoburg

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Pieter Abbeel, Chair

Recent advances in convex optimization make it possible to solve certain classes of con-

strained optimization problems reliably and efficiently. These techniques offer significant

advantages over general nonlinear optimization methods. In this thesis, conceptual-stage

aircraft design problems are formulated as geometric programs (GPs), which are a specific

type of convex optimization problem. Modern GP solvers are extremely fast, even on large

problems, require no initial guesses or tuning of solver parameters, and guarantee globally

optimal solutions. They also return optimal dual variables, which encode sensitivity infor-

mation that is especially relevant in an aircraft design context. These benefits come at a

price: all objective and constraint functions – the mathematical models that describe aircraft

design relations – must be expressed within the restricted functional forms of GP. Perhaps

surprisingly, this restricted set of functional forms appears again and again in prevailing

physics-based models for aircraft systems. Moreover, for models that cannot be manipu-

lated algebraically into the forms required by GP, one can use methods developed in this

thesis to fit compact GP models that accurately approximate the original models. Each of

these ideas is illustrated by way of concrete examples from aircraft design.

i

To my parents, who always supported me no matter what.

ii

Contents

Contents ii

1 Introduction 1
1.1 The Aircraft Design Process . 1
1.2 Why Geometric Programming? . 6
1.3 Thesis Overview and Summary of Contributions 7

2 The GP Design Paradigm 10
2.1 Geometric Programming . 10
2.2 A Simple Example . 16
2.3 GP Modeling . 21
2.4 Exploring Tradeoffs . 25

3 Sensitivity Analysis and the Power of Lagrange Duality 27
3.1 Maximum Entropy Dual of a Geometric Program 28
3.2 Sensitivity Analysis . 30
3.3 Fixed Variable Sensitivities . 33
3.4 Aside: Recovering known Scaling Laws . 34
3.5 Linearized Propagation of Log-Normal Uncertainties 37

4 Fitting GP Models to Data 39
4.1 The Convex Regression Problem . 39
4.2 Some Convex Function Classes . 41
4.3 Application to Geometric Programming . 45
4.4 Fitting Model Parameters . 47
4.5 Numerical Examples and Comparisons . 53
4.6 Conclusions . 58

5 Selected GP-Compatible Aircraft Design Models 61
5.1 Steady Flight Relations . 62
5.2 Weight, Drag, and Efficiency Breakdowns . 63
5.3 Performance Metrics . 65
5.4 Propulsive Efficiency . 70

iii

5.5 Lifting Surface Structural Models . 71
5.6 Stall . 78

6 Aircraft Design Example 80

7 Current Limitations and Future Perspectives 86

Bibliography 91

A Airfoil Area and Inertia Calculations 98

iv

Acknowledgments

I consider myself incredibly fortunate to be surrounded by a number of extraordinary people.

First, I am grateful to my adviser, Pieter Abbeel, for his never-ending supply of generosity,

patience, and good ideas. Pieter has always wanted the very best for his students, and I have

benefited from and enjoyed our many discussions of challenging applied math problems. He

has left an invaluable mark on my professional development.

At Berkeley, I am especially thankful for unforgettable lunches with Claire Thomas, and

happy hours with Aude Hofleitner. It has been a pleasure to be surrounded by so many

brilliant and interesting students, such as Tim Hunter, Pat Virtue, Arjun Singh, Jeremy

Maitin-Shepard, Stephen Miller, Teodor Moldovan, Jon Barron, Bharath Hariharan, Greg

Durrett, and John Duchi.

My thesis committee members Laurent El Ghaoui, Alex Bayen, and Andy Packard have

been a pleasure to work with. They made time to meet with me despite their busy schedules,

and took a genuine interest in my research.

Thank you to Ana S. Rufino Ferreira, Max Balandat, Sara Alspaugh, Tony Kim, and

Maude David for all the hard-won volleyball victories (and defeats).

Graduate school would not have been the same without spending time on YOSAR and

BAMRU. I shared amazing camraderie and friendships with my teammates, and am con-

stantly impressed by their skill, professionalism, and dedication to service.

Through most of my time at Berkeley, Genita Metzler has been a wonderful friend and

companion. I would also like to thank my long-time housemates Kieren Patel and Nick Rey.

They have been incredibly positive influences in many ways.

At Boeing, Adam Marshall, Tom Grandine, and Matt Patterson were extraordinary

managers and mentors, and gave me exposure to challenging problems in manufacturing

optimization.

Before graduate school, I was shaped by several mentors. Karen Willcox continues to

inspire me year after year. Russ Tedrake taught me a great deal about good research, good

science, and how to run a lab. Sheila Widnall has helped to guide me throughout my career;

I will be pleased if I do half as many things in my life as she has done in hers.

v

My undergraduate years at MIT were filled with climbing successes and failures with my

friend Darren, who is always up for a challenge. He and I also raced for the ski team, where

my coach Todd Dumond taught me a lot about hard work.

I am grateful to Daniel Limonadi at JPL for taking me under his wing as a summer intern,

and for unforgettable weekly coffee discussions. Ben Ingram and Mike Anderberg, formerly

at Frontier Systems/Boeing Phantom Works, greatly shaped who I am as an engineer.

Before I ever set foot on a university campus, I spent my summers building high power

amateur rockets. Mark Mazzon and Kreig Williams took me under their wing in those

formative years, with the utmost patience and generosity. They profoundly influenced me

in the most positive way.

Finally, my brother, mom, and dad have given me unconditional love and support; they

are the best family imaginable.

vi

Nomenclature

α Softness parameter

δ wing tip deflection [m]

η nondimensional spanwise coordinate

η0 overall efficiency

η0 overall efficiency

ηi inviscid propeller efficiency

ηv viscous propeller efficiency

ηeng engine efficiency

ηprop propeller efficiency

γ climb angle

γ̄ descent angle, −γ
λ wing taper ratio

λ dual Lagrange multipliers

µ fluid viscosity [kg/(s·m)]

ν ≡ (1 + λ+ λ2)/(1 + λ)2

ν dual variables (see 3.1)

ρ air density [kg/m3]

τ wing thickness ratio

θfuel fuel fraction, Wfuel/Wzfw

ξ takeoff drag-to-thrust ratio

ζ stall margin

A aspect ratio

A matrix of monomial exponents

Ā fixed variable exponents

b wing span [m]

b ≡ log c

c vector of monomial coefficients

CD total drag coefficient

cd 2D profile drag coefficient

Cf skin friction coefficient

CL lift coefficient

CDp profile drag coefficient

CL,max max lift coefficient

CDA0 non-wing drag area [m2]

D drag force [N]

e Oswald efficiency factor

Ebat available battery energy [J]

g gravitational constant, 9.8 m/s2

h altitude [m]

hfuel fuel heating value [J/kg]

h̄rms root mean square spar box height

Ir root area moment of inertia [m4]

Īcap area moment of inertia per chord4

k pressure drag form factor

Ki number of terms in posynomial i

L lift force [N]

vii

L′ lift force per unit span [N/m]

m number of constraints

Mr root moment [N·m]

ṁfuel fuel mass flow rate [kg/s]

M̄r root moment per chord, Mr/cr

n number of decision variables

Nlift ultimate load factor

p ≡ 1 + 2λ

Pfuel fuel power, ṁfuelhfuel [W]

Pmax max engine output power [W]

q ≡ 1 + λ

R Range [m]

Re Reynolds number

S wing area [m2]

Sr root section modulus [m3]

sγ̄ sin(−γ)

sγ sin(γ)

S log-space sensitivity

T thrust force [N]

t number of monomial terms in GP

t̄cap spar cap thickness per unit chord

t̄web shear web thickness per unit chord

u vector of decision variables

V flight speed [m/s]

VS0 stall speed, flaps extended [m/s]

W operating weight [N]

W0 fixed weight [N]

Wcap spar cap weight [N]

Weng engine weight [N]

Wfuel,out weight of fuel burned, outbound [N]

Wfuel,ret weight of fuel burned, return [N]

Wmto maximum takeoff weight [N]

Wpay payload weight [N]

Wweb shear web weight [N]

Ww wing weight [N]

Wzfw zero fuel weight [N]

W̃ weight excluding wing [N]

x log-transformed decision variables

xto takeoff distance [m]

x̄ fixed variables (log-transformed)

z helper variable

z ≡ Ax+ b

zbre Breguet parameter

1

Chapter 1

Introduction

“Aeronautics was neither an industry nor even a science... it was a miracle.”

– Igor Sikorsky

Today’s aircraft are some of the most complex engineering systems ever conceived and built.

Designing, testing, certifying, and producing an aircraft is a monumental undertaking re-

quiring millions of decisions and years of effort. For each stakeholder involved, be they

aircraft manufacturers, airlines, government operators, regulatory agencies, or investors, the

stakes are high – decisions made early in the design process can lock in operational costs,

marketability, mission constraints, and manufacturing costs for decades to come. With such

a wide range of engineering and management disciplines governing their design, aircraft

exemplify the challenges of modern engineering design.

1.1 The Aircraft Design Process

The aircraft design process has evolved considerably since the Wright Brothers’ historic first

flight in 1903. Early on, many design decisions were guided by trial-and-error, wind tunnel

testing, and empirical studies. Analytical theory gradually entered the picture, and by the

1960’s many of the major aerodynamic theories, including potential flow theory [69], thin

airfoil theory [1], slender body theory [6], flight dynamics [26], and blade-element/vortex

propeller theory [29, 70, 27, 2] were established. These theories continue to carry weight

2

today – they are important sanity checks for higher fidelity analyses, and provide useful

intuition about scaling and tradeoffs among relevant parameters.

The advent of the digital computer created nothing short of a revolution in aerospace

analysis. In aerodynamics, a spectrum of numerical tools – commonly referred to as com-

putational fluid dynamics (CFD) – were developed to solve the governing equations of fluid

dynamics. These tools generally provide faster turnaround than wind tunnel testing, and

thus have enabled expert designers to explore a greater number of design configurations and

further refine their solutions. Examples of CFD methods, which represent a spectrum of

computational complexity and accuracy of solution, include panel methods [39], potential

methods with viscous corrections [23], Euler methods [17], and Reynolds-Averaged-Navier-

Stokes (RANS) [43]. Similarly, in structural engineering, finite element methods have enabled

numerical analysis of a wide range of configurations [64]. In guidance and control, computa-

tion is widely relied upon to analyze control systems with large numbers of inputs, outputs,

and states. Across all disciplines, computation and numerical simulation have become stan-

dard tools.

In order to appreciate the context in which these tools are applied, the typical stages of

aircraft development must be understood. For many decades, engineers and managers have

thought of the aircraft design process in terms of three distinct stages:

Conceptual design is where the initial business case for an aircraft program is made. De-

sign missions are defined, performance requirements are agreed upon, and initial sizing

studies are conducted. Engineering development efforts are prioritized. Depending on

the scope of the project, conceptual design may last several years, and could involve

fairly detailed analysis and mathematical modeling. By the end of conceptual design,

the basic aircraft configuration (‘what goes where’) is known, sizing of major elements

is mostly fixed, and performance figures, major component weights, direct operating

costs, and manufacturing costs have all been estimated.

Preliminary design involves a steadily-increasing level of understanding of the selected

aircraft configuration. More detailed studies of each subsystem are conducted; struc-

tural instabilities and aerodynamic interferences are identified and corrected; the outer

mold line is lofted (modeled mathematically); mockups (simulated or physical) are

3

created. At some point during preliminary design, the basic aircraft configuration is

frozen. The purpose of this design freeze is to stop modifying major coupling variables,

such that subsystem design teams can move on to detailed design work independently,

without repeatedly affecting the basic assumptions of other teams.

Detailed design involves the engineering definition (e.g., CAD drawing) of every part on

the aircraft; detailed stress analysis of all load bearing parts; routing of electrical,

hydraulic, and fuel lines; and fabrication of production tooling. The number of parts

under consideration can be quite large – for example, according to Boeing, there are

approximately 3 million parts in a 777, provided by 500 suppliers worldwide.

Much of the activity that occurs during each of these design stages amounts (notionally) to

solving (or iterating on) a large, constrained optimization problem. As a design program

progresses through conceptual, preliminary, and detailed design, there is a natural growth in

complexity, size of organization, and cost – the number of decision variables and constraints

increases, dramatically at times. Moreover, because it is so incredibly complex and nuanced,

the full ‘optimization problem’ is usually solved not by a single numerical method on a com-

puter, but rather by teams of engineers. This introduces a decomposition structure into

the notional optimization problem, creating significant organizational and communication

challenges. Information sharing might be easier if one engineer were in charge of the entire

design, but it can become quite encumbering with separate aerodynamics and structures

teams whose analyses depend on shared variables like spanwise wing thickness distribution

or flap hinge location. Systems engineers typically pass interdependencies among subsystem

teams in the form of requirements and specifications that they revise as designs progress.

Disciplinary designs proceed in parallel, with periodic design reviews to synchronize re-

quirements. Between reviews, engineering teams are challenged to predict performance and

optimize designs despite uncertainty about other subsystem designs. Because each design

iteration is lengthy and costly, some programs only complete one or two formal design iter-

ations before freezing the design [44].

The widespread introduction of computational models in all disciplines, combined with

ever-improving computational power, have led researchers in academia and industry to seek

solutions to the challenges outlined above. There has been significant excitement about

4

developing methods that would combine analysis tools and models from multiple disciplines

into a coordinated numerical optimization. These research efforts, which fall broadly under

the field of multidisciplinary design optimization, have made significant headway, but also

continue to uncover serious challenges [33].

Multidisciplinary Design Optimization

The field of Multidisciplinary Design Optimization (MDO) emerged in the 1980’s in response

to the growing complexity of computational models in engineering design. The goal of MDO

methods is to simultaneously incorporate models from multiple engineering disciplines into a

coordinated design optimization. The hope is that by optimizing with respect to all relevant

models, better designs can be found earlier in the design process.

Generally, MDO methods start with a set of black box computational routines, of-

ten segregated into disciplines, and define an architecture for coordinating calls to each

of the routines. Numerous MDO architectures have emerged, with various breakdowns

of computation into subproblems, communication schemes for passing coupling variables

among computational blocks, and varied degrees of feasibility enforced after each itera-

tion [15, 51, 3, 40, 44, 42, 66]. The effectiveness of these methods depends in some part on

what is inside each of the black boxes. The most desirable situation is a set of computational

procedures that, in addition to their outputs, return gradients of their output with respect

to their input. Although the importance of gradient information seems obvious from an opti-

mization point of view, many analysis routines in widespread use do not return any gradient

information. This makes automatic differentiation a relevant area in MDO [50]. Even then,

some black box routines introduce other difficulties such as nearest-neighbor table lookups

that drive finite difference estimates of gradients to the uninformative value of zero. Dealing

with these and related challenges continues to be a major challenge in MDO.

Another theme in MDO research is reducing, to the extent possible, the number of

calls made to expensive solvers within the optimization loop. Examples include surrogate

modeling via Kriging and response surface methods [65, 48]. Reduced order modeling is

another area of great interest, where complex, high dimensional models are replaced by

cheaper models that still capture relevant input/output relationships [13, 72]. Finally, there

5

is recent interest in multifidelity methods [63], where inexpensive computational models could

be used to better guide which high-fidelity analyses to conduct.

In high-fidelity optimization, one of the great success stories of the past few decades has

been the development of adjoint methods. This line of research started in the mid 1980’s with

Pironneau’s study of control theory applied to shape optimization for systems governed by

elliptic partial differential equations [59], and was soon followed by Jameson’s seminal work

on adjoint methods for aerodynamic design [34, 38, 35]. Adjoint methods are an efficient

way to compute gradients in PDE-constrained optimization. In particular, when a problem

is governed by a PDE, adjoint methods make it possible to compute the derivative of a cost

function (drag, say) with respect to a set of design parameters, for approximately the same

cost as solving the PDE once. These methods have evolved considerably thanks to significant

research attention over the past two decades [37, 8, 25]. They have enabled gradient-based

optimization in a wide range of applications, including designs involving multiple engineering

disciplines (often aerodynamics and structures). Indeed, adjoint methods are the state of

the art for high-fidelity aero-structural optimization [36, 49, 61].

Despite these successes, high-fidelity aerodynamic analysis and optimization tools remain

just that – tools that an expert designer can use to make informed decisions. Adjoint

methods provide remarkable capability for calculating sensitivities, but their computational

cost still scales with the cost of solving the underlying PDE discretization. Depending on

the scale of the problem, Euler and RANS solutions can require hours or even days. Indeed,

almost all multidisciplinary design tools in commercial or industry use today either solve

very specific problems involving a few disciplines (such as an engine design subroutine or a

high-fidelity aero-structural wing optimization), or target arbitrary instances of very general

design problems, and therefore take a long time (i.e. days or weeks) to arrive at a solution.

Days or weeks to improve aerodynamic performance is well worth the cost once the rough

wing configuration is known, but this fidelity is unnecessary and even counterproductive in

the early stages of conceptual design. When an aircraft configuration is first evaluated, the

goal is to understand tradeoffs among various facets of the aircraft and mission. In many

cases, the objectives (design missions) are not even defined, so the goal is to understand the

shape of a Pareto frontier as opposed to optimizing a known objective. Moreover, beyond

analysis of flight performance, today’s design decisions are increasingly informed by a wider

6

range of considerations. Examples include designing for manufacturability, economic models

for forecasting demand, and logistics models for improving supply chains. The wide range

of models involved, along with the need to solve many similar design problems to sweep

out tradeoff curves, calls for lower fidelity physics-based models that provide reasonable

approximations over a wide range of parameter inputs.

Lower fidelity analysis also plays a vital role in sanity-checking high fidelity results.

Without an optimization expert to set up the right problem and correctly interpret the

results, high fidelity analysis can prove misleading [43]. Also, if the objective (design cases)

are not chosen carefully, high fidelity optimizers may overfit their designs to peculiarities

only present at the design case(s) under consideration. For example, it has been shown

that even in the simple case of 2D airfoil optimization, unless the objective or design cases

are carefully smoothed, optimizers tune airfoil shape to exploit the exact chordwise location

of separation in the chosen design case(s), to the detriment of performance at other flight

conditions [18].

For all these reasons, optimization of simple, reliable, physics-based models remains an

important tool in modern aircraft design.

1.2 Why Geometric Programming?

As researchers continue studying design of engineering systems, computational tractability

and scalability remain pressing issues.

Unfortunately, most optimization problems, including those that arise in aircraft design

optimization, simply cannot be solved reliably or efficiently. The most common approach

is to model the problem as a general nonlinear program (NLP) and use an algorithm such

as sequential quadratic programming to find a local optimum. While such a framework can

model extremely general problems, the solution techniques tend not to meet the reliability

and efficiency bar needed for widespread adoption and day-to-day use in industry (exceptions

typically involve either laborious tuning of solver parameters to a specific problem, or an

optimization expert overseeing the solver). On the other hand, more specialized optimization

problems (consider linear programs, for example) are easy to solve, but can be poor fits to

the actual functions of interest.

7

Linear programs, however, are not the only type of optimization problem that is easy to

solve. One of the quiet breakthroughs of the early 21st century has been the maturation

and commercialization of algorithms for solving a much broader class of convex optimization

problems. Thanks to these reliable and efficient algorithms, many general classes of convex

program can now be solved globally on a desktop computer. One such general class, which

appears particularly suited to problems in engineering design, is the geometric program

(GP) [24, 9, 71, 10].

In GP formulations, a design problem is written as a numerical optimization problem of

the form

minimize f0(u)

subject to fi(u) ≤ 1, i = 1, ...,m,

where the functions fi have a special posynomial form that makes them compatible with

geometric programming. The list of constraints typically includes mathematical models for

the physics or governing relationships in the problem, as well as engineering requirements or

performance specifications on the system.

The GP approach is not universal. By restricting ourselves to special functional forms,

we give up the ability to model arbitrary nonlinear relationships. In return, we get some-

thing extremely powerful. Unlike solving a general nonlinear optimization problem, which

is extremely hard, solving a GP is fast and easy. Among other benefits, modern solvers find

globally optimal solutions, with fast solution times that scale to large problems.

1.3 Thesis Overview and Summary of Contributions

This thesis introduces the idea of formulating conceptual stage aircraft design problems as

geometric programs.

Currently, the methods presented in this thesis apply to low-fidelity, physics-based models

of the type that might be used in very early conceptual stage design [22]. They are not

intended to replace higher fidelity analysis and optimization, which are vital tools later in

the aircraft design process.

8

Compared with MDO, the methods of this thesis represent a unique approach. In both

cases, the ultimate goal is to efficiently arrive at a solution that is supported by accurate

modeling. Much of MDO starts with extremely accurate models – the very best – and makes

sacrifices in efficiency or quality of optimization (e.g., accepting a local instead of global

optimum). In contrast, the proposed approach starts with extremely reliable and efficient

optimization – again, the very best – and makes sacrifices in the accuracy or fidelity of the

models one can optimize over. The unique efficiency and reliability of GP methods makes

them a powerful tool for optimizing large, multidisciplinary systems of low-order models.

The remainder of this thesis is organized as follows:

1. Introduction - Explains current challenges in system-level aircraft design. Outlines

opportunities created by recent breakthroughs in convex optimization.

2. The GP Design Paradigm - Defines geometric programming and introduces its appli-

cation to aircraft design problems. Explains general problem formulation techniques,

including basic elements of a GP design formulation, simultaneous analysis of multiple

flight conditions, multi-objective optimization, and Pareto frontier exploration. The

ideas are grounded in a concrete aircraft design example.

3. Sensitivity Analysis and the Power of Lagrange Duality - Leverages the optimal

values of the Lagrange dual variables – information that is determined for free when

a GP is solved – to understand how tightening or loosening each constraint would

affect the optimal objective value. Extends these ideas to cover sensitivity analysis of

fixed problem variables and propagation of parameter uncertainties. Shows by way of

example how sensitivity information from a single solution can be used to construct a

surrogate Pareto frontier for design problems with multiple objectives.

4. Fitting GP Models to Data - Studies the problem of approximating black-box data

sets with GP-compatible functions. Introduces two new function classes, softmax-affine

and implicit softmax-affine, which provide provably better fits than existing max-affine

methods. Discusses fitting algorithms and practical implementation considerations.

5. Selected GP-Compatible Aircraft Design Models - Gives examples of aircraft sub-

system models and design relations that admit a GP-compatible formulation.

9

6. Aircraft Design Example - Solves an example aircraft design problem by formulating

it as a GP, illustrating all of the concepts from previous chapters in the process.

7. Current Limitations and Future Perspectives - Describes current limitations and

ongoing research directions.

10

Chapter 2

The GP Design Paradigm

This chapter describes a basic PG-powered conceptual design framework. After defining GP

and discussing current solution technology, the chapter presents a simple design example,

discusses general problem formulation, and describes characterization of Pareto frontiers in

multiobjective optimization.

2.1 Geometric Programming

First introduced in 1967 by Duffin, Peterson, and Zener [24], a GP is a specific type of

constrained optimization problem that becomes a convex optimization problem after a log-

arithmic change of variables. Despite significant work on early applications in structural

design [53], network flow [58], and optimal control [9, 71], reliable and efficient numerical

methods for solving GPs were not available until the 1990’s [55]. GP has recently begun a

resurgence as researchers discover promising applications in statistics [11], digital circuit de-

sign [12], antenna optimization [7], communication systems [14], and most recently, aircraft

design [32].

11

Definition

This section uses power law notation: for two vectors u,a ∈ Rn,

ua ≡
n∏
j=1

u
aj
j . (2.1)

Geometric programs are constrained optimization problems where the objective and con-

straints are made up of monomial and posynomial functions. We will start by defining these

two special function classes.

Monomial Functions

In geometric programming, a monomial1 is a function h(u) : u ∈ Rn
++ → R++ of the form

h(u) = cua, (2.2)

where a ∈ Rn, and c ∈ R++. For instance, the familiar expression for lift, 1
2
ρV 2CLS, is a

monomial in u = (ρ, V, CL, S), with c = 1/2 and a = (1, 2, 1, 1). Since the powers ai in (2.2)

may be negative and non-integer, expressions like
u1u0.72

√
u3

u4
are also monomials.

Posynomial Functions

Posynomials are functions f(u) : u ∈ Rn
++ → R++, of the form

f(u) =
K∑
k=1

cku
ak , (2.3)

where ak ∈ Rn, and ck ∈ R++. Thus, a posynomial is simply a sum of monomial terms, and

all monomials are also posynomials (with just one term). The expression 0.23+u2
1+0.1u1u

−0.8
2

is an example of a posynomial in u = (u1, u2), whereas 2u1−u1.5
2 is not a posynomial because

negative leading coefficients ck are not allowed.

1As noted in [10], the term monomial carries a special meaning in GP; the term used in algebra is slightly
different.

12

Geometric Program in Standard Form

A geometric program in standard form (also called a GP in posynomial form) is a non-linear,

non-convex optimization problem of the form

minimize f0(u)

subject to fi(u) ≤ 1, i = 1, ...,m, (2.4)

hi(u) = 1, i = 1, ...,me,

where the fi are posynomial (or monomial) functions, the hi are monomial functions, and

u ∈ Rn
++ are the decision variables. In plain English, a GP minimizes a posynomial objective

function, subject to monomial equality constraints and posynomial inequality constraints.

Monomials and posynomials are both closed under monomial division, so constraints of the

form (posynomial≤monomial) or (monomial = monomial) are easily converted into the form

in (2.4). Also, any monomial equality constraint h(u) = 1 may be expressed equivalently

as two monomial inequality constraints: h(u) ≤ 1 and 1/h(u) ≤ 1. Thus without loss of

generality, a geometric program in standard form can always be written in the inequality-

constrained form

minimize

K0∑
k=1

c0ku
a0k

subject to

Ki∑
k=1

ciku
aik ≤ 1, i = 1, ...,m. (2.5)

This form is expected by some modern commercial solvers. The objective and constraints

contain a combined total of t =
∑m

i=0Ki monomial terms. The entire GP is therefore

parameterized by a vector of constants c ∈ Rt, an (often sparse) matrix of exponents A ∈
Rt×n, and a mapping that encodes which of the m + 1 posynomials each of the t monomial

terms resides in.

GP with Fixed Variables

When an engineering design problem is modeled as a GP, it is common for a subset of the

variables to be fixed to constant values. For example, in a monomial model for lift, air

13

density might be set to a constant. Or, in a model for stress at a wing root, material density

or Young’s modulus might be set to a constant. More generally, a GP with fixed variables

can be written in the form

minimize

K0∑
k=1

c0kū
ā0kua0k

subject to

Ki∑
k=1

cikū
āikuaik ≤ 1, i = 1, ...,m, (2.6)

where the vector ū contains the constant values of the fixed variables, and the vectors āik

contain the corresponding monomial exponents. We will refer back to this form in Chapter 3.

Geometric Program in Convex Form

The power of geometric programming lies in a transformation that converts GPs into convex

optimization problems. In particular, consider the change of variables

x = logu. (2.7)

The logarithm of a monomial function becomes affine when written in terms of x,

log cua = log c+ atx. (2.8)

The logarithm of a posynomial function becomes the logarithm of a sum of exponentials of

affine functions of x,

log
K∑
k=1

cku
ak = log

K∑
k=1

exp(log ck + at
kx). (2.9)

These transformations are illustrated in Figure 2.1. Taking the logarithm of the objective

and every constraint, the GP (2.5) becomes

minimize log

K0∑
k=1

exp(at
0kx+ b0k) (2.10)

subject to log

Ki∑
k=1

exp(at
ikx+ bik) ≤ 0, i = 1, ...,m,

14

a < 0

a == 0

0 < a < 1

a =
=
 1a

 >
 1

u

(a) Scalar monomials, cua

a < 0

a == 0

0 < a < 1

a =
= 1

a
>

1

x = log u

(b) Corresponding log-space monomials, log c+ ax

0.0
1u

−2 +u
0.2 +0.0

0006u
4

0.03u
−1

+0.8u
0.2

0
.2

u
1
.5

u

(c) Scalar posynomials,
∑

k cku
ak

log(e
−4.6−2x +e

0.2x +e
−9.72+4x)

log(e
−3.51−x +e

−0.223+0.2x)

−
1
.6

1
+

1
.5

x

x = log u

(d) Corresponding log-space posynomials,
log
∑

k e
log ck+akx

Figure 2.1: Qualitative shape of scalar monomial and posynomial functions. Monomials
are log-affine, whereas posynomials are log-convex. These behaviors extend to arbitrarily
high-dimensional spaces.

15

where bik ≡ log cik. Log-sum-exp is known to be a convex2 function class, and convexity is

preserved under affine transformations, so (2.10) is a convex optimization problem [11].

Solving GPs

Over the past two decades, technology for solving GPs has become extremely reliable and

efficient. At their core, today’s state-of-the-art solvers implement primal-dual interior point

methods [52, 55]. When applied to GPs, these methods provide remarkable capabilities:

Optimality - guaranteed convergence to a global optimum (or a certificate of infeasibility,

if it is impossible to simultaneously satisfy all the constraints).

Robustness - no need for ‘initial guesses’ or hand tuning of optimizer hyperparameters.

Speed - approaching that of linear program (LP) solvers. As of 2005, a GP with thousands

of decision variables and tens of thousands of constraints could be solved on a desktop

computer in minutes [11], with additional gains if the problem is sparse.

Strong Duality - simultaneous determination of globally optimal dual variables (leveraged

extensively in Chapter 3).

This level of effectiveness is a stark contrast from methods for general nonlinear optimiza-

tion, which typically require initial guesses, often require problem-specific hand-tuning of

optimizer parameters, and at best guarantee finding local, not global, optima. Because

general nonlinear methods require so many problem-specific inputs and tweaks, many prac-

titioners elect to implement their own optimization code. GP solvers, on the other hand,

are robust and general enough for designers to confidently leave the optimization process to

standard software packages. Moreover, active research in the applied mathematics commu-

nity continually improves solution methods, enabling trickle-down benefits not possible with

specialized aircraft-specific optimization routines.

2 A function f(x) is convex if the property f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) holds for all
θ ∈ [0, 1] and x1, x2 in the domain of f .

16

2.2 A Simple Example

As an initial warm-up to build familiarity with GP formulations, consider the following

simple wing design example, adapted from the course materials of the class Introduction to

MDO at Stanford [4]. A more complex design example will appear in Chapter 6.

The challenge is to size a wing with total area S, span b, and aspect ratio A = b2/S.

These parameters should be chosen to minimize the total drag, D = 1
2
ρV 2CDS. The drag

coefficient is modeled as the sum of fuselage parasite drag, wing parasite drag, and induced

drag,

CD =
(CDA0)

S
+ kCf

Swet

S
+

C2
L

πAe
, (2.11)

where (CDA0) is the fuselage drag area, k is a form factor that accounts for pressure drag,

Swet/S is the wetted area ratio, and e is the Oswald efficiency factor. For a fully turbulent

boundary layer, the skin friction coefficient Cf can be approximated as

Cf =
0.074

Re0.2 , (2.12)

where Re = ρV
µ

√
S
A

is the Reynolds number at the mean chord c̄ =
√
S/A. The total aircraft

weight W is modeled as the sum of a fixed weight W0 and the wing weight,

W = W0 +Ww. (2.13)

The wing weight is modeled as

Ww = 45.42S + 8.71× 10−5Nliftb
3
√
W0W

Sτ
, (2.14)

where Nlift is the ultimate load factor for structural sizing, and τ is the airfoil thickness to

chord ratio. The weight equations are coupled to the drag equations by the constraint that

lift equals weight,

W =
1

2
ρV 2CLS. (2.15)

Finally, for safe landing, the aircraft should have a sufficiently slow flaps extended stall speed

VS0, where
2W

ρV 2
S0S
≤ CL,max. (2.16)

We must choose values of S, A, and V that minimize drag, subject to all the relations in the

17

Table 2.1: Fixed constants for the simple example problem in Section 2.2.

Quantity Value Units Description
(CDA0) 0.031 m2 fuselage drag area
ρ 1.23 kg/m3 density of air
µ 1.78× 10−5 kg/(ms) viscosity of air
Swet/S 2.05 wetted area ratio
k 1.2 form factor
e 0.95 Oswald efficiency factor
W0 4940 N aircraft weight excluding wing
Nlift 3.8 ultimate load factor
τ 0.12 airfoil thickness to chord ratio
VS0 22 m/s flaps extended stall speed
CL,max 1.5 max CL, flaps down

preceding text. Constant parameters are given in Table 2.1. Note that this problem, while

simplistic, exhibits several elements commonly associated with difficult optimization prob-

lems. The equations are highly nonlinear. Equation (2.16) is a hard inequality constraint.

In Equation (2.14), the wing weight depends on itself through the total aircraft weight W ,

meaning that iteration would be necessary to bring the weights into agreement.

Despite these apparent complexities, it turns out that the global optimum can be found

reliably on a laptop computer in a few milliseconds. The key lies in recognizing that all the

models consist of monomial and posynomial expressions. In fact, the entire optimization

problem can be expressed exactly as a GP:

18

V [m/s]

S
 [

m
2
]

D [N]

20 30 40 50 60 70
5

10

15

20

25

30

35

40

45

50

500

1000

1500

2000

(a) Original parameterization

V [m/s]

S
 [

m
2
]

D [N]

10
1.2

10
1.4

10
1.6

10
1.8

10
1

500

1000

1500

2000

(b) Logarithmic parameterization

Figure 2.2: Slice of the design space for the simple example problem. The contours represent
the drag objective as a function of two of the design variables: cruise velocity and wing area.
In the original parameterization, the contours are not convex, and are not well-approximated
by level sets of a quadratic function. This implies that iterative Newton descent algorithms
(SQP, for example) could require many iterations to converge (especially if the starting point
is not well-chosen). In contrast, after the log transformation, the level sets are convex and
appear to be well-approximated by quadratic level sets (ellipses).

minimize
A,S,CD,CL,Cf ,Re,W,Ww,V

1

2
ρV 2CDS

subject to (2.17)

1. CD breakdown 1 ≥ (CDA0)

CDS
+
kCf
CD

Swet

S
+

C2
L

CDπAe

2. Cf definition 1 ≥ 0.074

CfRe0.2

3. Re definition 1 ≥ µRe

ρV

√
A

S

4. CL definition 1 ≥ 2W

ρV 2CLS

5. weight breakdown 1 ≥ W0

W
+
Ww

W

6. wing weight model 1 ≥ 45.42
S

Ww
+ 8.71× 10−5NliftA

3/2
√
W0WS

Wwτ

7. stall speed 1 ≥ 2W

ρV 2
S0SCL,max

19

0 5 10 15 20 25 30
1150

1200

1250

1300

1350

1400

1450

1500

A

D
 [

N
]

(a) Original parameterization

10
−1

10
0

10
1

10
2

10
3.08

10
3.1

10
3.12

10
3.14

10
3.16

A

D
 [
N

]

(b) Logarithmic parameterization

Figure 2.3: Slice of the example problem design space. Drag is plotted as a function of
aspect ratio, with S = 16.45m2 and V = 120m/s held fixed. In the original parameteriza-
tion, there clearly exist portions of the design space over which the second-derivative of drag
with respect to aspect ratio is negative. Said another way, the objective function is locally
concave. As a result, Newton’s method cannot compute an accurate second-order approx-
imation. This situation forces solution algorithms to resort to first-order gradient descent,
which can be poorly conditioned and require many iterations to converge. This figure shows
just one dimension, but the problem is exacerbated in higher dimensions. In contrast, the
GP logarithmic parameterization of the same relationships makes the entire design space
(including the slice illustrated here) convex, and thus straightforward to globally optimize.

The problem data for this GP can be encoded in a map vector, constant vector c, matrix

20

of fixed variable exponents Ā, and matrix of decision variable exponents A as follows:

map c

0


1/2


1 1

1 1

1 1/π

2 0.074

3 1

4 2

5 1

5 1

6 45.42

6 8.71e-5

7 2

CDA0 ρ µ Swet
S

k e W0 Nlift τ VS0 CLmax

1


1

1 1

−1

−1 1

−1

1

1/2 1 −1

−1 −2 −1

Ā

A S CD CL Cf Re W Ww V

1 1 2


−1 −1

−1 1

−1 −1 2

−1 −0.2

1/2 −1/2 1 −1

−1 −1 1 −2

−1

−1 1

1 −1

3/2 1/2 1/2 −1

−1 1

A

This is the standard parameterization used as input to a solver. For a design engineer

wishing to solve this problem, no further algorithmic work is required. A GP solver [54]

reliably and quickly finds the solution:

VARIABLE OPTIMAL VALUE UNITS

A 8.457

S 16.45 m^2

CD 0.02059

CL 0.4987

Cf 0.003599

Re 3.677e+06

W 7344 N

Wwing 2404 N

V 38.16 m/s

This design is feasible, meaning that it satisfies all the previously defined design con-

straints. It is also globally optimal, meaning that no other set of feasible decision variables

could possibly achieve a lower value of the objective, 1/2ρV 2CDS.

21

2.3 GP Modeling

In general, the process of formulating a practical problem as a GP (so that it can be solved

reliably and efficiently) is called GP modeling [10]. One of the key steps in GP modeling

is expressing or approximating physical relationships – the disciplinary models that govern

the design space – in terms of monomial and posynomial functions. When this is possible,

the formulations described in this section make it straightforward to analyze and optimize a

wide range of missions, requirements, and objectives.

Elements of a GP Problem Formulation

Decision Variables

Referring to the definition of a GP (2.5), the decision variables are a vector of unknowns

u ∈ Rn
++, implicitly constrained to be positive3. In the previous example (2.17), the decision

variables were u = (A, S, CD, CL, Cf ,Re,W,Ww, V). More generally, the decision variables

consist of every quantity whose value is to be determined by the optimizer. Once the problem

has been solved by a GP solver, each element of u will be assigned an optimal value.

Clearly, the decision variables cannot take on arbitrary values; they must obey physics

(or models thereof). These relationships and other limits are quantified by constraints on

the feasible set of the GP.

Constraints

In the context of GP-based design, constraints serve several purposes. Examples include:

• GP-compatible models of design relations, such as those appearing in Section 5, gov-

ern the combinations of design variables that respect physics. In order to consider a

particular decision variable in the optimization, the trade-offs governing that variable

must be expressed as constraints.

3The restriction u > 0 is not as limiting as one might initially assume, since in the context of aircraft
design, decision variables tend to be physical quantities such as weight, drag, or component sizes.

22

• Practical or manufacturing limitations, imposed on decision variables such as material

gauges, structural stresses, deflections, part sizes for FOD minimization, margins of

safety, etc.

• Requirements or system-level performance bounds, imposed by the design team or

customer. These constraints are often simple expressions involving a single decision

variable, e.g. Range > 5000 km, or Wpayload > 49000 N.

Objective

What is a ‘good’ airplane? How do we assign values to two different designs? While this is

an interesting research question in and of itself, for the purposes of this thesis we will take

a simple yet powerful approach.

In practice, typical design problems involve multiple criteria of interest. Without loss

of generality, we can assume that each of these criteria is a decision variable (if it is in-

stead a posynomial expression, we can simply add a decision variable and the corresponding

posynomial constraint).

The objective may then be chosen in one of two ways:

• Construct an aggregate objective function (AOF) – a (posynomial) weighted sum of

the individual criteria [67]. The weights allow a designer to specify (and refine) his or

her relative weightings of the various criteria. To reward criteria, such as velocity or

efficiency, that term’s inverse is penalized4.

• Choose one of the criteria as the (monomial) objective function, and set the other

criteria to desired levels using monomial constraints. This approach gives more precise

control than the weighted method. However, one must specify a combination of objec-

tive values that are feasible. The optimizer then sets the remaining monomial objective

to the most extreme value possible such that the decision variables all remain feasible.

The role of these formulations in exploring Pareto frontiers (tradeoffs) is discussed in Sec-

tion 2.4.

4Here we use the terms penalize and reward as opposed to minimize and maximize to distinguish indi-
vidual criteria, which are penalized, from the overall objective, which is globally minimized.

23

FC 1
 obj:
 V = ?

 CD = ?
mpay = ?
 R = ?
 N = ?
 ...

CL = ?

FC 2
obj:

 V = ?

 CD = ?
mpay = ?
 R>238km
 N = ?
 ...

CL = ?

FC 3
obj:

 V = ?

 CD = ?
mpay = ?
 R = ?
 N = ?
 ...

CL = ?
...

FC 1
obj:

 V = 38 m/s

 CD = .115
mpay = 0
 R = 499 km
 N = 222 min
 ...

CL = 1.5

FC 2
obj:

 V = 62 m/s

 CD = .088
mpay = 231 kg
 R = 238km
 N = 64 min
 ...

CL = 1.2

FC 3
obj:

 V = 98 m/s

 CD = .042
mpay = 0
 R = 200 km
 N = 34 min
 ...

CL = 0.22
...

GP solver

design
S =1.47m2

b = 4.53 m
 = 0.12
m0 = 190 kg
 ...

Figure 2.4: Use of flight conditions to define an aircraft design problem. Here the overall
objective trades off endurance N , payload mpay, and maximum velocity V . Three flight
conditions are defined, and a range constraint R(2) > 238 km is placed on the maximum
payload flight condition. Onboard fuel is fixed to a constant for simplicity. After optimiza-
tion, the flight variables that optimize each flight condition objective are found, along with
the unique optimal design variable values. Only a subset of the decision variables are shown.

Flight Conditions

The notion of flight conditions addresses the problem that designers typically want ‘good’

performance across a wide range of velocities, payloads, and other flight variables. Each flight

condition represents a design case the designer wishes to analyze. Variables that may differ

from one flight condition to the next, such as velocity or payload, become vectors instead of

scalars. In this way, flight conditions make it possible to analyze performance across several

design cases within simultaneously (within a single GP optimization). Importantly, design

variables that do not change in flight, such as wing area, must remain scalars. An example

is shown in Figure 2.4.

24

Posynomial Inequality Relaxation

Posynomial equality relaxation is a GP modeling technique that is central to the GP design

paradigm. The basic idea is to relax selected posynomial equality constraints into inequality

constraints, thereby making them GP-compatible. Under certain conditions, an equality

relationship will hold at the optimum despite the relaxation [10].

Consider as an example the following drag model, which breaks down CD into a profile

drag component and an induced drag component:

CD = Cd0 +
C2
L

πeA
(2.18)

Although the posynomial structure in this model is obvious, the model is not GP-

compatible, because posynomial equality constraints are not allowed in GP. Indeed, adding

a posynomial equality constraint can turn an otherwise harmless GP into a very difficult

combinatorial optimization problem. However, thanks to our knowledge of the variables

involved, we can relax (2.18) to create a GP-compatible inequality constraint:

CD ≥ Cd0 +
C2
L

πeA
(2.19)

Even though the constraint has been relaxed, the original equality relationship (2.18)

will be globally optimal (i.e. the relaxation will not change the optimum) under certain

conditions on the functional behavior of the objective and constraints with respect to CD.

In particular, we assume that CD does not appear in any monomial equality constraints,

and that the objective and inequality constraints (other than (2.19)) are all monotone in-

creasing (or constant) in CD. Under these conditions, if the equality relation (2.18) did

not hold at the optimum, we could clearly decrease CD until achieving equality, without

increasing the objective or moving the solution outside the feasible set.

This type of relaxation is widely applicable, and can also be applied when the direction

of the assumed monotonicities are reversed [71, 10]. We will use it extensively in Section 5

without further comment.

25

2.4 Exploring Tradeoffs

In a design setting, a single point solution is informative, but inadequate. A wise designer

or manager considers a range of possible tradeoffs. How would modifying the desired stall

speed VS0 = 22m/s affect the drag objective? How expensive would it be to fly at a slightly

higher cruise speed V than that which minimizes drag? The answer to these questions lies

in a Pareto frontier, which quantifies the tradeoffs among the relevant variables.

In Fig. 2.5, we show how GP-based design can be used as a powerful inner loop for

quickly exploring Pareto frontiers. For this design example, we re-solved the GP (2.17)

across a range of different stall speeds VS0. Then, for each stall speed of interest, we re-

solved across a range of different cruise speeds, working up from the drag-optimal V . The

resulting tradeoff surface, shown in Fig. 2.5a, represents the design space of aircraft that are

Pareto-optimal with respect to drag, cruise speed, and stall speed.

26

30

40

50

60

20
25

30
35

40

250

300

350

400

450

cruise speed Vstall speed V
S0

to
ta

l
d

ra
g

 D
 [

N
]

(a) Total aircraft drag, D

30

40

50

60

20
25

30
35

40

0

10

20

30

cruise speed Vstall speed V
S0

w
in

g
 a

re
a
 S

 [
m

2
]

(b) Optimal wing area, S

30

40

50

60

20
25

30
35

40

0

5

10

15

cruise speed Vstall speed V
S0

a
s
p
e
c
t
ra

ti
o
 A

(c) Optimal aspect ratio, A

30
40

50
60

20

30

40

1000

1500

2000

2500

3000

cruise speed V
stall speed V

S0

w
in

g
 w

e
ig

h
t
W

w
 [
N

]

(d) Optimal wing weight, Ww

Figure 2.5: Tradeoff surfaces for the wing design problem in Section 2.2. Here the GP (2.17)
was solved 775 times, across a grid of unique cruise speeds, V , and stall speeds, VS0. This
resulted in the Pareto frontier (a), which trades off low cruise drag D, high cruise speed V ,
and low stall speed VS0. The corresponding optimal design parameters appear in the other
figures, where each point on the meshes corresponds to a unique aircraft design. The thin
line plotted below each mesh represents the drag-optimal cruise speed as a function of stall
speed. On a standard laptop, sweeping out the full Pareto frontier (i.e. solving the GP 775
times) took 3.28 seconds total, or 4.2 milliseconds per solution on average.

27

Chapter 3

Sensitivity Analysis and the Power of

Lagrange Duality

In conceptual aircraft design, the goal is often not just finding an optimal design, but rather

understanding the design space – the shape of the Pareto frontier. What would happen if the

requirements or specifications were slightly different? What if one or more of the physical

models contain errors or uncertainty? A manager who understands how sensitive an optimum

is to changes in requirements or specifications is a manager who can better direct engineering

effort, better anticipate problems, and better inform decisions. This chapter describes a

method for approximating the local shape of tradeoff curves in conceptual aircraft design

problems.

One way to investigate these issues is to repeatedly execute the design optimization for

many different values of some requirement or model parameter. This trade study approach,

widely used in practice, results in a Pareto frontier (i.e. a tradeoff curve) for the parameter

of interest. Trade studies are useful tools, but a large number of computations (i.e., design

optimizations) may be required gain a full understanding of the tradeoff space. For example,

the drag vs. cruise speed vs. stall speed Pareto surface swept out in Figure 2.5 consisted of

775 unique GP solutions.

In this chapter, we will consider a more disciplined approach: sensitivity analysis via La-

grange duality. Using this technique, we can solve a GP once, and recover partial derivatives

of the global optimum with respect to perturbations of each constraint. These sensitivities

28

represent how much the optimum would change if we slightly changed any parameter and

re-optimized, but the information can be obtained without ever re-optimizing.

Sensitivity analysis for GP is closely related to Lagrange duality. When modern primal-

dual interior point methods solve a GP, they determine globally optimal variable values for

the original primal problem, as well as globally optimal values for the decision variables of a

closely related dual problem. Importantly, the dual variables are determined for free when a

GP is solved. Because they encode sensitivity information, they can help direct engineering

or modeling efforts by providing a quantitative comparison among the relative influences of

various subsystems, components, or requirements on system-level performance.

3.1 Maximum Entropy Dual of a Geometric Program

A Lagrange dual of the convex form GP (2.10) can be formed by introducing t equality-

constrained variables z to represent the affine mappings:

minimize log

K0∑
k=1

exp z0k

subject to log

Ki∑
k=1

exp zik ≤ 0, i = 1, ...,m, (3.1)

Aix+ bi = zi, i = 0, ...,m,

where Ai and (bi ≡ log ci) contain the exponents and constant coefficients for each of the

m + 1 posynomials. Introducing Lagrange multiplier vectors λ ∈ Rm and νi ∈ RKi , the

constraints can be incorporated into the objective to form the Lagrangian:

L(x, z,λ,ν) = log

K0∑
k=1

exp z0k +
m∑
i=1

λi log

Ki∑
k=1

exp zik +
m∑
i=0

νt
i (Aix+ bi − zi) (3.2)

The dual function is

g(λ,ν) = inf
x,z

L(x, z,λ,ν). (3.3)

Taking the infimum over x, we see that g tends to −∞ unless
∑m

i=0 ν
t
iAi = 0, in which case

the terms involving x vanish. Taking the infimum over z0, the infimum is achieved for z0

29

such that

ν0 =
exp z0∑K0

k=1 exp z0k

. (3.4)

This relationship is only possible when ν0 represents a probability distribution, i.e. ν0 ≥ 0

and 1tν0 = 1. For any ν0 not satisfying these constraints, g achieves −∞. Finally, taking

the infimum over zi, we obtain

νi =
λi exp zi∑Ki

k=1 exp zik
, i = 1, ...,m. (3.5)

Assuming λi ≥ 0, (3.5) is only possible when νi ≥ 0 and 1tνi = λi. Otherwise, g achieves

−∞.

To form a dual problem, we substitute (3.4) and (3.5) into (3.2), maximize over ν and

λ ≥ 0, make the domain constraints explicit, and eliminate λ. The resulting dual problem

is

maximize
m∑
i=0

[
νt
i bi −

Ki∑
k=1

νik log
νik

1tνi

]

subject to
m∑
i=0

νt
iAi = 0

νi ≥ 0, i = 0, ...,m

1tν0 = 1.

Obtaining Dual Variables from Off-The-Shelf Solvers

Most modern GP solvers utilize primal-dual interior point methods [52, 55] in their solution

architecture. A common feature of these methods is that they determine the optimal values

of the primal and dual variables at the same time (so long as both problems are feasible).

Due to the convexity of GP and a property called strong duality, the optimal values of the

primal and dual problems are exactly equal (up to numerical precision).

Off-the-shelf solvers may differ as to exactly which primal and dual variables they return.

The commercial solver MOSEK [54], for example, returns the optimal log-transformed primal

variables x, and the opposites of the dual Lagrange multipliers, −λi, i = 1, ...,m. It does

not return the dual distributions νi, i = 0, ...,m. When these variables are needed (they

30

are used in Section 3.3, for example), they are easily calculated given λ and (z = Ax + b)

via (3.4) and (3.5).

3.2 Sensitivity Analysis

Perturbed GP – Tradeoff Analysis

Consider the following perturbed version of a GP in standard form:

minimize

K0∑
k=1

c0ku
a0k

subject to

Ki∑
k=1

ciku
aik ≤ si, i = 1, ...,m. (3.6)

The variables s ∈ Rm are perturbations: s = 1 represents the original unperturbed problem;

if si < 1, then the ith constraint has been tightened; if si > 1, then the ith constraint has been

loosened. We denote the optimal objective value of the perturbed problem p∗(s). If we sweep

one element si over a range of values, then we obtain an optimal tradeoff curve, i.e. a Pareto

frontier. If we sweep multiple elements of s over a convex set, then we obtain an optimal

tradeoff surface. This formulation is the most straightforward way to explore a design space

parameterized by multiple objectives. For example, one might minimize some objective

(mission fuel burn, say), and explore perturbations in constraints on payload, range, and

material cost.

Sensitivity Analysis via Optimal Dual Variables

When a GP is solved, the sensitivity of the objective function with respect to each constraint

perturbation is encoded by the optimal dual variables:

∂ log p∗(s)

∂ log si

∣∣∣∣
s=1

=
∂
(
p∗(s)
p∗(1)

)
∂
(
si
1

)
∣∣∣∣∣∣
s=1

= −λi, i = 1, ...,m. (3.7)

That is, the percentage or fractional sensitivity of the objective to fractional changes in the

ith constraint is encoded by the ith Lagrange multiplier. For example, imagine that λi = 4.00

31

Table 3.1: Optimal dual variables for the simple example (2.17).

i Constraint Name λi νt
i

1 CD breakdown 1.000 [0.0915 0.4300 0.4785]
2 Cf definition 0.4300 [0.4300]
3 Re definition 0.0860 [0.0860]
4 CL definition 0.9570 [0.9570]
5 weight breakdown 1.2867 [0.8655 0.4212]
6 wing weight model 0.4212 [0.1309 0.2903]
7 landing stall speed 0.1845 [0.1845]

at the unperturbed optimum of some GP. If we were to tighten constraint i by 1% and

re-optimize, we would expect the optimal objective value to increase by approximately 4%.

Similarly, if we were to loosen constraint i by 1%, we would expect the optimal objective value

to decrease by approximately 4%. Because they encode percentage sensitivities, optimal dual

variables are informative regardless of the units of measurement used in the primal problem.

The entire vector of dual sensitivities, −λ, parameterizes a log-space linearization of the

Pareto surface p∗(s) around the unperturbed point p0 ≡ p∗(1):

log p∗(s) ≈ log p0 − λt(log s) (3.8)

p∗(s) ≈ p0s
−λ. (3.9)

This approximation is always optimistic, i.e. p0s
−λ ≤ p∗(s).

Example: Dual Variables from Simple Example

Recall the simple example problem (2.17) from Chapter 2. Consider as an example the

posynomial wing weight model. A perturbed version is

sww ≥
45.42S

Ww

+ 8.71× 10−5NliftA
3/2
√
W0WS

Wwτ
. (3.10)

Compared with the unperturbed model, the perturbed version predicts smaller wing weights

when sww > 1, and larger wing weights when sww < 1. Percentage change in wing weight and

sww are directly related: percentage change equals 100(1/sww−1). For example, sww = 1/1.01

32

0.5 1 1.5 2
200

250

300

350

400

450

s
ww

O
b

je
c
ti
v
e

 (
D

ra
g

)
[N

]

True objective value

Dual variable approximation

Unperturbed optimum

Figure 3.1: Optimal drag as a function of perturbation in wing weight model, with sww de-
fined as in (3.10). The dual variable approximation is formed by solving the (unperturbed)
GP once, and using the wing weight model’s dual variable to construct a monomial (dashed
line). The solid true objective value curve is produced by re-solving the GP for different
model perturbations (in this case, 61 times). The dual variable approximation represents a
computationally inexpensive (free, in fact) surrogate. It is always an optimistic approxima-
tion, whose error approaches zero for small perturbations.

will cause the model to predict 1% higher wing weights. As sww shifts, so does the optimal

design, resulting in a new perturbed optimum.

In the process of solving the unperturbed problem, the globally optimal dual variables

(listed in Table 3.1) are also determined. These values encode information about the per-

turbed optimum. For example, how would a 10% change in the wing weight model affect

the drag objective? According to (3.7), an estimate can be obtained from the corresponding

dual variable, λww = 0.4212. This value indicates that increasing (decreasing) the modeled

wing weight by 10% and re-optimizing would result in approximately 4.212% more (less)

drag. This dual variable approximation can be written as a monomial,

p∗(sww) ≈ p∗(1) s−λww
ww , (3.11)

shown as a dashed line in Figure 3.1. The log-space slope of the tradeoff curve, −λww,

directly encodes how sensitive the objective is to small changes in wing weight.

33

3.3 Fixed Variable Sensitivities

Consider a GP with fixed variables in the form (2.6). To solve this GP, one simply computes

the constant terms (cikū
āik) and treats them as constant values c for a GP in the form (2.5).

However, it is often useful to understand how sensitive a solution is to the values of variables

that have been fixed to constant values.

The sensitivity of the objective with respect to the jth fixed variable is

∂ log p∗

∂ log ūj
=
∂ log f0

∂ log ūj
+

m∑
i=1

∂ log p∗

∂ log ui
· ∂ log ui
∂ log ūj

(3.12)

=
m∑
i=0

λi

∑Ki

k=1 ā
(j)
ik exp zik∑Ki

k=1 exp zik
(3.13)

=
m∑
i=0

νt
i ā

(j)
i . (3.14)

That is, the sensitivity of the objective with respect to the jth fixed variable is encoded by

the dot product of dual variables and jth-variable-exponents, summed over all posynomial

constraints involving variable j. Thus, when a problem has GP structure but certain variables

are to be held constant, we can solve a smaller GP involving only the free decision variables,

and then recover the sensitivity with respect to each fixed variable via (3.14).

Example: Fixed Variable Sensitivities from Simple Example

Sensitivities with respect to each fixed variable are listed in Table 3.2. These sensitivities

provide actionable intelligence that can redirect modeling and engineering efforts. For ex-

ample, even after solving only the unperturbed GP, the designer learns that small changes

in the fixed weight (SWw = 1.0107) have 2.35 times more effect on optimal drag than small

changes in the form factor k (Sk = 0.43), which in turn have 4.70 times more effect than

small changes in fuselage drag area (SCDA0 = 0.0915). One way to use this information could

be to direct engineering effort toward improving the quantities the objective is most sensitive

to – W0, in this case. Or, the information could guide improvements in model fidelity. In this

case, an analyst might prioritize refining models for W0, e, or k, given their relatively high

sensitivity to uncertainty, while concluding that a constant model for CDA0 is reasonable.

34

Table 3.2: Fixed variable sensitivities for the example problem (2.17). Negative sensitivities
indicate that increasing the corresponding variable would improve the objective.

Variable Value (ū) ∂ log p∗/∂ log ū
W0 4940 1.0107
e 0.95 -0.4785

Swet/S 2.05 0.4300
k 1.2 0.4300
VS0 22 -0.3691
Nlift 3.8 0.2903
τ 0.12 -0.2903
ρ 1.23 -0.2275

CL,max 1.5 -0.1845
(CDA0) 0.031 0.0915

µ 1.78e-5 0.0860

Aside from parameterizing models, fixed variables often parameterize design requirements

or specifications. For example, the fixed variable VS0 = 22m/s reflects a desire for the aircraft

to be capable of landing at a safe (slow) speed, independent of its cruise speed V . The

associated sensitivity, S = −0.3691, tells us that a 1% increase in stall speed would pay off

as approximately a -0.37% decrease in drag. The true Pareto frontier, along with its dual

variable approximation, are depicted in Figure 3.2.

3.4 Aside: Recovering known Scaling Laws

As an interesting aside, let us examine an even simpler GP for which we can draw a connec-

tion between the dual variables and known scaling laws in aircraft design.

Consider the following GP, which is a simplified version of (2.17) that ignores the effects

35

15 20 25 30 35 40 45
220

240

260

280

300

320

340

360

380

V
S0

 [m/s]

D
ra

g
 [
N

]

True Pareto frontier

Dual variable approximation

Original GP solution

Figure 3.2: Optimal tradeoff curve between drag and stall speed requirement. The dual
variable approximation matches exactly for small changes in stall speed. On the far right
side of the true Pareto frontier, we observe that the stall speed constraint becomes inactive
(ceases to influence the objective) if stall speeds are permitted to be sufficiently large. The
dual variable approximation is not particularly close on the extreme left and right ends of the
plotted range, but these correspond to -32% and +105% changes in stall speed respectively
– well outside the applicable range of ”small changes”.

of Reynolds number on profile drag.

minimize
A,S,CD,CL,W,Ww,V

f0(ρ, V, CD, S)

subject to (3.15)

CD breakdown 1 ≥ (CDA0)

CDS
+
CDp
CD

+
C2
L

CDπAe

CL definition 1 ≥ 2W

ρV 2CLS

weight breakdown 1 ≥ W0

W
+
Ww

W

wing weight model 1 ≥ 45.42S

Ww

+ 8.71× 10−5NliftA
3/2
√
W0WS

Wwτ

stall speed 1 ≥ 2W

ρV 2
S0SCL,max

We have introduced the fixed variable CDp = 0.0095 to represent a constant wing profile

drag coefficient. We will study this GP for two different objectives: f0 = 1
2
ρV 2CDS (drag

36

Table 3.3: Globally optimal solutions (minimum drag and minimum power) for the simplified
GP (3.15).

Variable f0 = 1
2
ρV 2CDS f0 = 1

2
ρV 3CDS Units

A 8.792 8.572
S 16.79 30.55 m
CD 0.02269 0.04206
CL 0.5456 0.8983
W 7495 8859 N
Ww 2555 3919 N
V 36.48 22.91 m/s

Table 3.4: Optimal dual variables for the drag minimization problem (3.15).

i Constraint Name νt
i – minimum drag νt

i – minimum power
1 CD breakdown [0.0814 0.4186 0.5000] [0.0241 0.2259 0.7500]
2 CL definition [1.0000] [1.5000]
3 weight breakdown [0.9186 0.4751] [0.9759 0.7741]
4 wing weight model [0.1418 0.3333] [0.2741 0.5000]
5 landing stall speed [0.2271] [0.0000]

minimization), and f0 = 1
2
ρV 3CDS (flight power minimization).

As before, a GP solver finds the globally optimal solutions (listed in Table 3.3) and

corresponding dual variables (listed in Table 3.4) in milliseconds.

Several interesting observations can be made.

1. As one would expect, the minimum power design has shifted down the drag-velocity

curve. It has a larger wing area, and correspondingly larger wing weight, which enable

optimal operation at a significantly lower velocity.

2. In the minimum drag design, the aircraft is flown at a CL such that induced drag

accounts for exactly half of the overall drag (ν13 = 0.5). This is a well known result [43]

(valid for models that break down CD into a velocity-independent profile drag term

plus a C2
L-dependent induced drag term).

3. In the minimum power design, induced drag constitutes 75% of the overall drag (ν13 =

37

0.75). This is also a well-known result [21].

4. According to the dual variables, minimum power is 150% sensitive to CL (the famous

3/2 power scaling law [62]).

5. Finally, we notice that for minimum power design, the stall speed constraint has become

inactive – a result of the optimal cruise speed decreasing to a value near the required

stall speed. Indeed, the stall speed for the power-optimal design is 17.73 m/s, well

under the required 22 m/s.

3.5 Linearized Propagation of Log-Normal

Uncertainties

Sensitivity information can help to predict how small uncertainties in parameters propagate

to the objective. In particular, imagine that our knowledge about one of the fixed variables,

ūj, is described by a log normal distribution:

log ūj ∼ N (µj, σ
2
j), (3.16)

where σj is small (σj < 0.05, corresponding to a standard deviation less than 5% error, say).

Additionally, assume that we have solved a GP involving ūj for the unperturbed setting

ūj = eµj , and recovered the dual sensitivity

Sūj ≡
∂ log p∗

∂ log ūj
=

m∑
i=0

νt
i ā

(j)
i ,

along with the unperturbed objective value p∗0. In keeping with (3.9), the sensitivity allows

us to predict how the objective would change if ūj were slightly different:

log p∗(ūj) ≈ log p∗0 + Sūj(log ūj − µj).

Because normal distributions are closed under affine transformations, this suggests a log

normal approximation for our belief about the optimal p∗:

log p∗ ∼ N (log p∗0,S2
ūj
σ2
j). (3.17)

38

It is very important to understand that this result relies on the log-space linearization of the

ūj, p
∗ relationship, and is thus reliable only for small σj. Moreover, due to the convexity of

the functions involved, this approximation always underestimates our uncertainty in p∗. It is

therefore not a reliable tool for propagating conservative error bounds or constructing worst-

case estimates. Nevertheless, it is extremely useful for making rough comparisons regarding

how much uncertainty is introduced by various parameter uncertainties.

39

Chapter 4

Fitting GP Models to Data

In many engineering systems and disciplines, some of the governing models are encoded in

simulations or computational routines, and are therefore not available in analytical forms.

This opens a natural question: when can we fit GP-compatible models to data sets that we

might collect from black-box computational routines or even from experiments?

As discussed in Chapter 2, monomials and posynomials are log-convex. Interestingly, the

work presented in this chapter led not just to a new approach for fitting GP-compatible

models, but to a new method for fitting convex functions in general. As a result, the right

place to begin the discussion is with the general problem of convex regression.

4.1 The Convex Regression Problem

In convex regression, we consider the problem of approximating an arbitrary function or data

with a convex surrogate function. In particular, consider the problem of fitting a multivariate

function f(x) to a set of m data points

(xi, yi) ∈ Rd × R, i = 1 . . .m.

With the restriction that f be convex, we obtain the fitting problem

minimize
f

||Y − f(X)|| (4.1)

subject to f ∈ F ,

40

where X ∈ Rm×d is a matrix of the xi (measurements), Y ∈ Rm is a vector of the yi

(responses), f is the function being fitted1, F is a set of convex functions, and || · || is some

norm. This chapter takes || · || to be the 2-norm, but the work extends to other fitting

criteria. Clearly, the norm (residual) cannot be small if the data is not well-approximated by

any convex function. Our interest is therefore in data sets that exhibit at least a reasonable

amount of underlying convexity .

As with any regression problem, the specific choice of function class F can dramatically

influence the quality of the resulting model with respect to the chosen loss function. One

common choice is FKma, the set of max-affine functions parameterized by K affine terms:

f(x) = max
k=1...K

[bk + at
kx] (4.2)

This choice is motivated by the fact that any convex function can be expressed as the

pointwise supremum over a (generally infinite) set of affine functions [11]. That is, F∞ma
can approximate any convex function to arbitrary precision. Max-affine functions are also

appealing from a practical perspective: they can be converted directly to linear constraint

sets (compatible with linear programming), or to monomial constraint sets (compatible with

geometric programming).

Methods for fitting max-affine functions are well established. In 2008, Magnani and

Boyd [46] proposed a least-squares partition algorithm that works well in practice. They also

discussed a more general bi-affine function parameterization. In 2010, Kim et al. [41] used

a similar method to fit max-monomial models for circuit design. Hannah and Dunson [31]

fit max-affine functions using a statistically consistent adaptive partitioning approach that

refines accuracy for increasing K by generating candidate partition splits and selecting splits

greedily. They also describe an ensemble version of their method that avoids instability in

max-monomial fitting [30].

Although max-affine functions are a natural and popular choice, one drawback is that a

large number of affine terms K may be necessary to achieve a desired level of accuracy. In

this chapter, we argue for choosing f from a more general class of convex functions, of which

FKma is a subset. Section 4.2 describes two successive generalizations: the softmax-affine

1The mapping f is overloaded: f(x) refers to function evaluation at a single point (f : Rd → R), whereas
f(X) refers to a vectorized version (f : Rm×d → Rm).

41

class, FKsma, and the implicit softmax-affine class, FKisma. One can show that

FKma (FKsma (FKisma.

This hierarchy implies that for a given data set (X, Y) and number of affine terms K, there

always exist SMA and ISMA functions with at least as small a residual as the best max-affine

fit. Indeed, significantly improved fits are observed on real data sets (Section 4.5).

The fitting problem (4.1) is formulated as a nonlinear least squares regression, solved

locally via sequential convex programming (Section 4.4).

4.2 Some Convex Function Classes

We now explore the general task of fitting some data with a convex function f ∈ F . This

section overviews several candidate function classes F .

Max-affine Functions

The max-affine function class FKma consists of functions of the form

fma(x) = max
k=1...K

[bk + at
kx] , (4.3)

where bk ∈ R and ak ∈ Rn are the model parameters. The total number of model parameters

is np = K(n + 1). It is well known that the supremum over a set of affine functions is a

convex function; thus (4.3) is always convex in x.

Softmax-affine Functions

The proposed softmax-affine function class FKsma consists of functions of the form

fsma(x) =
1

α
log

K∑
k=1

exp (α(bk + at
kx)) . (4.4)

The addition of the scalar parameter α ∈ R>0∪{+∞} brings the total number of parameters

to np = K(n + 1) + 1. Since log-sum-exp functions are convex and convexity is preserved

under positive scaling and affine transformations [11], SMA functions are guaranteed to be

convex in x for any α > 0.

42

x

f(
x

)

α = 1

α = 1.5

α = 5

α = 1000

Figure 4.1: Influence of α on softmax-affine functions. Each of the softmax-affine functions
plotted above shares the same K = 4 affine terms (the thin dashed lines), but has a different
α. The solid curve corresponds to a max-affine function; the dashed curve corresponds to
a softmax-affine function with α = 1, and one can interpolate smoothly among these by
varying α. While this figure illustrates the situation in R1, the limiting cases extend to
arbitrary dimensions.

Limiting behavior As depicted in Figure 4.1, one can view α as a smoothing parameter

that controls the sharpness of the softmax over the K affine planes. In the limit of infinite

sharpness,

lim
α→+∞

1

α
log

K∑
k=1

exp (α(bk + at
kx)) = max

k=1...K
[bk + at

kx] , (4.5)

i.e. softmax-affine functions become max-affine functions in the limit α → +∞. Thus,

FKma (FKsma.

Implicit Softmax-affine Functions

The proposed implicit softmax-affine class, FKisma, expresses the relationship between x and

y via an implicit function

f̃isma(x, y) = log
K∑
k=1

exp (αk(bk + at
kx− y)) , (4.6)

where each αk ∈ R>0 ∪ {+∞}.

43

Proposition 4.2.1. For all x, there exists a unique y such that f̃isma(x, y) = 0.

Proof. For all x, y 7→ f̃isma(x, y) is a continuous monotone strictly decreasing function of y,

since increasing y decreases every term in the K-term sum. Moreover, there exists some γ−

such that f̃isma(x, γ−) > 0, and some γ+ such that f̃isma(x, γ+) < 0. Thus by the intermediate

value theorem the function must have a unique zero crossing between γ− and γ+.

Based on Proposition 4.2.1, we define fisma such that for all x,

f̃isma(x, fisma(x)) = 0. (4.7)

That is, the predicted value ŷ = fisma(x) is the unique value ŷ such that f̃isma(x, ŷ) = 0.

Proposition 4.2.2. The function x 7→ fisma(x) is convex.

Proof. Consider any two points (x1, y1) and (x2, y2) that both solve f̃isma(x, y) = 0. By

convexity of the log-sum-exp function and preservation of convexity through affine mappings,

we must have f̃isma(θx1 + (1 − θ)x2, θy1 + (1 − θ)y2) ≤ 0 ∀ θ ∈ [0, 1]. But for some ŷ,

f̃isma(θx1 + (1 − θ)x2, ŷ) = 0. Since f̃isma is monotone decreasing in y, ŷ ≤ θy1 + (1 − θ)y2.

Thus the function value ŷ at any weighted combination of x points is less than or equal to

a weighted combination of the y values – exactly the definition of convexity.

ISMA functions have individual softness parameters αk > 0 for each of the K affine terms

in the model, bringing the total number of model parameters to np = K(n+ 2). Figure 4.2

illustrates the influence of these individual softness parameters.

If we set all the αk parameters to the same value α, then we recover the softmax-affine

function class. This implies that the implicit softmax-affine class subsumes the softmax-affine

class, and therefore also the max-affine class:

FKma (FKsma (FKisma (4.8)

As a result, there always exists some setting of the αk parameters for which the ISMA class

performs as well as or better than the best model in each of the other function classes.

44

x

f(
x

)

α
1
 = 1

α
1
 = 2

α
1
 = 5

α
1
 = 1000

(a) Varying α1 (leftmost plane)

x

f(
x

)

α
2
 = 1

α
2
 = 2

α
2
 = 5

α
2
 = 1000

(b) Varying α2

Figure 4.2: Influence of individual softness parameters αk on ISMA functions. Each of the
functions above shares the same K = 4 affine terms (the thin dashed lines). We set all of
the softness parameters αk to 1, which results in the top curve (dashed line) in each figure.
We then varied just one of the four softness parameters to get intuition about its effect.
This figure illustrates the situation in R1, but the qualitative behavior extends to arbitrary
dimensions.

−2 −1 0 1 2
−2

0

2

4

6

8

(a) MA: RMS = 0.1908

−2 −1 0 1 2
−2

0

2

4

6

8

(b) SMA: RMS = 0.1266

−2 −1 0 1 2
−2

0

2

4

6

8

(c) ISMA: RMS = 0.0104

Figure 4.3: This toy fitting problem illustrates how ISMA functions can significantly out-
perform SMA (and therefore also MA) functions. All fits used K = 3 affine terms. Here the
data are samples of the convex function y = max

(
−6x− 6, 1

2
x, 1

5
x5 + 1

2
x
)
, which has a sharp

kink near x = −0.8, but gradual curvature elsewhere. The best fit is an ISMA function,
which can conform to the data by adjusting softness locally.

45

Algorithm 1 Evaluate y = fisma(x)

zk ← bk + at
kx, k = 1 . . . K

s← maxk zk
t← 0
repeat
f ← log

∑K
k=1 exp (αk(zk − s− t))

∂f/∂t← −
∑

k αk exp(αk(zk−s−t))∑
k exp(αk(zk−s−t))

t← t− f
∂f/∂t

until |f | < machine precision

return y = s+ t

Evaluating ISMA functions No explicit formula is available for evaluating ISMA func-

tions. We therefore give Algorithm 1, a Newton-Raphson [73] algorithm for solving fisma(x, y) =

0. The breakdown y = s + t avoids numerical issues associated with computing ratios and

logarithms of large exponentials. In practice, Algorithm 1 reliably converges to machine

precision in approximately 5-10 Newton iterations.

4.3 Application to Geometric Programming

The GP-compatible Fitting Problem

In GP-compatible fitting, we are interested in approximating a set of data points

(ui, wi) ∈ Rd
>0 × R>0, i = 1 . . .m,

also represented as (U,W) ∈ Rm×d
>0 × Rm

>0, with monomial or posynomial constraints. The

fitting problem variables (u, w) typically represent a subset of the full vector of n GP decision

variables; i.e. d+ 1 ≤ n.

Knowing that monomials and posynomials are log-convex, one often applies a log trans-

formation (X, Y) = (logU, logW), thereby converting the GP fitting problem into a convex

regression problem on the transformed data (X, Y). The most common approach is then

to fit y as a max-affine function of x, and convert the resulting affine functions back to

equivalent monomial constraints on the GP. Since GPs also admit posynomial constraints,

46

another approach is to directly fit w as a posynomial function of u. This approach has

been used by a number of authors [16, 45, 57]. Typically mixed results are reported, with

max-monomial models performing better on data with sharp kinks, and posynomial models

performing better on smoother data [10]. As described in the next section, one benefit of

SMA and ISMA functions is the unification of these two approaches.

GP Interpretation of Proposed Convex Function Classes

Each of the convex function classes in this chapter has a parallel interpretation as a GP-

compatible function. This makes SMA and ISMA functions natural choices for GP-compatible

fitting.

Max-affine Functions as Max-monomial Functions

Recall that under the GP log transformation, monomial functions become affine. Thus, a

max-affine model for y,

ŷ = fma(x), (4.9)

corresponds exactly to a max-monomial model for w,

ŵ = max
k=1...K

[
ebk

d∏
i=1

uaiki

]
, (4.10)

which is easily converted to a GP-compatible set of K monomial inequality constraints on

(u, w),

ebk

w

d∏
i=1

uaiki ≤ 1, k = 1 . . . K (4.11)

Because they can be fit using established max-affine methods, max-monomial functions are

currently a common choice for GP modeling [30, 41].

SMA Functions as Posynomial Functions

For the special case α = 1, SMA functions reduce to posynomials in convex form (2.9). That

is, the model ŷ = fsma(x;α = 1) corresponds to a posynomial constraint on (u, w),

1

w

K∑
k=1

ebk
d∏
i=1

uaiki ≤ 1. (4.12)

47

More generally, one would allow the fitting process to optimize α, resulting in some SMA

model ŷ = fsma(x). Such a model corresponds to a posynomial model for wα,

1

wα

K∑
k=1

eαbk
d∏
i=1

uαaiki ≤ 1. (4.13)

While the distinction between (4.12) and (4.13) may appear subtle, it has important impli-

cations for GP modeling. In particular, in all literature we are aware of, authors who fit

posynomial models fit functions of the form ŵ = g(u), i.e. they search for softmax-affine

models, but with the restriction α = 1. They typically observe mixed results relative to

max-affine functions, meaning the best function class – max-monomial or posynomial – de-

pends on the particular data set [46]. Our work suggests searching for posynomial functions

of the form ŵα = g(u).

The general softmax-affine function class includes max-affine functions (α = +∞) and

posynomial functions (α = 1) as special cases. Softmax-affine functions therefore unify

max-monomial and posynomial fitting, eliminating the need to search over multiple model

classes.

ISMA Functions as Implicit Posynomial Functions

Consider the GP log transformation applied to (4.6). Evidently, a model ŷ = fisma(x)

corresponds to a posynomial constraint on (u, w),

K∑
k=1

eαkbk

wαk

d∏
i=1

uαkaik
i ≤ 1. (4.14)

4.4 Fitting Model Parameters

We now turn to the problem of fitting the proposed function classes to data. We preface

this section by noting that data fitting and nonlinear regression are well-established fields

supported by an extensive literature. Nevertheless, we expect there is value in describing a

practical end-to-end fitting procedure for the specific cases of SMA and ISMA functions.

48

Fitting Approach Overview

Given m data points (xi, yi) ∈ Rd × R, a least squares fitting objective is

minimize
β

m∑
i=1

(f(xi;β)− yi)2 , (4.15)

where f is an instance of one of the convex function classes already presented, and β ∈ Rnp

is a vector that contains the parameters a, b, and α for the chosen function class. In

general, (4.15) is a nonlinear least squares problem. The quantity r(β) = f(X;β) − Y is

the vector of residuals at each data point.

Consider some initial set of parameters β0 and corresponding residual r(β0). For a small

change in parameters δ, the new residual is approximately

r(β0 + δ) ≈ r(β0) + Jδ, (4.16)

where J ∈ Rm×np is ∂f/∂β, the Jacobian of f . This suggests a first-order approximation of

the residual in (4.15), rewritten in terms of the parameter update δ:

minimize
δ

δtJtJδ + δtJtr + rtr (4.17)

subject to δ ∈ ∆,

where ∆ represents a trust region, imposed to keep the approximation (4.16) valid. Most

popular algorithms for nonlinear least squares, including Gauss-Newton methods, Levenberg-

Marquardt algorithms [47], and explicit trust region methods, alternate between solving

some form of the trust region subproblem (4.17), and updating β, r, and J for those steps

that achieve an acceptable improvement in residual. The high-level approach is sketched in

Algorithm 2.

Parameter Update

We now describe three options for solving the trust region subproblem (4.17).

49

Algorithm 2 Nonlinear least squares fitting

β ← β0

δ = 0
∆← initial trust region parameters
repeat
rtrial ← f(X;β + δ)− Y
if trial point acceptable then
β ← β + δ
r ← rtrial

J ← ∂f/∂β
∆← keep or expand trust region

else
∆← constrict trust region

end if
δ ← trust-region-subproblem(J , r,∆)

until no further improvement
return r,β

Gauss-Newton Update

Gauss-Newton (GN) methods [56] find the δ that minimizes the quadratic objective (4.17),

with no trust region bounds. The optimal step is the solution to a set of linear equations,

JtJδ = −Jtr. (4.18)

If the computed step does not achieve a satisfactory reduction in residual, a line search is

typically used to refine the step length. The least squares partition algorithm due to Magnani

and Boyd [46] can be viewed as a Gauss-Newton update for the specific case of max-affine

fitting.

Levenberg-Marquardt Algorithms

Levenberg-Marquardt (LM) algorithms [47, 60] are similar to Gauss-Newton methods, but

with trust region bounds on the parameter update. Instead of constraining δ to lie within

the bounds of an explicit trust region, LM algorithms construct the trust region implicitly

through a quadratic penalty on δ. The advantage of this formulation is that the step is

50

simply the solution to a linear system,

(JtJ + λdiag(JtJ)) δ = −Jtr, (4.19)

where λ controls the magnitude of the quadratic penalty on δ. Various update schemes for λ

exist; in general λ should be increased when the step fails to decrease the residual sufficiently,

kept constant when the penalty term is not appreciably affecting the solution, and decreased

otherwise.

Explicit Trust Region Methods

A final option, which we use in our implementation, is the direct solution of the trust region

subproblem (4.17) via convex programming. For example, with an ellipsoidal trust region

shaped by D = diag(JtJ), we can find the δ that solves

minimize
δ

δtJtJδ + δtJtr + rtr (4.20)

subject to δtDδ ≤ ∆.

This is easily transformed to a second order cone program (SOCP), which can be solved

extremely efficiently by modern interior point methods. One advantage of this formulation

is more direct control over the size of the trust region via ∆ instead of λ. Additionally,

this formulation readily handles hard constraints and l1 sparsity penalties on the parameters

β. For example, to locally solve (4.15), but with an added constraint ||β||1 ≤ B, we can

formulate the step update as the solution to the SOCP

minimize
δ,ξ,t

t

subject to t ≥ δtJtJδ + δtJtr + rtr (4.21)

∆ ≥ δtDδ

ξ ≥ β + δ

ξ ≥ −β − δ

B ≥ 1tξ.

51

Model Jacobians

This section lists the partial derivatives needed to construct Jacobians for all the convex

function classes presented in Section 4.2. Note that we optimize over logα instead of α for

better numerical conditioning of the Jacobians, and to implicitly constrain α > 0.

Max-affine Functions

∂fma
∂bi

=

{
1, i = argmaxk bk + at

kx

0, otherwise
(4.22)

∂fma
∂ai

=

{
xt, i = argmaxk bk + at

kx

0, otherwise
(4.23)

Softmax-affine Functions

∂fsma
∂bi

=
exp(α(bi + at

ix))∑K
k=1 exp(α(bk + at

kx))
(4.24)

∂fsma
∂ai

=
xt · exp(α(bi + at

ix))∑K
k=1 exp(α(bk + at

kx))
(4.25)

∂fsma
∂(logα)

=

∑K
k=1(bk + at

kx) exp(α(bk + at
kx))∑K

k=1 exp(α(bk + at
kx))

− fsma (4.26)

Implicit Softmax-affine Functions

∂fisma
∂bi

=
αi exp(αi(bi + at

ix− fisma))∑K
k=1 αk exp(αk(bk + at

kx− fisma))
(4.27)

∂fisma
∂ai

=
xtαi · exp(αi(bi + at

ix− fisma))∑K
k=1 αk exp(αk(bk + at

kx− fisma))
(4.28)

∂fisma
∂(logαi)

=
αi(bi + at

ix− fisma) exp(αi(bi + at
ix− fisma))∑K

k=1 αk exp(αk(bk + at
kx− fisma))

(4.29)

Parameter Initialization

This section describes suitable initial parameter vectors β0 for each of the convex function

classes.

52

Max-affine Initialization

To initialize the parameters of a max-affine function, we follow Magnani and Boyd [46]. They

pick K data points {x̄1, x̄2, . . . , x̄K} at random without replacement, and partition the data

set according to which x̄ is closest (in Euclidean distance, for example). Each partition is

then fit locally using least squares, thereby forming an initial set of max-affine parameters.

In practice, one or more of the randomly-sampled partitions may contain very few data

points, and thus result in a singular local fitting problem. In our implementation, rank-

deficient initial partitions are expanded until all the local fits become well-posed.

Softmax-affine Initialization

Since softmax-affine functions represent max-affine functions in the limit α → +∞, max-

affine functions provide a convenient initialization for SMA fitting. In particular, given a

max-affine fit βma = (ama, bma), a natural softmax-affine initialization might be

βsma = (ama, bma, α0 = 100)

Too large an initial α0 will cause the α-gradient (4.26) to be extremely small for all data

points. We therefore line search over α to find an α0 that has non-trivial Jα at some data

points, but that does not substantially increase the total residual over the max-affine fit.

Implicit Softmax-affine Initialization

Given the parameters βsma = (asma, bsma, αsma) of a SMA fit, a suitable ISMA initialization

is

βisma = (asma, bsma, [αsma, αsma, . . . , αsma]).

Alternatively, one can initialize ISMA fitting directly from a randomly-seeded MA fit:

βisma = (ama, bma, [100, 100, ..., 100]).

In our implementation, we always try both initializations for every random seed, and select

the one with the smaller residual.

53

Avoiding Numerical Overflow

Many exp terms appear in both the convex function definitions and their Jacobians. When

exponentiated, a modestly large argument can quickly overwhelm the representation capa-

bility of floating point arithmetic. We must therefore use caution when implementing these

equations in software. Two common situations occur:

Ratios of sums of exponentials: To handle these, note that

ceαp∑N
i=1 e

αpi
=

ceα(p−s)∑N
i=1 e

α(pi−s)
, (4.30)

i.e. one can simply subtract some s from all the exponents in the numerator and denominator,

such that the largest argument to exp is, say, 0.

Log sum exp terms: To handle these, note that

1

α
log

N∑
i=1

eαpi = s+
1

α
log

N∑
i=1

eα(pi−s), (4.31)

for some s chosen to keep the maximum exponential small.

4.5 Numerical Examples and Comparisons

Throughout this section, we report RMS error on the residuals ŷ − y, defined as

RMS error =

√√√√ 1

m

m∑
i=1

(f(xi)− yi)2. (4.32)

Absolute error on (x, y) is closely related to percentage error on (u, w), since

ŵ − w
w

≈ log
ŵ

w
= ŷ − y. (4.33)

Example: Local Convex Fitting of a Scalar Function

Suppose that the scalar relationship

w(u) =
u2 + 3

(u+ 1)2
, 1 ≤ u ≤ 3 (4.34)

54

1 1.5 2 2.5 3
0.7

0.75

0.8

0.85

0.9

0.95

1

u

w

(a) MA: RMS = 5.24e-3

1 1.5 2 2.5 3
0.7

0.75

0.8

0.85

0.9

0.95

1

u

w

(b) SMA: RMS = 2.30e-5

1 1.5 2 2.5 3
0.7

0.75

0.8

0.85

0.9

0.95

1

u

w

(c) ISMA: RMS = 7.48e-6

Figure 4.4: Generalized posynomial fitting of the function w = (u2 + 3)/(u + 1)2 over
1 ≤ u ≤ 3. The function was sampled at 501 logarithmically-spaced points, which were
log-transformed and fitted with MA, SMA, and ISMA functions, each with K = 2 affine
terms. Converting these functions back to to the original (u,w) space turned them into
max-monomial and posynomial models.

Table 4.1: Convex fits for the fitting problem in Section 4.5.

Function class Fitted function RMS log error

Max-monomial ŵ = max
(
0.846u−.12, 0.989u−.397

)
5.24× 10−3

SMA posynomial ŵ3.44 = 0.154u0.584 + 0.847u−2.15 2.30× 10−5

ISMA posynomial 1 = 0.0658
u.958

ŵ3.79
+ 0.934

u−1.22

ŵ2.03
7.48× 10−6

expresses an important relationship between two variables (u,w) in a GP. Can this relation-

ship be encoded as a GP-compatible constraint?

Importantly, the expression (u2 + 3)/(u + 1)2 is not log-convex for all u > 0 (a simple

log-log plot verifies this). Thus there is no hope of algebraically manipulating (4.34) into

a posynomial constraint. Nevertheless, (4.34) is log-convex over the domain of interest,

1 ≤ u ≤ 3. This suggests sampling the function and fitting one of our convex function

classes to the ‘data’. For this problem we set K = 2. Figure 4.4 shows the resulting fits,

with SMA and ISMA functions significantly outperforming MA functions. The fitted models

are listed in Table 4.1.

55

Performance on Randomly-generated Convex Functions

To test the proposed function classes and fitting algorithms on a wider range of data sets,

we created a convex function generator that produces random instances of convex functions

using a stochastic grammar of convexity-preserving operations and composition rules, as

follows:

function y = rand_cvx_fun(x, step)

dim = size(x, 2);

pbase = step/12; %base case probability increases with depth into recursion

if(rand < pbase)

%base case: linear function

c = randn(dim, 1);

y = x*c;

if(rand < 0.25)

%square with some probability

y = y.^2;

end

else

%if not base case, choose sum, max, or softmax

r = rand;

if(r < 0.5) %sum

y1 = rand_cvx_fun(x, step+1);

y2 = rand_cvx_fun(x, step+1);

y = y1+y2;

elseif(r < 0.75) %max

y1 = rand_cvx_fun(x, step+1);

y2 = rand_cvx_fun(x, step+1);

y = max([y1, y2], [], 2);

else %softmax

y1 = rand_cvx_fun(x, step+1);

y2 = rand_cvx_fun(x, step+1);

y = log(sum([exp(y1), exp(y2)], 2));

end

end

end

56

We then drew 20 convex functions R2 → R, and 20 more convex functions R5 → R. For

example, the first R2 → R function drawn was

f1(x1,x2) = max(log(exp(−0.32724x1 + 0.89165x2) + exp(0.44408x1 − 0.91182x2 + ...

max(−0.10307x1 − 2.799x2 + (0.62101x1 − 1.5075x2)2 + 0.2417x1 + 0.54935x2 + ...

− 0.2298x1 − 0.57922x2 + (0.42162x1 + 1.0877x2)2, log(exp((0.17694x1 + ...

3.4663x2)2) + exp(max(log(exp((−0.4385x1 + 0.34322x2)2) + ...

exp(max(−0.83768x1 − 1.3075x2, 0.64915x1 − 0.83147x2))), 1.5667x1 + ...

0.8465x2)))− 0.39754x1 + 0.25429x2))), (1.2951x1 + 2.7681x2)2).

Input data x for each function consisted of 1000 points drawn from a multivariate Gaussian

with zero mean and identity covariance. For each of the fitting problems, the fitting process

was restarted from 10 random initializations, and the best fit was chosen. Tables 4.2 and 4.3

report the average fitting error and time across the 20 randomly-generated fitting problems

considered in R2 and R5 respectively. These results show that SMA and ISMA functions

provide consistent benefits in fitting error, when compared with max-affine functions as a

baseline.

Table 4.2: Fitting error comparison for 20 randomly-generated functions R2 → R. Results
are reported across the 20 fitting problems considered. The SOCP trust region subprob-
lem (4.20) was solved using MOSEK [54]. The code ran on a quad-core Intel Core i7 CPU
@ 2.8GHz with 4GB memory.

RMS error as percentage of MA error Average fitting time (s)
(worst-case, average, best-case) per random restart

K MA SMA ISMA MA SMA ISMA
2 100.0 (93.4, 74.8, 56.0) (93.0, 74.5, 55.8) 0.18 0.28 0.48
3 100.0 (39.0, 18.7, 7.1) (38.6, 19.2, 9.2) 0.23 0.36 0.90
4 100.0 (43.7, 21.8, 9.6) (24.2, 16.0, 8.0) 0.24 0.55 0.95
5 100.0 (27.5, 18.8, 9.9) (22.4, 14.8, 7.6) 0.26 0.54 1.10
6 100.0 (28.0, 19.9, 10.4) (22.0, 15.0, 7.8) 0.28 0.53 1.56
7 100.0 (32.6, 20.5, 11.0) (24.4, 14.2, 5.8) 0.29 0.92 1.44
8 100.0 (34.6, 20.4, 10.5) (24.7, 13.7, 6.3) 0.32 0.85 1.27
9 100.0 (33.5, 20.6, 10.2) (26.2, 14.0, 6.8) 0.38 1.12 1.55
10 100.0 (34.8, 21.2, 10.8) (25.6, 13.8, 5.8) 0.38 1.22 1.66

57

Table 4.3: Fitting error comparison for 20 randomly-generated functions R5 → R.

RMS error as percentage of MA error Average fitting time (s)
(worst-case, average, best-case) per random restart

K MA SMA ISMA MA SMA ISMA
2 100.0 (98.3, 89.4, 58.6) (97.6, 88.8, 58.3) 0.54 0.66 1.40
3 100.0 (90.8, 74.4, 40.8) (89.9, 73.3, 41.0) 0.52 0.74 2.04
4 100.0 (77.9, 59.5, 39.0) (73.0, 58.1, 38.4) 0.62 0.91 2.07
5 100.0 (68.1, 49.1, 34.2) (64.2, 47.6, 30.1) 0.86 0.99 1.98
6 100.0 (68.6, 41.9, 23.9) (61.5, 38.1, 24.3) 0.86 1.43 2.38
7 100.0 (83.9, 47.2, 25.1) (73.5, 38.6, 22.6) 1.15 1.60 2.89
8 100.0 (70.3, 44.1, 27.0) (48.3, 33.2, 20.4) 1.23 1.78 3.00
9 100.0 (76.8, 44.3, 25.9) (57.6, 32.5, 20.7) 1.38 2.39 4.24
10 100.0 (71.0, 43.1, 25.5) (46.8, 32.1, 20.2) 1.56 3.23 5.05

Table 4.4: RMS log errors for the circuit design power model in Section 4.5. For K = 2
through K = 4, SMA functions outperformed MA functions by a factor of 2.5 to 44.

K 1 2 3 4
MA 0.0904 0.0229 0.01260 0.00760

SMA ” 0.0092 0.00037 0.00017
ISMA ” 0.0091 0.00034 0.00014

Example: Power Modeling for Circuit Design

Here we consider a power dissipation model,

P = V 2
dd + 30Vdde

−(Vth−0.06Vdd)/0.039, (4.35)

which is relevant for GP-based circuit design. This example comes from [12], and is also

studied in [30]. We are interested in modeling the power relationship (4.35), for 1.0 ≤ Vdd ≤
2.0 and 0.2 ≤ Vth ≤ 0.4, with a posynomial constraint set.

We proceed by generating 1000 samples of u = (Vdd, Vth), uniformly drawn from the

region of interest, and associating each sample with the corresponding w = P (u). We then

apply the log transformation x = logu, y = logw, and fit MA, SMA, and ISMA functions

to the resulting data set. The resulting RMS log errors are given in Table 4.4. Of course,

any of the resulting models is easily converted to a posynomial constraint on Vdd, Vth, and

58

P . For example, the K = 3 SMA model corresponds to a posynomial model,

P 2.14 ≥ 1.09V 4.27
dd V 0.112

th + 7.79× 10−5V
4.75

dd

V 6.44
th

+ 1.36× 10−7V
8.94

dd

V 8.89
th

, (4.36)

which is readily substituted directly into any GP corresponding to a practical circuit design

problem.

Example: Profile Drag Modeling for Aircraft Design

In aircraft design, profile drag on a wing arises due to viscous skin friction in the boundary

layer surrounding the airfoil. For a given airfoil cross section shape, the profile drag coefficient

(cd) depends strongly on Reynolds number (Re), airfoil thickness ratio (τ), and lift coefficient

(cl). No analytical expression is available for this relationship, but it can be simulated

using the viscous airfoil analysis program XFOIL [19]. We generated 3073 data points

((Re, τ, cl), cd)i, for Re ranging from 106 to 107, τ ranging from 8% to 16%, and cl ranging

from 0.01 to stall. We are interested in forming a GP-compatible surrogate for the data set,

for use in GP-based aircraft design.

As before, we apply a log transformation, x = log(Re, τ, cl), y = log cd. We then fit

MA, SMA, and ISMA functions to the (x, y) data set for a range of K. As shown in

Figure 4.6, an implicit softmax model provides the best fit, followed by softmax-affine, which

still outperforms the max-affine fit. Each of the fitted models is directly compatible with

GP, and can therefore represent profile drag relations in practical aircraft design problems.

4.6 Conclusions

At the beginning of the chapter, we introduced two new function classes: softmax-affine, and

implicit softmax-affine. Section 4.2 showed that these functions form a hierarchy, with the

most general ISMA function class able to reproduce the other classes for special parameter

settings. This allowed us to conclude that the best ISMA fit is always at least as good (and

often much better than) the best fit from the more commonly used max-affine class.

Section 4.3 drew key connections to geometric programming. In particular, both of the

proposed function classes can be converted to posynomial constraints, fully compatible with

59

0.2 0.4 0.8 1.2 1.6

0.005

0.01

0.02

c
l

c
d

τ = 0.08

0.2 0.4 0.8 1.2 1.6

0.005

0.01

0.02

c
l

c
d

τ = 0.1

0.2 0.4 0.8 1.2 1.6

0.005

0.01

0.02

c
l

c
d

τ = 0.12

0.2 0.4 0.8 1.2 1.6

0.005

0.01

0.02

c
l

c
d

τ = 0.16

Figure 4.5: Profile drag data as a function of cl for NACA-24xx airfoils, plotted here on a
log scale for slices at four different values of airfoil thickness τ . Colors represent Reynolds
number, which ranged from Re = 106 (dark blue) to Re = 107 (dark red). Each line represents
a sweep across angle of attack for a particular airfoil at a constant Re (i.e., a type-1 lift-drag
polar). Circles indicate the actual data points, which were generated using XFOIL [19]. An
implicit posynomial surrogate model with 8 terms approximates this entire data set with an
RMS error of approximately 2%.

GP. Indeed, the proposed approach unifies max-affine fitting, max-monomial fitting, and

posynomial fitting as special cases of SMA and ISMA functions. The most general ISMA

function class leverages the full expressive power of GP, by using an implicit representation

corresponding to the posynomial constraint g([u, w]) ≤ 1.

Section 4.4 presented the ingredients of a practical fitting algorithm that can be used to

fit these functions to real data.

60

2 4 6 8 10
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

K

R
M

S
 l
o

g
 e

rr
o

r

max−affine

softmax−affine

implicit softmax−affine

Figure 4.6: Approximating the airfoil profile drag data from Section 5.2. Each model class
was fit for a range of K, with implicit softmax-affine functions achieving the best fit. Here
the data consists of 3073 samples of profile drag coefficient cd as a function of lift coefficient
(cl), Reynolds number (Re), and airfoil thickness coefficient (τ). For each K, we did 20
random restarts (initializations), and chose the best fit achieved.

61

Chapter 5

Selected GP-Compatible Aircraft

Design Models

When a GP-compatible formulation of a model is possible, that model can be represented

as a constraint inside a GP. When this is possible for all the models in a design problem, the

process of solving the design problem can be abstracted as a powerful black box that maps

a set of design specifications or requirements to a globally optimal design (or certificate of

infeasibility, if there is no design u that satisfies all the constraints).

In this section, we give examples of GP-compatible models for the aircraft design domain.

Here GP-compatible refers to models of two possible forms:

1. f(u) ≤ 1, where f is a posynomial (or monomial)

2. g(u) = 1, where g is a monomial

Note that monomials and posynomials are closed under monomial division. This implies

that models of the following forms are also GP-compatible:

3. f(u) ≤ g(u), where f is a posynomial (or monomial), and g is a monomial

4. g1(u) = g2(u), where g1 and g2 are both monomials

Finally, observe throughout this section that each model involves only a subset of the full

decision variable vector u. This implies that a GP consisting of these models is sparse.

62

(a) Level flight (b) Climbing flight

Figure 5.1: Force balances in steady flight.

5.1 Steady Flight Relations

Level Flight

The steady level flight relations are perhaps the most basic relationships in aircraft design.

In steady level flight, a force balance dictates that lift equals total aircraft weight, and

thrust equals drag. Expanding lift and drag into standard expressions involving lift and

drag coefficients gives:

1

2
ρV 2CLS ≥ W (5.1)

D ≥ 1

2
ρV 2CDS (5.2)

T ≥ D. (5.3)

Each of these equations are monomial constraints, and therefore GP-compatible.

Climbing Flight

It is straightforward to extend the level flight relations to climbing flight. There are two

cases to consider: when the climb angle γ is a decision variable, and when γ is known.

If γ is a decision variable, then we require γ to be small, so that we can approximate

cos γ ≈ 1. We then work with the decision variable sγ = sin γ instead of γ, and obtain the

following constraints:

63

W ≤ 1

2
ρV 2CLS (5.4)

T ≥ 1

2
ρV 2CDS +Wsγ (5.5)

If, on the other hand, γ is known in advance, then the small angle restriction is removed.

The values of sin γ and cos γ become constants known in advance, and we obtain the following

constraints:

W cos γ ≤ 1

2
ρV 2CLS (5.6)

T ≥ 1

2
ρV 2CDS +W sin γ (5.7)

This model reduces to the level flight model in Section 5.1 for γ = 0. If γ is known in

advance, it can be used to model steep climbs, all the way up to vertical.

Unpowered Gliding Flight

We can also model steady unpowered descents for small descent angles. Because decision

variables in a GP must be positive quantities, we replace the climb angle γ with a descent

angle γ̄ ≡ −γ. For small γ̄, we approximate cos γ̄ = 1, and work with the decision variable

sγ̄ = sin(γ̄) instead of γ. We obtain the following monomial equality constraints:

W ≤ 1

2
ρV 2CLS (5.8)

Wsγ̄ ≥
1

2
ρV 2CDS (5.9)

In cases where a descent angle of interest is known in advance, we can remove the small

angle restriction, as in climbing flight.

5.2 Weight, Drag, and Efficiency Breakdowns

The models in this section capture high-level relationships among lift, drag, weight, and

efficiency. Additional constraints in other sections will capture their dependency on more

64

detailed design parameters.

Drag Breakdown

The total aircraft drag, D = 1/2ρV 2CDS depends on the drag coefficient CD, which can in

turn be modeled as a sum of contributions from different sources. For example, in subsonic

flight regimes, a model might break down CD into three components:

CD ≥
C2
L

πeA︸︷︷︸
induced

drag

+ CDp︸︷︷︸
profile
drag

+
(CDA)0

S︸ ︷︷ ︸
non-wing
form drag

. (5.10)

The induced drag term comes from lifting line theory [5], which predicts a vortex-induced

downwash distribution over the wing that effectively reduces the angle of attack.

Profile drag is a result of viscous skin friction on the wing. The profile drag coefficient

CDp is in general a complicated function of airfoil shape and flow conditions. Assuming a

constant value for CDp provides a crude but simple model. Far more refined GP-compatible

models are also possible. For example, in Chapter 4 the function CDp(CL,Re, τ) was sampled

offline (Figure 4.5) and approximated by an implicit softmax posynomial model.

The final term in the drag breakdown corresponds to form drag on the fuselage and other

components. For a detailed treatment, it can be further broken up into a posynomial model

for component drag areas:

(CDA)0 ≥ (CDA)tail + (CDA)fuse + (CDA)gear + ..., (5.11)

Weight Breakdown

The total operational weight W breaks down into a sum of component weights, for instance

Wzfw ≥ Wfixed +Wpayload +Wwing +Wengine +Wtail + . . . , (5.12)

W ≥ Wzfw(1 + θfuel), (5.13)

where θfuel ≡ Wfuel

Wzfw
is the usable fuel mass fraction. Each of the individual weight terms

can either be modeled as a constant, modeled as a GP-compatible function of other design

65

variables, or further broken down into a (posynomial) sum of component weights. Time

varying weights, such as θfuel and Wpayload, can be treated as vector variables with one entry

per flight condition to be analyzed.

Efficiency Breakdown

Another important steady flight relation is the chain of efficiencies η that relate cruise thrust

power to fuel power. A simple version is the monomial

TV ≤ ṁfuelhfuelηengηprop, (5.14)

where TV is thrust times velocity; ṁfuel is the fuel flow rate; hfuel is the fuel heating

value in [J/kg]; ηeng is the engine’s fuel power to shaft power conversion efficiency, and ηprop

is the propulsive shaft power to thrust power conversion efficiency. Both ηeng and ηprop can

be broken down further and modeled as posynomial functions of design variables.

5.3 Performance Metrics

The GP framework provides a straightforward interface for trading off competing goals: we

optimize or constrain multiple performance metrics of interest.

When a performance metric is also a decision variable, (cruise speed, payload capacity,

or fuel burn rate, for example), it can be inserted directly into the objective function or

constraints. Other metrics are more complicated summary statistics, whose relationships to

other variables must themselves be modeled. In this section, we give two examples: range

and takeoff distance.

Range

Breguet Range Equation

One common model for the range of a fuel-burning aircraft is the Breguet range equation [21],

which assumes a constant lift to drag ratio L/D and overall efficiency η0, resulting in the

66

expression

R =
hfuel

g
η0
L

D
log(1 + θfuel). (5.15)

This is a fairly crude model. In particular, the assumption that both η0 and L/D remain

constant could be replaced with models for their variation with aircraft velocity and mass.

Nevertheless, the equation is common in the field, so we will express it within the GP

framework. Equation (5.15) is not allowed in GP due to the log term, but if we rewrite it as

1 + θfuel = exp

(
gRD

hfuelη0L

)
, (5.16)

and note that the Taylor expansion of the exp function has a posynomial structure 1 ,

then we obtain a GP-compatible model:

z ≥ gRT

hfuelη0W
(5.17)

θfuel ≥ z +
z2

2!
+
z3

3!
+ . . . (5.18)

Recall that the Breguet model assumed that the lift to drag ratio L/D and overall

efficiency η0 remained constant over the entire mission. For real missions, these quantities

vary slightly with changes in wing loading, speed, and density altitude. To model these effects

more accurately, one can break down long or complex missions into shorter segments of length

Ri. One would then constrain each segment according to the Breguet range equation, but

allow each segment to take on a different lift to drag ratio Wi/Ti, overall efficiency η0,i,

and fuel fraction θfuel,i. This approach enables accurate modeling of very long or complex

missions, and has the added benefit of reducing the fuel fraction of each segment, thereby

improving the accuracy of the Taylor approximation shown in Fig. 5.2.

1We could alternatively treat the exp function directly instead of Taylor-expanding it, but at the expense
of requiring more specialized convex programming software instead of a standard GP solver.

67

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

gRD/(h
fuel

η
0
L)

θ
fu

e
l

exact

4−term Taylor approx

3−term Taylor approx

Figure 5.2: GP-compatible approximation of the Breguet range equation, via posynomial
structure in the Taylor expansion of exp. A 3-term expansion is more than 99% accurate
for fuel fractions less than 0.95, and a 4-term expansion is more than 99% accurate for fuel
fractions less than 2.0.

Electric Aircraft Range

For an electric aircraft in steady level flight, the range R is limited by the total usable battery

energy, Ebat, which is expended at a rate Pelec = TV/η0. Assuming that the overall efficiency

η0 remains constant, the range prediction is governed by the monomial constraint

R ≤ Ebatη0

T
. (5.19)

Endurance

Endurance N is the maximum amount of time an aircraft can stay aloft.

Fuel-Burning Aircraft

An expression similar to the Breguet range equation can be derived for fuel-burning aircraft

that are maximizing endurance. The model assumes that as fuel is burned, induced drag

decreases accordingly, while CD0 = CDp + CDA0/S remains constant. Under this model, the

68

aircraft varies its velocity throughout the mission to minimize the drag D. The resulting

expression for endurance is

N ≤ η0hf
V g

[
16CD0S

3πeb2

]− 1
2

log (1 + θfuel) . (5.20)

This equation works well for jet-powered aircraft, for which the thrust specific fuel con-

sumption TSFC ∝ η0/V stays roughly constant. It is less applicable, however, to propeller

aircraft, for which η0 is roughly constant, but V varies significantly. In any case, it can be

converted to GP using the same technique we used for the range equation, where we move

the log term to the other side of the equation and closely approximate it.

Electric Aircraft

Like range, the endurance for an electric aircraft is governed by the total available battery

energy. Assuming that η and V remain constant, we obtain the monomial constraint

N ≤ Ebatη0

TV
. (5.21)

Takeoff Distance

To model takeoff distance xto, we define a wheels-up flight condition immediately after

rotation, where the aircraft first achieves lift Lto ≥ W , and is still accelerating under thrust

Tto > Dto. Prior to this instant, a net force T −D accelerated the aircraft from speed 0 to

speed Vto. Technically both T and D are functions of V , but let us assume that the thrust

variation is small, taking the conservative approximation T (V) = T (Vto) = Tto. Under this

assumption, we have the differential relation

gdx =
WV dV

Tto − 1
2
ρV 2CDS

(5.22)

from basic mechanics. If we additionally assume that CD stays constant (CD(V) = Cto
D),

then we can analytically integrate (5.22) along the takeoff run, which results in the expression

xto =
WV 2

to

2gDto

log

(
Tto

Tto −Dto

)
. (5.23)

69

0 0.2 0.4 0.6 0.8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

ξ

1
+

y

−log(1−ξ)/ξ

2−term fitted posynomial

2,3, and 4 term Taylor approximations

Figure 5.3: GP-compatible posynomial approximation of the function − log(1 − ξ)/ξ, for
use in modeling takeoff distance. Taylor expansions (dashed green lines) are one option,
but would require many terms to achieve a reasonable fit. In contrast, a fitted implicit
posynomial (solid red curve) achieves a near-perfect fit with only two terms.

To clarify the limiting behavior as Dto/Tto → 0, we rewrite (5.23) as

2gxtoTto
WV 2

to

=
− log(1− ξ)

ξ
, (5.24)

where ξ ≡ Dto/Tto. This expression is not compatible with GP, but we can proceed by

modeling the − log(1− ξ)/ξ term with a posynomial, as shown in Fig. 5.3. This results in a

set of GP-compatible implicit posynomial constraints for takeoff distance:

ξ ≥ Dto

Tto
(5.25)

2gxtoTto
WV 2

to

≥ 1 + υ (5.26)

1 ≥ 0.0464ξ 2.73

y2.88
+

1.044ξ 0.296

y0.049
(5.27)

As suggested for the Breguet range model, one can optionally refine the accuracy of

the takeoff distance model by dividing the takeoff run into multiple individually-modeled

segments. We can also include 50’ obstacle clearance distance using the GP-compatible

models for climbing flight from Section 5.1.

70

Fuel Burn

Fuel burn (and fuel costs) are directly proportional to the mission fuel fraction θfuel:

Wfuel = Wzfwθfuel. (5.28)

The mission fuel fractioin θfuel includes all fuel burn predicted by e.g. the Breguet range

equation. It does not include unusable or reserve fuel; these are included in Wzfw.

Climb rate

The instantaneous climb rate ḣ is governed by the monomial constraint

ḣ ≤ V γ. (5.29)

This can be used to set constraints on the best climb speed Vy, or on time-to-climb to a

specific altitude. If the altitude change is large, then variation of atmospheric properties as

well as weight change with fuel burn must be taken into account.

Velocity and payload

Velocity V and payload Wpay are metrics that can be optimized directly, since they are

decision variables.

5.4 Propulsive Efficiency

A propeller converting mechanical shaft power Pshaft into propulsive power TV experiences

losses that vary significantly with both thrust and velocity. Following Drela [20], we model

propulsive efficiency as the product of a viscous loss term ηv, and an inviscid term ηi that

accounts for kinetic energy lost in the high-velocity prop-wash:

ηprop = ηiηv. (5.30)

71

Figure 5.4: Wing design variables τ (airfoil thickness to chord ratio) and λ (taper ratio), for
a single-taper wing or wing section.

Actuator disk theory [28] gives us the following approximations for the inviscid efficiency:

ṁ =
1

2
ρAprop(Ve + V) (5.31)

T = ṁ(Ve − V) =
1

2
ρAprop(V 2

e − V 2) (5.32)

ηi =
TV

1
2
ṁ(V 2

e − V 2)
=

2

1 + Ve
V

(5.33)

Combining the above, we obtain

ηi ≤
2

1 +
√

1 + T
1
2
ρV 2Aprop

. (5.34)

The quantity T/(1
2
ρApropV

2) is recognized as CT/λ
2
a, where CT is the propeller thrust coeffi-

cient, and λa is the advance ratio. The constraint (5.34) is not allowed by the GP framework,

but we can algebraically manipulate it into an equivalent posynomial constraint,

4ηi +
Tη2

i
1
2
ρV 2Aprop

≤ 4 (5.35)

This GP-compatible model captures the strong variation of propulsive efficiency with

thrust and velocity.

5.5 Lifting Surface Structural Models

In this section we consider the structural design of an unswept single-taper wing (or tail), as

depicted in Fig. 5.4. The high-level stress constraint we will impose is

Srσmax ≥ NliftMr (5.36)

72

where Sr is the root section modulus, σmax is the material-specific allowable stress, Nlift

is the design G loading or turbulence loading including safety factor, and Mr is the applied

moment at the root 2.

We may also wish to impose a deflection limit, e.g.

δ

b
≤ 0.05 (5.37)

We must now model the spanwise lift distribution, applied root moment, and bending

stiffness.

Coordinate Definitions

The wing sizing variables are related by:

b =
√
SA (5.38)

cr =
2

1 + λ

√
S

A
(5.39)

We also define a wing spanwise coordinate 2y/b = η ∈ [0, 1]. The chord as a function of

span is then

c(η)

cr
= 1 + η(λ− 1). (5.40)

Root Moment

The moment applied to the wing root depends on the spanwise lift distribution, as shown

in Fig. 5.5. The wing must support its own weight (as well as any fuel contained in it),

in addition to the weight of the fuselage and payload. Let W̃ = L̃ represent the weight

of the aircraft excluding the wing. A simple conservative assumption assumes that the

local net-upward-force-per-unit-span, L̃′, is proportional to the local chord [21]. Under this

assumption, the differential loading per unit span is

2We actually impose the constraint (5.36) for two different values of S0: one for tensile (bottom skin)
loading, and one for compressive (top skin) loading.

73

Figure 5.5: The spanwise lift distribution L′(y) creates a root moment M0 and tip deflection
δ.

Figure 5.6: Structural cross section geometry for unit-chord airfoil, from Drela [22]. The
structural wing box has the same maximum thickness as the airfoil, τ , and tapers quadrati-
cally to a fraction rh at the webs.

dL̃ =
L̃

1 + λ
[1 + η(λ− 1)] dη (5.41)

To find the root moment, we twice-integrate Equation (5.41) with appropriate boundary

conditions, which results in

Mr =
L̃b

12

[
1 + 2λ

1 + λ

]
=
L̃Acr

24
(1 + 2λ) (5.42)

Root Stiffness

The wing root’s ability to resist applied moments is governed by two important quantities:

the root area moment of inertia, Ir, and the root section modulus, Sr. Sr relates applied

moments to maximum bending stress, whereas Ir relates applied moments to curvature (and

therefore, deflection). For a symmetric structural cross section, the two quantities are related

by the monomial

Sr =
Ir

1
2
τcr

. (5.43)

74

It is generally possible to fit a posynomial model for the area moment of inertia per chord

to the fourth, Ī = I/c4, for an airfoil family and structural geometry of choice. For example,

here we will use a wing box geometry defined by Drela [22] and shown in Fig. 5.6. The spar

cap Ī is related to material thickness by

Īcap =
w̄

12

(
h̄3

rms − (h̄rms − 2t̄cap)3
)
≈ w̄

2
(h̄2

rmst̄cap − 2h̄rmst̄
2
cap), (5.44)

where h̄rms is the root mean square box height. If we assume that rh = 0.75, then

h̄rms ≈ 0.92τ , and a posynomial model for Īcap is

0.92w̄τ t̄2cap + Īcap ≤
0.922

2
w̄τ 2t̄cap (5.45)

Making the conservative assumption that the bending stress is carried by the caps only

(Īcap >> Īweb), the stress limit (5.36) becomes

2Īcapc
3
rσmax

τ
≥ NliftMr. (5.46)

Shear Web Sizing

Assuming that all shear loads are carried by the web, the root shear stress is

σshear =
L̃

4c2
r t̄webrhτ

. (5.47)

Letting rh = 3/4 and substituting (5.39) for cr, we obtain the shear web sizing relation:

12τSt̄webσmax,shear

AL̃Nlift

≥ 1 + 2λ+ λ2 (5.48)

Wing System Component Masses

To determine the weight of the spar caps and shear webs, we must integrate their spanwise

area distribution. A wing structural component (·)c, with area per chord squared Āc = Ac/c
2,

has a total weight of

75

Wc = ρcg2

∫ b/2

0

Ac(y)

c(y)2

c(y)2

c2
r

c2
rdy = ρcgĀcc

2
rb

∫ 1

0

c(η)2

c2
r

dη (5.49)

The spar cap and shear web areas are

Ācap = 2w̄t̄cap (5.50)

Āweb = 2rhτ t̄web (5.51)

Evaluating the integral (5.49), we obtain weight equations for the spar caps and shear

webs:

Wcap =
8ρcapgw̄t̄capS

3/2

3A1/2

[
λ2 + λ+ 1

(1 + λ)2

]
(5.52)

Wweb =
8ρwebgrhτ t̄webS

3/2

3A1/2

[
λ2 + λ+ 1

(1 + λ)2

]
(5.53)

Wing Tip Deflection

Under Euler-Bernoulli bending theory, we have the relationship

d2δ

dy2
=

M(y)

EIxx(y)
(5.54)

Because both M and Ixx vary with y, integrating (5.54) can introduce significant com-

plication. One conservative simplifying assumption is that the curvature is constant along

the span and equal to the root curvature. This leads to the relationship

δ =
1

2

Mr

EIr

(
b

2

)2

, (5.55)

where E is the Young’s modulus of the spar cap.

GP-Compatible Formulation

The key relations for modeling are (5.42), (5.45), (5.46), (5.48), (5.52), (5.53), and (5.55).

At first glance, we note that these equations are not GP-compatible, since they are not all

76

posynomial in λ. To make the wing structural relations GP-compatible, we introduce the

change of variables

p = 1 + 2λ (5.56)

We also define q = 1 + λ. p and q are related by the posynomial constraint

2q ≥ 1 + p (5.57)

We now proceed by expressing the governing relations in terms of p and q instead of λ 3

.

We define the root moment per root chord, M̄r = Mr/cr, and replace (5.42) with the

equivalent monomial constraint

M̄r ≥
L̃Ap

24
. (5.58)

The area moment of inertia model (5.45) is already a posynomial constraint on Īcap, and

does not require further modification. The stress limit (5.46) becomes a monomial constraint,

8 ≥ NliftM̄rAq
2τ

SĪcapσmax

. (5.59)

The shear web sizing equation (5.48) also becomes a monomial,

12 ≥ AL̃Nliftq
2

τSt̄webσmax,shear

. (5.60)

To handle the weight equations (5.52) and (5.53), we introduce the function ν(λ) =

(λ2 + λ+ 1)/(1 + λ)2, and note that ν is log-convex in p. We can approximate ν(p) via the

posynomial constraint

ν3.94 ≥ 0.86p−2.38 + 0.14p0.56. (5.61)

3 In order for our posynomial equality relaxations to hold with equality, we must ensure that with the
exception of (5.57), all constraints involving q are monotone increasing in q. That is, for all constraints
1 ≥ f(q) involving q, we need ∂f/∂q ≥ 0, which holds for all models presented herein.

77

10
−2

10
−1

10
0

10
−0.12

10
−0.1

10
−0.08

10
−0.06

10
−0.04

10
−0.02

λ

(1 + λ + λ
2
)/(1+λ)

2

2−term fitted posynomial

Figure 5.7: The function ν(λ) = (1+λ+λ2)/(1+λ)2 is clearly not log-convex, and is therefore
not GP-compatible. Nevertheless, the function is quasi-convex. This allows us to apply a
change of variables (5.56) that causes ν to become log-convex in p over the range 1 ≤ p ≤ 3,
which corresponds to λ ∈ [0, 1]. We can then model ν(p) with a posynomial (5.61). The
approximation error is less than 0.03%.

The approximation error is very close to 0, as shown in Fig. 5.7. The weight equations

then become monomials:

Wcap ≥
8ρcapgw̄t̄capS

3/2ν

3A1/2
(5.62)

Wweb ≥
8ρwebgrhτ t̄webS

3/2ν

3A1/2
(5.63)

Finally, under the change of variables, the wing deflection equation (5.55) is also equiv-

alent to a monomial:

δ ≥ A5/2M̄rq
3

64S1/2EcapĪcap

(5.64)

The models we have presented so far will favor small values of λ, since tapering the wing

has significant structural benefits in the form of weight savings. However, too small a λ can

be dangerous, since it can overload the outboard sections of the wing, leading to risk of tip

stall. It is therefore prudent to set a lower limit on λ, e.g.

78

−1.1
−1

−0.9
−0.8

−0.7

5
5.5

6
6.5

7

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

log10(Re)
log10(tau)

lo
g
1
0
(1

/c
l s

ta
ll)

Figure 5.8: NACA-00xx series stall point data from XFOIL, plotted on a log scale. The
data is not log-convex, but a single monomial plane provides a reasonable approximation.
Here the z-axis is 1/CL,max. Unlike drag, high values of CL,max are actually desirable, so it
is 1/CL,max that we seek a log-convex (or log-affine, in this case) model for.

p ≥ 1.9 (5.65)

5.6 Stall

Stall occurs when the aircraft exceeds a critical angle of attack, above which the flow sepa-

rates from the wing, causing a reduction in lift accompanied by an increase in drag. Stall is

an important consideration for slow speed, heavily loaded flight conditions, especially takeoff

and landing. Therefore, for flight conditions where stall is a consideration, we impose the

constraint

CL ≤ (1− ζ)CL,max(τ,Re), (5.66)

where (1− ζ) is a predetermined safety factor, for instance (1− ζ) = 0.9. In combination

with the steady flight relations, this constraint makes it impossible to fly arbitrarily slow.

The functional dependence CL,max(τ,Re) can be fit from XFOIL data. For a grid of

relevant τ and Re values, we sweep angle of attack from 0 degrees upwards, until the lift

79

coefficient peaks and begins to decrease. We define CL,max as the maximum point in this

curve, or as the highest lift coefficient observed in the few cases where XFOIL convergence

fails prior to stall.

Figure 5.8 shows the data for the NACA-00xx series of airfoils for thickness ranging from

8% to 16%, and Re ranging from 105 to 107. The data is not perfectly log-convex, but the

monomial

CL,max = 0.3528τ 0.3535Re0.1517 (5.67)

provides an approximation with an average error of 4.69%, and max error of 18.45%.

80

Chapter 6

Aircraft Design Example

Here we solve an example design problem via GP-compatible modeling. Our task is the

design of a new UAV, which will fly an out-and-back reconnaissance mission.

Objective

The objective is to minimize the total out-and-back fuel burn.

Requirements

The high-level vehicle requirements are

1. Specified range for out-and-back mission, R ≥ 5000km

2. Specified payload for out-and-back mission, mpay ≥ 500kg

3. Sprint speed requirement, separate from design mission, Vsprint ≥ 150m/s

4. Stall speed requirement for safe landing after aborted takeoff at MTOW, VS0 ≤ 38m/s

Propulsion

The vehicle will be powered by a single turboprop engine, with propulsive efficiency gov-

erned by (5.35). We assume a power-law scaling for engine weight as a function of installed

power [62].

81

Table 6.1: Fixed constant parameters for the design problem in Section 6.

Quantity Value Units Description
Nlift 6.0 wing loading multiplier
σmax 250× 106 Pa allowable stress, 6061-T6
σmax,shear 167× 106 Pa allowable shear stress
ρalum 2700 kg/m3 aluminum density
g 9.8 m/s2 gravitational constant
w̄ 0.5 wing box width/chord
rh 0.75 see Fig. 5.6
fwadd 2.0 wing added weight fraction
Wfixed 14700 N fixed weight
CL,max 1.5 max CL, flaps down
ρ 0.91 kg/m3 air density, 3000m
ρsl 1.23 kg/m3 air density, sea level
µ 1.69× 10−5 kg/(sm) dynamic viscosity, 3000m
e 0.95 wing spanwise efficiency
Aprop 0.785 m2 propeller disk area
ηv 0.85 propeller viscous efficiency
ηeng 0.35 engine efficiency
hfuel 46× 106 J/kg fuel heating value

Design Mission

The vehicle must fly out and back some specified distance, at a cruise altitude of 3000m. For

GP modeling we split this mission into two legs, outbound and return, with different flight

conditions (velocity, lift and drag coefficients, efficiency, etc) along each leg. The fuel burn

along each leg is governed by the Breguet range equation. Climb and descent are ignored

for simplicity, although we note that this framework is entirely capable of far more detailed

climb, cruise, and descent analysis.

Vector Variables

Because we need to analyze the vehicle in three different flight conditions (outbound, return,

sprint), the following decision variables are 3-vectors instead of scalars:

V , CL, CD, CDfuse, CDp, CDi, T , W , Re, ηi, ηprop,η0

82

When any of these variables appears in a constraint, that constraint is enforced for each

element of the vector.

GP Formulation of Example Design Problem

The design problem is given by the following GP:

minimize Wfuel,out +Wfuel,ret

subject to

Steady Level Flight Relations

W =
1

2
ρV 2CLS

T ≥ 1

2
ρV 2CDS

Re =
ρV S1/2

A1/2µ

Landing Flight Condition

Wmto ≤
1

2
ρslV

2
S0CL,maxS

VS0 ≤ 38

Sprint Flight Condition

Pmax ≥
TsprintVsprint

η0,sprint

Vsprint ≥ 150

Drag Model

CD ≥
0.05

S
+ CDp +

C2
L

πeA

1 ≥
2.56C5.88

L

Re1.54τ3.32C2.62
Dp

+
3.8× 10−9τ6.23

C .92
L Re1.38C9.57

Dp

+ 0.0022
Re0.14τ0.033

C0.01
L C0.73

Dp

+ . . .

. . . 1.19× 104C
9.78
L τ1.76

ReC0.91
Dp

+
6.14× 10−6C6.53

L

Re0.99τ0.52C5.19
Dp

83

Propulsive Efficiency

η0 ≤ ηengηprop

ηprop ≤ ηiηv

4ηi +
Tη2

i
1
2
ρV 2Aprop

≤ 4

Range Constraints

R ≥ 5000× 103

zbre ≥
gRT

hfuelη0W

Wfuel

W
≥ zbre +

z2
bre

2
+
z3
bre

6
+
z4
bre

24

Weight relations

Wpay > 500g

W̃ ≥ Wfixed +Wpay +Weng

Wzfw ≥ W̃ +Ww

Weng ≥ 0.0372P 0.803
max

Ww

fwadd
≥ Wweb +Wcap

Woutbound ≥ Wzfw +Wfuel,ret

Wmto ≥ Woutbound +Wfuel,out

Wsprint = Woutbound

Wing Structural Models

2q ≥ 1 + p

p ≥ 1.9

τ ≤ 0.15

M̄r ≥
W̃Ap

24

0.92w̄τ t̄2cap + Īcap ≤
0.922

2
w̄τ 2t̄cap

84

8 ≥ NliftM̄rAq
2τ

SĪcapσmax

12 ≥ AW̃Nliftq
2

τSt̄webσmax,shear

ν3.94 ≥ 0.86p−2.38 + 0.14p0.56

Wcap ≥
8ρcapgw̄t̄capS

3/2ν

3A1/2

Wweb ≥
8ρwebgrhτ t̄webS

3/2ν

3A1/2

Optimal Solution of Example Design Problem

With the GP defined, we turn to a commercially-available solver, MOSEK, which finds the

globally optimal values for all unknowns in less than 0.01 seconds on a standard desktop

computer:

| outbound return sprint

---------|----------------------------------

V | 69.2 65.78 150

CL | 0.5523 0.5521 0.1175

CD | 0.01292 0.01293 0.007883

CDfuse | 0.001725 0.001725 0.001725

CDp | 0.005546 0.005559 0.005903

CDi | 0.005647 0.005644 0.0002558

T | 816 737.8 2340

W | 3.489e+04 3.151e+04 3.489e+04

Re | 4.716e+06 4.483e+06 1.022e+07

eta_i | 0.9028 0.9027 0.9362

eta_prop | 0.7674 0.7673 0.7958

eta0 | 0.2686 0.2686 0.2785

| outbound return

85

------|-----------------------

Wfuel | 3731 3374

z_bre | 0.1016 0.1017

DESIGN VARIABLES

A 18.1

Ibar 1.908e-05

Mr/cr 3.231e+04

Pmax 1.26e+06

R 5e+06

S 28.99

Vstall 38

nu 0.786

p 1.9

q 1.45

tau 0.15

tcap 0.004273

tweb 0.0005907

WEIGHTS

Wcap 4347

Wzfw 3.151e+04

Weng 2949

Wmto 3.862e+04

Wpay 4900

Wtilde 2.255e+04

Wweb 135.2

Wwing 8965

86

Chapter 7

Current Limitations and Future

Perspectives

What about models that are not GP compatible?

The primary limitation of the GP design paradigm is that it only applies to 1) analytical

models that can be expressed in terms of posynomials, and 2) data that is well-approximated

by log-convex functions. This thesis argues that these conditions are met in a surprisingly

wide range of aircraft design relations. Nevertheless, we anticipate three distinct types of

GP-incompatibility that will occur:

Discrete Decisions such as number of engines, elevator vs. canard, choice of material, etc.,

can be modeled by integer variables that correspond to the discrete possibilities for

each decision. Including these configuration choices in the design optimization results

in a feasible set (i.e., design space) that is not convex.

When the integer variables represent a count, such as the number of seating rows in

a fuselage, one option is to relax the problem by treating the integer variable(s) as

continuous, and then to round the solution to the nearest integer.

A more general technique, which is well suited to any type of discrete decision variable,

is to model the design problem as a mixed-integer GP. With the exception of extremely

small problems (where the choices can simply be enumerated), mixed integer optimiza-

87

tion problems are significantly more difficult to solve than convex programs. Most so-

lution methods make some sacrifices (such as no longer guaranteeing global optimality)

in return for finding an acceptable solution in a reasonable amount of time. Solution

methods for mixed-integer GPs are an active area of research [10, 14].

Quasi-convex functions are those functions for which every level set is a convex set [11].

Put informally, quasi-convexity extends the concept of unimodality to higher dimen-

sional functions. When a model or physical relationship is described by a quasi-convex

(or log-quasi-convex) function, it may be possible to find a nonlinear change of vari-

ables under which the relevant functions become convex (or log-convex). A perfect

example is posynomial functions. Written in standard form, a GP is a set of (quasi-

convex, but not necessarily convex) posynomial functions. Under the variable change

x = logu, however, all of the posynomials become convex. Another example is the

change of variables (5.56) used in Chapter 5 to form a set of GP-compatible wing

structural properties.

The art of GP modeling would benefit greatly from a theory of how to automatically

search for a change of variables that converts a quasi-convex constraint set to a convex

constraint set. If such a change of variables is possible in general, the modeling process

would require less effort, and convex optimization could be applied to an expanded set

of engineering models.

Even when a change of variables is not possible, there are many techniques available

for handling more general (not necessarily log-convex) continuous models within the

GP framework. All such methods sacrifice guarantees of global optimality, and are

therefore qualitatively similar to solving general nonlinear programs. They differ from

NLP methods, however, in their treatment of large subsets of the problem in a convex

form. Notable methods of this type include signomial programming and the convex-

concave procedure [11].

Multi-modal functions are neither convex nor quasi-convex. If we encounter a truly

multi-modal relationship in our modeling efforts, we have uncovered something very

interesting. With multiple locally optimal points, perhaps the underlying relationship

88

can be modeled as a discrete decision among a number of ‘basins’, with a locally convex

model corresponding to each basin? Even this simple knowledge can be informative,

by helping to disect sources of non-convexity in the design space.

In each of the three situations listed above, the knowledge that a large portion of the

problem is GP-compatible allows much of the computational work can be offloaded as a GP,

with only a few troublesome relations remaining to iterate over.

How does the GP approach relate to Multidisciplinary Design

Optimization (MDO) architectures?

In their 1993 paper, Cramer et al. outlined standard formulations for MDO [15]. These

include all-at-once (AAO, sometimes called SAND), individual discipline feasible (IDF), and

multidisciplinary feasible (MDF). The key differences among the approaches are degree to

which optimization is centralized or decentralized, and what kind of feasibility is maintained

during each optimization iteration. GP formulations are AAO approaches, characterized by

a centralized solver and lack of disciplinary separation.

Historically, AAO approaches have performed very well in benchmarking tests against

other MDO algorithms [68]. Some believe they are the most computationally tractable of all

MDO approaches [15], but they are often written off because they tend to create extremely

large problems with many constraints. We hold hope for the GP version of AAO, because

the restriction to convex constraint sets enables efficient solutions that scale to problems

with hundreds of thousands of constraints [10].

Can black-box analysis routines be called by a GP solver?

No. GP solvers accept as input a standard parameterization (posynomial coefficients and

exponents) of the GP that is to be solved. There is no way for a GP solver to interface with

a disciplinary solver. Such an interface would void all guarantees of global optimality and

efficient optimization that are provided by GP.

As detailed in Chapter 4, however, one promising approach is to sample disciplinary

solvers offline, and incorporate the results by fitting GP-compatible surrogate functions to

89

the resulting data. A relevant research direction along these lines is automating the discovery

of convexity in arbitrary data sets, and identifying regions within a data set that exhibit

log-convexity.

How does the GP approach handle the organizational and

communication challenges typical in MDO?

One powerful organizational strength of the GP approach derives from centralizing the op-

timization, but decentralizing the modeling of physics. A well known challenge for MDO

is coordinating communication and data transfer, especially when subsystem teams or opti-

mizer subroutines depend on other analyses to determine the values of shared variables.

The GP paradigm takes a different approach. Instead of sharing the results of analysis

runs, subsystem teams share GP-compatible models. Coordination problems are limited

to agreeing on a common modeling language (e.g. the variable names). Each subsystem

expert’s input into the optimization problem is a set of mathematical models for the physical

relationships they so deeply understand.

One strength of GP is the ability to add constraints and refine models with zero overhead.

When teams want to improve a model, capture a new effect, or model a new tradeoff, they

simply add or update the corresponding constraint. There is no need to update communi-

cation protocols or change the order of computations, since these are all handled externally

by the GP solver at run time.

Does this approach maintain ‘feasibility’ at every iteration?

In the standard MDO context, feasibility usually refers to an equilibrium condition where the

inputs and outputs of the various analysis equations agree with equality. Many formulations

impose constraints that drive the residual of these quantities to zero. MDO formulations

vary as to when they enforce these feasibility equality constraints.

In geometric programming, and more generally in convex optimization, feasibility refers

to a condition where all equality and inequality constraints are satisfied. In this paper, we

used the posynomial equality relaxation described in Section 2.3 to expand the feasible set of

90

the optimization problem. Interior point methods for solving GPs stay inside this expanded

feasible set during optimization.

Does this approach support multiobjective optimization?

Yes. One of the strongest benefits of the GP approach is complete flexibility with regard

to the objective function. Concretely, the objective may be any monomial or posynomial

function of the decision variables. In practice, one chooses to maximize (or minimize) some

key criteria of interest, such as range, fuel consumption, payload, or cruise speed. The

dependence of each of these quantities on other decision variables is modeled as part of the

GP-compatible constraint set.

In multiobjective optimization, we are interested in sweeping out a Pareto frontier cor-

responding to the tradeoff surface among a number of variables. Again, this is one of the

strongest capabilities of the GP approach. There are two ways to sweep out such a Pareto

frontier:

1. We can formulate a posynomial objective function corresponding to a weighted com-

bination of some criteria of interest (a weighted combination of range and payload, for

example). We then sweep the weights through a convex set, solving the GP at each

point.

2. We can pick one variable as the objective (range, for example), and constrain other

variables of interest (payload, for example) to be greater than (or less than) some value

s. We then sweep s over a range of interest, solving the GP at each point.

In both cases, the speed of GP solution methods allows each point to be calculated extremely

quickly, freeing up the decision maker to consider a larger number of possible Pareto-optimal

designs. Moreover, the sensitivity analysis methods of Chapter 3 provide a local approxima-

tion of the Pareto frontier from just one GP solution.

91

Bibliography

[1] Ira H Abbott and AE Von Doenhoff. Theory of wing sections: including a summary of

airfoil data. Dover Publications, 1959.

[2] Charles N Adkins and Robert H Liebeck. Design of optimum propellers. Journal of

Propulsion and Power, 10(5):676–682, 1994.

[3] Natalia M Alexandrov and Robert Michael Lewis. Analytical and computational aspects

of collaborative optimization for multidisciplinary design. AIAA Journal, 40(2):301–309,

2002.

[4] Juan J. Alonso. Aa222: Introduction to multidisciplinary design optimization. Lecture

Notes, 2010.

[5] John D. Anderson. Fundamentals of Aerodynamics. McGraw-Hill, third edition, 2001.

[6] Holt Ashley. Aerodynamics of wings and bodies. Courier Dover Publications, 1965.

[7] A. Babakhani, J. Lavaei, J. Doyle, and A. Hajimiri. Finding globally optimum solutions

in antenna optimization problems. IEEE International Symposium on Antennas and

Propagation, 2010.

[8] Oktay Baysal and Mohamed E Eleshaky. Aerodynamic design optimization using sensi-

tivity analysis and computational fluid dynamics. AIAA journal, 30(3):718–725, 1992.

[9] Charles S Beightler and Don T Phillips. Applied geometric programming, volume 150.

Wiley New York, 1976.

92

[10] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial

on geometric programming. Optimization and Engineering, 2007.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004.

[12] Stephen P. Boyd, Seung-Jean Kim, Dinesh D. Patil, and Mark A. Horowitz. Digital

circuit optimization via geometric programming. Operations Research, 53:899–932, 2005.

[13] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems

with high-dimensional parametric input space. SIAM Journal on Scientific Computing,

2008.

[14] Mung Chiang. Geometric programming for communication systems. Commun. Inf.

Theory, 2:1–154, July 2005.

[15] Evin J Cramer, JE Dennis, Jr, Paul D Frank, Robert Michael Lewis, and Gregory R

Shubin. Problem formulation for multidisciplinary optimization. SIAM Journal on

Optimization, 4(4):754–776, 1994.

[16] Walter Daems, Georges Gielen, and Willy Sansen. Simulation-based generation of

posynomial performance models for the sizing of analog integrated circuits. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 22(5):517–534,

2003.

[17] Mark Drela. Two-dimensional transonic aerodynamic design and analysis using the

Euler equations. PhD thesis, Massachusetts Institute of Technology, 1985.

[18] Mark Drela. Pros and cons of airfoil optimization. Frontiers of computational fluid

dynamics, 1998, 1998.

[19] Mark Drela. Xfoil subsonic airfoil development system. Open source software available

at http://web.mit.edu/drela/Public/web/xfoil/, 2000.

[20] Mark Drela. Qprop formulation - theory document. MIT Aero & Astro, 2006.

[21] Mark Drela. Course notes. MIT Unified Engineering, 2009.

http://web.mit.edu/drela/Public/web/xfoil/

93

[22] Mark Drela. Tasopt 2.00 – transport aircraft system optimization. MIT N+3 Final

Report, March 2010.

[23] Mark Drela and Michael B Giles. Viscous-inviscid analysis of transonic and low reynolds

number airfoils. AIAA journal, 25(10):1347–1355, 1987.

[24] Richard James Duffin, Elmor L Peterson, and Clarence Zener. Geometric programming:

theory and application. Wiley New York, 1967.

[25] Jonathan Elliott and Jaume Peraire. Practical three-dimensional aerodynamic design

and optimization using unstructured meshes. AIAA journal, 35(9):1479–1485, 1997.

[26] Bernard Etkin and Lloyd Duff Reid. Dynamics of flight: stability and control. Wiley

New York, 1982.

[27] E Eugene Larrabee and Susan E French. Minimum induced loss windmills and pro-

pellers. Journal of Wind Engineering and Industrial Aerodynamics, 15(1):317–327, 1983.

[28] R.E. Froude. On the part played in propulsion by differences of fluid pressure. Trans.

Inst. Naval Architects, 30:390, 1889.

[29] Sydney Goldstein. On the vortex theory of screw propellers. Proceedings of the Royal

Society of London. Series A, 123(792):440–465, 1929.

[30] Lauren Hannah and David Dunson. Ensemble methods for convex regression with appli-

cations to geometric programming based circuit design. arXiv preprint arXiv:1206.4645,

2012.

[31] Lauren A Hannah and David B Dunson. Multivariate convex regression with adaptive

partitioning. arXiv preprint arXiv:1105.1924, 2011.

[32] Warren Hoburg and Pieter Abbeel. Geometric programming for aircraft design opti-

mization. In Review, 2013.

[33] R.T. Haftka J. Sobieszczanski-Sobieski. Multidisciplinary aerospace design optimization:

survey of recent developments. Structural Optimization, 14:1–23, 1997.

94

[34] Antony Jameson. Aerodynamic design via control theory. Journal of Scientific Com-

puting, 3(3):233–260, 1988.

[35] Antony Jameson. Computational aerodynamics for aircraft design. Sci-

ence(Washington), 245(4916):361–371, 1989.

[36] Antony Jameson. Re-engineering the design process through computation. Journal of

Aircraft, 36(1):36–50, 1999.

[37] Antony Jameson and JJ Alonso. Automatic aerodynamic optimization on distributed

memory architectures. AIAA paper, pages 96–0409, 1996.

[38] Antony Jameson, L Martinelli, and NA Pierce. Optimum aerodynamic design using the

navier–stokes equations. Theoretical and Computational Fluid Dynamics, 10(1-4):213–

237, 1998.

[39] Joseph Katz and Allen Plotkin. Low-speed aerodynamics: from wing theory to panel

methods, volume 1110. McGraw-Hill Signapore, 1991.

[40] Hyung Min Kim, Nestor F Michelena, Panos Y Papalambros, and Tao Jiang. Target

cascading in optimal system design. Journal of Mechanical Design, 125:474, 2003.

[41] Jintae Kim, L. Vandenberghe, and Chih-Kong Ken Yang. Convex piecewise-linear mod-

eling method for circuit optimization via geometric programming. Computer-Aided De-

sign of Integrated Circuits and Systems, IEEE Transactions on, 29(11):1823 –1827, nov.

2010.

[42] Srinivas Kodiyalam and Jaroslaw Sobieszczanski-Sobieski. Bilevel integrated system

synthesis with response surfaces. AIAA Journal, 38(8):1479–1485, 2000.

[43] Ilan Kroo and Richard Shevell. Aircraft design: Synthesis and analysis. Online Text-

book, Version 0.9.

[44] Ilan M. Kroo. MDO for large-scale design. In N. Alexandrov and M. Y. Hussaini,

editors, Multidisciplinary Design Optimization: State-of-the-Art, pages 22–44. SIAM,

1997.

95

[45] Xin Li, Padmini Gopalakrishnan, Yang Xu, and T Pileggi. Robust analog/rf circuit de-

sign with projection-based posynomial modeling. In Proceedings of the 2004 IEEE/ACM

International conference on Computer-aided design, pages 855–862. IEEE Computer So-

ciety, 2004.

[46] Alessandro Magnani and Stephen P. Boyd. Convex piecewise-linear fitting. Optimization

and Engineering, 10:1–17, 2009.

[47] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parame-

ters. Journal of the Society for Industrial and Applied Mathematics, 11(2):pp. 431–441,

1963.

[48] Jay D Martin and Timothy W Simpson. Use of kriging models to approximate deter-

ministic computer models. AIAA journal, 43(4):853–863, 2005.

[49] Joaquim RRA Martins, Juan J Alonso, and James J Reuther. A coupled-adjoint sensi-

tivity analysis method for high-fidelity aero-structural design. Optimization and Engi-

neering, 6(1):33–62, 2005.

[50] Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. The complex-step derivative

approximation. ACM Transactions on Mathematical Software (TOMS), 29(3):245–262,

2003.

[51] JRRA Martins and Andrew B Lambe. Multidisciplinary design optimization: Survey

of architectures. AIAA Journal, 2012.

[52] Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM

Journal on optimization, 2(4):575–601, 1992.

[53] AJ Morris. Structural optimization by geometric programming. International Journal

of Solids and Structures, 8(7):847–864, 1972.

[54] Mosek-ApS. Mosek version 6.0.0.148. Free academic license available at http://mosek.

com/resources/academic-license/personal-license/, 2012.

http://mosek.com/resources/academic-license/personal-license/
http://mosek.com/resources/academic-license/personal-license/

96

[55] Yu Nesterov and A Nemirovsky. Interior-point polynomial methods in convex program-

ming, volume 13 of studies in applied mathematics. SIAM, Philadelphia, PA, 1994.

[56] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer Science+

Business Media, 2006.

[57] Jorge Oliveros, Dwight Cabrera, Elkim Roa, and Wilhelmus Van Noije. An improved

and automated design tool for the optimization of cmos otas using geometric program-

ming. In Proceedings of the 21st annual symposium on Integrated circuits and system

design, pages 146–151. ACM, 2008.

[58] Elmor L Peterson. Geometric programming. In Advances in Geometric Programming,

pages 31–94. Springer, 1980.

[59] Olivier Pironneau. Optimal shape design for elliptic systems, volume 2983. Springer-

Verlag New York, 1984.

[60] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Nu-

merical recipes 3rd edition: The art of scientific computing. Cambridge university press,

2007.

[61] Joaquin R RA Martins, Juan J Alonso, and James J Reuther. High-fidelity aerostruc-

tural design optimization of a supersonic business jet. Journal of Aircraft, 41(3):523–530,

2004.

[62] Daniel P Raymer et al. Aircraft design: a conceptual approach. American Institute of

Aeronautics and Astronautics Reston, 2006.

[63] TD Robinson, MS Eldred, KE Willcox, and R Haimes. Surrogate-based optimization

using multifidelity models with variable parameterization and corrected space mapping.

Aiaa Journal, 46(11):2814–2822, 2008.

[64] William P Rodden and Erwin H Johnson. MSC/NASTRAN Aeroelastic Analysis:

User’s Guide, Version 68. MacNeal-Schwendler Corporation, 1994.

97

[65] IP Sobieski and IM Kroo. Collaborative optimization using response surface estimation.

AIAA journal, 38(10):1931–1938, 2000.

[66] Jaroslaw Sobieszczanski-Sobieski, Troy D Altus, Matthew Phillips, and Robert San-

dusky. Bilevel integrated system synthesis for concurrent and distributed processing.

AIAA Journal, 41(10):1996–2003, 2003.

[67] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.

John Wiley, New York, 546 pp, 1986.

[68] Nathan P. Tedford and Joaquim R.R.A. Martins. Benchmarking multidisciplinary de-

sign optimization algorithms. Optim Eng, February 2009.

[69] Theodore Theodorsen. Theory of wing sections of arbitrary shape. US Government

Printing Office, 1932.

[70] Theodore Theodorsen. Theory of propellers, volume 9. McGraw-Hill Book Company,

1948.

[71] D.J. Wilde. Globally optimal design. Wiley interscience publication. Wiley, 1978.

[72] Karen Willcox and Jaime Peraire. Balanced model reduction via the proper orthogonal

decomposition. AIAA Journal, 40(11):2323–2330, 2002.

[73] Tjalling J Ypma. Historical development of the newton-raphson method. SIAM review,

37(4):531–551, 1995.

98

Appendix A

Airfoil Area and Inertia Calculations

The shape of a 2D airfoil section is often specified using a polygon with unit chord, points

(xi, yi), leading edge at (0, 0), and trailing edge at (1, 0). Area integrals over the polygon

can be converted to line integrals around the polygon using Green’s Theorem:

∫∫ (
dQ

dx
− dP

dy

)
dA =

∮
Pdx+Qdy (A.1)

With appropriate choice of P and Q, the unit airfoil area, neutral axis, and second

moments are:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.05

0

0.05

0.1

Figure A.1: Unit-chord polygon representation of a NACA2412 airfoil, using 200 panels
(polygon edges).

99

A2D =

∫∫
dA =

∮
xdy (P = 0, Q = x) (A.2)

x̄ =
1

A2D

∫∫
xdA =

1

A2D

∮
x2

2
dy (P = 0, Q =

x2

2
) (A.3)

ȳ =
1

A2D

∫∫
ydA =

−1

A2D

∮
1

2
y2dx (P = −y

2

2
, Q = 0) (A.4)

Ixx + A2Dȳ
2 =

∫∫
y2dA = −

∮
y3

3
dx (P = −y

3

3
, Q = 0) (A.5)

Iyy + A2Dx̄
2 =

∫∫
x2dA =

∮
1

3
x3dy (P = 0, Q =

x3

3
) (A.6)

Ixy + A2Dx̄ȳ =

∫∫
xydA =

∮
1

2
x2ydy (P = 0, Q =

x2

2
y) (A.7)

Assuming that the polygon points are simply connected and ordered counterclockwise, the

line integrals reduce to sums of integrals over each polygon edge. Noting that dy = yi+1−yi
xi+1−xidx,

the above line integrals evaluate to:

A2D =
1

2

∑
i

(xiyi+1 − yixi+1) (A.8)

x̄ =
1

6A2D

∑
i

(xi + xi+1)(xiyi+1 − yixi+1) (A.9)

ȳ =
1

6A2D

∑
i

(yi + yi+1)(xiyi+1 − yixi+1) (A.10)

Ixx =
1

12

∑
i

(y2
i + yiyi+1 + y2

i+1)(xiyi+1 − yixi+1)− A2Dȳ
2 (A.11)

Iyy =
1

12

∑
i

(x2
i + xixi+1 + x2

i+1)(xiyi+1 − yixi+1)− A2Dx̄
2 (A.12)

Ixy =
1

24

∑
i

(2xiyi + 2xi+1yi+1 + xiyi+1 + yixi+1)(xiyi+1 − yixi+1)− A2Dx̄ȳ (A.13)

Where cancellations have been made by noting that sums around the polygon of terms

with a constant index cancel. For example,
∑

i(xi+1yi+1 − xiyi) = 0.

For a thin skin around the airfoil, the area integrals reduce directly to line integrals

(without invoking Green’s theorem). Letting ds2 = dx2 + dy2, the perimeter, neutral point,

and second moments for a unit airfoil skin of thickness t̄ are:

100

lperim =

∮
ds =

∮ √
dy2 + dx2 (A.14)

x̄ =
1

lperim

∮
xds (A.15)

ȳ =
1

lperim

∮
yds (A.16)

Ixx
t̄

=

∮
y2t̄ds (A.17)

Iyy
t̄

=

∮
x2t̄ds (A.18)

These integrals can be solved by noting that ds = dy
√

1 + (dx/dy)2 = dx
√

1 + (dy/dx)2,

where dx/dy and dy/dx are constants along any polygon edge. Cancellations eliminate any

problems with infinite terms for vertical or horizontal edges, and result in finite sums as

expected:

lperim =
∑
i

√
(xi+1 − xi)2 + (yi+1 − yi)2 (A.19)

x̄ =
1

2lperim

∑
i

(yi + yi+1)
√

(xi+1 − xi)2 + (yi+1 − yi)2 (A.20)

ȳ =
1

2lperim

∑
i

(xi + xi+1)
√

(xi+1 − xi)2 + (yi+1 − yi)2 (A.21)

Ixx
bart

=
1

3

∑
i

(y2
i + yiyi+1 + y2

i+1)
√

(xi+1 − xi)2 + (yi+1 − yi)2 (A.22)

Iyy
t̄

=
1

3

∑
i

(x2
i + xixi+1 + x2

i+1)
√

(xi+1 − xi)2 + (yi+1 − yi)2 (A.23)

	Contents
	Introduction
	The Aircraft Design Process
	Why Geometric Programming?
	Thesis Overview and Summary of Contributions

	The GP Design Paradigm
	Geometric Programming
	A Simple Example
	GP Modeling
	Exploring Tradeoffs

	Sensitivity Analysis and the Power of Lagrange Duality
	Maximum Entropy Dual of a Geometric Program
	Sensitivity Analysis
	Fixed Variable Sensitivities
	Aside: Recovering known Scaling Laws
	Linearized Propagation of Log-Normal Uncertainties

	Fitting GP Models to Data
	The Convex Regression Problem
	Some Convex Function Classes
	Application to Geometric Programming
	Fitting Model Parameters
	Numerical Examples and Comparisons
	Conclusions

	Selected GP-Compatible Aircraft Design Models
	Steady Flight Relations
	Weight, Drag, and Efficiency Breakdowns
	Performance Metrics
	Propulsive Efficiency
	Lifting Surface Structural Models
	Stall

	Aircraft Design Example
	Current Limitations and Future Perspectives
	Bibliography
	Airfoil Area and Inertia Calculations

