
Privacy-preserving Messaging and Search: A

Collaborative Approach

Giulia Fanti

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-230

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-230.html

December 10, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Privacy-preserving Messaging and Search: A Collaborative Approach

by

Giulia Cecilia Fanti

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kannan Ramchandran, Chair
Professor Doug Tygar

Associate Professor Deirdre Mulligan

Fall 2015

Privacy-preserving Messaging and Search: A Collaborative Approach

Copyright 2015
by

Giulia Cecilia Fanti

1

Abstract

Privacy-preserving Messaging and Search: A Collaborative Approach

by

Giulia Cecilia Fanti

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

In a free society, people have the right to consume and share public data without fear of retribu-
tion. However, today’s technological landscape enables large-scale monitoring and censorship of
networks by powerful entities (e.g., totalitarian governments); at worst, these entities may punish
people for the information they consume or the opinions they espouse. This thesis considers two
problems aimed at empowering people to freely share and consume public information: anony-
mous message spreading and privacy-preserving database search. In both areas, we present algo-
rithmic innovations and analyze their correctness and efficiency. The key assumption underlying
our work is that centralized architectures cannot reliably provide privacy-preserving services; not
only are the incentive structures misaligned, but centralized infrastructures are often vulnerable to
external breaches by hackers or government agencies, for example. We therefore restrict ourselves
to distributed algorithms that rely on cooperation and resource-sharing between privacy-conscious
individuals.

In the area of anonymous message spreading, we consider a user who wishes to spread a
message to as many people as possible over an underlying connectivity network (e.g., a social
network); this is the premise of Yik Yak, Whisper, and other popular anonymous messaging net-
works. Most existing social networks (anonymous or not) use a push-based mechanism to spread
content to all of a user’s neighbors on the contact network; if a neighbor approves the content by
‘liking’ it, this symmetric spreading propagates to the neighbor’s neighbors, and so forth. Recent
research suggests that under this spreading model, the true author of a message can be identified
with non-negligible probability by a powerful global adversary. We propose an alternative, dis-
tributed spreading mechanism called adaptive diffusion, which breaks this symmetry. We show
theoretically that adaptive diffusion gives optimal or asymptotically-optimal anonymity guaran-
tees over certain classes of synthetic graphs for various adversarial models, while spreading nearly
as fast as traditional symmetric mechanisms. On real-world graphs, we demonstrate empirically
that adaptive diffusion gives significantly stronger anonymity properties than existing spreading
mechanisms.

In the area of privacy-preserving search, we consider the foundations of a distributed, privacy-
preserving search engine built over public data. Architecturally, we envision a peer-to-peer (P2P)

2

network in which each user stores a small piece of a public database; when a user wishes to search
for something, she obtains it by requesting the information from her peer nodes, which execute
a distributed search over the relevant data index. Critically, this operation should be privacy-
preserving—that is, no peer node should learn anything about the contents of the user’s query.
Distributed search engines are not a new idea, but making such a service privacy-preserving and
robust is algorithmically challenging.

One challenge is that if the database is changing over time and the network is not centrally
controlled, distributed users may not have a unified view of the database. That is, some peers may
be storing an outdated portion of the global database, causing existing private search and retrieval
algorithms to fail. We introduce a distributed private retrieval algorithm that is robust to servers
with similar, but not identical, views of the database, and show that it incurs asymptotically neg-
ligible overhead compared to traditional algorithms. Another challenge is that most search engine
users submit queries with multiple keywords, and expect the result to contain all of the queried
keywords; this is known as a conjunctive query. Existing distributed algorithms return results that
contain at least one of the queried keywords. This approach can incur significant communication
overhead, as well as computational overhead for the client, who must sort through the results.
We propose a new privacy-preserving search algorithm that processes conjunctive queries while
incurring a communication cost that scales linearly in the number of documents that contain all
the queried keywords. Our private-search algorithms build on principles from distributed source
coding, which permit us to reduce the communication cost by exploiting correlations between the
data of distributed peer nodes.

i

To my family.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1

2 Anonymous Message Spreading 8
2.1 Adaptive diffusion . 14
2.2 Snapshot-based adversarial model . 17
2.3 Spy-based adversarial model . 31
2.4 Spy+snapshot adversarial model . 38
2.5 Connections to Pólya’s urn processes . 39
2.6 Take-home Messages . 42

3 Private Information Retrieval on Unsynchronized Databases 44
3.1 Background . 48
3.2 Algorithm Description . 53
3.3 Experimental evaluation . 61
3.4 Take-home Message . 63

4 Efficient Private Search with Conjunctive Queries 65
4.1 Setup and Notation . 68
4.2 Background Concepts . 69
4.3 Algorithm Description . 70
4.4 Performance . 75
4.5 Take-home Message . 76

5 Future Work and Conclusions 78
5.1 Anonymous Messaging . 78
5.2 Private Search . 79
5.3 Final Thoughts . 80

iii

Bibliography 81

A Proofs from Chapter 2 89

B Proofs and Algorithms from Chapter 3 120
B.1 Proofs . 120
B.2 Related Algorithms . 122

C Proofs and Algorithms from Chapter 4 124
C.1 Proofs . 124
C.2 Algorithms . 128

iv

List of Figures

1.1 Popular anonymous messaging applications like Yik Yak [4] allow users to post con-
tent without any authorship information attached. 3

1.2 Existing anonymous messaging services are centralized, meaning that if Alice wants
to broadcast an anonymous message to Bob and Mary, the message passes through a
centralized server, which observes all authorship information. 3

1.3 Spread of message under standard diffusion (left) and under adaptive diffusion (right). 5
1.4 Our goal is to enable efficient, privacy-preserving search, in which the client’s query

remains unknown to the server. We tackle this by first considering the simpler problem
of retrieval. 6

2.1 Illustration of a spread of infection when spreading immediately (left) and under adap-
tive diffusion (right). 10

2.2 Adaptive diffusion over regular trees. Yellow nodes indicate the set of virtual sources
(past and present), and for T = 4, the virtual source node is outlined in red. 15

2.3 Irregular tree G̃4 with virtual source ṽ4. 21
2.4 The probability of detection by the maximum likelihood estimator depends on the

assumed degree d0; the source cannot hide well below a threshold value of d0. 26
2.5 Adaptive diffusion no longer provides perfect obfuscation for highly irregular graphs. . 26
2.6 Empirical verification of Theorems 2.2.2 and 2.2.3. We observe that the probability of

detection converges in time to the predicted values, which depend only on the under-
lying degree distribution. 27

2.7 Grid adaptive diffusion spreading pattern. 28
2.8 Near-ML probability of detection for the Facebook graph with adaptive diffusion. . . . 30
2.9 Hop distance between true source and estimated source over infection subtree for adap-

tive diffusion over the Facebook graph. 30
2.10 Message spread using the tree protocol (Protocol 3). 34
2.11 The information observed by the spy nodes 3, 7, and 8 for the spread in Figure 2.10.

Timestamps in this figure are absolute, but they need not be. 34
2.12 Adaptive diffusion (AD) theoretical performance for varying d (left). Adaptive diffu-

sion improves over standard diffusion (D) and the gap increases as the degree of the
underlying contact network increases (center, right). 35

v

2.13 Probability of detection under the spies+snapshot adversarial model. As estimation
time and tree degree increase, the effect of the snapshot on detection probability vanishes. 40

2.14 Comparisons of probability of detection as a function of n (top) and the posterior
distribution of the source for an example with n = 101 and T2 − T1 = 25 (bottom).
The line with ‘control packet revealed’ uses the Pólya’s urn implementation. 41

2.15 Spreading on a line. The red node is the message source. Yellow nodes denote nodes
that have been, are, or will be the center of the infected subtree. 41

3.1 A P2P PIR system would organically circumvent several of the problems that arise in
multi-server PIR. 46

3.2 Existing multi-server PIR schemes fail when databases are unsynchronized—i.e., database
order and size is preserved, but some records may be nonidentical across all servers. . . 47

3.3 Two-server PIR scheme [23]. Each server computes the bitwise sum of a client-
specified subset of database records. Since the two subsets differ only at the wth index,
the binary sum of each server’s results gives the desired record. 48

3.4 Compression setup. A sparse vector r(0) can be fully reconstructed with the m < n
samples in y if parity check matrix A is well-designed. 51

3.5 H maps elements of r(0) to bins. Singleton bins map to a single nonzero element,
while multitons map to multiple nonzero elements. On finding a singleton, the decoder
strips it from all bins. For example, by stripping element 1 of r(0) from bins 3 and 5,
bin 5 becomes a singleton. After row-tensoring H ⊗r F, each bin has two additional
entries (not pictured) that help the decoder decide if a bin is a singleton. 52

3.6 PIR when the databases are unsynchronized; server 2 has an out-of-date record, f ′2.
Traditional PIR methods fail in this scenario. In this example, the desired record was
f0, but the client received the summation of f1 and an error term, f2 + f ′2. 54

3.7 Identifying unsynchronized records without any compression. f2 is not synchronized
across all servers, so the 2nd entry of r̂(0) is nonzero. This figure is computed over
integers, but in practice, all operations are over finite field GF (2`). 56

3.8 Example PIR algorithm, Phase 2, on a database with n = 3 records. The client knows
f2 is unsynchronized, so it swaps zeros into the second query index before adding
p(X)1n to each query vector. The client wants one record, so A is the first row of a
Vandermonde matrix, 1ᵀ

n. Thus ‘decoding’ means multiplying the results by V
−1

=
[1]−1 (Algorithm 6). 58

3.9 Probability of a successful PIR run as a function of the number of bins used in Phase
1 to identify the unsynchronized record indices. Each “bin” requires 3 · LH bits of
downlink communication; we used LH = 48 bits. 62

3.10 Average query runtime as a function of the number of unsynchronized records in the
database. For our scheme, we used enough bins to guarantee a 0.95 probability of
success. 63

3.11 Query runtime as a function of database size, measured in number of records. We
assume there are 32 unsynchronized records when running our scheme, and used 72
bins to locate the mis-synchronizations. 63

vi

4.1 Example of an inverted database indexed by pairs of keywords. Each pair of keywords
indexes a list of documents {fi} featuring that pair of keywords. K denotes the dictio-
nary of keywords. Since K contains three keywords and the user is querying m = 2
keywords, the inverted structure has

(
3
2

)
elements.

(|K|
m

)
scales as O(|K|/m)m, which

is prohibitive if a server were to accommodate conjunctive queries of arbitrary length. . 66
4.2 Documents used in running example. Each document features a different subset of

dictionary keywords. 69
4.3 The inverted database stored by each server. The list {1, 2, 4} in the first row implies

that f1, f2, and f4 all feature the keyword “cat”. 69
4.4 Additive sparsity arises across vectors. Here there is no added noise (i.e., a = 0|K|).

Red boxes indicate the (inverted) database entries requested from each server, and the
final summation is taken over GF (2a) (i.e., a bitwise sum of the binary representa-
tion of each number in r(j)). Notice that in the summed vector, the only nonzero en-
tries correspond to documents that contain all the queried keywords. In this example,
s = 2. Because of this sparsity, each server can individually compress its (non-sparse)
response vector r(j) with a linear compression scheme to reduce the downlink com-
munication to O(s). 72

4.5 The processing pipeline for phase 1 when m = 2c. Each client starts by generating
2m binary query vectors, and sends one vector to each server. The 1’s in each (noisy)
query vector specify a subset of “requested” keywords. Each server counts how many
of the requested keywords appear in each document. It then applies a post-processing
function to that count, designed to enforce differential sparsity across servers. Finally,
it compresses the resulting vector and returns it to the client, who decompresses and
recovers the desired response. 73

A.1 One realization of the random, irregular-tree branching process. Although each real-
ization of the random process G(t)

D yields a labelled graph, the adversary observes GT

and GT , which are unlabelled. White nodes are uninfected, grey nodes are infected. . . 91
A.2 L(G2) for the snapshot G2 illustrated in Figure A.1. Boxes (a) and (b) illustrate the two

families partitioning L(G2). 92
A.3 A realization of the random labeling process given an unlabeled snapshot. 95
A.4 The setR(T)

GT ,v for the snapshot and node specified in Figure A.3. 96
A.5 Pruning of a snapshot. In this example, the distribution D allows nodes to have degree

2 or 3, so we prune all descendants of nodes with degree 3 that are more than c log(t0)
hops from the root. In this example, p1(f1 − 1) < 1 and the pruned random process
eventually goes extinct. 101

A.6 Pruning of a snapshot using multiple types. In this example, the distribution D allows
nodes to have degree 2 or 3. We take t0 = 2 and r = 0.5, so all descendants of nodes
with type rt0 = 1 are pruned. 103

A.7 Regions of the probability generating function, in which we bound the rate of conver-
gence. 110

vii

List of Tables

2.1 Probability of detection over the Facebook dataset [107], with 95% confidence intervals. 37

3.1 System parameters . 53
3.2 Total communication (bits) and online computation (FLOPS) for unsynchronized PIR

(UPIR) using PULSE and Reed-Solomon decoding, and a state-of-the-art collusion-
resistant PIR scheme [51]. Parity symbols for the hashed database are precomputed.
n = database size, d =number of servers, L =record size, ζ =number of records
requested, 2` =field size (both phases). 61

4.1 Total uplink and downlink communication (bits), server-side online computation (FLOPS),
and server storage. n = database size, K = keyword dictionary, X = document size,
s = number of documents featuring allm queried keywords, ŝ = number of documents
featuring a single given keyword, maximized over all keywords in the dictionary. Yel-
low cells denote the portion of each algorithm with the most overhead compared to the
other baseline algorithms. 77

viii

Acknowledgments

This dissertation would not have been possible without a number of people. First and foremost,
I would like to thank my adviser, Professor Kannan Ramchandran. His support, guidance, and
infinite patience have helped me grow so much over these last years, both professionally and per-
sonally. Kannan, thank you so much for this amazing opportunity to work with and learn from
you; your intellectual curiosity, creativity, and ability to draw meaningful connections between
topic areas never cease to amaze me.

I would like to sincerely thank my dissertation committee members, Professors Doug Tygar
and Deirdre Mulligan. Doug, your candid advice and incisive questions helped me focus both the
scope and content of this work. Deirdre, your insightful comments about the forces that motivate
people—especially with regards to privacy—helped me to discard unrealistic mental models and
think more clearly about user incentives.

I also want to extend heartfelt thanks to my mentors and collaborators at the University of
Illinois Urbana-Champaign, Professors Pramod Viswanath and Sewoong Oh, who treated me as if
I were one of their own students. Pramod, thank you for your unwavering support, for teaching me
how to choose meaningful research problems, and for showing me when (and more importantly,
how) to persevere on problems that seem impenetrable. Sewoong, thank you for your unflappable
patience as I tried to keep up with your train of thought; learning from you is a true pleasure.

To Peter Kairouz (who contributed to a number of results in this thesis), Venkatesan Ekam-
baram, Babak Ayazifar, Matthieu Finiasz, Gerald Friedland, Barath Raghavan, Adam Lerner, Ya-
hel Ben-David, Sebastian Benthall, Rachid El-Azouzi, Daniel Menasche, and the other amazing
researchers I’ve had the pleasure of working with over the last five years, thank you for being
fantastic collaborators; your talent, passion, and kindness are an inspiration. To my brilliant pro-
fessors and teachers—both at Berkeley and beyond—thank you for sharing your knowledge and
experiences. To my classmates and friends, thank you for your support and friendship. You made
my time at Berkeley some of the best years of my life.

I gratefully acknowledge the NSF for funding this work with a Graduate Research Fellow-
ship and grants CCF-0964018, CCF-30909, and CCF-30149. Thanks as well to Google for an
internship with with my wonderful mentors, Vasyl Pihur, Úlfar Erlingsson, and Justin Ma.

Finally, I would like to thank my family, whose unconditional love and support made the lows
bearable and the highs worthwhile. Mamma, Papà, Vic, Kevin—you mean the world to me, and I
could never have done any of this without you.

1

Chapter 1

Introduction

In a free society, people have the right to consume and distribute information without being moni-
tored or surveilled [39]. However, the typical modern Internet user browses the web, shops online,
posts pictures, and sends messages while (often unknowingly) revealing intimate personal details
to the government [72], external hackers [55], cellular and internet service providers [73], third
parties buying access to user data, and of course service providers themselves (particularly search
engines). This reality—which stems largely from technological constraints—has led to unprece-
dented levels of public monitoring and constitutes a major ongoing privacy violation. More prob-
lematically, when these privacy violations are orchestrated by powerful and corrupt entities (e.g.,
totalitarian governments), those entities may punish people for the information they consume or
the opinions they share online [103].

Much thought has consequently gone into helping people utilize online services without sac-
rificing control of their personal information; proposed solutions often harness combinations of
legal, economic, and technological tools. Unfortunately, regardless of approach, the notion of
protecting user privacy is misaligned with the dominant economic and usability incentives of to-
day’s online economy: users want free, efficient services almost as much as service providers
want users’ data. Since people are ultimately unlikely to boycott services over privacy concerns
[9], policy solutions that require service providers to relinquish data rights are unlikely to be sus-
tainable. Similarly, services that require users to pay for privacy-preserving experiences are at
an economic disadvantage. Nonetheless, a significant class of people—including political dissi-
dents, whistleblowers, and other privacy-minded individuals—may be willing to tolerate higher
costs (e.g., money, reduced efficiency) in order to privately access and participate in networks.
The primary constraint is that no user should have to trust any other party with their data. Thus
emerges a collaborative model of privacy, in which network users help one another achieve pri-
vacy, rather than relying on a benevolent or legally-bound central entity. This thesis works within
such a framework of peer-faciliatated privacy—a concept that has been popular for decades in the
privacy-preserving algorithms literature [22, 21, 92, 48, 35].

Information access and dissemination are fundamental operations in many networks (e.g., so-
cial networks, the Internet). Users cannot freely participate in such networks without enjoying
privacy in both regards—sharing and consuming information. Building upon this collaborative

CHAPTER 1. INTRODUCTION 2

model of privacy, we ask two essential questions:

1. Anonymous message spreading (dissemination): How can we empower users to broadcast
information or opinions without being personally linkable to that content, even by a powerful
global adversary?

2. Private search (access): How can we empower users to search and retrieve content from a
distributed data collection without revealing the content of that information to the network
operator or external adversaries?

The answers to these questions could be integrated into a cohesive content-management system
that provides anonymity to content-generators and privacy to users who access that content. How-
ever, we maintain that both problems are interesting of their own right, and we treat them as
discrete problems in this thesis. For each problem, we propose novel algorithms and give provable
guarantees on privacy, efficiency, and utility. In the remainder of this section, we provide some
context for each problem of interest. We then give an outline of the thesis and list the main results
presented in this work.

Anonymous message spreading
Microblogging platforms like Facebook and Twitter have become important Internet services.
However, people who post controversial content on such platforms may face social, political, or
economic repercussions, ranging from cyberbullying to physical punishment. In fact, there are
documented cases of people being fired from their jobs or incarcerated for posting objectionable
content online [98, 103]; this is especially true in countries under authoritarian rule. These reali-
ties reveal a legitimate need for microblogging platforms that protect author anonymity: this is the
focus of the first portion of this thesis.

Informally, we treat a microblogging platform as a collection of users and an underlying con-
nectivity network that constrains communication between users. This network could represent
social connections, professional affiliations, or physical proximity; it is superimposed on an un-
derlying communication network, e.g., the Internet. For instance, on Facebook, the connectivity
network is the Facebook social graph. The user’s goal on such a platform is to spread a message
to as many other users as possible, while respecting the communication constraints of the underly-
ing network (i.e., you can only transmit messages to your neighbors, and there is delay associated
with each transmission). The adversary’s goal is to learn who authored a given message, given the
underlying contact network and incomplete metadata about the spread of the message.

A naive way to implement anonymous microblogging is to strip authorship metadata from ev-
ery message. This approach is used in a recent crop of anonymous messaging social networks,
like Whisper [3], Yik Yak [4], and the now-defunct Secret [2]. These applications allow a user
to share messages with her peers without revealing the author’s identity (Figure 1.1). However,
these services are all centralized, so authorship information for every message is stored on central-

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Popular anonymous messaging
applications like Yik Yak [4] allow users to
post content without any authorship infor-
mation attached.

Existing anonymous messaging apps

centralized networks are not truly anonymous!

Bob

MaryAlice

Server

Figure 1.2: Existing anonymous messaging
services are centralized, meaning that if Al-
ice wants to broadcast an anonymous mes-
sage to Bob and Mary, the message passes
through a centralized server, which observes
all authorship information.

ized servers that may be accessible to government agencies or hackers [67]. We are interested in
architectures and algorithms that are truly anonymous—even to the service provider itself.

Even if anonymous messaging services like Secret or Yik Yak were not centralized, stripping
authorship metadata would not protect the author against adversaries that can observe traffic pat-
terns and participate in network activity in order to deanonymize users. In fact, recent work on
rumor source identification [94, 93, 89, 46, 118, 36, 109] suggests that even when the adversary
has a limited capability to observe message metadata in such a network, it can identify the true
source with high accuracy. This weakness stems from the fact that existing microblogging appli-
cations use a symmetric, push-based content-spreading mechanism. That is, if a user composes or
approves a message (e.g., by ‘liking’ it), the message gets propagated to all of the user’s neighbors.
This spreading model is often modeled mathematically by a diffusion process; the global symme-
try of diffusion can be exploited (along with knowledge of the underlying connectivity network) to
infer the true source of a message [94].

Given these weaknesses, our goal is to design distributed algorithms for disseminating mes-
sages with provable guarantees of message author anonymity, even against powerful global adver-
saries.

Private search
Another important class of privacy leaks results when users retrieve information from online repos-
itories. When people query a search engine or a database, the contents of those queries may be
sensitive [7]; if so, users may be targeted for extra monitoring or even censorship. For instance,

CHAPTER 1. INTRODUCTION 4

a user who types ‘how to build a bomb’ into a search engine could trigger additional monitoring,
either by the search engine itself, or by an external law enforcement agency with access to search
engine records. Offhand, this might seem like a good thing. However, it enables large-scale frame-
works for surveillance and even censorship; when this monitoring surpasses legally-established
limits (or limits set by the international community), the results can be damaging to society [5].
Even if users’ queries are not particularly sensitive, when aggregated over time, they can enable
an observer to build detailed, intimate profiles of people. The AOL search history data release is a
prominent example of this [7].

Intuitively, this problem might seem fundamental: a user must reveal her query to a server
in order to search a database stored on that server. Perhaps surprisingly, this is not the case; a
recent body of research has investigated algorithms for searching and accessing a database without
revealing the nature of users’ queries to the server storing the database [23, 83]. Although this
area has been studied for a long time, existing approaches are overwhelmingly inefficient, to the
point that they have not found their way into usable products. In this portion of the thesis, the goal
is to develop methods for searching and retrieving information from a database without revealing
clients’ queries to the server, while meeting strict efficiency constraints.

Outline and contributions
The problems studied in this thesis are not new. However, our approach differs dramatically from
prior art, due to a combination of architectural decisions (i.e., a distributed architecture) and the
algorithmic tools we use (i.e., adaptive, randomized algorithms and distributed source coding).
Each of these seemingly small changes require a first-principles redesign of existing algorithms,
and can have significant effects on the efficiency and functionality of existing algorithms. Each
chapter therefore introduces a novel algorithmic solution to a distinct problem of interest. Because
these chapters address somewhat different problems, the related work for this thesis is discussed
on a per-chapter basis. An outline of the thesis is as follows:

Chapter 2: (Anonymous Message Spreading) This chapter considers the problem of anonymous
broadcast messaging. In particular, we consider messaging applications built atop a social network,
which constrains communication between users. We present adaptive diffusion: an algorithm that
spreads content over a social network in such a way that even a powerful adversary with access to
a message’s spreading pattern cannot infer the message author. We consider two main adversarial
models: the first adversary learns which users received a given message at a single, fixed point in
time; we call this the snapshot adversary. For example, a snapshot adversary might represent a
government agency that observes which users are present at a protest that was advertised on the
social network. The protest attendees provide the adversary with a (noisy) snapshot of the network
users that received the message. In the second adversarial model, the adversary takes the form of
multiple, colluding “spy” nodes, which observe time-of-arrival metadata for each message; we call
this the spy-based adversary. An example of a spy-based adversary would be a law-enforcement
agency that creates fake accounts within a social network in order to monitor what traffic gets
passed around at what time. Both of these adversaries use their observed information to infer the

CHAPTER 1. INTRODUCTION 5

true author of a given message. We describe these adversaries more precisely in Chapter 2.

Figure 1.3: Spread of message under standard diffusion (left) and under adaptive diffusion (right).

Contributions:

• We describe the adaptive diffusion spreading protocol in detail, and prove that it exhibits
optimal anonymity properties against a snapshot adversary when the underlying contact net-
work is a regular tree. The key intuition behind adaptive diffusion is that it does not spread
content symmetrically. Figure 1.3 illustrates the approach taken by most existing services,
often modeled mathematically by diffusion (left panel). Adaptive diffusion (right panel)
breaks the symmetry of diffusion by disseminating content quickly in some directions and
slowly in others.

• We show that even under the stronger spy-based adversarial model, adaptive diffusion has
asymptotically optimal hiding properties, in the degree of the underlying, regular tree.

• We demonstrate through simulation that when the underlying network is a real social graph
(e.g., a subset of the Facebook social graph), adaptive diffusion spreads the message quickly
and achieves nearly optimal hiding under both adversarial models.

Chapter 3: (Private Information Retrieval in Unsynchronized Environments) Privately searching
data is closely related to the easier problem of privately retrieving data—a problem in which the
address of the desired content is already known to the client (Figure 1.4). Understanding how to
retrieve data privately is a critical building block in designing private search algorithms. Private
information retrieval (PIR) algorithms enable a user to retrieve thewth record of a database without
revealing w to the server. However, even this easier problem is not solved in a practical sense,
especially in the critical use-case of distributed architectures.

The problems with distributed PIR arise in a subclass of schemes called multi-server PIR,
which make use of multiple, non-colluding servers. Multi-server PIR algorithms are significant
for two main reasons: (a) they are orders of magnitude more efficient than the corresponding

CHAPTER 1. INTRODUCTION 6

2

(1) RetrievalRecord 3

Jane (2) Search

Name First City

Doe Jane NYC

James Scott ATL

Ellis Jane SF

Wang Amy NYC

Client

Figure 1.4: Our goal is to enable efficient, privacy-preserving search, in which the client’s query
remains unknown to the server. We tackle this by first considering the simpler problem of retrieval.

single-server PIR algorithms [81], and (b) they naturally fit in with our collaborative, distributed
model of privacy. However, existing multi-server PIR schemes assume that each server possesses
an identical copy of the database. This condition is likely to fail in distributed systems like peer-
to-peer networks, where issues like stale content are commonplace due to mis-synchronization
between nodes.

Thus, an important step in developing scalable private search algorithms is to first develop PIR
algorithms that can handle stale data on distributed nodes. The literature does not provide any
private retrieval solutions when servers do not store perfectly-identical, or synchronized databases.

Contributions:

• We propose the first multi-server PIR scheme to return the desired record even when servers’
databases are not perfectly synchronized.

• We show both theoretically and through simulation that our scheme asymptotically has the
same computational and communication complexity as state-of-the-art PIR schemes for syn-
chronized databases; this comes at the expense of probabilistic success and two rounds of
communication (most existing schemes require only one). Additionally, this approach effi-
ciently processes multiple concurrent PIR queries.

Chapter 4: (Efficient Private Search with Conjunctive Queries) Armed with the robust private re-
trieval algorithm from Chapter 3, we revisit our overarching goal of private search. Private stream-
ing search (PSS) algorithms allow users to conduct keyword queries on a collection of documents,
without revealing those keywords to the server [83]. Although we are not explicitly interested in
streaming applications, PSS algorithms are the main existing approach to privacy-preserving key-
word searches over public data. A PSS algorithm returns a list of all documents in a collection
containing the queried keyword(s). However, most existing PSS schemes are very inefficient due
to reliance on computationally-heavy cryptographic tools, like homomorphic encryption [100, 81].

Although there has been some research on expanding PSS to multi-server architectures [24, 80],
most work in this space has focused on single-server architectures [10, 49, 113, 82]. Meanwhile, a
primary take-away message of the PIR literature is that multi-server architectures enable significant
efficiency gains compared to single-server architectures. Similar gains in the PSS domain could

CHAPTER 1. INTRODUCTION 7

bring privacy-preserving keyword searches closer to reality. However, to harness these gains, there
are practical, algorithmic question specific to keyword queries that have not yet been answered.
For example, how does one process conjunctive keyword queries in a distributed architecture? In
existing schemes, if a client enters more than one keyword (e.g., “Joseph Smith”), PSS algorithms
return all documents that contain at least one of the keywords. The resulting client-side expense
of identifying documents that contain all the desired keywords can be prohibitive. Given that most
search engine queries are longer than one word [66], this is a significant barrier to the adoption of
private search algorithms.

In this chapter, we lower these practical barriers by proposing distributed private search algo-
rithms that are: (a) computationally more efficient than single-server cryptographic alternatives,
and (b) able to handle practical, conjunctive queries. The algorithms in this chapter use PIR as
a building block, but more fundamentally, they rely on the algorithmic application of distributed
source coding introduced in Chapter 3.

Contributions:

• We present a private search algorithm that is designed to efficiently process multi-keyword,
or conjunctive, queries. Notably, this method has a communication cost that scales with the
number of documents with all the desired keywords; this has not been possible in prior work.

Chapter 5: (Future Work and Conclusions) We discuss some important directions for future re-
search. We reiterate the contributions of this work and explain how they fit into the larger picture
of enabling practical, privacy-preserving messaging and search.

8

Chapter 2

Anonymous Message Spreading

In this chapter, we study a basic building block of the messaging protocol that would underpin
truly anonymous microblogging platform – how to anonymously broadcast a single message on
a contact network, even in the face of a strong deanonymizing adversary with access to metadata.
Specifically, we focus on anonymous microblogging built atop an underlying social network, such
as a network of phone contacts or Facebook friends.

Adversaries
We consider three adversarial models, which capture different approaches to collecting metadata.
In each case, the underlying contact network is modeled as a graph that is known to the adversary.
Beyond knowing the underlying graph, the adversary could proceed in a few different ways:

The adversary might use side channels to infer whether a node is infected, i.e., whether it
received the message. If an adversary collects only infection metadata for all network users, we
call it a snapshot adversary. This could represent a state-level adversary that attends a Twitter-
organized protest; it implicitly learns who received the protest advertisement, but not the associated
metadata. The snapshot adversary is well-studied in the literature, primarily in the related problem
of source identification [94, 109, 89, 46, 71].

Alternatively, the adversary might explicitly corrupt some fraction of nodes by bribery or co-
ercion; these corrupted spy nodes could pass along metadata like message timestamps and relay
IDs. If an adversary only collects information from spies, we call it a spy-based adversary. A
spy-based adversary could represent a government agency participating in social media to study
users, for instance. The adversary’s reach may be limited by factors like account creation, contact
network structure [31], or the cost of corrupting participants.

Finally, an adversary might employ a hybrid of these approaches. If an adversary uses spies
and a snapshot, we call it a spy+snapshot adversary. This is the strongest adversarial model we
consider.

This chapter is based on joint work with Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and Pramod
Viswanath [41, 40].

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 9

Spreading models
In social networks, messages are typically propagated based on users’ approval, which is expressed
via liking, sharing or retweeting. This mechanism, which enables social filtering and reduces
spam, has inherent random delays associated with each user’s time of impression and decision to
“like” the message (or not). Standard models of rumor spreading in networks explicitly model
such random delays via a diffusion process: messages are spread independently over different
edges with a fixed probability of spreading (discrete time model) or an exponential spreading time
(continuous time model). The designer can partially control the spreading rate by introducing
artificial delays on top of the usual random delays due to users’ approval of the messages.

We model this physical setup as a discrete-time system. At time t = 0, a single user v∗ ∈
V starts to spread a message over the contact network G = (V,E) where users and contacts
are represented by nodes and edges, respectively. Upon receiving the message, nodes approve
it immediately. The assumption that all nodes are willing to approve and pass the message is
common in rumor spreading analysis [94, 93, 118]. However, by assuming message approval
is immediate, we abstract away the natural random delays typically modeled by diffusion. At
the following timestep, the protocol decides which neighbors will receive the message, and how
much propagation delay to introduce. Given this control, the system designer wishes to design a
spreading protocol that makes message source inference difficult.

Specifically, after T timesteps, let VT ⊆ V , GT , and NT , |VT | denote the set of infected
nodes, the subgraph of G containing only VT , and the number of infected nodes, respectively. at
a given time T , the adversary uses all available metadata to estimate the source. We assume no
prior knowledge of the source, so the adversary computes a maximum-likelihood (ML) estimate
of the source v̂ML. We desire a spreading protocol that minimizes the probability of detection
PD = P(v̂ML = v∗).

Current state-of-the-art: Diffusion is commonly used to model epidemic propagation over con-
tact networks. While simplistic (it ignores factors like individual user preferences), diffusion is a
commonly-studied and useful model due to its simplicity and first-order approximation of actual
propagation dynamics. Critically, it captures the symmetric spreading used by most social media
platforms.

However, diffusion has been shown to exhibit poor anonymity properties; under the adversarial
models we consider, the source can be identified reliably [94, 86]. We therefore seek a different
spreading model with strong anonymity guarantees. We wish to achieve the following performance
metrics:

(a) We say a protocol has an order-optimal rate of spread if the expected time for the message to
reach n nodes scales linearly compared to the time required by the fastest spreading protocol.

(b) We say a protocol achieves a perfect obfuscation if the probability of source detection for
the maximum likelihood estimator is order-optimal. The definition of optimality differs for
different adversarial models, so we define this metric separately for each adversarial model.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 10

Figure 2.1: Illustration of a spread of infection when spreading immediately (left) and under adap-
tive diffusion (right).

Contributions
We introduce adaptive diffusion, a novel messaging protocol with provable author anonymity
guarantees against all of the discussed adversarial models. Whereas diffusion spreads the message
symmetircally in all directions, adaptive diffusion breaks that symmetry (Figure 2.1). This has
different implications for different adversarial models, but it consistently yields stronger anonymity
guarantees than diffusion. Adaptive diffusion is also inherently distributed and spreads messages
fast, i.e., the time it takes adaptive diffusion to reach n users is at most twice the time it takes the
fastest spreading scheme which immediately passes the message to all its neighbors.

We prove that over d-regular trees, adaptive diffusion provides perfect obfuscation of the source
under the snapshot adversarial model. That is, the likelihood of an infected user being the source of
the infection is equal among all infected users. Under the spy-based adversarial model, we prove
that adaptive diffusion achieves optimal obfuscation, asymptotically in the degree of the underlying
tree. For both adversarial models, we derive exact expressions for the probability of detection, and
show they are optimal by providing a matching fundamental lower bound.

In practice, the contact networks are not regular infinite trees. For a general class of graphs
which can be finite, irregular and have cycles, we provide results of numerical experiments on
real-world social networks and synthetic networks showing that the protocol hides the source at
nearly the best possible level of obfuscation under both adversarial models. Further, for a specific
family of random irregular infinite trees, known as Galton-Watson trees, we characterize the
probability of detection under adaptive diffusion. In the process, we prove a strong concentration
for the extreme paths in the Galton-Watson tree that consists of nodes with large degrees, which
might be of independent interest.

Finally, we show that even if the adversary has both types of metadata, as in the spy+snapshot
adversary, the detection probability is close to that of weaker adversaries, which observe only one
type of metadata.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 11

Related Work
Anonymous broadcast messaging has been an active research area since the 1980s. The main
thread of work in this area stems from the seminal dining cryptographers problem, and is solved
by so-called DC-nets. We start by describing DC-nets, as well as some alternative approaches to
anonymous broadcast messaging; we then explain why none of these approaches fully addresses
our question of interest.

Dining cryptographer networks. Anonymous broadcast messaging was first studied by Chaum in
his seminal work on the dining cryptographers problem [22]. The dining cryptographers’ problem
considers a scenario in which a group of cryptographers goes out to dinner, all seated around a
table. After the meal, they wish to determine if one of them paid the bill, but for the sake of
propriety, nobody should learn who paid the bill. Note that this problem setup is equivalent to that
of a single user anonymously broadcasting a single bit, while the rest of the network participants
stay silent.

Chaum’s solution, commonly referred to as a dining cryptographer network, or a DC-net, uses
pairwise shared secrets between users and the broadcast channel to compute an aggregate bit,
which is 1 if any of the cryptographers paid the bill, and 0 otherwise [22]. This enables a single
individual to broadcast a bit in such a way that the true author of the bit remains anonymous with
information-theoretic guarantees.

The dining cryptographers’ problem implicitly assumes the use of a complete connectivity
graph, since each cryptographer shares a one-bit function output with every other participant. No-
tably, in order for one participant to broadcast a single bit anonymously, each non-communicating
participant must also broadcast one bit to the entire network. In addition, each user must have
shared, secret randomness with other users in the network. This introduces scalability chal-
lenges, which have impeded the development of large-scale systems for DC-net-based anonymous
broadcasting. The dining cryptographers’ adversarial model and problem setup were subsequently
adopted in a number of works, with the primary goal of making DC-nets more scalable and robust
to stronger adversaries. For example, the ‘dining cryptographers in the disco’ problem proposes
schemes that have stronger guarantees on unconditional untraceability, even when the adversary
is able to partially hijack communications and when there are Byzantine participants [108]. In a
similar vein, Golle and Juels propose a DC-net construction that is robust to Byzantine participants
while retaining the attractive non-interactive property of the original DC-net [53].

Research on DC-nets also moved beyond the construction of primitives to actual system-
building. For example, Herbivore is a system that uses DC-nets for anonymous point-to-point
communication [50]. DC-nets are designed for sender untraceability, but Herbivore harnesses the
fact that by virtue of being a broadcast tool, they also provide receiver untraceability. Therefore,
it divides the population into small anonymizing cliques. When Alice wants to send a message to
Bob, she first broadcasts the message to her anonymizing clique, which then gets routed to Bob’s
anonymizing clique. Herbivore managed to scale by reducing the size of each DC-net; however,
this limits the anonymity that can be achieved. Another anonymous broadcast system build atop
DC-nets is Dissent [28, 112]. Dissent provides stronger accountability against misbehaving par-

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 12

ties by preventing a malicious party from flooding the network with spam messages or preventing
legitimate nodes from transmitting. It also considers the case where the communication load is
asymmetric; for instance, one party wishes to transmit a large file, while the other participants do
not wish to transmit anything. The strength and relative scalability of Dissent stems from its use of
a shuffle protocol, which guarantees each party one transmit slot during each round of operation.
This prevents malicious parties from corrupting other parties’ transmissions. However, the original
Dissent project scaled to 40 nodes, and even the follow-up work on improving scalability ran on
600 nodes.

We aim to build robust algorithms that can scale to millions of nodes. While DC-nets provide
strong, provable anonymity guarantees, current constructions do not yet scale to the numbers of
users seen in popular social networks, which motivates our completely different approach. An-
other difference from DC-nets is that we consider a different adversarial model. Whereas DC-nets
provide privacy against worst-case coalitions of nodes in the network, we consider a weaker ad-
versary that can either corrupt a constant fraction of nodes, or observe message’s spread at a fixed,
unknown point in time. These relaxations of the adversarial model allow us to provide strong
privacy guarantees in a distributed, robust fashion.

Other approaches. In recent years, a number of alternative approaches to anonymous broad-
cast messaging have arisen. One of these is Riposte [27]. Riposte uses a clever adaptation of
multi-server PIR [23] to enable a user to anonymously write messages to a bulletin board. An-
other closely-related approach is to use an anonymous point-to-point communication like Tor [35]
to send messages to a public message board. These approaches are scalable (especially when
compared to DC-nets), but bulletin boards may be susceptible to spam, since there is no inherent
filtering of content.

In the industrial sphere, several anonymous messaging apps have emerged recently, including
the now-defunct Secret [2], Whisper [3], and Yik Yak [4]. These applications, which are grow-
ing in popularity [26], allow a user to post a microblogging message. The service then spreads
the message to the user’s contacts without displaying any authorship metadata. However, these
services provide no real anonymity guarantees, because authorship metadata is stored on a central-
ized server, which may be visible to nosy employees, the government, or hackers. Indeed, there is
evidence of such information being passed to third parties by Whisper [67].

Unlike approaches for anonymously posting to a bulletin board, we assume messages can only
spread over an underlying connectivity graph, such as a social graph. This architecture mimics
existing anonymous messaging systems like Secret, Whisper, and Yik Yak, which use connectivity
graphs to provide social filtering. However, unlike these industrial solutions, we aim to provide
provable anonymity guarantees, even against the service provider itself; we do this by adopting
a distributed architecture and developing new algorithms that prevent a strong adversary from
learning authorship metadata from a limited view of network traffic. Thus, our work represents
a significant departure from existing work, both in terms of problem formulation and technical
approach.

Within the realm of statistical message spreading models, the problem of detecting the origin of
an epidemic or the source of a rumor has been studied under the diffusion model. Recent advances

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 13

in [94, 93, 109, 89, 46, 71, 118, 75, 77, 74, 76] show that it is possible to identify the source within
a few hops with high probability. Consider an adversary who has access to the underlying contact
network of friendship links and the snapshot of infected nodes at a certain time. The problem
of locating a rumor source, first posed in [94], naturally corresponds to graph-centrality-based
inference algorithms: for a continuous time model, [94, 93] used the rumor centrality measure to
correctly identify the source after time T (with probability converging to a positive number for large
d-regular and random trees, and with probability proportional to 1/

√
T for lines). The probability

of identifying the source increases even further when multiple infections from the same source
are observed [109]. With multiple sources of infections, spectral methods have been proposed for
estimating the number of sources and the set of source nodes in [89, 46]. When infected nodes
are allowed to recover as in the susceptible-infected-recovered (SIR) model, Jordan centrality was
proposed in [71, 118] to estimate the source. In [118], it is shown that the Jordan center is still
within a bounded hop distance from the true source with high probability, independent of the
number of infected nodes.

When the adversary collects timestamps (and other metadata) from spy nodes, standard dif-
fusion reveals the location of the source [86, 118, 68]. However, ML estimation is known to be
NP-hard [117], and analyzing the probability of detection is also challenging. Nonetheless, even
with suboptimal estimators, the source can be effectively identified [86, 118].

Under natural and diffusion-based message spreading – as seen in almost every content-sharing
platform today – an adversary with some side-information can identify the rumor source with high
confidence. We overcome this vulnerability by asking the reverse question: can we design mes-
saging protocols that spread fast while protecting the anonymity of the source? Related challenges
include (a) identifying the best algorithm that the adversary might use to infer the location of the
source; (b) providing analytical guarantees for the proposed spreading model; and (c) identifying
the fundamental limit on what any spreading model can achieve. We address all of these chal-
lenges for snapshot adversarial model (Section 2.2), spy-based adversarial model (Section 2.3),
and finally the spy+snapshot model (Section 2.4).

Our work fits into a larger ecosystem that enables anonymous messaging; we implicitly assume
that the ecosystem is healthy. For instance, we assume that nodes communicate securely in a
distributed fashion, but anonymity-preserving, peer-to-peer (P2P) address lookup is still an active
research area [19], as is privacy-preserving distributed data storage in P2P systems [60]. We do
not consider adversaries that operate below the application layer (e.g., by monitoring the network
or even physical layer) [111, 99]. Lower-level solutions may be more appropriate against such
an opponent, harnessing factors like physical proximity of users [1]. In that space, physical layer
security and privacy attacks pose a very real threat, as has been documented extensively in prior
work [8, 30, 62].

Organization
The remainder of this chapter is organized as follows: To begin, we introduce the general adaptive
diffusion protocol in Section 2.1. In Section 2.2, we describe how to specialize adaptive diffusion
under a snapshot adversarial model. In Section 2.3, we describe how to apply adaptive diffusion

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 14

under a spy-based adversarial model. Combining the key insights of these two approaches, we
introduce results from the spy+snapshot adversarial model in Section 2.4. For each adversarial
model, we first describe the precise version of adaptive diffusion that applies to infinite d-regular
trees, and prove that it achieves perfect obfuscation of the source. We then provide extensions
to irregular trees. We conclude by presenting simulated results over real graphs: finite, irregular,
and containing cycles. In Section 2.5, we make a connection between the adaptive diffusion on
a line and the Pólya’s urn process. This connection, while interesting in itself, provides a novel
analysis technique for precisely capturing the price of control packets that are passed along with
the messages in order to coordinate the spread of messages as per adaptive diffusion. Finally, in
Section 2.6, we reiterate the main conclusions to be drawn from this chapter.

2.1 Adaptive diffusion
In this section, we describe adaptive diffusion in its most general form, and leave for later sections
the specific choice of parameters involved. For the purpose of introducing adaptive diffusion, we
specifically on an infinite d-regular tree as the underlying contact network.

We step through the intuition of the adaptive diffusion spreading model with an example, par-
tially illustrated in Figure 2.2. The precise algorithm description is provided in Protocol 1. Adap-
tive diffusion ensures that the infected subgraph Gt at any even timestep t ∈ {2, 4, . . .} is a bal-
anced tree of depth t/2, i.e. the hop distance from any leaf to the root (or the center of the graph) is
t/2. We call the root node of Gt the “virtual source” at time t, and denote it by vt. We use v0 = v∗

to denote the true source. To keep the regular structure at even timesteps, we use the odd timesteps
to transition from one regular subtree Gt to another one Gt+2 with depth incremented by one.

More concretely, the first three steps are always the same. At time t = 0, the rumor source
v∗ selects, uniformly at random, one of its neighbors to be the virtual source v2; at time t = 1,
v∗ passes the message to v2. Next at t = 2, the new virtual source v2 infects all its uninfected
neighbors forming G2 (see Figure 2.2). Then node v2 chooses to either keep the virtual source
token or to pass it along.

If v2 chooses to remain the virtual source i.e., v4 = v2, it passes ‘infection messages’ to all the
leaf nodes in the infected subtree, telling each leaf to infect all its uninfected neighbors. Since the
virtual source is not connected to the leaf nodes in the infected subtree, these infection messages get
relayed by the interior nodes of the subtree. This leads to Nt messages getting passed in total (we
assume this happens instantaneously). These messages cause the rumor to spread symmetrically
in all directions at t = 3. At t = 4, no spreading occurs (Figure 2.2, right panel).

If v2 does not choose to remain the virtual source, it passes the virtual source token to a ran-
domly chosen neighbor v4, excluding the previous virtual source (in this example, v0). Thus, if
the virtual source moves, it moves away from the true source by one hop. Once v4 receives the
virtual source token, it sends out infection messages. However, these messages do not get passed
back in the direction of the previous virtual source. This causes the infection to spread asymmet-
rically over only one subtree of the infected graph (G3 in Figure 2.2, left panel). In the subsequent
timestep (t = 4), the virtual source remains fixed and passes the same infection messages again.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 15

After this second round of asymmetric spreading, the infected graph is once again symmetric about
the virtual source v4 (G4 in Figure 2.2, left panel).

Adaptive diffusion uses significant amounts of control information to coordinate the spread. In
some adversarial models (snapshot), this control information does not hurt anonymity; in others
(spy-based), it can be problematic. We therefore introduce different implementations of adaptive
diffusion as needed, using different amounts of control information.

In any implementation, the resulting distribution of the random infection process is the same
(if the same parameters αd(t, h) are used). This random infection process can be defined as a
time-inhomogeneous (time-dependent) Markov chain over the state defined by the location of the
current virtual source {vt}t∈{0,2,4,...}. By the symmetry of the underlying contact network (which
we assume is an infinite d-regular tree) and the fact that the next virtual source is chosen uni-
formly at random among the neighbors of the current virtual source, it is sufficient to consider a
Markov chain over the hop distance between the true source v∗ and vt, the virtual source at time t.
Therefore, we design a Markov chain over the state

ht = δH(v∗, vt) ,

for even t. Figure 2.2 shows an example with (h2, h4) = (1, 2) on the left and (h2, h4) = (1, 1) on
the right.

At every even timestep, the protocol randomly determines whether to keep the virtual source
token (ht+2 = ht) or to pass it (ht+2 = ht + 1). We specify the resulting time-inhomogeneous
Markov chain over {ht}t∈{2,4,6,...} by choosing appropriate transition probabilities as a function of
time t and current state ht. For even t, we denote this probability by

αd(t, h) , P
(
ht+2 = ht|ht = h

)
, (2.1)

2

1

4

10

0 3

5

11
12

13

1G

2G

3G

4G

1

0

2

5

4

8 9

3

7

6

1G

2G

3 4G G

Figure 2.2: Adaptive diffusion over regular trees. Yellow nodes indicate the set of virtual sources
(past and present), and for T = 4, the virtual source node is outlined in red.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 16

Algorithm 1 Adaptive Diffusion
Input: contact network G = (V,E), source v∗, time T , degree d
Output: set of infected nodes VT

1: V0 ← {v∗}, h← 0, v0 ← v∗

2: v∗ selects one of its neighbors u at random
3: V1 ← V0 ∪ {u}, h← 1, v1 ← u
4: let N(u) represent u’s neighbors
5: V2 ← V1 ∪N(u) \ {v∗}, v2 ← v1

6: t← 3
7: for t ≤ T do
8: vt−1 selects a random variable X ∼ U(0, 1)
9: if X ≤ αd(t− 1, h) then

10: for all v ∈ N(vt−1) do
11: Infection Message(G,vt−1,v,Gt)
12: else
13: vt−1 randomly selects u ∈ N(vt−1) \ {vt−2}
14: h← h+ 1
15: vt ← u
16: for all v ∈ N(vt) \ {vt−1} do
17: Infection Message(G,vt,v,Vt)
18: if t+ 1 > T then
19: break
20: Infection Message(G,vt,v,Vt)
21: t← t+ 2

22: procedure INFECTION MESSAGE(G,u,v,Vt)
23: if v ∈ Vt then
24: for all w ∈ N(v) \ {u} do
25: Infection Message(G,v,w,Gt)
26: else
27: Vt ← Vt−2 ∪ {v}

where the subscript d denotes the degree of the underlying contact network. In Figure 2.2, at t = 2,
the virtual source remains at the current node (right) with probability α3(2, 1), or passes the virtual
source to a neighbor with probability 1 − α3(2, 1) (left). The parameters αd(t, h) fully describe
the transition probability of the Markov chain defined over ht ∈ {1, 2, . . . , t/2}. For example,
if we choose αd(t, h) = 1 for all t and h, then the virtual source never moves for t > 1. The
message spreads almost symmetrically, so the source can be caught with high probability, much
like diffusion. If we instead choose αd(t, h) = 0 for all t and h, the virtual source always moves.
This ensures that the source is always at one of the leaves of the infected subgraph. We return to
this special case when addressing spy-based adversaries in Section 2.3.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 17

The real challenge, then, is choosing the parameters αd(t, h), which fully specify the virtual
source transition probabilities. These parameters can significantly alter the anonymity and spread-
ing properties of adaptive diffusion. In this work, we explain how to choose this parameter αd to
achieve desired source obfuscation.

2.2 Snapshot-based adversarial model
Under the snapshot adversarial model, an adversary observes the infected subgraph GT at a cer-
tain time T and produces an estimate v̂ of the source v∗ of the message. Since the adversary is
assumed to not have any prior information on which node is likely to be the source, we analyze the
performance of the maximum likelihood estimator

v̂ML = arg max
v∈GT

P(GT |v). (2.2)

We show that adaptive diffusion with appropriate parameters can achieve perfect obfuscation, i.e.
the probability of detection for the ML estimator when n nodes are infected is close to 1/n:

P
(
v̂ML = v∗|NT = n

)
=

1

n
+ o
(1

n

)
. (2.3)

This is the best source obfuscation that can be achieved by any protocol, since there are only n
candidates for the source and they are all equally likely.

Main Result (Snapshot Model)
In this section, we show that for appropriate choice of parameters αd(t, h), we can achieve both
fast spreading and perfect obfuscation over d-regular trees. We start by giving baseline spreading
rates for deterministic spreading and diffusion.

Given a contact network of an infinite d-regular tree, d > 2, consider the following determin-
istic spreading protocol. At time t = 1, the source node infects all its neighbors. At t ≥ 2, the
nodes at the boundary of the infection spread the message to their uninfected neighbors. Thus, the
message spreads one hop in every direction at each timestep. This approach is the fastest-possible
spreading, infecting NT = 1 + d((d − 1)T − 1)/(d − 2) nodes at time T , but the source is triv-
ially identified as the center of the infected subtree. In this case, the infected subtree is a balanced
regular tree where all leaves are at equal depth from the source.

Now consider a random diffusion model. At each timestep, each uninfected neighbor of an
infected node is independently infected with probability q. In this case, E[NT] = 1 + qd((d −
1)T−1)/(d−2), and it was shown in [94] that the probability of correct detection for the maximum
likelihood estimator of the rumor source is P(v̂ML = v∗) ≥ Cd for some positive constant Cd that
only depends on the degree d. Hence, the source is only hidden in a constant number of nodes
close to the center, even when the total number of infected nodes is arbitrarily large.

Now we consider the spreading and anonymity properties of adaptive diffusion. Let p(t) =

[p
(t)
h]h∈{1,...,t/2} denote the distribution of the state of the Markov chain at time t, i.e. p(t)

h = P(ht =

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 18

h). The state transition can be represented as the following ((t/2)+1)×(t/2) dimensional column
stochastic matrices:

p(t+2) =

αd(t, 1)

1− αd(t, 1) αd(t, 2)

1− αd(t, 2)
. . .
. . . αd(t, t/2)

1− αd(t, t/2)

 p(t).

We treat ht as strictly positive, because at time t = 0, when h0 = 0, the virtual source is always
passed. Thus, ht ≥ 1 afterwards. At all even t, we desire p(t) to be

p(t) =
d− 2

(d− 1)t/2 − 1

1

(d− 1)
...

(d− 1)t/2−1

 ∈ Rt/2 , (2.4)

for d > 2 and for d = 2, p(t) = (2/t)1t/2 where 1t/2 is all ones vector in Rt/2. There are d(d−1)h−1

nodes at distance h from the virtual source, and by symmetry all of them are equally likely to have
been the source:

P(GT |v∗, δH(v∗, vt) = h) =
1

d(d− 1)h−1
p

(t)
h

=
d− 2

d((d− 1)t/2 − 1)
,

for d > 2, which is independent of h. Hence, all the infected nodes (except for the virtual source)
are equally likely to have been the source of the origin. This statement is made precise in Equation
(2.7).

Together with the desired probability distribution in Equation (2.4), this gives a recursion over
t and h for computing the appropriate αd(t, h)’s. After some algebra and an initial state p(2) = 1,
we get that the following choice ensures the desired Equation (2.4):

αd(t, h) =

{
(d−1)t/2−h+1−1

(d−1)t/2+1−1
if d > 2

t−2h+2
t+2

if d = 2
(2.5)

With this choice of parameters, we show that adaptive diffusion spreads fast, infectingNt = O((d−
1)t/2) nodes at time t and each of the nodes except for the virtual source is equally likely to have
been the source.

Theorem 2.2.1. Suppose the contact network is a d-regular tree with d ≥ 2, and one node v∗ in G
starts to spread a message according to Protocol 1 at time t = 0, with αd(t, h) chosen according
to Equation 2.5. At a certain time T ≥ 0 an adversary estimates the location of the source v∗ using
the maximum likelihood estimator v̂ML. The following properties hold for Protocol 1:

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 19

(a) the number of infected nodes at time T is

NT ≥

{
2(d−1)(T+1)/2−d

(d−2)
+ 1 if d > 2

T + 1 if d = 2
(2.6)

(b) the probability of source detection for the maximum likelihood estimator at time T is

P (v̂ML = v∗) ≤
{ d−2

2(d−1)(T+1)/2−d if d > 2

(1/T) if d = 2
(2.7)

(c) the expected hop-distance between the true source v∗ and its estimate v̂ML under maximum
likelihood estimation is lower bounded by

E[d(v̂ML, v
∗)] ≥ d− 1

d

T

2
. (2.8)

(Proof in Section A)
Although this choice of parameters achieves perfect obfuscation, the spreading rate is slower

than the deterministic spreading model, which infects O((d− 1)T) nodes at time T . However, this
type of constant-factor loss in the spreading rate is inevitable: the only way to deviate from the
deterministic spreading model is to introduce appropriate delays.

In order to spread according to adaptive diffusion with the prescribed αd(h, t), the system needs
to know the degree d of the underlying contact network. However, performance is insensitive to
knowledge of d for certain parameter settings, as shown in the following proposition. Specifically,
one can choose αd(h, t) = 0 for all d, h, and t and still achieve performance comparable to the
optimal choice. The main idea is that there are as many nodes in the boundary of the snapshot (leaf
nodes) as there are in the interior, so it is sufficient to hide among the leaves. One caveat is that if
the underlying contact network is a line (i.e. d = 2) then this approach fails since there are only
two leaf nodes at any given time, and the probability of detection is trivially 1/2.

Proposition 2.2.1. Suppose that the underlying contact networkG is an infinite d-regular tree with
d > 2, and one node v∗ in G starts to spread a message at time t = 0 according to Protocol 1 with
αd(h, t) = 0 for all d, h, and t. At a certain time T ≥ 1 an adversary estimates the location of the
source v∗ using the maximum likelihood estimator v̂ML. Then the following properties hold for the
Tree Protocol:

(a) the number of infected nodes at time T ≥ 1 is at least

NT ≥
(d− 1)(T+1)/2

d− 2
; (2.9)

(b) the probability of source detection for the maximum likelihood estimator at time T is

P
(
v̂ML = v∗

)
=

d− 1

2 + (d− 2)NT

; and (2.10)

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 20

(c) the expected hop-distance between the true source v∗ and its estimate v̂ is lower bounded by

E[δH(v∗, v̂ML)] ≥ T

2
. (2.11)

(Proof in Section A).

Irregular Trees
In this section, we study adaptive diffusion on irregular trees, with potentially different degrees at
the vertices. Although the degrees are irregular, we still apply adaptive diffusion with αd0(t, h)’s
chosen for a specific d0 that might be mismatched with the graph due to degree irregularities.
There are a few challenges in this degree-mismatched adaptive diffusion. First, finding the max-
imum likelihood estimate of the source is not immediate, due to degree irregularities. Second, it
is not clear a priori which choice of d0 is good. We first show an efficient message-passing algo-
rithm for computing the maximum likelihood source estimate. Using this estimate, we illustrate
through simulations how adaptive diffusion performs and show that the detection probability is
not too sensitive to the choice of d0 as long as d0 is above a threshold that depends on the degree
distribution.

Efficient ML estimation. To keep the discussion simple, we assume that T is even. The same
approach can be naturally extended to odd T . Since the spreading pattern in adaptive diffusion is
entirely deterministic given the sequence of virtual sources at each timestep, computing the likeli-
hood P(GT |v∗ = v) is equivalent to computing the probability of the virtual source moving from
v to vT over T timesteps. On trees, there is only one path from v to vT and since we do not allow
the virtual source to “backtrack”, we only need to compute the probability of every virtual source
sequence (v0, v2, . . . , vT) that meets the constraint v0 = v. Due to the Markov property exhib-
ited by adaptive diffusion, we have P(GT |{(vt, ht)}t∈{2,4,...,T}) =

∏
t<T−1
t even

P(vt+2|vt, ht), where

ht = δH(v0, vt). For t even, P(vt+2|vt, ht) = αd(t, ht) if vt = vt+2 and 1−αd(t,ht)
dvt−1

otherwise. Here
dvt denotes the degree of node vt in G. Given a virtual source trajectory P = (v0, v2, . . . , vT), let
JP = (j1, . . . , jδH(v0,vT)) denote the timesteps at which a new virtual source is introduced, with
1 ≤ ji ≤ T . It always holds that j1 = 2 because after t = 0, the true source chooses a new
virtual source and v2 6= v0. If the virtual source at t = 2 were to keep the token exactly once after
receiving it (so v2 = v4), then j2 = 6, and so forth. To find the likelihood of a node being the true
source, we sum over all such trajectories

P(GT |v0) =
∑

JP :P∈S(v0,vT ,T)

1

dv0

δH(v0,vT)−1∏
k=1

1

dvjk − 1︸ ︷︷ ︸
Av0

×

∏
t<T
t even

(
1{t+2/∈JP}αd(t, ht) + 1{t+2∈JP}(1− αd(t, ht))

)
,

︸ ︷︷ ︸
Bv0

(2.12)

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 21

where 1 is the indicator function and S(v0, vT , T) = {P : P = (v0, v2, . . . , vT) is a valid trajectory
of the virtual source}. Intuitively, part Av0 of the above expression is the probability of choosing

the set of virtual sources specified by P , and part Bv0 is the probability of keeping or passing the
virtual source token at the specified timesteps. Equation (2.12) holds for both regular and irregular
trees. Since the path between two nodes in a tree is unique, and part Av0 is (approximately) the
product of node degrees in that path, Av0 is identical for all trajectories P . Pulling Av0 out of the
summation, we wish to compute the summation over all valid paths P of part Bv0 (for ease of
exposition, we will use Bv0 to refer to this whole summation). Although there are combinatorially
many valid paths, we can simplify the formula in Equation (2.12) for the particular choice of
αd(t, h)’s defined in (2.5).

Proposition 2.2.2. Suppose that the underlying contact network G̃ is an infinite tree with degree
of each node larger than one. One node ṽ∗ in G̃ starts to spread a message at time t = 0 according
to Protocol 1 with the choice of d = d0. At a certain even time T ≥ 0, the maximum likelihood
estimate of ṽ∗ given a snapshot of the infected subtree G̃T is

arg max
v∈G̃T \ṽT

d0

dv

∏
v′∈P (ṽT ,v)\{ṽT ,v}

d0 − 1

dv′ − 1
(2.13)

where ṽT is the (Jordan) center of the infected subtree G̃T , P (ṽT , v) is the unique shortest path
from ṽT to v, and dv′ is the degree of node v′.

To understand this proposition, consider Figure 2.3, which was spread using adaptive diffusion
(Protocol 1) with a choice of d0 = 2. Then Equation (2.13) can be computed easily for each
node, giving [1/2, 1, 0, 1, 2/3, 1/2, 1/2, 1/4] for nodes [1, 2, 3, 4, 5, 6, 7, 8], respectively. Hence,
nodes 2 and 4 are most likely. Intuitively, nodes whose path to the center have small degrees are
more likely. However, if we repeat this estimation assuming d0 = 4, then Equation (2.13) gives
[3, 2, 0, 2, 4/3, 3, 3, 3/2]. In this case, nodes 1, 6, and 7 are most likely. When d0 is large, adaptive
diffusion tends to place the source closer to the leaves of the infected subtree, so leaf nodes are
more likely to have been the source.

21 3

4

5

6

7

8

4v

Figure 2.3: Irregular tree G̃4 with virtual source ṽ4.

Proof of Proposition 2.2.2. We first make two observations: (a) Over regular trees, P(GT |u) =
P(GT |w) for any u 6= w ∈ GT , even if they are different distances from the virtual souce. (b) Part

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 22

Bv0 is identical for regular and irregular graphs, as long as the distance from the candidate source
node to vT is the same in both, and the same d0 is used to compute αd0(t, h). That is, let G̃T denote
an infected subtree over an irregular tree network, with virtual source ṽT , and GT will denote a
regular infected subtree with virtual source vT . For candidate sources ṽ0 ∈ G̃T and v0 ∈ GT , if
δH(ṽT , ṽ0) = δH(vT , v0) = h, then Bv0 = Bṽ0 . So to find the likelihood of ṽ0 ∈ G̃T , we can solve
for Bṽ0 using the likelihood of v0 ∈ GT , and compute Aṽ0 using the degree information of every
node in the infected, irregular subgraph.

To solve for Bṽ0 , note that over regular graphs, Av = 1/(d0 (d0 − 1)δH(v,vT)−1), where d0 is
the degree of the regular graph. If G is a regular tree, Equation (2.12) still applies. Critically,
for regular trees, the αd0(t, h)’s are designed such that the likelihood of each node being the true
source is equal. Hence,

P(GT |v0) =
1

d0(d0 − 1)δH(v0,vT)−1︸ ︷︷ ︸
Av0

×Bv0 , (2.14)

is a constant that does not depend on v0. This gives Bv0 ∝ (d0− 1)δH(vT ,v0). From observation (b),
we have that Bṽ0 = Bv0 . Thus we get that for a ṽ0 ∈ G̃T \ {ṽT},

P(G̃T |ṽ0) = Aṽ0 Bṽ0

∝ (d0 − 1)δH(ṽT ,ṽ0)

dṽ0
∏

ṽ′∈P (ṽT ,ṽ0)\{ṽ0,ṽT }(dṽ′ − 1)

After scaling appropriately and noting that |P (ṽT , ṽ0)| = δH(ṽT , ṽ0) + 1, this gives the formula in
Equation (2.13).

We provide an efficient message passing algorithm for computing the ML estimate in Equation
(2.13), which is naturally distributed. We then use this estimator to simulate message spreading
for random irregular trees and show that when d0 exceeds a threshold (determined by the degree
distribution), obfuscation is not too sensitive to the choice of d0.

Aṽ0 can be computed efficiently for irregular graphs with a simple message-passing algorithm.
In this algorithm, each node ṽ multiplies its degree information by a cumulative likelihood that
gets passed from the virtual source to the leaves. Thus if there are ÑT infected nodes in G̃T , then
Aṽ0 for every ṽ0 ∈ G̃T can be computed by passing O(ÑT) messages. This message-passing is
outlined in procedure ‘Degree Message’ of Algorithm 2. For example, consider computing A5 for
the graph in Figure 2.3. The virtual source ṽT = 3 starts by setting A2 = 1

2
, A4 = 1

2
, and A5 = 1

3
.

This gives A5, but to compute other other values of Aw̃, the message passing continues. Each of
the nodes ṽ ∈ N(3) in turn sets Aw̃ for their children w̃ ∈ N(ṽ); this is done by dividing Aṽ by dw̃
and replacing the factor of 1

dṽ
in Aṽ with 1

dṽ−1
. For example, node 5 would set A7 = A5

2
· 3

2
. This

step is applied recursively until reaching the leaves.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 23

Algorithm 2 Implementation of ML estimator in (2.13)
Input: infected network G̃T = (ṼT , ẼT), virtual source ṽT , time T , the spreading model parame-

ter d0

Output: argmaxṽ∈ṼT P(G̃T |ṽ∗ = ṽ)

1: Pṽ , P(G̃T |ṽ∗ = ṽ).
2: PṽT ← 0
3: Aṽ ← 1 for ṽ ∈ ṼT \ {ṽT}
4: AṽT ← 0
5: A← Degree Message(GT , ṽT , ṽT , A)
6: P(GT |vleaf)← 1

d0(d0−1)T/2−1

∏
t<T
t even

(1− αd0(t, t2))}
7: for all ṽ ∈ ṼT \ {ṽT} do
8: h← δH(ṽ, ṽT)
9: Bṽ ← P(GT |vleaf) · d0 · (d0 − 1)h−1

10: Pṽ ← Aṽ ·Bṽ
return argmaxṽ∈ṼTPṽ

11: procedure DEGREE MESSAGE(G̃T , ũ, ṽ, A)
12: for all w̃ ∈ N(ṽ) \ {ũ} do
13: if ṽ = ũ then
14: Aw̃ ← Aṽ/dw̃
15: Degree Message(G̃T , ṽ, w̃, A)
16: else
17: if ṽ is not a leaf then
18: Aw̃ ← Aṽ · dṽ/(dw̃ · (dṽ − 1))
19: Degree Message(G̃T , ṽ, w̃, A)

return A

As discussed earlier, Bṽ0 only depends on d0 and δH(ṽT , ṽ0). If vleaf ∈ GT is a leaf node and G
is a regular tree, we get

P(GT |vleaf) =
1

d0(d0 − 1)T/2−1︸ ︷︷ ︸
Avleaf

∏
t<T
t even

(1− αd0(t,
t

2
))

︸ ︷︷ ︸
Bvleaf

. (2.15)

If ṽ0 is h < T/2 hops from ṽT , then for node v0 with δH(v0, vT) = h < T/2 over a regular tree,

P(GT |v0) = P(GT |vleaf) =
1

d0 · (d0 − 1)h−1
Bv0 .

Finally, Bṽ0 = Bv0 . So to solve for B5 in our example, we compute P(GT |vleaf) for a 3-regular
graph at time T = 4. This gives P(G4|vleaf) = Avleaf · Bvleaf = 1

6
· (1 − α3(2, 1)) = 1

9
. Thus

B5 = P(G4|vleaf) ·d0 · (d0−1)h−1 = P(G4|vleaf) ·3 · (2)0 = 1
3
. This gives P(G̃4|5) = A5 ·B5 = 1

9
.

The same can be done for other nodes in the graph to find the maximum likelihood source estimate.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 24

Probability of detection. In this section, we provide the probability of detection for adaptive dif-
fusion over trees whose node degrees are drawn i.i.d. from some distribution D. However, we
cannot exactly use the ML estimator from Equation 2.13, which assumes the infinite irregular tree
G is given, and the source v∗ is chosen randomly from the nodes of G. Equation 2.13 is the cor-
rect ML estimator in any practical scenario, but analyzing the probability of detection under this
model requires a prior on the (infinitely many) nodes of G. We therefore consider a closely-related
random process, in which we fix a source v∗ and generate G (and consequently, GT) on-the-fly.
Specifically, at time t = 0, v∗ draws a degree dv∗ from D, and generates dv∗ child nodes. The
source picks one of these neighbors uniformly at random to be the new virtual source. Each time
a node v is infected according to Protocol 1, v draws its degree dv from D, then generates dv − 1
child nodes. For example, as soon as v2, neighbor of v∗, receives the virtual source token, it draws
its degree from D and generates dv2 − 1 children. The structure of the underlying, infinite contact
network G is independent of GT conditioned on the uninfected neighbors of the leaves of GT , and
need not be considered. The adversary observes GT , which is an unlabeled snapshot including GT

and its uninfected neighbors. We have that P(v̂MAP = v∗|T) =
∑
GT P(GT |T)P(v̂MAP = v∗|GT).

We first consider P(v̂ML = v∗|GT).

Theorem 2.2.2. Suppose a node v∗ starts to spread a message at time t = 0 according to Protocol
1 with αd(t, h) = 0 for all t, h. The underlying irregular tree is generated according to the random
branching process described above. At a certain even time T ≥ 0, we compute an estimate of v∗

given a snapshot of the infected subtree GT . The following results hold:

(a) The MAP estimator v̂MAP = arg maxv P(v = v∗|GT) is

v̂MAP = arg min
v∈∂GT

∏
w∈φ(v,vT)
\{vT ,v}

(dw − 1) (2.16)

where ∂GT denotes the leaves of GT , and φ(v, vT) denotes the unique shortest path between
leaf v and virtual source vT .

(b) The probability of detection using the estimator in Equation 2.16 is

P(v̂ML = v∗|GT) =
1

dvT min
v∈∂GT

∏
w∈φ(v,vT)
\{vT ,v}

(dw − 1)
. (2.17)

(Proof in Section A).
Given a degree distribution D and parameter T , we characterize the expression in Equation

(2.17). We use D to denote both a random variable and its distribution—the distinction should
be clear from context. The random variable D has support f = (f1, . . . , fη), and probabilities
p = (p1, . . . , pη). As before, we assume each node in the irregular tree has degree at least 2.
Without loss of generality, we assume 2 ≤ f1 < . . . < fη. We also assume the branching process
is not a line graph, so D’s support set has at least two elements, i.e., η ≥ 2.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 25

Theorem 2.2.3. Given a tree GT as defined previously, we define

ΛGT ≡ dvT min
v∈∂GT

∏
w∈φ(v,vT)
\{vT ,v}

(dw − 1).

The following results hold:

(a) If p1(f1 − 1) > 1,

P
(∣∣∣∣ log(ΛGT)

T/2
− log(f1 − 1)

∣∣∣∣ > δ

)
≤ e−CDT (2.18)

for time T ≥ C ′D, where CD and C ′D are constants that depend only on the degree distribu-
tion and the choice of δ > 0.

(b) If p1(f1 − 1) ≤ 1, define the mean number of children as

µD ≡
η∑
i=1

pi(fi − 1)

and the set

RD =
{
r ∈ Sη | log(µD) ≥ DKL(r‖β)

}
, (2.19)

where Sη denotes the η-dimensional probability simplex, DKL(·‖·) denotes KL divergence,
and β is a length-η vector in which βi = pi(fi − 1)/µD. Further, define r∗ as follows:

r∗ = arg min
r∈RD

〈r, log(f − 1)〉 (2.20)

where 〈r, log(f − 1)〉 =
∑η

i=1 ri log (fi − 1). Then for any δ > 0

P
(∣∣∣∣ log(ΛGT)

T/2
− 〈r∗,f〉

∣∣∣∣ > δ

)
≤ e−CD′,δT (2.21)

for all T ≥ C ′D,δ, where CD,δ and C ′D,δ are positive constants that depend only on the degree
distribution D and the choice of δ > 0.

(Proof in Section A).
This theorem says that the probably of detection concentrates in a way that depends heavily on
the minimum degree of the degree distribution. Since the number of total nodes in the tree scales
according to the mean of the degree distribution, not the minimum, adaptive diffusion does not
achieve perfect hiding over irregular trees.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 26

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

Average size of infection (N
T
)

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n,

 P
(v

M
L=

v*)

d
o
=2

d
o
=3

d
o
=4

d
o
=5

d
o
=6

1/N
T

Average size of infection, NT

P(
v̂

=
v
∗)

Figure 2.4: The probability of detection by
the maximum likelihood estimator depends
on the assumed degree d0; the source cannot
hide well below a threshold value of d0.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

Average size of infection (N
T
)

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n,

 P
(v

M
L=

v*)

(3,5)=>(0.5,0.5), d
o
=5

(3,6)=>(0.5,0.5), d
o
=6

(3,7)=>(0.5,0.5), d
o
=7

(3,10)=>(0.5,0.5), d
o
=10

1/N
T

Average size of infection, NT

P(
v̂

=
v
∗)

Figure 2.5: Adaptive diffusion no longer
provides perfect obfuscation for highly ir-
regular graphs.

Simulation studies

We tested adaptive diffusion over random trees; each node’s degree was drawn i.i.d. from a fixed
distribution. Figure 2.4 illustrates simulation results for random trees in which each node has
degree 3 or 4 with equal probability, averaged over 100,000 trials. The number of nodes infected
scales as NT ∼ E[D − 1]T = 2.5T , where D represents the degree distribution of the underlying
random irregular tree. The value of d0 corresponds to a regular tree with size scaling as (d0 − 1)T .
Hence, one can expect that for d0− 1 < 2.5, the source is likely to be in the center of the infection,
and for d0 > 2.45 the source is likely to be at the boundary of the infection. Since the number of
nodes in the boundary is significantly larger than the number of nodes in the center, the detection
probability is lower for d0−1 > 2.5. This is illustrated in the figure, which matches our prediction.
In general, d0 = 1 + dE[D− 1]e provides the best obfuscation, and it is robust for any value above
that. In this plot, data points represent successive even timesteps; their uniform spacing implies
the message is spreading exponentially quickly.

Figure 2.5 illustrates the probability of detection as a function of infection size while varying
the degree distribution of the underlying tree. The notation (3, 5) => (0.5, 0.5) in the legend indi-
cates that each node in the tree has degree 3 or 5, each with probability 0.5. For each distribution
tested, we chose d0 to be the maximum degree of each degree distribution. The average size of
infection scales as NT ∼ E[D − 1]T as expected, whereas the probability of detection scales as
(dmin − 1)−T = 2−T , which is independent of the degree distribution. This suggests that adaptive
diffusion fails to provide near-perfect obfuscation when the underlying graph is irregular, and the
gap increases with the irregularity of the graph.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 27

0 5 10 15

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
(2,3)=>(0.3,0.7), observed
(2,3)=>(0.3,0.7), theoretical
(3,4)=>(0.7,0.3), observed
(3,4)=>(0.7,0.3), theoretical

Even timestep, T/2

lo
g
(P

(v̂
=
v
∗)

)
/

(T
/2

)

Figure 2.6: Empirical verification of Theorems 2.2.2 and 2.2.3. We observe that the probability of
detection converges in time to the predicted values, which depend only on the underlying degree
distribution.

Figure 2.6 empirically checks the predictions in Theorems 2.2.2 and 2.2.3. The distribution
with support f = (3, 4) with probabilities p = (0.5, 0.5) addresses case 1 from the theorem,
where p1(f1 − 1) > 1. The distribution with support f = (2, 3) with probabilities p = (0.3, 0.7)
addresses case 2, where p1(f1 − 1) < 1. In both examples, we observe that the empirical
log(P(v̂ = v∗))/(T/2) converges to the theoretical value predicted in Figure 2.6. However, this
convergence may be slow, and the timestep duration of these experiments was limited by compu-
tational considerations since the graph size grows exponentially in time.

General Graphs
In this section, we demonstrate how adaptive diffusion fares over graphs that involve cycles, ir-
regular degrees, and finite graph size. We provide theoretical guarantees for the special case of
two-dimensional grid graphs, and we show simulated results over a social graph dataset.

Grid graphs

Here, we derive the optimal parameters α(t, h) for spreading with adaptive diffusion over an infi-
nite grid graph, defined as the graph Cartesian product of two infinite line graphs. This example
highlights challenges associated with spreading over cyclic graphs, while still providing a regu-
lar, symmetric structure. To spread over grids, we make some changes to the adaptive diffusion
protocol, outlined in Protocol 8 (grid adaptive diffusion).

First, standard adaptive diffusion requires the virtual source to know its distance from the true
source. Over trees, this information was transmitted by passing a distance counter, ht, that was
incremented each time the virtual source changed; since the network was a tree, this distance from

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 28

1t

2t

3t

4t

2v

4v

*v

Figure 2.7: Grid adaptive diffusion spreading pattern.

the source was non-decreasing as long as the virtual source was non-backtracking. However, on a
cyclic graph (e.g., a grid), the virtual source’s non-backtracking random walk could actually cause
its distance from the true source to decrease with time. We wish to avoid this to preserve adaptive
diffusion’s anonymity guarantees.

Therefore, instead of passing the raw hop distance ht to each new virtual source, grid adap-
tive diffusion passes directional coordinates (hHt , h

V
t) detailing the virtual source’s horizontal and

vertical displacement from the source, respectively. For example, in Figure 2.7, the virtual source
v4 would receive parameters (hHt , h

V
t) = (−1, 1) because it is one hop west and one hop north of

the true source. This indexing assumes some notion of directionality over the underlying contact
network; nodes should know whether they received a message from the north, south, east, or west.
If a virtual source chooses to move, it always passes the token to a node that is further away from
the true source, i.e. |hHt+1|+ |hVt+1| ≥ |hHt |+ |hVt |.

To maintain symmetry about the virtual source, we also modify the message-passing algorithm.
Just as in adaptive diffusion over trees, when a new virtual source sends out branching messages,
it sends them in every direction except that of the old virtual source. However, unlike adaptive
diffusion over trees, each branch message has up to two “forbidden” directions: the direction of
the previous virtual source, and the direction of the node that originated the branching message
(these might be the same). Thus, if a branch message is sent west, and the previous virtual source
was south of the current virtual source, each node would only propagate the message west and/or
north. Whenever a node receives a branch message and its neighbors are not all infected, it infects
all uninfected neighbors. As in adaptive diffusion over trees, two waves of directional branching
messages are sent each time the virtual source moves, in every direction except that of the old
virtual source. If the virtual source instead chooses to stay fixed, then the same rules hold, except
the new virtual source only sends one wave of branch messages, symmetrically in every direction.

Given the spreading protocol, we can choose α(t, h) to give optimal hiding:

α(t, h) =
t− 2(h− 1)

t+ 4
. (2.22)

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 29

Under these conditions, the following result shows that we achieve perfect obfuscation, i.e. P(v̂ML =
v∗) = 1/NT + o(1/NT).

Proposition 2.2.3. Suppose the contact network is an infinite grid, and one node v∗ in G starts
to spread a message according to Protocol 8 (grid adaptive diffusion) at time t = 0, with α(t, h)
chosen according to Equation (2.22). At a certain time T ≥ 0 an adversary estimates the location
of the source v∗ using the maximum likelihood estimator v̂ML. The following properties hold for
Protocol 8:

(a) the number of infected nodes at time T is

NT ≥
(T + 1)2

2
(2.23)

(b) the probability of source detection for the maximum likelihood estimator at time T is

P (v̂ML = v∗) ≤ 2

(T + 3)(T − 1)
. (2.24)

(Proof in Section A)
The baseline infection rate for deterministic, symmetric spreading isNT = T 2 +(T +1)2. Grid

adaptive diffusion infection rate is within a constant factor of this maximum possible rate, and it
achieves perfect obfuscation over grid graphs. The price to pay for this non-tree graph is that (a) a
significant amount of metadata needs to be transmitted to coordinate the spread—particularly with
respect to the directionality of messages; and (b) the position of the nodes w.r.t. a global reference
needs to be known. Hence, the current implementation of the grid adaptive diffusion has a limited
scope, and it remains an open question how to avoid such requirements for grids and still achieve
a perfect obfuscation.

Real-world social graphs

In this section, we provide simulation results from running adaptive diffusion over an underly-
ing connectivity network of 10,000 Facebook users, as described by the Facebook WOSN dataset
[107]. We eliminated all nodes with fewer than three friends (this approach is taken by several
existing anonymous applications so users cannot guess which of their friends originated the mes-
sage), which left us with a network of 9,502 users.

Over this underlying network, we selected a node uniformly at random as the rumor source,
and spread the message using adaptive diffusion for trees. We did not use grid adaptive diffusion
because Protocol 8 assumes the underlying graph has a symmetric structure with a global notion of
directionality, whereas the tree-based adaptive diffusion makes no such assumptions. We set d0 =
∞, which means that the virtual source is always passed to a new node (i.e., αd(t, h) = 0). This
choice is to make the ML source estimation faster; other choices of d0 may outperform this naive
choice. To preserve the symmetry of our constructed trees as much as possible, we constrained

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 30

each infected node to infect a maximum of three other nodes in each timestep. We also give the
adversary access to the undirected infection subtree that explicitly identifies all pairs of nodes for
which one node spread the infection to the other. This subtree is overlaid on the underlying contact
network, which is not necessarily tree-structured. We demonstrate in simulation (Figure 2.8) that
even with this strong side information, the adversary can only identify the true message source
with low probability.

Using the naive method of enumerating every possible message trajectory, it is computationally
expensive to find the exact ML source estimate since there are 2T possible trajectories, depending
on whether the virtual source stayed or moved at each timestep. If the true source is one of the
leaves, we can closely approximate the ML estimate among all leaf nodes, using the same proce-
dure as described in 2.2, with one small modification: in graphs with cycles, the term (dvjk − 1)
from equation (2.12) should be substituted with (duvjk

−1), where duvjk denotes the number of unin-
fected neighbors of vjk at time jk. Loops in the graph cause this value to be time-varying, and also
dependent on the location of v0, the candidate source. We did not approximate the ML estimate
for non-leaves because the simplifications used in Section 2.2 to compute the likelihood no longer
hold, leading to an exponential increase in the problem dimension.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Average size of infection (N
T
)

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

us
in

g
M

L
le

af
 e

st
im

at
e

α = 0 (Source = leaf)
Lower bound on P

D
, 1/N

T

Average size of infection, NT

P(
v̂

=
v
∗)

Figure 2.8: Near-ML probability of detec-
tion for the Facebook graph with adaptive
diffusion.

2 4 6 8 10 12 14

10
0

10
1

Time (T)

H
op

 d
is

ta
nc

e
be

tw
ee

n
so

ur
ce

 a
nd

 e
st

im
at

e

α = 0 (Source = leaf)
Lower bound, (d−1)/d * T/2

Timestep, T

E[
δ H

(v
∗ ,
v̂ M

L
)]

Figure 2.9: Hop distance between true
source and estimated source over infection
subtree for adaptive diffusion over the Face-
book graph.

This approach is only an approximation of the ML estimate because the virtual source could
move in a loop over the social graph (i.e., the same node could be the virtual source more than
once, in nonadjacent timesteps).

On average, adaptive diffusion reached 96 percent of the network within 10 timesteps using
d0 = 4. We also computed the average distance of the true source from the estimated source
over the infected subtree (Figure 2.9). We see that as time progresses, so does the hop distance of

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 31

the estimated source from the true source. In social networks, nearly everyone is within a small
number of hops (say, 6 hops [106]) from everyone else, so this computation is not as informative in
this setting. However, it is relevant in location-based connectivity graphs, which can induce large
hop distances between nodes.

2.3 Spy-based adversarial model
The spy-based adversary is very different from the snapshot adversary. In this section, we prove
that over d-regular trees, choosing αd(t, h) = 0 gives asymptotically optimal hiding in d.

For the spy-based adversary, we model each node other than the source as a spy with probability
p. At some point in time, the source node v∗ starts propagating its message over the graph according
to some spreading protocol (e.g., diffusion or adaptive diffusion). Each spy node si ∈ V observes:
(1) the time Tsi (relative to an absolute reference) at which it receives the message, (2) the parent
node psi that relayed the message, and (3) any other metadata used by the spreading mechanism
(such as control signaling in the message header). At some time, spies aggregate their observations;
using the collected metadata and the structure of the underlying graph, the adversary estimates the
author of the message, v̂.

To define perfect obfuscation for this adversarial model, we first observe the following:

Proposition 2.3.1. Under a spy-based adversary, no spreading protocol can have a probability of
detection less than p.

This results from considering the first-spy estimator, which returns the parent of the first spy to
observe the message. Regardless of spreading, this estimator returns the true source with probabil-
ity at least p; with probability p, the first node (other than the true source) to see the message is a
spy.

We therefore say a protocol achieves perfect obfuscation against a spy-based adversary if the
ML probability of detection conditioned on the spy probability p is bounded by

P
(
v̂ML = v∗|p

)
= p+ o

(
p
)
. (2.25)

For standard diffusion spreading, finding a computationally-efficient algorithm for (near-) opti-
mal maximum likelihood (ML) message source inference is an open problem under the spy-based
adversarial model, as is the corresponding detection probability analysis. Recent works [86, 117]
have focused on identifying the message source through heuristic, low-cost algorithms. These find-
ings suggest that a spy-based adversary with metadata can locate the source with high probability
under diffusion spreading.

Indeed, when the underlying graph is a d-regular tree, the probability of detection increases
over time, since the estimator receives more information. Moreover, it is straightforward to show
that the probability of detection tends to 1 as degree of the underlying graph d→∞:

Proposition 2.3.2. Suppose the contact network is a regular tree with degree d. There is a source
node v∗, and each node other than the source is chosen to be a spy node i.i.d. with probability p as

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 32

described in the spy model. In each timestep, each infected node infects each uninfected neighbor
independently with probability q. Then the probability of detection P(v̂ML = v∗) ≥ 1− (1− qp)d.

This bound implies that as degree increases, the probability of detecting the true source of
diffusion approaches 1. The proposition also results from the first-spy estimator. We consider all
neighbors of v∗ that (a) are spies and (b) receive the message at t = 1. If there is at least one such
node, then the source is identified with probability 1. Each neighbor of v∗ meets these criteria with
probability pq.

These observations suggest that diffusion provides poor anonymity guarantees in real networks;
contact networks may be high degree, and the adversary is not time-constrained.

Main result (Spy-based adversary)
In this section, we prove that over d-regular trees, adaptive diffusion with αd(t, h) = 0 achieves
asymptotically perfect obfuscation in d. We also show that adaptive diffusion hides the source
better than diffusion over d-regular trees, d > 2. However, to prove this result, we require a
modified implementation of adaptive diffusion when αd(t, h) = 0. This implementation, which
we call the Tree Protocol, facilitates analysis and is also fully distributed, avoiding the explicit
notion of a virtual source.

Tree Protocol. Under adaptive diffusion with αd(t, h) = 0, the goal is to build an infected subtree
with the true source at one of the leaves. The Tree Protocol reproduces this spreading pattern by
proceeding as follows: Whenever a node v passes a message to node w, it includes three pieces
of metadata: (1) the parent node pw = v, (2) a binary direction indicator uw ∈ {↑, ↓}, and
(3) the node’s level in the infected subtree mw ∈ N. The parent pw is the node that relayed
the message to w. The direction bit uw flags whether node w is a spine node, responsible for
increasing the depth of the infected subtree. The level mw describes the hop distance from w to the
nearest leaf node in the final infected subtree, as t → ∞. The parent metadata is included purely
to facilitate the adversary’s source estimation. Even with this extra metadata, the tree protocol
achieves asymptotically optimal hiding.

At time t = 0, the source chooses a neighbor uniformly at random (e.g., node 1) and passes
the message and metadata (p1 = 0, u1 =↑, m1 = 1). Figure 2.10 illustrates an example spread
for the non-distributed version of this protocol, which we now adapt for the distributed ver-
sion in Protocol 3. In this example, node 0 initially passes the message to node 1. Yellow
denotes spine nodes, which receive the message with uw =↑, and gray denotes those that re-
ceive it with uw =↓. Whenever a node w receives a message , there are two cases. If uw =↑,
node w forwards the message to another neighbor z chosen uniformly at random with ‘up’ meta-
data: (pz = w, uz =↑, mz = mw + 1). All of w’s remaining neighbors z′ receive the message
with ‘down’ metadata: (pz′ = w, uz′ =↓, mz′ = mw − 1). In Figure 2.10, node 1 passes the
‘up’ message to node 2 and the ‘down’ message to node 3. On the other hand, if uw =↓ and
mw > 0, node w forwards the message to all its remaining neighbors with ‘down’ metadata:
(pz = w, uz =↓, mz = mw − 1). If a node receives mw = 0, it does not forward the message
further.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 33

As before, this protocol ensures that the infected subgraph is a symmetric tree with the true
source at one of the leaves. The key difference between Protocol 1 (naive adaptive diffusion) with
αd(t, h) = 0 and Protocol 3 (Tree Protocol) is that the latter does not rely on message-passing from
the virtual source to control spreading. Instead, it passes enough control information to realize the
same spreading pattern in a fully-distributed fashion.

Protocol 3 Tree Protocol
Input: contact network G = (V,E), source v∗, time T
Output: infected subgraph GT = (VT , ET)

1: V0 ← {v∗}
2: mv∗ ← 0 and uv∗ ←↑
3: v∗ selects one of its neighbors w at random
4: V1 ← V0 ∪ {w}
5: mw ← 1 and uw ←↑
6: t← 2
7: for t ≤ T do
8: for all v ∈ Vt−1 with uninfected neighbors and mv > 0 do
9: if uv =↑ then

10: v selects one of its uninfected neighbors w at random
11: Vt ← Vt−1 ∪ {w}
12: mw ← mw + 1 and uw ←↑
13: for all uninfected neighboring nodes z of v do
14: Vt ← Vt−1 ∪ {z}
15: uz ←↓ and mz ← mv − 1

16: t← t+ 1

In the spy-based adversarial model, each spy si in the network observes any received messages,
the associated metadata, and a timestamp Tsi . Figure 2.11 illustrates the information observed by
each spy node, where spies are outlined in red.

Source Estimation. The precise ML estimation algorithm is detailed in Algorithm 4. Because
adaptive diffusion has deterministic timing, spies only help the estimator discard candidate nodes.
We assume the message spreads for infinite time. There is at least one spy on the spine; consider
the first such spy to receive the message, s0. This spine spy (along with its parent and level
metadata) allows the estimator to specify a feasible subtree in which the true source must lie. In
Figure 2.10, node 8 is on the spine with level m8 = 4, so the feasible subtree is rooted at node 5
and contains all the pictured nodes except node 8 (9’s children and grandchildren also belong, but
are not pictured). Spies outside the feasible subtree do not influence the estimator, because their
information is independent of the source conditioned on s0’s metadata. Only leaves of the feasible
subtree could have been the source—e.g., nodes 0, 3, 6, and 7, as well as 9’s grandchildren.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 34

4t

3t

2t

1t

2

1 4 7

6

3

0

5

8 9

Figure 2.10: Message spread using the tree
protocol (Protocol 3).

3

3

3

3

1

0

2

p

u

m

T

8

8

8

8

5

4

4

p

u

m

T

2

1 4 7

6

3

0

5

8 9

7

7

7

7

4

0

3

p

u

m

T

Figure 2.11: The information observed by
the spy nodes 3, 7, and 8 for the spread in
Figure 2.10. Timestamps in this figure are
absolute, but they need not be.

Protocol 4 ML Source Estimator for Algorithm 3
Input: contact network G = (V,E), spy nodes S = {s0, s1 . . .} and metadata si : (psi ,msi , usi)
Output: ML source estimate v̂ML

1: Let s0 denote the lowest-level spine spy, with metadata (ps0 ,ms0 , us0).
2: Ṽ ← {v ∈ V : δH(v, s0) ≤ ms0 and ps0 ∈ P(v, s0)}
3: Ẽ ← {(u, v) : (u, v) ∈ E and u, v ∈ Ṽ }
4: Define the feasible subgraph as F (Ṽ , Ẽ)
5: L← ∅ . Set of feasible pivots
6: K ← ∅ . Set of eliminated pivot neighbors
7: for all s ∈ S with s ∈ Ṽ do
8: Let

[
hs,`s
h`s,s0

]
= 1

2

[
1 −1
1 1

]
·
[
|P (s, s0)|
Ts0 − Ts

]
9: `s ← v ∈ P(s, s0) : δH(s, `s) = hs,`s

10: ks ← v ∈ P(s, s0) : δH(s, ks) = hs,`s − 1
11: L← L ∪ {`s} . Add pivot
12: K ← K ∪ {ks} . Add pivot neighbor
13: Find the lowest-level pivot: `min ← argmin`∈Lm`

14: U ← ∅ . Candidate sources
15: for all v ∈ Ṽ where v is a leaf in F (Ṽ , Ẽ) do
16: if P(v, `min) ∩K = ∅ then
17: U ← U ∪ {v}
18: return v̂ML, drawn uniformly from U

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 35

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d=3
d=4
d=5
d=15
d=30
d=100
p

P(
V
∗

=
v̂ M

L
)

AD (Theoretical)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Adaptive diffusion
Diffusion, lower bound
Lower bound, p

AD vs. D (d = 3)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Adaptive diffusion
Diffusion, lower bound
Lower bound, p

AD vs. D (d = 5)

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

d=3
d=4
d=5
d=15
d=30
d=100
2(1−p)

E[
δ H

(v̂
M
L
,v
∗)

]

Spy probability p
0 0.2 0.4 0.6 0.8 1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Adaptive diffusion, lower bound
Diffusion, upper bound

Spy probability p
0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Adaptive diffusion, lower bound
Diffusion, upper bound

Spy probability p

Figure 2.12: Adaptive diffusion (AD) theoretical performance for varying d (left). Adaptive dif-
fusion improves over standard diffusion (D) and the gap increases as the degree of the underlying
contact network increases (center, right).

The estimator then uses spies within the feasible subtree to prune out candidates. The goal is
to identify nodes in the feasible subtree that are on the spine and close to the source. For each spy
in the feasible subtree, there exists a unique path to the spine spy s0, and at least one node on that
path is on the spine; the spies’ metadata reveals the identity and level of the spine node on that path
with the lowest level—we call this node a pivot (details in Algorithm 4). For instance, in Figure
2.11, we can use spies 7 and 8 to learn that node 2 is a pivot with level m2 = 2. Estimation hinges
on the minimum-level pivot across all spy nodes, `min. In the example, `min = 1, since spies 3 and
8 identify node 1 as a pivot with level m1 = 1. The true source must lie in a subtree rooted at a
neighbor of `min, with no spies. In our example, this leaves only node 0, the true source.

Anonymity properties. Using the described ML estimation procedure, we can exactly compute
the probability of detection when adaptive diffusion is run over a d-regular tree.

Theorem 2.3.1. Suppose the contact network is a regular tree with degree d > 2. There is a source
node v∗, and each node other than the source is chosen to be a spy node i.i.d. with probability p as
described in the spy model. Against colluding spies attempting to detect the location of the source,

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 36

adaptive diffusion achieves the following:
(a) The probability of detection is

P(v̂ML = v∗) = p+
1

d− 2
−
∞∑
k=1

qk
(d− 1)k

, (2.26)

where qk ≡ (1− (1− p)((d−1)k−1)/(d−2))d−1 +
(1− p)((d−1)k+1−1)/(d−2).

(b) The expected distance between the source and the estimate is bounded by

E[δH(v̂ML, v
∗)] ≥ 2

∞∑
k=1

k · rk (2.27)

where |Td,k| = (d−1)k−1
d−2

, and

rk ≡ 1
d−1

(
(1− (1− p)|Td,k|)d−1 + (d− 1)(1− p)|Td,k| −

(d− 2)(1− p)|Td,k|(d−1) − 1
)

.

The proof is included in Section A. Briefly, it computes the probability of detection by con-
ditioning on the lowest-level pivot node, `min. Given a pivot node, the probability of detection
depends on the number of subtrees rooted at the neighbors of `min containing no spies.

Figure 2.12 illustrates the theoretical probability of detection and lower bound on expected
distance from the true source as a function of the spy probability. We make two key observations:

Asymptotically optimal probability of detection: As tree degree d increases, the probability
of detection converges to the degree-independent fundamental limit in Proposition 2.3.1, i.e.,
P(V ∗ = v̂ML) = p. This is in contrast to diffusion, whose probability of detection tends to 1
asymptotically in d. The median Facebook user has 200 friends [101], so these asymptotics have
practical implications, as we will see in Section 2.3.

Expected hop distance asymptotically increasing: We observe empirically that for regular dif-
fusion, E[δH(v̂ML, v

∗)] approaches 0 as d increases. On the other hand, for adaptive diffusion with
a fixed p > 0, as d→∞, lim supE[δH(v̂ML, v

∗)] = 2(1− p). This holds because with probability
(1 − p), the first node is not a spy, but with probability approaching 1 for d large enough, the
first node on the spine will be a pivot node. Since the source is always a leaf, the distance from
the estimate to the source will be at most 2 with probability approaching (1 − p). Figure 2.12
includes the line 2(1 − p) for reference, and we observe that as d → ∞, E[δH(v̂ML, v

∗)] appears
to converge precisely to this line. However, for a fixed d, Theorem 2.3.1 implies that as p → 0,
E[δH(v̂ML, v

∗)]→∞.

Comparison with diffusion. Here, we compare adaptive diffusion against traditional diffusion
over d-regular trees. We have theoretical guarantees on the probability of detection under adaptive
diffusion, but deriving such guarantees for regular diffusion is an open problem. We use a discrete-
time diffusion process, in which each infected node passes the message to each neighbor with

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 37

Spy Probability p Adaptive Diffusion Diffusion (q = 0.1) Diffusion (q = 0.5)
0.05 0.10 ± 0.03 0.83 ± 0.05 0.99 ± 0.01
0.10 0.14 ± 0.05 0.86 ± 0.05 1.00 ± 0.00
0.15 0.17 ± 0.05 0.90 ± 0.04 1.00 ± 0.00

Table 2.1: Probability of detection over the Facebook dataset [107], with 95% confidence intervals.

probability q in each timestep. As q increases, the variance of the associated geometric delay
decreases, revealing the true source with higher probability. Since adaptive diffusion delays are
deterministic, it is unclear how to fairly choose the variance of this delay. We thus considered a
range of q values.

The ML source estimator for this spreading process is unknown. To lower bound the ML
probability of detection, we consider two heuristic estimators: (1) the Gaussian estimator from
[86], and (2) the first-spy estimator, which simply returns the parent of the first spy to observe the
message. The estimator in [86] is ML when delays are i.i.d. Gaussian, whereas our delays are
geometric. We nonetheless expect it to perform well for small p; since the distance between spies
will be large, the delay distribution can be approximated by a Gaussian.

Figure 2.12 compares the probability of detection and expected hop distance for diffusion (q =
0.7) using heuristic estimators, against adaptive diffusion using the ML estimator. The lower bound
on diffusion’s probability of detection is the maximum of the simulated Pinto et al. estimator
[86] and the first-spy estimator; the opposite holds for expected hop distance. For all p, adaptive
diffusion performs better than diffusion, and the gap increases with degree. This effect is sensitive
to q for small d, but we show in Section 2.3 that over real social graphs, the sensitivity to q becomes
negligible.

Irregular Trees
Here, we consider tree networks with nonuniform node degrees. Regardless of spreading protocol
or underlying network structure, the message always propagates over a tree superimposed on the
underlying contact network. The probability of detection over irregular trees is therefore closely
tied to performance over general graphs. ML estimation over irregular trees is more straightforward
than in Section 2.2, primarily because we use the specialized Tree Protocol, which always places
the source at a leaf node.

Proposition 2.3.3. Suppose the underlying contact network G(V,E) is an irregular tree with the
degree of each node larger than one. One node v∗ ∈ V starts spreading a message at time T = 0
according to Protocol 3. Each node v ∈ V , v 6= v∗ is a spy with probability p. Let U denote the set
of feasible candidate sources obtained by estimation Algorithm 4. Then the maximum likelihood

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 38

estimate of v∗ given U is

v̂ML = arg max
u∈U

1

deg(u)

∏
v∈P(u,`min)\{u,`min}

1

deg(v)− 1
, (2.28)

where `min is the lowest-level pivot node, P(u, `min) is the unique shortest path between u and
`min, and deg(u) denotes the degree of node u. (Proof in Section A)

Real-World Networks
Equipped with a maximum-likelihood estimator for irregular trees, we can evaluate adaptive diffu-
sion over a real dataset—namely, the Facebook social graph from [107] used in Section 2.2—
against a spy-based adversary. We simulate adaptive diffusion and regular diffusion for q ∈
{0.1, 0.5}. We evaluate a lower bound on the probability of detection under diffusion using the
first-spy estimator; for adaptive diffusion, we use a slightly-modified version of the ML estimator
in Proposition 2.3.3, that accounts for cycles in the underlying graph. Table 2.1 lists the probabil-
ity of detection averaged over 200 trials, for p up to 0.15.1 Not only does adaptive diffusion hide
the source better than diffusion, its probability of detection in practice is close to the fundamental
lower bound of p. This is likely because the mean node degree in the dataset is 25, so high-degree
asymptotics are significant. It is common for social networks to have degree distributions that skew
large [25]. Additionally, while adaptive diffusion can never reach all nodes in a tree, cycles in the
Facebook graph allow it to reach 81% of nodes within 20 timesteps.

2.4 Spy+snapshot adversarial model

Adversarial Model
The spy-based and snapshot adversarial models capture very different behavior. The spy-snapshot
model considers a natural combination of both. At a certain time T , the adversary collects a
snapshot of the infection pattern, GT . It also collects metadata from all spies that have seen the
message up to (and including) time T . Based on these two sets of metadata, the adversary infers
the source.

Main Result (Spy+snapshot adversary)
Notably, this stronger model does not significantly impact the probability of detection as time
increases. The snapshot helps detection when there are few spies by revealing which nodes are
true leaves. This effect is most pronounced for small T and/or small p. The exact analysis of the
probability of detection at T is given in Equation (2.29) in the Supplementary material, and Figure
2.13 illustrates how the effect of snapshot and spy nodes trade off.

1We chose this value because at its height, the Stasi employed 11 percent of the population as spies [63].

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 39

We follow closely the proof of Theorem 2.3.1 in Appendix A. Given a snapshot at a certain
even time T , if there are at least two spy nodes infected at time T , then the adversary can perform
the exact same estimation as he did with only spy nodes with T → ∞. We only need to carefully
analyze what happens when there is only one infected spy or no infected spies.

We condition on the lowest-level pivot node, `min, giving P(v̂ML = v∗) =
∑

`min
P(v̂ML =

v∗|`min)P(`min). Since `min lies on the spine, this is equivalent to conditioning on the distance of
`min from the true source. We first define |Sd,T | = 1 + d((d − 1)T/2 − 1)/(d − 2) as the number
of nodes infected at time T , and |∂Sd,T | = d(d− 1)(T/2)−1 as the number of leaves in the infected
subtree. Then,

P(v̂ML = v∗) =

(1− p)|Sd,T |−1

|∂Sd,T |︸ ︷︷ ︸
no spy

+

T/2∑
k=1

{ (1− p)(|Td,k|−1) p

|∂Td,k|︸ ︷︷ ︸
`min (kth spine node) is a spy

+

(1− p)|Td,k|(1− (1− p)|Sd,T |−|Td,k+1|)EX
[I(X 6= d− 2)

(X + 1) |∂Td,k|

]
︸ ︷︷ ︸

`min (kth spine node) not a spy

+

(1− p)|Sd,T |−(|Td,k+1|−|Td,k|)EX
[I(X 6= d− 2)

|∂Sd,T | − (d− 2−X)|∂Td,k|

]
︸ ︷︷ ︸

all spy descendants of k-th spine node

}
, (2.29)

whereX ∼ Binom(d−2, (1−p)|Td,k|), |Td,k| = (d−1)k−1
d−2

is the number of nodes in each candidate
subtree for a pivot at level k, and |∂Td,k| = (d−1)k−1 is the number of leaf nodes in each candidate
subtree.

2.5 Connections to Pólya’s urn processes
In this section, we make a connection between the adaptive diffusion on a line and the Pólya’s
urn process. In this process, we discover a property of Pólya’s urn process, which provides a
certain privacy. Further, we apply the Bayesian interpretation of the Pólya’s urn process to design
a new implementation of the adaptive diffusion and analyze the precise cost of revealing the control
packets to the spy nodes.

To characterize the price of time stamps and the control packet separately, we focus on a con-
crete example of a line graph. Consider a line graph in which nodes 0 and n+1 are spies. One of the
n nodes between the spies is chosen uniformly at random as a source, denoted by v∗ ∈ {1, . . . , n}.
We let t0 denote the time the source starts propagating the message according to some global ref-
erence clock. Let Ts1 = T1 + t0 and Ts2 = T2 + t0 denote the timestamps when the two spy nodes
receive the message, respectively. Knowing the spreading protocol and the metadata, the adversary
uses the maximum likelihood estimator to optimally estimate the source.

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 40

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T=2
T=4
T=6
T=8
T=10

Spy probability p

d = 3

P(
V
∗

=
v̂ M

L
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T=2
T=4
T=6
T=8
T=10

Spy probability p

d = 5

Figure 2.13: Probability of detection under the spies+snapshot adversarial model. As estimation
time and tree degree increase, the effect of the snapshot on detection probability vanishes.

Standard diffusion. Consider a standard discrete-time random diffusion with a parameter q ∈
(0, 1) where each uninfected neighbor is infected with probability q. The adversary observes Ts1
and Ts2 . Knowing the value of q, it computes the ML estimate v̂ML = arg maxv∈[n] PT1−T2|V ∗(Ts1−
Ts2|v), which is optimal assuming uniform prior on v∗. Since t0 is not known, the adversary can
only use the difference Ts1 − Ts2 = T1 − T2 to estimate the source. We can exactly compute
the corresponding probability of detection; Figure 2.14 (bottom panel) illustrates that the posterior
(and the likelihood) is concentrated around the ML estimate, and the source can only hide among
O(
√
n) nodes. The detection probability correspondingly scales as 1/

√
n (top panel).

Adaptive diffusion on a line. First, recall adaptive diffusion (Protocol 1) with the choice of
αd(h, t) = t−2h+2

t+2
(Equation (2.5)) on a line illustrated in Figure 2.15. At t = 0, the message

starts at node 0. The source passes the virtual source to node 1, so v2 = 1. The next two timesteps
(t = 1, 2) are used to restore symmetry about v2. At t = 2, the virtual source stays with probability
α2(2, 1) = 1/2. Since the virtual source remained fixed at t = 2, at t = 4 the virtual source stays
with probability α2(4, 1) = 2/3. The key property is that if the virtual source chooses to remain
fixed at the beginning of this random process, it is more likely to remain fixed in the future, and
vice versa. This is closely related to the well-known concept of Pòlya’s urn processes; we make
this connection more precise later in this section.

The protocol keeps the current virtual source with probability 2δH(vt,v∗)
t+2

, where δH(vt, v
∗) de-

notes the hop distance between the source and the virtual source, and passes it otherwise. The
control packet therefore contains two pieces of information: δH(vt, v

∗) and t.
Suppose spy nodes only observed timestamps and parent nodes but not control packets. The

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 41

 0.01

 0.1

 1

 1 10 100

diffusion; q=0.5
adaptive diffusion; control packet hidden

adaptive diffusion; control packet revealed

number of nodes n

P(
V
∗

=
v̂ M

L
)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 20 40 60 80 100

diffusion; q=0.5
adaptive diffusion; control packet hidden

adaptive diffusion; control packet revealed

candidate node v

P(
V
∗

=
v
|T

2
−
T

1
=

25
)

Figure 2.14: Comparisons of probability of detection as a function of n (top) and the posterior
distribution of the source for an example with n = 101 and T2 − T1 = 25 (bottom). The line with
‘control packet revealed’ uses the Pólya’s urn implementation.

5t 3,4t 2t
1t

5 0 1 32 4

Figure 2.15: Spreading on a line. The red node is the message source. Yellow nodes denote nodes
that have been, are, or will be the center of the infected subtree.

adversary could then numerically compute the ML estimate v̂ML = arg maxv∈[n] PT1−T2|V ∗(Ts1 −
Ts2|v). We can compute the corresponding detection probability exactly. Figure 2.14 shows the
posterior is close to uniform (top panel) and the probability detection would scale as 1/n (bottom
panel), which is the best one can hope for. Of course, spies do observe control packets, so they can
learn δH(v∗, vT) and identify the source with probability 1. We therefore introduce a new adaptive
diffusion implementation that is robust to control packet information.

Adaptive diffusion via Pólya’s urn. The random process governing the virtual source’s propaga-
tion under adaptive diffusion is identical to a Pólya’s urn process [61]. We propose the following
alternative implementation of adaptive diffusion. At t = 0 the protocol decides whether to pass
the virtual source left (D = `) or right (D = r) with probability half. Let D denote this random
choice. Then, a latent variable q is drawn from the uniform distribution over [0, 1]. Thereafter, at
each even time t, the virtual source is passed with probability q or kept with probability 1 − q. It
follows from the Bayesian interpretation of Pólya’s urn processes that this process has the same

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 42

distribution as the adaptive diffusion process.
Further, in practice, the source could simulate the whole process in advance. The control packet

would simply reveal to each node how long it should wait before further propagating the message.
Under this implementation, spy nodes only observe timestamps Ts1 and Ts2 , parent nodes, and
control packets containing the infection delay for the spy and all its descendants in the infection.
Given this, the adversary can exactly determine the timing of infection with respect to the start of
the infection T1 and T2, and also the latent variables D and q. A proof of this statement and the
following proposition is provided in Section A. The next proposition provides an upper bound on
the detection probability for such an adversary.

Proposition 2.5.1. When the source is uniformly chosen from n nodes between two spy nodes,
the message is spread according to adaptive diffusion, and the adversary has a full access to the
time stamps, parent nodes, and the control packets that is received by the spy nodes, observations
T1, T2, q and D, the adversary can compute the ML estimate:

v̂ML =

T1+2

2
+
⌊
q
(
T1−2

2

)⌋
, if T1 even and D = ` ,

T1+3
2

+
⌊
q
(
T1−1

2

)⌋
, if T1 odd and D = ` ,

1 +
⌊
(1− q)

(
T1−1

2

)⌋
, if T1 odd and D = r .

(2.30)

where T1 is the time since the start of the spread until s1 receives the message, and q is the hidden
parameter of the Pólya’s urn process, and D is the initial choice of direction for the virtual source.
This estimator achieves a detection probability upper bounded by

P
(
V ∗ = v̂ML

)
≤ π
√

8√
n

+
2

n
. (2.31)

Equipped with an estimator, we can also simulate adaptive diffusion on a line. Figure 2.14 (top)
illustrates that even with access to control packets, the adversary achieves probability of detection
scaling as 1/

√
n – similar to standard diffusion. For a given value of T1, the posterior and the

likelihood are concentrated around the ML estimate, and the source can only hide among O(
√
n)

nodes, as shown in the bottom panel for T1 = 58. In the realistic adversarial setting where control
packets are revealed at spy nodes, adaptive diffusion can only hide as well as standard diffusion
over a line.

2.6 Take-home Messages
In this chapter, we have presented adaptive diffusion. Adaptive diffusion is a message-spreading
protocol that allows a user to anonymously spread a message over a network with provable anonymity
guarantees against a variety of powerful, global adversaries. We considered two primary adver-
saries: a snapshot adversary and a spy-based adversary.

Under the snapshot adversary, we have shown that adaptive diffusion gives perfect obfusca-
tion when the underlying network is a regular tree, and we precisely characterize the anonymity

CHAPTER 2. ANONYMOUS MESSAGE SPREADING 43

properties when the network belongs to a class of irregular, random trees. We also observed em-
pirically that nearly-optimal hiding holds even over realistic social graphs that are finite, irregular,
and cyclic.

Under the spy-based adversary, we have shown that for regular trees, adaptive diffusion gives
asymptotically optimal hiding in the degree of the underlying tree, whereas regular diffusion en-
ables the adversary to locate the source with probability approaching one asymptotically in the
degree of the tree. Again, we observed that these guarantees hold even for real-world graphs.

The fact that adaptive diffusion performs nearly as well on realistic graphs as on more styl-
ized networks (namely, trees) is expected, because any message spreading pattern—regardless of
spreading protocol—can equivalently be thought of as a tree superimposed on the underlying net-
work. Therefore, our algorithm is designed to give optimal hiding on a worst-case graph. We can
approximate a tree-based spread over a normal, cyclic network by choosing the adaptive diffusion
spreading parameters carefully. For instance, by spreading a message to at most three neighbors
at a time, the spreading pattern of adaptive diffusion over a typical cyclic, irregular social graph is
reasonably approximated by a tree-structured network.

In terms of designing anonymous messaging platforms, this work is a concrete step towards
defending against increasingly powerful adversaries that observe and participate in social networks
to learn about their users. However, our work leaves several questions unanswered. We discuss
some of these questions in Chapter 5, but the important point to keep in mind is that adaptive
diffusion is only a small piece in a larger secure, privacy-preserving messaging ecosystem. Issues
like namespace resolution and data transmission must be similarly secure and privacy-preserving
to defend against realistic adversaries.

44

Chapter 3

Private Information Retrieval on
Unsynchronized Databases

In the second part of this thesis, we propose algorithms for searching public data in a privacy-
preserving fashion. As mentioned previously, we tackle this portion of the thesis in two steps: first,
in this chapter, we consider the simpler problem of privately retrieving records from a database.
In Chapter 4, we address the harder problem of executing privacy-preserving keyword queries on
public databases.

Much research has been proposed to help people maintain privacy while searching databases.
The most common class of solutions aims to hide the identity of the client, often through techniques
like onion-routing; Tor is the most well-known solution in this class [35]. However, these systems
work under the assumption that masking a client’s identity gives a sufficient level of privacy. This
may not be true in general, since the content of certain queries is strongly associated with the
identity of the person making the query. For example, in 2009, AOL released anonymized search
history data for its search engine. However, the correlation between queries and side information
quickly led to deanonymization of users [7].

To address this concern, some private search tools instead mask the contents of web queries.
These tools include chaffing and winnowing approaches like TrackMeNot [58], encrypted database
searches [87], private information retrieval (PIR) [23], oblivious transfer (OT) [90], oblivious RAM
[52], and private stream searches (PSS) [83, 17]. Some of these approaches are tailored to data re-
trieval, whereas others are tailored to keyword searches. In this chapter, we discuss the techniques
related to data retrieval; in particular, we are interested in privacy-preserving retrieval that is robust
to a common issue that arises in distributed systems: stale content on nodes.

This chapter is based on joint work with Kannan Ramchandran [43].

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 45

Related Work
The research community has considered a few privacy-preserving variants of data retrieval. One
important variant is oblivious RAM (ORAM). In the ORAM problem, the client stores her data on
a remote server and wishes to retrieve elements of this data without revealing to the server which
data is being retrieved, while also protecting clients’ data access patterns over time. It achieves
this by storing data in encrypted form, and then shuffling the storage pattern of the data after each
read operation [52, 85, 97, 104]. ORAM is not applicable to our setting because it assumes that
the client owns the data in question, allowing her to encrypt the data with her own private key. In
our setting, many clients are trying to access public data records that are hosted by a third party.
As such, it would be impractical to assume the clients possess a shared key that is not visible to the
adversarial server. More broadly, it deals with privately accessing encrypted data, whereas we are
interested in privately accessing plaintext data.

Another variant of private data retrieval, which is the focus of our work, is called private in-
formation retrieval (PIR). In PIR, a client wishes to retrieve an indexed record from a plaintext
database without revealing that index to the database server(s). This problem is closely related to
k-out-of-n oblivious transfer [79]. The primary difference is that in PIR, it does not matter how
much information the client learns about the database (as long as she retrieves her queried record),
whereas in oblivious transfer, not only should the server not learn the client’s query, but the client
should also not learn anything about the database contents aside from the queried record. In this
work, we assume the database is public, so the PIR setting is more appropriate than oblivious
transfer.

Broadly, there are two types of PIR: single-server and multi-server. Single server PIR assumes
a client-server architecture and provides computational security guarantees.1 Single-server PIR
tends to be computationally heavy, and often relies on expensive operations like modular exponen-
tiation [100]. Multi-server PIR, on the other hand, tends to be more efficient (both in computation
and communication) [81]. Despite its efficiency gains, multi-server PIR has gained little traction
in practice, likely due to the restrictive assumptions on which it relies. The earliest forms of PIR
relied on the following (implicit and explicit) assumptions [23]:

1. Multiple servers are available.

2. Each server stores a duplicate copy of the database.

3. The servers do not collude.

4. Servers are honest-but-curious.2

5. Servers willingly implement PIR algorithms.
1Trivial database transfer is the exception; it requires only one server and guarantees perfect privacy.
2An honest-but-curious adversary follows protocol, but tries to learn as much information as possible about private

data held by other parties.

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 46

Full
Database

Record 1
Record 2
Record 3
Record 4

Record 1
Record 2

Scrambled
Queries

Node E query: Record 1

Node E

Node D

Node C

Node B
Node A Record 1

Record 2

Record 1
Record 2

Record 3
Record 4

Record 3
Record 4

Figure 3.1: A P2P PIR system would organically circumvent several of the problems that arise in
multi-server PIR.

Some multi-server PIR research has focused on relaxing assumptions 3 and 4. Existing schemes
allow up to κ servers to collude without losing any privacy [13, 51]; other PIR schemes are robust
to Byzantine servers that return arbitrary, incorrect information [12, 34]. Devet et al. observed that
collusion-resistant and optimally Byzantine-resistant multi-server PIR can be computationally ef-
ficient in practice [34], and subsequently proposed a hybrid PIR scheme that combines ideas from
computational and information-theoretic PIR [33].

Even with these promising developments, there are obstacles to widespread adoption. One of
these is purely efficiency-related. The communication and computational costs of PIR are signif-
icant. A great deal of work has considered methods for reducing and characterizing fundamental
bounds on the communication complexity of information-theoretic PIR [6, 14, 38, 110, 115, 116];
the state-of-the-art is the recent work by Dvir and Gopi, with a subpolynomial two-server scheme
that relies on matching vector codes [37] . A smaller body of work considers methods for reducing
the computational cost of multi-server PIR through techniques like precomputation [11] or batch
codes [59, 70].

Another obstacle to adoption is that the assumptions listed above have not been fully addressed
by existing literature. Namely, it seems unlikely that multiple servers would maintain identical
databases without colluding. Further, there is little incentive for service providers like Google
to allow private searches, barring legal intervention. We believe widespread collusion would be
less likely in distributed systems, e.g. a peer-to-peer (P2P) setting. Privacy-minded individuals
may sacrifice computational resources to help protect one another’s privacy. We therefore envision
storing small database chunks on different nodes in a P2P network and using these nodes as PIR
servers (Figure 3.1). This architecture organically addresses assumptions 1, 3, 4, and 5, which
suggests that multi-server PIR might be a useful tool in this setting. It also fits in nicely with our
collaborative vision of user privacy.

However, to the best of our knowledge, neither a P2P architecture nor existing PIR research
addresses assumption 2—indeed, a P2P architecture is likely to increase the likelihood of mis-
synchronization between nodes, making assumption 2 even less plausible. Recent work has consid-
ered PIR schemes where servers store coded database chunks instead of identical copies [95, 44];

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 47

nonetheless, the coded database chunks are still computed from a unified view of the database. Our
work departs from the existing literature by addressing assumption 2: we design a PIR algorithm
that does not require the servers’ databases to be identical.

Problem and Contributions
A client wishes to submit a multi-server PIR query to servers whose databases are not perfectly
synchronized. That is, at least one server stores a different version of one or more records compared
to the other servers (Figure 3.2). Our goal is to design a multi-server PIR scheme that is provably
correct and private in this setting.

Server 1 Server 2 Server 3
Record 1

Record 2

Record 1

Record 2

Record 1

Old Record 2

Figure 3.2: Existing multi-server PIR schemes fail when databases are unsynchronized—i.e.,
database order and size is preserved, but some records may be nonidentical across all servers.

In this chapter, we pose the problem of PIR over unsynchronized databases and recognize its
connection to distributed source coding. We propose a two-stage architecture to solve the problem;
this architecture leads to a collusion-resistant PIR scheme that probabilistically returns the desired
record even when the contacted servers’ databases are not perfectly synchronized. The key idea of
our scheme is simple: we first determine which records are mis-synchronized, and then construct
a PIR query that avoids these problematic records. When the number of unsynchronized database
records scales sublinearly in the database size3, our scheme has asymptotic communication and
online computation costs that are identical to state-of-the-art PIR schemes. In practice, we incur
slightly higher communication and server-side computation compared to traditional PIR, but we
show through simulation that these costs are not prohibitive. Our approach also allows multiple
queries to be processed in a single batch of PIR.

Outline
In the remainder of this chapter, we introduce some necessary background information on PIR and
distributed source coding in Section 3.1. In Section 3.2, we present our proposed algorithm with
theoretical privacy and efficiency guarantees. Section 3.3 provides experimental results obtained
through simulation, and Section 3.4 reiterates the takeaway messages of this chapter.

3This assumption is reasonable for the applications we envision. In a P2P network, network nodes can sync
databases with a 3rd party content provider frequently enough to ensure only a small number of records are unsyn-
chronized on average between servers.

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 48

3.1 Background
We briefly explain private information retrieval and distributed source coding ideas related to our
problem. Boldface lowercase variables denote vectors, and regular non-bolded variables denote
scalars. Boldface uppercase variables denote matrices, and uppercase non-bolded, subscripted
variables denote matrix elements. For x ∈ Z+, [x] denotes the set {1, . . . , x}.

Private Information Retrieval
Private information retrieval (PIR) is a technique allowing a client to retrieve the wth record from
a database of n records (w ∈ [n]) without revealing the query index w to the server. As mentioned
earlier, we will focus on multi-server PIR in this chapter, because it is significantly more efficient
than single-server schemes in practice. Multi-server PIR gives information-theoretic privacy guar-
antees and assumes that the client has access to non-colluding servers with identical copies of the
database.4 We begin with an example of information-theoretic, multi-server PIR proposed by Chor
et al. [23].

Basic PIR Scheme [23]

Two servers store identical copies of a database of records f = [f1 . . . fn]ᵀ, and a client wishes
to retrieve the wth record, fw. In practice, records can be of arbitrary length, but for simplicity,
suppose each database element is a single bit, 0 or 1. The user’s request can be represented by
ew ∈ {0, 1}N , the indicator vector with a 1 at index w and 0’s elsewhere. To disguise this query,
the user generates a random string a ∈ {0, 1}N with each entry a Bernoulli(1/2) random variable.
The queries sent to servers 1 and 2 are a⊕ ew and a, respectively. Each server computes the inner
product of its received query vector with the database f using bitwise addition (XOR) and returns
a single-bit result. The user XORs the results from the two servers to get fw (see Figure 3.3). In
an honest-but-curious adversarial model, this PIR scheme is information-theoretically private.

wth

index
Client

Server 1 Server 2
X X

Figure 3.3: Two-server PIR scheme [23]. Each server computes the bitwise sum of a client-
specified subset of database records. Since the two subsets differ only at the wth index, the binary
sum of each server’s results gives the desired record.

4Information-theoretic guarantees are secure against computationally unbounded adversaries.

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 49

Collusion Resistance

In multi-server PIR, privacy is lost if servers collude. There exist PIR schemes that offer κ-
collusion-resistance—if no more than κ of the d servers collude, information-theoretic security
is guaranteed [13, 51, 114]. We will explain a simplified version of [51], which is closely related
to ideas from the area of multiparty computation [15, 96]. We later adapt this scheme to handle
unsynchronized databases as well as concurrent queries.

The basic idea of collusion-resistant PIR in [51] is as follows: The client designs a random
polynomial r(X) of degree κ, such that r(0) = fw (the desired record). The client instructs each
server to evaluate r(X) at a distinct X 6= 0. The client then interpolates these evaluations to
recover r(0). Since κ+ 1 points are required to interpolate a κ-degree polynomial, up to κ servers
can collude without compromising privacy.

More detailed explanation: In the two-server case, the client transmitted a and a ⊕ ew to servers
1 and 2, respectively. These queries can be interpreted as two characteristic points from a linear,
vector-valued polynomial q(X) = aX + ew. Namely, when X = 1, we get q(1) = a + ew,
and q′(1) = a. We use r(X) (or r′(X)) to denote a server’s reply to the PIR query q(X) (or
q′(X), respectively). The client’s goal is to determine r(0), the output for the query q(0) = ew.
It is straightforward to show that r(X) is a linear function of X and r(0) = fw, so we need
only two distinct input queries to interpolate the value of r(0). In the two-server example, r(0)
is interpolated by taking r̂(0) = r(1) + r′(1). This two-server query is not immune to server
collusion.

Now suppose we wish to resist collusion between any set of at most κ servers in the system—
for concreteness, let κ = 2. We can achieve this by querying d ≥ κ + 1 servers; for our concrete
example, let d = 3. Instead of the linear query from the two-server case, we now submit query
vectors that are quadratic inX , i.e. of degree κ. Note that this scheme requires a finite fieldGF (2`)
containing at least κ+ 2 elements. So our example polynomial query is q(X) = aX2 + bX + ew,
where a, b ∈ {0, . . . , 2`}n are elementwise randomly-drawn vectors, and ew is a vector of zeros
with a one at index w. So if the database has two elements, this is equivalent to drawing n = 2
independent, univariate, κ-degree polynomials; all the n polynomials have a zero constant term
except for the polynomial corresponding to the desired record index w. Concretely, suppose we
want record w = 1. Then we draw two random quadratic polynomials (one per database record).

q(X) =

[
q1(X)
q2(X)

]
=

[
a1X

2 + b1X + 1
a2X

2 + b2X + 0

]
, (3.1)

where ai, bi, qi denote the ith elements of vectors a, b, q, respectively. The client evaluates these
n polynomials (one for each database element) at d distinct values of X (one for each server), and
compounds the results into query vectors. For instance, the client might send q(1) to server 1, q(2)
to server 2, and q(3) to server 3. Since the queries are quadratic in X , at least three servers must
collude to learn the desired record. Upon receiving such a query, each server projects the database

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 50

onto the query, and returns a single value as a result:

r(X) = q(X)ᵀf

= f1(a1X
2 + b1X + 1) + f2(a2X

2 + b2X)

= (f1a1 + f2a2)X2 + (f1b1 + f2b2)X + f1

Observe that r(X) is quadratic in X , and r(0) = fw. The client therefore needs three distinct
function points to interpolate r(0), or κ+ 1 points in general.5 We write r(1)

r(2)
r(3)

︸ ︷︷ ︸

r

=

12 11 10

22 21 20

32 31 30

︸ ︷︷ ︸

V

×

 aᵀ

bᵀ

eᵀw

×
 f0

. . .
fn

which is equivalent to r = V × [· · · r(0)]ᵀ. The interpolated r̂(0) = fw can be computed
using the bottom row of V−1 in the above expression (V is full-rank). In our example, we get
r̂(0) = [0 0 1] ·V−1r = r(3) + 3r(2) + 3r(1). This approach can be extended to accommodate
arbitrary collusion-resistance parameters (Algorithm 9, Appendix C.2).

Distributed Source Coding
Our approach to PIR relies on distributed source coding, in which multiple, non-communicating
sources attempt to efficiently communicate correlated information to a receiver. In our problem,
the client is the receiver, and the servers are the distributed sources. We assume the number of un-
synchronized database elements s is small, so the servers’ contents are highly correlated. The client
wishes to learn which database elements are unsynchronized—i.e., the difference of the servers’
data—to successfully complete PIR. Concretely, suppose d servers—say d = 2—store databases
f (1) and f (2) that are differentially sparse, i.e. the vector r(0) = |f (1)− f (2)| is comprised mostly
of zeros.6 The goal is for the client to learn which records are unsynchronized with minimal com-
putation and communication; this is equivalent to learning the support of the sparse vector r(0).
This problem has been studied for f (i) ∈ {0, 1}n by Korner and Marton [65].

Initially, we ignore the distributed servers and instead suppose a genie has access to r(0).
The genie must minimize the communication and computation to communicate r(0) to the client.
This is equivalent to finite-field compressed sensing. We will show two approaches for solving the
problem with a genie, after which we will explain how a client can learn the support of r(0), which
encodes the mis-synchronized database indices, from distributed, non-colluding servers at nearly
the same cost as as that incurred by the genie.

5In this example, we could actually decode with only two replies—r(X) is linear in f1 and f2. This special case
arises because the database size n = 2.

6Our notation here is similar to that previously used for server response polynomials, r(X). This is because we
will soon consider vector-valued server response polynomials r(X) that are sparse when evaluated at X = 0.

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 51

Genie-dependent solutions

r(0) contains n elements, and at most s of them are nonzero, s � n. The genie can send linear
combinations of the entries of r(0), called parity symbols (or measurements in compressed sensing
literature) to the client for decoding. These parity symbols are generated by left-multiplying the
sparse vector by a parity check matrix A (or sensing matrix in compressed sensing), giving a
measurement vector y, as illustrated in Figure 3.4. If A is well-designed, r(0) can be reconstructed
from few parity symbols; A plays a compressive role, reducing genie-to-client communication.

: singleton

: multiton1
2
3
4
5

1
2
3
4 : zeroton

bins

ሺ0ሻ࢘ ۯ࢟

݊

݉ ൈ ൌ

…

۶

ሺ0ሻ࢘

Figure 3.4: Compression setup. A sparse vector r(0) can be fully reconstructed with the m < n
samples in y if parity check matrix A is well-designed.

MDS codes: One approach for reconstructing the desired vector r(0) uses maximum distance
separable (MDS) codes, such as Reed-Solomon (RS) codes. An MDS code with message size k
and block length b can correct the theoretical maximum of b(b−k)/2c errors [91]. So if a received
codeword is corrupted with s errors (the wrong symbol is received), then as long as 2s < (b−k−1),
an MDS code can recover the initial message. Additionally, in a systematic MDS code, the first
k symbols of the codeword are exactly the k message symbols. The remaining b − k symbols are
known are parity symbols, which are linear combinations of the message symbols.

To use MDS codes for our problem, we exploit the sparsity of r(0). Encoding r(0) with a sys-
tematic RS code that corrects at most s errors, the resulting codeword would be [r(0)ᵀ g1 g2 . . . g2s],
where the gi’s denote parity symbols. The receiver measures only the 2s parity symbols (it assumes
the first n systematic symbols are all zeros due to our sparsity assumption). Then the recorded
codeword would contain exactly s errors, all in the systematic symbols; the decoder could correct
them all and deterministically recover the nonzero entries of r(0). This scheme has low communi-
cation cost, but the decoding complexity can be prohibitive in practice—particularly if the number
of unsynchronized records is large. For instance, Berlekamp-Massey decoding for RS codes has
asymptotic complexity O((n+2s)2) for a codeword of block length n+2s [56]. Faster algorithms
exist, but are still superlinear in n.

A probabilistic approach: A different scheme called PULSE is well-suited to reconstructing
r(0) when the number of nonzero entries is large [84]. Intuitively, the encoder maps linear combi-
nations of the sparse vector entries into a small number of bins; the decoder is able to recover the
original entries by iteratively peeling nonzero entries from the bins, thereby efficiently solving a
linear system of equations. The parity check matrix A in this scheme is constructed as A = F⊗rH,
where⊗r denotes a row-tensor product, and F is the first three rows of an n×n Vandermonde ma-

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 52

trix. H is a binary low-density parity-check (LDPC) matrix, designed using a left-regular LDPC
construction for simplicity (an optimal irregular construction can also be used [69]). A left-regular
construction means that each column in the LDPC matrix has the same number of nonzero entries.

The LDPC matrix H can be thought of as a bipartite graph between the elements of the sparse
vector r(0) and the measured bins (Figure 3.5). If a bin in y maps to exactly one nonzero element
of r(0), then we call that bin a singleton; if more than one nonzero element maps to a bin in y, that
element is a multiton. Otherwise, the bin is a zeroton.

: singleton

: multiton1
2 : zeroton
3
4
5 : multiton

1
2
3
4 : zeroton

bins

ሺ0ሻ࢘ ۯ࢟

݊

݉ ൈ ൌ

…

۶

ሺ0ሻ࢘

Figure 3.5: H maps elements of r(0) to bins. Singleton bins map to a single nonzero element,
while multitons map to multiple nonzero elements. On finding a singleton, the decoder strips it
from all bins. For example, by stripping element 1 of r(0) from bins 3 and 5, bin 5 becomes a
singleton. After row-tensoring H⊗r F, each bin has two additional entries (not pictured) that help
the decoder decide if a bin is a singleton.

Matrix F helps the decoder learn which bins are singletons. The singleton detection algorithm
is detailed in Appendix C.2, Algorithm 10. Intuitively, after finding a singleton, the decoding
algorithm subtracts the corresponding nonzero element of r(0) from all elements of y to which it
maps. The components of this scheme are well-studied, but this particular scheme over finite fields
has not been explicitly described in the literature. For completeness, we include the following
result:

Theorem 1. (From [84]) Suppose the compressed sensing algorithm above uses a degree-3, left-
regular LDPC construction, with m > 3s · 1.23 measurements. If the signal sparsity scales ac-
cording to s = nδ, where δ ≤ 1/3, the peeling decoder asymptotically recovers the vector support
with probability at least 1−O(1

m
) in O(s) operations.

The proof can be found in [84]. The δ ≤ 1/3 sparsity constraint is not restrictive because our
PIR scheme is only practical for small numbers of mis-synchronizations; nonetheless, PULSE can
handle essentially any sublinear sparsity scaling if m > 6s. These results are asymptotic, but in
practice, PULSE performs well even on small databases.

Distributed solution

So far, we assumed the genie has access to sparse vector r(0). However, servers’ databases are
only assumed to be differentially sparse, i.e. their difference is sparse, and those servers cannot

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 53

d Number of servers contacted
α1, . . . , αd Values at which query polynomial is evaluated

κ Maximum number of colluding servers
n Size of the database (in records)
s Maximum number of unsynchronized records
A Parity check matrix, m× n
m Number of parity symbols
L Record size (bits)

`, `2 Field sizes in Phase 1 (GF (2`)) and
Phase 2 (GF (2`2)), respectively

f1, . . . , fζ Desired records
u1, . . . , us Indices of unsynchronized records

Table 3.1: System parameters
communicate with each other. A result by Korner and Marton [65] states that to learn the differ-
ential of the two databases over a binary field with minimum communication, each server should
encode its local view of the database using a random linear code with rate Hb(|f (1)−f (2)|), where
Hb denotes the binary entropy function. We cannot utilize the same solution because of decod-
ing complexity and our need for collusion-resistance (requiring non-binary fields). However, our
approach uses a similar intuition, much like [88]. Each server individually encodes its database
with the described linear codes. We make no claims of optimality, but we will show later that the
overhead is small. This approach is conceptually similar to Biff codes for set reconciliation [78];
however, we consider the different problem of sequence reconciliation.

Nonetheless, we can use the Korner-Marton result to lower-bound communication costs. For
instance, if approximately 11 percent of the database is unsynchronized and each record is one
bit, each server must send at least n

2
bits; between two servers, the client is receiving an entire

database’s worth of communication. This observation—and more generally, the concavity of the
binary entropy function in the Korner-Marton result—supports our assertion that the number of
unsynchronized records must be kept small.

3.2 Algorithm Description
Existing PIR methods are provably correct when the servers store identical copies of the database.
However, individual server nodes may store unsynchronized versions of a database. This will cause
traditional PIR algorithms to fail with high probability. For example, consider the two-server PIR
scheme in section 3.1 when one server has an out-of-date entry. When the client decodes the replies
from the servers, she gets the sum of the desired record with an error term (Figure 3.6).

There are a few ways to circumvent this issue. One is to treat the reply from the out-of-
date server as an error, and query another server. Schemes like [34, 51] inherently enable this
via robustness to Byzantine servers. However, it may be more expensive to query a new server
than to communicate more with an already-connected server. It may also be unrealistic to assume
that the client will find any set of perfectly-synchronized servers in a reasonable amount of time.

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 54

wth
index

Client
Server 1 Server 2
X X

Figure 3.6: PIR when the databases are unsynchronized; server 2 has an out-of-date record, f ′2.
Traditional PIR methods fail in this scenario. In this example, the desired record was f0, but the
client received the summation of f1 and an error term, f2 + f ′2.

We propose a scheme that functions over unsynchronized databases at the expense of increased
computation and communication. When the number of unsynchronized records is small, we can
treat PIR as a distributed source coding problem. We assume throughout that synchronization
errors are i.i.d. and uniformly distributed across the database.

Main Idea: Our proposed scheme is divided into two communication rounds. In Phase 1, we
learn which records are unsynchronized; in Phase 2, we conduct PIR knowing the synchronization
error locations. We adapt [51], a collusion-resistant scheme for synchronized databases (section
3.1).

Phase 1: Locate unsynchronized records
In this phase, the objective is to efficiently learn the mis-synchronization locations from distributed
servers. The client transmits no information about the desired record index, so privacy is preserved.
Suppose the client knows that at most s records are unsynchronized. Unlike [42], we assume that
the database stores hashes of each record—if two servers have the same version of record fi, then
they both store the same hash H(fi); otherwise, the hashes are different with high probability [20].
We will show that this lowers our accuracy slightly compared to [42] in exchange for communica-
tion costs that are logarithmic in record size instead of linear.

Basic Solution

Suppose we have only two servers, and a genie sums the servers’ respective views of the database
hashes over GF (2`), giving H(f (1)) + H(f (2)).7 The synchronized (i.e., equal) hashes cancel,
giving a sparse vector of length n, with nonzero entries at the unsynchronized records. A par-
ity check matrix A could be used to compress this sparse vector for transmission to the client:
A · (H(f (1)) ⊕ H(f (2))). By linearity, this is equivalent to A · H(f (1)) ⊕ A · H(f (2)). So to
communicate the same information in a distributed fashion, each server can simply compress its
own database with a pre-determined A matrix, and the client can recover the sparse vector from
the compressed vectors.

7We use H(f) to denote the elementwise hash of vector f .

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 55

The same idea works for many databases: each server Si individually compresses its view of
the database by returning A · f (i) to the client. The client can then do pairwise reconstruction,
finding d sets of unsynchronized records between (S1, S2), (S2, S3), . . . , and (Sd−1, Sd). The final
answer is the union of these sets. This approach requires the client to compute d distinct sparse
vector reconstructions.

Better Solution

It is possible to offload slightly more computation to the servers, so the client only needs to com-
pute one sparse reconstruction. We use this approach in simulation. Suppose the client gen-
erates a scalar query polynomial q(X) such that q(0) = 0 and the set of roots of q is disjoint
from the set {α1, . . . , αd}. The client uses this polynomial for all the database records, and sends
q(α1), q(α2), . . . , q(αd), to the d servers. Upon receiving a query q(X), each server returns to the
client the n × 1 vector r(X) = q(X) ·H(f)—a scaled version of the hashed database. Note that
servers are not (yet) compressing the replies.

The client interpolates the length-n reply vectors just as in section 3.1 to get r̂(0), so r̂(0)ᵀ =
[0 . . . 0 1]︸ ︷︷ ︸

1×d

·V−1R, where R is a d×nmatrix: R =
[
r(α1) . . . r(αd)

]ᵀ. If the databases were

perfectly synchronized, we would have r̂(0) = 0n.

Lemma 1. Suppose fj is synchronized across databases (i.e., all of the servers have identical
versions of the record). Then r̂(0)j = 0. Otherwise, for any c > 0, r̂(0)j 6= 0 with probability at
least 1 − 1/Lc, where L denotes record size (bits). Increasing c reduces the probability of error
geometrically in L at the expense of a linear increase in downlink communication, i.e., nc log`(L)
symbols per server
(Proof in Appendix B.1).

So if at most s records are unsychronized across all servers (assume s is known), there will be
exactly s nonzero entries in r̂(0) at the unsynchronized indices (e.g. index 2 in Figure 3.7) with
probability ≥ (1 − 1/Lc)s. The client can thus learn which records are unsynchronized. If we
choose c = logL n, the probability of success is lower bounded by 1 − s/n. When s is sublinear
in database size n, the probability of success asymptotically approaches 1. The error stems from
using hashes of records. If we use entire records as in [42], decoding succeeds deterministically,
but with communication costs that are linear in record size L instead of logarithmic.

Reducing communication: In the previous solution, each server sent O(n) bits for the client to
learn the support of r̂(0). However, for s � n, r̂(0) will be a sparse vector. We can therefore
reduce the downlink communication by using distributed compression. In r̂(0), nonzeros at the
mis-synchronized indices are like errors in a codeword, which require two parity symbols to locate
and correct (if the hash length Lh is more than one symbol, this can be adapted for bursty error
correction with s bursts). Suppose each hash requires one symbol. The elements of r̂(0) can be

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 56

Client

Server 2

Server 1

Server 3

X =

Interpolate

Client

X =

X =

Figure 3.7: Identifying unsynchronized records without any compression. f2 is not synchronized
across all servers, so the 2nd entry of r̂(0) is nonzero. This figure is computed over integers, but
in practice, all operations are over finite field GF (2`).

recovered deterministically with 2s samples using MDS codes, or with high probability by mea-
suring more than 3.69s samples according to PULSE compressive sensing using left-regular LDPC
codes [84]. Although none of the servers knows the sparse vector r̂(0), each server can individu-
ally compress its reply vector, and the client can recover the sparse vector. The client decodes the
servers’ replies to obtain vector y, which is decoded according to Algorithm 4 (Appendix C.2).
Algorithm 5 specifies the procedure for identifying unsynchronized records.

Lemma 2. Suppose matrix A in Algorithm 5 is constructed from the parity check matrix of a
systematic, MDS (n + 2s, n, 2s + 1) error-correcting code. If there are at most s unsynchronized
records, the locations of so unsynchronized records (so ≤ s) can be recovered with probability
greater than 1 − so/Lc, assuming synchronization errors are i.i.d. and uniformly random (Proof
in Appendix B.1).

If there are many mis-synchronizations, Reed-Solomon decoding can be inefficient, so PULSE
decoding (or another non-MDS code with fast decoding) may be more appropriate.

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 57

Protocol 5 A κ-private algorithm for learning the locations of up to s unsynchronized records.
Client:

1: Choose d distinct indices α1, . . . , αd from GF (2`). Define matrix V as Vij = ακ−j+1
d−i+1 (to be

used later).
2: Define the query polynomial as
3: q(X) = Xκ +Xκ−1 + . . .+X .
4: Send q(αi) and s to server Si, i ∈ [d].

Each honest-but-curious server (Si, i ∈ [d]):
5: Select A as the first 2s rows of a global parity check matrix A, known to all servers.
6: Using q(αi), compute r̃(αi) = q(αi)AH(f (i)).
7: Return r̃(αi) to the client.

Client:
8: On receiving r̃(αi), build R̃ = [r̃(α1) . . . r̃(αd)].
9: Compute y = R̃ · (V−1)ᵀ · [0 0 . . . 1]ᵀ.

10: Reconstruct r̂(0) from y by decoding.
11: Return the support of r̂(0) as the unsynchronized record indices.

Corollary 2. Suppose desired record fw is synchronized across all contacted servers. Suppose
Algorithm 5 is run with sensing matrix A chosen according to §3.1 [84]. If the number of un-
synchronized records is upper bounded by n1/3, then the PIR query asymptotically succeeds with
probability at least (1 − O(1/m))(1 − so

Lc
), where m is the number of measured bins, m > 3.69s

(Proof in Appendix B.1).

Efficiency: Each server can precompute a compressed version of the hashed database using a
worst-case estimate of the number of unsynchronized records s. Then the client need only send the
polynomial evaluation point q(X) and s (estimated via network measurement) to each server. Upon
receiving such a query, the server can extract the first 2s entries from its compressed database, scale
them by q(X), and return the result. Using this scheme, a client can learn the unsynchronized
record locations in one round of communication, with at most d(log2 d + 2sc log2 L) total bits of
communication.

Phase 2: Retrieve the desired record(s)
In the second round of communication, the client retrieves the desired records using a modified
version of existing PIR schemes. The client now knows which records are unsynchronized from
Phase 1, so it must ensure that the servers avoid touching those records. For example, suppose the
client learns that record i is unsynchronized. In two-server PIR, both servers’ query vectors should
be zero at index i so neither server touches the unsynchronized record. The same idea holds for
more servers; the random query polynomial for the ith (unsynchronized) record should have roots
at {α1, . . . , αd} so that none of the servers touches the unsynchronized record. Since the query
polynomials have degree < d, this condition holds only for the zero polynomial. However, the

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 58

Client

Server 2

Server 1

Server 3

Client

* Want
* Know is not synced
* Swap 2nd polynomial
with a 0-polynomial

Use zero-swapped
vectors

1. Swap zeros,
pick scalar

polynomial

2. Construct
query

3. Servers
process
queries

Interpolate

Decode

4. Recover
records

 Find

Figure 3.8: Example PIR algorithm, Phase 2, on a database with n = 3 records. The client knows
f2 is unsynchronized, so it swaps zeros into the second query index before adding p(X)1n to each
query vector. The client wants one record, so A is the first row of a Vandermonde matrix, 1ᵀ

n. Thus
‘decoding’ means multiplying the results by V

−1
= [1]−1 (Algorithm 6).

client cannot just set the ith query polynomial to zero, as this would leak information. Instead, for
each nonzero query polynomial at a mis-synchronized index, we swap it with a zero polynomial
found elsewhere in the query. Since query polynomials are drawn i.i.d. uniformly at random, the
classical result on exchangeability of i.i.d. random variables holds [32].

Fact 1. For any set of discrete iid random variablesX1, . . . , Xn, let P (x1, . . . , xn) denote P (X1 =
x1, . . . , Xn = xn). Given a permutation π mapping {1, 2, . . . , n} to itself,

P (x1, . . . , xn) = P (xπ(1), . . . , xπ(n)).

Thus a permuted set of query polynomials has the same marginal probability as an unpermuted
set. However, if we just swap zero-polynomials into the unsynchronized indices, the probability
of index i being desired conditioned on the query vector would be lower wherever a collusion of
servers sees all zeros at index i. The client therefore adds a random, scalar-valued polynomial
p(X) with zero constant term to every entry of q(X). So the query vector gets transformed as
follows:

q(X) =

 q1(X)
. . .

qn(X)

 =⇒ q̃(X) =

 q1(X) + p(X)
. . .

qn(X) + p(X)

 ,
where q(X) at unsynchronized indices is the zero polynomial. The added polynomial p(X) acts
like a one-time pad; it ensures that if a coalition of servers tries to break privacy, the unsynchronized
index will not contain all zeros, but seemingly random numbers. If the databases were synchro-
nized, there would be no zero-swapping, so this additional randomness would not be needed. The
client then sends queries built from q̃(X); the ith server sends back the usual result, which by
linearity is the same as q(X)ᵀf (i) + p(X)1ᵀf (i). The server also returns the sum of all database
records T (i) = 1ᵀf (i), which can be precomputed. The client subtracts the noise p(X)T (i) from the
ith server’s reply, recovering the initially desired reply. Note that p(X) need not be a polynomial;

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 59

the client could instead draw a random constant per server. We used random polynomials purely
to simplify the notation.

Suppose a client wishes to retrieve records fw1 , . . . , fwζ . Phase 2 is described in Algorithm
6 and illustrated in Figure 3.8. Note that A changes between Algorithms 5 and 6, but serves the
same purpose: to compress servers’ responses. Setting A to the identity matrix in either algorithm
is sufficient for success. For optimal compression though, the number of rows of A in Algorithm 5
should depend on the number of unsynchronized records, whereas in Algorithm 6, A needs only ζ
rows—the number of desired records. This discrepancy arises because in phase 1, the client does
not know the support of the sparse vector being measured (mis-synchronized indices), whereas in
phase 2, it does (desired database indices). We can tolerate as many mis-synchronizations in Phase
2 as there are zero polynomials in the vector of random query polynomials. For a field size of 2`2

this amounts to n/2`2κ mis-synchronizations on average.

Theorem 3. Suppose d databases contain at most s = γ(n) · n unsynchronized records, 0 ≤
γ(n) � 1. After running Algorithms 5 and 6, with matrix A in Algorithm 5 chosen as the parity
check matrix of a systematic, MDS (n + 2s, n, 2s + 1) error-correcting code, r̂(0) = r(0) with
probability

P (success) ≥ 1− γ(n)︸︷︷︸
P (Error in Phase 1)

− e−2n(p−γ(n))2︸ ︷︷ ︸
P (Error in Phase 2)

.

where p = 2−`2·κ is the probability of a random query polynomial being the zero polynomial, and
γ(n) ≤ p. If at most κ servers collude, the client’s query is information-theoretically private (Proof
in Appendix B.1).

The condition r̂(0) = r(0) means the client recovered all desired records by masking all
unsynchronized database indices with zeros. In practice, if there are too few zero polynomials, the
client can artificially introduce zero polynomials (which leaks some information) or construct a
new query. Thus, the probability of successfully completing a PIR query is dominated by the ability
to locate synchronization errors. If s is sublinear in n (γ(n) → 0), this probability approaches 1
asymptotically. An analogous result holds for PULSE.
Efficiency: The computational and communication costs of this algorithm are listed in Table 3.2,
using both the compression technique derived from [84] and Reed-Solomon codes [91]. We also
compare our approach to a state-of-the-art scheme by Devet et al. [34] for processing concurrent
queries. The comparison is unfair because [34] is not designed for unsynchronized databases;
however, we do not know of any schemes that tackle our problem of interest. Table 3.2 suggests
that the required amount of communication and computation are nearly identical to state-of-
the-art schemes when the number of unsynchronized records is small.

The main communication overhead in our scheme compared to [34] is the downlink commu-
nication in Phase 1 when locating unsynchronized records (2dsc log2 L bits). This overhead is
asymptotically dominated by the uplink in Phase 2, so the asymptotic total communication com-
plexity is the same between our scheme and [34]. Nonetheless, for practical database sizes, [34]

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 60

Protocol 6 A κ-private PIR algorithm for retrieving ζ records given the locations of s unsynchro-
nized records.
Client:

1: Choose d random distinct indices α1, . . . , αd from GF (2`2). Define matrix V, Vij = ακ−j+1
d−i+1 .

2: Pick vectors a0, . . . ,aκ−1, each element drawn uniformly at random from GF (2`2).
3: For each ui ∈ {u1, . . . , us}, locate a distinct zi such that (aj)zi = 0 for all j ∈ [κ]. If these
zi’s do not exist, declare a failure and exit.

4: ∀i ∈ [s] and j ∈ [κ], swap (aj)ui with (aj)zi .
5: Define query polynomial: q(X) = a0X

κ + a1X
κ−1 + . . .+ aκ−1X +

∑ζ
i=1 ewi .

6: Pick random polynomial p(X) with p(0) = 0.
7: Send q̃(αi) = q(αi) + p(αi)1n to server Si.

Each honest-but-curious server (Si, i ∈ [d]):
8: Pick A as the first ζ rows of an n × n Vandermonde matrix. On receiving q̃(αi), compute
r̃(αi) = A · (q̃(αi)⊗ f (i)).

9: Return r̃(αi) and T (i) =
∑n

j=1 f
(i)
j to the client.

Client:
10: From the server replies r̃(αi) and T (i), build matrix R̃ = [r̃(α1)−p(α1)T (1) . . . r̃(αd)−

p(αd)T
(d)].

11: Interpolate y = R̃ · (V−1)ᵀ · [0 0 . . . 1]ᵀ.
12: Define V as columns w1, . . . , wζ of A. Decode r̂(0) = V

−1
y. Return r̂(0) (the desired

records).
13: If H(f̂w[content]) = f̂w[hash], the algorithm was successful. Otherwise, declare a failure.

has lower total communication. If the server precomputes hashes for the synchronization phase,
the server’s online computation cost is essentially equivalent between the two schemes. The client
incurs additional computation to recover the locations of unsynchronized records and to interpolate
the desired records.

Trading privacy for efficiency

Polynomial-swapping works when the database is large, but in a P2P network, servers may store
smaller databases. Therefore, there may not be enough zero polynomials in practice to remove
all the unsynchronized records from PIR queries. In this case, we can set polynomials to zero.
This leaks information; we show that as long as the number of unsynchronized records grows
sublinearly in the database size, the leaked information is asymptotically negligible, even with up
to κ servers colluding.

Observation 1. Suppose we build PIR queries that force unsynchronized query polynomials to be
the zero polynomial. Suppose the client wishes to retrieve (synchronized) record fw. Let s grow
sublinearly in n, and suppose the true number of unsynchronized records among a set of databases
so is distributed uniformly on the integers in interval [0, s]. Suppose at most κ servers are colluding.

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 61

Algorithm Communication Server Computation Client Computation

UPIR+PULSE, [84]
d(log d+ 3.69sc logL
+ log2 ζ + `n+ ζL)

nL(ζ + 3.69sc) O(ds) +O(ζ3d2L)

UPIR+RS, [91]
d(log d+ 2sc logL
+ log ζ + `n+ ζL)

nL(ζ + 2s) O(dn3) +O(ζ3d2L) [56]

Goldberg, [51] dqζ(n+ L) 2nLζ O(ζdL)

Table 3.2: Total communication (bits) and online computation (FLOPS) for unsynchronized PIR
(UPIR) using PULSE and Reed-Solomon decoding, and a state-of-the-art collusion-resistant PIR
scheme [51]. Parity symbols for the hashed database are precomputed. n = database size,
d =number of servers, L =record size, ζ =number of records requested, 2` =field size (both
phases).

Then

lim
n→∞

P (w = i|q(1)
i = 0, . . . , q

(κ)
i = 0)

P (w = i| q(1)
i , . . . , q

(κ)
i ∧ ∃ j s.t. q(j)

i 6= 0)
= 1

(Proof in Appendix B.1).

This says the likelihood of fi being desired is nearly constant, whether the colluding servers
observe zeros at index i or not; so zeroing out unsynchronized records reveals little information to
a κ-coalition. For instance, if n = 10, 000, field size is GF (8), s = 100 unsynchronized records,
and κ = 3 colluding servers, database indices with nonzero query values are almost 4x as likely to
be desired as an index with all zeros. The remaining indices events have equal likelihood.

3.3 Experimental evaluation
To evaluate the practical performance of our scheme, we implemented it under the PERCY++
framework [34, 51], a C++ simulation of multi-server PIR algorithms.8 Our metrics of interest
were 1) probability of success, and 2) total query runtime, measured under realistic system set-
tings. For these simulations, we used the PULSE compression approach, due to its simplicity and
speed of decoding. Simulations were run on a virtual machine running on an Intel Core i7-620M
processor, with one 2.67 GHz processing core and 1 GB of RAM. Measurements are averaged
over 500 runs. Database records are 2048 bytes; all computations are over GF (216). We denote
our scheme with ‘UPIR’ (unsynchronized PIR) in all figures and tables; PULSE indicates use of
PULSE compression (correspondingly, RS for Reed-Solomon).

8PERCY++ code available at http://percy.sourceforge.net/; our modifications available at http:
//github.com/gfanti/P2P-PIR-Cpp.

http://percy.sourceforge.net/
http://github.com/gfanti/P2P-PIR-Cpp
http://github.com/gfanti/P2P-PIR-Cpp

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 62

Unsynchronized databases
Probability of Success

Certain patterns of query records and mis-synchronizations can lead to decoding errors, resulting
in the client being not recovering the requested record. The probability of correctly retrieving the
desired record increases as a function of communication cost.

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

(Num. bins) / (Num. Unsynchronized Records)

P
r(

S
uc

ce
ss

)

s=4 (UPIR + PULSE)
s=10 (UPIR + PULSE)
s=100 (UPIR + PULSE)
Threshold, left 3−regular LDPC
s=4 (Devet et al. [10])

Figure 3.9: Probability of a successful PIR run as a function of the number of bins used in Phase
1 to identify the unsynchronized record indices. Each “bin” requires 3 · LH bits of downlink
communication; we used LH = 48 bits.

Figure 3.9 plots the probability of success as a function of the number of bins used for com-
pression. Each ‘bin’ consists of three ratio measurements, each LH bits. Even when the number of
mis-synchronized records is small, this PIR scheme returns the desired record with high probabil-
ity, as long as the servers use a small constant factor of the optimal number of bins. In this setup,
we incur 7.2 kB extra communication to handle 100 mis-synchronized records. This is significant
for our test database of 2 kB records. However, as records scale to larger sizes, e.g. a 3 order
of magnitude increase, the overhead communication grows an order of magnitude to 72 kB—a
fraction of the downlink communication required in Phase 2.

Runtime

The bottleneck in our scheme compared to the state-of-the-art [34] is locating unsynchronized
records. In simulation, we did not pre-compute the synchronization replies for the servers, so
these runtimes are worst-case estimates. Figure 3.10 shows runtime as a function of the number
of unsynchronized database records. Our scheme runs within an order of magnitude of [34]’s run-
time, and can complete a query in under 0.03 seconds in the face of 128 unsynchronized database

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 63

records. We ran [34] over synchronized databases, since it does not complete successfully when
run over unsynchronized databases. Our runtime overhead is comparatively small, but it increases
with the number of unsynchronized records.

10
1

10
210

−3

10
−2

10
−1

Number of Unsynchronized Records

A
ve

ra
ge

 Q
ue

ry
 R

un
tim

e
(s

)

UPIR + PULSE
Devet et al. [10]

Figure 3.10: Average query runtime as a
function of the number of unsynchronized
records in the database. For our scheme, we
used enough bins to guarantee a 0.95 proba-
bility of success.

10
3

10
4

10
5−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Database Size (Number of Records)

A
ve

ra
ge

 Q
ue

ry
 R

un
tim

e
(s

)

UPIR + PULSE
Devet et al. [10]

Figure 3.11: Query runtime as a func-
tion of database size, measured in num-
ber of records. We assume there are 32
unsynchronized records when running our
scheme, and used 72 bins to locate the mis-
synchronizations.

Figure 3.11 shows how runtime scales as a function of database size, measured in the number
of database records. We fixed the number of unsynchronized records to 32, and used 72 bins to
recover mis-synchronized records. This plot suggests that the runtime grows by less than an order
of magnitude, even as the database size increases by several orders of magnitude. The overhead
of our scheme compared to [34] does not increase as a function of database size, because the
runtime overhead is dominated by locating the synchronization errors—a process that depends
more heavily on the number of unsynchronized records than the database size. For a fixed number
of mis-synchronizations, this overhead as a fraction of the total runtime actually decreases with
database size. Thus we conclude that the raw number of unsynchronized records is the main
contributing factor to added runtime.

3.4 Take-home Message
In this chapter, we presented the first multiserver PIR scheme to function when databases are
not synchronized. The proposed scheme does not incur significant additional communication and

CHAPTER 3. PRIVATE INFORMATION RETRIEVAL ON UNSYNCHRONIZED
DATABASES 64

runtime costs when the number of unsynchronized records is small. When this number is small,
the runtime increased by less than an order of magnitude in simulation.

These results suggest that in a networked PIR setting, the average fraction of unsynchronized
records should be controlled to limit query times and overhead communication. Servers could
update their records regularly to ensure that each server’s database differs only slightly compared
to the baseline.

This PIR scheme is a piece in the larger puzzle of distributed, privacy-preserving search sys-
tems. In particular, we will use the distributed source coding ideas from this chapter to construct
efficient keyword search algorithms in Chapter 4.

65

Chapter 4

Efficient Private Search with Conjunctive
Queries

In this chapter, we expand beyond the the data retrieval problem from Chapter 3 to consider
the related problem of conjunctive keyword queries. This problem is important because search
engine users typically process information by searching for keywords rather than retrieving data
from pre-determined addresses. Keyword search alone is a more challenging problem than retrieval
because it requires content-level analysis of data. As such, keyword search can incur a much higher
computational and communication cost. Minimizing this overhead is a key objective.

When users submit keyword searches to search engines, those queries are typically conjunc-
tive, or containing multiple keywords [66]. The implicit assumption is that the user wants results
that feature all of those keywords. However, existing distributed private keyword search algo-
rithms process such queries by returning a list of all documents that feature at least one of the
queried keywords [24, 80]. This can lead to prohibitive downlink communication overhead, while
also increasing the computational load of the client, which must sort through the results to re-
trieve the correct ones. For example, as of October 2015, Google reported 587 million results for
the query “Edward OR Snowden”, and only 33 million results for “Edward AND Snowden”. In
this example, a conjunctive query reduces the downlink communication cost by over an order of
magnitude. More generally, conjunctive queries can significantly reduce downlink communication
costs, compared to returning results that feature at least one queried keyword.

This claim clearly depends on the database and the kinds of queries people make; however,
to back it up numerically, we examined the top 400 most popular queries on Google worldwide,
measured on November 1, 2015 [105]. For each query, we measured the number of results for the
query. If a query was conjunctive (e.g.,A∧B), we also measured the number of results returned by
the corresponding union query (A∨B). We observed that 69 percent of queries had more than one
keyword, and among those, 70 percent of queries had at least an order of magnitude more results for
the A ∨ B query than the A ∧ B query, and 33 percent had at least two orders of magnitude more

This chapter is based on joint work with Kannan Ramchandran.

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 66

results. While these observations are not necessarily representative of the databases that might
be stored by a distributed, private search engine, they do suggest the importance of gracefully
processing conjunctive queries.

A naive solution to the conjunctive private search problem is as follows: suppose the client
wishes to query two keywords: “red cat”. Then the server(s) could store an inverted database
structure that is indexed by pairs of keywords (Figure 4.1). The client submits a normal PIR
query for the wth index, where w maps to the desired pair of keywords (in Figure 4.1, “red cat”
maps to index w = 2). Clearly, the downlink communication of this approach scales linearly
with the number of conjunctive results, but the storage overhead grows as (|K|/m)m, where |K|
is the number of keywords in the dictionary, and m is the number of queried keywords. Since
the server should be prepared for queries of arbitrary length, the storage overhead alone becomes
prohibitive. This is especially true in our distributed setting, where servers are not companies
with dedicated infrastructure, but regular users who are contributing their computing resources
to a privacy-preserving search engine. We must therefore explore alternative solutions, whose
overhead does not grow so dramatically in the problem size.

(cat, dog):
(cat, red):

(dog, red):

{f1, f2, f4, …}
{f1, f3, …}
{f2, f4, f6, …}

K = {cat, dog, red}

K = {cat, dog, red}

f1 A brown cat

walked by.

f2 The cat was

red.

f3 A dog must

eat.

f4 The red cat

eats.

cat:
dog:
red:

{1, 2, 4}
{3}
{2, 4}

Figure 4.1: Example of an inverted database indexed by pairs of keywords. Each pair of keywords
indexes a list of documents {fi} featuring that pair of keywords. K denotes the dictionary of
keywords. SinceK contains three keywords and the user is queryingm = 2 keywords, the inverted
structure has

(
3
2

)
elements.

(|K|
m

)
scales as O(|K|/m)m, which is prohibitive if a server were to

accommodate conjunctive queries of arbitrary length.

Problem and Contributions
In our problem, a client wishes to conduct conjunctive keyword queries on a collection of docu-
ments, without revealing the query to the server. We wish to design a multi-server, private search
scheme whose communication complexity depends only on the number of documents containing
all of the queried keywords.

In this chapter, we present such an algorithm, which allows clients to privately search a collec-
tion of documents with conjunctive keyword queries without revealing the keywords to the server.
In contrast to prior multi-server algorithms in this space, this algorithm’s communication cost de-
pends only on the number of documents that contain all the queried keywords. Critically, this
algorithm does not incur any additional storage overhead compared to a single-keyword database
search, and it can use the same data structure regardless of the number of keywords being queried.

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 67

Intuitively, the proposed algorithm relies on the fact that existing private retrieval algorithms
are able to efficiently process queries for a union of keywords, returning documents that contain at
least one query keyword. We exploit this to place a series of carefully-chosen union queries, and
then process the results jointly in order to recover the relevant documents featuring the intersection
of queried keywords. We analyze the performance of this technique theoretically, and demonstrate
that it meets our efficiency constraints while returning provably correct results.

Related Work
The area of privacy-preserving keyword search is dominated by the study of queries over encrypted
data. This area is primarily motivated by individuals or enterprises that wish to outsource private
data on a third-party server without revealing the sensitive data to the storage server. The main idea
is to encrypt the data with carefully-chosen cryptographic primitives and data structures that enable
meaningful searches over encrypted data. Some work in this space focuses on the cryptographic
primitives themselves [102, 18, 54]. Other work in this space instead focuses on building systems
with existing cryptosystems. CryptDB, for instance, stores a database under multiple layers of
encryption; when a client submits a query, the appropriate level of encryption is invoked that
enables the most efficient processing possible [87]. Search over encrypted data is unrelated to our
problem, because we are interested in privacy-preserving queries over plaintext data.

In the domain of privacy-preserving queries over plaintext data, researchers have studied pri-
vate stream searches (PSS); in PSS, a client wishes to search a collection of documents (possibly
streamed) and retrieve all documents that contain the queried keyword(s). As with PIR, there are
both single-server and multi-server PSS schemes. The bulk of work in this space has focused on
single-server PSS schemes, which rely on cryptographic assumptions [47, 83, 17, 45].1 As a result,
single-server PSS schemes can incur prohibitive computational costs; most research in this space
has therefore focused on improving the efficiency of PSS, particularly by reducing the downlink
communication cost [83, 17, 45]. As the name suggests, PSS is typically associated with streams
of incoming data, rather than static databases. While this is not exactly our target application, PSS
is the main existing technique for searching public data in a privacy-preserving way; in that sense,
it is the most relevant prior work to our goals.

There has been comparatively little work on private keyword search over public data with mul-
tiple servers; indeed, the idea does not even have a unifying name in the literature. We therefore
use “multi-server PSS” to describe a PSS algorithm that uses multiple servers with information-
theoretic privacy guarantees, much like multi-server PIR. The idea was first introduced by Chor et
al. [24]; in this work, the authors discuss methods for adapting existing PIR schemes to efficiently
process keyword queries. Another similar paper by Goldberg et al. considers how to process com-
plex SQL queries on public databases in a privacy-preserving manner [80]. Despite the strong
efficiency gains associated with multi-server architectures, these works do not handle conjunctive
queries explicitly. That is, if a client queries multiple keywords, existing PSS algorithms return
documents that contain at least one of the queried keywords. This overhead unnecessary communi-

1Again, the exception to this rule is the trivial database transfer PSS scheme.

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 68

cation can be significant, particularly if the queried keywords are individually common. Moreover,
existing approaches do not provide any mechanism for ranking private conjunctive queries on the
basis of individual-keyword-based rankings. This is problematic because search engine rankings
are critical for the usefulness of the search engine. Without rankings, it is difficult for clients
to make sense of a potentially large set of results. Our work departs from prior art by develop-
ing multi-server PSS schemes that explicitly, efficiently deal with conjunctive queries and result
ranking.

4.1 Setup and Notation
We use [m] to denote the set {1, . . . ,m}. Boldface lowercase variables denote vectors (a), and
regular non-bolded variables denote scalars (a). Boldface uppercase variables denote matrices
(A), and uppercase non-bolded, subscripted variables denote matrix elements (Aij). We use

⊕
and ⊕ to denote bitwise XOR (i.e., addition over a Galois field GF (2a)), and we use

∑
and + to

denote addition over rings, such as integers modulo 2a, which we denote by Z2a .
Suppose there are d non-colluding, honest-but-curious servers. Each server stores an identical

database of n ordered documents, f = [f1, . . . , fn]; for instance, a document might represent the
contents of a webpage. This vector plays the same role as the database in Chapter 3, except now
fi represents a document rather than an indexed record in a cohesive database. There exists a
global (ordered) dictionary of keywords K = {k1, . . . , k|K|}, known to the client and all servers.
Each document is associated with a subset of keywords from this dictionary; for instance, the ith
document’s subset, Ki ⊆ K, might represent of all keywords in K that appear on webpage fi.

A third party decides which keywords are significant in each document; the algorithm for
deciding keyword prominence is beyond the scope of this paper, and we assume this mapping is
given. The mapping is meant to represent a search engine indexing its search space according
to some unknown, possibly proprietary algorithm. For example, importance might be tied to the
number of times a keyword appears in a document.

Given such a database and dictionary, the client chooses to query a set of m keywords X =
{x1, . . . , xm}, X ⊆ K. Let Z = {z1, . . . , zs} denote the indices of all documents in f that
contain all the keywords specified by X . We assume that the number of desired documents s is
much smaller than the number of total documents n. Based on X , the client generates a privacy-
preserving query for each server, denoted q(t), t ∈ [d]. Each server processes its query q(t), and
returns a reply r(t) to the client. The client processes all the servers’ replies to recover Z, the
documents that feature all the keywords in X . Designing the algorithm that generates q(t) and
subsequently computes r(t) as a function of q(t) and the database is the objective of this paper.

Throughout this work, we use a running example based on a collection of documents illustrated
in Figure 4.2. The dictionary in this example is K = {cat, dog, red}. The number of documents is
n = 4.

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 69

(cat, dog):
(cat, red):

(dog, red):

{f1, f2, f4, …}
{f1, f3, …}
{f2, f4, f6, …}

K = {cat, dog, red}

K = {cat, dog, red}

f1 A brown cat

walked by.

f2 The cat was

red.

f3 A dog must

eat.

f4 The red cat

eats.

cat:
dog:
red:

{1, 2, 4}
{3}
{2, 4}

Figure 4.2: Documents used in running example. Each document features a different subset of
dictionary keywords.

4.2 Background Concepts
Our algorithmic contributions combine ideas from the areas of private information retrieval, private
stream search, and distributed source coding. We introduced the relevant background related to to
private information retrieval and distributed source coding in Section 3.1, and therefore describe
only PSS in greater detail here.

Private Stream Search
Conceptually, PIR is like browsing the Web while already knowing the URLs of the websites one
wants to visit. A more realistic scenario is that a user knows what content she is looking for, but not
the exact address or location of that content. Private stream search (PSS) addresses this challenge
by allowing a user to learn if a queried keyword is present in a document, without revealing the
keyword to the document server.

The most well-known algorithms in this space use a single-server architecture and rely on
cryptographic assumptions [83, 17, 45]; these algorithms often utilize computationally-expensive
cryptographic tools like homomorphic encryption.

We instead adopt a multi-server architecture similar to the one presented in [24]; effectively, we
frame the problem as a multi-server PIR problem, and then modify the associated PIR algorithms.
Posing PSS as a PIR problem is trivial. One option is for the tth server (t ∈ [d]) to store an inverted
database, indexed by the keywords in K. The ith database entry (corresponding to keyword ki)
contains a list of document IDs Si, such that for each s ∈ Si, fs contains keyword ki. The setup is
illustrated in Fig. 4.3. Notice that unlike the naive solution proposed earlier, this setup only requires
each server to store an inverted database indexed by each single keyword in the dictionary.

(cat, dog):
(cat, red):

(dog, red):

{f1, f2, f4, …}
{f1, f3, …}
{f2, f4, f6, …}

K = {cat, dog, red}

K = {cat, dog, red}

f1 A brown cat

walked by.

f2 The cat was

red.

f3 A dog must

eat.

f4 The red cat

eats.

cat:
dog:
red:

{1, 2, 4}
{3}
{2, 4}

Figure 4.3: The inverted database stored by each server. The list {1, 2, 4} in the first row implies
that f1, f2, and f4 all feature the keyword “cat”.

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 70

With this inverted database index, the client can simply submit a PIR query for the index of the
desired keyword. For instance, if the client wanted keyword “cat”, she would query record w = 1
in the example illustrated in Figure 4.3. Notice that the client must know the (ordered) keyword
dictionary K.

A major weakness of this approach arises when the client wishes to query multiple keywords.
There do exist PIR schemes that allow the client to retrieve multiple records in one round of PIR
[43, 59, 70], but in doing so, the client retrieves all tuples for documents that contain at least one
desired keyword. The principal algorithmic challenge of our work is modifying these multi-server
PIR algorithms so that the client can avoid wasting communication on documents that feature only
a subset of desired keywords.

4.3 Algorithm Description
We tackle this problem in two phases, each requiring a full round of communication. During the
first phase, the client learns which elements of the server’s database meet its search criteria (i.e.,
which documents contain the desired keywords with the highest priority); in the second phase, the
client retrieves those elements with a regular PIR query.

Phase 1: Find the desired documents
In this phase, the client issues a PIR-like query to learn which documents contain the desired
keywords. Existing PIR techniques can reveal which documents contain keywords ki1 ∨ . . .∨ kim ,
where ∨ denotes logical OR, whereas we actually want the logical AND. At a high level, our
approach is to compute carefully-chosen, correlated OR queries on different servers to recover the
documents that contain ki1 ∧ . . . ∧ kim , where ∧ denotes the logical AND operation.

We present this algorithm by first stepping through a simple example. We then discuss how
to generalize the example and give theoretical performance guarantees. We step through a private
query containing m = 2c keywords for some positive integer c, and then generalize the algorithm
to arbitrary numbers of keywords m; this process is outlined precisely in Algorithm 7, and the full
pipeline is illustrated in Figure 4.5.
Client (Query Generation): Suppose the client wants records containing m = 2 keywords:
X = {ki1 , ki2} = {“cat”, “red”}. The client must contact d = 2m servers (in this case, d = 4),
which are assumed to be non-colluding and honest-but-curious. The fact that this scheme requires
an exponential number of servers in the query length is clearly not ideal; however, given that most
search engine queries contain at most five keywords [66], this constraint is likely to be feasible in
practice, particularly if each “server” is a node in a P2P network.

The client first generates a length-|K| noise vector a, drawn i.i.d. from a Bernoulli(1/2) dis-
tribution. Each bit in a corresponds to one keyword in the dictionary. Now, the client uses a
to generate four different query vectors: 1) q(1) = a + 0|K|, where 0|K| is the all-zero vector,
2) q(2) = a + ei1 , where ei1 is an indicator vector with a 1 at index i1 and zeros elsewhere, 3)

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 71

Protocol 7 A multi-server, conjunctive query private search algorithm for m = 2c queries. Input:
Queried keywords X = {ki1 , . . . , kim}. Output: List of documents Z featuring keywords in X
Client:

1: Uniformly draw noise vector a, ai ∼ Bern(1
2
), i ∈ [n]

2: Generate the power set of X , P(X) = {X1, . . . , X2m}
3: Define the ith query as q(i) = a+ eXi
4: Send q(i), i ∈ [d], to server Si

Each honest-but-curious server (Si, i ∈ [d]):
5: Initialize r(i) = 0n
6: Let a = c+ 1
7: for j = 1 to |K| do
8: if q(i)

j = 1 then
9: for s ∈ Sj do

10: r
(i)
s = (r

(i)
s + 1) mod 2a

11: Return y(i) = A · r(i), computed over GF (2a)
Client:
12: Compute y =

⊕d
j=1 y

(i)

13: Reconstruct r̂ from y and A, e.g. using [84]
14: Return the nonzero indices of r̂

q(3) = a + ei2 , and 4) q(4) = a + ei1,i2 , where ei1,i2 is 1 at both i1 and i2, and 0 elsewhere. Each
of these four query vectors is sent to a different server. Notice that the indicator vectors added to
the noise vector a collectively specify the power set of the queried keywords. That is, let P(X)
denote the power set of X . Then the query vectors sent to each server are simply a+eX′ , for each
X ′ ⊆ P(X). This is why we need d = 2m servers—because there are 2m elements in P([m]).
Server (Query Processing): Upon receiving a noisy query vector, the jth server generates a
length-n list, initialized to 0n, which we denote with r(j). Each entry of r(j) corresponds to a
document. The server iterates over the |K| elements of the query vector q(j). If the ith element
of q(j) is 0, the server does nothing; if the ith element of q(j) is 1, the server iterates through the
corresponding list of document indices in the ith element of the inverted database structure, Si.
For each document index s ∈ Si, the server increments r(j)

s by 1 over field Z2a . At the end of this
process, each server’s r(j) vector is a list detailing how many of the desired keywords appeared in
each database document, modulo 2a. The server’s interpretation of a “desired keyword” is any key-
word whose corresponding bit in q(j) is set to 1. Because of the added noise a, each server’s set of
“desired keywords” is very different from the true desired keywords. This procedure is illustrated
for the non-private case when a = 0|K| in the top half of Figure 4.4.

Prior to returning the response vector r(i) to the client, each server compresses r(i). This
step is omitted from Figure 4.4, but included in the pipeline diagram of Figure 4.5. The primary
communication gains of our approach come from compression, which is only possible because
the vectors r(i) are additively sparse. This is not always guaranteed to be true, in which case we

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 72

Client
0
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ecat ered ecat , red
0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Server 1
 cat: 1, 2, 4
dog: 3
 red: 2, 4

Server 2
 cat: 1, 2, 4
dog: 3
 red: 2, 4

Server 3
 cat: 1, 2, 4
dog: 3
 red: 2, 4

Server 4
 cat: 1, 2, 4
dog: 3
 red: 2, 4

q(1) = a
q(2) = a + ecat q(3) = a + ered

q(4) = a + ecat , red

0
0
0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

r(1)
f1
f2
f3
f4

1
1
0
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

r(2)
f1
f2
f3
f4

0
1
0
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

r(3)
f1
f2
f3
f4

1
2
0
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

r(4)
f1
f2
f3
f4

⊕

Client

0
2
0
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

r!
f1
f2
f3
f4

Figure 4.4: Additive sparsity arises across vectors. Here there is no added noise (i.e., a = 0|K|).
Red boxes indicate the (inverted) database entries requested from each server, and the final sum-
mation is taken over GF (2a) (i.e., a bitwise sum of the binary representation of each number in
r(j)). Notice that in the summed vector, the only nonzero entries correspond to documents that
contain all the queried keywords. In this example, s = 2. Because of this sparsity, each server can
individually compress its (non-sparse) response vector r(j) with a linear compression scheme to
reduce the downlink communication to O(s).

must alter Algorithm 7 slightly. However, when m is a power of two, this natural additive sparsity
always holds, as demonstrated in the following proposition:

Proposition 4. Suppose m = 2c for some c > 0, and suppose each server’s reply vector r(t), for
t ∈ [d], is computed according to Algorithm 7. Since the field requires at least m + 1 elements,
we operate over fields Z2a and GF (2a) with a = c + 1. Then r̂i 6= 0 if and only if document fi
contains all m queried keywords.

(Proof in Section C.1).
This proposition implies that under the specified conditions, the reply vectors from the servers

are guaranteed to be additively sparse (i.e., r̂ is sparse), which in turn implies that they are com-
pressible. By compressing r(i) with a parity check matrix as described in Section 3.1, we can

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 73

Client Server 1

L = {cat, red}
Query keywords

Generate noise

a = [0 1 0]!

Generate
queries

ecat + a
ered + a

ecat , red + a

a

0
1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

!

Count keywords in !2a
f1 f2 f3 f4

r(1) = 0 0 1 0

Compress in
y(1) = A ⋅r(1)

GF(2a)

Client

Sum replies
overGF(2a)

…

y =⊕ir!
(i)

!

Recover
sparse vector
r! = [0 2 0 2]

Return nonzero
entries

Q = { f2, f4}

1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Server 4
Count keywords in

f1 f2 f3 f4

Compress in
y(4) = A ⋅r(4)

GF(2a)

r(4) = 1 2 1 2

!
2a

Figure 4.5: The processing pipeline for phase 1 when m = 2c. Each client starts by generating
2m binary query vectors, and sends one vector to each server. The 1’s in each (noisy) query vector
specify a subset of “requested” keywords. Each server counts how many of the requested keywords
appear in each document. It then applies a post-processing function to that count, designed to
enforce differential sparsity across servers. Finally, it compresses the resulting vector and returns
it to the client, who decompresses and recovers the desired response.

ensure that with high probability (or deterministically, depending on the compression scheme), the
client can recover the true r̂ from the compressed replies from all the servers. So each server can
individually compute a compressed version of the post-processed reply vector, y(i) = A · r(i), and
return it to the client.

A note on field choice: Recall that servers compute their response vectors r(j) by counting over field
Z2a . This field was chosen so that servers can distinguish between a keyword that appears two (or
more) times and zero times—note that 1 + 1 = 0 in GF (2a). However, we subsequently typecast
these values into a Galois field for compression and reconstruction between servers because the
sum of two binary vectors over such a field is the binary sum, or the XOR, of those vectors. The fact
that XOR’ing is a linear operation over GF (2a) means that we can learn which documents contain
exactly one of the desired keywords by simply summing r(2) + r(3) over GF (2a). This in turn
cancels out the interference in r(4) from documents that contain only one desired keyword. These
effects collectively allow us to construct the sparse vector r̂. So compression over GF (2a) has
two main advantages: 1) it allows us to easily compute bitwise sums, which would be a nonlinear
operation over Z2a , and 2) it allows us to use distributed source coding to individually compress
each server’s non-sparse response r̂ without compromising the additive sparsity of the result.

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 74

Dealing with general m

The result in Proposition 4 is restrictive because it only holds for query lengths m that are a power
of two. In principle, this could be handled by only submitting queries whose lengths are artificially
padded to a power of two by inserting dummy keywords. However, doing so could significantly
increase the communication overhead, since 2m servers are queried. We improve the generality
of this approach by introducing a post-processing function hm(·), which is applied elementwise to
each server’s response vector prior to compression:

r̃(i) = hm(r(i)).

In this more general case, with some abuse of notation, we redefine

r̂ =
d∑
t=1

r̃(t),

so each server would send back A·r̃(i) instead of A·r(i) as before. This generalization is described
in Appendix C.2, Algorithm 11. The question now becomes how to design hm(·) so that r̂ has the
desired sparsity pattern, regardless of the noise in the system. For example, whenm = 2c, we know
that the identity post-processing function gives the desired result, so hm(j) = j for all j ∈ GF (2a);
this function definition should be generalized for arbitrary m ∈ N+.

First, we introduce some background notation. Let bm = (ba−1, . . . , b0) denote the binary
representation of the number of queried keywords m. For instance, if m = 5, we have b = (1 0 1).
Let Z denote the set of bit indices in b that are zero, and O denote the set of bit indices in b that
are one. In our example of m = 5, we have Z = {1} and O = {0, 2}. Now define the sets

B = {
∑
j∈B

2j, ∀B ∈ P(O)}

and
B = {

∑
j∈B

2j, ∀B ∈ P(Z)},

where
∑

j∈∅ 2j ≡ 0. Intuitively, B contains all elements ` for which
(
m
`

)
is odd, whereas B

describes the set of numbers that can be generated by summing only powers of two indexed by the
zero-bits in m. In our example, we have B = {0, 1, 4, 5} and B = {0, 2}. Notice that B ∩ B =
{0}, always. We use these sets to define a feasible choice of hm(·), and subsequently prove its
correctness.

Lemma 3. Suppose each server’s reply vector r(t), for t ∈ [d], is computed according to Algorithm
11. We choose the smallest a such that m ∈ [2a], and operate over fields Z2a and GF (2a). Then
for any m and any choice of hm(·), if fi contains fewer than m queried keywords, then r̂i = 0.
Additionally, if fi contains exactly m queried keywords, then the following choice of hm(·) ensures
that r̂i 6= 0:

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 75

hm(i) =

{
1 if i ∈ B
0 otherwise.

(4.1)

(Proof in Section C.1).
This Lemma gives an achievable solution, but it is by no means necessary. Indeed, this solution
does not reduce to the special case in Proposition 4 when m is a power of two.

Client (Result Processing): Once the client receives the reply vectors y(i), it can compute y =⊕d
i=1 y

(i). By the linearity of the compression scheme, this is equal to Ar̂, the compressed version
of r̂. The vector r̂ can then be recovered through the appropriate decoding algorithm for the parity
check matrix A. The output of this algorithm is a list of indices of the support of the reconstructed
vector r̂.

Theorem 4.3.1. Suppose Algorithm 11 is used to process a conjunctive query for keyword set X ,
under the conditions specified in Lemmas 4 and 3. The server and client both use a PULSE parity
check matrix and corresponding decoding algorithm, as specified in [84]. Then for sufficiently
large values of s (number of documents containing all the queried keywords) and n (number of
documents in the collection), with probability at least 1 − O(s−3/2), the support of r̂ is equal to
the set Z, which contains all documents containing all queried keywords. This output is obtained
with O(s) communication cost, while giving the client information-theoretic privacy guarantees.

(Proof in Section C.1)
While the guarantees in [84] hold for “large enough” s and n, the PULSE compressive sensing

construction empirically achieves good performance on small databases [84, 43]. This concludes
the first round of communication, in which the client learns which documents contain the desired
keywords.

Phase 2: Document retrieval
In this phase, the client retrieves the desired documents using a regular PIR query over the ordered
list of documents f = [f1, . . . , fn]. This phase does not include any algorithmic innovations, but
it is needed for completeness. If the client wishes to retrieve more than one of the documents
reported in Phase 1, it can use a PIR scheme that enables the client to request multiple records at
once, as in [43, 59, 70]. Otherwise, a normal PIR scheme suffices.

4.4 Performance
The proposed algorithm has downlink, per-server communication cost that scales linearly in s.
However, a more meaningful metric of interest is the total downlink communication cost. In this

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 76

respect, the proposed algorithm is less appealing, since it uses 2m servers. Table 4.1 quantifies the
precise communication, computation, and storage cost of the proposed algorithm, compared to two
naive baseline algorithms:

• Naive scheme (1): Use an inverted database structure, indexed by each tuple of m keywords.
If the maximum allowed number of keywords is m, then with some abuse of notation, we
let |P([m])| denote the number of entries in this database: |P([m])| =

∑
i∈[m]

(|K|
i

)
.2 For

a query set of keywords X , with |X| ≤ m, submit a PIR query for set X . This approach
returns the exact conjunctive query results.

• Naive scheme (2): Use an inverted database structure, indexed by each keyword individually
(i.e., the database has |K| entries). Submit one PIR query for each queried keyword, or
use a scheme like [43] that allows multiple concurrent queries. This approach returns all
documents that contain at least one queried keyword, and the client must thereafter filter out
the documents indexed by Z. This approach is representative of the current state-of-the-art,
modulo the underlying PIR scheme [24, 80].

Table 4.1 assumes the PIR scheme from [23], but it could be modified to reflect an underlying PIR
scheme of choice. The factor of log(n) in the downlink communication of the proposed scheme
stems from the compression field size, which must contain at least n elements. This is a straw-man
comparison because neither of these approaches are proposed in the literature to deal specifically
with conjunctive queries. However, since this particular problem has not been studied before, we
can only compare against straw-man schemes.

The benefits of the proposed scheme may not be obvious from the asymptotic costs. First,
notice that the storage cost of Naive Scheme (1) scales exponentially faster than the other two
schemes due to the |P([m])| term, so we do not view it as a practically-viable solution for a
distributed system. Given this, the real advantage of the proposed scheme is that the downlink
communication scales according to s instead of mŝ. The difference between variables s and ŝ
depends heavily on the dataset in question. However, we have observed empirically that these
constants differ significantly for popular queries in search engines like Google—often by an order
of magnitude or more.

4.5 Take-home Message
In this chapter, we have introduced an algorithm for conducting multi-server, privacy-preserving
keyword queries on a collection of plaintext documents. The proposed construction enables con-
junctive queries for any arbitrary number of keywords. Moreover, we have proved that this algorithm—
unlike prior art in this area—incurs a downlink communication cost that scales linearly in the
number of documents containing the conjunction of queried keywords, rather than the union.

2This is an abuse of notation because the summation is a partial enumeration of the power set of [K], whereas
previously we used P(·) to denote the full power set of the argument.

CHAPTER 4. EFFICIENT PRIVATE SEARCH WITH CONJUNCTIVE QUERIES 77

Algorithm Communication Server Computation Storage per Server
Uplink Downlink

Proposed 2m|K|+ 2n 3.69s · 2m log(n) + 2L O(sn|K|+ L) O(n(L+ |K|))
Naive (1) 2|P([m])| 2ŝL O(|P([m])| · ŝL) O(n(L+ |P([m])|))
Naive (2) 2m|K| 2mŝL O(m|K|ŝL) O(n(L+ |K|))

Table 4.1: Total uplink and downlink communication (bits), server-side online computation
(FLOPS), and server storage. n = database size, K = keyword dictionary, X = document size,
s = number of documents featuring all m queried keywords, ŝ = number of documents featuring
a single given keyword, maximized over all keywords in the dictionary. Yellow cells denote the
portion of each algorithm with the most overhead compared to the other baseline algorithms.

While this algorithm answers a previously unanswered problem in a theoretical sense, its prac-
tical implications may be limited. This is because although each server individually incurs a small
communication cost, the number of servers scales exponentially in the number of keywords. This
magnifies the total communication cost by a constant, but potentially large, factor. As such, the
proposed algorithm in its current state may not result in significant communication savings un-
less the intersection of query terms is significantly smaller than the union of query terms (e.g., by
an order of magnitude or more). While we have empirically observed that this is true for many
queries, it may not hold for general datasets and queries. Additionally, the incurred computation
cost of this algorithm is slightly higher—by a constant factor—than the corresponding naive solu-
tion that relies exclusively on existing PIR techniques. Therefore, our proposed algorithm may not
be efficient enough for adoption in practical settings. However, we maintain that the problem is an
important one, and our hope is that the proposed distributed source coding approach can inspire
more efficient and practical solutions.

78

Chapter 5

Future Work and Conclusions

In this thesis, we have introduced algorithms enabling anonymous messaging and privacy-preserving
search. This section includes a discussion of important future work, as well as primary conclusions
based on our results.

5.1 Anonymous Messaging
In the area of anonymous messaging, we introduced adaptive diffusion. Adaptive diffusion is a
spreading protocol that protects against deanonymization of authors in messaging networks by
means of a message’s spreading pattern over a graph. We demonstrated that over regular trees,
adaptive diffusion is optimal under the snapshot adversarial model and asymptotically optimal in
the tree degree under the spy-based adversarial model. We also demonstrated empirically that
adaptive diffusion performs nearly optimally over real social networks that are finite and cyclic.

This algorithm is lightweight and efficient enough to scale to large social networks. Moreover,
the anonymity properties are strong enough—even over realistic networks—to give significantly
better anonymity than existing networks. However, if such an algorithm were to make its way
into a practical system, there are a few important research questions that need to be answered
beforehand:

• Provide relay nodes with deniable plausibility. Our work so far is focused on protecting the
author of a source. However, in practice, a user might be implicated simply by virtue of
forwarding a message, even if the user was not the true author. Therefore, it is important
to introduce a deniability mechanism that allows relays to claim that they did not actively
approve a message. This may be feasible through using a randomized response mecha-
nism, providing relays with differential privacy guarantees on the binary random variable of
whether or not a user ‘liked’ a given message.

• Integrate mechanisms defending against cyberbullying and spamming. Cyberbullying is a
major problem in anonymous messaging social networks [26]. However, anonymity is at
odds with accountability. If a powerful user, or a large coalition of users can deanonymize

CHAPTER 5. FUTURE WORK AND CONCLUSIONS 79

a message to identify cyberbullies or spammers, then a powerful adversary can bypass the
protections introduced by our system design. As such, it may be interesting to investigate
methods that allow a coalition of users to prevent a message from spreading further, without
revealing the author of the message. This could be tackled through systems-level inno-
vations, for instance by making use of a semi-centralized architecture that allows users to
report objectionable content.

5.2 Private Search
In the area of private search, we introduced two new algorithmic innovations. The first is a multi-
server private information retrieval (PIR) scheme that is correct with high probability even when
the distributed servers have outdated views of the database replicates. This problem is important
in the context of distributed, peer-to-peer (P2P) networks, where databases are not necessarily
managed and maintained with the consistency of centralized services. The second algorithm en-
ables privacy-preserving conjunctive keyword queries over a public collection of documents, with
a communication cost that scales linearly in the number of documents featuring the intersection of
queried keywords.

Our overarching goal for this line of work is a distributed, privacy-preserving search engine
for medium-sized collections of data (e.g., the Snowden leaked documents, popular news outlets).
Clearly, such a search engine would operate on keyword queries, most of which would presumably
be conjunctive (assuming user query patterns match those of existing search engines [66]). The
algorithms we have proposed in this work are a step in the direction of this broader goal; however,
they may not be efficient enough in their current state to build a usable, scalable system.

In order to bridge this gap, we propose a few follow-up research questions:

• Reduce the number of servers needed in our conjunctive query keyword search algorithm.
Ideally, this number would scale at most linearly in the number of keywords queried. In our
existing formulation, sparsity comes naturally (without any postprocessing) because unde-
sired documents get summed over a Galois field an even number of times. It may be possible
to achieve a similar condition by simply reframing the optimization over fewer servers, and
including some postprocessing in order to enforce the desired sparsity condition.

• Make the protocol collusion-resistant. The protocol we propose is resistant to an honest-but-
curious adversary of non-colluding servers. However, in a P2P network, servers may collude
in order to break users’ privacy. There is a great deal of prior work on collusion-resistant
PIR [12, 51, 34]. However, these techniques cannot be applied to the private keyword search
algorithm in Chapter 4, because the existing schemes rely on the linearity of the underlying
PIR scheme. Our keyword search, on the other hand, includes nonlinearities that prevent
these techniques from generalizing. The intersection function is itself nonlinear, so we be-
lieve this problem should be tackled by developing nonlinear collusion-resistant algorithms,
rather than attempting to find a linear conjunctive keyword search algorithm.

CHAPTER 5. FUTURE WORK AND CONCLUSIONS 80

5.3 Final Thoughts
The questions considered in this thesis aim to empower people to use information-sharing net-
works without facing retribution for the content they share or consume. In principle, the privacy-
preserving messaging and search ideas presented here could be combined into one integrated net-
work that provides privacy-preserving information access and dissemination. However, we believe
both problems are significant of their own right, and there is a public need for services that satisfy
each privacy constraint individually. For instance, we have discussed an anonymous messaging
social network, and a P2P, privacy-preserving search engine. While this thesis tackles a few al-
gorithmic challenges in the space, there are still significant hurdles to bringing these ideas to the
public in a practical sense.

81

Bibliography

[1] FireChat. https://opengarden.com/firechat.

[2] Secret. https://www.secret.ly.

[3] Whisper. http://whisper.sh.

[4] Yik Yak. http://www.yikyakapp.com.

[5] B. J. Alge. Effects of computer surveillance on perceptions of privacy and procedural justice.
Journal of Applied Psychology, 86(4):797, 2001.

[6] Andris Ambainis. Upper bound on the communication complexity of private information
retrieval. In Automata, Languages and Programming, pages 401–407. Springer, 1997.

[7] M. Barbaro and T. Zeller. A face is exposed for AOL searcher no. 4417749. New York
Times, August 2006. http://www.nytimes.com/2006/08/09/technology/
09aol.html.

[8] Kevin Bauer, Damon McCoy, Ben Greenstein, Dirk Grunwald, and Douglas Sicker. Physical
layer attacks on unlinkability in wireless lans. In Privacy Enhancing Technologies, pages
108–127. Springer, 2009.

[9] E. Baumer, P. Adams, V. D. Khovanskaya, T. C. Liao, M. E. Smith, V. Schwanda Sosik,
and K. Williams. Limiting, leaving, and (re) lapsing: an exploration of facebook non-use
practices and experiences. In SIGCHI, pages 3257–3266. ACM, 2013.

[10] A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-way functions are essential for
single-server private information retrieval. In Symposium on theory of computing, pages
89–98. ACM, 1999.

[11] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’ computation in private information
retrieval: PIR with preprocessing. J. Cryptology, 17(2):125–151, 2004.

[12] A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval. In
Security in Communication Networks, pages 326–341. Springer, 2003.

https://opengarden.com/firechat
https://www.secret.ly
http://whisper.sh
http://www.yikyakapp.com
http://www.nytimes.com/2006/08/09/technology/09aol.html
http://www.nytimes.com/2006/08/09/technology/09aol.html

BIBLIOGRAPHY 82

[13] Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. General constructions for information-
theoretic private information retrieval. Journal of Computer and System Sciences,
71(2):213–247, 2005.

[14] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and J-F Raymond. Breaking the o (n 1 (2k-1)/)
barrier for information-theoretic private information retrieval. In Foundations of Computer
Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages 261–270. IEEE,
2002.

[15] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of STOC, pages 1–10. ACM,
1988.

[16] A. C. Berry. The accuracy of the gaussian approximation to the sum of independent variates.
Transactions of the american mathematical society, 49(1):122–136, 1941.

[17] J. Bethencourt, D. Song, and B. Waters. New constructions and practical applications for
private stream searching. In IEEE Symp. on Security and Privacy, pages 134 –139, 2006.

[18] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In Eurocrypt, pages 506–522. Springer, 2004.

[19] N. Borisov, G. Danezis, and I. Goldberg. DP5: A private presence service. Proceedings on
Privacy Enhancing Technologies, 2015(2):1–21, 2015.

[20] J.L. Carter and M.N. Wegman. Universal classes of hash functions. In Proc. of STOC, pages
106–112. ACM, 1977.

[21] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM, 24(2):84–90, 1981.

[22] D. L. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of cryptology, 1(1):65–75, 1988.

[23] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In Proc.
of IEEE FOCS, pages 41–50, Milwaukee, WI, 1995.

[24] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords. Cite-
seer, 1997.

[25] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data.
SIAM Review, 51(4):661–703, 2009.

[26] W. Cohen. In rise of Yik Yak, profits and ethics collide. New York Times, 2015.

[27] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous messaging system
handling millions of users. In Symposium on Security and Privacy. IEEE, 2015.

BIBLIOGRAPHY 83

[28] H. Corrigan-Gibbs and B. Ford. Dissent: accountable anonymous group messaging. In
CCS. ACM, 2010.

[29] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

[30] B. Danev, H. Luecken, S. Capkun, and K. El Defrawy. Attacks on physical-layer identifica-
tion. In Conference on Wireless network security, pages 89–98. ACM, 2010.

[31] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using social networks. In NDSS.
San Diego, CA, 2009.

[32] B. De Finetti. Probability, induction, and statistics. 1972.

[33] C. Devet and I. Goldberg. The best of both worlds: Combining information-theoretic and
computational PIR for communication efficiency. Technical report, University of Waterloo.

[34] C. Devet, I. Goldberg, and N. Heninger. Optimally robust private information retrieval.
IACR Cryptology ePrint Archive, 2012:83, 2012.

[35] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
Technical report, DTIC Document, 2004.

[36] W. Dong, W. Zhang, and C. W. Tan. Rooting out the rumor culprit from suspects. In ISIT ,
pages 2671–2675. IEEE, 2013.

[37] Z. Dvir and S. Gopi. 2-server pir with sub-polynomial communication. arXiv preprint
arXiv:1407.6692, 2014.

[38] K. Efremenko. 3-query locally decodable codes of subexponential length. Journal on Com-
puting, 41(6):1694–1703, 2012.

[39] Larry M Elison and Dennis NettikSimmons. Right of privacy. Mont. L. Rev., 48:1, 1987.

[40] G. Fanti, P. Kairouz, S. Oh, K. Ramchandran, and P. Viswanath. Hiding the rumor source.
arxiv preprint arxiv:1509.02849, 2015.

[41] G. Fanti, P. Kairouz, S. Oh, and P. Viswanath. Spy vs. spy: Rumor source obfuscation. In
SIGMETRICS/PERFORMANCE. ACM, 2015.

[42] G. Fanti and K. Ramchandran. Multi-server private information retrieval over unsynchro-
nized databases. In Allerton, 2014.

[43] G. Fanti and K. Ramchandran. Efficient private information retrieval over unsynchronized
databases. Journal of Selected Topics in Signal Processing, 2015.

[44] A. Fazeli, A. Vardy, and E. Yaakobi. Pir with low storage overhead: Coding instead of
replication. arXiv preprint arXiv:1505.06241, 2015.

BIBLIOGRAPHY 84

[45] M. Finiasz and K. Ramchandran. Private stream search at the same communication cost as
a regular search: Role of ldpc codes. In Proc. IEEE Int. Symposium on Information Theory,
pages 2556–2560, 2012.

[46] V. Fioriti and M. Chinnici. Predicting the sources of an outbreak with a spectral technique.
arXiv preprint arXiv:1211.2333, 2012.

[47] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseu-
dorandom functions. In Theory of Cryptography, pages 303–324. Springer, 2005.

[48] Michael J Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing network layer.
In Proceedings of ACM CCS, 2002.

[49] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with con-
stant communication rate. In Automata, Languages and Programming, pages 803–815.
Springer, 2005.

[50] S. Goel, M. Robson, M. Polte, and E. Sirer. Herbivore: A scalable and efficient protocol for
anonymous communication. Technical report, Cornell University, 2003.

[51] I. Goldberg. Improving the robustness of private information retrieval. In IEEE Symp. on
Security and Privacy, pages 131–148. IEEE, 2007.

[52] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams.
Journal of the ACM (JACM), 43(3):431–473, 1996.

[53] P. Golle and A. Juels. Dining cryptographers revisited. In Eurocrypt, pages 456–473.
Springer, 2004.

[54] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In CCS, pages 89–98. ACM, 2006.

[55] D. Gross. Yahoo hacked, 450,000 passwords posted online. CNN Tech, July 13 2012.
http://www.cnn.com/2012/07/12/tech/web/yahoo-users-hacked.

[56] F. G. Gustavson. Analysis of the berlekamp-massey linear feedback shift-register synthesis
algorithm. IBM Journal of Research and Development, 20(3):204–212, 1976.

[57] T. E. Harris. The theory of branching processes. Courier Corporation, 2002.

[58] D. C. Howe and H. Nissenbaum. Trackmenot: Resisting surveillance in web search. Lessons
from the Identity Trail: Anonymity, Privacy, and Identity in a Networked Society, 23:417–
436, 2009.

[59] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their applications. In
Symposium on Theory of computing, pages 262–271. ACM, 2004.

http://www.cnn.com/2012/07/12/tech/web/yahoo-users-hacked

BIBLIOGRAPHY 85

[60] M. Jawad, P. Serrano-Alvarado, and P. Valduriez. Protecting data privacy in structured P2P
networks. In Data Management in Grid and Peer-to-Peer Systems. Springer, 2009.

[61] N.L. Johnson and S. Kotz. Urn models and their application. Wiley New York, 1977.

[62] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and counter-
measures. Ad hoc networks, 1(2):293–315, 2003.

[63] J.O. Koehler. STASI: The untold story of the East German secret police. Basic Books, 1999.

[64] M. Kolountzakis. The study of translational tiling with fourier analysis. In Fourier analysis
and convexity, pages 131–187. Springer, 2004.

[65] J. Korner and K. Marton. How to encode the modulo-two sum of binary sources (corresp.).
Transactions on Information Theory, 25(2):219–221, 1979.

[66] F. Lardinois. Hitwise: Search queries are getting longer. readwrite, 2009.

[67] P. Lewis and D. Rushe. Revealed: How Whisper app tracks ‘anonymous’ users. The
Guardian, 2014.

[68] A. Y. Lokhov, M. Mézard, H. Ohta, and L. Zdeborová. Inferring the origin of an epidemic
with dynamic message-passing algorithm. arXiv preprint arXiv:1303.5315, 2013.

[69] M. Luby, M. Mitzenmacher, M. Amin Shokrollahi, and D. Spielman. Efficient erasure
correcting codes. Information Theory, IEEE Transactions on, 47(2):569–584, 2001.

[70] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client private information re-
trieval. In Financial Cryptography and Data Security, 2015.

[71] W. Luo, W. P. Tay, and M. Leng. Identifying infection sources and regions in large networks.
Transactions on Signal Processing, 61(11):2850–2865, 2013.

[72] D. Lyon. Surveillance, snowden, and big data: Capacities, consequences, critique. Big Data
& Society, 1(2):2053951714541861, 2014.

[73] D. McCullagh. Verizon draws fire for monitoring app usage, browsing habits. CNET ,
October 16 2012. Retrieved from http://news.cnet.com/8301-13578_
3-57533001-38/verizon-draws-fire-for-monitoring-app-
usage-browsing-habits/.

[74] E. A. Meirom, C. Milling, C. Caramanis, S. Mannor, A. Orda, and S. Shakkottai. Localized
epidemic detection in networks with overwhelming noise. 2014.

[75] C. Milling, C. Caramanis, S. Mannor, and S. Shakkottai. Network forensics: Random
infection vs spreading epidemic. In SIGMETRICS. ACM, 2012.

http://news.cnet.com/8301-13578_3-57533001-38/verizon-draws-fire-for-monitoring-app-
http://news.cnet.com/8301-13578_3-57533001-38/verizon-draws-fire-for-monitoring-app-
usage-browsing-habits/

BIBLIOGRAPHY 86

[76] C. Milling, C. Caramanis, S. Mannor, and S. Shakkottai. On identifying the causative net-
work of an epidemic. In Allerton Conference, pages 909–914, 2012.

[77] C. Milling, C. Caramanis, S. Mannor, and S. Shakkottai. Detecting epidemics using highly
noisy data. In MobiHoc, pages 177–186, 2013.

[78] M. Mitzenmacher and G. Varghese. Biff (bloom filter) codes: Fast error correction for large
data sets. In Information Theory Proceedings (ISIT), 2012 IEEE International Symposium
on, pages 483–487. IEEE, 2012.

[79] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, pages 448–457.
SIAM, 2001.

[80] Femi Olumofin and Ian Goldberg. Privacy-preserving queries over relational databases. In
Privacy enhancing technologies, pages 75–92. Springer, 2010.

[81] F.G. Olumofin. Practical Private Information Retrieval. PhD thesis, University of Waterloo,
August 2011.

[82] R. Ostrovsky and W. E. Skeith III. A survey of single-database private information retrieval:
Techniques and applications. In Public Key Cryptography, pages 393–411. Springer, 2007.

[83] R. Ostrovsky, W. Skeith, and O. Patashnik. Private searching on streaming data. Journal of
Cryptology, 20:397–430, 2007.

[84] S. Pawar. PULSE: Peeling-based ultra-low complexity algorithms for sparse signal estima-
tion. Ph.D. Thesis, 2013. http://www.eecs.berkeley.edu/Pubs/TechRpts/
2013/EECS-2013-215.pdf.

[85] B. Pinkas and T. Reinman. Oblivious ram revisited. In Advances in Cryptology, pages
502–519. Springer, 2010.

[86] P. C. Pinto, P. Thiran, and M. Vetterli. Locating the source of diffusion in large-scale net-
works. Physical review letters, 109(6):068702, 2012.

[87] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting confiden-
tiality with encrypted query processing. In SOSP, pages 85–100. ACM, 2011.

[88] S.S. Pradhan and K. Ramchandran. Distributed source coding using syndromes.
Transactions on Information Theory, 49(3):626–643, 2003.

[89] B. A. Prakash, J. Vreeken, and C. Faloutsos. Spotting culprits in epidemics: How many and
which ones? In ICDM, volume 12, pages 11–20, 2012.

[90] M. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive, 2005:187, 2005.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-215.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-215.pdf

BIBLIOGRAPHY 87

[91] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. JSIAM, 8(2):300–
304, 1960.

[92] M. K. Reiter and A. Rubin. Anonymous web transactions with crowds. Communications of
the ACM, 42(2):32–48, 1999.

[93] D. Shah and T. Zaman. Finding rumor sources on random graphs. arXiv preprint
arXiv:1110.6230, 2011.

[94] D. Shah and T. Zaman. Rumors in a network: Who’s the culprit? Information Theory, IEEE
Transactions on, 57(8):5163–5181, Aug 2011.

[95] Nihar B Shah, KV Rashmi, and Kannan Ramchandran. One extra bit of download ensures
perfectly private information retrieval. In Information Theory (ISIT), 2014 IEEE Interna-
tional Symposium on, pages 856–860. IEEE, 2014.

[96] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[97] E. Shi, T-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o ((logn) 3) worst-case
cost. In ASIACRYPT, pages 197–214. Springer, 2011.

[98] A. Shontell. 7 people who were arrested because of something they wrote on face-
book. Business Insider, 2013. Retrieved from http://www.businessinsider.
com/people-arrested-for-facebook-posts-2013-7#ixzz3iBbceA3w.

[99] R. Singel. Point, click ... eavesdrop: How the FBI wiretap net operates. Wired, 2007.

[100] R. Sion and B. Carbunar. On the computational practicality of private information retrieval.
In Proc. of NDSS, pages 2006–2016, 2007.

[101] A. Smith. 6 new facts about Facebook. Pew Research, 2014.

[102] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In
Symposium on Security and Privacy, pages 44–55. IEEE, 2000.

[103] Foreign Staff. British woman ’sentenced to 20 years in iran for facebook posts’. The Tele-
graph, May 2014.

[104] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious ram. arXiv preprint
arXiv:1106.3652, 2011.

[105] Google Trends. https://www.google.com/trends/.

[106] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the Facebook social
graph. arXiv preprint arXiv:1111.4503, 2011.

[107] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction
in facebook. In Workshop on Online social networks, pages 37–42. ACM, 2009.

http://www.businessinsider.com/people-arrested-for-facebook-posts-2013-7#ixzz3iBbceA3w
http://www.businessinsider.com/people-arrested-for-facebook-posts-2013-7#ixzz3iBbceA3w
https://www.google.com/trends/

BIBLIOGRAPHY 88

[108] M. Waidner and B. Pfitzmann et al. The dining cryptographers in the disco: Uncondi-
tional sender and recipient untraceability with computationally secure serviceability. EU-
ROCRYPT , 89:690, 1989.

[109] Z. Wang, W. Dong, W. Zhang, and C. W. Tan. Rumor source detection with multiple obser-
vations: Fundamental limits and algorithms. 2014.

[110] S. Wehner and R. De Wolf. Improved lower bounds for locally decodable codes and pri-
vate information retrieval. In Automata, Languages and Programming, pages 1424–1436.
Springer, 2005.

[111] P. Winter and S. Lindskog. How the great firewall of china is blocking Tor. FOCI, 2012.

[112] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and Aaron A. Johnson. Dissent in numbers:
Making strong anonymity scale. In OSDI, pages 179–182. USENIX, 2012.

[113] Y.-C.Chang. Single database private information retrieval with logarithmic communication.
In Information Security and Privacy, pages 50–61. Springer, 2004.

[114] E. Yang, J. Xu, and K. Bennett. Private information retrieval in the presence of malicious
failures. In Proc. of COMPSAC, pages 805–810, 2002.

[115] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
Journal of the ACM (JACM), 55(1):1, 2008.

[116] Sergey Yekhanin. Private information retrieval. Communications of the ACM, 53(4):68–73,
2010.

[117] K. Zhu, Z. Chen, and L. Ying. Locating contagion sources in networks with partial times-
tamps. arXiv preprint arXiv:1412.4141, 2014.

[118] K. Zhu and L. Ying. A robust information source estimator with sparse observations. arXiv
preprint arXiv:1309.4846, 2013.

89

Appendix A

Proofs from Chapter 2

Proof of Theorem 4.3.1
Spreading rate. Under Protocol 1, GT is a complete (d − 1)-ary tree (with the exception that

the root has d children) of depth T/2 whenever T is even. Whenever T is odd, with probability
αd(T, h), GT is again such a (d − 1)-ary tree of depth (T + 1)/2. With probability 1 − αd(T, h),
GT is made up of two (d− 1)-ary trees of depth (T − 1)/2 each with their roots connected by an
edge. Therefore, it follows that when d > 2, NT is given by

NT =

1, T = 0,

2(d−1)(T+1)/2

d−2
− 2

d−2
, T ≥ 1, T odd, w.p. (1− α) ,

d(d−1)(T+1)/2

d−2
− 2

d−2
, T ≥ 1, T odd, w.p. α ,

d(d−1)T/2

d−2
− 2

d−2
, T ≥ 2, T even ;

(A.1)

Similarly, when d = 2, NT can be expressed as follows:

NT =

1, T = 0,

T + 1, T ≥ 1, T odd, w.p. (1− α) ,
T + 2, T ≥ 1, T odd, w.p. α ,
T + 2, T ≥ 2, T even ;

(A.2)

The lower bound on NT in Equation (2.6) follows immediately from the above expressions.

Probability of detection. For any given infected graphGT , the virtual source vT cannot have been
the source node, since the true source always passes the token at timestep t = 1. So P(GT |v =
vT) = 0. We claim that for any two nodes that are not the virtual source at time T , u,w ∈ GT ,
P(GT |u) = P(GT |w) > 0. This is true iff for any non-virtual-source node v, there exists a
sequence of virtual sources viTi=0 that evolves according to Protocol 1 with v0 = v that results
in the observed GT , and for all u,w ∈ GT \ {vT}, this sequence has the same likelihood. In
a tree, a unique path exists between any pair of nodes, so we can always find a valid path of
virtual sources from a candidate node u ∈ GT \ {vT} to vT . We claim that any such path leads

APPENDIX A. PROOFS FROM CHAPTER 2 90

to the formation of the observed GT . Due to regularity of G and the symmetry in GT , for even
T , P(GT |v(1)) = P(GT |v(2)) for all v(1), v(2) ∈ GT with δH(v(1), vT) = δH(v(2), vT). Moreover,
recall that the αd(t, h)’s were designed to satisfy the distribution in Equation (2.4). Combining
these two observations with the fact that we have (d − 1)h infected nodes h-hops away from the
virtual source, we get that for all v(1), v(2) ∈ GT \ {vT}, P(GT |v(1)) = P(GT |v(2)). For odd
T , if the virtual source remains the virtual source, then GT stays symmetric about vT , in which
case the same result holds. If the virtual source passes the token, then GT is perfectly symmetric
about the edge connecting vT−1 and vT . Since both nodes are virtual sources (former and present,
respectively) and T > 1, the adversary can infer that neither node was the true source. Since the
two connected subtrees are symmetric and each node within a subtree has the same likelihood of
being the source by construction (Equation (2.4)), we get that for all v(1), v(2) ∈ GT \ {vT , vT−1},
P(GT |v(1)) = P(GT |v(2)). Thus at odd timesteps, P(v̂ML = v∗) ≥ 1/(NT − 2).

Proof of Proposition 2.2.1
First, under Protocol 1 (adaptive diffusion) with αd(t, h) = 0, GT is a complete (d − 1)-ary tree
(with the exception that the root has d children) of depth T/2 whenever T is even. GT is made up
of two complete (d − 1)-ary trees of depth (T − 1)/2 each with their roots connected by an edge
whenever T is odd. Therefore, it follows that NT is a deterministic function of T and is given by

NT =

1, T = 0,

2(d−1)(T+1)/2

d−2
− 2

d−2
, T ≥ 1, T odd ,

d(d−1)T/2

d−2
− 2

d−2
, T ≥ 2, T even ;

(A.3)

The lower bound on NT in Equation (2.9) follows immediately from the above expression.
For any given infected graph GT , it can be verified that any non-leaf node could not have

generated GT under the Tree Protocol. In other words, P(GT |v non-leaf node) = 0 and v could
not have started the rumor. On the other hand, we claim that for any two leaf nodes v1, v2 ∈ GT , we
have that P(GT |v1) = P(GT |v2) > 0. This is true because for each leaf node v ∈ GT , there exists a
sequence of state values {s1,u, s2,u}u∈GT that evolves according to the Tree Protocol with s1,v = 1
and s2,v = 0. Further, the regularity of the underlying graph G ensures that all these sequences are
equally likely. Therefore, the probability of correct rumor source detection under the maximum
likelihood algorithm is given by PML(T) = 1/Nl,T , where Nl,T represents the number of leaf
nodes in GT . It can be also shown that Nl,T and NT are related to each other by the following
expression

Nl,T =
(d− 2)NT + 2

d− 1
. (A.4)

This proves the expression for P
(
v̂ML = v∗

)
given in (2.10).

Expected distance. For any v∗ ∈ G and any T , E[δH(v∗, v̂ML)] is given by

E[δH(v∗, v̂ML)] =
∑
v∈G

∑
GT

P(GT |v∗)P(v̂ML = v)δH(v∗, v). (A.5)

APPENDIX A. PROOFS FROM CHAPTER 2 91

2G

2

3

1

74 2 9

(2)
DG

5 6

Figure A.1: One realization of the random, irregular-tree branching process. Although each re-
alization of the random process G(t)

D yields a labelled graph, the adversary observes GT and GT ,
which are unlabelled. White nodes are uninfected, grey nodes are infected.

As indicated above, no matter where the rumor starts from, GT is a (d − 1)-ary tree (with the
exception that the root has d children) of depth T/2 whenever T is even. Moreover, v̂ML = v with
probability 1/Nl,T for all v leaf nodes in GT . Therefore, the above equation can be solved exactly
to obtain the expression provided in the statement of the proposition.

Proof of Theorem 2.2.2
We first analyze the probability of detection for any given estimator (see Eq. (A.10)); we then show
that the estimator in (2.16) is a MAP estimator, maximizing this probability of detection. Finally,
we show that using the MAP estimator in 2.16 gives the probability of detection in Eq. (2.17).

We begin with some definitions. Consider the following random process, in which we fix
a source v∗ and generate a (random) labelled tree G(t)

D for each time t and for a given degree
distribution D. At time t = 0, G(t)

D consists of a single node v∗, which is given a label 1. The
source v∗ draws a degree d1 from D, and generates d1 child nodes, labelled in order of creation
(i.e., 2 through d1 + 1). At the next time step, t = 1, the source picks one of these neighbors
uniformly at random to be the new virtual source and infects that neighbor. According to Protocol
1, each time a node v is infected, v draws its degree dv from D, then generates dv−1 labelled child
nodes. So at the end of time t = 1, G(1)

D contains the source and its uninfected neighbors, as well
as the new virtual source and its uninfected neighbors. An example of G(2)

D is shown in Figure A.1
(left panel) with d1 = 3 and virtual source at node 3. Grey nodes are infected and white nodes are
uninfected neighbors. Note that the node labelled 1 is always exactly one hop from a leaf of G(t)

D

for all t > 0; also, nodes infect their neighbors in ascending order of their labels. The leaves of
G

(t)
D represent the uninfected neighbors of infected leaves in standard adaptive diffusion spreading

over a given graph. Define Ω(t,D) as the set of all labelled trees generated at time t according to
this random process.

At some time T , the adversary observes the snapshot of infected subgraph GT . Notice that we

APPENDIX A. PROOFS FROM CHAPTER 2 92

4

6

8

1

2

5

73 ,{

}

2

6

8

1

3

5

74 ,

3

6

8

1

2

5

74 ,

3

5

8

4

6

1

27 ,

2

4

6

5

7

1

38 ,

2

5

8

4

6

1

37

3

4

6

5

7

1

28 ,

2()L

(a)

(b)

Figure A.2: L(G2) for the snapshot G2 illustrated in Figure A.1. Boxes (a) and (b) illustrate the two
families partitioning L(G2).

do not need to generate the entire contact network, since GT is conditionally independent of the
rest of the contact network given its one-hop neighbors. Hence, the we only need to generate (and
consider) the one hop neighbors of GT at any given T . We use GT to denote this random graph
that includes GT and its one hop neighbors as generated according to the previously explained
random process. Notice that the adversary only observes G, which is an unlabelled snapshot of the
infection and its one hop neighbors (see Figure A.1, right panel). We refer to the leaves of GT as
‘infected leaves’, denoted by ∂GT , and the leaves of GT as ‘uninfected leaves’ denoted by ∂GT .
Define

L(GT) ≡ {G̃ ∈ Ω(T,D) | U(G̃) = GT},

i.e., the set of all labelled graphs (generated according to the described random process) whose
unlabelled representation U(G̃) is equal to the snapshot GT . Figure A.2 illustrates L(GT) for the
graph G2 in Figure A.1.

We define a family CGT ,v ⊆ L(GT) as the set of all labelled graphs whose labeling could have
been generated by breadth-first labeling of GT starting at node v ∈ ∂GT . Here breadth-first labeling
is a valid order of traversal for a breadth-first search of GT starting at node v. We restrict v to be
a valid source for an adaptive diffusion spread—that is, it is an infected leaf in ∂GT . Note that a
BFS labeling starting from two different nodes on the unlabelled tree can yield the same labelled
graph. In Figure A.2, boxes (a) and (b) illustrate the two families contained in L(G2).

Let P(CG,v) ≡ P(G
(T)
D ∈ CG,v) denote the probability that the labelled graph G

(T)
D whose

snapshot is G is generated from a node v. From the definition of the random process for generating
labelled graphs, we get

P(CGT ,v) =

(∏
w∈GT

PD(dw)

)
︸ ︷︷ ︸

degrees of G

Q(GT , v)︸ ︷︷ ︸
virtual sources

|CGT ,v|︸ ︷︷ ︸
count of

isomorphisms

(A.6)

where PD(d) is the probability of observing degree d under degree distribution D, and

Q(GT , v) =
1v∈∂GT

dv
∏

w∈Φv,vT \{v,vT }
(dw − 1)

APPENDIX A. PROOFS FROM CHAPTER 2 93

is the probability of passing the virtual source from v to the virtual source vT given the structure
of GT , where Φv,vT is the unique path from v to vT in GT . Eq. (A.6) holds because for all instances
in CGT ,v, the probability of the degrees of the nodes and the probability of the path of the virtual
source remain the same.

The probability of observing a given snapshot GT is precisely P(G
(T)
D ∈ L(GT)). Notice that

CGT ,v partitions L(GT) in to family of labelled trees that are generated from the same source. This
give the following decomposition:

P(G
(T)
D ∈ L(GT)) =

∑
v∈CGT

P(CGT ,v), (A.7)

where we define CGT as the set of possible candidates of the source that generate distinct labelled
trees, i.e.

CGT ≡ {v ∈ GT |CGT ,v 6= CGT ,v′ ∀ v′ ∈ CGT , v′ 6= v} . (A.8)

Notice that this set is not unique, since there can be multiple nodes that represent the same family
CGT ,v. We pick one of such node v to represent the class of nodes that can generate the same family
of labelled trees. We use this v to index these families and not to denote any particular node in
∂GT .

Consider an estimate of the source v̂(GT). In general, v̂(GT) is a random variable, potentially
selected from a set of candidates. We define detection (D) as the event in which v̂(GT) = v1(G

(T)
D);

i.e., the estimator outputs the node that started the random process. We can partition the set of
candidate nodes ∂GT , by grouping together those nodes that are indistinguishable to the estimator
into classes. Precisely, we define a subset of nodes indexed by v ∈ CGT ,

χGT ,v ≡ {v′ ∈ ∂GT |CGT ,v = CGT ,v′} . (A.9)

For a given snapshot, there are as many classes as there are families. In Figure A.2, the class
associated with family (a) has one element—namely, the node labeled ‘1’ in family (a). The class
associated with family (b) contains two nodes: the node labeled ‘1’ in family (b), and the node
labeled ‘5’ in the rightmost graph of family (b), since both nodes give rise to the same family.

We consider, without loss of generality, an estimator that selects a node in a given class with
probability P(v̂(GT) ∈ χGT ,v). Notice that |χGT ,v| denotes the number of (indistinguishable) source
candidates in this class. From Eq. (A.7), the probability of detection given a snapshot is

P(D|GT) =
P
(
G

(T)
D ∈ L(GT) ∧D

)
P(G

(T)
D ∈ L(GT))

. (A.10)

=

∑
v∈CGT

P(CGT ,v)P
(
D
∣∣G(T)

D ∈ CGT ,v
)

∑
v∈CGT

P(CGT ,v)
(A.11)

where P(D|G(T)
D ∈ CGT ,v) = P(v̂(GT) ∈ χGT ,v)/|χGT ,v|. We use the following observation:

APPENDIX A. PROOFS FROM CHAPTER 2 94

Lemma 4.

P(CGT ,v)/|χGT ,v|∑
v∈CGT

P(CGT ,v)
=

1

dvT
∏

w∈φ(v,vT)
\{v,vT }

(dw − 1)
. (A.12)

(Proof in Section A)
Substituting Equation (A.12) into Equation (A.11), we get that

P(D|GT) =
∑
v∈CGT

P(v̂(GT) ∈ χGT ,v)
dvT

∏
w∈φ(v,vT)\
{v,vT }

(dw − 1)
.

Since

1

dvT
∏

w∈φ(v,vT)\
{v,vT }

(dw − 1)
≤ 1

min
v∈CGT

dvT
∏

w∈φ(v,vT)
\{v,vT }

(dw − 1)
,

and
∑

v∈CGT
P(v̂(GT) ∈ χGT ,v) = 1, it must hold that

P(D|GT) ≤ 1

min
v∈CGT

dvT
∏

w∈φ(v,vT)
\{v,vT }

(dw − 1)
.

This upper bound on the detection probability is achieved exactly if we choose weight P(v̂(GT) ∈
χGT ,v) = 1 for the class(es) minimizing the product

∏
w∈φ(v,vT)\{v,vT }(dw − 1), i.e.,

v̂(GT) = arg min
v∈∂GT

∏
w∈φ(v,vT)
\{v,vT }

(dw − 1).

Proof of Lemma 4

We have that

P(CGT ,v) =

(∏
w∈GT

PD(dw)

)
︸ ︷︷ ︸

degrees of G

Q(GT , v)︸ ︷︷ ︸
virtual sources

|CGT ,v|︸ ︷︷ ︸
count of

isomorphisms

where v is a feasible source for the adaptive diffusion process, i.e., a leaf of the infection GT .
The proof of the lemma proceeds in four steps:

APPENDIX A. PROOFS FROM CHAPTER 2 95

1

4

8

2

5

3

76

2

v
()

,T

T
v

R

Figure A.3: A realization of the random labeling process given an unlabeled snapshot.

1. We first recursively define a function H(GT , v) that is equal to |CGT ,v|. This function is
defined over any balanced, undirected tree and node; the tree need not be generated via the
previously-described adaptive diffusion branching process. In addition to H(GT , v), we are
interested in H(GT , vT).

2. We show that

P(CGT ,v) =

(∏
v∈GT

PD(dv)

)
H(GT , vT)×

|χGT ,v|
dvT

∏
w∈φ(v,vT)
\{v,vT }

(dw − 1)
. (A.13)

3. We show that ∑
v∈CGT ,v

P(CGT ,v) =

(∏
v∈GT

PD(dv)

)
H(GT , vT). (A.14)

4. We combine steps (2) and (3) to show the result.

Step 1 We wish to define H(GT , v)—a function that counts the number of distinct, isomorphic
graphs generated by a breadth-first search of a balanced tree GT , rooted at node v. Consider a
random process defined as follows. Given GT and root node v, the process starts at v and labels
it 1. For each neighbor w of node 1, the process randomly orders w’s unlabelled neighbors, and
labels them in order of traversal. The process proceeds to label nodes in a breadth-first fashion,
traversing each node’s unlabelled neighbors in a randomly-selected order, until all nodes have been
visited. Let R(t)

GT ,v denote a labelled tree generated according to the described random process (see
Figure A.3).

The function H(GT , v) counts the number of distinct graphs that can result from this random
process over GT when starting from node v. More precisely, define R(T)

GT ,v as the set of all possible
trees R(T)

GT ,v generated according to this random labeling. H(GT , v) is defined as the size of R(T)
GT ,v.

Figure A.4 illustratesR(T)
GT ,v for GT and v shown in Figure A.3. In that example, H(GT , v) = 3.

APPENDIX A. PROOFS FROM CHAPTER 2 96

1

4

8

2

5

3

76 ,{
1

4

8

3

6

2

57 ,

1

3

6

4

7

2

58

,T v }

Figure A.4: The setR(T)
GT ,v for the snapshot and node specified in Figure A.3.

Recall that GT is a balanced tree. The Jordan center of this tree is denoted by vT . If GT was
generated according to adaptive diffusion, vT would be the virtual source at time T . Although we
say GT is rooted at v, we define each node’s children with respect to vT . That is, node z is among
w’s children if z is a neighbor of w and z /∈ φ(w, vT).

Let Gvi→vjT denote the subtree of GT rooted at node vj with node vi as parent of vj (let Gv1→v1T =
GT). Each node vi in GT will have some number of child subtrees. Some of these subtrees may be
identical (i.e., given a realizationRGT ,v of the labeling random process, they would be isomorphic);
let kv denote the number of distinguishable subtrees of node v. We use ∆v

1, . . . ,∆
v
kv

to denote the
number of each distinct subtree appearing among the child subtrees of node v (recall children are
defined with respect to vT). For example, node v in graph GT in Figure A.3 (left panel) has ∆v

1 = 1
and ∆v

2 = 2, since the first of v’s child subtrees is equal only to itself, and the second (middle)
subtree is isomorphic to the subtree on the right. If there exists a neighboring, unvisited subtree
rooted at a parent of v, then we say ∆v

0 = 1 (by definition, there will only be one such subtree, and
it cannot be equal to any child subtrees because GT is balanced). Otherwise, we say ∆v

0 = 0. This
distinction becomes relevant if v 6= vT . For example the figure below shows a tree that is rooted at
w 6= vT . In computing H(GT , w), we have ∆w

0 = 1 because there is an unvisited branch from w
that contains vT , and ∆w

1 = 2 because both child subtrees of w are identical.

2 w

Let γv denote the unvisited neighbors of node v in GT . We give a recursive expression for
computing H(GT , v).

Lemma 5.
H(GT , v) =

(
dv

∆v
0,∆

v
1, . . . ,∆

v
k

) ∏
w∈γv

H(Gv→wT , w). (A.15)

Proof. We show this by induction on the depth λ of GT (rooted at v). For λ = 1, GT has a node
v and dv neighbors. Every realization of the random breadth-first labeling of GT will yield an
identical graph since the neighbors of v are indistinguishable, so H(GT , v) =

(
dv
dv

)
= 1.

APPENDIX A. PROOFS FROM CHAPTER 2 97

Now suppose Equation (A.15) holds for all graph-node pairs (GT , v) with λ < λo; we want
to show that it holds for λ = λo. We can represent GT as a root node v and dv subtrees: Gv→wT

for w ∈ γv. Since each subtree has depth at most λo − 1, we can compute H(Gv→wT , w) for each
subtree Gv→wT using equation A.15 (from the inductive hypothesis).

Suppose we impose (any) valid labeling on GT starting from v; we refer to the labeled graph
as RG,v. Given RG,v, we order the subtrees of a node in ascending order of their numeric labels.
For any fixed ordering of the dv subtrees of v, we have

∏
w∈γv H(Gv→wT , w) nonidentical labelings

of GT that respect the ordering of subtrees and are isomorphic to any given realization RGT ,v. At
most, there can be dv! arrangements of the subtrees. However, some of the subtrees are isomorphic,
so this value over-counts the number of distinct arrangements. That is, switching the order of two
nonidentical, isomorphic subtrees is the same as preserving the order and changing both subtrees
to the appropriate nonidentical, isomorphic subtree; this is already accounted for in the product∏

w∈γv H(Gv→w
T , w). ∆v

j ! of the dv! permutations of v’s subtrees permute the jth unique subtree
with isomorphisms of itself. As such, the non-redundant number of different arrangements of
the subtrees of node v is dv !

∆v
0 !,∆v

1 !...∆v
kv

!
=
(

dv
∆v

0 ,∆
v
1 ,...,∆

v
kv

)
. This gives the expression in Equation

(A.15).

Step 2. We want to show that

P(CGT ,v) =

(∏
v∈GT

PD(dv)

)
H(GT , vT)|χGT ,v|

dvT
∏

w∈φ(v,vT)
\{v,vT }

(dw − 1)
.

Since P(CGT ,v) =
(∏

v∈GT PD(dv)
)
Q(GT , v)H(GT , v), this is equivalent to showing that

H(GT , v)

H(GT , vT)
=

|χGT ,v|
Q(GT , v)dvT

∏
w∈φ(v,vT)
\{v,vT }

(dw − 1)

=
dv
dvT
|χGT ,v|.

The expressions for H(GT , vT) and H(GT , v) differ in that the former starts at the virtual source
and counts all subtrees by “trickling down” the tree (i.e., ∆w

0 = 0 for all w ∈ GT), whereas the
latter progresses from an infected leaf v to the virtual source, then recurses over the remaining,
unvisited subtrees of vT . Let Pi denote the ith node in the path from v to vT , which has length `.

APPENDIX A. PROOFS FROM CHAPTER 2 98

We get

H(GT , v) =

(
dP1

1, dP1 − 1

)
×(

dP2 − 1

1,∆P2
1 − 1, . . . ,∆P2

kP2

) ∏
w∈γP2\{P1,P3}

H(GP2→w
T , w)×

. . .(
dP`−1

− 1

1,∆
P`−1

1 − 1, . . . ,∆
P`−1

kP`−1

) ∏
w∈γP`−1

\{P`−2,P`}

H(GP`−1→w
T , w)×

(
dP` − 1

∆P`
1 − 1, . . . ,∆P`

kP`

) ∏
w∈γP`\{P`−1}

H(GP`→wT , w).

where each line corresponds to the terms that result from recursively moving up the path from
v = P1 to vT = P`. Similarly, we have

H(GT , vT) =

(
dP1 − 1

dP1 − 1

)
×(

dP2 − 1

∆P2
1 , . . . ,∆

P2
kP2

) ∏
w∈γP2\{P1,P3}

H(GP2→w
T , w)×

. . .(
dP`−1

− 1

∆
P`−1

1 , . . . ,∆
P`−1

kP`−1

) ∏
w∈γP`−1

\{P`−2,P`}

H(GP`−1→w
T , w)×

(
dP`

∆P`
1 , . . . ,∆

P`
kP`

) ∏
w∈γP`\{P`−1}

H(GP`→wT , w).

Here we have expanded the expression in terms of the path from v to vT to make simplification
clearer, where v is the node over which we previously computed H(GT , v). Computing the ratio of
H(GT , v) to H(GT , vT), all the rightmost products of each line cancel. We are left with the ratio of
the combinatorial expressions, which simplify to

H(GT , v)

H(GT , vT)
=

dP1

dP`
∆P2

1 . . .∆
P`−1

1 ∆P`
1

=
dv
dvT

∆v+1
1 . . .∆vT−1

1 ∆vT
1 . (A.16)

Each ∆1 denotes the number of child subtrees that are identical to the one containing v, for a
given root. As such, the product of ∆s above is precisely the number of candidates in the class

APPENDIX A. PROOFS FROM CHAPTER 2 99

being considered, or |χGT ,v|. That is, since they are indistinguishable in the unlabelled graph, they
generate the same family CGT ,v.

Step 3. We have∑
v∈CGT

P(CGT ,v) =
∑
v∈CGT

(∏
w∈GT

PD(dw)

)
H(GT , vT)

× |χGT ,v|
dvT
∏

w∈φ(v,vT)\{v,vT }(dw − 1)

=

(∏
w∈GT

PD(dw)

)
H(GT , vT)×

∑
v∈CGT

|χGT ,v|
dvT
∏

w∈φ(v,vT)\{v,vT }(dw − 1)

=

(∏
w∈GT

PD(dw)

)
H(GT , vT)×

∑
v∈∂GT

1

dvT
∏

w∈φ(v,vT)\{v,vT }(dw − 1)
(A.17)

where (A.17) follows because every leaf in the graph is a candidate source in exactly one class.
We wish to show this last summation sums to 1. Consider a random process over GT . The process
starts at the virtual source vT , and in each timestep it moves one hop away from vT . It chooses
among the (unvisited) children of a node uniformly at random. At time T , the process is neces-
sarily at one of the leaves of GT , and the probability of landing at a particular leaf v is precisely

1
dvT

∏
w∈φ(v,vT)\{v,vT }

(dw−1)
. Therefore, the sum of this quantity over all leaves v ∈ ∂GT is 1.

Step 4. Combining the results from steps 3 and 4, we get that

P(CGT ,v)/|χGT ,v|∑
v∈CGT

P(CGT ,v)
=(∏

w∈GT PD(dw)
)
H(GT , vT)(∏

w∈GT PD(dw)
)
H(GT , vT)

× |χGT ,v|/|χGT ,v|
dvT

∏
w∈φ(v,vT)
\{v,vT }

(dw − 1)

1

dvT
∏

w∈φ(v,vT)\{v,vT }
(dw − 1)

.

Proof of Theorem 2.2.3
To facilitate the analysis, we consider an alternative random process that generates unlabeled
graphs G′T according to the same distribution as GT (i.e., the infected, unlabeled subgraph em-

APPENDIX A. PROOFS FROM CHAPTER 2 100

bedded in U(G
(T)
D) from the proof of Theorem 2.2.2). For a given degree distribution D and a

stopping time T , the new process is defined as a Galton-Watson process in which the set of off-
springs at the first time step is drawn from D and the offsprings at subsequent time steps are drawn
from D − 1. At time t = 0, a given root node vT draws its degree dvT from D, and generates
dvT child nodes. The resulting tree now has depth 1. In each subsequent time step, the process
traverses each leaf v of the tree, draws its degree from D, and generates dv − 1 children. The
random process continues until the tree has depth T/2, since under adaptive diffusion, the infected
subgraph at even time T has depth T/2. Because the probability of detection in Equation (2.17)
does not depend on the degrees of the leaves of GT , the random process stops at depth T/2 rather
than T/2 + 1. We call the output of this random process G′T . The distribution of G′T is identical
to the distribution as the previous random process imposed on GT , which follows from Equation
(A.14) in the proof of Theorem 2.2.2. We therefore use GT to denote the resulting output in the
remainder of this proof.

Distribution D is a multinomial distribution with support f = (f1, . . . , fη) and probabilities
p = (p1, . . . , pη). Without loss of generality, we assume 2 ≤ f1 < . . . < fη. Let µD denote the
mean number of children generated by D:

µD =

η∑
i=1

pi(fi − 1).

There are two separate classes of distributions, which we deal with as separate cases.

Case 1: When p1(f1 − 1) > 1, we claim that with high probability, there exists a leaf node v in
∂GT such that on the unique path from the root vT to this leaf v, all nodes in this path have the
minimum degree f1, except for a vanishing fraction. To prove this claim, consider a different graph
HT derived from GT by pruning large degree nodes:

1. For a fixed, positive c, find t0 such that T/2 = t0 + c log(t0).

2. Initialize HT to be identical to GT .

3. For each node v ∈ HT , if the hop distance δH(v, vT) ≤ c log(t0), do not modify that node.

4. For each node v ∈ HT , if the hop distance δH(v, vT) > c log(t0) and dv > f1, prune out all
the children of v, as well as all their descendants (Figure A.5).

We claim that this pruned process survives with high probability. The branching process that
generates HT is equivalent to a Galton-Watson process that uses distribution D − 1 for the first
c log(t0) generations, and a different degree distribution D′ − 1 for the remaining generations;
D′ has support f ′ = (f1, 1), probability mass p′ = (p1, 1 − p1), and mean number of children
µD′ = p1(f1 − 1).

Note that f1 ≥ 3 by the assumption that p1(f1 − 1) > 1. Hence, the inner branching process
up to c log t0 has probability of extinction equal to 0. This means that at a hop distance of t0

APPENDIX A. PROOFS FROM CHAPTER 2 101

TH

0log()c t

0t

TG

Figure A.5: Pruning of a snapshot. In this example, the distribution D allows nodes to have degree
2 or 3, so we prune all descendants of nodes with degree 3 that are more than c log(t0) hops from
the root. In this example, p1(f1 − 1) < 1 and the pruned random process eventually goes extinct.

from vT , there are at least (f1 − 1)c log(t0) nodes. Each of these nodes can be thought of as the
source of an independent Galton-Watson branching process with degree distributionD′−1. By the
properties of Galton-Watson branching processes ([57], Thm. 6.1), since µD′ > 1 by assumption,
each independent branching process’ asymptotic probability of extinction is the unique solution of
gD′(s) = s, for s ∈ [0, 1), where gD′(s) = p1 s

f1−1 + (1 − p1) denotes the probability generating
function of the distribution D′. Call this solution θD′ . The probability of any individual Galton-
Watson process going extinct in the first generation is exactly 1− p1. It is straightforward to show
that gD′(s) is convex, and gD′(1 − p1) > 1 − p1, which implies that the probability of extinction
is nondecreasing over successive generations and upper bounded by θD′ . Then for the branching
process that generates HT , the overall probability of extinction (for a given time T) is at most
θ

(f1−1)c log t0

D′ . Increasing the constant c therefore decreases the probability of extinction. If there
exists at least one leaf at depth T (i.e., extinction did not occur), then there exists at least one path
in HT of length t0 − c log t0 in which every node (except possibly the final one) has the minimum
degree f1. This gives

log(ΛHT)

T/2
≤ t0 log(f1 − 1) + c log(t0) log(fη − 1)

t0 + c log(t0)
(A.18)

≤ log(f1 − 1) +
c log t0
t0

log
fη − 1

f1 − 1
, (A.19)

with probability at least 1− θ(f1−1)c log t0

D′ = 1− θt
c log(f1−1)
0

D′ = 1− e−CD′ t0 , where CD′ = log(θD′)
and the upper bound in (A.18) comes from assuming all the interior nodes have maximum degree
fη. SinceHT is a subgraph of a valid snapshotGT , there exists a path inGT from the virtual source
vT to a leaf of the tree where the hop distance of the path is exactly T/2, and at least t0 nodes have
the minimum degree f1. Since the second term in (A.19) is o(t0), the claim follows. The lower
bound log(ΛHT)/(T/2) ≥ log(f1 − 1) holds by definition. Therefore, for any δ > 0, by setting
T (and consequently, t0) large enough, we can make the second term in (A.19) arbitrarily small.
Thus, for T ≥ C ′D,δ, where C ′D,δ is a constant that depends only on the degree distribution and δ,
the result holds.

APPENDIX A. PROOFS FROM CHAPTER 2 102

Case 2: Consider the case when p1(f1 − 1) ≤ 1. By the properties of Galton-Watson branching
processes ([57], Thm. 6.1), the previous pruned random process that generated graphs HT goes
extinct with probability approaching 1. This implies that with high probability there is no path
from the root to a leaf that consists of only minimum degree nodes.

Instead, we introduce a Galton-Watson process with multiple types, derived from the original
process. Our approach is to assign a numeric type to each node in GT according to the number
of non-minimum-degree nodes in the unique path between that node and the virtual source. If a
node’s path to vT contains too many nodes of high degree, then we prune the node’s descendants.
The challenge is to choose the smallest pruning threshold that still ensures the pruned tree will
survive with high probability. Knowing this threshold allows us to precisely characterize ΛGT for
most of the instances.

To simplify the discussion, we start by considering a special case in which D allows nodes to
take only two values of degrees, i.e., η = 2. We subsequently extend the results for η = 2 to larger,
finite values of η. With a slight abuse of a notation, consider a new random process HT derived
from GT by pruning large degree nodes in the following way:

1. For a fixed, positive c, find t0 such that T/2 = t0 + c log(t0).

2. Initialize HT to be identical to GT .

3. For each node v ∈ HT , if the hop distance δH(v, vT) ≤ c log(t0), do not modify that node,
and assign it type 0.

4. For each node v ∈ HT , if the hop distance δH(v, vT) > c log(t0), assign v a type ξv, which
is the number of nodes in φ(w, v) \ {v} that have the maximum possible degree f2, where w
is the closest node in HT to v such that δH(w, vT) ≤ c log(t0) (Figure A.6).

5. Given a threshold r ∈ (0, 1), if a node v has type ξv ≥ rt0, prune out all the descendants of
v. For example, in Figure A.6, if t0 = 2 and the threshold is r = 0.5, we would prune out all
descendants of nodes with ξv ≥ 1.

We show that for an appropriately-chosen threshold r, this pruned tree survives with high
probability. By choosing the smallest possible r, we ensure that ΛHT consists (in all but a vanishing
fraction of nodes) of a fraction r nodes with maximum degree, and (1 − r) of minimum degree.
This allows us to derive the bounds on log(ΛHT)/(T/2) stated in the claim, which hold with high
probability.

Let k ≡ rt0. The process that generates HT is equivalent to a different random branching
process that generates nodes in the following manner: set the root’s type ξvT = 0. At time t = 0, the
root vT draws a number of children according to distributionD, and generates dvT children, all type
0. Each leaf generates type 0 children according to child degree distribution D − 1 until c log(t0)
generations have passed. At that point, each leaf v in this branching process (which necessarily
has type 0) reproduces as follows: if its type ξv > k, then v does not reproduce. Otherwise, it
either generates (f1 − 1) children with probability p1, each with state ξv, or it generates (f2 − 1)

APPENDIX A. PROOFS FROM CHAPTER 2 103

TH
0

0

01 1 0

0 0

12 2 0 1 1

0log()c t

0t

TG
Tv

w

v

Figure A.6: Pruning of a snapshot using multiple types. In this example, the distribution D allows
nodes to have degree 2 or 3. We take t0 = 2 and r = 0.5, so all descendants of nodes with type
rt0 = 1 are pruned.

children with probability p2, each with state ξv + 1. This continues for t0 generations. Mimicking
the notation from Case 1, we use D′ to denote the distribution that gives rise to this modified,
multi-type random process (in the final t0 generations); this is a slight abuse of notation since the
branching dynamics are multi-type, not defined by realizations of i.i.d. degree random variables.

Lemma 6. Consider a Galton-Watson branching process with child degree distribution D − 1,
where each node has at least one child with probability 1, and µD−1 > 1. Then the number of
leaves in generation t, Z(t), satisfies the following:

Z(t) ≥ eC`t

with probability at least 1 − eC′`t, where both C` and C ′` are constants that depend on the degree
distribution.

(Proof in Section A)

The first c log(t0) generations ensure that with high probability, we have at least eC` log t0 indepen-
dent multi-type Galton-Watson processes originating from the leaves of the inner subgraph; this
follows from Lemma 6. Here we have encapsulated the constant c from the first c log(t0) gen-
erations in the constant C`. For example, in Figure A.6, there are 3 independent Galton-Watson
processes starting at the leaves of the inner subgraph. We wish to choose r such that the expected
number of new leaves generated by each of these processes, at each time step, is large enough to
ensure that extinction occurs with probability less than one. For brevity, let α ≡ p1(f1 − 1) and
let β ≡ p2(f2 − 1). Let x(t) denote the (k + 1)-dimensional vector of the expected number of
leaves generated with each type from 0 to k in generation t. This vector evolves according to the

APPENDIX A. PROOFS FROM CHAPTER 2 104

following (k + 1)× (k + 1) transition matrix M :

x(t+1) = x(t)

α β

. . .

. . . α β
0

︸ ︷︷ ︸

M

.

The last row of M is 0 because a node with type k does not reproduce. Since the root of each
process always has type 0, we have x(0) = e1, where e1 is the indicator vector with a 1 at index 1
and zeros elsewhere.

Let Z(t) denote the expected number of new leaves created in generation t. This gives

E[Z(t)] = e1M
t
1
ᵀ
(k+1), (A.20)

where ᵀ denotes a transpose, and 1(k+1) is the (k+ 1) all-ones vector. When t < k, this is a simple
binomial expansion of (α + β)t. For t ≥ k, this is a truncated expansion up to k:

E[Z(t)] =
k∑
i=0

(
t

i

)
αt−iβi. (A.21)

We seek the necessary and sufficient condition on r for non-extinction, such that (1/t) log(E[Z(t)]) >
0. Consider a binomial random variable W with parameter β/(α+ β) = β/µD and t trials. Equa-
tion (A.21) implies that for large t,

E[Z(t)] = (α + β)t P(W ≤ k). (A.22)

= µtD exp
{
− tDKL

(
r ‖ β

µD

)
+ o(t)

}
, (A.23)

by Sanov’s theorem [29]. Here DKL(r‖β/µD) denotes the Kullback-Leibler divergence between
the two Bernoulli distributions defined by r and β/µD, such thatDKL(r‖β/µD) = (1−r) log((1−
r)/(α/µD)) + r log(r/(β/µD)). We wish to identify the smallest r for which (1/t) log(E[Z(t)])
is bounded away from zero. Such an r is a sufficient (and necessary) condition for the multi-type
Galton-Watson process to have a probability of extinction less than 1. To achieve this, we define
the following set of r such that Eq. (A.23) is strictly positive, for some ε > 0:

Rα,β(ε) =
{
r | log(µD) ≥ DKL(r‖β/µD) + ε

}
, (A.24)

Suppose we now choose a threshold r ∈ Rα,β(ε). This is the regime where the modified
Galton-Watson process with threshold r has a chance for survival. In other words, the probability
of extinction θD′ is strictly less than one. Precisely, θD′ is the unique solution to s = gD′(s), where
gD′(s) denotes the probability generating function of the described multi-type Galton-Watson pro-
cess. Using the same argument as in Case 1, we can construct a process where the probability of

APPENDIX A. PROOFS FROM CHAPTER 2 105

extinction is asymptotically zero. Precisely, we modify the pruning process such that we do not
prune any leaves in the first c log(t0) generations. This ensures that with high probability, there
are at least eC` log(t0) independent multi-type Galton-Watson processes evolving concurrently after
time c log(t0), each with probability of extinction θD′ . Hence with probability at least 1− e−2CD′ t0

(for an appropriate choice of a constant CD′ that only depends on the degree distribution D′ and
the choice of r), the overall process does not go extinct.

Our goal is to find the choice of r with minimum product of degrees log(ΛGT)/(T/2) that
survives. We define r1 as follows:

r1 ≡arg min
r∈Rα,β(ε)

(1− r) log(1− f1) + r log(1− f2).

SinceRα,β(ε) is just an interval and we are minimizing a linear function with a positive slope, the
optimal solution is r1 = infr∈Rα,β(ε) r. This is a choice that survives with high probability and
has the minimum product of degrees. Precisely, with probability at least 1 − e−CD′T , where CD′
depends on D′ and ε, we have that

log(ΛGT)

T/2
≤ 〈[1− r1, r1], log(f − 1)〉+

c log(t0)

t0
log (f2 − 1)

where we define the standard inner product 〈[1 − r1, r1], log(f − 1)〉 , (1 − r1) log(f1 − 1) +
r1 log(f2 − 1). It follows that

log(ΛGT)

T/2
− 〈[1− r∗, r∗], log(f − 1)〉 ≤

(r1 − r∗) log

(
f2 − 1

f1 − 1

)
+
c log(t0)

t0
log (f2 − 1) (A.25)

By setting ε small enough and t0 large enough, we can make this as small as we want. For any
given δ > 0, there exists a positive ε > 0 such that the first term is bounded by δ/2. Further,
recall that T/2 = c log(t0) + t0. For any choice of ε, there exists a tD′,ε such that for all T ≥ tD′,ε
the vanishing term in Eq. (A.23) is smaller than ε. For any given δ > 0, there exists a positive
tD′,δ such that T ≥ tD′,δ implies that the second term is upper bounded by δ/2. Putting everything
together (and setting ε small enough for the target δ), we get that

P
(log(ΛGT)

T/2
≥ 〈[1− r∗, r∗], log(f − 1)〉+ δ

)
≤ e−CD′,δT (A.26)

for all T ≥ C ′D′,δ, where CD′,δ and C ′D′,δ are positive constants that only depend on the degree
distribution D′ and the choice of δ > 0.

For the lower bound, we define the following set of r such that Eq. (A.23) is strictly negative:

Rα,β(ε) =
{
r | log(µD) ≤ DKL(r‖β/µD)− ε

}
. (A.27)

APPENDIX A. PROOFS FROM CHAPTER 2 106

Choosing r ∈ Rα,β(ε) causes extinction with probability approaching 1. Explicitly, P(Z(t) 6= 0)
is the probability of non-extinction at time t, and P(Z(t) 6= 0) ≤ E[Z(t)]. By Equation (A.23), we
have

E[Z(t)] ≤ et(log(µD)−DKL(r‖β/µD)+o(t))

where log(µD) − DKL(r‖β/µD) ≤ −ε. The probability of extinction is therefore at least 1 −
E[Z(t)] ≥ 1− e−t(ε+o(t)). So defining

r2 ≡arg max
r∈Rα,β(ε)

(1− r) log(1− f1) + r log(1− f2),

we have
log(ΛGT)

T/2
≥ 〈[1− r2, r2], log(f − 1)〉+

c log(t0)

t0
log(f1 − 1)

with probability at least 1 − e−CD′,2T where CD′,2 is again a constant that depends on D′ and ε. It
again follows that

log(ΛGT)

T/2
− 〈[1− r∗, r∗], log(f − 1)〉 ≥

(r2 − r∗) log

(
f2 − 1

f1 − 1

)
+
c log(t0)

t0
log (f1 − 1) , (A.28)

where r2−r∗ is strictly negative. Again, for any given δ > 0, there exists a positive ε > 0 such that
the first term is lower bounded by −δ/2, and for any choice of ε, there exists a tD′,ε such that for
all T ≥ tD′,ε the vanishing term in Eq. (A.23) is smaller than ε. Note that this ε might be different
from the one used to show the upper bound. We ultimately choose the smaller of the two ε values.
For any given δ > 0, there exists a positive tD′,δ such that T ≥ tD′,δ implies that the second term
is lower bounded by −δ/2. Putting everything together (and setting ε small enough for the target
δ), we get that

P
(log(ΛGT)

T/2
≤ 〈[1− r∗, r∗], log(f − 1)〉 − δ

)
≤ e−CD′,δT (A.29)

for all T ≥ C ′D′,δ, where CD′,δ and C ′D′,δ are positive constants that only depend on the degree
distribution D′ and the choice of δ > 0. This gives the desired result.

We now address the general case for D with support greater than two. We follow the identical
structure of the argument. The first major difference is that node types are no longer scalar, but
tuples. Each node v’s type ξv is the (η − 1)-tuple listing how many nodes in the path φ(w, v) \
{v} had each non-minimum degree from f2 to fη, where w is the closest node to v such that
δH(w, vT) ≤ c log(t0). Consequently, the threshold r = [r1, . . . , rη−1] is no longer a scalar, but
a vector-valued, pointwise threshold on each element of ξv. We let k = [k1 = r1t0, . . . , kη−1 =
rη−1t0] denote the time-dependent threshold, and we say k < ξv if ki < (ξv)i for 1 ≤ i ≤ η − 1.

APPENDIX A. PROOFS FROM CHAPTER 2 107

The matrix M is no longer second-order, but a tensor. Equation (A.20) still holds, except M is
replaced with its tensor representation. For brevity, let α = p1(f1 − 1) and βi = pi+1(fi+1 − 1).
Let β̃ =

∑η−1
i=1 βi. Hence, Equation (A.21) gets modified as

E[Z(t)] =

k1∑
i1=0

. . .

kη−1∑
iη−1=0

(
t

i1, . . . , iη−1

)
αt−β̃βi11 . . . β

iη−1

η−1 . (A.30)

Now we consider a multinomial variable W with parameters βi/µD for 1 ≤ i ≤ η − 1 and
t trials. Note that α/µD is the ‘failure’ probability (corresponding to a node of degree f1); such
events do not contribute to the category count, so the sum of parameters is strictly less than 1. As
before, equation (A.30) can equivalently be written as

E[Z(t)] = µtD P(W ≤ k)

= µtD exp
{
− tDKL

(
r ‖
(
β

µD

))
+ o(t)

}
, (A.31)

where β/µD denotes elementwise division. Here DKL(r‖β/µD) denotes the Kullback-Leibler
divergence between the two generalized Bernoulli distributions defined by r and β/µD, such that
DKL(r‖β/µD) = (1−

∑
ri) log((1−

∑
ri)/(α/µD)) +

∑
i ri log(ri/(βi/µD)). Once again, we

wish to obtain bounds on P(W ≤ k). As before, we define the following set of r such that Eq.
(A.31) is strictly positive, for some ε > 0:

Rα,β(ε) =
{
r | log(µD) ≥ DKL(r‖

(
β

µD

)
) + ε

}
, (A.32)

We now choose a threshold r ∈ Rα,β(ε). Using the same argument as before, we can con-
struct a process where the probability of extinction is asymptotically zero. We again do not prune
any leaves in the first c log(t0) generations. This ensures that with high probability, there are at
least eC` log(t0) independent multi-type Galton-Watson processes evolving concurrently after time
c log(t0), each with probability of extinction θD′ . Hence with probability at least 1− e−2CD′ t0 (for
an appropriate choice of a constant CD′ that only depends on the degree distribution D′ and the
choice of r), the overall process does not go extinct.

We define r1 analogously to the η = 2 case:

r1 ≡arg min
r∈Rα,β(ε)

〈r, log(f − 1)〉 ,

where we now define 〈r, log(f−1)〉 ≡ (1−
∑

i ri) log(f1−1)+
∑η−1

j=1 rj log(fj+1−1). Therefore
with probability at least 1− e−CD′T , where CD′ depends on D′ and ε, we have that

log(ΛGT)

T/2
≤ 〈r1, log(f − 1)〉+

c log(t0)

t0
log (fη − 1) .

APPENDIX A. PROOFS FROM CHAPTER 2 108

It follows that
log(ΛGT)

T/2
− 〈r∗, log(f − 1)〉 ≤

η−1∑
j=1

((r1)j − r∗j) log

(
fj+1 − 1

f1 − 1

)
+
c log(t0)

t0
log (fη − 1) . (A.33)

By setting ε small enough and t0 large enough, we can make this as small as we want. For any given
δ > 0, there exists a positive ε > 0 such that each term in the summation in (A.33) is bounded by
δ/η. Further, recall that T/2 = c log(t0) + t0. For any choice of ε, there exists a tD′,ε such that for
all T ≥ tD′,ε the vanishing term in Eq. (A.23) is smaller than ε. For any given δ > 0, there exists a
positive tD′,δ such that T ≥ tD′,δ implies that the second term of (A.33) is upper bounded by δ/η.
Putting everything together (and setting ε small enough for the target δ), we get that

P
(log(ΛGT)

T/2
≥ 〈r∗, log(f − 1)〉+ δ

)
≤ e−CD′,δT (A.34)

for all T ≥ C ′D′,δ, where CD′,δ and C ′D′,δ are positive constants that only depend on the degree
distribution D′ and the choice of δ > 0.

For the lower bound, we again define a set of r such that Eq. (A.23) is strictly negative:

Rα,β(ε) =
{
r | log(µD) ≤ DKL(r‖

(
β

µD

)
)− ε

}
. (A.35)

Choosing r ∈ Rα,β(ε) causes extinction with probability approaching 1. Explicitly, P(Z(t) 6= 0)
is the probability of non-extinction at time t, and P(Z(t) 6= 0) ≤ E[Z(t)]. By Equation (A.23), we
have

E[Z(t)] ≤ et(log(µD)−DKL(r‖β/µD)+o(t))

where log(µD) − DKL(r‖β/µD) ≤ −ε. The probability of extinction is therefore at least 1 −
E[Z(t)] ≥ 1− e−t(ε+o(t)). So defining

r2 ≡arg max
r∈Rα,β(ε)

〈r, log(f − 1)〉 ,

we have
log(ΛGT)

T/2
≥ 〈r2, log(f − 1)〉+

c log(t0)

t0
log(f1 − 1)

with probability at least 1 − e−CD′,2T where CD′,2 is again a constant that depends on D′ and ε. It
follows that

log(ΛGT)

T/2
− 〈r∗, log(f − 1)〉 ≥

η−1∑
j=1

((r2)j − r∗j) log

(
fj+1 − 1

f1 − 1

)
+
c log(t0)

t0
log (fη − 1) . (A.36)

APPENDIX A. PROOFS FROM CHAPTER 2 109

where (r2)j − r∗j is strictly negative. Again, for any given δ > 0, there exists a positive ε > 0
such that each term in the summation in (A.36) is lower bounded by−δ/η, and for any choice of ε,
there exists a tD′,ε such that for all T ≥ tD′,ε the vanishing term in Eq. (A.23) is smaller than ε. We
again choose the smaller of the two ε values from the upper and lower bound. For any given δ > 0,
there exists a positive tD′,δ such that T ≥ tD′,δ implies that the second term is lower bounded by
−δ/η. Putting everything together (and setting ε small enough for the target δ), we get that

P
(log(ΛGT)

T/2
≤ 〈r∗, log(f − 1)〉 − δ

)
≤ e−CD′,δT (A.37)

for all T ≥ C ′D′,δ, where CD′,δ and C ′D′,δ are positive constants that only depend on the degree
distribution D′ and the choice of δ > 0. This gives the desired result.

Proof of Lemma 6

If f1 > 2, then the claim follows directly, because each leaf generates at least 2 children in each
generation.

If f1 = 2, then for parameters ρ > 0 and λ > 0, we use the Markov inequality to get

P(Z(t) ≤ ρ) ≤ E[e−λZ
(t)

]eρλ

= g
(t)
D−1(e−λ)eρλ ,

where gD−1(s) = E[es(D−1)] is the probability generating function of D − 1, and g(t)
D−1(s) is the t-

fold composition of this function. The goal is to choose parameters ρ and λ such that this quantity
approaches zero exponentially fast. The challenge is understanding how g

(t)
D−1(e−λ) behaves for a

given choice of λ.
Figure A.7 illustrates gD−1(s). Because each node always has at least one child, the probability

of extinction for this branching process is 0. As such, the probability generating function is convex,
with gD−1(0) = 0 and gD−1(1) = 1. This implies that for any starting point e−λ, the fixed-
point iteration method approaches 0. We characterize the rate at which g(t)

D−1(s0) approaches 0
by separately bounding the rate of convergence in three different regions of s (Figure A.7). First,
we choose a starting point s0 = e−λ. We pick any value s1 < 1, such that the slope is strictly
larger than one, i.e. g′D−1(s1) > 1. There may be multiple points that satisfy this property; we
can choose any one of them, since it only changes the constant factor in the exponent. Without
loss of generality, we assume that s0 > s1, since otherwise we can start the analysis from the
region III. Then region I consists of all s ∈ [s1, s0]. To define s2, we draw a line segment parallel
to the diagonal from s1. The intersection is defined as (s2, gD−1(s2)). Region II consists of all
s ∈ [s2, s1). Finally, we choose a threshold ε, below which we say the process has converged.
Then region III consists of all s ∈ [ε, s2). We wish to identify a time t that guarantees, for a given
ε and λ, that g(t)

D−1(e−λ) ≤ ε.
To begin, we split the time spent in each region into t1, t2, and t3, with t1 + t2 + t3 = t. We first

characterize t1. Note that gD−1(s0) ≤ 1− g′D−1(s1)(1− s0) for s0 in region I. This holds because

APPENDIX A. PROOFS FROM CHAPTER 2 110

(1,1)

(0,0)

1()Dg s

2s 1s 0s

IIIIII

Figure A.7: Regions of the probability generating function, in which we bound the rate of conver-
gence.

s1 has the lowest slope of all points in region I. Applying this recursively, we get that

g
(t1)
D−1(s) ≤ max

{
1− g′D−1(s1)t1(1− s), gD−1(s1)

}
for all s in region I. In region II, we instead upper bound gD−1(s) by the line segment joining
gD−1(s1) and gD−1(s2). This line has slope 1, giving

g
(t2)
D−1(s) ≤ max {gD−1(s1)− (s1 − gD−1(s1))t2, gD−1(s2)} .

In region III, we upper bound gD−1(s) by the line y(s) = g′D−1(s2)s. We have that gD−1(s) <
g′D−1(s2) · s for s in region III. Recursing this relation gives

g
(t3)
D−1(s) ≤ max

{
g′D−1(s2)t3 · s, ε

}
.

Thus, if t ≥ 3 max{t1, t2, t3}, then g(t)
D−1(e−λ) ≤ ε. In particular, we choose

t ≥ 3 max
{ log((1− gD−1(s1))/(1− e−λ))

log(g′D−1(s1))
,

gD−1(s1)− gD−1(s2)

s1 − gD−1(s1)
,

log(ε)

s2 log(g′D−1(s2))

}
. (A.38)

So for sufficiently large t, we have P(Z(t) ≤ ρ) ≤ ε · eρλ. By choosing

ε = g′D−1(s2)s2t/3,

APPENDIX A. PROOFS FROM CHAPTER 2 111

we ensure that the third bound on t is always true, and the other two are constant. Similarly, we
choose

e−λ = 1− 1− s2

g′D−1(s1)t/3
,

giving

P(Z(t) ≤ ρ) ≤ s2 · g′D−1(s2)t/3

1− 1− s2

g′D−1(s1)t/3︸ ︷︷ ︸
B

−ρ

= s2 · g′D−1(s2)t/3 (1−B)−
1
B
Bρ

≤ s2 · g′D−1(s2)t/3eρ(1−s2)g′D−1(s1)−t/3 .

Choosing ρ = g′D−1(s1)t/3/(1 − s2), we observe that for t larger than the bound in (A.38), the
number of leaves is lower bounded by an exponentially growing quantity (ρ) with probability
approaching 1 exponentially fast in t.

Proof of Proposition 2.2.3
Number of nodes. T is either even or odd. At each even T , GT is a ball (defined over a grid graph)
centered at the virtual source with radius T/2; that is,GT consists of all nodes whose distance from
the virtual source is at most T/2 hops. Thus at each successive even T , GT increases in radius by
one. The perimeter of such a ball (over a two-dimensional grid) is 4T

2
. The total number of nodes

is therefore 1 +
∑T/2

i=1 4i = 1
2
(T 2 + 2T + 2).

When T is odd, there are two cases. Either the virtual source did not move, in which case
NT = NT+1 (because all the spreading occurs in one time step), or the virtual source did move, so
spreading occurs over two timesteps. In the latter case, the odd timestep adds a number of nodes
that is at least half plus one of the previous timestep’s perimeter nodes: NT ≥ NT−1 + 2T−1

2
+ 1 =

1
2
(T 2 + 2T + 1). This is the smaller of the two expressions, so we have NT ≥ (T + 1)2/2.

Probability of detection. At each even T , GT is symmetric about the virtual source. We reiterate
that the snapshot adversary can only see which nodes are infected—it has no information about
who infected whom.

In order to ensure that each node is equally likely to be the source, we want the distribution
of the (strictly positive) distance from the virtual source to the true source to match exactly the
distribution of nodes at each viable distance from the virtual source:

p(t) =
4

t(t
2

+ 1)

1
2
...
t/2

 ∈ Rt/2 . (A.39)

APPENDIX A. PROOFS FROM CHAPTER 2 112

There are 4h nodes at distance h from the virtual source, and by symmetry all of them are equally
likely to have been the source, giving:

P(GT |v∗, δH(v∗, vt) = h) =
1

4h
p

(t)
h

=
1

t(t
2
− 1)

,

which is independent of h. Thus all nodes in the graph are equally likely to have been the source.
The claim is that by choosing α(t, h) according to Equation (2.22), we satisfy the distribution in
A.39.

The state transition can be represented as the usual ((t/2) + 1) × (t/2) dimensional column
stochastic matrix:

p(t+2) =

α(t, 1)

1− α(t, 1) α(t, 2)

1− α(t, 2)
. . .
. . . α(t, t/2)

1− α(t, t/2)

 p(t).

This relation holds because we have imposed the condition that the virtual source never moves
closer to the true source. We can solve directly for α(t, 1) = t/(t + 4), and obtain a recursive
expression for α(t, h) when h > 1:

α(t, h) =
t

t+ 4
− h− 1

h
(1− α(t, h− 1)) . (A.40)

We show by induction that this expression evaluates to Equation (2.22). For h = 2, we have
α(t, 2) = t

t+4
− 1

2
4
t+4

= t−2
t+4

. Now suppose that Equation (2.22) holds for all h < h0. We then have

α(t, h0) =
t

t+ 4
− h0 − 1

h0

(1− t− 2(h0 − 1)

t+ 4
)

=
t− 2(h0 − 1)

t+ 4
,

which is the claim.
By construction the ML estimator for even T is to choose any node except the virtual source

uniformly at random. For odd T , there are two options: either the virtual source stayed fixed or it
moved. If the former is true, then spreading occurs in one timestep, so the ML estimator once again
chooses a node other than the virtual source uniformly at random. If the virtual source moved,
then GT is symmetric about the edge connecting the old virtual source to the new one. Since the
adversary only knows that virtual sources cannot be the true source, the ML estimator chooses
one of the remaining NT − 2 nodes uniformly at random. This gives a probability of detection of
1/(NT − 2). The claim follows from observing that NT ≥ 1

2
(T + 1)2 − 2 = (T+3)(T−1)

2
.

APPENDIX A. PROOFS FROM CHAPTER 2 113

Proof of Proposition 2.5.1
The control packet at spy node s1 includes the amount of delay at s1 = 0 and all descendants of s1,
which is the set of nodes {−1,−2, . . .}. The control packet at spy node s2 includes the amount of
delay at s2 = n+ 1 and all descendants of s2, which is the set of nodes {n+ 2, n+ 3, . . .}. Given
this, it is easy to figure out the whole trajectory of the virtual source for time t ≥ T1. Since the
virtual source follow i.i.d. Bernoulli trials with probability q, one can exactly figure out q from the
infinite Bernoulli trials. Also the direction D is trivially revealed.

To lighten the notations, let us suppose that T1 ≤ T2 (or equivalently Ts1 ≤ Ts2). Now using the
difference of the observed time stamps Ts2 − Ts1 and the trajectory of the virtual source between
Ts1 and Ts2 , the adversary can also figure out the time stamp T1 with respect to the start of the
infection. Further, once the adversary figures out T1 and the location of the virtual source vT1 , the
timestamp T2 does not provide any more information. Hence, the adversary performs ML estimate
using T1, D and q. Let B(k, n, q) =

(
n
k

)
qk(1− q)n−k denote the pmf of the binomial distribution.

Then, the likelihood can be computed for T1 as
P(adaptive)
T1|V ∗,Q,D

(
t1
∣∣v∗, q, `) ={

q B(v∗ − t1
2
− 2, t1

2
− 2, q) I(v∗∈[2+

t1
2
,t1]) , if t1 even ,

B(v∗ − t1+3
2
, t1−3

2
, q) I

(v∗∈[
t1+3

2
,t1])

, if t1 odd , (A.41)

P(adaptive)
T1|V ∗,Q,D

(
t1
∣∣ v∗, q, r) ={

0 , if t1 even ,
(1− q)B(t1−1

2
− v∗, t1−3

2
, q) I

(v∗∈[1,
t1−1

2
])

, if t1 odd . (A.42)

This follows from the construction of the adaptive diffusion. The protocol follows a binomial
distribution with parameter q until (T1 − 1). At time T1, one of the following can happen: the
virtual source can only be passed (the first equation in (A.41)), it can only stay (the second equation
in (A.42)), or both cases are possible (the second equation in (A.41)).

Given T1, Q and D, which are revealed under the adversarial model we consider, the above
formula implies that the posterior distribution of the source also follows a binomial distribution.
Hence, the ML estimate is the mode of a binomial distribution with a shift, for example when t1 is
even, ML estimate is the mode of 2 + (t1/2) +Z where Z ∼ Binom((t1/2)− 2, q). The adversary
can compute the ML estimate:

v̂ML =

T1+2

2
+
⌊
q
(
T1−2

2

)⌋
if T1 even, D = ` ,

T1+3
2

+
⌊
q
(
T1−1

2

)⌋
if T1 odd, D = ` ,

1 +
⌊
(1− q)

(
T1−1

2

)⌋
if T1 odd, D = r .

(A.43)

Together with the likelihoods in Eqs. (A.41) and (A.42), this gives
P(adaptive)
T1,D|V ∗,Q

(
t1, r, v̂ML = v∗

∣∣v∗, q) =

1

2
(1− q)B

(t1 − 1

2
− v∗, t1 − 3

2
, q
)
I(v̂ML=v∗) I(t1 is odd) (A.44)

APPENDIX A. PROOFS FROM CHAPTER 2 114

P(adaptive)
T1,D|Q

(
t1, r, V

∗ = v̂ML

∣∣q) =

=
1

2n
(1− q)B

(t1 − 1

2
− v̂ML,

t1 − 3

2
, q
)
I(t1 is odd) (A.45)

≤ (1− q)
2n

(√2 I(t1 is odd and t1 > 3)√
t1−3

2
q(1− q)

+ I(t1=3)

)
(A.46)

where v̂ML = v̂ML(t1, q, r) is provided in (A.43), and the bound on B(·) follows from Gaus-
sian approximation (which gives an upper bound 1/

√
2πkq(1− q)) and Berry-Esseen theorem

(which gives an approximation guarantee of 2 × 0.4748/
√
kq(1− q)) [16], for k = (t1 − 3)/2.

Marginalizing out T1 ∈ {3, 5, . . . , 2b(n− 1)/2c+ 1} and applying an upper bound
∑k

i=1 1/
√
i ≤

2
√
k + 1− 2 ≤ 2

√
k − 1 +

√
1/(2(k − 1))− 2 ≤

√
4(k − 1), we get

P
(
D = r, V ∗ = v̂ML, T1 is odd

∣∣Q = q
)
≤

(1− q)
√

2

2n
√
q(1− q)

√
8
⌊n− 1

2

⌋
+

1− q
2n

. (A.47)

Similarly, we can show that

P
(
D = `, V ∗ = v̂ML, T1 is odd

∣∣Q = q
)
≤

√
2

2n
√
q(1− q)

√
8
⌊n− 1

2

⌋
+

1

n
, (A.48)

P
(
V ∗ = v̂ML, T1 is even

∣∣Q = q
)
≤

q
√

2

2n
√
q(1− q)

√
8
⌊n

2

⌋
+

1 + q

2n
, (A.49)

Summing up,

P(V ∗ = v̂ML|Q = q) ≤

√
8

n q (1− q)
+

2

n
. (A.50)

Recall Q is uniformly drawn from [0, 1]. Taking expectation over Q gives

P(V ∗ = v̂ML) ≤ π

√
8

n
+

2

n
, (A.51)

where we used
∫ 1

0
1/
√
x(1− x)dx = arcsin(1)− arcsin(−1) = π.

APPENDIX A. PROOFS FROM CHAPTER 2 115

Proof of Theorem 2.3.1
We begin by expanding some points regarding the ML estimator in Algorithm 4 that were omitted
in Section 2.3. First, note that it is possible to derive an ML estimate without requiring the presence
of a spine spy; the estimator described here uses a spine spy purely for ease of exposition. The
omitted details are: (1) given a spy node s, how does the estimator find that spy node’s pivot `s?
(2) Why does timing information enable the estimator to disregard any subtree neighboring `min
that contains at least one spy?

To answer the first question, consider the first spine spy s0 and all spies in the feasible subtree.
For each spy s in the feasible subtree (none of which lies on the spine), there exists a unique path
between s and s0. There exists a unique node on this path that is both part on the spine and closer
to the true source than any other node in the path—this is precisely the pivot node. The estimator
uses the observed metadata to infer the pivot, as well as its level in the infected subtree, for each
spy in the feasible subtree. This inference proceeds by solving a system of equations:

hs,`s + h`s,s0 = |P(s, s0)|
h`s,s0 − hs,`s = Ts0 − Ts

where P(s, s0) denotes the path between s and s0, hs,`s = δH(s, `s) denotes the distance from spy
si to the pivot node `s, and h`s,s0 is equal to δH(`s, s0) by construction. This system of equations
always has a unique solution; hence the uniqueness of `s given s and s0. The first equation holds
by construction. The second equation holds because conditioned on the time at which the pivot
receives the message T`s , s0 receives the message at time T`s +h`s,s0 , and s receives it at T`s +hs,`s .

Let L denote the set of pivots corresponding to each spy in the feasible subtree; in the example
in Figure 2.10, L = {1, 2}. Define `min = argmin`∈Lm`. That is, `min denotes the pivot closest
to the true source in hop distance, i.e., whose level is lowest. Now consider the subtrees of depth
m`min − 1 rooted at the neighbors of `min. The subtree including s0 cannot contain the true source
because we know the message traveled from `min to s0. The source must therefore lie in one of the
remaining d− 1 neighbor subtrees, which we refer to as candidate subtrees.

We now argue that the estimator can rule out any candidate subtree of `min that contains at least
one spy node. Suppose otherwise: there is a candidate subtree containing a spy s, and the source
v∗ is contained in that subtree. Then the path P(v∗, s) cannot pass through `min because `min does
not belong to any of its neighboring subtrees by construction. Then there must exist some node `′

on the spine such that |P(`′, s)| < |P(`min, s)|. But this is a contradiction because `min is chosen
as the minimum-level pivot across all spies, and each spy has a unique pivot on the spine.

Since we can now rule out candidate subtrees with at least one spy, let X + 1, X ∈ N be the
number of candidate subtrees containing no spies. We use this notation because there will always
be at least one candidate subtree with no spies (the one containing the true source). In Figure 2.10,
X = 0. Thus, the ML estimator chooses one of the leaves in the remaining X + 1 candidate
subtrees uniformly at random. All remaining nodes in V \U have likelihood 0.

Probability of Detection: We condition on the lowest-level pivot node, `min, giving P(v̂ML =
v∗) =

∑
`min

P(v̂ML = v∗|`min)P(`min). Since `min lies on the spine, this is equivalent to condi-
tioning on the distance of `min from the true source.

APPENDIX A. PROOFS FROM CHAPTER 2 116

P(v̂ML = v∗) =
∞∑
k=1

(1− p)(|Td,k|−1) p

|∂Td,k|︸ ︷︷ ︸
`min (kth spine node) is a spy

+

+ (1− p)|Td,k|EX
[I(X 6= d− 2)

(X + 1) |∂Td,k|

]
︸ ︷︷ ︸

`min (kth spine node) not a spy

, (A.52)

whereX ∼ Binom(d−2, (1−p)|Td,k|), |Td,k| = (d−1)k−1
d−2

is the number of nodes in each candidate
subtree for a pivot at level k, and |∂Td,k| = (d−1)k−1 is the number of leaf nodes in each candidate
subtree. Let w = (1− p). We have that

EX
[I(X 6= d− 2)

(X + 1) |∂Td,k|

]
=

1

|∂Td,k|

(
EX
[1

X + 1

]
− 1

d− 1
w|Td,k|·(d−2)

)

=

(
1

(d−1)w
|Td,k|

(1− (1− w|Td,k|)d−1)− 1
d−1

w|Td,k|·(d−2)
)

|∂Td,k|

where the last line results from the expression for the expectation of 1/(1 + X) when X is
binomially-distributed. Namely if X ∼ Binom(ñ, p̃), then E[1/(X+1)] = 1

(ñ+1)p̃
(1− (1− p̃)ñ+1).

Simplifying gives
PD =

=
∞∑
k=1

(d− 1)pw|Td,k|−1 + 1− w|Td,k|·(d−1) − (1− w|Td,k|)d−1

(d− 1)k

= p+
1

d− 2
+

+
∞∑
k=1

pw|Td,k+1|−1 − w|Td,k|·(d−1) − (1− w|Td,k|)d−1

(d− 1)k

= p+
1

d− 2
−
∞∑
k=1

1

(d− 1)k

[
w|Td,k+1| + (1− w|Td,k|)d−1

]
.

where the last line holds because |Td,k+1| − 1 = |Td,k| · (d− 1).

Expected hop distance: In the main paper, we lower bounded the expected hop distance by as-
suming that the estimator guesses the source exactly whenever (a) the pivot `min is a spy node
or (b) the estimator chooses the correct candidate subtree. Therefore, if the pivot `min is at level
k, we only consider estimates that are exactly 2k hops away. The estimator chooses an incorrect
candidate subtree with probability X/(X + 1).

APPENDIX A. PROOFS FROM CHAPTER 2 117

E[δH(v̂ML, v
∗)] ≥

∞∑
k=1

2k(1− p)|Td,k|EXk
[Xk · I(Xk 6= d− 2)

(Xk + 1)

]
. (A.53)

If Xk ∼ Binom(ñ, p̃), where ñ and p̃ depend on d and k, we have

EXk
[Xk · I(Xk 6= ñ)

(Xk + 1)

]
=

1

(ñ+ 1)p̃

[
(1− p̃)ñ + p̃(1− (1− p̃)ñ + ñ)− 1− ñp̃ñ+1

]
Simplifying and substituting p̃ = (1− p)|Td,k| and ñ = d− 2 gives the expression in the theorem.

Note that this bound is trivially 0 for d = 3, since we ignore all nodes in the correct candidate
subtree; when d = 3, the source’s candidate subtree is the only valid option if `min is not a spy.
However, for a fixed p with d→∞, this lower bound approaches the upper bound of 2(1− p).

Obtaining a tighter bound is straightforward, but increases the complexity of the expression.
These tighter bounds were used for the plots in the main paper. A tighter bound results from
considering the cases when (a) the pivot `min is a spy node or (b) the estimator chooses the correct
candidate subtree. In both cases, we ignore all but the most distant estimates. For instance, if `min
is on the spine at level k, then the estimate will be at most 2(k − 1) hops away. Using this rule for
both cases (a), we compute the probability of selecting one of the most distant options:

ak ≡
d− 2

d− 1
(1− p)|Td,k|(d−1)

and for case (b):

bk ≡ p
d− 2

d− 1
(1− p)|Td,k|−1

Overall, we get a lower bound of

E[δH(v̂ML, v
∗)] ≥

∞∑
k=1

2(krk + (k − 1)(ak + bk))

Proof of Proposition 2.3.3
All nodes in V \U have likelihood zero, as discussed in the proof of Theorem 2.3.1. The only
randomness in adaptive diffusion spreading occurs when a spine node with uninfected neighbors
decides which of its neighbors will be added to the spine next. Thus, the likelihood of a candidate
source is the sum of likelihoods of all candidate spines starting at the candidate source. Regardless
of which node u ∈ U is the true source, the spine must pass through `min; since there is a unique
path between u and `min over trees, the only feasible spine starting at candidate u must traverse

APPENDIX A. PROOFS FROM CHAPTER 2 118

P(u, `min). By the Markov property of the adaptive diffusion spreading mechanism, we only
need to consider the likelihood of a candidate spine prior to reaching `min. The propagation of
the spine thereafter is conditionally independent of the true source, and therefore equally-likely
for all candidates. The maximum likelihood estimator must therefore compute the likelihood of
each such candidate sub-spine P(u, `min). Since each spine node v chooses one of its uninfected
neighbors uniformly at random to be the next spine node, the choice of next spine node is simply
1/(deg(v) − 1). Similarly, the likelihood of candidate source u sending the spine in a particular
direction is 1/ deg(u). The overall likelihood of a candidate is therefore proportional to the product
of these degree terms.

APPENDIX A. PROOFS FROM CHAPTER 2 119

Protocol 8 Grid adaptive diffusion
Input: grid contact network G = (V,E), source v∗, time T
Output: set of infected nodes VT

1: V0 ← {v∗}, h← 0, v0 ← v∗

2: K ← {N,S,E,W} . Cardinality directions
3: let kv(u) denote u’s direction with respect to v
4: v∗ selects one of its neighbors u at random
5: V1 ← V0 ∪ {u}, v1 ← u
6: hH = 1{kv(u)=E} − 1{kv(u)=W}
7: hV = 1{kv(u)=N} − 1{kv(u)=S}
8: let NK(u) represent u’s neighbors in directions K ⊆ K
9: V2 ← V1 ∪NK(u) \ {v∗}, v2 ← v1

10: t← 3
11: for t ≤ T do
12: vt−1 selects a random variable X ∼ U(0, 1)
13: if X ≤ α(t− 1, |hV |+ |hH |) then
14: for all v ∈ N(vt−1) do
15: Infection Message(G,vt−1,v,{kv(vt−1)}, Gt)
16: else
17: K ← ∅
18: if hH < 0 then
19: K ← K ∪ {E}
20: else if hH > 0 then
21: K ← K ∪ {W}
22: if hV < 0 then
23: K ← K ∪ {N}
24: else if hV > 0 then
25: K ← K ∪ {S}
26: vt−1 randomly selects u ∈ NK\K(vt−1)
27: hH = hH + 1{kv(u)=E} − 1{kv(u)=W}
28: hV = hV + 1{kv(u)=N} − 1{kv(u)=S}
29: vt ← u
30: for all v ∈ NK\{kvt−1 (v)(vt)} do
31: Infection Message(G,vt,v,{kvt(vt−1), kv(vt)},Vt)
32: if t+ 1 > T then
33: break
34: Infection Message(G,vt,v,{kvt(vt−1), kv(vt)},Vt)
35: t← t+ 2

36: procedure INFECTION MESSAGE(G,u,v,K,Vt)
37: if v ∈ Vt then
38: for all w ∈ NK\K(v) do
39: Infection Message(G,v,w,K,Gt)
40: else
41: Vt ← Vt−2 ∪ {v}

120

Appendix B

Proofs and Algorithms from Chapter 3

B.1 Proofs

Lemma 1: Unsynchronized files cause nonzeros in r̂(0)

Proof. We know that for index j r(α1)j
. . .

r(αd)j

 =

H(f
(1)
j)

. . .

H(f
(d)
j)

 ·V ·
 (a1)j

. . .
(ad)j

 (B.1)

where f (i)
j denotes record fj stored at server i. If fj is synchronized, [r(α1)j, . . . , r(αd)j]

ᵀ =
H(fj) [q(α1)j, . . . , q(αd)j]

ᵀ Interpolation gives r̂(0)j = H(fj)q(0) = H(fj) · 0 = 0. Now sup-

pose fj is not synchronized. Let D = diag([H(f
(1)
j) . . . H(f

(d)
j)]). Eqn. B.1 gives

 r(α1)j
. . .

r(αd)j

 =H(f
(1)
j)q(α1)j
. . .

H(f
(d)
j)q(αd)j

 . Interpolating, H(f
(i)
j) differs across servers, so r̂(0)w 6= H(fj)q(0)j in gen-

eral. Suppose w.l.o.g. that the dth server is unsynchronized. r̂(0)j will be nonzero unless H(f
(d)
j)

cancels the other terms, which happens with probability 1/2`Lh , where Lh is the length of the hash
in symbols [20]. For collision-resistance, Lh = c log` L; the probability of interpolating a false
zero is ≤ 1/2`c log

2`
L, and the probability of incorrectly interpolating a zero is ≤ 1/Lc.

Lemma 2: Nonzero entries in r̂(0) can be found w.h.p.
Proof. The lemma is true iff a) the number of erroneous coded symbols is≤ s and b) the support of
r̂(0) is the indices of the unsynchronized files. Per Algorithm 5, the servers return r̃(α1), . . . , r̃(αd).

APPENDIX B. PROOFS AND ALGORITHMS FROM CHAPTER 3 121

The client obtains vector y by taking

y =
[
r̃(α1) . . . r̃(αd)

]
· (V−1)ᵀ [0 · · · 0 1]ᵀ .

= A ·Rᵀ · (V−1)ᵀ [0 · · · 0 1]ᵀ = A · r̂(0)

If the support of r̂(0) is the unsynchronized indices, r̂(0) is at most s-sparse. A is a parity-check
matrix of a linear, systematic, MDS code. At most s estimated coded symbols are erroneous, and
can always be located using the 2s parity symbols. If the support of r̂(0) is not the unsynchronized
indices, Lemma 1 implies that record(s) are unsynchronized, but the corresponding entries of r̂(0)
are still zero, which happens with probability ≤ so/L

c. The probability of recovering all unsynced
indices is ≥ 1− so/Lc.

Theorem 3: PIR algorithm guarantees (MDS codes)
Proof. Probability of success: From Lemmas 1 and 2, the probability of locating the mis-
synchronizations (Phase 1) is ≥ (1 − 1/Lc)so . We need as many zero polynomials as there are
unsynchronized records. The number of zero polynomials is binomial with parameter 2−`2κ. Let-
ting p = 2−`2κ, the probability of identifying all unsynchronized files and having enough zero
polynomials to avoid them is (1 − e−2n(p−γ(n))2)(1 − 1/Lc)so , by the Chernoff bound. Allowing
the hash length constant c to grow as c = logL n when n→∞, we lower bound this probability by
1 − e−2n(p−γ(n))2 − γ(n). The client can recover the desired records with at least this probability,
as Vandermonde submatrices have full rank.
Privacy: Phase 1 is private because it is independent of the desired record. Phase 2 is private iff
the likelihood of an arbitrary index i being desired does not depend on the received query vectors.

Let q(m) denote the query received by the mth server. We want P (w=i|q(1)i =0,...,q
(κ)
i =0)

P (w=i|q(1)i ,...,q(κ), ∃ j s.t. q(j)i 6=0)
= 1.

Let M denote the event q(1)
i = 0, . . . , q

(κ)
i = 0 (i.e., all κ servers receive a zero at index i of their

query vectors). Let J denote the event q(1)
i , . . . , q(κ) such that for at least one j, q(j)

i 6= 0. We have
P (w=i|M)
P (w=i|J)

= P (M |w=i)P (J)
P (J |w=i)P (M)

= 1 since P (M |w = i) = P (J |w = i) = 2−`2κ and P (M) = P (J).

Corollary 2: Algorithm guarantees using PULSE scheme
Proof. The proof is analogous to that of Lemma 2. By Thm. 1, r̂(0) can be recovered from y with
probability ≥ 1 − O(1/m). r̂(0) doesn’t capture all unsynchronized file indices with probability
≤ so

Lc
, so the probability of success is at least (1−O(1/m))(1− so

Lc
).

Observation 1: Privacy lost by zeroing unsynchronized files

Proof. M denotes the event q(1)
i = 0, . . . , q

(κ)
i = 0, and J is some event that is not M . Bayes’ rule

gives P (w=i|M)
P (w=i|J)

= P (M |w=i)P (J)
P (J |w=i)P (M)

. Since the number of mis-synchronizations is uniformly distributed

APPENDIX B. PROOFS AND ALGORITHMS FROM CHAPTER 3 122

between 0 and s, M can occur by chance or because index i was unsynchronized:

P (M) =
1

2`2κ
+
s+ 1

2n
− s+ 1

2n2`2κ
=

2n+ (2`2κ − 1)(s+ 1)

2n2`2κ
;

since P (qi = j, j 6= 0) = 1−P (qi=0)

2`2κ−1
, P (qi = j, j 6= 0) = 2n2`2κ−2n−(2`2κ−1)(s+1)

2n·2`2κ . At most κ servers

are colluding, so query entries appear independent. Our expression simplifies to 1−P (qi=0)

(2`2κ−1)P (qi=0)
=

2n−s−1
2n+(2`2κ−1)(s+1)

. For s = o(n), this converges to 1 as n→∞.1

B.2 Related Algorithms

Protocol 9 A κ-collusion-resistant PIR algorithm [51].
Client:

1: Choose distinct α1, . . . , αd from GF (2`) (e.g., αi = i). Define matrix V, with Vij = ακ−j+1
d−i+1 .

2: Uniformly draw vectors a0, . . . ,aκ−1, ai ∈ GF (2`)n. Define the query as q(X) = a0X
κ +

. . .+ aκ−1X + ew.
3: Compute q(αi), i ∈ [d], and send to server Si.

Each honest-but-curious server (Si, i ∈ [d]):
4: Receive q(αi) ∈ GF (2`)n, i ∈ [d].
5: Return r(αi) = 〈q(αi),f〉 to the client.

Client:
6: Receive r(α1), r(α2), . . . , r(αd) from the servers; build vector r =

[r(α1) r(α2) . . . r(αd)]
ᵀ.

7: Compute fw = [0 0 . . . 1]V−1 · r.

1We assume `2 > 0 and s > 0.

APPENDIX B. PROOFS AND ALGORITHMS FROM CHAPTER 3 123

Protocol 10 PULSE decoding algorithm [84]
1: for constant number of iterations do
2: for i = 1, 4, 7, . . . ,m− 1 do
3: if ||yi+2

i ||22 == 0 then
4: bin i is a zeroton
5: else
6: (singleton, vp, p)= SingletonEstimator(yi+2

i)
7: if (singleton == True) then
8: y = y − vp ·A[:, p]
9: Set r̂(0)p = vp

10: else
11: bin i is a multiton

return r̂(0)
12: SingletonEstimator(y)
13: singleton = False
14: Ratio test: p = logα y2y

−1
1

15: if (p == logα y3y
−1
2 ∧ p ∈ [n]) then

16: return (True, y1, p)
17: return (False, 0, 0)

124

Appendix C

Proofs and Algorithms from Chapter 4

C.1 Proofs

[Proposition 4]
Proof. We must show two things: under the described conditions, (1) if document fi contains
fewer than m desired keywords (i.e., |Ki| < m), then r̂i = 0, and (2) if document fi contains all
m desired keywords (i.e., |Ki| = m), then r̂i 6= 0.

First, notice that without loss of generality, we can henceforth assume that the noise bits ai = 0
for i ∈ X . This is because if ai = 1 for any number of i ∈ X , the effect is simply to permute the
mapping that determines which servers processes which subset of X .

Part 1: (|Ki| < m) Suppose document fi contains q of the requested keywords, with q < m.
We wish to determine r̂i =

⊕
t∈[d] r

(t)
i , and show that it equals zero.

Let us first consider the noise-free case. By construction, the ith server counts how many
elements of P(X)i are contained in the jth document (where P(X)i is the ith element of the
power set of X , the set of queried keywords). We can express this bitwise sum as follows:

r̂i =
⊕

X′∈P([q])

2m−q⊕
j=1

|X ′|. (C.1)

In the outer sum, we are cycling over each possible subset of the q desired keywords contained in
fi. For each subset X ′, in the inner summation, we are counting the number of elements of P(X)
that contain exactly X ′ and not X \ X ′. Since each inner summation fixes exactly q out of m
elements, the number of such sets is 2m−q. Recall that for x ∈ GF (2a), x ⊕ x = 0. Therefore, as
long as each inner summation has an even number of terms, the entire summation cancels to zero.
But this is always the case, because each inner summation has 2m−q terms, and q < m.

Now let us consider the noisy case. The only difference is that the summation in (C.1) is

APPENDIX C. PROOFS AND ALGORITHMS FROM CHAPTER 4 125

modified to

r̂i =
⊕

X′∈P([q])

2m−q⊕
j=1

|X ′|+ z. (C.2)

where z is an arbitrary element of Z2a that represents the noise in the servers’ responses result-
ing from a. By construction, this noise (a scalar offset) is the same for every server. The same
argument as before holds, so this sum necessarily evaluates to zero. This implies that if the ith
document does not contain all of the desired keywords in X , then r̂j = 0. Notice that this argu-
ment holds for any m > 0, which implies that for any m, if fi contains fewer than m keywords,
then r̂i = 0.

Part 2: (|Ki| = m) We want to show that the summation r̂j does not evaluate to zero. We
rewrite the corresponding summation from (C.2) as

r̂i =
m⊕
`=0

(m`)⊕
j=1

`+ z. (C.3)

We can write the summation in this form because for any subset X ′ ⊆ X , all the elements of X ′

appear in fi by assumption. If
(
m
`

)
is even, then the corresponding inner sum cancels to zero, by

the same logic as Part 1. Lucas’ theorem implies that
(
m
`

)
is even iff in the binary representation

of m and `, at least one bit of ` is strictly larger than the corresponding bit of m.
Since we have chosen m = 2c for some integer c > 0, the binary representation of m is simply

b = (bc+1, bc, . . . , b1) = (1, 0, . . . , 0). Thus the only values of ` for which the condition in Lucas’
theorem is not satisfied are ` = 0 and ` = m. Thus we can simplify (C.3) to

r̂i = (m+ z)⊕ z.

Since m 6= 0, this is nonzero, which gives the claim.

[Lemma 3]
Proof. The first part of the proof proceeds similarly to that of Proposition 4.

Part 1: (|Ki| < m) Mirroring Proposition 4, we have that

r̂i =
⊕

X′∈P([q])

2m−q⊕
j=1

hm(|X ′|+ z). (C.4)

where z is an arbitrary element of Z2a that represents the noise in the servers’ response vectors
caused by a. Notice that we now apply the post-processing function hm(·) to the elements of each
r(j). Regardless of the function hm(·), the same argument from Proposition 4 holds: that is, each

APPENDIX C. PROOFS AND ALGORITHMS FROM CHAPTER 4 126

distinct value in the inner summation of (C.4) appears an even number of times, so the overall sum
is zero.

Part 2: (|Ki| = m) We must show that the summation r̂i does not evaluate to zero. Once again,
for this case, we consider the equation

r̂i =
m⊕
`=0

(m`)⊕
j=1

hm(`+ z). (C.5)

A sufficient (but by no means necessary) condition that ensures r̂i 6= 0 is for the summation
in (C.5) to contain an odd number of odd elements. If this condition is true, then the ones bit (i.e.
the least significant bit of each term in the summation) must appear an odd number of times in
summation (C.5), so the total sum is nonzero (regardless of the values of the higher bits). As we
will show, the choice of hm(·) in Lemma 3 is designed to enforce this condition. Notice that we
could just as easily required a different bit to appear an odd number of times to enforce the nonzero
condition.

We can write (C.5) as

r̂i =
⊕
`∈B

hm(`+ z). (C.6)

where B is the set of ` ∈ [m] such that
(
m
`

)
is odd. Notice that the set B does not depend on the

added noise z. One (sufficient, not necessary) way to enforce our desired nonzero condition is to
impose the condition that r̂i = 1, regardless of the value of z, and restrict the range of hm(·) to
{0, 1}. Using the length-2a vector hm to denote hm(·) over Z2a , we can write this condition as

g ∗ hm = 12a = r̂i (C.7)

where r̂i is a vector in which the jth entry (r̂i)j represents r̂i when the noise z = j and ∗ denotes
a circular correlation defined as

(g ∗ hm)z ≡
2a−1⊕
`=0

g` · (hm)`+z =
2a−1⊕
`=0

g`+z · (hm)`.

Finally, g is an indicator vector of length 2a, in which

gi =

{
1 if i ∈ B
0 otherwise.

Condition (C.7) is simply repackaging (C.6): It says that regardless of the added noise z, we
always want the output (r̂i)z = 1. We must show that the choice of hm in equation (4.1) satisfies
this condition. First, we observe the following:

APPENDIX C. PROOFS AND ALGORITHMS FROM CHAPTER 4 127

Observation 2. For all d ∈ B, d 6= 0, it holds that d < 2a−1. Moreover, for all v ∈ [2a],
gv + gv+d ≤ 1. That is, at most one of gv and gv+d can equal 1, but not both. This implies that no
two bits in g are exactly d indices apart. Throughout the rest of this proof, we use the zero-indexed
notation [x] = {0, 1, . . . , 2a − 1}.

To show this observation, notice that by definition, the (a − 1)th bit ba−1 = 1. Thus by the
construction of B, d < 2a−1. To show the second part of the observation, suppose the contrary:
there exists some v such that gv = gv+d = 1. By the construction of g, this implies that v, (v+d) ∈
B, which in turn implies that d ∈ B. However, d has a unique binary representation. In this binary
representation, none of the set bits (i.e., bits equaling one) belong to O, by the definition of B.
Therefore, d /∈ B. The observation follows.

Using this observation, we show that for all z ∈ [2a], (g ∗ hm)z = 1. Define

(g ∗Z hm)z ≡
2a−1∑
`=0

g` · (hm)`+z =
2a−1∑
`=0

g`+z · (hm)`.

where ∗Z denotes summation over the field Z rather than GF (2a). Notice that since both g and
hm are nonnegative vectors, then if (g ∗Z hm)z = 1, it must also hold that (g ∗ hm)z = 1 (but
not necessarily vice versa). We therefore show the former by splitting the proof into two parts: (1)
show that (g ∗Z hm)z ≤ 1, (2) show that (g ∗Z hm)z ≥ 1.

Part 1: [(g ∗Z hm)z ≤ 1] Suppose the opposite is true:
∑2a−1

`=0 g` · (hm)`+z > 1. Then there
must exist (at least) two indices j and ` such that (hm)j = (hm)` = gj+z = g`+z = 1. Without loss
of generality, assume j < `. This assumption implies that j, ` ∈ B and (`− j) ∈ B.

From the definition of B, we can equivalently write

`− j =
∑

`1∈B1∈P(Z)

`1 −
∑

j1∈B′1∈P(Z)

j1

=
∑

`2∈B2∈P(Z)

`2 −
∑

j2∈B′2∈P(Z)

j2

where B2 = B1 \B′1 and B′2 = B′1 \B1. Since elements of B are defined over Z2a , the summations
and subtraction above is executed over Z2a as well. Now we can consider three cases:

• B′2 = ∅: Then (`− j) ∈ B, which is impossible since (`− j) is also an element of B.

• B2 = ∅: Then ` − j = −d for some d ∈ B. This is impossible because we have assumed
that ` > j and j, ` ∈ [2a−1], and ∀d ∈ B, d < 2a−1.

• B2 6= ∅ and B′2 6= ∅: In this case, we can equivalently write ` − j as (2α1 + . . . + 2αw) −
(2β1 + . . . + 2βy) where α1 6= . . . 6= αw 6= β1 6= . . . 6= βy. Since B′2 is not empty, there
is at least one term 2β1 being subtracted. Since these α and β bit positions are all unequal
(i.e., the sets are disjoint), it holds that for at least one bit location βq, q ∈ [y] and βq ∈ Z ,
the βqth bit of ` − j is one. This holds because of basic arithmetic and in turn implies that

APPENDIX C. PROOFS AND ALGORITHMS FROM CHAPTER 4 128

at least one component of the binary representation of ` − j is an element of B, But this is
impossible since `− j is assumed to be an element of B, and their intersection is {0}.

Therefore, it must hold that (g ∗Z hm)z ≤ 1.
Part 2: [(g ∗Z hm)z ≥ 1] Suppose that for some z, (g ∗Z hm)z = 0. This is the only value less

than one that (g∗Zhm)z can take since the output of the correlation is a nonnegative integer. Notice
that B and B are tiling complements of one another, and they generate a translational tiling of Z2a;
this can be checked using the algorithm from [64], for instance. This means that if we generate
a set by circularly shifting the elements of B by each b ∈ B over the field Z2a , the resulting set
spans the whole space [2a], and each element has a unique representation in terms of an element
of B and a translation of that element by another element b ∈ B. The condition (g ∗Z hm)z = 0
implies that the circularly shifted σz(hm) overlaps with none of the ones in g, i.e., @` such that
g`+z · (hm)` = 1. Then by the pigeonhole principle, there must exist another shifted σz2(hm)
that is part of a tiling that overlaps with at least two ones in g. But we saw in Case 1 that this is
impossible. So (g ∗Z hm)z ≥ 1.

Since (g ∗Z hm)z ≥ 1 and (g ∗Z hm)z ≤ 1, it must hold that (g ∗Z hm)z = 1 for all z.

[Theorem 4.3.1]
Proof. There are two parts to show. The first is correctness with the desired probability and com-
munication cost. The second is the privacy guarantees.

Correctness: Lemma 3 guarantee that the post-processed reply vectors are additively sparse, and
their support is exactly equal to the desired documents that feature all keywords. The linearity
of the compression scheme implies that the client can perfectly recover the compressed (sparse)
vector r̂ from the individually compressed (non-sparse) vectors r̃(i) produced by each server. Then
by the properties of the encoding scheme in [84], the signal can be perfectly reconstructed with
probability at least 1−O(s−3/2) using O(s) communication cost (Theorem 2.3.1 from [84]).

Privacy: The data sent to each server is the sum of a true signal and Bernoulli(1/2) noise. There-
fore, the information observed by the server is distributed as Bernoulli(1/2) noise, regardless of
the client’s query. Thus the mutual information between the desired set X and any observed query
q(i) is zero. This gives an information-theoretic privacy guarantee against an honest-but-curious
adversary.

C.2 Algorithms

APPENDIX C. PROOFS AND ALGORITHMS FROM CHAPTER 4 129

Protocol 11 A multi-server, conjunctive query private search algorithm for general number of
queries m, with rankings. Input: Queried keywords X = {ki1 , . . . , kim}. Output: List of indices
of documents featuring all keywords in X .
Client:

1: Uniformly draw noise vector a, ai ∼ Bern(1
2
), i ∈ [n]

2: Generate the power set of X , P(X) = {X1, . . . , X2m}
3: Define the ith query as q(i) = a+ eXi
4: Send q(i), i ∈ [d], to server Si

Each honest-but-curious server (Si, i ∈ [d]):
5: Initialize r(i) = 0n
6: for j ∈ [|K|] do
7: if q(i)

j = 1 then
8: for s ∈ Sj do
9: r

(i)
s = (r

(i)
s + 1) mod 2a

10: Let r̃(i) = hm(r(i))
11: Return y(i) = A · r̃(i), computed over GF (2a)
Client:
12: Compute y =

⊕d
j=1 y

(i)

13: Reconstruct r̂ from y and A, e.g. using [84]
14: Return the nonzero indices of r̂

	Contents
	List of Figures
	List of Tables
	Introduction
	Anonymous Message Spreading
	Adaptive diffusion
	Snapshot-based adversarial model
	Spy-based adversarial model
	Spy+snapshot adversarial model
	Connections to Pólya's urn processes
	Take-home Messages

	Private Information Retrieval on Unsynchronized Databases
	Background
	Algorithm Description
	Experimental evaluation
	Take-home Message

	Efficient Private Search with Conjunctive Queries
	Setup and Notation
	Background Concepts
	Algorithm Description
	Performance
	Take-home Message

	Future Work and Conclusions
	Anonymous Messaging
	Private Search
	Final Thoughts

	Bibliography
	Proofs from Chapter 2
	Proofs and Algorithms from Chapter 3
	Proofs
	Related Algorithms

	Proofs and Algorithms from Chapter 4
	Proofs
	Algorithms

