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Occlusion-aware Depth Estimation Using

Light-field Cameras

Abstract

Consumer-level and high-end light-field cameras are now widely available. Recent work

has demonstrated practical methods for passive depth estimation from light-field images. How-

ever, most previous approaches do not explicitly model occlusions, and therefore cannot cap-

ture sharp transitions around object boundaries. A common assumption is that a pixel exhibits

photo-consistency when focused to its correct depth, i.e., all viewpoints converge to a single

(Lambertian) point in the scene. This assumption does not hold in the presence of occlusions,

making most current approaches unreliable precisely where accurate depth information is most

important – at depth discontinuities.

In this paper, we develop a depth estimation algorithm that treats occlusion explicitly; the

method also enables identification of occlusion edges, which may be useful in other appli-

cations. We show that, although pixels at occlusions do not preserve photo-consistency in

general, they are still consistent in approximately half the viewpoints. Moreover, the line sep-

arating the two view regions (correct depth vs. occluder) has the same orientation as the occlu-

sion edge has in the spatial domain. By treating these two regions separately, depth estimation

can be improved. Occlusion predictions can also be computed and used for regularization. Ex-

perimental results show that our method outperforms current state-of-the-art light-field depth

estimation algorithms, especially near occlusion boundaries.
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1 Introduction

Light-field cameras from Lytro [3] and Raytrix [17] are now available for consumer and industrial

use respectively, bringing to fruition early work on light field rendering [10, 15]. An important

benefit of light field cameras for computer vision is that multiple viewpoints or sub-apertures are

available in a single light-field image, enabling passive depth estimation [4]. Indeed, Lytro Illum

and Raytrix software produces depth maps used for tasks like refocusing after capture, and recent

work [19] shows how multiple cues like defocus and correspondence can be combined.

However, very little work has explicitly considered occlusion. A common assumption is that,

when refocused to the correct depth, angular pixels corresponding to a single spatial pixel represent

viewpoints that converge to one point in the scene. If we collect these pixels into an angular patch,

they exhibit photo-consistency for Lambertian surfaces, which means they all share the same color

(Fig. 2a). However, this assumption is not true when occlusions occur at a pixel; photo-consistency

no longer holds (Fig. 2b). Enforcing photo-consistency on these pixels will often lead to incorrect

depth results, causing smooth transitions around sharp occlusion boundaries.

In this paper, we explicitly model occlusions, by developing a modified version of the photo-

consistency condition on angular pixels. Our main contributions are:

1. An occlusion prediction framework on light field images that uses a modified angular photo-

consistency.

2. A robust depth estimation algorithm which explicitly takes occlusions into account.

We show (Sec. 3) that around occlusion edges, the angular patch can be divided into two re-

gions, where only one of them obeys photo-consistency. A key insight (Fig. 3) is that the line

separating the two regions in the angular domain (correct depth vs. occluder) has the same orien-

tation as the occlusion edge does in the spatial domain. This observation is specific to light-fields,

which have a dense set of views from a planar camera array or set of sub-apertures. Standard stereo

image pairs (nor general multi-view stereo configurations) do not directly satisfy the model.

We use the modified photo-consistency condition, and the means/variances in the two regions,
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Figure 1: Comparison of depth estimation results of different algorithms from a light field in-

put image. Darker represents closer and lighter represents farther. It can be seen that only our

occlusion-aware algorithm successfully captures most of the holes in the basket, while other meth-

ods either smooth over them, or have artifacts as a result.

to estimate initial occlusion-aware depth (Sec. 4). We also compute a predictor for the occlusion

boundaries, that can be used as an input to determine the final regularized depth (Sec. 5). These

occlusion boundaries could also be used for other applications like segmentation or recognition. As

seen in Fig. 1, our depth estimates are more accurate in scenes with complex occlusions (previous

results smooth object boundaries like the holes in the basket). In Sec. 6, we present extensive

results on both synthetic data (Figs. 9, 10), and on real scenes captured with the consumer Lytro

Illum camera (Fig. 11), demonstrating higher-quality depth recovery than previous work [8, 19,

21, 25].

2 Related Work

(Multi-View) Stereo with Occlusions: Multi-view stereo matching has a long history, with

some efforts to handle occlusions. For example, the graph-cut framework [12] used an occlusion

term to ensure visibility constraints while assigning depth labels. Woodford et al. [24] imposed

an additional second order smoothness term in the optimization, and solved it using Quadratic

Pseudo-Boolean Optimization [18]. Based on this, Bleyer et al. [5] assumed a scene is composed
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Figure 2: Non-occluded vs. occluded pixels. (a) At non-occluded pixels, all view rays converge to

the same point in the scene if refocused to the correct depth. (b) However, photo-consistency fails

to hold at occluded pixels, where some view rays will hit the occluder.

of a number of smooth surfaces and proposed a soft segmentation method to apply the asymmetric

occlusion model [23]. However, significant occlusions still remain difficult to address even with a

large number of views.

Depth from Light Field Cameras: Perwass and Wietzke [17] proposed using correspondence

techniques to estimate depth from light-field cameras. Tao et al. [19] combined correspondence

and defocus cues in the 4D Epipolar Image (EPI) to complement the disadvantages of each other.

Neither method explicitly models occlusions. Wanner and Goldluecke [21] proposed a globally

consistent framework by applying structure tensors to estimate the directions of feature pixels in the

2D EPI. Yu et al. [25] explored geometric structures of 3D lines in ray space and encoded the line

constraints to further improve the reconstruction quality. However, both methods are vulnerable to

heavy occlusion: the tensor field becomes too random to estimate, and 3D lines are partitioned into

small, incoherent segments. Kim et al. [11] adopted a fine-to-coarse framework to ensure smooth

reconstructions in homogeneous areas using dense light fields. We build on the method by Tao et

al. [19], which works with consumer light field cameras, to improve depth estimation by taking

occlusions into account.

Chen et al. [8] proposed a new bilateral metric on angular pixel patches to measure the proba-

bility of occlusions by their similarity to the central pixel. However, as noted in their discussion,

their method is biased towards the central view as it uses the color of the central pixel as the mean

of the bilateral filter. Therefore, the bilateral metric becomes unreliable once the input images get

noisy. In contrast, our method uses the mean of about half the pixels as the reference, and is thus

more robust when the input images are noisy, as shown in our result section.
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Figure 3: Light field occlusion model. (a) Pinhole model for central camera image formation.

An occlusion edge on the imaging plane corresponds to an occluding plane in the 3D space. (b)

The “reversed” pinhole model for light field formation. It can be seen that when we refocus to

the occluded plane, we get a projection of the occluder on the camera plane, forming a reversed

pinhole camera model.

3 Light-Field Occlusion Theory

We first develop our new light-field occlusion model, based on the physical image formation. We

show that at occlusions, some of the angular patch remains photo-consistent, while the other part

comes from occluders and exhibits no photo consistency. By treating these two regions separately,

occlusions can be better handled.

For each pixel on an occlusion edge, we assume it is occluded by only one occluder among all

views. We also assume that we are looking at a spatial patch small enough, so that the occlusion

edge around that pixel can be approximated by a line. We show that if we refocus to the occluded

plane, the angular patch will still have photo-consistency in a subset of the pixels (unoccluded).

Moreover, the edge separating the unoccluded and occluded pixels in the angular patch has the

same orientation as the occlusion edge in the spatial domain (Fig. 3). In Secs. 4 and 5, we use this

idea to develop a depth estimation and regularization algorithm.

Consider a pixel at (x0, y0, f) on the imaging focal plane, as shown in Fig. 3a. An edge in the

central pinhole image with 2D slope γ corresponds to a plane P in 3D space (the green plane in



Fig. 3a). The normal n to this plane can be obtained by taking the cross-product,

n = (x0, y0, f)× (x0 + 1, y0 + γ, f) = (−γf, f, γx0 − y0). (1)

Note that we do not need to normalize the vector. The plane equation is P (x, y, z) ≡ n · (x0 −
x, y0 − y, f − z) = 0,

P (x, y, z) ≡ γf(x− x0)− f(y − y0) + (y0 − γx0)(z − f) = 0. (2)

In our case, one can verify that n · (x0, y0, f) = 0 so a further simplification to n · (x, y, z) = 0 is

possible,

P (x, y, z) ≡ γfx− fy + (y0 − γx0)z = 0. (3)

Now consider the occluder (yellow triangle in Fig. 3a). The occluder intersects P (x, y, z) with

z ∈ (0, f) and lies on one side of that plane. Without loss of generality, we can assume it lies in

the half-space P (x, y, z) ≥ 0. Now consider a point (u, v, 0) on the camera plane. To avoid being

shadowed by the occluder, the line segment connecting this point and the pixel (x0, y0, f) on the

image must not hit the occluder,

P (s0 + (s1 − s0)t) ≤ 0 ∀t ∈ [0, 1], (4)

where s0 = (u, v, 0) and s1 = (x0, y0, f). When t = 1, P (s1) = 0. When t = 0,

P (s0) ≡ γfu− fv ≤ 0. (5)

The last inequality is satisfied if v ≥ γu, i.e., the critical slope on the angular patch v/u = γ is

the same as the edge orientation in the spatial domain. If the inequality above is satisfied, both

endpoints of the line segment lie on the other side of the plane, and hence the entire segment lies

on that side as well. Thus, the light ray will not be occluded.

We also give an intuitive explanation of the above proof. Consider a plane being occluded by

an occluder, as shown in Fig. 3b. Consider a simple 3 × 3 camera array. When we refocus to the

occluded plane, we can see that some views are occluded by the occluder. Moreover, the occluded

cameras on the camera plane are the projection of the occluder on the camera plane. Thus, we

obtain a “reversed” pinhole camera model, where the original imaging plane is replaced by the

camera plane, and the original pinhole becomes the pixel we are looking at. When we collect



(a) Occlusion in central view (b) Occlusion in other views

Figure 4: Occlusions in different views. The insets are the angular patches of the red pixels when

refocused to the correct depth. At the occlusion edge in the central view, the angular patch can be

divided evenly into two regions, one with photo-consistency and one without. However, for pixels

around the occlusion edge, although the central view is not occluded, some other views will still

get occluded. Hence, the angular patch will not be photo-consistent, and will be unevenly divided

into occluded and visible regions.

pixels from different cameras to form an angular patch, the edge separating the two regions will

correspond to the same edge the occluder has in the spatial domain.

Therefore, we can predict the edge orientation in the angular domain using the edge in the

spatial image. Once we divide the patch into two regions, we know photo consistency holds in one

of them since they all come from the same (assumed to be Lambertian) spatial pixel.

4 Occlusion-Aware Initial Depth Estimation

In this section, we show how to modify the initial depth estimation from Tao et al. [19], based on

the theory above. First, we apply edge detection on the central view image. Then for each edge

pixel, we compute initial depths using a modified photo-consistency constraint. The next section

will discuss computation of refined occlusion predictors and regularization to generate the final

depth map.



Edge detection: We first apply Canny edge detection on the central view (pinhole) image. Then

an edge orientation predictor is applied on the obtained edges to get the orientation angles at each

edge pixel. These pixels are candidate occlusion pixels in the central view. However, some pixels

are not occluded in the central view, but are occluded in other views, as shown in Fig. 4, and we

want to mark these as candidate occlusions as well. We identify these pixels by dilating the edges

detected in the center view.

Depth Estimation: For each pixel, we refocus to various depths using a 4D shearing of the

light-field data [16],

Lα(x, y, u, v) = L(x+ u(1− 1

α
), y + v(1− 1

α
), u, v), (6)

where L is the input light field image, Lα is the refocused light field image, (x, y) are the spatial

coordinates, and (u, v) are the angular coordinates. The central viewpoint is located at (u, v) =

(0, 0). This gives us an angular patch for each depth, as in previous work.

When an occlusion is not present at the pixel, the obtained angular patch will have photo-

consistency, and hence exhibits small variance and high similarity to the central view. For pixels

that are not occlusion candidates, we can simply compute the variance and the mean of this patch

to obtain the correspondence and defocus cues, similar to the method by Tao et al. [19].

However, if an occlusion occurs, photo-consistency will no longer hold. Instead of dealing

with the entire angular patch, we divide the patch into two regions. The angular edge orientation

separating the two regions is the same as in the spatial domain, as proven in Sec. 3. Since at

least half the angular pixels come from the occluded plane (otherwise it will not be seen in the

central view), we place the edge passing through the central pixel, dividing the patch evenly. Note

that only one region, corresponding to the partially occluded plane focused to the correct depth,

exhibits photo-consistency. The other region contains angular pixels that come from the occluder,

which is not focused at the proper depth, and might also contain some pixels from the occluded

plane. We therefore replace the original patch with the region that has the minimum variance to

compute the correspondence and defocus cues.

To be specific, let (u1, v1) and (u2, v2) be the angular coordinates in the two regions, respec-



tively. We first compute the means and the variances of the two regions,

L̄α,j(x, y) =
1

Nj

∑
uj ,vj

Lα(x, y, uj, vj), j = 1, 2 (7)

Vα,j(x, y) =
1

Nj − 1

∑
uj ,vj

(
Lα(x, y, uj, vj)− L̄α,j(x, y)

)2
, (8)

where Nj is the number of pixels in region j. Let

i = arg min
j=1,2

{
Vα,j(x, y)

}
(9)

be the index of the region that exhibits smaller variance. Then the correspondence response is

given by

Cα(x, y) = Vα,i(x, y) (10)

Similarly, the defocus response is given by

Dα(x, y) =
(
L̄α,i(x, y)− L(x, y, 0, 0)

)2 (11)

Finally, the optimal depth is determined as

α∗(x, y) = arg min
α

{
Cα(x, y) +Dα(x, y)

}
(12)

Color Consistency Constraint: When we divide the angular patch into two regions, it is some-

times possible to obtain a “reversed” patch when we refocus to an incorrect depth, as shown in

Fig. 5. If the occluded plane is very textureless, this depth might also give a very low variance

response, even though it is obviously incorrect. To address this, we add a color consistency con-

straint that the averages of the two regions should have a similar relationship with respect to the

current pixel as they have in the spatial domain. Mathematically,

|L̄α,1 − p1|+ |L̄α,2 − p2| < |L̄α,2 − p1|+ |L̄α,1 − p2|+ δ, (13)

where p1 and p2 are the values of the pixels shown in Fig. 5d, and δ is a small value (threshold)

to increase robustness. If refocusing to a depth violates this constraint, this depth is considered

invalid, and is automatically excluded in the depth estimation process.
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Figure 5: Color consistency constraint. (b)(e) We can see that when we refocus to the correct

depth, we get low variance in half the angular patch. However, in (c)(f) although we refocused to

an incorrect depth, it still gives low variance response since the occluded plane is very textureless,

so we get a “reversed” angular patch. To address this, we add another constraint that p1 and p2

should be similar to the averages of R1 and R2 in (d), respectively.

5 Occlusion-Aware Depth Regularization

After the initial local depth estimation phase, we refine the results with global regularization us-

ing a smoothness term. We improve on previous methods by reducing the effect of the smooth-

ness/regularization term in occlusion regions. Our occlusion predictor, discussed below, may also

be useful independently for other vision applications.

Occlusion Predictor Computation: We compute a predictor Pocc for whether a particular pixel

is occluded, by combining cues from depth, correspondence and refocus.



(a) Central input image (b) Depth cue (F=0.58) (c) Corresp. cue (F=0.53)

(d) Refocus cue (F=0.57) (e) Combined cue (F=0.65) (f) Occlusion ground truth

Figure 6: Occlusion Predictor (Synthetic Scene). The intensities are adjusted for better contrast. F-

measure is the harmonic mean of precision and recall compared to the ground truth. By combining

three cues from depth, correspondence and refocus, we can obtain a better prediction of occlusions.

1. Depth Cues: First, by taking the gradient of the initial depth, we can obtain an initial

occlusion boundary,

P d
occ = f

(
∇dini/dini

)
(14)

where dini is the initial depth, and f(·) is a robust clipping function that saturates the response

above some threshold. We divide the gradient by dini to increase robustness since for the same

normal, the depth change across pixels becomes larger as the depth gets larger.

2. Correspondence Cues: In occlusion regions, we have already seen that photo-consistency

will only be valid in approximately half the angular patch, with a small variance in that region. On

the other hand, the pixels in the other region come from different points on the occluding object,

and thus exhibit much higher variance. By computing the ratio between the two variances, we can

obtain an estimate of how likely the current pixel is to be at an occlusion,

P var
occ = f

(
max

{
Vα∗,1

Vα∗,2
,
Vα∗,2

Vα∗,1

})
. (15)

where α∗ is the initial depth we get.



3. Refocus Cues: Finally, note that the variances in both the regions will be small if the

occluder is textureless. To address this issue, we also compute the means of both regions. Since

the two regions come from different objects, their colors should be different, so a large difference

between the two means also indicates a possible occlusion occurrence. In other words,

P avg
occ = f(|L̄α∗,1 − L̄α∗,2|) (16)

Finally, we compute the combined occlusion response or prediction by the product of these

three cues,

Pocc = N (P d
occ) · N (P var

occ ) · N (P avg
occ ) (17)

where N (·) is a normalization function that subtracts the mean and divides by the standard devia-

tion.

Depth Regularization: Finally, given initial depth and occlusion cues, we regularize with a

Markov Random Field (MRF) for a final depth map. We minimize the energy:

E =
∑
p

Eunary(p, d(p)) +
∑
p,q

Ebinary(p, q, d(p), d(q)). (18)

where d is the final depth and p, q are neighboring pixels. We adopt the unary term similar to Tao

et al. [19]. The binary energy term is defined as

Ebinary(p, q, d(p), d(q)) =

exp

[
− (d(p)− d(q))2/(2σ2)

]
(|∇I(p)−∇I(q)|+ k|Pocc(p)− Pocc(q)|)

(19)

where ∇I is the gradient of the central pinhole image, and k is a weighting factor. The numerator

encodes the smoothness constraint, while the denominator reduces the strength of the constraint

if two pixels are very different or an occlusion is likely to be between them. The minimization is

solved using a standard graph cut algorithm [6, 7, 13]. We can then apply the occlusion prediction

procedure again on this regularized depth map. A sample result is shown in Fig. 6. In this example,

the F-measure (harmonic mean of precision and recall compared to ground truth) increased from

0.58 (depth cue), 0.53 (correspondence cue), and 0.57 (refocus cue), to 0.65 (combined cue).



6 Results

We compare our results to the methods by Wanner et al. [21], Tao et al. [19], Yu et al. [25],

and Chen et al. [8]. For Chen et al., since code is not available, we used our own implementation.

Since ground truth at occlusions is difficult to obtain, we perform extensive tests using the synthetic

dataset created by Wanner et al. [22] as well as new scenes modeled by us. Our dataset is generated

from 3dsMax [1] using models from the Stanford Computer Graphics Laboratory [9, 14, 20] and

models freely available online [2]. Upon publication of this work, the dataset will be available

online. While the dataset by [22] only provides ground truth depth, ours provides ground truth

depth, normals, specularity, lighting, etc, which we believe will be useful for a wider variety of

applications. In addition to synthetic datasets, we also validate our algorithm on real-world scenes

of fine objects with occlusions, taken by the Lytro Illum camera.

Occlusion Boundaries: For each synthetic scene, we compute the occlusion boundaries from

the depth maps generated by each algorithm, and report their precision-recall curves by picking

different thresholds. For our method, the occlusions are computed using only the depth cue instead

of the combined cue in Sec. 5, to compare the depth quality only. A predicted occlusion pixel is

considered correct if its error is within one pixel. The results on both synthetic datasets are shown

in Figs. 8a,8b. Our algorithm achieves better performance than current state-of-the-art methods.

Next, we validate the robustness of our system by adding noise to a test image, and report the

F-measure values of each algorithm. The comparison is shown in Fig. 8c. Although the method

by Chen et al. [8] performs very well in the absence of noise, their quality quickly degrades as the

noise level is increased. In contrast, our algorithm is more tolerant to noise.

Depth Maps for Synthetic Scenes: Figure 9 shows the recovered depths on the synthetic dataset

by Wanner et al. [22]. It can be seen that our results are quite accurate compared to ground truth,

and show fewer artifacts in heavily occluded areas. We obtain the correct shape of the door and

window in the top row, and accurate boundaries along the twig and leaf in the bottom row. Other

methods smooth the object boundaries and are noisy in some regions. Figure 10 shows the results

on our synthetic dataset. Notice that we capture the boundaries of the leaves, and fine structures

like the lamp and holes in the chair. Other methods smooth over these occlusions or generate

thicker structures.



(a) Small area occlusion (b) Multi-occluder occlusion

Figure 7: Limitations. The upper insets show close-ups of the red rectangle, while the lower insets

show the angular patches of the green (central) pixels when refocused to the correct depth. (a)

Our algorithm cannot handle occlusions where the occluded area is very small, so that there is

no simple line that can separate the angular patch. (b) Also, if more than one occluder is present

around the pixel, it is not enough to just divide the angular domain into two regions.

Depth Maps for Real Scenes: Figures 1 and 11 compare results on real scenes with fine struc-

tures and occlusions, captured with the consumer Lytro Illum light field camera. Our method

performs better around occlusion boundaries, especially for thin objects. Ours is the only method

that captures the holes in the basket in Fig. 1. In Fig. 11, our method properly captures the thin

structure in the top row, reproduces the spokes of the wheel (second row) without over-smoothing,

captures a significantly better depth map for the fine structures of the flower (third row), and repro-

duces the complicate shape of the chair (last row).

Limitations and Future Work: Our algorithm cannot handle situations where the occluded

plane is very small relative to the angular patch size, or if the single occluder assumption fails to

hold (Fig. 7). If the occluded area is very small, there is no simple line that can separate the angular

patch into two regions. If we have multiple edges intersecting at a point, its angular patch needs

to be divided into more than two regions to achieve photo consistency. This may be addressed by

inspecting the spatial patch around the current pixel instead of just looking at the edges. Also, our

algorithm cannot perform well if the spatial edge detector fails or outputs an inaccurate orientation.
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Figure 8: (a) PR-curve of occlusion boundaries on dataset of Wanner et al. [22] (b) PR-curve

on our dataset. (c) F-measure vs. noise level. Our method achieves better results than current

state-of-the-art methods, and is robust to noise.
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Figure 9: Depth estimation results on synthetic data by Wanner et al. [22] Some intensities in the

insets are adjusted for better contrast. In the first example, note that our method correctly captures

the shape of the door/window, while all other algorithms fail and produce smooth transitions.

Similarly, in the second example our method reproduces accurate boundaries along the twig/leaf,

while other algorithms generate smoothed results or fail to capture the details, and have artifacts.



Ground truth

Our result

Wanner et al. (CVPR12) Tao et al. (ICCV13)

Yu et al. (ICCV13) Chen et al. (CVPR14)

Light-field  input
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 (central view)

Figure 10: Depth estimation results on our synthetic dataset. Some intensities in the insets are

adjusted for better contrast. In the first example, our method successfully captures the shapes of

the leaves, while all other methods generate smoothed results. In the second example, our method

captures the holes in the chair as well as the thin structure of the lamp, while other methods obtain

smoothed or thicker structures.

LF input (central view) Our result Wanner et al. (CVPR12) Tao et al. (ICCV13) Yu et al. (ICCV13) Chen et al. (CVPR14)

Figure 11: Depth estimation results on real data taken by the Lytro Illum light field camera. It can

be seen that our method realistically captures the thin structures and occlusion boundaries, while

other methods fail, or generate dilated structures.



7 Conclusion

In this paper, we propose an occlusion-aware depth estimation algorithm. We show that although

pixels around occlusions do not exhibit photo-consistency in the angular patch when refocused to

the correct depth, they are still photo-consistent for part of the patch. Moreover, the line separating

the two regions in the angular domain has the same orientation as the edge in the spatial domain.

Utilizing this information, the depth estimation process can be improved in two ways. First, we

can enforce photo-consistency on only the region that is coherent, thus improving the robustness of

depth estimation around occlusion edges. Second, by exploiting depth, correspondence and refocus

cues of the angular patches, we can perform occlusion prediction, so the occlusion boundary can

be fed into a regularization that only smooths the unoccluded regions. We demonstrate the benefits

of our algorithm on various synthetic datasets as well as real-world images with fine structures and

occlusions, extending the range of objects that can be captured in 3D with consumer light-field

cameras.
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