
Efficient Reproducible Floating Point Summation and

BLAS

Willow Ahrens
Hong Diep Nguyen
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-229

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.html

December 8, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Efficient Reproducible Floating Point
Summation and BLAS

Willow Ahrens, Hong Diep Nguyen, James Demmel

December 8, 2015

Abstract

We define reproducibility to mean getting bitwise identical results
from multiple runs of the same program, perhaps with different hard-
ware resources or other changes that should ideally not change the
answer. Many users depend on reproducibility for debugging or cor-
rectness [1]. However, dynamic scheduling of parallel computing re-
sources, combined with nonassociativity of floating point addition,
makes attaining reproducibility a challenge even for simple operations
like summing a vector of numbers, or more complicated operations
like the Basic Linear Algebra Subprograms (BLAS). We describe an
algorithm that computes a reproducible sum of floating point num-
bers, independent of the order of summation. The algorithm depends
only on a subset of the IEEE Floating Point Standard 754-2008. It is
communication-optimal, in the sense that it does just one pass over the
data in the sequential case, or one reduction operation in the parallel
case, requiring an “accumulator” represented by just 6 floating point
words (more can be used if higher precision is desired). The arithmetic
cost with a 6-word accumulator is 7n floating point additions to sum
n words, and (in IEEE double precision) the final error bound can be
up to 10−8 times smaller than the error bound for conventional sum-
mation. We describe the basic summation algorithm, the software
infrastructure used to build reproducible BLAS (ReproBLAS), and
performance results. For example, when computing the dot product
of 4096 double precision floating point numbers, we get an 4x slow-

down compared to Intel©R Math Kernel Library (MKL) running on an
Intel©R Core i7-2600 CPU operating at 3.4 GHz and 256 KB L2 Cache.

1

2

Contents

1 Introduction 4

2 Notation and Background 7

3 Binning 10
3.1 Bins . 11
3.2 Slices . 12

4 The Indexed Type 16
4.1 Primary and Carry . 16

4.1.1 Overflow . 19
4.1.2 Gradual Underflow . 20
4.1.3 Abrupt Underflow . 21
4.1.4 Exceptions . 21

4.2 Indexed Sum . 23

5 Primitive Operations 26
5.1 Index . 26
5.2 Update . 28
5.3 Deposit . 29
5.4 Renormalize . 35
5.5 Add Float To Indexed . 38
5.6 Sum . 40
5.7 Add Indexed to Indexed . 43
5.8 Convert Indexed to Float . 46
5.9 Error Bound . 53
5.10 Restrictions . 61

6 Composite Operations 62
6.1 Reduce . 64
6.2 Euclidean Norm . 65
6.3 Matrix-Vector Product . 68
6.4 Matrix-Matrix Product . 70

7 ReproBLAS 72
7.1 Timing . 74

7.1.1 Difficult Input . 75

3

7.1.2 BLAS1 . 76
7.1.3 BLAS2 . 79
7.1.4 BLAS3 . 81

7.2 Testing . 82

8 Conclusions And Future Work 85

4

1 Introduction

Reproducibility is important for several reasons. Primarily, bitwise identical
results are useful and sometimes required for testing and debugging. It is
difficult to write tests for a function when the output of the function is not
well-defined. Debugging a program becomes very difficult when runs with
errors cannot be examined because they cannot be reproduced [1].

Reproducibility is also important in normal, correct operations of pro-
grams. Simulations looking rare events must be reproducible so that when
a rare event is found it may be replayed and studied in more detail. Sim-
ilarly, forward unstable simulations (such as N-body simulation or climate
and weather modeling) must be reproducible as small changes at initial time
steps can lead to big changes at later time steps. Reproducibility may also be
required for contractual reasons, when multiple parties must agree on the re-
sult of a simulation (examples include finite element simulations of structures
and multiplayer gaming). This is a concern in the independent verification of
a published result. There have been numerous meetings at recent Supercom-
puting conferences addressing the need for, and proposed ways to achieve
reproducibility [1].

At this point is is important to define clearly what we mean by repro-
ducibility. A computation is reproducible if it achieves bitwise identical
results from the same computation when given equivalent inputs. The term
“equivalent inputs” is intentionally vague, as what constitutes equivalence of
inputs depends on the context and computation in question. In this work,
we focus on equivalence under the associativity of addition (as this tends to
be a significant source of non-reproducibility in many computations).

Some developers have already promised flavors of numerical reproducibil-
ity. The Intel R©Math Kernel Library (MKL) introduced a feature called
Conditional Numerical Reproducibility (CNR) in version 11.0 [2]. When en-
abled, the code returns the same results from run-to-run as long as calls
to MKL come from the same executable and the number of computational
threads used by MKL is constant. Performance is degraded by these features
by at most a factor of 2. However, these routines cannot offer reproducible
results if the data ordering or the number of processors changes.

Reproducibility is not the same as accuracy, but they are related. In-
creasing the accuracy of a computation can reduce the probability of non-
reproducibility, but it does not guarantee reproducibility, especially for ill-
conditioned inputs or when the result is half-way between two floating point

5

numbers in the output precision (the well-known Table Maker’s Dilemma)[3].
Ill-conditioned inputs (e.g., a tiny sum resulting from extensive cancellation)
may be the most common case in many applications. For example, when
solving Ax = b using an iterative method, the goal is to get as much cancel-
lation in the residual r = Ax− b as possible.

With these considerations in mind, reproducible algorithms for summa-
tions were presented in [4]. The algorithms were shown to enjoy the following
properties:

1. They compute a reproducible sum independent of the order of the sum-
mands, how they are assigned to processors, or how they are aligned in
memory.

2. They make only basic assumptions about the underlying arithmetic (a
subset of IEEE Standard 754-2008 [5]).

3. They scale well as a performance-optimized, non-reproducible imple-
mentation, as n (number of summands) and p (number of processors)
grow, performing one pass over the data, and requiring just one reduc-
tion operation in the parallel case.

4. The user can choose the desired accuracy of the result. In particular,
getting a reproducible result with about the same accuracy as the per-
formance optimized algorithm is only a small constant times slower,
but higher accuracy is possible too.

The algorithms of [4] did not, however, work for all ranges of floating-point
input (because of over/underflow) nor did they contain all of the functional
components necessary to be deployed in an existing application (they lacked
an algorithm to convert from a reproducible type back to floating point for-
mat while maintaining accuracy). We have improved the error bound of [4]
by over 8 orders of magnitude in a typical configuration, as discussed in Sec-
tion 5.8. Our goal is to modify the algorithms in [4] so that in addition to
the above properties, they enjoy the following properties:

1. The algorithms can be applied in any binary IEEE 754-2008 floating
point format, and any valid input in such a format can be summed
using the algorithms. The algorithms must be able to reproducibly
sum numbers numbers close to underflow or overflow, and exceptional
values such as NaN and Inf, mimicking the behavior of IEEE floating
point wherever possible.

6

2. The algorithms must be expressed in terms of basic operations that can
be applied in several applications. They must be able to be built into a
user-friendly, performant library. This includes the ability to produce
a floating-point result of comparable accuracy to the (intermediate)
reproducible type.

We summarize the algorithm informally as follows. The simplest approach
would be to

1. compute the maximum absolute value M of all the summands (this is
exact and so reproducible),

2. round all the summands to 1 ulp (unit in the last place) of M (this
introduces error, but not worse than the usual error bound), and then

3. add the rounded summands (since their nonzero bits are aligned, they
behave like fixed point numbers, so summation is exact and so repro-
ducible, assuming we have log2 n extra bits for carries).

The trouble with this simple approach is that it requires 2 or 3 passes over
the data, or 3 communication steps in parallel. We can in fact do it in one
pass over the data, or one communication step, essentially by interleaving the
3 steps above: We break the floating point exponent range into fixed bins all
of some width W (see Figure 3.1). Each summand is then rewritten as the
exact sum of a small number of slices, where each slice corresponds to the
significant bits of the summand lying (roughly) in a bin. We can then sum all
slices corresponding the same bin exactly, again because we are (implicitly)
doing fixed point arithmetic. But we do not need to sum the slices in all bins,
only the bins corresponding to the largest few exponent ranges (the number
of bins summed can be chosen based on the desired precision). Slices lying
in bins with smaller exponents are discarded or not computed in the first
place. Independent of the order of summation, we end up with the same
sums of slices in the same bins, all computed exactly and so reproducibly,
which we then convert to a standard floating point number. As we will see,
this idea, while it sounds simple, requires significant effort to implement and
prove correct.

Section 2 begins by explaining some of the notation necessary to express
the mathematical and software concepts discussed in this work. Section 3
gives a formal discussion of the binning scheme. As described above, a float-
ing point number x is split along predefined boundaries (bins) into a sum of

7

separate numbers (slices) such that the sum of slices equals (or approximates)
x. We sum the slices corresponding to each bin separately and exactly. Sec-
tion 4 describes the data structure (the indexed type) used to store the
sums of the slices. Section 5 contains several algorithms for basic manipula-
tions of an indexed type. These algorithms allow the user to, for instance,
extract the slices of a floating point number and add them to the indexed
type, to add two indexed types together, or to convert from the indexed type
to a floating point number. We show that the absolute error of the repro-
ducibly computed sum of double-precision floating point numbers x0, ..., xn−1
in a typical use case is bounded by

n2−80 max |xj|+ 7ε|
n−1∑
j=0

xj|

Details regarding the error bound are given in Sections 5.8 and 5.9. As
discussed in Section 5.10, the indexed types are capable of summing approx-
imately 264 doubles or 233 floats. Section 6 gives several descriptions of
algorithms that can be built from the basic operations described in Section
5. In particular, several sequential reproducible algorithms from the BLAS
(Basic Linear Algebra Subprograms) are given. Throughout the text, rel-
evant functions from ReproBLAS (the C library accompanying this work
from which these algorithms are taken) are mentioned. The interfaces to
these functions allow the user to adjust the accuracy of the indexed types
used. ReproBLAS uses a custom build system, code generation, and au-
totuning to manage the software engineering complexities of performance-
optimized code. A short description of ReproBLAS, including timing data
and testing methods, is given in Section 7. ReproBLAS is available online at
http://bebop.cs.berkeley.edu/reproblas.

2 Notation and Background

Let R and Z denote the sets of real numbers and integers respectively.
For all r ∈ R, let rZ denote the set of all multiples of r, {rz|z ∈ Z}.
For all r ∈ R, let dre be the minimum element z ∈ Z such that z ≥ r.
For all r ∈ R, let brc be the maximum element z ∈ Z such that z ≤ r.
We define the function R∞(r, e), r ∈ R, e ∈ Z as

8

R∞(r, e) =

{
br/2e + 1/2c2e if r ≥ 0

dr/2e − 1/2e2e otherwise
(2.1)

R∞(r, e) rounds r to the nearest multiple of 2e, breaking ties away from
0. Properties of such rounding are shown in (2.2)∣∣r −R∞(r, e)

∣∣ ≤ 2e−1

R∞(r, e) = 0 if |r| < 2e−1.
(2.2)

Let Fb,p,emin,emax denote the set of floating-point numbers of base b ∈ Z
(b ≥ 2), precision p ∈ Z (p ≥ 1) and exponent range [emin, emax] where
emin, emax ∈ Z and emin ≥ emax. Each value f ∈ Fb,p,emin,emax is represented
by:

f = s ·m0.m1 . . .mp−1 · be,

where s ∈ {−1, 1} is the sign, e ∈ Z, emin ≤ e ≤ emax is the exponent (also
defined as exp(f)), and m = m0.m1 . . .mp−1,mi ∈ {0, 1, . . . , b − 1} is the
significand (also called the mantissa) of f . Assume that f is represented
using the smallest exponent possible.

Although much of the analysis below can be applied to a general floating-
point format, in the context of this paper we assume binary floating-point
formats complying with the IEEE 754-2008 standard [5]. For simplicity as
well as for readability, throughout this paper Fb,p,emin,emax will be written
simply as F, referring to some IEEE 754-2008 binary floating-point format,
i.e. b = 2 and mi ∈ {0, 1}. All the analysis will be based on the corresponding
parameters p, emin and emax.

Since a floating point number is always represented using the smallest
possible exponent, the first bit m0 is not explicitly stored in internal repre-
sentation and is referred to as the ”hidden” or ”implicit” bit. Therefore only
p− 1 bits are used to represent the mantissa of f .

f = 0 if and only if all mj = 0 and e = emin − 1. f is said to be
normalized if m0 = 1 and emax ≥ e ≥ emin. f is said to be unnormalized
if m0 = 0 (unnormalized numbers can exist if the hidden bit convention is
not followed), and denormalized if m0 = 0 and e = emin − 1.

We assume rounding mode “to nearest” (no specific tie breaking behav-
ior is required) and gradual underflow, although methods to handle abrupt
underflow will be considered in Section 4.1.3.

9

r ∈ R is representable as a floating point number if there exists f ∈ F
such that r = f as real numbers.

For all r ∈ R, e ∈ Z such that emin − p < e and |r| < 2 · 2emax , if r ∈ 2eZ
and |r| ≤ 2e+p then r is representable.

Machine epsilon, ε, the difference between 1 and the greatest floating
point number smaller than 1, is defined as ε = 2−p.

The unit in the last place of f ∈ F, ulp(f), is the spacing between two
consecutive floating point numbers of the same exponent as f . If f is nor-
malized, ulp(f) = 2exp(f)−p+1 = 2ε2exp(f) and ulp(f) ≤ 21−p|f |.

The unit in the first place of f ∈ F , ufp(f), is the value of the first
significant bit of f . If f is normalized, ufp(f) = 2exp(f).

For all f0, f1 ∈ F, fl(f0 op f1) denotes the evaluated result of the expres-
sion (f0 op f1) in floating point arithmetic. If (f0 op f1) is representable,
then fl(f0 op f1) = (f0 op f1). If rounding is “to nearest,” and there is no
overflow, then we have that |fl(f0 op f1)− (f0 op f1)| ≤ 0.5ulp(fl(f0 op f1)).
This bound accounts for underflow as the magnitude of ulp(f) reflects the
appropriate loss of accuracy when f is in the denormal range.

ReproBLAS is the library implementation of the algorithms defined later
in this work.

As ReproBLAS is written in C, float and double refer to the floating
point types specified in the 1989 C standard [6] and we assume that they
correspond to the binary-32 and binary-64 types in the IEEE 754-2008
floating point standard [5].

The functions in ReproBLAS are named after their BLAS counterparts.
As such, function names are prefixed by a one or two character code indi-
cating the data type of their inputs and outputs. If a function’s input and
output data types differ, the function name is prefixed by the output data
type code followed by the input data type code. The codes used are enumer-
ated in Table 1. The indexed type is a reproducible floating point data type
that will be described later in Section 4. As an example, an absolute sum
routine asum that returns a double indexed and takes as input an array of
complex double would be named dizasum. To be generic when referring
to a routine, we will use the special character x, so that all asum routines
that take floating point inputs and return indexed types can be referred to
as xixasum.

All indices start at 0 in correspondence with the actual ReproBLAS im-
plementation.

10

Table 1: ReproBLAS naming convention character codes

Data Type Code
double d
double complex z
float s
float complex c
double indexed di
double complex indexed zi
float indexed si
float complex indexed ci

3 Binning

We achieve reproducible summation of floating point numbers through bin-
ning. Each number is split into several components corresponding to prede-
fined exponent ranges, then the components corresponding to each range are
accumulated separately. We begin in Section 3.1 by explaining the particular
set of ranges (referred to as bins, see Figure 3.1) used. Section 3.2 develops
mathematical theory to describe the components (referred to as slices) cor-
responding to each bin. The data format (called Indexed Type) to represent
bins will be explained in Section 4. In this section, we develop theory to
concisely describe and prove correctness of algorithms throughout the paper
(especially Algorithms 5.4 and 5.5).

Index i

bin i
a bi i

Index 0

bin 0

W-bitemin emax

Indexed type Yi

YiP

primary
YiC

carry

input x
d(x,i)

slice

Figure 3.1: Indexed Floating-Point: binning process

11

3.1 Bins

We start by dividing the exponent range (emin − p, ..., emax + 1] into bins
(ai, bi] of width W according to (3.1), (3.2), and (3.3). Such a range is used
so that the largest and smallest (denormalized) floating point numbers may
be approximated.

Definition 3.1.

imax =
⌊
(emax − emin + p− 1)/W

⌋
− 1 (3.1)

ai = emax + 1− (i+ 1)W for 0 ≤ i ≤ imax (3.2)

bi = ai +W (3.3)

We say the bin (ai0 , bi0] is greater than the bin (ai1 , bi1] if ai0 > ai1 (which
is equivalent to both bi0 > bi1 and i0 < i1).

We say the bin (ai0 , bi0] is less than the bin (ai1 , bi1] if ai0 < ai1 (which is
equivalent to both bi0 < bi1 and i0 > i1).

We use i ≤ imax = b(emax − emin + p − 1)/W c − 1 to ensure that ai >
emin − p+ 1 as discussed in Section 4.1.2. This means that the greatest bin,
(a0, b0], is

(emax + 1−W, emax + 1] (3.4)

and the least bin, (aimax , bimax], is(
emin−p+2+

(
(emax−emin+p−1) mod W

)
, emin−p+2+W+

(
(emax−emin+p−1) mod W

)]
(3.5)

Section 4.1.2 explains why the bottom of the exponent range(
emin − p, emin − p+ 2 +

(
(emax − emin + p− 1) mod W

)]
is ignored.

As discussed in [4], and explained again in Section 5.4, we must assume

W < p− 2 (3.6)

As discussed in Section 4.1.1, we must also assume

2W > p+ 1 (3.7)

ReproBLAS uses both float and double floating point types. The chosen
division of exponent ranges for both types is shown in Figure 2. The rationale
behind choices for W and K is explained in Section 5.10.

12

Floating-Point Type float double

emax 127 1023
emin -126 -1022
p 24 53
emin − p -140 -1075
W 13 40
imax 19 51
(a0, b0] (115, 128] (984, 1024]
(aimax , bimax] (−132,−119] (−1056,−1016]

Table 2: ReproBLAS Binning Scheme

3.2 Slices

Throughout the text we will refer to the slice of some x ∈ R in the bin (ai, bi]
(see Figure 3.1). x can be split into several slices, each slice corresponding to a
bin (ai, bi] and expressible as the (possibly negated) sum of a subset of {2e, e ∈
(ai, bi]}, such that the sum of the slices equals x exactly or provides a good
approximation of x. Specifically, the slice of x ∈ R in the bin (ai, bi] is defined
recursively as d(x, i) in (3.8). We must define d(x, i) recursively because it is
not a simple bitwise extraction. The extraction is more complicated because
the splitting is performed using floating-point instructions. There are many
ways to implement the splitting (using only integer instructions, only floating
point instructions, a mix of the two, or even special purpose hardware). This
paper focuses on using a majority of floating point instructions for portability
and for efficiency on architectures with different register sets for fixed and
floating point operands. Floating point instructions also allow us to take
advantage of the rounding operations built in to floating point arithmetic.

Definition 3.2.

d(x, 0) = R∞(x, a0 + 1)

d(x, i) = R∞
(
x−

i−1∑
j=0

d(x, j), ai + 1
)

for i > 0.
(3.8)

We make three initial observations on the definition of d(x, i). First, we
note that d(x, i) is well defined recursively on i with base case d(x, 0) =
R∞(x, a0 + 1).

13

Next, notice that d(x, i) ∈ 2ai+1Z.
Finally, it is possible that d(x, 0) may be too large to represent as a

floating point number. For example, if x is the largest finite floating point
number, then d(x, 0) = R∞(x, a0 + 1) would be 2emax+1. Overflow of this
type is accounted for in Section 4.1.1. Technical detail of how to handle this
special case during the binning process will be explained in Section 5.3.

Lemmas 3.1 and 3.2 follow from the definition of d(x, i).

Lemma 3.1. For all i ∈ {0, ..., imax} and x ∈ R such that |x| < 2ai , d(x, i) =
0.

Proof. We show the claim by induction on i.
In the base case, |x| < 2a0 , by (2.2) we have d(x, 0) = R∞(x, a0 + 1) = 0.
In the inductive step, we have |x| < 2ai+1 < . . . < 2a0 by (3.2) and by

induction d(x, i) = ... = d(x, 0) = 0. Thus,

d(x, i+ 1) = R∞
(
x−

i∑
j=0

d(x, j), ai+1 + 1
)

= R∞(x, ai+1 + 1)

Again, since x < 2ai+1 , by (2.2) we have d(x, i+1) = R∞(x, ai+1+1) = 0.

Lemma 3.2. For all i ∈ {0, ..., imax} and x ∈ R such that |x| < 2bi , d(x, i) =
R∞(x, ai + 1).

Proof. The claim is a simple consequence of Lemma 3.1.
By (3.2) and (3.3), |x| < 2bi = 2ai−1 < . . . < 2a0 . Therefore Lemma 3.1

implies d(x, 0) = ... = d(x, i− 1) = 0 and we have

d(x, i) = R∞
(
x−

i−1∑
j=0

d(x, j), ai + 1
)

= R∞(x, ai + 1)

Lemma 3.1, Lemma 3.2, and (3.8) can be combined to yield an equivalent
definition of d(x, i) for all i ∈ {0, ..., imax} and x ∈ R.

d(x, i) =

0 if |x| < 2ai

R∞(x, ai + 1) if 2ai ≤ |x| < 2bi

R∞
(
x−

i−1∑
j=0

d(x, j), ai + 1
)

if 2bi ≤ |x|
(3.9)

14

Theorem 3.3 shows that sum of the slices of x ∈ R provides a good
approximation of x.

Theorem 3.3. For all i ∈ {0, ..., imax} and x ∈ R, |x−
i∑

j=0

d(x, j)| ≤ 2ai .

Proof. We apply (2.2) and (3.9)

∣∣x− i∑
j=0

d(x, j)
∣∣ =

∣∣∣(x− i−1∑
j=0

d(x, j)
)
− d(x, i)

∣∣∣
=
∣∣∣(x− i−1∑

j=0

d(x, j)
)
−R∞

(
x−

i−1∑
j=0

d(x, j), ai + 1
)∣∣∣ ≤ 2ai

Although the bins do not extend all the way to emin − p, we now show
that the sum of the slices of some x ∈ F still offers a good approximation of
x.

Using W < p− 2 and (3.5),

aimax = emin − p+ 2 +
(
(emax − emin + p− 1) mod W

)
≤ emin − p+ 2 + (W − 1)

< emin − p+ 2 + (p− 2− 1) = emin − 1

Hence,
aimax ≤ emin − 2

As a consequence, we can use Theorem 3.3 to say that for any x ∈ R,

∣∣x− imax∑
i=0

d(x, i)
∣∣ ≤ 2aimax ≤ 2emin−2 (3.10)

This means that we can approximate x using the sum of its slices to the
nearest multiple of 2emin−1.

15

As the slices of x provide a good approximation of x, the sum of the

slices of some x0, ..., xn−1 ∈ R provide a good approximation of
n−1∑
j=0

xj. This

is the main idea behind the reproducible summation algorithm presented
here. Since the largest nonzero slices of x provide the best approximation
to x, we compute the sum of the slices of each x0, ..., xn−1 corresponding to
the largest K bins such that at least one slice in the largest bin is nonzero.
If such an approximation can be computed exactly, then it is necessarily
reproducible.

If the sums of slices corresponding to each bin are kept separate, we
can compute the reproducible sum iteratively, only storing sums of nonzero
slices in the K largest bins seen so far. When a summand is encountered
with nonzero slices in a larger bin that what has been seen previously, we
abandon sums of slices in smaller bins to store the sums of slices in the larger
ones.

Before moving on to discussions of how to store and compute the slices
and sums of slices, we must show a bound on their size. Theorem 3.4 shows
a bound on d(x, i).

Theorem 3.4. For all i ∈ {0, ..., imax} and x ∈ R, |d(x, i)| ≤ 2bi .

Proof. First, we show that |x−
i−1∑
j=0

d(x, j)| ≤ 2bi .

If i = 0, then we have

∣∣x− i−1∑
j=0

d(x, j)
∣∣ = |x| < 2 · 2emax < 2b0

Otherwise, we can apply (3.2) and (3.3) to Theorem 3.3 to get

∣∣x− i−1∑
j=0

d(x, j)
∣∣ ≤ 2ai−1 = 2bi

As 2bi ∈ 2ai+1Z, (3.8) can be used

∣∣d(x, i)
∣∣ =

∣∣∣R∞(x− i−1∑
j=0

d(x, j), ai + 1
)∣∣∣ ≤ 2bi

16

Combining Theorem 3.4 with the earlier observation that d(x, i) ∈ 2ai+1Z,
we see that the slice d(x, i) can be represented by bits lying in the bin (ai, bi]
as desired.

4 The Indexed Type

The indexed type is used to represent the intermediate result of accumula-
tion using Algorithms 6 and 7 in [4]. An indexed type Y is a data structure
composed of several accumulator data structures Y0, ..., YK−1. An indexed
type with K accumulators is referred to as a K-fold indexed type. Due to
their low accuracy, 1-fold indexed types are not considered.

Let Y be the indexed type corresponding to the reproducibly computed
sum of x0, ..., xn−1 ∈ F. Y is referred to as the indexed sum of x0, ..., xn−1,
a term which will be defined formally in Section 4.2.

Each accumulator Yk is a data structure used to accumulate the slices
of input in the bin (aI+k, bI+k] where I is the index of Y and k ≥ 0. The
width of an indexed type is equal to the width of its bins, W . Recall the
assumptions (3.6) and (3.7) made on the value of W .

The accumulators in an indexed type correspond to contiguous bins in
decreasing order. If Y has index I, then Yk, k ∈ {0, ..., K − 1} accumulates
slices of input in the bin (aI+k, bI+k]. If I is so large that I +K > imax, then
the extra I +K − imax accumulators are unused.

In ReproBLAS, the data type used to sum double is named double indexed,
and likewise for double complex, float, and float complex. A K-fold in-
dexed type can be allocated with the idxd xialloc method, and set to zero
with the idxd xisetzero method. Both of these methods are defined in
idxd.h (see Section 7 for details).

Section 4.1 elaborates on the specific fields that make up the indexed type
and the values they represent. Sections 4.1.1, 4.1.2, 4.1.3, and 4.1.4 contain
extensions of the indexed type to handle overflow, underflow, and exceptional
values. Section 4.2 explains how the indexed type can be used to represent
the sum of several floating point numbers.

4.1 Primary and Carry

As discussed in [4], indexed types are represented using floating point num-
bers to minimize traffic between floating point and integer arithmetic units.

17

In the ReproBLAS library, if an indexed type is used to sum doubles,
then it is composed entirely of doubles and likewise for floats. ReproBLAS
supports complex types as pairs of real and imaginary components (stored
contiguously in memory). If an indexed type is used to sum complex doubles

or floats, then it is composed of pairs (real part, imaginary part) of doubles
or floats respectively. The decision to keep the real and imaginary com-
ponents together (as opposed to keeping separate indexed types for real and
imaginary parts of the sum) was motivated by a desire to process accumula-
tors simultaneously with vectorized (SIMD) instructions.

The accumulators Yk of an indexed type Y are each implemented using
two underlying floating point fields. The primary field YkP is used during
accumulation, while the carry field YkC holds overflow from the primary field.
Because primary fields are frequently accessed sequentially, the primary fields
and carry fields are each stored contiguously in separate arrays. The notation
for the primary field YkP and carry field YkC corresponds to the “Sj” and
“Cj” of Algorithm 6 in [4].

The numerical value YkP represented by data stored in the primary field
YkP is an offset from 1.5ε−12aI+k (corresponding to “M[i]” at the beginning of
Section IV.A. in [4]), where I is the index of Y , as shown in (4.1) below. Note
that (4.1) only holds when I + k > 0. The special case of I + k = 0, where
1.5ε−12a0 > 21+emax is not representable, will be handled in Section 4.1.1
below on Overflow.

YkP = YkP − 1.5ε−12aI+k (4.1)

Representing the primary field value as an offset from 1.5ε−12aI+k simplifies
the process of extracting the slices of input in bins (aI+k, bI+k]. It will be
shown in Lemma 5.1 in Section 5.3 that if we represent each primary value
YkP as in (4.1) and keep YkP within the range (ε−12aI+k , 2ε−12aI+k), then Algo-
rithm 5.4 in Section 5.3 extracts the slices of x in bins (aI , bI], . . . , (aI+K−1, bI+K−1]
and adds them to Y0P , . . . , YK−1P without error (and hence reproducibly) for
all x ∈ F, where |x| < 2bI .

Because d(x, I+k) = 0 for bins with |x| < 2aI+k , the values in the greatest
K nonzero accumulators can be computed reproducibly by computing the
values in the greatest K accumulators needed for the largest x seen so far.
Upon encountering an x ≥ 2bI , the accumulators can then be shifted towards
index 0 as necessary. Since the maximum absolute value operation is always
reproducible, so is the index of the greatest accumulator.

In order to keep the primary fields in the necessary range while the slices

18

are accumulated and to keep the representation of Yk unique, YkP is routinely
renormalized to the range [1.5ε−12aI+k , 1.75ε−12aI+k). As will be shown in Sec-
tion 5.4, that renormalization is required every 2p−W−2 iterations, so 211 in
double and 29 in single precision. This means the renormalization introduces
a very low overhead to the overall running time. To renormalize, YkP is
incremented or decremented by 0.25ε−12aI+k as described in Algorithm 5.6,
leaving the carry field YkC to record the number of such adjustments. De-
pending on the data format used to store YkC , the number of updates to one
accumulator without overflow is limited, which determines the possible max-
imum number of inputs that can be reproducibly added to one accumulator.
As will be explained in Section 5.4, Equation (5.2), using the same precision
p as the primary field to store the carry field, the total number of inputs that
can be reproducibly added to one accumulator is (ε−1 − 1)2p−W−2. This is
approximately 264 for double and 233 for float. See Section 5.10 for a sum-
mary of restrictions. The numerical value YkC represented by data stored in
the carry field YkC of an indexed type Y of index I is expressed in (4.2)

YkC = (0.25ε−12aI+k)YkC (4.2)

Combining (4.1) and (4.2), we get that the value Yk of the accumulator Yk
of an indexed type Y of index I is

Yk = YkP + YkC = (YkP − 1.5ε−12aI+k) + (0.25ε−12aI+k)YkC (4.3)

Therefore, using (4.3), the numerical value Y represented by data stored in
a K-fold indexed type Y of index I (the sum of Y ’s accumulators) is

Y =
K−1∑
k=0

Yk =
K−1∑
k=0

(
(YkP − 1.5ε−12aI+k) + (0.25ε−12aI+k)YkC

)
(4.4)

It is worth noting that by keeping YkP within the range (ε−12aI+k , 2ε−12aI+k)
for I+k > 0, the exponent of Y0P is aI+p when I > 0. The case of I = 0 will
be explained in the below section of Overflow. Therefore it is unnecessary
to store the index of an indexed type explicitly. As will be explained in
Section 5.1, the index can be determined by simply examining the exponent
of Y0P , as all aI are distinct and the mapping between the exponent of Y0P
and the index of Y is bijective.

19

4.1.1 Overflow

If an indexed type Y has index 0 and the width is W , then the value in
the primary field Y0P would be stored as an offset from 1.5ε−12emax+1−W .
However, 1.5ε−12emax+1−W > 2emax+1+(p−W) > 2 · 2emax since W < p− 2, so it
would be out of the range of the floating-point system and not representable.
Before discussing the solution to this overflow problem, take note of Theorem
4.1.

Theorem 4.1. If 2W > p + 1, then for any indexed type Y of index I and
any YkP such that I + k ≥ 1, |YkP | < 2emax .

Proof. a1 = emax +1−2W by (3.2), therefore a1 < emax−p using 2W > p+1
and since all quantities are integers, a1 ≤ emax − p − 1. If I + k ≥ 1,
aI+k ≤ a1 ≤ emax − p− 1 by (3.2).

YkP is kept within the range (ε−12aI+k , 2ε−12aI+k), therefore

|YkP | < 2ε−12aI+k ≤ 21+p2emax−1−p = 2emax

By Theorem 4.1, if 2W > p + 1 then the only primary field that could
possibly overflow is a primary field corresponding to bin 0, and all other
primary fields have exponent less than emax. Therefore, we require 2W > p+1
and express the value of the primary field corresponding to bin 0 as a scaled
offset from 1.5 · 2emax . Note that this preserves uniqueness of the exponent of
the primary field corresponding to bin 0 because no other primary field has
an exponent of emax. The value Y0P stored in the primary field Y0P of an
indexed type Y of index 0 is expressed in (4.5).

Y0P = 2p−W+1(Y0P − 1.5 · 2emax) (4.5)

Although the primary field corresponding to bin 0 is scaled, the same
restriction (5.2) on n applies here as it does in the normal case. Therefore,
the partial sums in reproducible summation can grow much larger ((ε−1 −
1)2p−W−1 times larger) than the overflow threshold and then cancel back
down. In fact, as long as the sum itself is below overflow (beyond the margin
of error), the summands are finite, and n ≤ (ε−1−1)2p−W−2, the reproducible
summation won’t overflow. However, if the inputs to summation are already
infinite, the summation will overflow. In the case of a dot product, overflow
will occur if the pairwise products themselves overflow (overflow only occurs
during multiplication).

20

4.1.2 Gradual Underflow

Here we consider the effects of gradual underflow on algorithms described
in [4] and how the indexed type allows these algorithms to work correctly.
Although we will discuss abrupt underflow briefly in the next section, we will
consider only gradual underflow in the remainder of the work.

Algorithms 5.5 for adding a floating point input to an indexed type in
Section 5.3 and Algorithm 5.6 for renormalizing an indexed type in Sec-
tion 5.4 require that the primary fields YkP are normalized to work correctly.
Theorem 4.2 shows that the primary fields should always be normalized.

Theorem 4.2. For any primary field YkP of an indexed type Y of index I
where YkP ∈ (ε−12aI+k , 2ε−12aI+k) (Y0P ∈ (2emax , 2 · 2emax) if Y has index 0),
YkP is normalized.

Proof. By (3.5),

aI+k ≥ aimax = emin− p+ 2 +
(
(emax− emin + p− 1) mod W

)
≥ emin− p+ 2

Because YkP ∈ (ε−12aI+k , 2ε−12aI+k) we have exp(YkP) = aI+k + p >
emin + 1 so YkP is normalized.

Algorithms 5.4 and 5.5 in Section 5.3 rely on setting the last bit of in-
termediate results before adding them to YkP in order to fix the direction of
the rounding mode. However, if r is the quantity to be added to YkP , ulp(r)
must be less than rounding error in YkP when added to YkP . Mathematically,
we will require ulp(r) < 0.5ulp(YkP) in order to prove Theorem 5.2 about the
correctness of Algorithm 5.5. This is why we must enforce aimax ≥ emin−p+2
so that the least significant bit of the least bin is larger than twice the smallest
denormalized number.

This does not mean it is impossible to sum the input in the denormalized
range. One simple way the algorithm could be extended to denormalized
inputs would be to scale the least bins up, analogously to the way we han-
dled overflow. Due to the relatively low priority for accumulating denormal-
ized values, this method was not implemented in ReproBLAS. With respect
to computing a reproducible dot product, we do not extend the underflow
threshold to ensure the products of tiny values do not underflow. The un-
derflow threshold is the same as in normal reproducible summation. Others
may implement these features if they think it is important.

21

4.1.3 Abrupt Underflow

If underflow is abrupt, several approaches may be taken to modify the given
algorithms to ensure reproducibility. We discuss these approaches in this
section, but the rest of the work will consider only gradual underflow.

The most straightforward approach would be to accumulate input in the
denormalized range by scaling the smaller inputs up. This has the added
advantage of increasing the accuracy of the algorithm. A major disadvan-
tage to this approach is the additional branching cost incurred due to the
conditional scaling.

A more efficient way to solve the problem would be to set the least bin to
have aimax = emin. This means that all the values smaller than 2emin will not
be accumulated. This could be accomplished either by keeping the current
binning scheme and having the least bin be of a width not necessarily equal
to W , or by shifting all other bins to be greater. The disadvantage of shifting
the other bins is that it may cause multiple greatest bins to overflow, adding
multiple scaling cases. Setting such a least bin would enforce the condition
that no underflow occurs since all intermediate sums are either 0 or greater
than the underflow threshold. The denormal range would be discarded.

Setting the least bin is similar to zeroing out the mantissa bits of each
summand that correspond to values 2(emin−1) or smaller. However, perform-
ing such a bitwise manipulation would likely be more computationally inten-
sive and would not map as intuitively to our binning process.

In the case that reproducibility is desired on heterogeneous machines,
where some processors may handle underflow gradually and others abruptly,
the approach of setting a least bin is recommended. The indexed sum using
this scheme does not depend on whether or not underflow is handled gradu-
ally or abruptly, so the results will be the same regardless of where they are
computed.

4.1.4 Exceptions

Indexed types are capable of representing exceptional cases such as NaN (Not
a Number) and Inf (Infinity). An indexed type Y stores its exception status
in its first primary field Y0P .

A value of 0 in Y0P indicates that nothing has been added to Y0P yet (Y0P
is initialized to 0).

22

Since the YkP are kept within the range (ε−12aI+k , 2ε−12aI+k) (where I is
the index) and are normalized (by Theorem 4.2), we have

YkP > 2emin

Therefore the value of 0 in a primary field is unused in any previously
specified context and may be used as a sentinel value. (As the exponent of
0 is distinct from the exponent of normalized values, the bijection between
the index of an indexed type Y and the exponent of Y0P is preserved)

A value of Inf or -Inf in Y0P indicates that one or more Inf or -Inf

(and no other exceptional values) have been added to Y respectively.
A value of NaN in Y0P indicates that one or more NaNs have been added

to Y or one or more of both Inf and -Inf have been added to Y . Note
that there are several types of NaN. We do not differentiate among them. We
consider all types NaN as identically NaN.

As the YkP are kept finite to store finite values, Inf, -Inf, and NaN

are unused in any previously specified context and are valid sentinel values.
(As the exponent of Inf, -Inf, and NaN is distinct from the exponent of
finite values, the bijection between the index of an indexed type Y and the
exponent of Y0P is preserved)

This behavior follows the behavior for exceptional values in IEEE 754-
2008 floating point arithmetic. The result of adding some exceptional values
using floating-point arithmetic therefore matches the result obtained from
indexed summation. As Inf, -Inf, and NaN add associatively, this behavior
is reproducible.

Note that, as will be explained in Section 5, as long as the number of
inputs is limited by n ≤ (ε−1− 1)2p−W−2 (approximately 264 for double and
233 for float) and all the inputs are finite, there will be no intermediate
NaN or ±Inf during the computation. For example, given x ∈ F the biggest
representable value below the overflow threshold, our algorithm will compute
a result of exactly 0 for the sum of input vector [x, x,−x,−x] regardless of
the order of evaluation. On the other hand, a standard recursive summation
algorithm returns either ((x+x)−x)−x = Inf, ((−x−x) +x) +x = −Inf,
((x− x) + x)− x = 0, or ((x+ x) + (−x− x)) = NaN depending on the order
of evaluation.

It should also be noted here that it is possible to achieve a final result of
±Inf when Y0P is finite. This is due to the fact that the indexed represen-
tation can express values outside of the range of the floating point numbers

23

that it is composed with. More specifically, it is possible for the value Y
represented by the indexed type Y to satisfy |Y| ≥ 2 · 2emax . The condition
that Y is not representable is discovered when calculating Y (converting Y to
a floating point number). The methods used to avoid overflow and correctly
return the Inf or -Inf are discussed in Section 5.8.

There are several ways that Inf, -Inf, and NaN could be handled repro-
ducibly. We have chosen to handle these values analogously to how they are
handled in standard recursive summation. This results in a small additional
performance cost due to special branches for exceptional values. Another way
to handle these values would be to always return NaN when any summand
is Inf, -Inf, or NaN. This would result in less branching because no explicit
checks for exceptional values would be necessary (this is a side effect of the
algorithm due to NaN propagation). We did not choose this option because
there are ways to reduce the number of branches such that the additional
cost of the branches is negligible when compared to the computational cost
of the reproducible algorithm. These two approaches to handling exceptional
values are discussed in more detail at the end of Section 5.3.

4.2 Indexed Sum

We have previously explained the indexed type, a data structure we will use
for reproducible summation. We now define a quantity that can be expressed
using the indexed type, called the indexed sum. The goal for Section 5 will
be to show that we can indeed compute this quantity. Ultimately, Theorems
5.4, 5.5, and 5.6 will prove that Algorithms 5.7, 5.9, and 5.10 (respectively)
can indeed compute the indexed sum. Here we focus on the definition of an
indexed sum. As further motivation for computing the indexed sum, we show
that if an algorithm returns the indexed sum of its inputs, it is reproducible.

24

Definition 4.1. Assume n ≤ (ε−1 − 1)2p−W−2. The K-fold indexed sum
of finite x0, ..., xn−1 ∈ F is defined to be a K-fold indexed type Y such that:

YkP ∈

{
[1.5ε−12aI+k , 1.75ε−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) if I + k = 0

Yk = (YkP − 1.5ε−12aI+k) + (0.25ε−12aI+k)YkC

Yk =
n−1∑
j=0

d(xj, I + k)

I is the greatest integer such that max(|xj|) < 2bI and I ≤ imax

(4.6)

We have repeated (4.3) as a requirement above for clarity.
The K-fold indexed sum of x0, ..., xn−1 ∈ F (with at least one exceptional
value Inf, -Inf, or NaN) is defined to be a K-fold indexed type such that

Y0P =

Inf if there is at least one Inf and no other exceptional values

-Inf if there is at least one -Inf and no other exceptional values

NaN otherwise

(4.7)
And the K-fold indexed sum of no numbers (the empty sum) is defined to
be the K-fold indexed type such that

YkP = 0

YkC = 0

(4.8)

We now show that the indexed sum is well-defined for finite summands
and that each field in the indexed type corresponding to the summands
x0, ..., xn−1 (in any order) is unique. We show this in Lemma 4.3.

Lemma 4.3. Let Y be the indexed sum of some x0, ..., xn−1 ∈ F, where each
xi is a finite value and n ≥ 1. Let σ0, ..., σn−1 be some permutation of the
first n nonnegative integers such that {σ0, ..., σn−1} = {0, ..., n − 1} as sets.
Let Z be the indexed sum of xσ0 , ..., xσn−1 .
For all k, 0 ≤ k < K, we have that YkP = ZkP and YkC = ZkC .

Proof. Since max(|xj|) = max(|xσj |), both Y and Z have the same index I,
since I is the greatest integer such that max(|xj|) < 2bI and I ≤ imax.

25

Using the associativity of addition,

Yk =
n−1∑
j=0

d(xj, I + k) =
n−1∑
j=0

d(xσj , I + k) = Zk

If I + k ≥ 1, Assume for contradiction that there exists some k, 0 ≤ k <
K,, such that YkC 6= ZkC . Since Yk = Zk, (4.3) yields

(YkP − 1.5ε−12aI+k) + (0.25ε−12aI+k)YkC = (ZkP − 1.5ε−12aI+k) + (0.25ε−12aI+k)ZkC

YkP − ZkP = (0.25ε−12aI+k)(ZkC − YkC)

|YkP − ZkP | ≥ 0.25ε−12aI+k

Since YkP ∈ [1.5ε−12aI+k , 1.75ε−12aI+k), ZkP 6∈ [1.5ε−12aI+k , 1.75ε−12aI+k),
a contradiction.

Therefore, we have that YkC = ZkC . Along with the fact that Yk = Zk,
application of (4.3) yields that YkP = ZkP .

If I = 0, assume for contradiction that Y0C 6= Z0C . Since Y0 = Z0, (4.3)
and (4.5) yield

2p−W+1(Y0P − 1.5 · 2emax) + (0.25ε−12a0)Y0C = 2p−W+1(Z0P − 1.5 · 2emax) + (0.25ε−12a0)Z0C

Y0P − Z0P = 2W−p−1(0.25ε−12a0)(Z0C − Y0C)

|Y0P − Z0P | ≥ 2W−p−1(0.25ε−12a0)

and by (3.2) and (3.3), we have

|Y0P − Z0P | ≥ 0.25 · 2emax

Since Y0P ∈ [1.5 · 2emax , 1.75 · 2emax), ZkP 6∈ [1.5 · 2emax , ·2emax), a contradic-
tion.

Therefore, we have that Y0C = Z0C . Along with the fact that Y0 = Z0,
application of (4.3) together with (4.5) yields that Y0P = Z0P .

With Lemma 4.3, it is not hard to see that the more inclusive Theorem
4.4 applies to the indexed sum.

Theorem 4.4. Let Y be the indexed sum of some x0, ..., xn−1 ∈ F. Let
σ0, ..., σn−1 be some permutation of the first n nonnegative integers such
that {σ0, ..., σn−1} = {0, ..., n − 1} as sets. Let Z be the indexed sum of
xσ0 , ..., xσn−1 .
If all x0 are finite or n = 0, we have that for all k, 0 ≤ k < K, YkP = ZkP
and YkC = ZkC . Otherwise, Y0P = Z0P and Y0P is exceptional.

26

Proof. If all xi are finite and n ≥ 1, then the claim holds by Lemma 4.3. If
n = 0, then by (4.8) we have that for all k, 0 ≤ k < K, YkP = ZkP = 0 and
YkC = ZkC = 0.

If at least one xi is exceptional, then since the conditions in (4.7) depend
only on the number of each type of exceptional value and not on their order,
we have that Y0P = Z0P . Since all of the possible cases are exceptional, Y0P
is exceptional.

Theorem 4.4 implies that any algorithm that can compute the indexed
sum of a list of floating point numbers is a reproducible summation algorithm,
as the indexed sum is well-defined, unique, and independent of the ordering
of the summands.

5 Primitive Operations

Here we reorganize algorithms in [4] into a set of primitive operations on
an indexed type. This set of operations is intended to make it easy to
build higher level operations on different platforms, accommodating different
sources of nonreproducibility. Two simple original algorithms relating to the
index of an indexed type are given in Section 5.1. Theoretical summaries of
algorithms (with some improvements) from [4] are provided in Sections 5.2,
5.3, 5.4, 5.5, 5.6, and 5.7. To obtain a general completely reproducible algo-
rithm for summation, one must design for reproducibility under both data
ordering and reduction tree shape. Section 5.5 provides methods to sum
numbers regardless of ordering (a more efficient algorithm is presented in
Section 5.6), while Section 5.7 provides methods to sum numbers regardless
of reduction tree shape.

Section 5.8 provides an original algorithm (with a greatly improved er-
ror bound) to obtain the value represented by an indexed type. Section 5.9
presents an original theorem regarding the sum of a decreasing sequence of
floating point numbers and utilizes this theorem to obtain error bounds for
reproducible summation algorithms. We summarize the restrictions govern-
ing the indexed type and these algorithms in Section 5.10.

5.1 Index

When operating on indexed types it is sometimes necessary to compute their
index. Algorithm 5.1 yields the index of an indexed type in constant time.

27

Algorithm 5.1 is available in ReproBLAS as idxd xmindex in idxd.h (see
Section 7 for details).

Algorithm 5.1. Given an indexed type Y , calculate its index I

Require:
Y0P ∈ (ε−12aI , 2ε−12aI) where aI is defined in (3.2)

1: function IIndex(Y)
2: return b(emax + p− exp(Y0P)−W + 1)/W c . Index I of Y
3: end function

Ensure:
Returned result I is the index of Y .

Note that the floor function is necessary in Algorithm 5.1 to account
for the case where Y has index 0, which has exp(Y0P) = 2emax as discussed
in Section 4.1.1. This uses the assumption that p+1

2
< W < p − 2, so

3 < p−W + 1 < W. Note also that the function exp() used above is assumed
to return the biased exponent of Y0P , so that IIndex returns 0 when Y0P is
Inf, -Inf, or NaN and imax when Y0P is 0 or denormalized.

Another useful operation is, given some x ∈ F, to find the unique bin
(aJ , bJ] where J is the greatest integer such that |x| < 2bJ and J ≤ imax.
Algorithm 5.2 yields such a J in constant time. Algorithm 5.2 is available in
ReproBLAS as idxd xindex in idxd.h (see Section 7 for details).

Algorithm 5.2. Given x ∈ F, calculate the largest integer J such that
2bJ > |x| and J ≤ imax

Require: imax is defined in (3.1), aJ is defined in (3.2).
1: function Index(x)
2: if x = 0 then
3: return imax

4: end if
5: return min(imax, b(emax − exp(x))/W c) . Index J of x
6: end function

Ensure:
J is the greatest integer such that |x| < 2bJ and J ≤ imax.

Note again that the function exp() used above is assumed to return the
biased exponent of x, so that Index returns 0 when x is Inf, -Inf, or NaN

and imax when x < 2aimax . This behavior is consistent with the following
algorithms since values smaller than the least bin will not be accumulated.

28

Algorithms 5.1 and 5.2 are used infrequently, usually being called once at
the beginning of a routine.

5.2 Update

Sometimes it is necessary to adjust the index of Y . For example, in Algorithm
5.5, when adding x ∈ F to a K-fold indexed type Y of index I, we will make
the assumption that |x| < 2bI , which might require decreasing I to increase
bI . As another example, a new indexed type Y is always initialized to have
all primary and carry fields set to 0, therefore before adding any value to Y
it is required to adjust the primary and carry fields of Y first.

This adjustment is called an update. The process of updating Y to the
necessary index is summarized succinctly in Algorithm 5.3. Algorithm 5.3
is available in ReproBLAS as idxd xixupdate in idxd.h (see Section 7 for
details).

Algorithm 5.3. Update K-fold indexed type Y of index I to have an index
J such that |x| < 2bJ .

Require:
Y is the indexed sum of some x0, ..., xn−1 ∈ F

1: function Update(K, x, Y)
2: I = IIndex(Y)
3: J = Index(x)
4: if J < I then
5: [Ymin(I−J,K)P

, ..., YK−1P] = [Y0P , ..., YK−1−min(I−J,K)P
]

6: [Y0P , ..., Ymin(I−J,K)−1P] = [1.5ε−1aJ , ..., 1.5ε
−1amin(I,K+J)−1]

7: [Ymin(I−J,K)C
, ..., YK−1C] = [Y0C , ..., YK−1−min(I−J,K)C

]
8: [Y0C , ..., Ymin(I−J,K)−1C] = [0, ..., 0]
9: end if

10: end function
Ensure:

Y has index J where J is the greatest integer such that |x| < 2bJ ,
max(|xj|) < 2bJ , and J < imax.

Yk =
n−1∑
j=0

d(xj, J + k)

YkP ∈

{
[1.5ε−12aJ+k , 1.75ε−12aJ+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) if I + k = 0

29

The update operation is described in the “Update” Section (lines 7-17)
of Algorithm 6 in [4].

It should be noted that if Y0P is 0, then the update is performed as if
I+K < J . If Y0P is Inf, -Inf, or NaN, then Y is not modified by an update.
If J is such that J+K > imax, then Yimax−JP , ..., YK−1P are set to 1.5ε−12aimax

and the values in these accumulators are ignored.
If Y represents the indexed sum of finite values, then existing accumu-

lators of Y may be shifted towards index 0, losing the lesser bins. New
accumulators are shifted into Y with value 0 in YkC and 1.5ε−12amin(I,J)+k in
YkP .

The new accumulators Yk with 0 ≤ k < I − J must represent 0 because

|xj| < 2bI ≤ aI−1 ≤ aJ+k so
n−1∑
j=0

d(xj, J + k) = 0 by Lemma 3.1.

To speed up this operation, the factors 1.5ε−1aj for all valid j ∈ Z are
stored in a precomputed array.

5.3 Deposit

The deposit operation (here referred to as Algorithm 5.5, which deals with
overflow, unlike a simpler version described in the “Extract K first bins”
Section (lines 18-20) of Algorithm 6 in [4]) is used to extract the slices of a
floating point number and add them to the appropriate accumulators of an
indexed type.

Algorithm 5.4 deposits floating point numbers in the case that there is
no overflow (the indexed type has an index greater than 0).

30

Algorithm 5.4. Extract slices of x ∈ F, where |x| < 2bI , in bins
(aI , bI], ..., (aI+K−1, bI+K−1] and add to indexed type Y . Here, (r|1) rep-
resents the result of setting the last bit of the significand (mp−1) of floating
point number r to 1. This is a restatement of lines 18-20 of Algorithm 6 in
[4].

Require:
No overflow occurs.
Operations are performed in some “to nearest” rounding mode (no spe-
cific tie breaking behavior is required).
|x| < 2bI .
YkP ∈ (ε−12aI+k , 2ε−12aI+k) at all times. (The carry fields YkC will be
used to ensure this in Algorithm 5.6)

1: function DepositRestricted(K, x, Y)
2: r = x
3: for k = 0 to (K − 2) do
4: S = YkP + (r|1)
5: q = S − YkP
6: YkP = S
7: r = r − q
8: end for
9: YK−1P = YK−1P + (r|1)

10: end function
Ensure:

The amount added to YkP by this algorithm is exactly d(x, I + k).

The last bit of r is set to break ties when rounding “to nearest” so that the
amount added to YkP does not depend on the size of YkP so far. Algorithm 5.4
costs 3(K − 1) + 1 = 3K − 2 FLOPs, not counting the or-bit operation. The
following theorem proves the “Ensure” claim at the end of Algorithm 5.4.

Lemma 5.1. Let Y be an K-fold indexed type of index I. Assume that we
run Algorithm 5.4 on Y and some x ∈ F, |x| < 2bI . If all requirements of the
algorithm are satisfied, then the amount added to YkP is exactly d(x, I + k).

Proof. Throughout the proof, assume that the phrase “for all k” means “for
all k ∈ {0, ..., K − 1}.” Assume also that rk and Sk refer to the value of r
and S after executing line 4 in the kth iteration of the loop. Finally, assume
YkP refers to the initial value of YkP and Sk refers to the final value of YkP .

31

Therefore, Sk − YkP is the amount added to YkP .
Note that lines 4-7 correspond to Algorithm 4 of [4]. Therefore, if ulp(YkP) =

ulp(Sk) and ulp(rk) < 0.5ulp(YkP), Corollary 3 of [4] applies and we have
that Sk−YkP ∈ ulp(YkP)Z ∈ 2aI+k+1Z and that |rk+1| ≤ 0.5ulp(YkP) = 2aI+k .

As it is assumed YkP , Sk ∈ (ε−12aI+k , 2ε−12aI+k), we have ulp(Sk) =
ulp(YkP) for all k.

We show |rk| ≤ 2bI+k = 2aI+k−1 for all k inductively. As a base case, r0 = x
(from line 2) so |r0| = |x| < 2bI . As an inductive step, assume |rk| ≤ 2bI+k .
We must show ulp(rk) < 0.5ulp(YkP).

By Theorem 4.2 we have that YkP is normalized and therefore ulp(YkP) =
2aI+k+1. If rk is normalized, then because ulp(rk) ≤ 21−p|rk| ≤ 2bI+k−(p−1) =
2aI+k+W−(p−1), and W < p − 2, we have ulp(rk) ≤ 2aI+k−1 < 0.5ulp(YkP).
(This case is considered in [4]). If rk is denormalized, ulp(rk) = 2emin−p+1

since the unit in the last place of a denormalized number is always equal to
2emin−p+1. Using (3.5), ulp(rk) = 2emin−p+1 ≤ 2emin−p+1+((emax−emin+p−1) mod W) =
2aimax−1 ≤ 2aI+k−1 < 0.5ulp(YkP).

Therefore we have ulp(rk) < 0.5ulp(YkP). Thus, Corollary 3 of [4] applies
and we have that |rk+1| ≤ 0.5ulp(YkP) = 2aI+k . This completes the induction.

Next, we show Sk−YkP = R∞(rk, aI+k + 1). As Corollary 3 of [4] applies
for all k, then Sk − YkP ∈ 2aI+k+1Z. By Theorem 3 of [4], rk+1 = rk − (Sk −
YkP). Since |rk+1| ≤ 2aI+k , we consider two cases.

If |rk − (Sk − YkP)| < 2aI+k , then Sk − YkP = R∞(rk, aI+k + 1).
If |rk − (Sk − YkP)| = 2aI+k , then Sk − YkP ∈ {rk + 2aI+k , rk − 2aI+k}. As

Sk = fl(YkP + (rk|1)), we have |Sk − YkP − (rk|1)| ≤ 0.5ulp(Sk) = 2aI+k . As
ulp(Sk) = ulp(YkP) = 2aI+k+1, we also have that rk ∈ 2aI+kZ and because
ulp(rk) < 2aI+k , |(rk|1)−rk| > 0 (with (rk|1)−rk taking the same sign as rk).
If rk > 0, then (Sk − YkP) = rk + 2aI+k (otherwise we will have |Sk − YkP −
(rk|1)| = |rk−2aI+k− (rk|1)| > 2aI+k). If rk < 0, then (Sk−YkP) = rk−2aI+k

(otherwise we will have |Sk − YkP − (rk|1)| = |rk + 2aI+k − (rk|1)| > 2aI+k).
Therefore, Sk − YkP = R∞(rk, aI+k + 1).

We can now show rk+1 = x−
I+k∑
i=0

d(x, i) and Sk−YkP = d(x, I + k) for all

k by induction on k.
In the base case, S0−Y0P = R∞(r0, aI +1) = R∞(x, aI +1). As |x| < 2bI ,

Lemma 3.2 implies S0− Y0P = d(x, I). By Theorem 3 of [4], r1 = r0− (S0−
Y0P) = x − d(x, I). By assumption and (3.2) and (3.3), |x| < 2bI ≤ 2ai for

all i ∈ {0, ..., I − 1}, and therefore by Lemma 3.1, r1 = x−
I∑
i=0

d(x, i).

32

In the inductive step, assume rk+1 = x−
I+k∑
i=0

d(x, i). Then by definition,

Sk+1−Yk+1P = R∞(rk+1, aI+k+1+1) = R∞
(
x−

I+k∑
i=0

d(x, i), aI+k+1+1
)

= d(x, I+k+1)

And by Theorem 3 of [4],

rk+2 = rk+1−(Sk+1−Yk+1P) =
(
x−

I+k∑
i=0

d(x, i)
)
−d(x, I+k+1) = x−

I+k+1∑
i=0

d(x, i)

Of course, what remains to be seen is how we can extract and add the
components of a floating point number to an indexed type Y of index 0, i.e.
when overflow is an issue. Algorithm 5.5 shows the adaptation of Algorithm
5.4 for indexed types of index 0. Algorithm 5.5 is available in ReproBLAS
as idxd xixdeposit in idxd.h (see Section 7 for details).

33

Algorithm 5.5. Extract components of x ∈ F, where |x| < 2bI , in bins
(aI , bI], . . . , (aI+K−1, bI+K−1] and add to indexed type Y of index I. Here,
(r|1) represents the result of setting the last bit of the significand (mp−1) of
floating-point r to 1.

Require:
All requirements (except for the absence of overflow, which we will en-
sure) from Algorithm 5.4 except that Y0P must now be kept within the
range (2emax , 2 · 2emax) if Y has index 0.

1: function Deposit(K, x, Y)
2: I = IIndex(Y)
3: if I = 0 then
4: r = x/2p−W+1

5: S = Y0P + (r|1)
6: q = S − Y0P
7: Y0P = S
8: q = q · 2p−W
9: r = x− q

10: r = r − q
11: for k = 1 to (K − 2) do
12: S = YkP + (r|1)
13: q = S − YkP
14: YkP = S
15: r = r − q
16: end for
17: YK−1P = YK−1P + (r|1)
18: else
19: DepositRestricted(K, x, Y)
20: end if
21: end function
Ensure:

No overflow occurs during the algorithm.
The amount added to YkP is exactly d(x, I + k) if I + k 6= 0.
The amount added to Y0P is exactly d(x, 0)/2p−W+1 if I = 0.

Algorithm 5.5 is identical to Algorithm 5.4 except for when the index of
Y is 0, which is rare. In that case, the first accumulator Y0 will be scaled
by a factor of 2W−p−1 so that the value of the first primary field Y0P stays
in the range [2emax , 2 · 2emax) to avoid overflow. The slices corresponding to

34

the first accumulator will also need to be scaled by the same factor before
being added. Since the scaling is by a power of 2, it does not change any
mantissas of both the primary field and the input value. The binning process
as well as the correctness analysis are therefore similar to Algorithm 5.4. If
the slice q is scaled back by 2p−W+1 and subtracted from x then the rest of the
algorithm doesn’t change in the absence of overflow. However, if x is equal
to the biggest value below the overflow threshold, then d(x, 0) = 2 · 2emax ,
scaling q back by 2p−W+1 would cause overflow. To handle this special case,
instead of scaling q back by 2p−W+1, we only scale q back by 2p−W to obtain
a value of d(x, 0)/2 and perform twice the subtraction x − q to compute r.
Note that if an FMA (Fused-Multiply Adder) is available, we would not have
to explicitly scale q back, one single FMA instruction suffices to compute
r = x− q ∗ 2p−W+1 without any overflow.

In the rare case when the index of Y is 0, Algorithm 5.5 costs 3 ∗ (K −
2) + 7 = 3K+ 1 FLOPs. Otherwise it has the same cost of 3K−2 FLOPs as
Algorithm 5.4. Theorem 5.2 shows that Algorithm 5.5 enjoys the necessary
properties.

Theorem 5.2. Let Y be a K-fold indexed type of index I. Assume that we
run Algorithm 5.5 on Y and some x ∈ F, |x| < 2bI . If all requirements of the
algorithm are satisfied, then the “Ensure” claim of Algorithm 5.5 holds.

Proof. As noted earlier, in order to prove the correctness of Algorithm 5.5, we
only need to show that r = x−d(x, 0) in line 10 for the case IIndex(Y) = 0.

In line 6, we have that q = S − Y0P = d(x, 0)/2p−W+1. By Theorem 3.4,
d(x, 0) ≤ 2·2emax . We then have that in line 8, since q = (d(x, 0)/2p−W+1)2p−W ≤
2emax there is no overflow and as we scale by a power of two, q = d(x, 0)/2
exactly. Again we divide into two cases based on the size of x.

If |x| < 2a0 , we have d(x, 0) = 0 by Lemma 3.1 and therefore r = x −
d(x, 0) = x exactly in both line 9 and line 10.

If |x| ≥ 2a0 , we have |x − d(x, 0)| ≤ 2a0 by Theorem 3.3. Therefore, we
have |x| ≥ |x− d(x, 0)|.

If x > 0, we have

x ≥ x− d(x, 0)/2 ≥ x− d(x, 0) ≥ −x

If x < 0, we have

−x ≥ x− d(x, 0) ≥ x− d(x, 0)/2 ≥ x

35

In either case we have |x− d(x, 0)/2| ≤ |x|.
Since d(x, 0)/2 = R∞(x, a0+1)/2 ∈ 2a0Z ∈ 2ε2b0 (As W < p−2) and x ≤

2b0 , d(x, 0)/2 ∈ ulp(x)Z and therefore x − d(x, 0)/2 ∈ ulp(x)Z. Combined
with |x−d(x, 0)/2| ≤ |x| this implies that x−d(x, 0)/2 is representable, and
that r = x− q exactly in line 9.

Again since d(x, 0)/2, x− d(x, 0)/2 ∈ ulp(x)Z, x− d(x, 0) ∈ ulp(x)Z and
since |x− d(x, 0)| ≤ |x|, x− d(x, 0) is representable and r = r− q exactly in
line 10.

At this point, since r = x − d(x, 0) and |r| ≤ 2a0 , no more overflow can
occur in the algorithm and since the algorithm at this point is identical to
Algorithm 5.4, the proof of Lemma 5.1 applies.

Modifying Algorithm 5.5 to correctly handle exceptional values is easy to
implement. At the beginning of Algorithm 5.5, we may simply check x and
Y0P for the exceptional values Inf, -Inf, and NaN. If any one of x or Y0P
is indeed exceptional, we add x to the (possibly finite) Y0P . Otherwise, we
deposit the finite value normally.

Note that if we ignore the explicit check for exceptional values, even
though Algorithm 5.5 does not correctly propagate floating-point exceptions,
computed results are still reproducible. If any input value is ±Inf, the or-
bit operation at line 5 of Algorithm 5.5 will return a NaN, which in turn will
be propagated and results in a NaN value for Y0P . It means that if there is
any exceptional value in input data, the final computed result will be a NaN,
which is also reproducible.

Although checking for exceptional values explicitly is expensive, the cost
can be reduced if several values are to be summed in the same method. We
can run a block of summation assuming that there are no exceptional values,
and then check at the end of the block if the final computed result is NaN.
If it is indeed NaN, we can compute the exceptional result directly, without
using any of the primitive operations.

5.4 Renormalize

When depositing values into a K-fold indexed type Y of index I, Algorithms
5.4 and 5.5 assume that

YkP ∈

{
[1.5ε−12aI+k , 1.75ε−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) if I + k = 0

36

throughout the routine. To enforce this condition, the indexed type must be
renormalized at least every 2p−W−2 deposit operations, as will be shown
in Theorem 5.3. The renormalization procedure is shown in Algorithm 5.6,
which works for all indices 0 ≤ I ≤ imax. Algorithm 5.6 is available in
ReproBLAS as idxd xirenorm in idxd.h (see Section 7 for details).

Algorithm 5.6. Renormalize a K-fold indexed type Y of index I.

Require:

YkP ∈

{
[1.25ε−12aI+k , 2ε−12aI+k) if I + k > 0

[1.25 · 2emax , 2 · 2emax) if I + k = 0

1: function Renorm(K, Y)
2: for k = 0 to K − 1 do
3: if YkP < 1.5 · ufp(YkP) then
4: YkP = YkP + 0.25 · ufp(YkP)
5: YkC = YkC − 1
6: end if
7: if YkP ≥ 1.75 · ufp(YkP) then
8: YkP = YkP − 0.25 · ufp(YkP)
9: YkC = YkC + 1

10: end if
11: end for
12: end function
Ensure:

YkP ∈

{
[1.5ε−12aI+k , 1.75ε−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) if I + k = 0

The values Yk are unchanged. Recall that by (4.3), if I + k > 0,

Yk = YkP + YkC = (YkP − 1.5ε−12aI+k) + (0.25ε−12aI+k)YkC

The renormalization operation is described in the “Carry-bit Propaga-
tion” Section (lines 21 to 32) of Algorithm 6 in [4], although it has been
slightly modified so as not to include an extraneous case. Indexed types
with exceptional values do not need renormalization. Algorithm 5.6 can be
modified to handle indexed types with exceptional values by doing nothing
when such types are encountered (depending on how ufp() behaves when
given exceptional values, Algorithm 5.6 could change ±Inf to NaN). In total,
Algorithm 5.6 costs 3K FLOPs with a maximum of 2K conditional branches.

37

To show the reasoning behind the assumptions in Algorithm 5.6, we prove
Theorem 5.3.

Theorem 5.3. Assume x0, x1, ...xn−1 ∈ F are successively deposited (using
Algorithm 5.5) in a K-fold indexed type Y of index I where max |xj| < 2bI .
If Y initially satisfies

YkP ∈

{
[1.5ε−12aI+k , 1.75ε−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) if I + k = 0

and n ≤ 2p−W−2, then after all of the deposits,

YkP ∈

{
[1.25ε−12aI+k , 2ε−12aI+k) if I + k > 0

[1.25 · 2emax , 2 · 2emax) if I + k = 0

Proof. As the proof when I + k = 0 is almost identical to the case where
I + k > 0, we consider here only the case that I + k > 0. First, note that
|d(xj, I+k)| ≤ 2bI+k by Theorem 3.4, where d(xj, I+k) is the amount added
to YkP on iteration k.

By Theorem 5.2, Deposit (Algorithm 5.5) extracts and adds the slices
of xj exactly (assuming YkP ∈ (ε−12aI+k , 2ε−12aI+k) at each step, which will
be shown),

∣∣n−1∑
j=0

d(xj, I + k)
∣∣ ≤ n2bI+k = n2W2aI+k

If n ≤ 2p−W−2, then after the nth deposit

YkP ∈
[
(1.5ε−1 − n2W)2aI+k , (1.75ε−1 + n2W)2aI+k

)
∈ [1.25ε−12aI+k , 2ε−12aI+k)

If an indexed type Y initially satisfies YkP ∈ [1.5ε−12aI+k , 1.75ε−12aI+k)
(such a condition is satisfied upon initialization of a new accumulator of
Y during the updating process as will be explained in Section 5.2) and we
deposit at most 2p−W−2 floating point numbers into it, then Theorem 5.3

38

shows that after all of the deposits, YkP ∈ [1.25ε−12aI+k , 2ε−12aI+k). There-
fore, after another renormalization, the primary fields would once again sat-
isfy YkP ∈ [1.5ε−12aI+k , 1.75ε−12aI+k). The limit on the number of floating
point inputs that can be accumulated without executing a renormalization
operation (2p−W−2) also requires that p−W − 2 > 0, or

W < p− 2. (5.1)

As YkC must be able to record additions of absolute value 1 without error,
YkC must stay in the range [−ε−1, ε−1]. As each renormalization results in
addition not in excess absolute value of 1 to YkC , a maximum of ε−1 − 1
renormalizations may be performed, meaning that an indexed type is capable
of representing the sum of at least

(ε−1 − 1)2p−W−2 ≈ 22p−W−2 (5.2)

floating point numbers. The value of (ε−1 − 1)2p−W−2 is approximately 264

in double and 233 in single precision using the values in Table 2.
Note that this value of maximum number of additions is slightly big-

ger than that of [4] since we exclude the extraneous case which caused the
increment of the carry field to at most 2 in absolute value per each renormal-
ization. These bounds also exceed the largest integer that can be represented
in the same-sized integer format, which helps justify the choice of W .

5.5 Add Float To Indexed

Algorithm 5.7 allows the user to add a single floating point number to an
indexed sum. By running this algorithm iteratively on each element of a
vector, the user can make a naive local sum. However, a more efficient
summation algorithm is presented in Section 5.9, making Algorithm 5.7 more
useful for small sums or sums where the summands are not gathered into a
vector. This method is available in ReproBLAS as idxd xixadd in idxd.h

(see Section 7 for details).

39

Algorithm 5.7. Add floating point xn ∈ F to K-fold indexed sum Y

Require: Y is the indexed sum of x0, ..., xn−1 ∈ F . (If n = 0, this implies
that all fields of Y are 0 and Y will be initialized in line 2)

1: function Add Float To Indexed(K, xn, Y)
2: Update(K, xn, Y)
3: Deposit(K, xn, Y)
4: Renorm(K, Y)
5: end function

Ensure: Y is the indexed sum of x0, ..., xn.

The following theorem proves the “Ensure” claim at the end of Algo-
rithm 5.7.

Theorem 5.4. If Y is the K-fold indexed sum of x0, ..., xn−1, then after
running Algorithm 5.7 on Y and some xn ∈ F, Y is the indexed sum of
x0, ..., xn.

Proof. As Y is the indexed sum of x0, ..., xn−1, the requirements of Update
(Algorithm 5.3) are satisfied. Therefore, after Update completes, we have
that the index of Y is the greatest integer I such that for all j, 0 ≤ j ≤ n,
|xj| < 2bI and I ≤ imax. We also have that

Yk =
n−1∑
j=0

d(xj, I + k)

and

YkP ∈

{
[1.5ε−12aI+k , 1.75ε−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) otherwise
(5.3)

(Unless Y0P was Inf, -Inf, or NaN before the update operation, in which
case Y was unchanged and is still exceptional)

Therefore, the requirements of Deposit (Algorithm 5.5) are satisfied and
after it is complete, we have that

Yk =
n∑
j=0

d(xj, I + k) (5.4)

(Unless Y0P was Inf, -Inf, or NaN before the update operation, in which case
Y0P should reflect the correct value. Since the renormalization step does not
act on exceptional indexed types, we are done in this case.)

40

Finally, since (5.3) held before the deposit operation, Theorem 5.3 holds
and after the deposit (in Section 5.6 we will use the fact that up to 2p−W−2

deposits may be performed here as long as each new xj is such that |xj| < 2bI),
the requirements of Renorm (Algorithm 5.6) hold and we have that once
again

YkP ∈

{
[1.5ε−12aI+k , 1.75ε−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) otherwise

Since the renormalization step does not affect the values of the accumulators
or the index of the indexed type, (5.4) still holds and all of the properties of
the indexed sum are satisfied.

A special usage of Algorithm 5.7 is to convert a single floating point
number to an indexed type. Converting a floating point number to an indexed
type should produce, for transparency and reproducibility, the indexed sum
of the single floating point number. The procedure is very simply summarized
by Algorithm 5.8, and is available in ReproBLAS as idxd xixconv in idxd.h

(see Section 7 for details).

Algorithm 5.8. Convert floating point x to a K-fold indexed type Y .

1: function ConvertFloatToIndexed(K, x, Y)
2: Y = 0
3: Add Float To Indexed(K, x, Y)
4: end function

Ensure: Y is the indexed sum of x.

5.6 Sum

Algorithm 5.9 is an indexed summation algorithm that allows the user to
efficiently add a vector of floating point numbers xm, ..., xm+n−1 ∈ F to the
indexed sum Y of some x0, ..., xm−1 ∈ F .

As mentioned in Section 5.4, it is not necessary to perform a renormal-
ization for every deposit, as would be done if Algorithm 5.7 were applied
iteratively on each element of xm, ..., xm+n−1. At most 2p−W−2 values can be
deposited in the indexed type before having to perform the renormalization.
Therefore we have an improved version of Algorithm 5.7 when we need to sum
a vector of floating point numbers. Algorithm 5.9 summarizes the optimized
version for the reproducible local sum. It is available as idxdBLAS xixsum

41

in idxdBLAS.h (see Section 7 for details). As Algorithm 5.9 computes an in-
dexed sum, it can be performed on the xm, ..., xm+n−1 in any order. However,
for the simplicity of presenting the algorithm, it is depicted as running lin-
early from m to m+n−1. Algorithm 5.9 uses only one indexed type to hold
the intermediate result of the recursive summation, and the vast majority of
time in the algorithm is spent in Deposit (Algorithm 5.5).

Algorithm 5.9. If Y is the K-fold indexed sum of some x0, ..., xm−1 ∈ F,
produce the K-fold indexed sum of x0, ..., xm+n−1 ∈ F. (If m = 0, this
implies that all fields of Y are 0 and Y will be initialized in line 5) This is
similar to Algorithm 6 in [4], but requires no restrictions on the size or type
(exceptional or finite) of inputs x0, ..., xm+n−1.

1: function Sum(K, [xm, ..., xm+n−1], Y)
2: j = 0
3: while j < n do
4: nb = min(n, j + 2p−W−2)
5: Update(K, max(|xm+j|, ..., |xm+nb−1|), Y)
6: while j < nb do
7: Deposit(K, xm+j, Y)
8: j = j + 1
9: end while

10: Renorm(K, Y)
11: end while
12: return Y
13: end function
Ensure:

Y is the unique indexed sum of x0, ..., xm+n−1.

If a single floating point result is desired, it may be obtained from Y using
Algorithm 5.12 described in Section 5.8.

Theorem 5.5. Assume that we have run Algorithm 5.9 on the K-fold in-
dexed sum Y of x0, ..., xm−1 ∈ F and on xm, ..., xm+n−1 ∈ F. If all require-
ments of the algorithm are satisfied, then the “Ensure” claim at the end of
the algorithm holds.

Proof. We show inductively that after each execution of line 10, Y is the
indexed sum of x0, ..., xm+j−1. Throughout the proof, assume that the value
of all variables are specific to the given stage of execution.

42

As a base case, on the first iteration of the loop on line 3, j is 0 and Y is
given to be the indexed sum of x0, ..., xm−1.

In subsequent iterations of the loop, we assume that at line 5, Y is the
indexed sum of x0, ..., xm+j−1.

In this case, the proof of Theorem 5.4 applies to lines 5 to 10 (keeping
in mind that at most 2p−W−2 deposits are performed and by the “Ensure”
claim of Algorithm 5.3, each finite xm+j deposited satisfies |xm+j| < 2bI).
Therefore, after line 10, Y is the indexed sum of x0, ..., xm+j−1

Note that after computing max() in line 5, we know whether or not the
indexed type will have index 0, and can call either Deposit or DepositRe-
stricted accordingly (the latter being a faster routine). We also know from
the max whether or not an Inf, -Inf, or NaN is present, and can skip the
Deposit and Renorm procedures and compute the exceptional result di-
rectly. Also note that the constant 2p−W−2 in line 4 is at its maximum value,
and smaller values may be used to fit data into a cache. In ReproBLAS, this
constant is autotuned (as discussed in Section 7).

As the indexed sum is unique and independent of the ordering of its
summands (Theorem 4.4), Algorithm 5.9 is reproducible for any permutation
of its inputs.

At this point, an operation count should be considered. Since Algo-
rithm 5.9 only performs the update and renormalization once for every 2p−W−2

times the deposit operation is performed (that is 253−40−2 = 211 times for
double precision and 224−13−2 = 29 times for single precision in the current
implementation of ReproBLAS), the cost of Algorithm 5.9 is mostly due to
the deposit operation. Therefore, in the absence of overflow, Algorithm 5.9
costs ≈ (3K − 1)n FLOPs counting the maximum absolute value operation
as 1 FLOP, which is ≈ 8n FLOPs for the default value of K (K = 3) used by
ReproBLAS. In the rare case of index 0 for the first bin, the cost is slightly
higher since the first bin needs to be scaled down to avoid overflow, which
increases the total cost of Algorithm 5.9 to ≈ (3K + 2)n FLOPs.

We make the observation that it is possible to implement a reproducible
absolute sum by applying Algorithm 5.9 to the the absolute values of entries
of an input vector.

It is also possible to compute a reproducible dot product of vectors ~x and
~y. To modify Algorithm 5.9 for this purpose, we need only to change line 7 to
deposit the product of the jth entry of ~x and the jth entry of ~y and line 5 to

43

calculate the maximum absolute value of these products. More examples of
how this routine can be used for reproducible operations are given in Section
6.

A few implementation details should be covered regarding our implemen-
tation of the complex dot product. When multiplying the complex numbers
(a + bi) and (c + di), we assume that the product is obtained by evaluating
(ac−bd)+(ad+bc)i straightforwardly. This means that (Inf+Infi)(Inf+0i)
produces NaN+ NaNi. This is the Fortran convention for complex multiplica-
tion, not the C convention. In C, complex multiplication is implemented with
a function call to catch the exceptional cases and give more sensible results.
In the example above, we get Inf+Infi. We refer the curious reader to part
G.5.1 of the C99 standard [7] where this issue is discussed. We choose the
Fortran definition of multiplication because the Reference BLAS is written
in Fortran.

5.7 Add Indexed to Indexed

An operation to produce the sum of two indexed types is necessary to perform
a reduction. For completeness we include the algorithm here, although apart
from the simplified renormalization algorithm, it is equivalent to Algorithm
7 in [4]. This method is available in ReproBLAS as idxd xixiadd in idxd.h

(see Section 7 for details).

44

Algorithm 5.10. Given a K-fold indexed type Y of index I and a K-fold
indexed type Z of index J , add Z to Y .

Require:
Y is the indexed sum of some x0, ..., xn−1 ∈ F .
Z is the indexed sum of some xn, ..., xn+m−1 ∈ F .

1: function AddIndexedToIndexed(K, Y, Z)
2: if Y0P = 0 then
3: Y = Z
4: return
5: end if
6: if Z0P = 0 then
7: return
8: end if
9: I = IIndex(Y)

10: J = IIndex(Z)
11: if J < I then
12: R = Z
13: AddIndexedToIndexed(K, R, Y)
14: Y = R
15: return
16: end if
17: for k = J − I to K − 1 do
18: if k = J = 0 then
19: Y0P = Y0P + (Z0P − 1.5 · 2emax)
20: else
21: YkP = YkP + (Zk+I−JP − 1.5ε−12aI+k)
22: end if
23: YkC = YkC + Zk+I−JC
24: end for
25: Renorm(K, Y)
26: end function
Ensure:

Y is set to the indexed sum of x0, ..., xn+m−1.
YkP ∈ [1.5ε−12amin(I,J)+k , 1.75ε−12amin(I,J)+k)

Theorem 5.6. If the requirements of Algorithm 5.10 are satisfied, then the
“Ensure” claim holds.

Proof. If Y or Z are 0, then the algorithm correctly sets Y to the value of Z

45

or Y (respectively).
If both Y and Z are exceptional, then Algorithm 5.1 will return I = J = 0.

The first iteration of the loop of line 17 will then set Y0P to Y0P +Z0P + 1.5 ·
2emax , which (since 1.5 · 2emax is finite) is equal to Y0P + Z0P , as desired.

If only one of Y or Z is exceptional, then Algorithm 5.1 will return I = 0
or J = 0 (respectively). The first iteration of the loop of line 17 will set
Y0P to the sum of the exceptional Y0P or Z0P (respectively) and some finite
values. This sum is equal to the exceptional value. Therefore, if only one of
Y or Z is exceptional, Y is set to Y or Z (respectively), as desired.

We now focus on the case where both Y and Z are finite.
We must first prove that the addition in line 21 is exact. As it is al-

most identical, we leave out the case where I + k = 0 and focus on the
case where I + k > 0. Since J is the index of Z, the index of Zk+I−JP is
J + (k+ I − J) = I + k. It means that Zk+I−JP ∈ [1.5ε−12aI+k , 1.75ε−12aI+k)
and Zk+I−JP ∈ 2aI+kZ. Therefore Zk+I−JP − 1.5ε−12aI+k ∈ 2aI+kZ and
Zk+I−JP − 1.5ε−1 ∈ [0, 0.25ε−12aI+k). This means Zk+I−JP − 1.5ε−1 is rep-
resentable and is exactly computed. Moreover, we have YkP ∈ 2aI+kZ and
YkP ∈ [1.5ε−12aI+k , 1.75ε−12aI+k). Therefore YkP + (Zk+I−JP − 1.5ε−12aI+k) ∈
2aI+kZ, and YkP + (Zk+I−JP − 1.5ε−12aI+k) ∈ [1.5ε−12aI+k , 2ε−12aI+k). This
means YkP+(Zk+I−JP−1.5ε−12aI+k) is representable and is exactly computed,
and that the requirements of Renorm (Algorithm 5.6) apply.

We then have that after line 25,

YkP ∈

{
[1.5ε−12aI+k , 1.75ε−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) if I + k = 0

We assume that n + m ≤ (ε−1 − 1)2p−W−2 and therefore YkC + Zk+I−JC

is exactly computed. We then have that Yk =
m+n−1∑
j=0

d(xj, I + k).

It is given that I is the greatest integer such that |xj| < 2bI for all j, 0 ≤
j ≤ n − 1 and that J is the greatest integer such that |xj| < 2bI for all
j, n ≤ j ≤ n + m − 1. It is also given that I, J ≤ imax Since I < J , I is
the greatest integer such that |xj| < 2bI for all j, 0 ≤ j ≤ n + m − 1 and
I ≤ imax.

46

5.8 Convert Indexed to Float

After computing a reproducible indexed sum, we need to reproducibly and
accurately convert the result to a single floating point number. There are
two sources of error in the final floating point sum produced by ReproBLAS.
The first is from the creation of the indexed sum (analyzed in [4]). The
second is from the conversion from indexed sum to floating point number
(evaluation of (4.4)). Because [4] guarantees that all fields in the indexed
type are reproducible, as long as the fields are operated on deterministically
by the final conversion back to original floating-point format, any method to
evaluate (4.4) accurately and without unnecessary overflow or underflow is
suitable.

To provide motivation for our intricate conversion routines, we forward-
reference several results from Section 5.9. Assume that Y is the indexed sum
of some x0, ..., xn−1 ∈ F (for now, assume no exceptional values). If we simply
evaluate (4.4) in an arbitrary order and apply the standard summation error
bound given by [8], the error in the final answer Y (the computed floating
point approximation of Y) is only bounded by (here we state (5.32), which
will be shown in Section 5.9)

|Y −
n−1∑
j=0

xj| ≤ n
(
2W (1−K) + (2K − 1)ε

)
max |xj| (5.5)

However, according to Theorem 5.7 which will be proven in Section 5.9, if
we sum the primary and carry fields in order of decreasing “unnormalized”
exponent (as is done in Algorithms 5.11 and 5.12) the error is bounded by
(here we state (5.29), which will be shown in Section 5.9)

|Y −
n−1∑
j=0

xj| ≤ n2W (1−K) max |xj|+ 7ε
∣∣n−1∑
j=0

xj
∣∣ (5.6)

which as we will see can be orders of magnitude smaller than the bound in
(5.5).

When adding the primary and carry fields it is not necessary to exam-
ine the values in the fields or sort them explicitly. Their “unnormalized”
exponent does not depend on their values, and their “unnormalized” ex-
ponents have a predetermined order. There is therefore little difference in
computational cost between the two methods. They require the same number

47

of additions (namely 2K), but summing in order requires more conditional
branches. However, showing that the fields have a certain ordering and that
the stronger bound (5.6) applies requires extensive analysis.

To further motivate the new conversion algorithm, we compare both the
above error bounds for indexed summation to an approximated standard
error bound obtained through standard (recursive) summation of x0, ..., xn−1
in some arbitrary order (given by [8])

|Sn −
n−1∑
j=0

xj| ≤ nε

n−1∑
j=0

|xj| ≤ n2εmax |xj| (5.7)

Figure 5.1 compares these three approximate error bounds for K = 3,

W = 40 and double precision p = 53. Note that the term 7ε|
n−1∑
j=0

xj| is only 7

times larger than the smallest possible error from rounding the exact sum of
the xj to the nearest floating point value. To compare the other terms, bound
(5.6) grows like 2−80nmax |xj|, whereas bound (5.5) grows like 5εnmax |xj| =
5 ·2−53nmax |xj|, which is approximately 8 orders of magnitude larger. Note
that in this comparison we bound

∑n−1
j=0 |xj| by nmax |xj|, which is the case

where the input data are almost equal in magnitude, so the error bound of
the standard summation (5.7) can grow like n2 instead of n which is much
worse than both bounds (5.6) and (5.5) when the number of input values n
is great. In cases where

∑n−1
j=0 |xj| ≈ max |xj|, for example when there are

just a few large values and the others are small, then bounds (5.7) and (5.5)
are almost of the same order of magnitude, which is still worse than bound
(5.6) by 8 orders of magnitude when the true sum is tiny.

48

100 102 104 106 108 1010 1012 1014 1016 1018 1020 1022

Condition Number

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

R
e
la
ti
v
e
 E
rr
o
r
B
o
u
n
d

Standard Sum n=1000
Standard Sum n=100
Indexed Sum (Naive) n=100,1000
Indexed Sum (Careful) n=100,1000
Relative Error=1

Figure 5.1: Relative error bounds in calculating |
n−1∑
j=0

xj| for different condi-

tion numbers (which we define as
n·max |xj |)

|
n−1∑
j=0

xj |
) of the sum. It is assumed that

we sum using double, K = 3, and W = 40. “Indexed Summation (Careful)”
corresponds to (5.6). “Indexed Summation (Naive)” corresponds to (5.5).
“Standard Summation” corresponds to (5.7) and due to a dependence on n
multiple error bounds are shown.

Next we show how to interpret the fields as unnormalized floating point
numbers, and sort their exponents independently of the actual values of the
fields. Note that this interpretation is to support reasoning about the conver-
sion algorithm presented below, and does not affect the representation format
of the data itself since IEEE floating-point formats do not permit unnormal-
ized numbers beside exceptional values and denormalized numbers. Consider

49

a K-fold indexed type Y of index I. Each value YkP in a primary field YkP
is represented by an offset from 1.5ε−12aI+k and YkP ∈ (ε−12aI+k , 2ε−12aI+k),
YkP can be expressed exactly using an unnormalized floating point number
Y ′P k with an exponent of aI+k + p − 1. As each carry field YkC is a count
of renormalization adjustments later scaled by 0.25ε−12aI+k , YkC can be ex-
pressed exactly using an unnormalized floating point number Y ′kC with an
exponent of aI+k + 2p− 3.

First, we have exp(Y ′kP) > exp(Y ′k+1P
) and exp(Y ′kC) > exp(Y ′k+1C

) be-
cause aI+k > aI+k+1.

Next, note that
exp(Y ′kC) = aI+k + 2p− 3

and
exp(Y ′k−1P) = aI+k−1 + p− 1 = aI+k +W + p− 1

Therefore exp(Y ′kC) > exp(Y ′k−1P) because W < p− 2.
Finally, note that

exp(Y ′k−2P) = aI+k−1 + p− 1 = aI+k + 2W + p− 1

Therefore exp(Y ′kC) < exp(Y ′k−2P) because 2W > p+ 1.
Combining the above inequalities, we see that the exponents of all the

Y ′kP and Y ′kC are distinct and can be sorted as follows:

exp(Y ′0C) > exp(Y ′1C) > exp(Y ′0P) > exp(Y ′2C) > exp(Y ′1P) > ...

... > exp(Y ′kC) > exp(Y ′k−1P) > exp(Y ′k+1C
) > exp(Y ′kP) > ...

... > exp(Y ′K−2C) > exp(Y ′K−3P) > exp(Y ′K−1C) > exp(Y ′K−2P) > exp(Y ′K−1P)

These unnormalized floating point numbers may, for convenience of nota-
tion, be referred to in decreasing order of unnormalized exponent as γ′0, ..., γ

′
2K−1.

We have just shown that

exp(γ′0) > ... > exp(γ′2K−1) (5.8)

where γj denotes the normalized representation of the γ′j. It should be noted
that γj = γ′j as real numbers and that exp(γj) ≤ exp(γ′j).

It should be noted that if γj is a primary field, then either γj+1 or γj+2

is a primary field (with the exception of γ2K−1). If γj is a carry field, then
either γj+1 or γj+2 is a carry field (with the exception of γ2K−3, but in this

50

case, suppose that p ≥ 5 which is true for both IEEE double and single
precision, we have exp(γ′2K−3) = aI+K−1 + 2p− 3 ≥ aI+K−1 +p+ dp+1

2
e− 1 =

exp(γ′2K−1) + dp+1
2
e). Therefore, as 2W > p+ 1, for all j ∈ {0, ..., 2K − 3}

exp(γ′j) ≥ exp(γ′j+2) +W ≥ exp(γ′j+2) +

⌈
p+ 1

2

⌉
(5.9)

It should be noted that the Y ′kP and the Y ′kC can be expressed exactly
using floating point types of the same precision as YkP and YkC (except in
the case of overflow, in which a scaled version may be obtained), and such
exact floating point representations can be obtained using (4.1) and (4.2).

Now that we know how to obtain sorted, possibly scaled, fields in order
of decreasing unnormalized exponent, we explain how to sum them while
avoiding overflow. We will refer to the floating point type that we use to
hold the sum during computation as the intermediate floating point type.
Such a type must have at least as much precision and exponent range as the
original floating point type.

Notice that |γ′0| = |Y ′0C | < 2 ·2exp(Y ′0C) = 2 ·2emax+1−W+2p−3 and exp(γ′0) >
... > exp(γ′2K−1). Therefore |γ′j| ≤ 2emax−W+2p−1−j. The absolute value
represented by an indexed type can therefore be bounded by

2K−1∑
j=0

|γj| <
2K−1∑
j=0

2emax−W+2p−1−j <
∞∑
j=0

2emax−W+2p−1−j = 2emax−W+2p (5.10)

If the intermediate floating point type has a maximum exponent greater
than or equal to emax −W + 2p − 1 > emax, then no special cases to guard
against overflow are needed.

Algorithm 5.11 represents a conversion routine in such a case.

51

Algorithm 5.11. Convert K-fold indexed type Y of index I to floating point
x. Here, z is a floating point type with at least the original precision and
maximum exponent Emax greater than emax −W + 2p

1: function ConvertIndexedToFloat(K, x, Y)
2: if Y0P is 0, NaN or ±Inf then
3: x = Y0P

4: return
5: end if
6: z = Y0C

7: for k = 1 to K − 1 do
8: z = z + YkC
9: z = z + Yk−1P

10: end for
11: z = z + YK−1P
12: x = z
13: end function

As explained in Section 4, a value of 0 in the primary field of the first bin
means that no numbers have been added to Y . In addition, as explained in
Section 5.3, exceptional values (NaN, ±Inf) are added directly to the primary
field of the first bin Y0P . Therefore, exceptional values are reproducibly
propagated through Y0P , which will be returned as the computed result after
the final conversion. More precisely, a result of NaN means that there is at
least one NaN in the input or there are both Inf and -Inf in the input. A
result of ±Inf means that there is one or more values of ±Inf of the same
sign in the input, the rest are of finite value.

Note that an overflow situation in Algorithm 5.11 is reproducible as the
fields in Y are reproducible. z is deterministically computed from the fields
of Y , and the condition that z overflows when being converted back to the
original floating point type in line 12 is reproducible.

If an intermediate floating point type with exponent greater than or equal
to emax −W + 2p− 1 is not available and the lowest bin has index 0, a rare
case, the γj must be scaled down by some factor during addition and the sum
scaled back up when subsequent additions can no longer effect an overflow
situation.

If the scaled sum is to overflow, then its unscaled value will be greater
than or equal to 2 · 2emax and it will overflow regardless of the values of any
YkP or YkC with |YkP | < 0.5 ·2−ρ2emax or |YkC | < 0.5 ·2−ρ2emax (where ρ is the

52

intermediate floating point type’s precision). If the floating point sum has
exponent greater than or equal to emax these numbers are not large enough
to have any effect when added to the sum. If the sum has exponent less than
emax, then additions of these numbers cannot cause the exponent of the sum
to exceed emax for similar reasons.

As the maximum absolute value of the true sum is strictly smaller than
2emax−W+2p, a sufficient scaling factor is 22p−W−2, meaning that the maximum
absolute value of the true scaled sum is strictly smaller than 2emax (and since
it will be shown later that the computed sum is accurate to within a small
factor of the true sum, the computed sum will stay strictly smaller than
2 · 2emax and will not overflow.)

When exp(γ′j) < emax − ρ − 1, the sum may be scaled back up and the
remaining numbers added without scaling. Notice that no overflow can occur
during addition in this algorithm. If an overflow is to occur, it will happen
only when scaling back up. As the fields in the indexed type are reproducible,
such an overflow condition is reproducible.

If the sum is not going to overflow, then the smaller y′j must be added as
unscaled numbers to avoid underflow.

Algorithm 5.12 represents a conversion routine in the case where a floating
point type without a wider exponent is available.

53

Algorithm 5.12. Convert a K-fold indexed type Y of index I to floating
point x. Here, z is a floating point number with precision ρ ≥ p

1: function ConvertIndexedToFloatNative(K, x, Y)
2: if Y0C is NaN or ±Inf then
3: x = Y0C

4: return
5: end if
6: k = 1
7: while k ≤ 2K and exp(γk) ≥ emax − ρ− 1 do
8: z = z + (γk/2

2p−W−2)
9: k = k + 1

10: end while
11: z = z · 22p−W−2

12: while k ≤ 2K do
13: z = z + γk
14: k = k + 1
15: end while
16: x = z
17: end function

If an indexed type is composed of float, then double provides suffi-
cient precision and exponent to use as an intermediate type and Algorithm
5.11 may be used to convert to a floating point number. However, if an in-
dexed type is composed of double, many machines may not have any higher
precision available. We therefore perform the sum using double as an in-
termediate type. As this does not extend the exponent range we must use
Algorithm 5.12 for the conversion.

In ReproBLAS, the appropriate conversion for the given data type is
available as idxd xxiconv in idxd.h (see Section 7 for details). This con-
version routine sums float with double (using Algorithm 5.11) and sums
double with double (using Algorithm 5.12).

5.9 Error Bound

We first state and prove Theorem 5.7, as it is critical in the error analysis
of Algorithms 5.11 and 5.12. It should be noted that Theorem 5.7 is similar
to that of Theorem 1 from [9], but requires less intermediate precision by
exploiting additional structure of the input data.

54

As discussed in Section 5.8, to convert an indexed type to a floating point
number, one must evaluate equation 4.4 accurately and without unnecessary
overflow. This amounts to summing the fields of the indexed type. It is pos-
sible that future implementers may make modifications to the indexed type
(adding multiple carry fields, changing the binning scheme, etc.) such that
the summation of its fields cannot be reordered to satisfy the assumptions of
Theorem 5.7. In such an event, [9] provides more general ways to sum the
fields while still maintaining accuracy.

Theorem 5.7. We are given n floating point numbers f0, . . . , fn−1 for which
there exist (possibly unnormalized) floating point numbers f ′0, . . . , f

′
n−1 of the

same precision such that

1. fj = f ′j for all j ∈ {0, ..., n− 1}

2. exp(f ′0) > ... > exp(f ′n−1)

3. exp(f ′j) ≥ exp(f ′j+2) + dp+1
2
e for all j ∈ {0, ..., n− 3}

Let S0 = S0 = f0, Sj = Sj−1 + fj, and Sj = fl(Sj−1 + fj) (assuming rounding

to nearest) so that Sn−1 =
n−1∑
j=0

fj. Then in the absence of overflow and

underflow we have∣∣Sn−1 − Sn−1∣∣ < 7ε

1− 6
√
ε
|Sn−1| ≈ 7ε|Sn−1|

Proof. Throughout the proof, let fj = 0 if j > n− 1 so that S∞ = Sn−1 and
S∞ = Sn−1.

Let m be the location of the first error such that Sm−1 = Sm−1 and
Sm 6= Sm.

If no such m exists then the computed sum is exact (Sn−1 = Sn−1) and
we are done.

If such an m exists, then because exp(f ′0) > ... > exp(f ′m), f0, ..., fm ∈
ulp(f ′m)Z. Thus, Sm ∈ ulp(f ′m)Z.

We now show |Sm| > 2 · 2exp(f ′m). Assume for contradiction that |Sm| ≤
2·2exp(f ′m). Because Sm ∈ ulp(f ′m)Z, this would imply that Sm is representable
as a floating point number, a contradiction as Sm 6= Sm. Therefore, we have

|Sm| > 2 · 2exp(f ′m) (5.11)

55

Because exp(f ′m) > exp(f ′m+1),

|fm+1| < 2 · 2exp(f ′m−1) = 2exp(f ′m) (5.12)

Because exp(f ′m) ≥ exp(f ′m+2) + dp+1
2
e and exp(f ′0) > ... > exp(f ′n−1),

∣∣ n−1∑
j=m+2

fj
∣∣ ≤ n−1∑

j=m+2

|fj| <
n−1∑

j=m+2

2 · 2exp(f ′j) ≤
n−1∑

j=m+2

2 · 2exp(f ′m)−d p+1
2 e−(m+2−j)

<

∞∑
j=0

(
2
√
ε
)

2exp(f ′m)−j =
(
4
√
ε
)

2exp(f ′m) (5.13)

We can combine (5.12) and (5.13) to obtain

∣∣ n−1∑
j=m+1

fj
∣∣ ≤ n−1∑

j=m+1

|fj| < 2exp f ′m+
(
4
√
ε
)

2exp(f ′m) =
(
1 + 4

√
ε
)

2exp(f ′m) (5.14)

By (5.11) and (5.14),

|Sn−1| =
∣∣n−1∑
j=0

fj
∣∣ ≥ ∣∣ m∑

j=0

fj
∣∣− ∣∣ n−1∑

j=m+1

fj
∣∣ = |Sm| −

∣∣ n−1∑
j=m+1

fj
∣∣

≥ 2 · 2exp(f ′m) −
(
1 + 4

√
ε
)

2exp(f ′m) =
(
1− 4

√
ε
)

2exp(f ′m) (5.15)

By (5.15) and (5.13),

∣∣ n−1∑
j=m+2

fj
∣∣ < (4√ε) 2exp(f ′m) ≤ 4

√
ε

1− 4
√
ε

∣∣n−1∑
j=0

fj
∣∣ (5.16)

By (5.15) and (5.14),

∣∣ n−1∑
j=m+1

fj
∣∣ ≤ n−1∑

j=m+1

|fj| ≤
(
1 + 4

√
ε
)

2exp(f ′m) ≤ 1 + 4
√
ε

1− 4
√
ε

∣∣n−1∑
j=0

fj
∣∣ (5.17)

And by (5.15) and (5.17),

|Sm| ≤
∣∣n−1∑
j=0

fj
∣∣+
∣∣ n−1∑
j=m+1

fj
∣∣ ≤ (1 +

1 + 4
√
ε

1− 4
√
ε

) ∣∣n−1∑
j=0

fj
∣∣ =

2

1− 4
√
ε

∣∣n−1∑
j=0

fj
∣∣

(5.18)

56

By definition, Sm+4 is the computed sum of Sm, fm+1, . . . , fm+4 using the
standard recursive summation technique. According to [8, Equation 1.2, 2.4]∣∣Sm +

m+4∑
j=m+1

fj − Sm+4

∣∣ ≤ 4ε

1− 4ε

∣∣Sm + fm+1

∣∣+
3ε

1− 3ε

m+4∑
j=m+2

|fj|

≤ 4ε

1− 4ε

(∣∣Sm − Sm∣∣+ |Sm + fm+1|
)

+
3ε

1− 3ε

n−1∑
j=m+2

|fj|.

Since Sn−1 = Sm + fm+1 +
∑n−1

j=m+2 fj, we have

|Sm + fm+1| =
∣∣Sn−1 − n−1∑

j=m+2

fj
∣∣ ≤ |Sn−1|+ n−1∑

j=m+2

|fj|

Therefore∣∣Sm+
m+4∑
j=m+1

fj−Sm+4

∣∣ ≤ 4ε

1− 4ε

∣∣Sm − Sm∣∣+ 4ε

1− 4ε
|Sn−1|+

7ε

1− 4ε

n−1∑
j=m+2

|fj|.

Using the triangle inequality we have∣∣Sm+4 − Sm+4

∣∣ =
∣∣Sm +

m+4∑
j=m+1

fj − Sm+4

∣∣ ≤ ∣∣Sm − Sm∣∣+
∣∣Sm +

m+4∑
j=m+1

fj − Sm+4

∣∣
≤
(

1 +
4ε

1− 4ε

) ∣∣Sm − Sm∣∣+
4ε

1− 4ε
|Sn−1|+

7ε

1− 4ε

n−1∑
j=m+2

|fj|

≤ 1

1− 4ε
ε|Sm|+

4ε

1− 4ε
|Sn−1|+

7ε

1− 4ε

n−1∑
j=m+2

|fj|

≤ ε

1− 4ε

(
|Sm|+ 4|Sn−1|+ 7

n−1∑
j=m+2

|fj|

)
.

and by (5.18) and (5.16),∣∣Sm+4 − Sm+4

∣∣ ≤ ε

1− 4ε

(
2

1− 4
√
ε
|Sn−1|+ 4|Sn−1|+ 7

4
√
ε

1− 4
√
ε
|Sn−1|

)
≤ ε

1− 4ε

(
6 + 12

√
ε

1− 4
√
ε
|Sn−1|

)
=

6ε

(1− 2
√
ε)(1− 4

√
ε)
|Sn−1|

<
6ε

1− 6
√
ε
|Sn−1| (5.19)

57

Notice that

exp(f ′m) ≥ exp(f ′m+2)+

⌈
p+ 1

2

⌉
≥ exp(f ′m+4)+2

⌈
p+ 1

2

⌉
> exp(f ′m+5)+2

⌈
p+ 1

2

⌉
Therefore,

exp(f ′m) ≥ exp(f ′m+5) + p+ 2 (5.20)

Because exp(f ′0) > ... > exp(f ′n−1), (5.20) yields

∣∣ n−1∑
j=m+5

fj
∣∣ ≤ n−1∑

j=m+5

|fj| <
n−1∑

j=m+5

2·2exp(f ′m)−p−2−(j−(m+5)) <

∞∑
j=0

2exp(f ′m)−p−1−j = ε2exp(f ′m)

(5.21)
Using (5.15) and (5.21),

∣∣ n−1∑
j=m+5

fj
∣∣ ≤ n−1∑

j=m+5

|fj| <
ε

1− 4
√
ε
|Sn−1| (5.22)

By (5.19) and (5.22)∣∣Sn−1 − Sm+4

∣∣ ≤ |Sn−1 − Sm+4|+
∣∣Sm+4 − Sm+4

∣∣
≤
∣∣ n−1∑
j=m+5

fj
∣∣+

6ε

1− 6
√
ε
|Sn−1|

≤ ε

1− 4
√
ε
|Sn−1|+

6ε

1− 6
√
ε
|Sn−1|

<
7ε

1− 6
√
ε
|Sn−1|. (5.23)

When combined with (5.15) this gives

∣∣Sm+4

∣∣ ≥ (1− 7ε

1− 6
√
ε

)
|Sn−1|

>

(
1− 7ε

1− 6
√
ε

)(
1− 4

√
ε
)

2exp(f ′m)

>

(
1− 4

√
ε− 7ε (1− 4

√
ε)

1− 6
√
ε

)
2exp(f ′m)

58

which, assuming ε� 1, can be simplified to∣∣Sm+4

∣∣ > 2exp(f ′m)−1 (5.24)

Using (5.20), for all j ≥ m+ 5 we have

|fj| < 2 · 2exp(f ′j) ≤ 2 · 2exp(f ′m)−p−2 = ε · 2exp(f ′m)−1 (5.25)

And by (5.25) and (5.24), all additions after fm+4 have no effect (since
we are rounding to nearest) and we have Sn−1 = Sm+4. This, together with
(5.23), implies ∣∣Sn−1 − Sn−1∣∣ < 7ε

1− 6
√
ε
|Sn−1|

The proof is complete.

[4] discusses the absolute error between the indexed sum and the true
sum, but does not give a method to compute a floating point approximation
of the indexed sum. No error bound on the final floating point answer was
given. Theorem 5.8 extends the error bound of [4] all the way to the final
return value of the algorithm.

Theorem 5.8. Consider the K-fold indexed sum Y of finite floating point

numbers x0, . . . , xn−1. We denote the true sum
n−1∑
j=0

xj by T , the true value

of the indexed sum as obtained using (4.4) by Y , and the floating point
approximation of Y obtained using an appropriate algorithm from Section
5.8 (Algorithm 5.11 or 5.12) by Y . Assuming the final answer does not
overflow,

∣∣T − Y∣∣ < (1 +
7ε

1− 6
√
ε

)(
n·max

(
2W (1−K) max |xj|, 2emin−1

))
+

7ε

1− 6
√
ε
|T |

(5.26)

Proof. The case of all zero input data is trivial, therefore we assume that
max |xj| is nonzero. We also assume here no overflow or underflow. Let I be
the index of Y , which is also the index of max |xj|, so that 2bI > max |xj| ≥
2aI . Therefore for all i < I the slice of any xj in bin i is d(xj, i) = 0. The

59

index of the smallest bin of Y is I + K − 1. According to Theorem 3.3, we
have

|xj −
I+K−1∑
i=I

d(xj, i)| = |xj −
I+K−1∑
i=0

d(xj, i)| ≤ 2aI+K−1 = 2aI−(K−1)W

≤ 2W (1−K) max |xj|.

Since the summation in each bin Yi is exact, we have

|T − Y| = |
n−1∑
j=0

xj −
I+K−1∑
i=I

n−1∑
j=0

d(xj, i)| = |
n−1∑
j=0

(xj −
I+K−1∑
i=I

d(xj, i))|

≤ n2W (1−K) max |xj|. (5.27)

However, this bound does not consider underflow. By (3.10), a small
modification yields a bound that considers underflow

|T − Y| < n ·max
(
2W (1−K) max |xj|, 2emin−1

)
(5.28)

By (5.8) and (5.9), Theorem 5.7 applies to yield∣∣Y − Y∣∣ < 7ε

1− 6
√
ε
|Y|

By the triangle inequality

|Y| ≤ |T |+ |T − Y| < n ·max
(
2W (1−K) max |xj|, 2emin−1

)
+ |T |

The above results can be used to obtain (5.26), the absolute error of the
floating point approximation of an indexed sum |T − Y|.∣∣T − Y∣∣ ≤ |T − Y|+ ∣∣Y − Y∣∣

< n ·max
(
2W (1−K) max |xj|, 2emin−1

)
+

7ε

1− 6
√
ε
|Y|

< n ·max
(
2W (1−K) max |xj|, 2emin−1

)
+

7ε

1− 6
√
ε

(
n ·max

(
2W (1−K)−1 max |xj|, 2emin−1

)
+ |T |

)
<

(
1 +

7ε

1− 6
√
ε

)(
n ·max

(
2W (1−K) max |xj|, 2emin−1

))
+

7ε

1− 6
√
ε
|T |

60

Equation (5.26) can be approximated as (5.29):∣∣T − Y∣∣ < (1 +
7ε

1− 6
√
ε

)(
n ·max

(
2W (1−K) max |xj|, 2emin−1

))
+

7ε

1− 6
√
ε
|T |

≈ n2W (1−K) max |xj|+ 7ε|T | (5.29)

A perhaps more useful mathematical construction is the error expressed
relative to the result Y , and not the theoretical sum T . Again by the triangle
inequality,

|Y| ≤
∣∣Y∣∣+

∣∣Y − Y∣∣
Applying the bound on |Y − Y| yields

|Y| <
∣∣Y∣∣+

7ε

1− 6
√
ε
|Y|

After simplification,

|Y| <

(
1

1− 7ε
1−6
√
ε

)∣∣Y∣∣ =
1− 6

√
ε

1− 6
√
ε− 7ε

∣∣Y∣∣ .
The above results can be used to obtain (5.30), the absolute error of the

floating point approximation of an indexed sum |T − Y|.∣∣T − Y∣∣ ≤ |T − Y|+ ∣∣Y − Y∣∣
< n ·max

(
2W (1−K) max |xj|, 2emin−1

)
+

7ε

1− 6
√
ε
|Y|

< n ·max
(
2W (1−K) max |xj|, 2emin−1

)
+

7ε

1− 6
√
ε

(
1− 6

√
ε

1− 6
√
ε− 7ε

∣∣Y∣∣)
= n ·max

(
2W (1−K) max |xj|, 2emin−1

)
+

7ε

1− 6
√
ε− 7ε

∣∣Y∣∣ (5.30)

(5.30) can be evaluated in ReproBLAS with the idxd xibound function in
idxd.h (see Section 7 for details).

Equation (5.30) can be approximated as (5.31), which is nearly equal to
bound (5.29):

|T − Y| < n ·max
(
2W (1−K) max |xj|, 2emin−1

)
+

7ε

1− 6
√
ε− 7ε

∣∣Y∣∣
≈ n2W (1−K) max |xj|+ 7ε

∣∣Y∣∣ (5.31)

61

We can compare (5.29) to the error bound obtained if the accumulator
fields were summed without extra precision. In this case, only the standard
summation bound from [8] would apply and the absolute error would be
bounded by

n ·max
(
2W (1−K) max |xj|, 2emin−1

)
+

(
(2K − 1)ε

1− (2K − 1)ε

) 2K−1∑
0

|γj|

which is approximately bounded by

n ·max |xj|
(
2W (1−K) + (2K − 1)ε

)
(5.32)

This is not as tight a bound as (5.29), and grows linearly as the user
increases K in an attempt to increase accuracy. As depicted in Figure 5.1,
bound (5.29) can be better by over 8 orders of magnitude in default config-
uration for double precision, where K = 3 and W = 40.

5.10 Restrictions

Here we summarize the restrictions on indexed summation presented thus
far. All macros are defined in header files discussed in Section 7.

As discussed previously, for a K-fold indexed type the minimum K ac-
cepted by ReproBLAS is 2. The maximum useful K is Kmax = b(emax −
emin + p − 1)/W c, as this covers all of the bins and computes the exact
sum (to within a relative error of 7ε, subject to overflow and underflow as
discussed in Section 5.9).

As discussed in [4], W < p−2. As discussed in Section 4.1.1, 2W > p+1.
By (5.26), we see that increasing W and K will increase the accuracy of

reproducible summation. However, increases to K increase the number of
flops necessary to compute an indexed sum and increases to W decrease the
number of deposits that can be performed between renormalizations (dis-
cussed in Section 5.4). We have chosen default values for W and K that
give good performance while maintaining better accuracy than standard re-
cursive summation. ReproBLAS uses the values W = 40 for indexed double

and W = 13 for indexed float. W is configurable as the XIWIDTH macro in
config.h.

62

As absolute value of individual quantities added to YkP are not in ex-
cess of 2bI+k , a maximum of 0.25ε−12−W elements may be deposited into YkP
between renormalizations, as discussed in Section 5.4. For indexed double

this number is 211, whereas for indexed float this number is 29. This num-
ber is referred to as the endurance of an indexed type and is supplied in
ReproBLAS using the XIENDURANCE macro in idxd.h.

By (5.2), an indexed type is capable of representing the sum of at least
0.25ε−12−W ε−1 = 22p−W−2 floating point numbers. For indexed double this
number is 264, whereas for indexed float this number is 233. This number is
referred to as the capacity of the indexed type and supplied in ReproBLAS
using the XICAPACITY macro in idxd.h.

The indexed types provided by ReproBLAS will, when used correctly,
avoid intermediate overflow assuming the restrictions in the previous para-
graph.

As discussed in Section 4.1.2, we assume gradual underflow and ReproB-
LAS will round the sum at best to the nearest 2emin−1. However, Sections
4.1.2 and 4.1.3 discuss ways that reproducible summation could be imple-
mented and improved in the presence of both gradual and abrupt underflow.

Table 3: ReproBLAS parameter limits

Data Type double float

W 40 13
Kmin 2 2
Kmax 52 21
Endurance 211 29

Capacity 264 233

6 Composite Operations

The ultimate goal of the ReproBLAS library is to support reproducible linear
algebra functions on many widely-used architectures.

We must account for any combination of several sources of nonrepro-
ducibility. These sources include arbitrary data permutation or layout, dif-
fering numbers of processors, and arbitrary reduction tree shape. The meth-
ods we will describe can be used to account for any or all of these sources

63

of nonreproducibility. However, if there is only one potential source of non-
reproducibility then it may be more efficient to use a method that deals
specifically with that source. For example, if there is an arbitrary reduction
tree shape (due to the underlying MPI implementation) but not arbitrary
data layout (because this is fixed by the application) then it is probably
cheaper to just to use a method that deals with arbitrary reduction trees
shapes.

Reproducibility is a concern for several parallel architectures. Apart from
the typical sequential environment, linear algebra packages can be imple-
mented on shared-memory systems (where multiple processors operate inde-
pendently and share the same memory space), distributed memory systems
(where each processor has its own private memory), or even cloud computing
systems (remote internet-based computing where resources are provided to
users on-demand).

The Basic Linear Algebra Subprograms (BLAS) [10] are widely used as an
efficient, portable, and reliable sequential linear algebra library. The BLAS
are divided into three categories.

1. The Level 1 BLAS (BLAS1) is a set of vector operations on strided
arrays. Several of these operations are already reproducible, such as
the xscal operation, which scales a vector by a scalar value or the
xsaxpy operation, which adds a scaled copy of one vector to another.
These operations are reproducible provided they are implemented in
the same way. For example xsaxpy might not be reproducible if one
implementation uses a fused multiply-add instruction and the other
does not. Other operations, such as the dot product or vector norm,
are not reproducible with respect to data permutation, and must be
modified to have this quality. These operations are xasum, xnrm2, and
xdot.

2. The Level 2 BLAS (BLAS2) is a set of matrix-vector operations includ-
ing matrix-vector multiplication and a solver for ~x in T~x = ~y where ~x
and ~y are vectors and T is a triangular matrix. These operations can
all be made reproducible, but for brevity we discuss only the represen-
tative operation xgemv, matrix-vector multiplication.

3. The Level 3 BLAS (BLAS3) is a set of matrix-matrix operations includ-
ing matrix-matrix multiplication and routines to perform B = αT−1B
where α is a scalar, B is a matrix, and T is a triangular matrix. These

64

operations can all be made reproducible, but for brevity we discuss
only the representative operation xgemm, matrix-matrix multiplication.

The Linear Algebra PACKage (LAPACK) [11], is a set of higher-level
routines for linear algebra, providing routines for operations like solving lin-
ear equations, linear least squares, eigenvalue problems, and singular value
decomposition. LAPACK does most floating point computation using the
BLAS.

The BLAS and LAPACK have been extended to distributed-memory
systems in the PBLAS [12] and SCALAPACK [13] libraries. While most
BLAS and PBLAS operations can clearly be made reproducible, it is an open
question as to which LAPACK and SCALAPACK routines can be made re-
producible simply by using reproducible BLAS, or whether there are other
sources of nonreproducibility to eliminate. This is future work.

Out of the large design space outlined above, we describe in this paper
and implement in ReproBLAS sequential versions of key operations from the
BLAS, and a distributed-memory reduction operation which can be used to
parallelize these sequential operations in a reproducible way. We described
the BLAS1 operations xasum and xdot at the end of Section 5.6 previously.
The BLAS1 operation xnrm2 is discussed in Section 6.2. The BLAS2 and
BLAS3 operations xgemv and xgemm are discussed in Sections 6.3 and 6.4
respectively. Eventually, we intend to extend ReproBLAS to contain repro-
ducible versions of all BLAS and PBLAS routines.

6.1 Reduce

Perhaps the most important function to make reproducible, the parallel re-
duction computes the sum of P floating point numbers, each number residing
on a separate processor. The numbers are added pairwise in a tree. As dif-
ferent processors may have their number available at slightly different times,
the shape of the tree may change from run to run. If a standard reduction
is used, the results may differ depending on the shape of the reduction tree.

A parallel reduction can be accomplished reproducibly by converting the
floating point numbers to indexed types with the ConvertFloatToIn-
dexed procedure (Algorithm 5.8), reducing the indexed types reproducibly
using the AddIndexedToIndexed procedure (Algorithm 5.10) at each
node of the reduction tree, and then converting the resulting indexed sum
to a floating point number with the ConvertIndexedToFloat procedure

65

(Algorithm 5.12).
If there are several summands on every processor, then each processor

should first compute the indexed sum of the local summands using the Sum
procedure (Algorithm 5.9). The P resultant indexed sums can be reduced
and converted to a floating point number as described above.

It is easy to see that the previously described reduction operations pro-
duce the indexed sum of their summands by inductively applying the “En-
sure” claim of Algorithm 5.10.

An MPI data type that holds an indexed type can be created (creation
is only performed once, subsequent calls return the same copy) and returned
using the idxdMPI DOUBLE COMPLEX INDEXED, etc. function of idxdMPI.h.
idxdMPI.h also contains the XIXIADD method, an MPI reduction operator
that can reduce the data types in parallel. See Section 7 for details.

6.2 Euclidean Norm

The Euclidean norm of a vector ~x (sometimes referred to as ‖~x‖) is defined
as

‖~x‖ =

√√√√n−1∑
j=0

x2j , xj ∈ F. (6.1)

Since the summands in the summation of (6.1) are all non-negative, there
is no cancellation, so the Euclidean norm operation is usually of high accu-
racy. It can be implemented simply using a dot product operation on two
copies of the same input vector, or by using the sum operation on the squares
of the input vector, both of which can be made reproducible using correspond-
ing reproducible dot product and summation operations. However, both of
these methods are prone to unnecessary overflow and underflow. On one
hand, if some input values were too big (≥

√
2emax+1), the partial sum would

overflow. The computed result would be Inf when the real Euclidean norm
would be much smaller than the overflow threshold. On the other hand, if all
input values were too small (<

√
2emin), their squared value would be smaller

than the smallest representable floating point number and underflow would
occur, causing the returned result to be 0.

Scaling techniques can be used to handle the underflow/overflow issues.
For example, the function xnrm2 from the BLAS library [10] scales input data
by the intermediate maximum absolute value to avoid both overflow and un-
derflow. However, in our indexed format scheme, such a scaling would alter

66

the mantissae of the input data and the splitting of the mantissae, and there-
fore cannot guarantee reproducibility. In order to maintain reproducibility,
first, scaling factors must be powers of two so that the scaling and rescal-
ing won’t change any mantissae of input values. Second, the scaling factors’
exponents must differ only by multiples of W , so that the slicing processes
using different scaling factors are identical. Algorithm 6.1 summarizes the
algorithm for sum of squares, which will be used to compute the Euclidean
norm. Note that the handling of special input values Inf, -Inf, and NaN is
similar to the sum operation, which is not included here for simplicity.

Algorithm 6.1. If Y is the K-fold indexed sum of some (x0/s)
2, ..., (xn−1/s)

2

where x0, ..., xn ∈ F, s ∈ 2WZ, produce the K-fold indexed sum of
(x0/t)

2, ..., (xn/t)
2 where t ∈ 2WZ.

Require:
s = 0 if maxj∈{0,...,n−1} |xj| = 0. Otherwise 2−p−W−1s <
maxj∈{0,...,n−1} |xj| < 2W+2s and s ∈ 2WZ.
Y is the indexed sum of (x0/s)

2, ..., (xn−1/s)
2.

1: function Add Float To Indexed Norm(K, xn, Y , s)
2: e = W bmax(exp(xn)− 1, emin +W)/W c
3: t = 2e

4: if s < t then
5: for k = 0 to K − 1 do
6: YkP = (s/t)2YkP
7: end for
8: s = t
9: end if

10: Deposit(K, (xn/s)
2, Y)

11: end function
Ensure:

s = 0 if maxj∈{0,...,n} |xj| = 0. Otherwise 2−p−W−1s < maxj∈{0,...,n} |xj| <
2W+2s and s ∈ 2WZ.
Y is the indexed sum of (x0/s)

2, ..., (xn/s)
2.

A method to add the scaled indexed sum of squares of a vector to a scaled
indexed type (using an Algorithm similar to 6.1) is available in ReproBLAS as
idxdBLAS xixssq in idxdBLAS.h. A method to return the reproducible Eu-
clidean norm of a vector is available as reproBLAS rxnrm2 in reproBLAS.h.
The function idxd xixiaddsq in idxd.h can be used to add two scaled in-

67

dexed sums of squares. An MPI data type that holds a scaled indexed type
can be created (creation is only performed once, subsequent calls return the
same copy) and returned using the idxdMPI DOUBLE INDEXED SCALED, etc.
function of idxdMPI.h. idxdMPI.h also contains the XIXIADDSQ method, an
MPI reduction operator that can reduce the scaled sums of squares in parallel
(see Section 7 for details).

Lemma 6.1. Let s and Y be the output of Algorithm 6.1, then the updated
scaling factor s is either 0 or it satisfies

2−p−W−1s ≤ max
j∈{0,...,n}

|xj| < 2W+2s (6.2)

Proof. From line 2 of Algorithm 6.1, it is to see that e is a multiple of W and

e ≥ W b(emin +W)/W c > emin

e ≤ max(exp(xn)− 1, emin +W) < emax.

Therefore both t = 2e and 1/t are representable. It also means that if there
are no input exceptional values, the scaling factor s is always representable.

The proof is trivial for the case xn = 0. We suppose that xn 6= 0. Hence
xn ≥ 2emin−p, or emin ≤ exp(xn)+p, where p is the precision of input floating-
point numbers. Therefore e ≤ max(exp(xn), exp(xn) + p+W), which means

t = 2e ≤ 2exp(xn)2p+W < |xn|2p+W+1. (6.3)

Moreover, we have e ≥ W ((exp(xn)− 1)/W − 1) = exp(xn)−W − 1. So

s = 2e ≥ 2exp(xn)2−W−1 > |xn|2−W−2 (6.4)

The proof can be deduced by combining the Algorithm’s requirement with
(6.3) and (6.4).

Lemma 6.1 means that for non-trivial input values, the maximum absolute
value of the scaled inputs will always be kept in range (2−p−W−1, 2W+2), which
guarantees that there will be no overflow or underflow in computing the sum
of squares.

Since the scaling factors in Algorithm 6.1 are always representable and
s ∈ 2WZ, the binning process is not affected by the scaling as well as the
rescaling. Therefore the reproducibility of Algorithm 6.1 is guaranteed by the

68

reproducibility of the indexed sum (see Section 4.2). Finally, the Euclidean
norm can be simply computed as (using (4.4))

s
√
Y (6.5)

It is worth noting that the same scaling technique can be used to avoid
overflow and underflow for the summation, regardless of the index of the
partial sum. It is possible to scale input data by a factor in 2WZ so that the
maximum absolute value is always in range [1, 2W). This will help to avoid
computing the index of the partial sum at the cost of having to store and
communicate the scaling factor along the computation. It is therefore left as
a tuning parameter for future work.

6.3 Matrix-Vector Product

The matrix-vector product y ∈ Rm of an m×n matrix A and a vector x ∈ Rn

where α, β ∈ R (denoted by y = αAx + βy and computed in the BLAS by
xgemv [10]) is defined as follows (where Ai,j is the entry in the ith row and
jth column, indexing from zero for consistency):

yi = βyi +
n−1∑
j=0

αAi,jxj

It is clear that computation of the matrix vector product is easily distributed
among different values of i, as rows of A and copies of x can be distributed
among P processors so that entries of y may be calculated independently.
However, in the case where n is quite large compared to m/P , it may be
necessary to parallelize calculation of the sums of each yi so that the entirety
of x does not need to be communicated to each processor. As the local blocks
would then be computed separately and then combined, different blocking
patterns or reduction tree shapes could lead to different results. Although
the reproducible reduction discussed in Section 6.1 would guarantee repro-
ducibility with respect to reduction tree shape, it would not guarantee repro-
ducibility with respect to blocking pattern. This stronger guarantee can be
obtained if each sum yi is calculated as an indexed sum. It is for this reason
that we need a local version of xgemv that returns a vector of indexed sums,
the matrix-vector product with all sums calculated using indexed summation.

A consequence of calculating the indexed matrix-vector product using
indexed sums is that it will be reproducible with respect to permutation of the

69

columns of A together with entries of x. Let σ0, ..., σn−1 be some permutation
of the first n nonnegative integers such that {σ0, ..., σn−1} = {0, ..., n− 1} as
sets. Then we have

yi =
n−1∑
j=0

Ai,jxj =
n−1∑
j=0

Ai,σjxσj (6.6)

More importantly, the matrix-vector product should remain reproducible
under any reduction tree shape. If A = [A(0), A(1)] where A(0) and A(1) are
submatrices of size m × n(0) and m × n(1) and if x = [x(0), x(1)] where x(0)
and x(1) are subvectors of size n(0) and n(1) then we have

Ax = A(0)x(0) + A(1)x(1) (6.7)

It is clear from Theorems 4.4 and the “Ensure” claim of Algorithm 5.10
that if the matrix-vector product is computed using indexed summation, the
result is reproducible.

Computing the matrix-vector product using indexed summation is not
difficult given the primitive operations of Section 5. In ReproBLAS, we mir-
ror the function definition of xgemv in the BLAS as closely as possible, adding
two additional parameters α and β so that the entire operation performs the
update y ← αAx + βy (we also add the standard parameters for transpos-
ing the matrix and selecting row-major or column-major ordering for the
matrix).

At the core, ReproBLAS provides the function idxdBLAS xixgemv in
idxdBLAS.h (see Section 7 for details). This version of the function adds
to the vector of indexed sums y the previously mentioned indexed matrix
vector product of the floating point A and x, where x is first scaled by α as is
done in the reference BLAS implementation. To be clear, idxdBLAS xixgemv

assumes that y is a vector of indexed types and that all other inputs are
floating point. A version (reproBLAS rxgemv) of the matrix vector product
routine that assumes y to be a floating point vector is discussed later. It is
important to notice that the parameter β is excluded when y is composed of
indexed types, as we do not yet know how to scale indexed types by different
values (other than 0, 1, or −1) while maintaining reproducibility. β can be
included if y is composed of floating point numbers (a case we will discuss
below), as they can be scaled before they are converted to an indexed type.

70

Because the reproducible dot product is so compute-heavy, we can get
good performance implementing the matrix-vector product using the idxdBLAS diddot

routine at the core. We must use a rectangular blocking strategy to ensure
good caching behavior, and because we are making calls to the dot prod-
uct routine, it is sometimes (depending on the transpose and row-major vs.
column-major parameters) necessary to transpose each block of A before
computing the dot product. These considerations ensure that the dot prod-
uct can compute quickly on contiguous sequences of cached data.

Built on top of idxdBLAS xixgemv is the routine reproBLAS rxgemv in
reproBLAS.h (see Section 7 for details), which takes as input floating point A,
x, y, α, and β. y is scaled by β, then converted to a vector of indexed types.
The matrix-vector product is computed using indexed summation with a user
specified number of accumulators, and the output is then converted back to
floating point and returned. The routine reproBLAS xgemv uses the default
number of accumulators.

6.4 Matrix-Matrix Product

The m×n matrix-matrix product C of an m×k matrix A and a k×n matrix
B where α, β ∈ R (referred to as C = AB and computed in the BLAS by
xgemm) is defined as follows (where Ai,j is the entry in the ith row and jth

column of A, indexing from zero for consistency):

Ci,j = βCi,j +
k−1∑
l=0

αAi,lBl,j

The matrix-matrix product is a similar construction to the matrix-vector
product, and discussion of reproducibility proceeds similarly. Computation of
the matrix-matrix product can be distributed in a myriad of ways. SUMMA
(Scalable Universal Matrix Multiply Algorithm) [14] is used in the PBLAS,
the most popular parallel BLAS implementation. In SUMMA and almost all
other parallel matrix-matrix algorithms, the computation is broken up into
rectangular blocks of A, B, and C. Although SUMMA has a static reduc-
tion tree (assuming a fixed number of processors), this cannot be assumed
for all parallel matrix multiply algorithms, so it may be necessary to use a
reproducible reduction step (discussed in Section 6.1). Even if the reduction
tree is reproducible for a particular blocking pattern, the blocking pattern
may not be reproducible (for instance, if more or fewer processors are used).

71

Therefore, we must compute the matrix-matrix product using indexed sum-
mation.

It is for this reason that we need a local version of xgemm that returns a
matrix of indexed sums, the matrix-matrix product with all sums calculated
using indexed summation.

A consequence of calculating the indexed matrix-matrix product using
indexed sums is that it will be reproducible with respect to permutation of the
columns of A together with rows of B. Let σ0, ..., σk−1 be some permutation
of the first k nonnegative integers such that {σ0, ..., σk−1} = {0, ..., n− 1} as
sets. Then we have

Ci,j =
k−1∑
l=0

Ai,lBl,j =
k−1∑
l=0

Ai,σlBσl,j (6.8)

More importantly, the matrix-vector product should remain reproducible
under any reduction tree shape. If A = [A(0), A(1)] where A(0) and A(1) are

submatrices of size m×k(0) and m×k(1) and if B =

[
B(0)

B(1)

]
where B(0) and

B(1) are submatrices of size k(0) × n and k(1) × n then we have

AB = A(0)B(0) + A(1)B(1) (6.9)

It is clear from Theorems 4.4 and the “Ensure” claim of Algorithm 5.10
that if the matrix-matrix product is computed using indexed summation, the
result is reproducible.

Like the matrix-vector product, we can compute the matrix-matrix prod-
uct using indexed summation with some function calls to idxdBLAS xixdot.
In ReproBLAS, we mirror the function definition of xgemm in the BLAS as
closely as possible, adding two additional parameters α and β so that the
entire operation performs the update C ← αAB + βC (we also add the
standard parameters for transposing the matrices and selecting row-major
or column-major ordering of all matrices).

At the core, ReproBLAS provides the function idxdBLAS xixgemm in
idxdBLAS.h (see Section 7 for details). This version of the function adds
to the matrix of indexed sums C the previously mentioned indexed matrix-
matrix product of the floating point A and B, where x is first scaled by α as is
done in the reference BLAS implementation. To be clear, idxdBLAS xixgemm

assumes that C is a matrix of indexed types and that all other inputs are
floating point. A version (reproBLAS rxgemm) of the matrix matrix product

72

routine that assumes C to be a floating point matrix is discussed later. Again
the parameter β is excluded when C is composed of indexed types (but not
when C is composed of floating point numbers which will be discussed be-
low), as we do not yet know how to scale indexed types by different values
(other than 0, 1, or −1) while maintaining reproducibility.

Again because the reproducible dot product is so compute-heavy, we can
get good performance implementing the matrix-matrix product using the
idxdBLAS diddot routine at the core. The blocking strategy is more com-
plicated this time, however, as computation can proceed under several loop
orderings. Because the matrices A and B are composed of single floating
point entries and C is composed of the much larger indexed types (each in-
dexed type usually contains at least 6 = 2∗K of its constituent floating-point
types), we chose to completely compute blocks of C by iterating over the ma-
trices A and B. This strategy avoids having to perform multiple iterations
over the matrix C composed of much larger data types. Again, to keep the
dot product running smoothly we first transpose blocks of A and/or B (de-
pending on the transpose and row-major or column-major ordering options)
when it is necessary to obtain contiguous sequences of cached data.

Built on top of idxdBLAS xixgemm is the routine reproBLAS rxgemm in
reproBLAS.h (see Section 7 for details), which takes as input floating point A,
B, C, α, and β. C is scaled by β, then converted to a vector of indexed types.
The matrix-matrix product is computed using indexed summation with a user
specified number of accumulators, and the output is then converted back to
floating point and returned. The routine reproBLAS xgemm uses the default
number of accumulators.

7 ReproBLAS

ReproBLAS is the name given to our library of implementations of algo-
rithms described in this paper. The code is available online at http://

bebop.cs.berkeley.edu/reproblas. To be useful to the greatest number
of performance-conscious scientific software developers, ReproBLAS is writ-
ten in C (conforming to the C99 Standard [7], with calling conventions that
are compatible with the data types of the C89 Standard [6]). The choice
of C allows for intrepid Fortran and C++ users to take advantage of the
library as well. Code generation and testing utilities are implemented in the
more productive language Python [15]. A few distributed memory functions

73

are supplied using MPI [16], the industry standard for distributed memory
programming.

We leave the specifics of the library to the documentation included with
the library itself, and here offer only a summary of some of the design deci-
sions made in ReproBLAS.

Several of the functions in ReproBLAS are optionally vectorized using
Intel AVX or SSE intrinsics [17], depending on what is available on the
system. With AVX, vectorization allows for 256-bit registers (4 double or 8
float) to be operated on in one instruction. Because so many routines were
vectorized and due to the complicated nature of the operations, a Python
suite was implemented to generate code that is generic to the particular
vectorization in question. By simply augmenting this suite of code generation
functions, this allows for future modifications of ReproBLAS to use newer
intrinsics (such as AVX-512) when they become widely available. Another
benefit of code generation is that it allows us to programatically restructure
code to take advantage of loop unrolling and instruction-level parallelism.

To handle the complex build processes involved in code generation with-
out increasing the software requirements of the library, we created a custom
build system written entirely in GNU Make. We adopted the build system
from a non-recursive makefile template called nonrec-make [18]. The build
system handles some of the complexity of code generation with the help of
the Python package Cog [19], which allows the programmer to write Python
code inline with C code.

Code generation and cache blocking add several parameters to ReproB-
LAS that must be tuned. OpenTuner [20], an extensible Python autotuner,
was used to search the parameter space to find optimal values for ReproBLAS
parameters.

ReproBLAS is divided into several modules, each one with a separate
header file and static library. idxd.h contains the primitive operations dis-
cussed in Section 5 and the utility functions regarding the indexed type
discussed in Section 4. idxd.h also contains several basic functions not men-
tioned that relate to the core reproducible summation algorithm. idxdBLAS.h
contains the indexed versions of the BLAS functions discussed in Section 6.
These functions are optimized composite operations built from functions in
idxd.h. reproBLAS.h contains versions of functions in idxdBLAS.h that do
not require the user to use indexed types. Each function has the same name
and signature as its BLAS counterpart, and behaves similarly (except with
added guarantees of reproducibility). Functions in reproBLAS.h with an “r”

74

prepended to their name allow the user to specify the number of accumula-
tors (K, where the internal indexed type used is K-fold) used to compute
the result, allowing for a user-specified level of accuracy. idxdMPI.h contains
MPI data types used to communicate indexed types, and also contains an
MPI reduction operator allowing the user to reproducibly reduce the MPI
indexed types.

7.1 Timing

In addition to giving a count of floating point operations in our algorithms,
we show that they can be implemented as a BLAS library comparable in
speed to commercially available optimized non-reproducible versions.

All timings are performed with an Intel R©Core i7-2600 CPU operating at
3.4 GHz with 32 KB L1 Cache, 256 KB L2 Cache, and 8192 KB L3 Cache.
Every test is run at least 100 times successively to amortize the data loading
time and warm up the cache. The largest BLAS1 problems (sum and dot
product) were resident in the L2 cache. The largest BLAS2 and BLAS3
problems exceeded even the L3 cache size. With the intention that these
results may be reproduced, we chose to use the widely available open-source
compiler gcc. The code was compiled with gcc version 4.8.4 using the highest
level “-O3” of optimization (and no other optimization flags). We compare
our BLAS routines against the sequential Intel R©Math Kernel Library (MKL)
BLAS Version 11.0.5 routines [2]. All matrices are represented in column-
major order. Denormalized floating point arithmetic is known to be much
slower than normalized floating point arithmetic. It should be noted that
for all tests, we do not measure with denormal values, as this is the most
common case in practice.

The theoretical peak time is calculated as the idealized theoretical time
in which the CPU could complete the given operations (in any order). We
include the or-bit operation as a FLOP along with multiplication and addi-
tion. We multiply the peak processing rate by the number of floating point
types that can be processed in a single vectorized instruction (using SSE or
AVX intrinsics) [17]. Because instructions of differing type (addition, multi-
plication, or or-bit operation) can be completed in parallel on our particular
CPU, we assume that the peak processing time depends only on the maxi-
mum number of instructions of a single type. The theoretical peak time t is

75

therefore calculated according to (7.1).

a = number of additions

m = number of multiplications

o = number of or-bit operations

f = CPU frequency

v = number of floating-point types that fit into largest supported vector register

t =
max(a,m, o)

vf
(7.1)

7.1.1 Difficult Input

Because the reproducible summation algorithm needs to perform additional
operations (Algorithm 5.3) if the maximum absolute value of the data in-
creases during summation, the run time depends (up to a constant factor)
upon the input. To show the differences in run time, we show in Figure 7.1
the time it takes to reproducibly sum 213 doubles and floats from two dif-
ferent data sets. The first data set is an easy case, the uniform distribution
from 0 to 1. The second data set is the most difficult possible case, numbers
(alternating in sign to avoid infinities) increasing in absolute value exponen-
tially starting at 1 and ending with the largest positive finite floating point
value. We chose to start this increase at 1 rather than the minimum positive
floating point value to avoid denormalized floating point values. This data
set is difficult because the exponent of the maximum absolute value increases
linearly from 0 to its maximum possible value. Therefore, the Update op-
eration (Algorithm 5.3) must be performed more frequently to adjust the
index of the indexed type. We can compare this to the uniform distribution
in [0, 1), which very quickly achieves a number (greater than 0.5) that has
the largest floating point exponent possible from the distribution. After such
a number is seen, no more updates need to be performed. Note that these
problems were resident in the L2 cache. We calculate the peak performance of
rxsum using only the core operations in the DepositRestricted operation
(Algorithm 5.4). rdsum achieved performance of 1.20 · 1010 FLOPS (61.9%
of peak) on the difficult dataset. rssum achieved performance of 1.91 · 1010

FLOPS (49.3% of peak) on the difficult dataset. It is clear from the figure
that the additional cost of the Update operation is modest, and the per-
formance of the summation algorithm has only a weak dependence on the
data.

76

rdsum (double) rssum (float)
Reproducible Summation Function

0

1

2

3

4

5

6

7

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Reproducible Summation Time Vs. Distribution (8192 Values)

Uniform Random [0, 1) Distribution
Half Exponent Range Distribution

Figure 7.1: Time taken to sum 213 floating point numbers of varying difficulty.

7.1.2 BLAS1

We show how our reproducible summation compares to a simple C for-loop
in Figure 7.2. We compiled the for-loop using the command “gcc -03”. The
for-loop is as follows (where X is the input vector and res is the resulting
sum):

r e s = 0 ;
f o r (j = 0 ; j < N; j++){

r e s += X[j] ;
}

Time (measured relative to the peak theoretical time for recursive sum-
mation) is shown for each method. The double-precision floating point num-

77

bers to be summed are normally distributed with mean 0 and variance 1.
The values of N shown are powers of two from 26 to 212. All of the prob-
lems shown on this plot were resident in L1 cache. The peak performance
of rdsum is 1.94 · 1010 FLOPS. The peak performance of the for-loop is
1.36 ·1010 FLOPS. The peak performance of the for-loop is 0.7 times that of
rdsum, as the for-loop requires 1 addition per element, but rdsum requires
3K − 2 = 7 additions and K = 3 or-bit operations per element which can be
done in parallel. This also explains why the theoretical peak time required
for rdsum is 7 times larger than the for-loop. Compiling with the gcc flag
-fopt-info-vec-optimized tells us that the for-loop is not vectorized by
the compiler, and therefore not running at peak. With this in mind, repro-
ducible summation is competitive with a simple for-loop.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N (Vector Size N)

0

5

10

15

20

25

30

35

40

T
im
e
 (
N
o
rm

a
liz
e
d
 t
o
 T
h
e
o
re
ti
ca
l
R
e
cu
rs
iv
e
 S
u
m
m
a
ti
o
n
 P
e
a
k) Summation Time (Normalized To Peak) Vs. N

for loop theoretical peak
rdsum theoretical peak
for loop
rdsum

Figure 7.2: Relative floating point summation time

To give a comparison to a BLAS1 function, we show in Figure 7.3 timings

78

of the reproducible dot product versus the MKL BLAS dot product. Again,
the double-precision floating point data is distributed such that the elements
of each input vector are normally distributed with mean 0 and variance 1.
The values of N shown are powers of two from 26 to 212. All problems shown
here were L1 resident except for the largest problem, which was resident
in the L2 cache. We calculate peak performance of rddot using only the
core operations in the DepositRestricted operation (Algorithm 5.4) and
the additional pointwise multiplication. The peak performance of rddot is
2.14 · 1010 FLOPS. The peak performance of ddot is 2.72 · 1010 FLOPS. The
peak performance of ddot is 1.27 times that of rddot. This is because ddot

requires 1 addition and 1 multiplication per element, while rddot requires
3K − 2 = 7 additions, 1 multiplication, and K = 3 or-bit operations per
element. This also explains why the theoretical peak time required for rddot
is 7 times larger than that of ddot. For vectors of size 210 and larger, the
slowdown of rddot as compared to ddot ranges from 4.15 to 3.33.

79

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N (Vector Size N)

0

5

10

15

20

25

30

35

40

45

T
im

e
 (
N
o
rm

a
liz
e
d
 t
o
 T
h
e
o
re
ti
ca

l
D
o
t
P
ro
d
u
ct
 P
e
a
k)

Dot Product Time (Normalized To Peak) Vs. N

ddot theoretical peak
rddot theoretical peak
ddot
rddot

Figure 7.3: Relative dot product time

7.1.3 BLAS2

We show in Figure 7.4 timings of the reproducible matrix-vector product
versus the MKL BLAS matrix-vector product. Each double-precision floating
point input matrix or vector element is normally distributed with mean 0 and
variance 1. The values of N shown are powers of two from 26 to 212. Problem
size 26 was resident in L1 cache, problem size 27 was resident in L2 cache,
problem sizes 28 to 210 were resident in L3 cache, and problem sizes 211 and
212 exceeded the L3 cache size. The peak performances of rdgemv and dgemv

are the same as that of rddot and ddot. For problem sizes 210 and larger,
the slowdown of rdgemv as compared to dgemv ranges from 7.70 to 5.71.

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N (Matrix Size NxN)

0

10

20

30

40

50

60

T
im

e
 (
N
o
rm

a
liz

e
d
 t
o
 T

h
e
o
re

ti
ca

l
M

a
tr

ix
-V

e
ct

o
r
P
ro

d
u
ct

 P
e
a
k) Matrix-Vector Product Time (Normalized To Peak) Vs. N

dgemv theoretical peak
rdgemv theoretical peak
dgemv
rdgemv

Figure 7.4: Relative matrix-vector product time

The non-transposed matrix-vector product is the only case where com-
position of BLAS2 and BLAS3 functions did not achieve results within a
factor of 2 of theoretical peak. Because the reproducible dot product oper-
ates most efficiently on contiguous sections of memory, the matrix must be
transposed so that memory can be read contiguously. This causes the re-
producible matrix-vector product to perform poorly due to the extra cost of
matrix transposition in an already memory-bound routine. In future versions
of the library, this method could be improved by writing a custom inner-loop
kernel that does not make calls to xixdot. The kernel would operate on
the primary fields of several indexed types at the same time using vectorized
operations.

The transposed matrix-vector product performs better than the non-
transposed case. Timings are shown in Figure 7.5. The reader should notice
that in this case, the reproducible routine is only a factor of 2.43 times slower

81

than the optimized BLAS routine.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N (Matrix Size NxN)

0

5

10

15

20

25

30

35

40

45

T
im

e
 (
N
o
rm

a
liz

e
d
 t
o
 T

h
e
o
re

ti
ca

l
M

a
tr

ix
-V

e
ct

o
r
P
ro

d
u
ct

 P
e
a
k) Transposed Matrix-Vector Product Time (Normalized To Peak) Vs. N

dgemv theoretical peak
rdgemv theoretical peak
dgemv
rdgemv

Figure 7.5: Relative transposed matrix-vector product time

7.1.4 BLAS3

We show in Figure 7.6 timings of the reproducible matrix-matrix product
versus the MKL BLAS matrix-matrix product. Because the timings for each
transposition case (transposing or not transposing A or B) are similar, we
show only the standard case for brevity. Each double-precision floating point
input matrix element is normally distributed with mean 0 and variance 1.
The values of N shown are powers of two from 26 to 212. Problem size 26 was
resident in L2 cache, problem sizes 27 to 29 were resident in L3 cache and
problem sizes 210 to 212 exceeded the L3 cache size. The peak performances
of rdgemm and dgemm are the same as that of rddot and ddot. In this case,
since dgemm is running close to peak and rdgemm is running at 47.1% of peak,

82

the reproducible routine is a factor of 12.6 times slower than the optimized
BLAS routine.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N (Matrix Size NxN)

0

10

20

30

40

50

T
im
e
 (
N
o
rm

a
liz
e
d
 t
o
 T
h
e
o
re
ti
ca
l
M
a
tr
ix
-M
a
tr
ix
 P
ro
d
u
ct
 P
e
a
k)

Matrix-Matrix Product Time (Normalized To Peak) Vs. N

dgemm theoretical peak
rdgemm theoretical peak
dgemm
rdgemm

Figure 7.6: Relative matrix-matrix product time

7.2 Testing

In understanding the testing methodology behind ReproBLAS, is important
to distinguish between the metrics of reproducibility and accuracy. Although
high accuracy can sometimes result in reproducibility, it is not a guarantee.
For this reason, we test the accuracy and the reproducibility of the ReproB-
LAS methods separately.

Testing in ReproBLAS starts with the BLAS1 methods (xsum, xasum,
xnrm2, and xdot). These methods are first checked to see that their results
are accurate, then checked to see if the results are reproducible. All tests are
repeated several times with parameters changed. The data is scaled by 1 and

83

−1. The data is permuted by reversing, sorting (in ascending or descending
order of value or absolute value), or random shuffling. To check that the
result is independent of blocking, the data is grouped into several blocks
and each block is operated on separately, then the results for each block are
combined using the appropriate function. Several different block sizes are
tested for each permutation of the data.

The accuracy of the reproducible BLAS1 methods is validated by checking
to see if the results of each method are within the error margin specified by
(5.30) from the true results. Because the true summation result must be
known, these tests are performed on distributions with known sums. The
input vectors used are shown in Table 4. Note that random() is a floating
point number uniformly distributed between 0 and 1.

Name Value Sum

sine Xj =

sin(2πj/n) if j < bn/2c
0 if j = (n− 1)/2

−Xn−j−1 otherwise

0

mountain Xj =

random() if n = 0

Xj−1 ∗ 2−bp/2c−1 if j < bn/2c
0 if j = (n− 1)/2

−Xn−j−1 otherwise

0

small + big Xj =

{
2bp/2c+1 if j = 0

2−bp/2c−1 otherwise
2bp/2c+1 + (n− 1)2−bp/2c−1

small + big + big Xj =

{
2bp/2c+1 if j = 0 or j = n− 1

2−bp/2c−1 otherwise
2bp/2c+2 + (n− 2)2−bp/2c−1

small + big − big Xj =

2bp/2c+1 if j = 0

−2bp/2c+1 if j = n− 1

2−bp/2c−1 otherwise

(n− 2)2−bp/2c−1

Table 4: ReproBLAS Accuracy Validation Vectors X ∈ Fn

Because the reproducible summation methods operate on bins, we repeat
the accuracy tests on scaled versions of the input data set W times, each
time increasing the scale by a factor of two. This allows us to test all splits
of the sum across bin boundaries. This is performed on data very close to

84

overflow to test cases where the data is split between bin 0 and bin 1. This
is also performed on data very close to underflow to test cases where some
data is lost due to underflow.

To validate the accuracy of the methods in the presence of Inf, -Inf,
and NaN, the reproducible BLAS1 methods are tested on the vectors (scaled
by 1 and −1) shown in Table 5.

Name Value Sum

Inf Xj =

{
Inf if j = 0

0 otherwise
Inf

Inf + Inf Xj =

{
Inf if j = 0 or j = n− 1

0 otherwise
Inf

Inf− Inf Xj =

Inf if j = 0

−Inf if j = n− 1

0 otherwise

NaN

NaN Xj =

{
NaN if j = 0

0 otherwise
NaN

Inf + NaN Xj =

Inf if j = 0

NaN if j = n− 1

0 otherwise

NaN

Inf + NaN + Inf Xj =

Inf if j = 0

NaN if j = bn/2c
Inf if j = n− 1

0 otherwise

NaN

Inf + NaN− Inf Xj =

Inf if j = 0

NaN if j = bn/2c
−Inf if j = n− 1

0 otherwise

NaN

Table 5: ReproBLAS Exception Validation Vectors X ∈ Fn

After validating the accuracy of the reproducible BLAS1 methods, their
reproducibility is verified. Each method is checked to see if it produces the
same result under the list of permutations given above (reversing, sorting,

85

or random shuffling). Because we do not need to know the true sum of the
data, we test using a uniform random and normal random distribution (in
addition to those mentioned in Tables 4 and 5).

Once the BLAS1 methods are tested, the results of BLAS2 and BLAS3
(xgemv and xgemm) methods are tested against “reference” reproducible ver-
sions. These reference versions are simply naive implementations of xgemv

and xgemm in terms of the reproducible dot product. They use no blocking
and are simple to understand and code. Because xgemv and xgemm compute
vectors and matrices of dot products, we can use the same data that was
used for the dot product. For xgemv, we permute the columns of the input
matrix together with the entries of the input vector as discussed in (6.6). We
break the computation into column-blocks of various sizes as discussed in
(6.7) and combine them to ensure that the operation is reproducible with re-
spect to blocking of computation. For xgemm, we permute the columns of one
input matrix together with the rows the other input matrix as discussed in
(6.8). We break the computation into column-blocks and row-blocks of vari-
ous sizes as discussed in (6.9) and combine them to ensure that the operation
is reproducible with respect to blocking of computation.

Each test described above must be performed with different values for
several parameters, including K (where the indexed types used are K-fold),
the increment between elements of a vector, row or column major ordering
of matrices, whether or not to transpose matrices, and scaling factors on
vectors and matrices. To handle this software complexity, a Python test
harness was created to exhaustively test each combination of values for these
parameters.

8 Conclusions And Future Work

The algorithms we have presented have been shown to sum binary IEEE
754-2008 floating point numbers accurately and reproducibly. The algorithms
behave sensibly in overflow and underflow situations and work on exceptional
cases such as Inf, -Inf, and NaN. Reproducibility is independent of the
ordering of data, blocking schemes, or reduction tree shape. Our algorithms
remain reproducible on heterogeneous systems independent of the number of
processors assuming only a subset of IEEE Standard 754-2008 [5].

We have specified all of the necessary steps to carry out reproducible
summation in practice, including a conversion from the intermediate indexed

86

type to a floating point result. Our method allows for user-specified accu-
racy in the result, improving significantly on the accuracy of [4]. We have
also specified methods for reproducible absolute sums, dot products, norms,
matrix-vector products, and matrix-matrix products. We have created an
optimized library for reproducible summation, tested it, and shown that the
performance is comparable to industry standards. We have included in our
library methods for distributed memory reductions so that reproducible par-
allel routines may be built from our library.

Allowing the user to adjust accuracy yields an interesting trade off be-
tween performance and accuracy. Using only the existing ReproBLAS inter-
face, a basic long accumulator can be built by setting K to its maximum
value so that the entire exponent range is summed. A careful examination
of the error bound (5.26) shows that this would give almost exact results re-
gardless of the dynamic range of the sum. However, because ReproBLAS was
not designed with such a use case in mind, this would be very slow. Future
work could also involve optimizing some of the routines for a high-accuracy
use case. In such a scheme, when a number is deposited (as in Algorithm
5.5), it would only be added to the 3 bins its slices fit in. Only accumulators
with nonzero values would need to be stored, allowing for another possible
optimization.

In the future, we plan to add PBLAS routines to our library so that
users may benefit from tested reproducible parallel BLAS routines without
having to code them themselves. We will extend the existing interface to
ReproBLAS with parallel BLAS function signatures.

References

[1] SC’15 BoF on ”Reproducibility of high performance codes and simu-
lations: tools, techniques, debugging”, 2015. https://gcl.cis.udel.

edu/sc15bof.php.

[2] Intel R©. Intel R© Math Kernel Library reference manual. Techni-
cal report, 630813-051US, 2011. http://software.intel.com/sites/
products/documentation/hpc/mkl/mklman/mklman.pdf.

[3] Michela Taufer, Omar Padron, Philip Saponaro, and Sandeep Patel. Im-
proving numerical reproducibility and stability in large-scale numerical
simulations on GPUs. In Parallel & Distributed Processing (IPDPS),

87

2010 IEEE International Symposium on, pages 1–9. IEEE, 2010.

[4] J. Demmel and Hong Diep Nguyen. Parallel reproducible summation.
Computers, IEEE Transactions on, 64(7):2060–2070, July 2015.

[5] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages
1–70, Aug 2008.

[6] ANSI/ISO 9899-1990 American National Standard for Programming
Languages - C. 1990.

[7] ISO Standard. C99-ISO, 1999.

[8] Nicholas J. Higham. The accuracy of floating point summation. SIAM
J. Sci. Comput., 14(4):783–799, July 1993.

[9] J. Demmel and Y. Hida. Accurate and efficient floating point summa-
tion. SIAM J. Sci. Comp., 25(4):1214–1248, 2003.

[10] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,
R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-
marling, Greg Henry, et al. An updated set of basic linear algebra
subprograms (BLAS). ACM Transactions on Mathematical Software,
28(2):135–151, 2002.

[11] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
S Hammerling, Alan McKenney, et al. LAPACK Users’ guide, volume 9.
SIAM, 1999.

[12] Jaeyoung Choi, Jack Dongarra, Susan Ostrouchov, Antoine Petitet,
David Walker, and R Clinton Whaley. A proposal for a set of par-
allel basic linear algebra subprograms. In Applied Parallel Computing
Computations in Physics, Chemistry and Engineering Science, pages
107–114. Springer, 1996.

[13] L Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo,
James Demmel, Inderjit Dhillon, Jack Dongarra, Sven Hammarling,
Greg Henry, Antoine Petitet, et al. ScaLAPACK Users’ guide, volume 4.
SIAM, 1997.

88

[14] Robert A Van De Geijn and Jerrell Watts. Summa: Scalable universal
matrix multiplication algorithm. Concurrency-Practice and Experience,
9(4):255–274, 1997.

[15] Guido Van Rossum et al. Python programming language. In USENIX
Annual Technical Conference, volume 41, 2007.

[16] David W Walker and Jack J Dongarra. MPI: A Standard Message
Passing Interface. Supercomputer, 12:56–68, 1996.

[17] Intel Intel. Advanced vector extensions programming reference. Intel
Corporation, 2011.

[18] nonrec-make - Non-recursive make template for GNU make. http://

github.com/aostruszka/nonrec-make.

[19] Cog - Generate code with inlined Python code. http://

nedbatchelder.com/code/cog/.

[20] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
OpenTuner: An extensible framework for program autotuning. In In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques, Edmonton, Canada, August 2014.

