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Abstract

Ressort: An Auto-Tuning Framework for Parallel Shu✏e Kernels

by

Eric Love

Master of Science in Computer Science

University of California, Berkeley

Krste Asanović, Chair

This thesis presents Ressort, an auto-tuning framework for computational patterns that
perform any kind of data-dependent data reordering or transformation. These programs,
which we call shu✏e kernels, account for large fractions of the runtime of database work-
loads and other applications. Hardware-conscious optimizations of shu✏e kernels are all
alike in that they generally consist of choosing one of many possible ways to decompose
a particular kernel into a pipeline of more primitive operations: a sort might consist of a
hash-based partitioning followed by an in-cache quicksort, or a join might entail sorting and
then merging, for example. Ressort presents a domain-specific language (DSL) that enables
the succinct expression of these compositions while also exposing the nested array-style par-
allelism that they imply, and supplies a compiler to exploit it. It also includes a parallel
C-like intermediate representation that assists in the generation of performant shu✏e kernel
implementations. We present the design and implementation of these two language layers,
and evaluate the performance of their output on a variety of hardware targets under di↵erent
algorithmic requirements.
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Chapter 1

Introduction

Software spends a lot of time moving data from one place to another. Operating systems
burn CPU cycles running memcpy() and memset(), while device drivers DMA swathes of
bytes to and fro. Even though optimal implementations of memcpy() are tricky to code,
due to the cumbersome quirks of packed SIMD instructions and subtleties of memory access
alignment, the right thing to do for a given machine is generally surmisable.

Databases, more interestingly, spend their time moving records around in ways that
depend on the contents of the records themselves: they sort them, partition them, build
hash tables, perform joins, apply filters, and perform all manner of other transformations.
Many non-database workloads make use of these algorithms too, so their e�ciency is broadly
important. However, they are very ine�cient when implemented näıvely, and it is often far
from obvious what sort of sophistication is needed, or even what the best kind of algorithm
is.

Worse yet, all kinds of algorithms for these problems are tricky to optimize because their
communication patterns cannot be pre-determined. Sorting an array might require moving
the first element to the end, or leaving it in place. This pattern is quite di↵erent from
mathematical kernels like matrix multiplication, where the programmer can reason about
which elements combine with which other elements, and can statically order arithmetic
operations so as to maximize the amount of inter-element communication that happens
through the highest levels of the memory hierarchy.

This type of communication and movement distinguishes shu✏e kernels from other com-
putational patterns. We introduce and employ the term shu✏e kernel to designate any kind
of data-dependent data reordering, which is the focus of this study. Moreover, we attempt
to enumerate the ways in which random interactions between shu✏e kernels’ inputs can be
constrained and managed to achieve high performance on diverse hardware platforms.

This thesis describes specific shu✏e patterns, algorithms, and their design spaces, and
proposes a software framework to help programmers uncover the best strategies for any par-
ticular circumstance. This framework consists of a compiler for a domain-specific language
(DSL) that describes shu✏e patterns as compositions of the algorithmic building blocks
we’ve examined.
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1.1 Algorithmic Design Space of Shu✏e Kernels

Many optimized algorithms have been proposed for each shu✏e pattern in order to overcome
the mismatch between these patterns’ data-dependent data movement and hardware’s ability
to give peak performance only where there is locality and predictability. Decades ago, this
meant minimizing the number of random disk I/Os needed to process a query; now, it
means avoiding DRAM tra�c, exploiting prefetchers, keeping hardware threads busy, and
maximizing instruction- and data-level parallelism within a core.

Both then and now, a few common themes pervade the space of strategies for mapping
shu✏e kernels e�ciently onto the physical reality of hardware:

1. If an algorithm requires too many random accesses to an array, partition that array
into sets of related values. For example: hash joins send probes all over a large table,
resulting in cache misses or random disk accesses, so instead divide up the inputs based
on high-order bits of their keys and build separate, smaller hash tables for each bin [31,
38].

2. When multiple processors are available, divide up inputs among them either by:

a) partitioning the input, as above, and processing partitions independently, (called
partition-then-split) or

b) by simply dividing up or splitting the original, unordered inputs at will, processing
them separately at each node, and then merging the results at the end to restore
order (split-then-merge)

Figure 1.1 illustrates the two structures of (2) as applied to a sorting algorithm. Each half
of the figure actually depicts a combination of the parition-then-split and split-then-merge
methods, applied in a di↵erent order in each case. Both expose parallelism at two levels,
and both could themselves be component parts of a still larger operation.

Which strategy is better depends on many aspects of both the target hardware platform
and the input data itself. If the data’s keys are not uniformly distributed, partitioning won’t
result in even load balance across processors or cache blocks, but if they are, a large merge
might be slow by comparison. If the target machine has more or fewer levels of parallelism
(multiple sockets, cores, SIMD ways, etc.), more or fewer levels of parallelism should be
exposed. If the memory system of the machine in question has high write bandwidth or
can better tolerate random accesses than another, then the e�ciency of a higher-fanout
partitioning might change the tradeo↵ too.

One generalization holds across all these cases: the most e�cient implementation of
any shu✏e pattern on a particular platform will be a recursive composition of partitions,
merges, and smaller instances of the target pattern. However, given the large number of
factors on which the optimum choice depends, it is di�cult to predict which combination
of strategies is optimal. Ideally, then, we would like to find the best algorithm empirically,
but that would require codes with quite di↵erent structures and expressions of parallelism
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Figure 1.1: Two Complementary Shu✏e Algorithm Patterns (for sorting in this
example): On the left is the partition-then-sort strategy, and the right is the split-sort-merge
strategy

for each combination of problem size, input type, algorithm, and machine. This approach is
not practical to undertake manually, given the size of the search space and implementation
e↵ort required for each design point.

1.2 Auto-Tuning: High- and Low-level Tuning Spaces

The solution to this quandary is to recognize that the compositions of algorithms described
above form a kind of language whose grammar defines how simpler algorithms can be com-
bined to form more complex ones. If this language were su�ciently well-defined, then a
compiler could be written to ease the burden of implementing each interesting combina-
tion. An automated tool could be written to generate expressions in that this language, and
heuristics could be applied to prune the search space e↵ectively.

This solution is the classic technique of auto-tuning, first proposed as a means of finding
optimal cache blocking structures for DGEMM and other linear algebra kernels [7, 42], but
subsequently applied to a wider variety of algorithms [34, 3]. The purpose of the present
study is to propose just such method for optimizing shu✏e kernels.

The algorithmic design space of shu✏e kernels represents one level at which to apply
auto-tuning methods—which we call the high-level tuning space—but some of the individual
components out of which these algorithms are built have many possible concrete realizations
of their own: they may support di↵erent code schedulings, parallelizations, loop unrollings,
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Figure 1.2: Ressort Compilation and Testing Loop

and so on. We call these parameters the low-level tuning space. To obtain real e�ciency,
tuning must be applied at both levels.

1.3 A Scala-based Framework for Shu✏e Kernel Code
Synthesis

This thesis presents Ressort1, an auto-tuning framework for shu✏e algorithms that spans
both the high- and low-level design spaces. Figure 1.2 shows its organization. It comprises
both a compiler plane, which generates code for di↵erent structural decompositions of shuf-
fle algorithms, and a tuner plane, which generates these decompositions, and measures the
performance of the compiler’s output. Within the compiler plane, two domain-specific lan-
guages support tuning across both levels of design space. The Ressort Operator Functional
Language (ROFL) expresses the algorithmic design space of Section 1.1, while the Ressort
intermediate representation IRep supports parameterized code generation for each primitive
algorithm implemented by ROFL.

1 The name Ressort is intended to be read either in English as /ô@soôt/ or in French as /K@sOK/ (“spring,
resilience”)
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Ressort’s goal is to enable rapid evaluation of many di↵erent structural variants of shuf-
fle algorithm implementations. While it does not yet interface with any external machine
learning-based optimization or search tool, it does grant the programmer a means of quickly
and concisely expressing any desired kernel decomposition, and of generating fast parallel
code to implement that decomposition. The contributions of this paper are therefore:

• ROFL: a new DSL for describing shu✏e patterns in a way that exposes their inherent
parallelism

• A compiler for the ROFL language that emits parallel OpenMP/C++ code

• IRep, a C-like intermediate language that facilitates low-level tuning and code trans-
formations inside the ROFL compiler

• An architectural study that characterizes the performance tradeo↵s of ROFL primitive
operations, and more complex algorithms built from them, on several diverse hardware
platforms

The rest of this thesis is structured as follows: Chapter 2 reviews the fundamental algo-
rithms out of which shu✏e kernels are assembled, introduces a taxonomy of algorithms built
on top of them, and discusses prior work on optimizing them. Chapter 3 presents the ROFL
language as a Scala-embedded DSL, and shows how it can be used to construct performant
shu✏e algorithms for a variety of purposes. Chapter 4 examines the compiler we have built
for the ROFL language, while Appendix C describes how it implements each primitive algo-
rithm individually. Chapter 5 presents the IRep intermediate language, explaining its design
decisions and its translation to C++. Finally, Chapters 6 and 7 analyze the performance of
the ROFL compiler’s output for sorting and partitioning on several di↵erent platforms.
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Chapter 2

Background

This chapter surveys the space of shu✏e kernels, reviews the various algorithms proposed for
their implementation, and discusses previous work on optimizing their performance through
hardware and software means.

2.1 Fundamental Shu✏e Kernels

In this section we review the most fundamental building blocks of shu✏e kernels, and discuss
their implementation, parallelization, qualitative performance characteristics, and memory
overheads. Our discussion follows the taxonomy of algorithmic primitives given in Figure 2.1.
It is these units which Chapter 3 explicitly composes to form complex, performant operators,
but we simply note that any of the partitioning algorithms (green) can serve as inputs to a
sort algorithm (red), and both of those may appear in a complex join (purple).

Notation

The descriptions of shu✏e kernels throughout the rest of this section all assume a relation
consisting of an array of records is to be reordered or manipulated in some way. Here the term
record refers to some bytes of data in an arbitrary format of which some bits are designated
as the key. Most shu✏e kernels concern only the key bits of each record, which determine
where that record is to be relocated to or how it generally is to be treated. Within a given
relation, all records are assumed to have the same data type, and have the same subset of
bits used as the key.

The following variables and abbreviations are assumed throughout the rest of this dis-
cussion:

• R, R
1

, R
2

, etc. represent relations used as input to some shu✏e algorithm

• |R| is the number of records contained in relation R

• R[n] is the nth record of relation R
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Figure 2.1: A Taxonomy of Shu✏e Algorithms: Partitioning (green), sorting (red), and
joins (purple) form the three main categories of shu✏e algorithms. The leaf nodes of the
partitioning branch can be fed into some members of the sort branch, and building blocks
from both of these categories can be used to perform a join.

• K(R[n]) is the key of record R[n]

• b is a number of radix bits used in a radix sort or partition

• T is the number of threads used in a parallel algorithm

Partitioning

Partitioning is arguably the most important shu✏e kernel. It divides input records into
separate buckets or partitions based on the value of some bits of their keys. This kernel is a
preliminary step in some possible implementations of all shu✏e patterns, including sorting,
joins, hash table building, and many others.

Types of Partitioning

Radix- vs. Range-Based Partitioning can be either range-based or radix-based. Range-
based partitioning uses a sorted array of splitter values or delimiters, and assigns records to
buckets defined by the range of keys between any two consecutive splitter values. Radix-
based partitioning simply examines a fixed subset of each key’s bits to assign its bucket. The
number of bits examined is called the radix.

Histograms vs. Chaining In both radix- and range-based partitioning it is necessary to
determine how much memory is reserved for each output partition. This reservation cannot
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be known a priori, so either (1.) partitions must be allowed to expand dynamically by adding
new blocks of records to a linked list or other expandable data structure, or (2.) the input
relation must be read twice: once to determine the sizes of each partition, and once more to
actually move the records. The former is called chaining because it chains together blocks
of records for each partition, while the latter is called histogram-based because it constructs
a histogram that counts partitions’ sizes.

We presently consider only histogram-based radix partitioning. Although range-based par-
titioning is an important component of many algorithms, we defer its investigation to future
work. We also postpone consideration of chaining because it complicates code generation.

Parallelization

Partitioning is inherently parallelizable. Since no inter-record comparisons are needed, all
inputs are read and examined independently from each other. Synchronization is only needed
to ensure threads output records to disjoint regions of each bucket. In a histogram-based
method, this can be done two ways: the shared histogram approach requires an e�cient
atomic increment so that threads can update histogram counters safely and independently,
while a shared nothing approach creates a separate histogram for each thread, and determines
per-thread partition sizes during the initial counting phase. Shared histograms do not scale
well, and few hardware platforms support suitably e�cient atomics, so we consider only
shared-nothing algorithms.

Algorithm 1 on the next page gives a complete definition of the shared-nothing parallel
histogram-based radix partition algorithm employed all throughout this study. It consists of
four main steps:

1. Histogram counting (lines 2 to 10): Build a histogram array for radix r of size 2r⇥T
and count the number of records in each partition for each thread

2. Prefix sum reduction (lines 11 to 18): Do a prefix sum operation to transform the
per-partition counts into o↵sets at which each of the per-thread partitions start

3. Record Movement (lines 19 to 28): Read through all the input records a second time
and write them to their corresponding partitions at the o↵sets given by the histogram

4. Histogram Merger (lines 29 to 33): Merge together the per-thread histograms into
one unified view to return

Computational Characteristics of Partitioning

Partitioning is a computationally inexpensive kernel. It requires only a few tens of instruc-
tions per record on most architectures, and has completely regular control flow. Its perfor-
mance is constrained mainly by memory bandwidth and, at high radices, scattered writes
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Algorithm 1 Parallel Radix Partitioning

1: procedure RadixPart(R, msb, lsb, T )
2: r  msb� lsb
3: Hist[0..T ][0..2r] 0
4: for t < T do . Build a Histogram
5: for i < |R|/T do
6: rec R[i+ t|R|/T ]
7: part K(rec)[msb : lsb]
8: Hist[t][part] Hist[t][part] + 1
9: end for
10: end for
11: a

1

, a
2

 0 . Perform a prefix sum reduction across all threads’ private histograms
12: for p < 2r do
13: for t < T do
14: a

1

 Hist[t][p]
15: Hist[t][p] a

2

16: a
2

 a
1

17: end for
18: end for
19: Output[0..|R|] ; . Distribute records to their corresponding partitions
20: for t < T do
21: for i < |R|/T do
22: rec R[i+ t|R|/T ]
23: part K(rec)[msb : lsb]
24: o↵set Hist[t][part]
25: Output[o↵set] rec
26: Hist[t][part] o↵set + 1
27: end for
28: end for
29: Hist0[0..2r] 0 . Merge together per-thread histograms
30: for 1 < i < 2r do
31: Hist0[i] Hist[i� 1]
32: end for
33: Hist0[i] 0 return (Output, Hist’)
34: end procedure
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distributed randomly across a possibly very large output bu↵er. Section D.1 describes this
access pattern in more detail, and presents a simple analytic model for the amount of DRAM
tra�c generated by partitioning.

The write pattern exhibited by the record distribution stage of the partitioning algorithm
can be thought to consist of 2rT independent streams : within each thread’s share of each
partition, the next record is always written to the next sequential address, but these streams
advance independently of each other, and the next stream to be used is determined randomly
by the key of each input record.

Since for large relations these streams will be distributed evenly across a large virtual
address space, the TLB working set size will exceed the hardware’s capacity and TLB misses
will impact performance unless large pages are employed. High-radix partitioning’s random
write pattern also increases last-level cache (LLC) misses by lowering the likelihood that
a given cache line in the output bu↵er, when read in from DRAM on a write miss, will
be written to again before it is conflict-evicted by another stream that maps to the same
set. For this reason, it is sometimes optimal to allocate an output bu↵er that contains one
cache line worth of records for each stream in a contiguous array [24]. Only when a line
in this bu↵er is completely filled will it then be written to the main output. Another way
to mitigate the impact of high-fanout is to perform partitioning in multiple passes, where
each pass uses a radix that is a fraction of the final desired one. This compromise requires
scanning the input relations multiple times, but avoids to problems of high fanout.

Sorting

That sorting is fundamental not just within shu✏e kernels but among all algorithms is
attested to by the long list of methods commonly taught to undergraduates: quicksort,
merge sort, heap sort, insertion sort, radix sort, and so on [14]. In the space of shu✏e
algorithms, sorting’s importance is even greater, since it is a building block of many other
operations one might wish to implement. It is the first step of a sort-merge join, a component
of set intersection, and in the case of recursive algorithms, one sort’s output is an input to
another.

The space of all possible sorting algorithms is much too vast to review here; instead, we
merely make note of those most relevant to Ressort’s currently supported library of shu✏e
kernel primitives, and those it is likely to support soon.

Two Kinds of Sorts

Sort algorithms are traditionally categorized as either comparison-based or not: insertion
sort and merge sort compare pairs of values and reorder them accordingly, whereas radix
sort never explicitly compares anything with anything else.

In the context of Ressort, we consider two other broad classes of sorting algorithms:
(1.) leaf-node sorts, or primitive sorts, and (2.) composite sorting algorithms. The former
class includes those algorithms which most e�ciently process small (order ten or so) input
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elements, and so might serve as building blocks to algorithms in the latter category, which
employ some strategy to break up their inputs into smaller chunks, and then eventually
invoke a primitive algorithm when these chunks are su�ciently small. Thus, we would say
that the primitive algorithms reside at the “leaf nodes” of those composite algorithms’ call
graphs.

Leaf-node Sorts

Among the more primitive kinds of sorts are insertion sort, which has asymptotically quadratic
runtime but requires fewer operations at small problem sizes than do more complex meth-
ods. We include it as a candidate primitive algorithm in our study for just this reason, and
discuss its computational properties elsewhere (Section C.4 and D.2). It is often used at the
lower levels of recursive algorithms like merge sort, and the size at which to switch over to
insertion sort is a tuning parameter of such algorithms.

Sort networks, such as bitonic or Batcher sort [6], o↵er an alternative strategy for small
input sizes. These exploit the fact that some algorithms such as merge sort can be made
to have a fixed set of comparisons that does not depend on the values of the input data,
and so all these comparisons can be spelled out in advance of execution, either as explicitly
parallel hardware, or as static software instructions. Though they require more total work
than other algorithms, they are valuable for their parallelizability. Recent work has shown
such algorithms to be amenable to implementation with SIMD instructions [24, 36].

Composite Sorts

Composite sorting algorithms are those that chain two or more primitive algorithms to-
gether. We further divide composite sorts into two categories: split-merge and partition-sort
algorithms.

Split-merge sorts are those that first break up their inputs in a data-independent manner,
sort all segments independently, and then merge them together somehow. Classical merge
sort is in this category: implementations might sort chunks of ten records with insertion sort,
and then merge them together. Another example would be cache-blocked radix sort, wherein
inputs are first evenly divided into cache-sized blocks, each of which is then sorted with
radix sort independently before being merged with the other sorted blocks. Partition-sort
algorithms, on the other hand, apply a data-dependent partitioning operation (Section 2.1)
to their inputs, and then sort the resulting partitions without the need for a final merge
step. Quicksort is a partition-sort, because it first range-partitions its input by comparing
all keys to a splitter value, and then independently sorts the resulting sets.

A special case of partition-sort algorithms is radix sort, which radix-partitions its input
repeatedly until all bits of the input keys have been used. Radix sort (described more
formally by the program listing in 3.4) has itself two variants. In LSB sort, records are
partitioned first using the least significant bits and then re-partitioned using successively
more higher-order bits. The partitioning must be stable in this case, meaning that records
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sent to the same partition appear in the same order with respect to each other in the output
as they did in the input. By contrast, MSB sort begins partitioning at the most significant
bits, and subsequently sorts each resulting partition in parallel. The partitioning operator
need not be stable.

One additional—and orthogonal—dimension along which composite algorithms may be
categorized is whether they are dynamically-structured or statically-structured. Dynamically
structured algorithms follow a divide-and-conquer strategy and recursively assemble sorted
sub-problems until the entirety of the input has been processed. They can react to situations
where one sub-problem is too large (resulting in load imbalance) by dynamically recursing
once more to split it it up. Statically-structured algorithms determine the number and order
of processing of sub-problems in advance.

Merge sort is always implemented as a dynamically-structured algorithm, but doesn’t
have to be: insertion sort-sized sub-arrays could all be sorted at once, and then a fixed-
depth merge tree could be imposed on top of them. Radix sort is statically-structured by
definition, but radix-partitioned radix sort could be implemented dynamically to continue
partitioning some buckets that, due to key skew, are too large to fit in the intended level of
cache. Quicksort is a dynamically-structured partition-sort algorithm, and cannot be made
static, since the recursive call tree’s structure is data-dependent, unlike merge sort’s, which
depends only on the size of the input. Sort networks are always statically-structured and
cannot be made dynamic.

Computational Characteristics of Sort Algorithms

In general, split-merge algorithms di↵er from partition-sort algorithms in that they trade
o↵ increased computational intensity for better memory hierarchy interaction. Partition-
sort algorithms usually incur the wasted memory bandwidth of random accesses when the
inputs are large and the radix is high, but execute few dynamic instructions per record and
provide ample parallelism. Split-merge algorithms start o↵ naturally cache-blocked, and only
ever need to make sequential memory accesses, but they require asymptotically more work
(O(n log n) vs. O(n)) and have less parallelism in the final merge stages.

Dynamically-structured algorithms like merge sort can be naturally cache-oblivious [18],
as they maintain cache-sized working sets without needing any explicit blocking. They are
less sensitive to input skew and achieve better load balance, but not all desirable algorithms
can be dynamically structured.

For small input sizes, which can be processed entirely in cache, comparison sorts stress
core microarchitecture with data-dependent branches and stores to the same address with
di↵erent data on the taken and not-taken branch paths. Non-comparison sorts do not have
this problem. Some comparison sorts can be implemented with predicated or conditional
move instructions to avoid incurring load-store ordering misspeculations.
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Joins

Though we do not investigate them in the present study, joins are some of the most common
operations in analytic database systems, and account for more than half of all execution time
in many queries [19]. They are almost always implemented with composite algorithms of the
kind described above, so we review their design space here briefly. Formally, a join specifies
the computation implied in Definition 1:

Definition 1 A join R ./ S of an outer relation R onto an inner relation S is the set of all
pairs of records (ri, sj) 2 R ⇥ S such that ri and sj have keys that match. If the condition
for a match is that the keys are equal, it is called an equijoin.

The simplest way to find all pairs of tuples that meet Definition 1 would be to compare
each record in the outer relation to each record of the inner relation and output those pairs
whose keys match. This method is known as nested loops join (NLJ) and requires O(N2)
comparisons for two relations of approximately equal length N , so di↵erent methods are
required for all but the very smallest relations.

The most common form of join for larger input sizes is the hash join, which is so called
because it entails building a hash table of the inner relation, and then probing it with records
from the outer relation. The hash join reduces the asymptotic complexity toO(N), but is still
sub-optimal on real hardware. In fact, it shares many of the same bottlenecks as partitioning:
if the number of entries in the hash table is too high, then random probes to a large hash
table will frequently miss in cache [38]; if it is too small, then a large constant will be hidden
in the asymptotic bound because collisions will result in more comparisons on every probe.

As a result, two main categories of improved join algorithms have emerged: partitioned
hash joins and sort-merge joins. In the case of the former, both input relations are first radix-
or range-partitioned with the same partitioning function, and then much smaller hash tables
are built from the partitions of the inner relation, each one of which is probed only with
records from its corresponding partition in the outer relation. In the case of a sort-merge
join, both relations are first sorted, and then scanned sequentially in tandem. Whenever the
key of a record in the inner relation is found to be greater than that of the currently-examined
record in the outer, the scan pointer in the outer is advanced by one. By maintaining the
invariant that records examined in the inner relation always have keys less than or equal
to the scan pointer in the outer relation, it is guaranteed that all possible matches will be
found.

The ensemble of techniques proposed in these last two methods shows the relevance of
our compositional approach to the problem of joins. A partitioned hash join composes a
partition operator with a hash table build and a probe (really nested loops join), the latter
two stages of which may proceed in parallel for each of the initial partitions. In a sort-
merge join, any of the compound sort techniques presented above—including those which
themselves utilize partitioning—may serve as the input to the join.
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2.2 Related Work

We briefly review some of the literature associated with the main areas of work related to
Ressort: in-memory databases, shu✏e algorithm optimization and hardware acceleration,
software auto-tuning, and parallel programming language systems.

Parallel, In-Memory Database Systems and Query Compilation

Ressort’s very existence is predicated on the emergence of memory-resident, data analytics-
oriented column store database systems. Since nearly a decade ago, researchers have focused
their attention on the technical challenges that have resulted from the desire to run databases
entirely out of main memory, which fundamentally altered the nature of performance bottle-
necks. Instead of minimizing the number and frequency of disk I/Os, engineers now needed
to make more e�cient use of CPU and cache hierarchy resources. Additionally, the compute-
intensive and mainly read-only queries typical of this new era motivated a shift away from
optimizing transaction throughput and towards accelerating large aggregation operations on
vast tracts of data.

C-Store [40, 26] was one of the pioneering database architectures developed in response
to these trends. It proposed organizing relations in columns rather than rows. This layout
arranges each table as several separate arrays in memory, each one of which contains a single
attribute for all records. This facilitated the parallelization of databases across clusters of
nodes, allowing a single node to contain all entries of a particular column and, potentially,
to examine them all at once without intervening communication. Other modern column-
stores, such as MonetDB [12, 47, 48], have exploited the columnar organization to find
intra-node parallelism. Whereas traditional query execution engines relied on a “tuple-at-a-
time” approach that interprets entire queries for a single record before processing another,
columnar storage enabled vectorized1processing, or the evaluation of a single operator across
a block of records at a time. This eliminated interpretive overheads and exposed instruction-
level parallelism (ILP) to the compiler and to superscalar architectures.

Other researchers have also sought to improve ILP and general computational e�ciency
in analytic workloads. Some did so by compiling queries to native machine code instead
of interpreting them dynamically [39, 32]. Meanwhile, Shatdal et al. [38] worried already
in 1994 about how best to utilize on-chip caches during query execution. The concerns
they raised reverberate throughout all the algorithmic optimizations described below and
throughout the rest of this thesis.

1This should not be confused with vectorization in the vector architecture sense, which is its own area
of investigation [22].
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Shu✏e Algorithms for Modern Architectures

Joins

Many modern shu✏e kernel optimizations build upon early join work from database systems
in the 1980s. Several papers from that decade described how partitioning could be used to
reduce disk seeks in hash joins [16, 25], as well as to parallelize them.

Subsequent research has re-evaluated these strategies in the context of modern in-memory
databases. In 2009, Kim et al. [24] revisited the question of whether hash joins or sort-merge
joins were faster on current hardware. They ultimately concluded that hash joins (based on
the shared-nothing parallel partition method of Algorithm 1) would yield better performance
for the time being, but would fall behind as the compute capacity of CPUs with wide SIMD
increased faster than memory bandwidth. Albutiu et al. [1] also proposed a merge sort-based
join algorithm, Massively-Parallel Sort-Merge (MPSM), that specifically targeted NUMA
machines. It works by assigning each socket to sort its local NUMA segment of both input
relations independently, and then performing a massive merge-join in which each processor
accesses all other sockets’ NUMA domains, but does so sequentially in order to benefit from
prefetching.

Blanas, Li, and Patel then argued [8] that, actually, an even simpler partition algorithm
based on atomic updates to a shared histogram table was more e�cient. Later work by
Balkesen et al. [3, 4] contradicted the claims made by both Kim and Blanas: first, they argued
that sort-merge would only outperform radix-hash if relations were very, very large, and
second, they determined that the purported performance advantage of the shared histogram
approach arose from the use of pre-sorted data in the inner relation, which eliminated access
contention [5].

Joins do have inherent data parallelism, and Rich Martin’s 1996 technical report [29]
showed how to vectorize them for Cray-style architectures. His algorithm derives from Zagha
and Blelloch’s vectorized radix sort [45]. The latter work proposed a vectorized partitioning
technique (loop raking) that is stable, meaning that records assigned to the same partition
appear in the same order as they did in the original input relation. LSB radix sort requires
this property for correctness.

Partitioning

More recent work by Polychroniou and Ross [33] thoroughly examined a wide variety of
radix- and range-partitioning algorithms, contributing to and enumerating an already vast
taxonomy of techniques. In particular, they supply in-place and out-of-place variants of
both Algorithm 1 and the shared histogram approach presented in [9]. They also explained
how to exploit SIMD instructions to improve range partitioning performance for small and
large numbers of delimiter keys. They demonstrated and explained the advantage of range
partitioning over a radix-based approach when used as an input to subsequent steps of a
shu✏e kernel, which is that skewed key distributions are less problematic, and that a careful
choice of delimiters can ensure consistently cache-sized partitions at the output.
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Sorting

Satish et al. made the same argument in [37] and [28] as in their previous join paper [24]
that radix sort currently outperforms merge sort, but that the balance will tilt in favor of
“bandwidth-oblivious” merge sort as SIMD widths become wider and key sizes increase to
accommodate ever larger in-memory relations. They implemented the then fastest radix
sort using an output bu↵er-based (Section 2.1) partition operation, and measured a sorting
throughput of 250M keys/second on a 4-core, 3.2GHz Intel Core i7 machine using 32 bit
keys. They claimed that because radix sort is memory bandwidth-bound, its performance
will not improve on future hardware.

Therefore, they also implemented a merge sort algorithm using a SIMD sorting network
that achieves roughly comparable throughput to radix sort. Because this method is currently
compute-bound, and because its bandwidth requirements are much lower than those of radix
sort, its performance will dominate on platforms with greater per-core compute resources.
Their parallel merge sort implementation builds on a previous algorithm for GPUs [36], and
parallelizes the merger of large lists by finding splitter values, as did [17].

In the same paper as their partition study, Polychroniou and Ross also examined how to
build faster radix and merge sort implementations on top of their new partitioning primitives.
They use range partitioning to divide keys evenly across NUMA domains, and then apply
MSB-, LSB-, and comparison-based sorts within NUMA partitions. They found that the
best algorithmic decomposition depended on relation size, key size, and skew, even while
the hardware platform remained constant. We feel this dependency, combined with their
expansion of an already large taxonomy of operators, motivates the design of Ressort. As
di↵erent systems o↵er di↵erent balances of compute to memory bandwidth, cache hierarchy
designs, and degrees of data parallelism, the choice of optimal algorithm becomes even less
intuitive. An e�cient means of generating parallel code for many distinct design points will
ultimately provide the best means of realizing optimal performance on new platforms.

Hardware Support

Other researchers have sought to improve shu✏e kernel performance with the support of
specialized hardware ranging from general-purpose data parallel processors to fixed-function
accelerators. Kaldewey et al. presented e�cient hash join algorithms for GPUs [23]. Jiong
He, Shuhao Zhang, and others explored the mapping of database systems onto CPU/GPU
hybrid platforms [21, 46]. Meanwhile, Timothy Hayes et al. proposed a vector architecture
specifically targeted at improving hash join and sort performance [19]. They also presented
a new vector sort algorithm and supporting instruction set additions designed to avoid
duplicating histograms once per vector element during partitioning [20].

Other researchers have proposed fixed-function accelerators for particular shu✏e kernels.
Lisa Wu et al. designed the HARP [43] accelerator to speed up range partitioning, and
then integrated it into their Q100 query processing architecture [44]. The latter’s pipelines
o↵ered an assortment of dedicated units for di↵erent shu✏e kernel primitives such as filtering,
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partitioning, joining, and aggregation, and provided a dataflow programming model for
scheduling query execution on top of them.

Auto-Tuning

Origins: Linear Algebra

The idea of using an automated script to empirically choose an algorithm’s optimal imple-
mentation on a particular platform arose in the scientific computing community. “Portable,
Hi-Performance ANSI C” (PHiPAC) by Bilmes et al. [7] applied this method to matrix mul-
tiplication and other numerical kernels in the mid-1990’s. Their software searched the space
of possible cache-blockings and register panelings for DGEMM, outputting highly stylized
C code for which even the least reliable of compilers could generate performant assembly.
Nearly two decades later, improvements in alias analysis have rendered many of these defen-
sive coding strategies irrelevant, but the need to automate the search for the best of many
structural code variants remains strong. Subsequent work by Whaley and Dongarra, “Auto-
matically Tuned Linear Algebra Software” (ATLAS) was used by several numerics libraries.
More recently, the OSKI [41] extended this approach to sparse matrices, and has been widely
deployed.

Auto-Tuning in Other Domains

The auto-tuning methodology has also been leveraged in several domains outside of linear al-
gebra. The Halide [35] project defined a DSL for describing stencil operations on neighboring
pixels in graphics kernels, and supplied a compiler to produce and evaluate the performance
of di↵erent operator pipeline schedules. Meanwhile, the SPIRAL project’s [34] approach to
optimizing FFTs inspired Ressort’s treatment of shu✏e algorithms. It exploits the fact that
there are many possible mathematical decompositions of the FFT kernel, and introduces
an algebra to express di↵erent points in this space. Part of their auto-tuning process in-
volves sampling various such formulae. Ressort’s ROFL language is thus akin to their Signal
Processing Language (SPL).

Parallel Programming Languages and DSLs

Ressort’s ROFL programming language is also very much indebted to NESL [11]. The latter
work presented in the early 1990’s a language for expressing portable parallel algorithms as
parallel operations on nested arrays. This facilitated compilation of NESL code to exploit
hardware ranging from SIMD units accessed with vector instructions up to cluster machines
programmed via MPI. The shu✏e patterns targeted by Ressort map very naturally onto this
paradigm, and we hope eventually to cover a similar breadth of scales.

The Ressort compiler’s C++ backend leverages the parallel OpenMP [15] extensions for C
and their accompanying language runtime. The OpenMP framework permits the expression
of thread- and data-level parallelism by parallel regions. When a C++ code block is tagged



CHAPTER 2. BACKGROUND 18

with OpenMP’s omp parallel pragma, all threads spawned by the runtime will execute
the block concurrently. More importantly, a parallel pragma applied to a for loop indicates
that there are no dependencies between successive loop iterations, and causes the runtime
to divide the iterations among threads.

2.3 Summary

The three main flavors of shu✏e kernels—partitions, sorts, and joins—have each been the
subject of virgorous investigation, and the simpler implementations of each have been de-
ployed in more complex versions of the others. At the same time, architectural and microar-
chitectural di↵erences between platorms, as well as di↵erences in the representation, size,
and key distribution of relations, can all change the tradeo↵s that make one strategy more
viable than another. We consider these two facts as motivation for the design of a single
programming language that compactly expresses shu✏e algorithms and enables algorithmic
design space exploration on current and future architectures.
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Chapter 3

The Ressort Operator Functional
Language (ROFL)

As Chapter 1 argues, the most performant implementations of shu✏e algorithms are usually
recursive compositions of more fundamental shu✏e operations. Since the best strategy to
choose at each level of composition is non-obvious, as are the optimal number of levels and
the parameters to each level itself, the only way to achieve peak performance on any system
is to experimentally evaluate many di↵erent points in this space. It is the goal of this project
to enable just such a design space exploration. We present the Ressort Operator Functional
Language (ROFL), which allows the compact expression of shu✏e algorithms. It exposes
the nested-array type of parallelism induced by partitioning or slicing arrays of records, but
moves the burden of exploiting it from the programmer to the compiler. By representing
shu✏e kernel compositions at a higher level than fully spelled-out C++ code, it allows the
compiler to transform, reorder, parallelize, and fuse together these operations in ways that
would not otherwise be possible.

This chapter describes the ROFL language in more detail. We implement ROFL as a
domain-specific language (DSL) embedded in Scala. Scala’s rich syntax supports adding lay-
ers of syntactic sugar to construct ROFL abstract syntax trees (ASTs) directly and without
the need for a ROFL-specific parser. Moreover, by hosting it in the same language as its
compiler, we allow for the expression of ROFL program generators that look themselves like
ROFL primitive operations but in fact assemble and return more sophisticated compositions
thereof. Instances of this are shown later in the chapter. For now, we introduce the ROFL
language with some simple examples.

3.1 A Simple ROFL Program

ROFL allows a programmer or auto-tuner (hereafter the user) to compose operators, which
transform arrays of records into reordered, and reorganized arrays of the same or other
records. Operators are really functions, in the mathematical or functional programming
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sense, but we use the term operator to avoid confusion with Scala or C++ functions. The
output of the Ressort compiler is a C++ function that implements the semantics of its
original ROFL operator on any input arrays passed to it.

The following is the ‘Hello World’ of ROFL codes:

1 val A: Operator = OuterRel // Defined by ROFL to represent an input array

2 val myOp: Operator = Flatten(InsertionSort(Split(A, Length(A)/Const(10))))

These two lines of Scala declare a ROFL operator, myOp:

• Line (1) defines the A symbol to reference a ROFL language primitive OuterRel, which
is itself defined to be the first input array passed as an argument to the C++ function
that results from compiling this program.

• Line (2) actually specifies an operator to be compiled. Though it may look like a nested
function call, it is in fact a declaration of a ROFL AST that Ressort will process later.

Compiling this two-line ROFL program results in the OpenMP-based parallel C++ code
shown in Figure 3.1. More specifically, it generates the InsSrt SplitPar Rel() function,
which implements the insertion sort operation in parallel across the Length(OuterRel)/10
segments of an input array of records, OuterRel. The auto-generated code is unsurprisingly
obtuse, but its structure is still straightforward:

• Lines (3-7): Allocate a new output bu↵er

• Lines (10-15): Invoke threads to handle segments in parallel

• Lines (33-50): Implement insertion sort with two nested loops

3.2 Kinds of ROFL Operators

A ROFL operator is a combination of one or more ROFL primitives, or operations for which
the compiler knows how to generate code directly. A simple example is InsertionSort(),
which denotes the result of applying the insertion sort algorithm to all the records in its
input array.

Most ROFL primitives expect as input a flat array of records. Such operators are called
canonical operators. Whenever a canonical operator receives a nested array as input, an
implicit map() operation occurs, and the operator is applied to all sub-arrays independently.
By design, these semantics resemble those of map() in functional programming languages,
which applies a supplied function to each element of an array independently.

The example in Figure 3.1 describes a computation, or modification of an input array;
other primitives imply no computation, but instead specify a change in the structure of their
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1 struct _arr_urec__UInt32_UInt32* InsSrt_SplitPar_Rel(struct _arr_urec__UInt32_UInt32* OuterRel)

2 {

3 struct _arr_urec__UInt32_UInt32* r_OuterRel_ref_copy_ptr_0;

4 r_OuterRel_ref_copy_ptr_0 = new struct _arr_urec__UInt32_UInt32;

5 r_OuterRel_ref_copy_ptr_0->len = (OuterRel->len)+((0)*((OuterRel->len)/(10)));

6 r_OuterRel_ref_copy_ptr_0->items =

7 new struct Rec_uint32_t_uint32_t_[r_OuterRel_ref_copy_ptr_0->len];

8 const size_t r_nslice_9 = (OuterRel->len)/(10);

9 const size_t _CTMP1_r_OuterRel_offset_5_max = r_nslice_9;

10 #pragma omp parallel

11 {

12 #pragma omp for

13 for( size_t r_OuterRel_offset_5 = 0;

14 r_OuterRel_offset_5 < _CTMP1_r_OuterRel_offset_5_max;

15 r_OuterRel_offset_5 = r_OuterRel_offset_5+(1))

16 {

17 const size_t r_nslice_9 = (OuterRel->len)/(10);

18 size_t r_slen_6, r_winsz_7, r_boff_8;

19 const size_t r_nslice_13 = (OuterRel->len)/(10);

20 size_t r_slen_10, r_boff_12;

21 r_slen_6 = ((OuterRel->len)<r_nslice_9) ?

22 (((OuterRel->len)>(0)) ? (1) : (0)) :

23 (((OuterRel->len)+(r_nslice_9-(1)))/r_nslice_9);

24 r_boff_8 = r_OuterRel_offset_5*r_slen_6;

25 r_winsz_7 = ((r_boff_8+r_slen_6)<(OuterRel->len)) ?

26 r_slen_6 : ((OuterRel->len)-r_boff_8);

27 r_slen_10 = (((OuterRel->len)+((0)*((OuterRel->len)/(10))))<r_nslice_13) ?

28 ((((OuterRel->len)+((0)*((OuterRel->len)/(10))))>(0)) ? (1) : (0)) :

29 ((((OuterRel->len)+((0)*((OuterRel->len)/(10))))+(r_nslice_13-(1)))/r_nslice_13);

30 r_boff_12 = r_OuterRel_offset_5*r_slen_10;

31 const size_t r_isort_numEntries_20 = r_winsz_7;

32 if(r_isort_numEntries_20>(0)) {

33 const size_t _CTMP2_r_isort_i_14_max = r_winsz_7;

34 for( size_t r_isort_i_14 = 0;

35 r_isort_i_14<_CTMP2_r_isort_i_14_max;

36 r_isort_i_14 = r_isort_i_14+(1))

37 {

38 struct Rec_uint32_t_uint32_t_ r_isort_tmp_17 =

39 (OuterRel->items)[r_boff_8+r_isort_i_14];

40 size_t r_isort_j_15 = r_isort_i_14;

41 while( (r_isort_j_15>(0)) &&

42 (((r_OuterRel_ref_copy_ptr_0->items)[r_boff_12+(r_isort_j_15-(1))]).field0 >

43 r_isort_tmp_17.field0))

44 {

45 (r_OuterRel_ref_copy_ptr_0->items)[r_boff_12+r_isort_j_15] =

46 (r_OuterRel_ref_copy_ptr_0->items)[r_boff_12+(r_isort_j_15-(1))];

47 r_isort_j_15 = r_isort_j_15-(1);

48 }

49 (r_OuterRel_ref_copy_ptr_0->items)[r_boff_12+r_isort_j_15] = r_isort_tmp_17;

50 }

51 } else {

52 if(r_isort_numEntries_20>(0)) {

53 (r_OuterRel_ref_copy_ptr_0->items)[r_boff_12] = (OuterRel->items)[r_boff_8];

54 }

55 }

56 }

57 }

58 return r_OuterRel_ref_copy_ptr_0;

59 }

Figure 3.1: Parallel C++ Code generated for ROFL Program in Section 3.1 (with
some manual linebreaks and reformatting to fit this page).
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Figure 3.2: Nested array parallelism implied by ROFL operators

inputs. An example of a structural primitive is the previously-seen Split(A, Nslices),
which turns an input array A of N records into Nslices arrays of N/Nslices records. The
inverse of Split() is Flatten(), which simply discards the additional structural information
added by Split(). Primitives like Split() are called nesters since they add layers of nesting
onto array structures, whereas those that remove them are called flatteners. A third class of
operators, called nested reductions, includes those that expect an array of arrays as input,
and perform some sort of aggregation across them.

Nearly all ROFL programs involve a combination of nesters and flatteners. They tend
to follow the basic structure displayed in Figure 3.2, wherein inputs are subdivided for
independent processing, and then recombined in the final output. In this case, the nesters
are histogram-based radix partition operators, that both compute and change structure. As
Section 3.3 describes, they are not primitives, but compounds comprising several primitives.
The coloring of the arrays in Figure 3.2 indicates that they allocate new bu↵ers to contain
their output, while the two flatteners operate in-place.

However, that aspect of their semantics is not exposed to the user. ROFL is thus also
a functional language in the sense that it leaves memory management at the discretion of
the compiler. The code in the insertion sort example does not indicate whether the sorting
mutates its input array(s) directly, or whether a new bu↵er is allocated to contain the output;
this ought to depend on whether the original input is ever reused. Partitioning operations,
however, involve moving all records to a new, data-dependent location, so they inherently
require a new bu↵er to contain their output 1.

In both cases, Ressort automatically decides what to do. The programmer need never

1The new in-place partitioning algorithms of Polychroniou and Ross [33] do not, but as of this writing
Ressort does not implement any of these
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worry about allocating and freeing bu↵ers, or how many of which type are needed. Even
for complex operators, the compiler can statically determine most data structure sizes as a
function of the operator’s input size, and consolidate all malloc()s inside a preamble to the
main record-processing loops. While it is true that the di↵erent memory overheads imposed
by di↵erent algorithms can impact overall performance substantially (especially in systems
that process multiple queries simultaneously [10]), ROFL still does not directly reveal mem-
ory management details because this can simply be “tuned over” as part of the overall
performance, and should a particular design point’s memory overhead limit its through-
put, then it will of course be rejected in favor another. In the case of multi-programmed
databases, Ressort can supply a static estimate of a ROFL operator’s memory footprint to
the query optimizer, which may have more knowledge about the memory and cache footprints
of concurrently-scheduled operations.

Lastly, Ressort leaves unspecified the relative order of execution of di↵erent parts of a
compound operator with respect to each other, and so it is also the compiler’s job to schedule
computation e�ciently when it linearizes the operator DAG (Chapter 4).

3.3 Composing Shu✏e Kernels in ROFL

The real purpose of ROFL is to support the expression of more interesting kernels as com-
positions of primitives. These, in turn, can serve as building blocks for larger operators still,
and can even be made themselves to resemble primitives by way of syntactic sugar. This sec-
tion describes the standard library of ROFL operators, LibRofl. It supplies parameterized
operator generators for a variety of common tasks, including parallelized radix partitioning,
and several types of sorting.

Radix Partitioning

Partitioning is a fundamental step in many shu✏e kernels, and ROFL supplies a suite of
primitives to support it. It is not itself a primitive because, as Algorithm 1 shows, it com-
prises three separate phases and two loops over the input array. Dividing them lets the
compiler schedule them independently2, but this underlying machinery can e↵ectively be
hidden behind syntactic sugar, as shown in the HistRadixPart() operator of Figure 3.3.

This operator generator will produce di↵erent code depending on the particular choice
of radix bits and specified degree of parallelism. Because many algorithms are built on top
of it, Section 7.1 evaluates its performance in isolation, and examines the impact of code
generation parameters for each of the ROFL primitives that compose it (Section C.2). Later,
we show how a simple Scala program can build a radix sort operator out of it.

2There is a serial dependency between them, but the compiler can schedule them relative to other
operators, that is. A more important reason for the split is actually that they require di↵erent kinds of
bu↵er structures to be allocated for them
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1 // Assembles a ROFL radix partition operator on the chosen

2 // bit field of the input keys with the indicated degree of parallelism.

3 def HistRadixPart(base: Operator, lsb: Int, msb: Int, threads: Int): Operator = {

4 // Split the input into ‘threads‘ parallel segments

5 val splitPar = SplitPar(base, Const(threads))

6 MergeHistograms( // Condense per-thread histograms into one

7 MoveRecordsHist( // Distribute records to their partitions

8 splitPar,

9 ReduceHistograms( // Do prefix sum operation

10 BuildHistogram( // Build per-thread histograms in parallel

11 splitPar, // ... parallelism implied by array type!

12 msb, lsb),

13 multi = true), // Indicates parallelized partitioning

14 multi = true)) // (same as above)

15 }

Figure 3.3: Scala/ROFL Code for Parallel Radix Partitioning

Multi-pass partitioning, which can alleviate the performance degradation of high-fanout
on some platforms, can be specified in ROFL simply by applying our HistRadixPart()
operator to its own output. The only complication is that this results in a nested histogram
structure: if the totally resulting radix of a two-pass partitioning is R = R

1

+ R
2

, then the
rth partition is accessed via a doubly-indirect lookup first of the R

1

MSBs of r and then the
subsequent R

2

bits.3

Sorting

ROFL supplies only a few sorting algorithms as primitives; most actual sort operators are
assembled as compositions of sort, split, partition, and merge primitives by Scala-based
operator generators similar to the one in Figure 3.3. In fact, the only sorting primitive
currently implemented in the Ressort compiler is InsertionSort, though we imagine adding
a SIMD-ized BitonicSort() sort network generator in the future, along with support for
an opaque SmallSort() primitive that maps directly to a hardware sort accelerator on
platforms that support it. 4 In this section, however, we examine how to build serial and
parallel sort operators out of other ROFL primitives.

3A future version of ROFL should include a “merge histograms upward” operator to eliminate the
superfluous indirection.

4These could conceivably be calls into vendor-supplied libraries in the case of hardware accelerators, or
a Ressort-supplied code generator, in the case of bitonic sort, that resembles those described in Appendix C.



CHAPTER 3. THE RESSORT OPERATOR FUNCTIONAL LANGUAGE (ROFL) 25

1 // Makes a ROFL operator to perform LSB radix sort on 32-bit keys

2 // by recursively applying partition and flatten operators.

3 def LsbRadixSort(base: Operator, threads: Int, radix: Int): Operator = {

4 // First, handle enough LSBs to make the remaining # of bits

5 // a clean multiple of the radix

6 val rem = 32 % radix

7 val first = if (rem != 0) {

8 HistRadixPart(base, lsb = 0, msb = rem, threads = config.threads)

9 } else {

10 base

11 }

12 // Recursively apply the radix partition operator and flatten

13 def part(base: Operator, lsb: Int): Operator = {

14 if (lsb < 32)

15 part(radixPartOp(base, lsb, lsb+radix-1, threads), lsb+radix)

16 else

17 base

18 }

19 part(first, rem)

20 }

Figure 3.4: Scala/ROFL Code for Parallel Radix Sort: See Figure 3.3 for a definition of
HistRadixPart()

Radix Sort

The HistRadixPart() operator generator can be leveraged to implement an LSB radix sort
algorithm. For 32-bit keys, radix-sort with radix R merely involves partitioning the input
data d32/Re times, with the radix bits at each stage moving from the LSBs to the MSBs of
the key field. In this case, a Flatten() must be applied to the result of each partitioning,
since the subsequent partition operations need to treat their inputs as a single, flat array.
Figure 3.4 demonstrates how to do exactly this for any arbitrary R < 32 using the parallel
HistRadixPart() operator.

Radix-Partitioned Sorts

An alternative strategy to the radix sort described above would be to first partition the input
records based on their MSBs and then sort each of the resulting partitions in parallel, or at
least in-cache.

If LSB radix sort is chosen as the per-partition sorting method, then the code to imple-
ment the full sort is really just a wrapper around LsbRadixSort() from the previous section
that applies another HistRadixPart() to the input before applying the RadixSort() gener-
ator’s code, but without inserting a Flatten() operation in between. Of course, for optimal
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1 def RadixPartInsertionSort(

2 input: Operator, bits: Int, threads: Int): Operator = {

3 Flatten(

4 InsertionSort(

5 HistRadixPart(input, msb=31, lsb=31-bits+1, threads)))

6 }

Figure 3.5: Radix-Partitioned Insertion Sort: Radix partitioning allows insertion sort to be
applied in parallel across partitions.

e�ciency, the LsbRadixSort() code must be modified to avoid redundant partitioning based
on the MSBs, which will be the same for all records within a given partition. ‘LibRofl‘’s
actual implementation of these operators does so, and can handle keys with an arbitrary
number of bits.

The user may also want to set the number of threads requested by LsbRadixSort() to
one, thereby letting the number of partitions determine the degree of available parallelism,
and giving control over load balancing to the OpenMP runtime. Or the user may exploit
the initial partitioning to obtain LLC-sized partitions, and then sort one partition at a time,
but in parallel out of the shared cache. Exploring this design space requires changing just a
few lines of Scala/ROFL.

Future Work: Cache-Blocked Split-Merge Sorts

The structural converse of partitioned sorts is the split-merge sort, of which the familiar
merge sort is one example. The algorithms in this family start by dividing their inputs
(e.g. with the Split() primitive) into per-thread or per-cache block sub-arrays, sorting the
sub-arrays, and then merging those with a merge operator.

Figure 3.6 gives an example from this class of sort algorithms: the cache-blocked radix-
merge sort. The CacheBlockedRadixSort() function returns a ROFL operator that divides
its input into cache-size blocks, applies a parallel radix sort to each LLC-sized cache block
in sequence, and then invokes a merge network primitive. We do not evaluate this particular
operator in Chapter 7, however, as the current version of Ressort does not yet include a
merge operator.

3.4 Summary of ROFL Operators

Table 3.1 presents a more detailed overview of the various operators that exist in ROFL, as
well as some that are not yet implemented by the compiler but are nonetheless important
parts of the overall algorithmic space targeted by ROFL. In the table, each operator is named
along with the number and types of its arguments and the type of its output. Types are
specified using a shorthand notation where Arr[T ] designates an array of elements of type
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1 def CacheBlockedRadixSort(

2 input: Operator,

3 blockSize: Int,

4 radix: Int,

5 threads: Int): Operator = {

6 MergeSlices( // Builds a merge tree on top of the sub-arrays

7 RadixSort( // Could easily replace with another low-level primitive

8 SplitSeq( // Don’t allow parallel sub-arrays

9 OuterRel,

10 slices = Length(input) / Const(blockSize)),

11 radix,

12 threads))

13 }

Figure 3.6: Cached Blocked Partition and Merge Sort

T , or an array of arrays of type T , up to an arbitrary degree of nesting. As a base type,
T simply refers to any kind of record, unless otherwise specified (see Arr[Index] in some of
the histogram operators, for example). All operator types are specified as functions, since a
ROFL program is actually a specification of how an input array should be transformed into
an output.

Table 3.1: Summary of ROFL Operators and their Types

Primitive : Type

Description Status

OuterRel : Arr[T ]! Arr[T ]
Refers to the first argument (record array) passed to the compiled function Implemented

SplitPar(o, N, [padding]) : Arr[T ]! Arr[Arr[T ]]
SplitSeq(o, N, [padding]) : Arr[T ]! Arr[Arr[T ]]

Divides the input array into N arrays of |o|/N elements. If padding is specified, then
as many elements of padding are added between each pair of slices. SplitPar allows
parallel processing of sub-arrays, while SplitSeq does not.

Implemented

Chunk(o, N, [padding]) : Arr[T ]! Arr[Arr[T ]]
Divides the input into |o|/N arrays of length N. If padding is specified, then as many
elements of padding are added between each pair of slices.

NOT implemented

InitHistogram(o, msb, lsb, [partitionPadding]) : Arr[T ]! Arr[Index]
Initializes a radix r = (msb � lsb + 1) histogram with 2r entries. If padding is
specified, this will produce as many elements of padding between partitions in the
resulting bu↵er once records have been moved.

All but
partitionPadding

BuildHistogram(o, hist) : Arr[T ]⇥Arr[Index]! Arr[Index]
Reads records in o and increments counters in hist accordingly. Implemented

ReduceHistograms(hist, [multi]) : Arr[Index]! Arr[Index]
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Performs a prefix sum reduction on the counters of hist. If multi is set, then
the histogram is interpreted as a multi-threaded histogram of type Arr[Arr[T ]], and
interpreted appropriately (see Algorithm 1).

Implemented

MoveRecordsHist(o, hist, [padding]) : Arr[T ]⇥Arr[Index]! Arr[T ]⇥Arr[Index]
Moves records of the input relation into their assigned partitions according to the o↵-
sets contained in the prefix-summed histogram. If padding was set in InitHistogram,
then it must be set to the same value here.

Implemented

RestoreHistograms(o, [multi]) : Arr[T ]⇥Arr[Index]! Arr[T ]⇥Arr[Index]
Restores all counters in hist to their state before the application of
MoveRecordsHist, which will have incremented each partition’s counter by the num-
ber of records it contains. If multi is set, then the multi-threaded histogram case is
handled correctly. Note that o should be an operator containing MoveRecsHist, and
its type should be a combination of histogram and bu↵er.

Implemented

Compact(o) : Arr[Arr[T ]]! Arr[Arr[T ]]
Produces a new output array where padding in the topmost layer of o has been
removed.

Implemented

Flatten(o) : Arr[Arr[T ]]! Arr[T ]
Removes the outermost layer of array nesting from o. Implemented

MergeSlices(o, [radix=2]) : Arr[Arr[T ]]! Arr[T ]
Merges all the (sorted) sub-arrays of o together into one sorted array. We plan to
generate merge trees of arbitrary radix when we implement this operator, meaning
that if o has M sub-arrays, then a tree of depth logM/ log radix will be emitted.

NOT implemented.

Merge(o1, o2) : Arr[T ]⇥Arr[T ]! Arr[T ]
Merges the sorted array of o1 with that of o2. NOT implemented.

InsertionSort(o) : Arr[T ]! Arr[T ]
Returns the result of sorting o’s array(s) by insertion sort. Implemented
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Chapter 4

ROFL Compiler Front-End

The front-end is the layer of Ressort responsible for turning a type-checked ROFL operator
into intermediate IRep code that can then be translated to C++ code. Those latter stages
that convert IRep to C++ and then compile it are, conversely, called the back-end. The
frontend’s myriad duties include:

• Turning ROFL operator expressions into operator DAGs

• Annotating DAG nodes with constraints on their scheduling, code generation, and
bu↵er allocation

• Allocating and deallocating bu↵er structures for each node

• Finding opportunities to fuse together operators that process the same sub-array struc-
tures

• Determining the order in which to execute sub-DAGs relative to each other

• Emitting parallel for loop structures to process sub-arrays independently

• Invoking the appropriate code generator for the ROFL primitive specified at each node

This chapter briefly surveys these phases of compilation, while Appendices A and C describe
their implementation in detail.

4.1 Overview

Figure 4.1 shows the front-end pipeline, and the kinds of DAG nodes produced at each
stage. Di↵erent array data types are produced in successive stages as operator primitives
are refined from ROFL into IRep (Section A.1). The ultimate result of this refinement is a
DAG containing complete IRep code for each node, along with code to allocate each node’s
bu↵ers and metadata. The final stage of the frontend flattens the refined DAG into a linear
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ROFL%Expression%

DAG$Genera)on$

OpDag[RoflArrayOp]

Operator$Fusion$

OpDag[RoflArrayOp]

Buffer$Alloca)on$

OpDag[IRepArrayOp]

Algorithm$Elabora)on$

OpDag[IRepArrayOp]

Scheduling$

List[IRepArrayOp]

Figure 4.1: ROFL Compilation Pipeline: The frontend progressively refines a ROFL
operator expression into (1.) a typed DAG with calculated bu↵er sizes (RoflArrays), (2.) a
DAG with IRep code for each primitive and finally (3.) a linearized IRep function ready to
be translated into C++

sequence of IRep AST blocks, prepends it with all bu↵er allocation code, wraps it in a
function declaration, and hands the result o↵ to the C++ translator.

4.2 Operator DAGs and Common Subexpression
Elimination

In the first stage of compilation, the front-end breaks up the type-checked ROFL AST into
separated DAG nodes, each of which contains one ROFL primitive. As it does so, it hashes
and memoizes the result of each expression encountered, e↵ectively performing common
subexpression elimination on the ROFL input. This optimization is quite important in light
of the current ROFL language specification, which does not support explicit binding of a
ROFL expression’s result to an identifier, so any operator used as input to two or more other
operators would e↵ectively be duplicated otherwise.

The initial DAG generation also sets certain attributes at each node, depending on the
semantics of the node’s ROFL primitive. These control how that node interacts with its
inputs and outputs. Such properties include, for instance, whether the primitive raises
or lowers the degree of array nesting, whether it is in-place or requires a new bu↵er for its
output, whether it is a reduction across sub-arrays, and whether it processes its input records
independently.
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SlicedArr(
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SlicedArr(
  FlatArr(Index(…), S*(2^R),
  S slices)

HistPartArr(
  hist = RefToArr(SlicedArr(
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  base = SlicedArr(FlatArr(Urec(…), nRecs))

HistPartArr(
  hist = FlatArr(Index(…), 2^R),
  base = RefToArr(
    SlicedArr(
      FlatArr(Urec(…), nRecs)))

RefToArr(SlicedArr(
  FlatArr(Index(…), S*(2^R),
  S slices))

Operator DAG ROFL Array Types 

Figure 4.2: IRepArray Structures for a Parallel Partition Operator DAG. Purple
boxes represent ancillary data structures, while blue ones denote record arrays.

Figure 4.2 shows the form of this DAG for a parallel partition operator, and indicates
what kind of array structure is produced by each node. It is during this DAG generation
phase that the compiler determines the sizes of all data structures. For example, it infers
that S copies of the histogram are needed as the histogram building operator is applied in
parallel to S sub-arrays. It also decides that the output of that node should allocate a new
array for the histogram, while the Reduce() node should re-use its input, as indicated with
an explicit reference type. Section A.1 in Appendix A describes these types in more detail
and explains how they govern loop generation during algorithm elaboration.

4.3 Operator Fusion: Exploiting Temporal Locality

Ressort exploits nested array parallelism at each DAG node by scheduling that node’s com-
putation across each sub-array independently using nested parallel for loops in the IR. A
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barrier is thus implied between a node and all nodes from which it receives its inputs (its
parents). This has two important consequences.

First, a child node’s computation cannot be applied to a sub-array immediately when it
is produced by a parent, but must wait until all other sub-arrays in the parent have been
processed. A single sub-array produced in the parent will likely have been evicted from cache
by the time a child is able to visit it, and no temporal reuse will be exploited.

Second, even when an operator processes each of its input sub-arrays serially, any tem-
porary arrays it produces for consumption by the next operator must be replicated for each
sub-array. Such replication results in exacerbated memory overheads for some operations,
and in unnecessary compulsory misses to data structures that should simply live in cache.
For example, in the case of Figure 4.3, the initial Split() operator’s output might require
its sub-arrays to be processed sequentially, so only enough space to hold one histogram in
the internal HistPart() operator should be needed. Yet, without further optimization, this
structure will be duplicated many times.

The loss of potential performance resulting from these phenomena is clearly unacceptable,
so Ressort ameliorates it via a technique called DAG fusion. DAG fusion identifies instances
where parent and child nodes both operate on the same data with the same array nesting
structures, and fuses parents to their children to produce nested DAG nodes–that is, nodes
whose “operators” are themselves DAGs. This arrangement permits these DAGs-within-
DAGs (internal DAGs) to be elaborated by the same machinery as the DAGs that enclose
them.

When a fused DAG segment executes, the enclosing node generates a loop that selects the
current window (Section A.2), and internal nodes execute as if the current window were the
entire extent of data to be processed. The entire internal DAG executes for one window of the
enclosing DAG before the next one is handled. In the case that the outer DAG’s outermost
sub-arrays specify sequential processing, internal array bu↵ers require only enough space to
hold the maximum size needed by any window of the outer array.

Appendix A Section A.3 describes the processes by which fusible sub-DAGs are identified
and transformed into internal DAGs, as well as the adjustments in the RoflArray and
wrapper structures to support them.
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Figure 4.3: Operator DAG Fusion Example
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Chapter 5

IRep: A Flexible, C-Like Parallel IR

The output of the frontend compiler is a program that implements the semantics of the orig-
inal ROFL expression’s composition of operators. This output is neither machine language
code nor C++ code. Instead, it is an intermediate representation that is merely very close to
C++ code, but which maintains some higher-level semantics and, more importantly, exists
as a type-checked AST inside Ressort that can be manipulated and transformed in various
ways. The present chapter presents this language, called simply IRep, describing its syn-
tax, type system, parallel constructs, and its translation to parallel C++ with OpenMP. It
also discusses a Scala-based interpreter for IRep, which has assisted in debugging the ROFL
compiler and various transformation passes.

5.1 Motivation

Modern compiler backends have at their disposal an arsenal of sophisticated code genera-
tion techniques, and make highly performant choices during register allocation, instruction
selection, and code scheduling. Ressort leverages this existing work by emitting C++ code
as its final internal level of representation of shu✏e operators, thereby entrusting these very
low-level choices to the complex machinery of GCC and LLVM. However, auto-tuning still
does entail forcing the compiler to explore di↵erent points in this space by feeding it with
slightly di↵erent input codes. It is therefore desirable to have within Ressort a means of
automatically transforming C-like code generated by operator elaboration.

This need is common to all auto-tuning systems, which have at some level a C-like
program representation that can be programmatically varied. Often this has taken the form
of messy string manipulation routines that simply concatenate predefined blocks concrete
C code according to some parameter setting. Such systems are brittle, not easily extended,
and cannot support code transformations that are independent of the semantics of each
particular kernel being tuned. They also cannot support operations on code that depend on
the types of variables and expressions.

We have attempted to remedy this state of a↵airs in Ressort by adding a new intermediate
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language, IRep, which is a Scala-embedded DSL for describing C-like programs without
directly spelling out concrete strings of C code. Hosting it in Scala alongside the rest of
Ressort allows for the construction of code generators, of which several examples are given
in Appendix C. In this regard it is similar to and inspired by Chisel [2], a DSL developed at
Berkeley for writing parameterizable hardware generators in Scala.

Ressort implements IRep by representing and constructing its ASTs directly in Scala
as case classes (pattern matchable recursive data structures), and supplying some syntactic
sugar to facilitate the embedding of IRep programs into Scala code. It also supplies a com-
plete type-checker for IRep code, and a suite of routines that make it easy to write program
transformations that operate on type-checked ASTs (two are described in Section ??).

A translation layer converts type-checked ASTs into C++ code appropriate for di↵erent
compilation targets and runtimes. Finally, it includes an interpreter that executes IRep
programs directly in Scala.

5.2 Overview of the IRep Language

IRep was designed intentionally to resemble C, into which it is directly translated. It therefore
includes most of that language’s control flow constructs and data types, including functions,
pointers, and structs. Some of these constructs di↵er slightly from their C counterparts in or-
der to facilitate the construction of IRep code generators, to prevent unintended emission of
sub-optimal C code, or to maintain higher-level semantics than could otherwise be expressed.
The latter category includes parallel for loops, which map directly onto OpenMP equiva-
lents. Explicit array operations, such as scans (prefix sum), both simplify ROFL-to-IRep
compilation and enable translators for specific targets, such as GPUs or vector machines,
to express those constructs in ways that are most e�cient for those platforms. The rest of
this section highlights these di↵erences between C’s structures and their IRep homologues,
which can be summarized as:

• Expressions do not have side-e↵ects; there is no i++

• Function calls are statements, not expressions; a special assignment statement captures
their return values

• Loops are always given as a min, max, and stride tuple

• Arrays track their lengths, and always have restrict semantics

• Functions can be nested, but only globals and the formal parameters of the innermost
enclosing function are in scope
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5.3 Language Syntax

A simple example, culled from the interpreter test suite, serves to introduce the most basic
language constructs:

1 val code: IrAst = { // Binds ‘code‘ to the IRep AST at the bottom

2 val f = Id("f") // *Scala* declaration of IRep symbols

3 val x = Id("x")

4 val y = Id("y")

5 // Now IRep code to use them:

6 FuncDec(f, Map(x -> IRInt(), y -> Ptr(IRInt())), {

7 Deref(y) := x * x

8 } ) +

9 DecAssign(y, IRInt(), 0) +

10 App(f, Map( x-> 10, y -> Ref(y)))

11 }

These lines declare a Scala constant code containing an IRep AST that defines a function
f and applies it to a an automatic variable y through a pointer dereference. The first
three lines inside the AST construction block declare Scala identifiers that stand in for IRep
ASTs, in this case the minimal expression AST consisting merely of a symbol name (Id()).
The function declaration uses a Scala Map[Id, IRType] (mapping from IRep identifiers
to IRep types) data structure to describe the types of formal parameters. The () after
primitive type names declares them as mutable; a trailing (const=true) would do the
opposite. Evaluating this code in the interpreter yields a memory state where y is assigned
an integer value of 100.

Plenty of syntactic sugar is at play in this example. The assignment in Line (7) exhibits
three instances: x stands in for Id("x"), x * x is really a Scala call to the overloaded *
operator that returns an expression AST, Mul(Id("x"), Id("x)), and an overloaded :=
yields an Assign(Deref(Id("y")), Mul(Id("x"), Id("x"))).

All IRep language constructs are introduced in this section with this Scala shorthand
notation, but the above code is indeed the underlying representation. It is also possible
to obtain from the IRep AST implementation a “pretty-printed” form of this code, which
cannot currently be written and parsed directly, but is useful when examining the output of
IRep code generators:

Func f(
x: IRInt,
y: ptr_IRInt) : {

Deref(y) <--- x*x
}
var y: IRInt <--- 0
f(x=10, y=Ref(y))
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Parallel and Sequential For Loops

IRep o↵ers both normal and parallel for loops, and both are more constrained than in C.
All for loops must be specified with an explicit induction variable and expressions for a
minimum, maximum and stride value. Thus, the upper bound expression will be evaluated
exactly once:

1 val stridedFor = {

2 val sum = Id("sum")

3 val i = Id("i")

4 DecAssign(sum, IRInt(), 0) +

5 ForSeq(i, min=0, max=20, stride=4,

6 (sum := sum + 1))

7 }

Thus, the above code sets sum to five. Constraining for loops in this fashion ensures that
no complex termination predicates will mistakenly emerge increase per-iteration instruction
counts. It also makes it easier to do certain kinds of transformations when the induction
variable is explicit.

ForSeq specifies an ordinary sequential for loop; ForPar indicates that all loop iterations
are independent and may be executed in parallel.

Functions

IRep also supports functions as a means for operator code generators to encapsulate chunks
of reusable logic (the insertion sort “unroller” in Section C.4 is one example). The C++
compiler should ultimately inline most of these, assuming -O3 is set, and avoid function call
overhead.

A few features di↵erentiate IRep functions from C++ functions. First, only primitives
may be passed as arguments—structures are not allowed. Second, because expressions cannot
have side e↵ects, return values can only be captured through a special assignment statement,
AssignReturn().

Finally, functions are allowed to be nested, which makes them easier to use inside operator
code generators, as those do not know the surrounding context into which they emit IRep
code. However, as a compromise to simplify C++ code generation, the scope of a function’s
body includes only its formal parameters and global variables; the automatic variables and
arguments of any enclosing functions are not visible.

5.4 Type System

In lieu of a formal enumeration of IRep’s type system and typing rules, we simply note where
these di↵er interestingly from those of C.
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Fixed-Width and Machine-Dependent Integer Types

The IRep type system closely mirrors that of the C language. Our intent was to facilitate
compilation into that language and to ensure portability across platforms in terms of both
correctness and performance. To that end, IRep supports fixed-width signed and unsigned
integer types at the 8-, 16-, 32-, and 64-bit granularities for storage of record fields requiring
a precise width, and architecture-dependent integer types that match the target machine’s
native register widths.

Of these, the most important is Index(). It denotes the amount of storage required to
hold an index or o↵set into any memory-resident, addressable bu↵er. The Index() type quite
naturally maps onto the C language’s size t data type, and the current compiler always
uses it as the type for loop induction variables in array processing loops, for histogram
counter entries, and for all other kinds of array indexing operations.

There is certainly a chance that this conservative representation will waste space if used
to store o↵sets into smaller bu↵ers whose sizes are known statically. Indeed, the impact could
be particularly acute for frequently-accessed structures (like histograms) that ought to reside
in the higher levels of the memory hierarchy, and switching to a more compact data type
could improve cachability in such cases. The benefit of marking variables with the Index()
type is that it makes them obvious targets for a future compiler analysis pass that would
down-size whichever indices it can prove are over-provisioned. It is not yet obvious whether
or not it makes sense to generate di↵erent code variants to be chosen among dynamically
once the actual sizes of bu↵ers are known. This too is an object of future study.

Arrays

As the purpose of IRep is to represent implementations of array-processing operators, it was
designed to make array-handling as straightforward and natural as possible. We do not think,
for instance, that it is sensible to make IRep programmers manually maintain variables that
track the lengths of arrays, as C does, and so IRep arrays do this automatically. Moreover,
some common array operations, such as initialization (memset), prefix sum, reversal, and shift
are exposed as explicit language constructs in order to hide target-specific optimizations in
these routines from code generators. It should be the job of the C++ IRep translators to
decide whether a given platform is best targeted by parallelization or utilization of dedicated
instructions.

IRep does not support multidimensional arrays in the same way that C does. Rather
than standardizing row- or column-major ordering, the language assumes that it is the
frontend compiler’s responsibility to manage data layout in flat bu↵ers. However, it does
support nested arrays, where all dimensions but the highest consist of arrays of pointers to
the subsequent level’s arrays.
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Reference Types

In order to support function calls and structs, IRep includes an explicit Ptr() data type.
This is something in between a C-style pointer and a C++ reference, as Ptr-typed variables
can be declared uninitialized, but cannot be cast to an integer, and pointer arithmetic is not
supported. A reference can be acquired to any valid lvalue via the Ref() operator. By fiat,
no two references to arrays may alias each other, and the result of doing so is undefined.
This restriction allows all arrays to be compiled to C++ arrays with restrict semantics,
which enables some compiler operations not otherwise possible under a more conservative
analysis.
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Chapter 6

Experimental Methodology

In order to demonstrate the functionality of Ressort, we evaluated the performance of a va-
riety of operator compositions across several platforms (Chapter 7). Before presenting those
results, we first describe in this chapter the experimental setup used to obtain them, includ-
ing the hardware platforms studied, our data-gathering and correctness-checking methods,
and our assumptions about the underlying format of input data to all ROFL operators.

6.1 Problem Setting and Experimental Parameters

Data Formats and Memory Layout

KP32: 32-bit Key-Payload Relations

For the purposes of this investigation, we consider only input relations whose records contain
a 32-bit key and a 32-bit payload, which we refer to as KP32 relations. Although the intended
use-cases for Ressort—namely, in DBMS query execution engines—will require processing
relations of all shapes and sizes, we restricted the scope of our inquiry to the KP32 class
as this represents a useful general-purpose data format that occurs quite frequently in the
middle stages of query processing pipelines, even where the ultimate input or output format
is more complex.

Indeed, a first step in the implementation of many complex queries will likely be to
construct a view of the input tables that replaces each row of one or more columns by a hash
of their contents, and a pointer to their original location. This view facilitates partitioning,
sorting, and joining by drastically reducing the amount of data that must be moved around
at each step.

Non-columnar Memory Layout

We further assume that all input records are stored in a non-columnar organization. Each
record is stored as a key-payload tuple, and relations are really arrays of record structs.
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Although this is the reverse of how column stores normally arrange their data at rest, we
feel it is a reasonable structure for our experiments. In practice it will often be desirable
to re-structure data this way while constructing the KP32 view, since it (1.) requires only
one stream of accesses to contiguous memory and (2.) allows 64-bit machines to move entire
records with a single load or store instruction. Our generated C++ code accomplishes this
by moving data typed with the structures of Figure 6.1.

1 struct Rec_uint32_t_uint32_t_ {

2 uint32_t field0;

3 uint32_t field1;

4 };

5

6 struct _arr_urec__UInt32_UInt32 {

7 struct Rec_uint32_t_uint32_t_*__restrict items;

8 size_t len;

9 };

Figure 6.1: Input data format for all experiments in our evaluation. These C++ structures
are automatically generated by translating the ROFL type Arr(URec(Uint32, Uint32)).

The cost of constructing these views of input data is not considered as part of our
evaluation, nor is the cost of reordering complex row-oriented tables according to the results
of the shu✏e operators we examine. These are obviously important considerations in any
practical setting, and we expect that the tasks of view construction and table reordering
would themselves be good candidates for tuning in our framework. We nonetheless defer
such an analysis to future work, which could examine the tradeo↵s between the ease of
computation on KP32 values, and the cost of constructing that representation.

Random Key Distributions

We used randomly-generated input datasets in the KP32 format described above. Our final
assumption about these inputs is that the 32-bit keys values are taken from a uniform dis-
tribution on the range [0, 232 � 1]. This setting is optimal for partitioning-based operators,
as it results in generally even load balancing when di↵erent processors or threads are as-
signed to process di↵erent partitions. Many operators’ performance will thus be sensitive to
the uniformity and cardinality of the key distribution, and these attributes will ultimately
determine the most e�cient algorithms to apply to any input dataset. This is clearly an
interesting tuning space, but it is beyond the scope of the present work. In the future, we
wish to re-run the same experiments under a Zipf distribution with varying skew; for now,
we consider even the optimal case of uniformity to be interesting enough on its own.
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Problem Sizes

We consider three di↵erent sizes of input relations in order to illustrate the performance
limitations imposed by di↵erent levels of the memory hierarchy. These categories are:

• Small: a handful [O(10)] of records, repeated many times over

• In-Cache: small enough [O(10K � 100K)] records to fit in the outermost two levels
of the on-chip cache hierarchy

• In-Memory: relations large enough[O(1G)] that they do not fit in any level of cache,
and involve significant DRAM tra�c

6.2 Experimental Setup

We characterized the performance of di↵erent ROFL operators compiled by Ressort in Chap-
ter 7 on di↵erent systems, ranging in size from a mobile processor to a 40-core server platform.
This section describes both this set of platforms and our measurement methodology.

Platforms

Platform C/T Freq. L1 L2 L3 Linux

NVIDIA Tegra 3 4 1.6GHz 32KB I/D 1MB N/A 3.1.0
(Cortex A9)

Core i7-4765T 4/8 2.00GHz 32KB I/D 256KB 8MB 3.13.0
(Haswell) 8-way 8-way 16-way

Xeon E5-2667 2⇥ 8/16 3.3GHz 32KB I/D 256KB 25MB 3.16.7
(Ivy Bridge)

Xeon E7-4860 2⇥ 10/20 2.27GHz 256KB 24MB 3.13.0
(Boxboro/Nehalem)

Table 6.1: List of Platforms Used in the Evaluation
The “C/T” column reports the number of cores and threads for platforms with simultaneous
multithreading (SMT) or Hyperthreads. Multi-socket machines are reported as N ⇥ C/T ,
where N is the number of sockets.



CHAPTER 6. EXPERIMENTAL METHODOLOGY 43

Platform Advertised Measured
Single Thread Max. Threads

Cortex A9 6.0 0.83 1.5
Haswell 25 6.8 17

Ivy Bridge 60 6.7 60
Boxboro 4.8 92

Table 6.2: Theoretical vs. Measured Memory Bandwidths (GB/s)

Table 6.1 contains the microarchitectural parameters of the three platforms we used in this
study. We selected the above machines because they provide a reasonable diversity of CPU-
and system-level characteristics, such as cache sizes, core counts, memory bandwidth, fre-
quency, and pipeline resources.

The least powerful of these machines is an ARM Cortex A9 that was included as part
of an NVIDIA Tegra3 development board, and is included to illustrate the challenges of
mapping shu✏e algorithms e�ciently to smaller cores. The second is a desktop-class Intel
Core i7 with the Haswell microarchitecture—the latest available at the time of this writing.
The third, Boxboro, has the much older Nehalem microarchitecture, but many hardware
threads, and a very large LLC and high bandwidth memory system. Finally, the Ivy Bridge
machine is included as a server-grade, high-bandwidth reference point with a reasonably
recent microarchitecture.

Machine Memory Bandwidths

We calibrate our results in Chapter 7 against both the theoretical (advertised) maximum
memory bandwidth of all reference platforms, and the actual throughput we could measure
on each machine. Table 6.2 reports these numbers. Measured throughputs were obtained
using a tool by Scott Beamer that performs a pointer chase through a 1GB-sized array of
pointers that either (1.) point to an element at a constant stride o↵set (with a default of
one cache line) in the array, or (2.) point to a random location in the array. Additionally,
it measures n-degree memory-level parallelism (MLP) by performing n independent chases
in the innermost loop, and can be configured either to have all threads perform this task, or
merely a single one. Randomization is sometimes needed to achieve maximum bandwidth
by distributing loads across multiple DRAM banks, while the MLP setting determines the
number of independent requests that can be in flight at any time.

Cores, Threads, and Scaling Experiments It is important to distinguish between the
number of cores or hyperthreads indicated in Table 6.1, the number of threads instantiated
by the OpenMP runtime, and the meaning of the “threads” parameter reported across many
experiments in the next chapter. For each of our experiments, we allowed the OpenMP
runtime to determine the number of pthreads to use in each parallel region, and did not
call omp set num threads(). Instead, wherever a number of threads is reported, this
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Figure 6.2: Cycle-Accurate Test Harness: Here “cycle-accurate” can either mean an RTL
simulator or the host machine’s hardware itself

designates the degree of parallelism induced by a particular operator. It is the number of
sub-arrays introduced by the ROFL Split(Rel, N) primitive that are then processed in
parallel. This primtive sets the “iteration count” of the outer OpenMP parallel for loop that
parallelizes the execution of any operator applied to the result of Split. The loop bound is
therefore also a bound on the number of active threads, since the body of the loop will not
normally contain any further parallel regions.

6.3 Test and Verification

Figure 6.2 shows a magnified view of tuner plane portion of the Ressort framework. It is
so called because its responsibilities are to generate and test variants of ROFL operators,
measuring both their performance characteristics and their correctness. The tuner plane is
further subdivided into the tuner itself, which generates the operators under test (OUTs),
and the test harness which manages their execution and verification.

The “Tuner”

The tuner module is not yet an auto-tuner per se, but it is indeed the site where one
could be integrated into Ressort. Its name derives, rather, from its job of varying the
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parameters to a ROFL operator generator, and invoking the compiler on these resulting
variants to produce an object file that the test harness can execute. A parameterized operator
is called a benchmark, which accepts a configuration set by the tuner. The latter also sets a
configuration for the compiler to control the elaboration parameters described in Appendix C.

Finally, the tuner selects a problem size, and runs a relation generator to produce a
randomly-generated array of input records. The only relation generators currently supplied
with Ressort emit arrays of KP32 records with uniformly distributed keys (though the max-
imum range from which to draw these keys can be limited). Two such generators exist: one
is simply a wrapper around an externally-hosted C++ program that writes a binary relation
file out to disk, and the other is written in Scala to be run inside the JVM alongside the
IRep interpreter-based test harness.

The Test Harness

The test harness is an abstraction for the various bits of machinery needed to (1.) link
a compiled operator together with library code for relation I/O and performance counter
measurement (2.) run the resulting executable natively or in an architectural simulator
(3.) return the performance counter measurements to the Scala-based tuner plane and (4.)
pass the OUT’s output through an appropriate verifier to ensure that auto-generated code
produced the correct results.

The Execution Environment

The middle box of the tuner plane diagram in Figure 6.2 represents the actual execution
platform on which the OUT’s performance is measured. All the results presented in Chapter 7
were obtained via direct execution on the host machine (the one that runs the JVM hosting
Ressort’s compiler and tuner planes) using PAPI [30] to extract native CPU performance
counter values, as described further in Section 6.4.

However, the test harness infrastructure currently supplied by Ressort also supports oper-
ator execution on cycle-accurate architectural simulators and models. In particular, we have
used it previously to measure performance on simulators for the research microarchitectures
developed at Berkeley.

Two other kinds of execution environments do not report any performance measurements.
One is the IRep interpreter, which is useful for debugging the Ressort compiler itself, and
the other is an interface to gdb for debugging C++ and OpenMP translation.

The Runtime Harness

In all cases but that of the interpreter environment, the OUT object file is linked into a
binary called the runtime harness that knows how to read in the input relations from disk,
and call the OUT’s main function with a pointer to the input relation bu↵ers. When Ressort
generates C++ code, it also emits a header file that indicates to the runtime harness which
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function to call, and what the types of the input and output relations are so that it can fill
appropriately sized bu↵ers.

The runtime harness is also responsible for making performance measurements during
the course of operator execution and reporting the results back into the Scala-based test
harness by writing them out to a file designated for this purpose.

Verifiers

Checking correctness is obviously important wherever algorithmically diverse implementa-
tions of a given kernel are benchmarked, and Ressort’s test harness module includes correct-
ness checkers for sort and partition operators on KP32 relations.

ProblemSpecs

When the tuner runs a benchmark, it generates a problem specification (ProblemSpec) to
indicate (1.) which category of operator (sort, partition, join, etc.) is supposed to be imple-
mented, (2.) what its input relations are, and (3.) any operator-specific parameters, such
as the bits of the key to be used for partitioning. This specification succinctly enumerates
all details required to determine whether or not a given output conforms to the semantics of
the desired operator type.

In-Memory vs. On-Disk Verifiers

Input and output relations are passed in ProblemSpecs either as pointers to binary files on
disk, or as Scala arrays of actual records, depending on the kind of verifier invoked. An
in-memory verifier accepts the latter kind of data, and is intended to work with the IRep
interpreter execution environment. More often, the harness uses an on-disk verifier, which is
itself a wrapper around a C++ implementation of the most näıve version of an operator type
that can compute the result of large problem sizes many times faster than its (unoptimized)
Scala counterpart. Even so, we expect, and observe, that the majority of our experiment
runtime was spent inside the various verifiers, as they are single-threaded, untuned, and,
in the case of sort, call a standard library function that su↵ers a function call overhead
on every comparison. The test harness therefore supports caching these results whenever
multiple experiments are run with the same problem specification but di↵erent ROFL codes
or compiler configurations.

6.4 Measurement

The test harness uses PAPI, the Performance Application Programming Interface [30], for
accessing hardware performance counters to characterize operator e�ciency as accurately as
possible, and makes several e↵orts to eliminate or at least quantify measurement error and
noise.
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Performance Counters and PAPI

Per-platform Counter Availability

Not all of our experimental platforms support all kinds of counters we wished to monitor,
so we used maximal subsets of these where possible and sometimes had to choose counter
subsets on a per-experiment basis. All platforms studied support runtime measurement at
the microsecond granularity, while also providing counts of retired instructions, data TLB
misses, and L1 data cache misses. We were unable to obtain L2 cache miss statistics from
the Tegra3 platform. Our x86-based machines supplied L2 cache event information, but we
did not obtain LLC miss counts from them either.

PAPI and OpenMP

Since all relevant performance statistics aside from pure running time are derived from per-
core or per-hyperthread event counts, they need to be aggregated across all hardware threads
whenever they are collected. OpenMP hides the thread abstraction behind the parallel for
loop interface so, the test harness wraps its calls to the PAPI library routines in an OpenMP
parallel region that reads counters into thread-local arrays. A subsequent OpenMP critical
section aggregates the per-thread counts into a global array. Thus, the harness will report
statistics from all threads by allowing the OpenMP runtime to schedule the counter code on
all threads.

Trials and Variance Estimation

All experiments were conducted on real hardware running Linux, and running the JVM-
based Ressort framework along-side the OUT, so some amount of measurement error is
unavoidable. Two methods are employed to mitigate its impact: repetition through multiple
trials inside an operator using di↵erent datasets and repeated invocation by the test harness
of the OUT on the same input data. Each has di↵erent consequences.

Error Bars Throughout all the figures in Chapter 7, error bars represent one standard
deviation around each depicted data point, which itself is the average over all outer trials
for a particular experiment.

Inner Trials

The obvious way to reduce measurement variability is to test each OUT many times across
many input datasets. Because our input datasets are generated prior to launching the
runtime harness, data for all trials must be created at once, and the runtime harness must
be told how many trials’ worth of data an input relation comprises.

To that end, each ProblemSpec specifies a number of inner trials into which to divide its
input relations. If the number of inner trials is N , the verifier treats the inputs and outputs
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as the results of N independent experiments, checking the correctness of each one’s output
separately. At the same time, the benchmark must wrap its inputs in ROFL SplitSeq(...,
N) operators whose semantics stipulate that each of the N sub-arrays must be processed
independently but in series with each other, rather than in parallel.

When the runtime harness calls into the OUT’s main function, it passes a pointer to the
bu↵er containing input records for all inner trials, and it wraps either side of this call with a
single start and stop of the PAPI performance counter monitoring facility. Thus, exactly one
set of performance statistics is generated regardless of the number of inner trials specified,
so per-record statistics represent averages across all trials.

This method has the obvious disadvantage that it is impossible to measure variance, but
is nevertheless e↵ective at mitigating the influence of noisy runtime conditions. We remedy
the lack of variance measurement by adding an additional layer of repetition, as described
below.

Outer Trials

To further reduce and quantify measurement error without injecting instrumentation code
inside of black-box OUTs, and without requiring memory-resident bu↵ers for further trials’
worth of input data, the runtime harness’ call into the OUT is wrapped an outer loop that
repeats the same experiment multiple times using the same set of input data for all inner
trials. Moreover, each iteration of this loop makes and saves a separate performance counter
measurement, over which the runtime harness then calculates the mean and variance to
report back to the Scala-based test harness.

This process could potentially generate misleading results in the case of small problem
sizes, as it may unfairly warm up layers of the cache hierarchy, or train branch predictor state
that should realistically be initially empty. However, we can control for all these side-e↵ects
by increasing the number of inner trials to be just large enough that the impact of these
phenomena is negligible.

Variance with Inner and Outer Trials

Most of the performance statistics reported in Chapter 7 are stated as event counts per
record. Since we only directly measure variance over each outer trial loop, we report the
mean and variance of per-record statistics as derived values. For event count E:

TotalRecs = NumTrials
inner

⇥ (Recs/Trials
inner

)

µ(E/rec) =
µ(E

outer

)
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One metric that is not derivable in this way is throughput, which involves the reciprocal of
runtime whose variance therefore cannot be computed directly from the variance of runtime.
We therefore measure that statistic directly in the runtime harness itself, and report its
per-outer trial variance back to the Scala-based test harness.
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Chapter 7

Evaluation: Tuning Results

We benchmarked the performance of operators generated by Ressort on our reference ar-
chitectures in order to determine (1.) whether the primitives themselves were reasonably
e�cient and (2.) which composite algorithms were best for partitioning and sorting. Aside
from the performance considerations themselves, it is worth noting that about thirty lines of
Scala-embedded ROFL generate all the operators evaluated below. In the case of MSB-LSB
sort, whose compiled output encompasses approximately four hundred lines of C++, this
represents a 10x savings in code and e↵ort compared to a manual implementation.

7.1 Partitioning

Since partitioning underlies our sorting algorithms, we examine it first. Depending on the
particular use case, it may be desirable to partition a relation into an arbitrary number of
fragments. We examine radices ranging from b = 1 to b = 30, and attempt to determine the
optimal algorithm for each radix. The parameterized partition operator generators presented
in Section 3.3 give rise to a design space that we explore empirically, and which is itself the
basis of an even larger design space for sorting algorithms. For partitioning alone, though,
the only currently controllable parameters are the radix itself, and the decision to use a
multi-pass algorithm.

In-Cache Partitioning

For problems small enough to fit in the L2 or L3 cache, we measure the partitioning ability
of a single thread alone. On x86-based platforms, the number of instructions per record
required to execute this kernel is consistently about 23 when compiled with the -O3 flag.

Figure 7.1 shows that a single thread operating out of cache on an Ivy Bridge machine can
achieve a throughput of 250M records/second using Ressort’s auto-generated partition code.
At 2.5 IPC, and without any significant cache misses, this is our peak per-core e�ciency
for partitioning. Since each phase of this kernel is a loop with about ten serially dependent
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(a) Throughput (b) Log2(L2 Misses / Record)

Figure 7.1: In-Cache Single-thread Radix Partitioning on an Ivy Bridge (50 outer trials).

instructions, this corresponds to the regime in which two independent loop iterations fill the
issue window. Vectorizing 1 the inner, per-thread partition loop could break this dependency
and potentially increase IPC, but this is the best performance we can expect without doing
so. The Nehalem (Boxboro) platform exhibits roughly the same performance trajectory,
with lower peak IPC owing to its less sophisticated microarchitecture. Its throughput (not
shown) is 120M records/second at its peak. Appendix 7.1b contains analogous performance
plots for that platform.

In both cases, the relation with 10M records (80MB in size) does not fit in any layer of
cache, though prefetching maintains roughly the same level of partitioning performance (the
number of cache misses per record is only slightly higher than it is for the smaller problems)
until the radix exceeds b = 5. There the TLB miss rate (shown in the Appendix D) spikes
to one per four or five records, significantly limiting throughput2. That spike occurs only
for the 10MB dataset on the Nehalem and Ivy Bridge microarchitectures, and is not seen
on Haswell (Figure D.3), where there are no TLB misses and where throughput remains
comparatively high. Conflict misses common to all problem sizes also begin to gradually
impede performance beyond this point (Figure 7.1b), as the input, output, and histogram
all compete for ways of the L1 and L2.

One way to alleviate this cache and TLB pressure is to split the partitioning into multiple
passes, as described in Section 2.1. In this case, since the relations fit in cache, scanning
them multiple times will not increase DRAM bandwidth requirements, so we would expect
it to be particularly fruitful. Figure 7.2 shows that the reduction in L2 cache misses from 2-
and 3-way partitioning can indeed improve throughput at high radices, though a single pass
is more optimal at lower radices because of its lower dynamic instruction count.

1By “vectorizing” we mean actually changing the structure of the partition algorithm by introducing an-
other ROFL SplitPar(M) operator on top of the one used to divide inputs between threads. This additional
M -way split would result in T ⇥M copies of the histogram for T threads. Thus, just as using T independent
histograms creates thread-level parallelism, this further subdivision would create ILP. We don’t yet evaluate
this design point because the prefix sum operator does not currently support three-level histograms.

2It is not clear why transparent superpage promotion did not take place here, but we defer investigation
of that e↵ect to future work.



CHAPTER 7. EVALUATION: TUNING RESULTS 52

(a) Throughput (b) Log2(L2 Misses / Record)

Figure 7.2: Multi-pass in-cache partitioning of 10M records on an Ivy Bridge: At
radices higher than b = 12, splitting the partitioning into two or three passes at half or a
third the degree can eliminate TLB and cache pressure. Figure 7.2b shows that multiple
passes keep the number of L2 misses low.

Platform % Peak Bandwidth
All Threads Single Thread

Theoretical Measured Measured

Haswell 48% 70% 70%
Nehalem 20% 50%

Ivy Bridge 55% 55% 71%
Tegra 3 2% 16%

Table 7.1: Estimated % of Measured & Theoretical Peak BW for Partitioning:
Each column shows the partition bandwidth estimated by Section D.1 as a fraction of either
the measured (with Scott Beamer’s tool–Section 6.2) or of the peak bandwidth advertised
by the machine’s manufacturer.

Parallel Partitioning and Scaling

In theory, out-of-cache partitioning should run at the same rate as in-cache partitioning, at
least for low radices. The streaming access pattern of each phase of the algorithm should
trigger automatic prefetching, and the kernel should execute at the same throughput per core
as its in-cache sibling after an initial startup latency. However, we observe that this does
not occur. Instead, Figure 7.3 shows that even at small radices, partitioning throughput is
only about five times greater than that of a single thread operating within cache, whereas
it ought to be 16x higher on a machine with sixteen cores. Indeed, the IPC for out-of-cache
partitioning is consistently lower than that of in-cache, often by a factor of five or more, and
as Table 7.1 shows, available memory bandwidth is massively underutilized.

This behavior seems to result from an increase in LLC misses, though it is not obvious
why that should be. In the single-threaded, radix b = 2 case, the working set is never larger
than six cache lines, one of which is the current line in the input stream and four of which are
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Figure 7.3: Out-of-Cache Radix Partitioning on an Ivy Bridge (50 outer trials, 16
threads): Peak throughput can only be realized for the ideal case of R 2 {21, 22}. Even
then, IPC is still less than 1.0, and declines precipitously at b = 5, at which point the TLB
miss rate rises to one per five records.

(a) Throughput (b) Instructions / Cycle

Figure 7.4: Scaling Radix Out-of-Cache Radix Partitioning on Ivy Bridge: 109

Records. Note that the T = 25 datapoint corresponds to SMT operation on this machine.

the heads of their respective output streams. All of these accesses are entirely prefetchable,
so it is surprising that L3 misses still occur on Ivy Bridge and Haswell. It may well be the
case that the näıve histogram-building and record-moving loops cannot generate memory
requests at a su�cient rate to keep these streams active. The vectorization experiment
proposed in Section 7.1 might indicate whether this is so.

Figure 7.4 shows that the IPC of a radix b = 2 partition on a 16-core, 32-thread Ivy
Bridge does decrease by a factor of four as the number of threads is scaled. Although this
degradation in per-core throughput is more than made up for by a 32-fold increase in threads,
it does account for the sublinear scaling. It corresponds to 1.5x increase in L3 cache misses
over the same period (see Figure D.5c in the appendix). More cores mean more competition
for prefetching resources, which raises the miss rate in spite of the small working set size.
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(a) Partitioning Throughput for Di↵erent Rela-
tion Sizes

(b) Throughput with and without SW Prefetch
Insertion, radix 1

Figure 7.5: Radix Partitioning on a Cortex A9:

Partitioning performance for the less powerful Tegra 3 (Cortex A9) depends on a very
di↵erent set of microarchitectural parameters. When the relation fits in the 1MB L2 cache,
throughput can be as high as 20M records/second, but it degrades more than seven-fold by
the time the relation is 32MB in size (Figure 7.5a). Since hardware data prefetching clearly
did not succeed in hiding memory latency in this configuration, we configured the ROFL
compiler to automatically unroll the histogram-building and record-moving loops and insert
software prefetch hints (Appendix C Section C.2 describes this code generation parameter).
Figure 7.5b shows that this did indeed restore throughput by as much as 2x, but the fact that
this entails utilizing only 16% of the measured single-thread memory bandwidth (Figure 7.1)
indicates there is still much performance left to be extracted.

7.2 Sorting

The space of possible sorting implementations is much too vast to examine exhaustively.
Even narrowing the scope of our investigation to include only those built out of partitioning
and insertion sort still leaves many variables unconstrained:

• LSB radix sort vs. MSB radix sort vs. MSB-LSB

• Which radices to use at each level

• Whether to use e.g. insertion sort at the lowest level

For both in-cache and out-of-cache sort, we compare pure LSB sort to MSB-LSB sort.
In both cases, we prune the search space to include only radices between b = 7 and b = 12.
Given the partitioning performance in Section 7.1, it is natural to make this restriction, as
the IPC improvements at radices less than b = 7 are too small to justify additional passes
over the input, while the very low IPC at R > 212 will prevent any speedup from reducing
the number of relation scans.
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Figure 7.6: Single-Threaded In-Cache LSB Sort on Ivy Bridge: Radix b = 8 is
the optimal in-L2 partitioning algorithm because it fits the histogram in L1, while b = 11
narrowly surpasses it once the relation outgrows the L2.

In-Cache Sort

When sorting in cache with one thread, LSB sort and MSB-LSB sort should perform simi-
larly; MSB-LSB’s possible cache-blocking and parallelization advantages should not be rel-
evant. LSB sort’s performance is easier to analyze, since it has three clear inflection points
in the radix parameter: one at b = 8, where the number of passes required to complete the
partition decreases from five to four, followed by two more at b = 11 and b = 16. Radices in
between these values will be sub-optimal, since they execute the same number of instructions
per record while exacerbating the microarchitectural bottlenecks of higher-radix partitioning.

We discuss only these work-optimal configurations3. On our Intel server-grade platforms,
radix b = 8 turns out to be optimal, because b = 11 requires a histogram of size 211(8) =
80KB, which does not fit into 32KB the L1 data cache, and so has nearly twice the L1 miss
rate. As Figure 7.6 shows, though, it becomes optimal in spite of this once the relation no
longer fits into the L2 (|R |= 219 or 4MB).

In-Memory Sort

When relations do not fit in cache, LSB sort and MSB-LSB sort have di↵erent theoretical
performance characteristics: LSB sort’s throughput depends exclusively on out-of-cache par-
titioning, while MSB-LSB reduces the size of the output partitions during the LSB phase to
the size of the output of MSB partitioning. On Ivy Bridge, we found that MSB-LSB sort
performed 15-30% faster (for 500M and 1B records, respectively) than pure LSB sort, and

3Appendix D validates this claim with a few extra data points



CHAPTER 7. EVALUATION: TUNING RESULTS 56

Figure 7.7: Out-of-cache MSB-LSB Sort on Ivy Bridge: We only show the performance
curve corresponding to an initial 12-bit MSB partition, as this is always optimal. For relations
smaller than 109 records, b = 10 is optimal, but b = 11 is marginally more e�cient for larger
ones.

that it was optimal to begin with twelve bits of MSB partitioning. The choice of LSB radix
depends on the relation size, as Figure 7.7 shows.

7.3 Conclusion and Limitations

The base set of partition and sort operator generators included in LibRofl does indeed give
rise to a design space from which the best algorithms can be found by a semi-automated
empirical search. However, it must be noted that a few key optimizations are missing from
this study, and adding these could change the tradeo↵s presented above. Ressort does not
presently implement the partition output bu↵er (Section 2.1) approach to minimize TLB and
cache contention at higher radices, nor does it support any in-place variants of partitioning,
or any vectorized algorithms. For these and other reasons, the throughput of Ressort’s
generated partition operator code is only about 75% of what [33] reported for a similar
algorithm at radix b = 10 and only a quarter of what they measured for lower radices on
a platform similar to our Ivy Bridge machine (albeit one with twice the number of sockets
and memory bandwidth). Finally, we did not present any results from merge-based sort
algorithms, and we have not evaluated any operators with relations of larger key widths,
skewed distributions, or separate key and value columns. Nevertheless, Ressort did auto-
generate C++ code for scalable partition and sort algorithm implementations.



CHAPTER 7. EVALUATION: TUNING RESULTS 57

7.4 Reflections and Future Directions

The provisional evaluation presented in this chapter represents an intermediate milestone
in the development of Ressort. Aside from the performance limits imposed by the missing
optimizations alluded to above, it is more generally clear that we have not succeeded in
demonstrating the need outlined in Chapter 1 for structurally di↵erent decompositions of
shu✏e kernels on di↵erent platforms. This reflects to a great degree the incompleteness of
Ressort’s primitive operator catalogue (Table 3.1), which has inhibited a more exhaustive
investigation of algorithmic variants.

This state of a↵airs raises the question of where time was spent in the course of this
project, and whether that choice was a sensible one. It is true that building the infrastructure
to support two DSLs, and to manage the execution and measurement of experiments, took
e↵ort that could conceivably have been better spent on the tuning and refinement of operator
performance. We did try to leverage existing tools where possible, as in the case of GCC as
the mechanism for machine code generation, but all stages of the front-end and all the code
to represent, generate, transform, and translate IRep were written from scratch.

It is likely that much of this work could have been done more e�ciently within the
context of an existing framework for DSL design and code generation. The LLVM [27] and
SEJITS [13] projects are obvious candidates for exploitation, but it is di�cult to assess how
well they could have accomodated ROFL and how much time their use might have saved.
We did not build on top of SEJITS initially because that project did not support Scala.
LLVM IR is a lower-level code representation than C, and would thus seem to be a strictly
more laborious target, but it may become desirable to access this lower-level structure if it
would provide a greater degree of control over the kinds of transformations contained within
the low-level operator tuning space (Appendix C). Indeed, the compiler flow depicted in
Figure 1.2 invites this possibility.

Despite their limited scope, the results in this chapter do nonetheless indicate that the
core components of Ressort are in place, and it is our intent to continue building on top of
them. In addition to implementing the missing primitives and investigating other algorithms
such as joins, we would like to extend the compiler to support vector and SIMD architectures
as well. Nearly all the algorithms discussed in this thesis have an inherent degree of data
parallelism and could benefit from vectorization. Exploiting this property is even necessary
to compete with previous hand-tuned algorithms presented in the literature. At a higher
level, we would like to make Ressort’s evaluation more realistic by integrating its auto-
generated operators into an actual column store database. This would provide a better
measure of how useful Ressort’s optimizations ultimately can be, and would also provide
motivation for extending its coverage beyond the sort/partition/join class of algorithms
examined here. We hope Ressort can serve as a tool for compiling and parallelizing large
fractions of whole queries, which will entail supporting operators such as projections and
aggregations too. Query compilation will be the ultimate validation of ROFL’s viability as
a parallel programming language.
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Appendix A

ROFL Compiler Front-End:
Implementation Details

A.1 Internal Nested-Array Representations

Although the ROFL type system only di↵erentiates arrays based on their degree of nest-
ing and the type of records they contain, the front-end internally requires di↵erent array
types for the result of di↵erent operations. Thus, while a Split() operator might yield a
simple 2D array, a partition operator will produce a similarly nested array that also has an
accompanying histogram data structure.

Inside the front-end, there are three levels of array representation that track these prop-
erties: ROFL arrays, IRep arrays, and IRep array wrappers. Each adds more detail: the
first is purely structure, the second adds IRep symbol names and bu↵er allocation code,
and the third encapsulates information related to loop induction variable o↵sets for use by
operator code generators. The rest of this section describes these levels of representation in
more detail.

ROFL Arrays

In the first stage of compilation, each DAG node’s output is assigned a RoflArray, which
serves two purposes: (1.) it specifies the sizes and structures of all output data arrays of that
node and (2.) serves as a unique identifier of that node’s output wherever it recurs inside
the structure of some other node’s output (for example, two nodes’ outputs might share the
same histogram array, but contain two di↵erent record bu↵ers). While the DAG’s edges track
immediate producer-consumer relationships between nodes, RoflArrays explicitly mark all
instances of bu↵er re-use within and between nodes.
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base 
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Figure A.1: Array Windows: All RoflArray types sub-divide a base array into windows

RoflArray Structure

All RoflArray types are either flat arrays, or flat arrays that have been sub-divided by layer-
ing additional structure on top. Figure A.1 illustrates this principle for a double application
of Split(). The ultimate result as an array with three levels: a flat array of records at the
base, one layer of sub-division on top, and finally, a second layer of sub-division upon that.
A nested RoflArray data type contains a base pointer to the original array it sub-divides,
and metadata that describes that nature of that division. The deep base is the final flat array
at the bottom of any nested structure. Some structures may also include ancillary struc-
tures to determine precisely how their base arrays are sub-divided, and these are themselves
RoflArrays with structures of their own.

Several terms are used throughout the rest of this section to describe the way in which
RoflArrays slice up their bases. First, each sub-division results in smaller and smaller
windows. A window is a contiguous 1 segment of the flat base array that will ultimately
be processed by a canonical operator (Section C.1). A Split(N) operator thus reduces the
window size as shown in Figure A.1 by its integer degree N.

Each layer of a nested RoflArray structure describes its view of the underlying record
array through four parameters:

1. deepNumEntries is the number of records in the the flat base array at the deepest level
of structure. This is the same for all layers in a RoflArray

2. numElements is the number of sub-arrays induced by a given level of array structure.

3. windowSize is the smallest extent of the deep base array

4. deepNumSlices is the total number of windows into which the deep base array is
divided by all layers of nesting

1Contiguity is really an abstraction – a future Rake() operator, for example, might provide the illusion
of contiguity over elements taken at some stride apart in the flat base array
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These collectively supply all information needed to allocate bu↵ers for one node based on
the structure of its RoflArray inputs, as demonstrated in the example in Figure A.2.

Types of RoflArrays

RoflArrays are categorized hierarchically, and each type is considered to be flat, nested, or
a “wrapper”:

• Flat arrays don’t contain any nesting, and just identify a bu↵er of records

• Nested arrays add a layer of structure on top of a any kind of array, and indicate
how its elements should be accessed

– Sliced arrays are the result of applying a Split() operator, and are simply views
of their base arrays divided into N equally-sized segments

– Histogram-partitioned arrays divide their base arrays with a histogram structure,
which they contain as an ancillary RoflArray. Their sub-arrays are accessed via
an index into the histogram to find the proper o↵set in the base.

• Wrapper arrays don’t actually add structure, but add metadata to a flat or nested
array:

– Histogram arrays add the MSB and LSB used in the radix partitioning of which
they are the result

– Reference arrays are pointers to RoflArrays produced elsewhere, an so should
not be allocated where they appear

A.2 RoflArray Bu↵er Allocation

RoflArray Structure Generation

As the initial operator DAG is created, a RoflArray is built for the output of each node
according to the semantics of its ROFL primitive and based on the RoflArray structures of
its inputs. To illustrate this procedure, we examine the case of a radix partition operator,
shown in Figure A.2, which applies the following ROFL program to its input array R in
parallel with up to S threads:

1 val op = {

2 val splitInput = Split(R, S)

3 MergeHist(

4 MoveRecs(

5 array = splitInput,

6 hist = BuildHist(splitInput, radix = R)))

7 }
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Split(S)

BuildHist(R)

Reduce()

MoveRecs()

MergeHist()
Records Histogram 

Records Histogram 

Histogram 

Histogram 

Records 

Records 
RefToArr(FlatArr(Urec(…), nRecs))

SlicedArr(
  RefToArr(FlatArr(Urec(…), nRecs)),
  S slices)

SlicedArr(
  FlatArr(Index(…), S*(2^R),
  S slices)

HistPartArr(
  hist = RefToArr(SlicedArr(
    FlatArr(Index(…), S*(2^R), S slices)),
  base = SlicedArr(FlatArr(Urec(…), nRecs))

HistPartArr(
  hist = FlatArr(Index(…), 2^R),
  base = RefToArr(
    SlicedArr(
      FlatArr(Urec(…), nRecs)))

RefToArr(SlicedArr(
  FlatArr(Index(…), S*(2^R),
  S slices))

Operator DAG ROFL Array Types 

Figure A.2: IRepArray Structures for a Parallel Partition Operator DAG. Purple boxes
represent ancillary data structures, while blue ones denote record arrays.

The input to this DAG is a flat array of records–ROFL type Arr(URec(...)). As a
RoflArray, this translates to a FlatArr type. Applying the Split() operator yields a
SlicedArr that simply adds metadata–the number of slices–on top of the flat reference
type.

The BuildHist() operator requires a histogram bu↵er be allocated for it to fill. However,
since its input is the nested SlicedArr produced in the previous step, ROFL semantics
require it process each slice independently, and in parallel if possible. This means a separate
histogram copy per slice is needed, or (2R + 1)S elements in total 2 More generally, an
ancillary data structure must be duplicated S times when created based on an input array
for which deepNumSlices = S. Then, all upper layers of the input array’s nesting structure
must be reproduced on top of the newly-allocated flat array. Note, therefore, that the output

2Histograms are always padded with an extra element so that the length of the nth bucket can always
be computed by subtracting Hist[n+1]�Hist[n], even for the last bucket, without requiring an extra branch
instruction in the inner loop to handle that special case.
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of BuildHist() is also a SlicedArr, but its base is a bare FlatArr rather than a reference
to one. This causes it to be allocated as a new bu↵er.

The prefix sum operation implied by Reduce() operates in-place, and thus returns a
reference to the sliced array originally produced by BuildHist().

Next, MoveRecs() allocates a new bu↵er at its output to contain records for each par-
tition, for each thread, and reuses the same histogram array as produced by BuildHist().
The result is a compound array structure, HistPartArr, that contains a reference to an
existing histogram, and a new SlicedArr whose base is a flat array equal in size to the orig-
inal input relation. Note that this is now a doubly-nested array, since one index determines
which partition to examine, and another which per-thread slice.

The reverse is true for the output of MergeHist(). This merges per-thread histogram
data into a single unified view by discarding all but the highest-numbered thread’s o↵set for
each partition, leaving only the o↵sets of the partitions themselves. Thus, a new histogram
bu↵er is allocated, while the record bu↵er is a reference to the one already allocated by
MoveRecs().

Conversion to IRepArrays and Allocation

Once a DAG has been constructed and RoflArrays assigned, the next compilation stage
assigns an IRep identifier to each allocatable RoflArray, declares constants for metadata
such as radix bits and slice lengths, and generates code to heap-allocate each base bu↵er
array. The resulting array representations are called IRepArrays because they now associate
each node’s inputs and outputs with actual IRep code.

Deallocation code is also generated at this point. Although it would be possible in future
versions of the compiler to walk the allocated DAG and, based on simple liveness analysis,
deallocate each bu↵er at the last node that sees it, or even reuse it without calling the allo-
cator again, the current version of the front-end is much simpler. It merely appends a deal-
location statement for each bu↵er to the end of the code generated for the final output node
of the DAG. To avoid deallocating the output bu↵ers themselves, it walks the IRepArray
structure of the output and marks all arrays visible at the output as non-deallocatable.

Array Wrappers and Code Generation

The final level of detail imposed on array structures prior to algorithm elaboration is the
IRepArrayWrapper. Code generators for primitive operators use these wrappers as opaque
handles via which to access an array’s elements without needing to understand the details of
its structure. Most code generators simply expect to process each record of a window, and
merely need a means of accessing the nth element, along with the window length. Wrappers
encapsulate this information, and control the generation of parallel for loops to process all
sub-arrays of a node’s input, ensuring that operator code generators need only generate the
innermost record processing loop.
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Windows and O↵sets

Wrappers encapsulate the indices and o↵sets used as induction variables in nested array
processing loops. At any point in time, the innermost such loop of an operator’s implemen-
tation3 will access a contiguous extent of records starting at some o↵set in the flat array at
the base of the whole wrapper structure (the deep base). This extent is called the current
window. Wrappers export as part of their API a means of obtaining a valid IRep expression
that denotes the size of this window. They also generate code to access the nth element of
that window.

Accessor State Mementos

The most natural way to element access expressions for complex array structures would be to
substitute each base array’s access expression into the next layer above it, gradually building
up an lvalue AST. However, this näıve approach quickly produces an exponential explosion
in accessor expression size4. The compiler solves this problem by declaring variables that
track the o↵set of each wrapper layer’s current window in its base array, and thus e↵ectively
memoize common subexpressions that would otherwise be replicated throughout a complex
accessor expression. As the compiler generates each nested loop layer for a DAG node, it
must also insert the accessor state memento update code for the corresponding layer of each
input and output wrapper.

Leader and Follower Wrappers

Wrapper creation and nested loop generation are tightly coupled. For each DAG node, one
array structure is elected as the leader, and an array wrapper is generated for it. Its o↵sets
and indices will be set by the nested for loops emitted to implement the operator, and all
other arrays accessed by that operator are treated as followers : their array wrappers will
copy all the induction and o↵set variables used at each level of the leader. Usually the output
wrapper of the first input to a DAG node is chosen as the leader.

Included in the wrapper API is a set of routines to generate follower wrappers from a
given leader wrapper for any suitable IRepArray. Suitability will in many cases simply be
defined as having the same degree of nesting, but operators that change the nesting level
will have input and output arrays with di↵erent degrees. In the case of flattener nodes, the
output arrays’ wrappers are generated from the leader wrapper’s base array (i.e. the array
one level inside the outermost layer). For nester nodes, the leader wrapper is padded with
an empty shell wrapper, and the output wrapper is generated as a follower of the padded
input.

3unless it is a nested reduction
4In one experiment, a triply-partitioned array generated a C++ array subscript containing more than

2MB of code!



APPENDIX A. ROFL COMPILER FRONT-END: IMPLEMENTATION DETAILS 64
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Split()

Join()
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...

Figure A.3: A Non-fusible Operator DAG: The output of the left View() node is seen by a
node outside of the candidate fusion segment, so it cannot be fused.

A.3 Operator Fusion: Exploiting Temporal Locality

Identifying Fusion Candidates

Candidates for fusion consist of all nodes between a set of nesters, which raise the degree of
nesting, and a single flattener, which lowers it. The first step of the fusion transformation
is to identify all such candidates (called segments) as ({nesters}, flattener) tuples, choosing
only those that further satisfy the following constraints:

1. No internal node between the nesters and flattener may have an output that is seen
by any node outside the fusion segment

2. No node inside the fusion segment may be a reduction

Constraint (1) is necessary because the output of an intermediate node may no longer be
visible after the merged DAG has executed. Otherwise, reuse of internal bu↵ers would not
be possible. Figure A.3 illustrates a case where fusion cannot be applied without violating
this constraint.

The second constraint results from the fact that reduction operations, by definition,
require access to all sub-arrays of a nested array, and so cannot be forced to examine these
one-at-a-time. This constraint is enforced by treating each reduction node as both a nester
and a flattener. In the fusion segment identification algorithm described below, this results
in segments being split along reduction nodes. Algorithm 2 identifies candidate segments for
DAG fusion. Segments are found by examining all flattener nodes, and traversing backwards
from each one towards the nester that produced the level of nesting that it removes. All
nesters and flatteners encountered along the way decrease and increase the level value,
respectively, until it is zero, in which case the desired nester has been found.
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Algorithm 2 Fusion Segment Identification

1: function FindNesters(node, level)
2: P  parents(node)
3: if lowersLevel(node) and not isReduction(node) then
4: return [{p2P}FindNesters(p, level + 1)
5: else if level = 1 and raisesLevel(node) or isReduction(node) then
6: return {node}
7: else if raisesLevel(node) and not isReduction(node) then
8: return [{p2P}FindNesters(p, level � 1)
9: else
10: return [{p2P}FindNesters(p, level)
11: end if
12: end function
13:

14: Segments []
15: for node n in a depth-first pre-order traversal of the DAG do
16: N  FindNesters(n, 1)
17: if lowersLevel(n) or isReduction(n) then
18: if Segment s = (n,N) does not violate Constraint (1) then
19: Segments Segments+ [s]
20: end if
21: end if
22: end for

Virtual Input and Output Nodes and Arrays

After packaging a fused segment into the body of its enclosing outer node, it is necessary to
disconnect the inner DAG’s uppermost (i.e. leaf) nodes from their inputs, as the elaboration
procedure would otherwise traverse the inner DAG all the way up to the leaf nodes of the
outer DAG. To e↵ect this severance, we replace the inner DAG leaf nodes’ inputs with
virtual nodes. These are special “fake” operators with no implied computation, but with
virtual output arrays of the appropriate type, and metadata linking them to the real output
arrays of the enclosing node’s inputs.

In the standard case where an input node’s output array type supports parallel sub-
arrays, the corresponding virtual array type is just a reference to the actual input array.
However, when parallel sub-arrays are not allowed, a special virtual array is created whose
length is equal to the maximum window size of the input array to which it is linked. This
facilitates the space-saving optimization described above, wherein only enough bu↵er space
for one window’s worth of records is used at internal DAG operators. Once virtual input
nodes of appropriate type have been selected, the output array types for all nodes in the
inner DAG are regenerated. This ensures that any new input array shapes will be reflected
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all throughout the inside DAG. It also ensures that the layer of array structure produced by
the nesters will not result in for loop generation for any internal nodes’ wrappers, and that
these will be marked as “controlled” by the loop generated for the outer node.

Virtualizing Output Arrays

Special care must be taken with the output array of the internal DAG for two reasons.
First, it is the point of linkage between the internal DAG’s possibly flattened array view and
the real array that the enclosing node presents to the outside world. Second, any bu↵ers
allocated by the internal DAG that remain visible at the output node must be allocated as
outputs of the enclosing node in order to ensure their liveness across the boundary.

Output virtualization therefore consists of these steps:

1. Traverse the entire internal DAG and identify a set A of all arrays allocated inside it

2. Examine the complete structure of the output array of the output node, and identify
all references to arrays in A

3. Generate a copy of the output where all references to arrays in A have been replaced
by the arrays themselves

4. Traverse the internal DAG again and replace all array allocations with references to
the arrays allocated by the output
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Appendix B

IRep: Code Transformations and
C++ Generation

Most IRep constructs map straightforwardly onto C++ equivalents, but some require spe-
cial treatment. Length-tracking arrays are converted to struct types, array operations are
converted to for loops, and loop bound expressions are extracted into constant declarations.
These needs motivate the inclusion of a general mechanism for writing transformations on
type-checked IRep ASTs, of which this section describes several instances.

Common Transformations

Some transformations supplied by the IRep language layer are useful to all possible tar-
gets. Many of these considerably improve the legibility of auto-generated IRep programs
by removing extraneous cruft. In all cases, transformations operate on type-checked ASTs
where all local symbol names have been assigned globally unique identifiers consisting of
their original identifier and a pointer to the scope (symbol table, or inside the compiler, a
TypeEnvironment) in which they were declared.

AST Dataflow Analysis

Ressort supplies a very simple analysis pass to build a graph of dataflow between the scoped
symbols of a type-checked AST. It constructs a table representing the immediate seen-
by relation between scoped symbols by walking the AST and updating symbols’ entries
according to the set of rules in Definition 2.

Definition 2 A symbol S is considered to be seen by a root symbol T i↵ S appears inside
any expression in:

1. an assignment to T

2. the condition clause of an if-else statement that may modify T
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3. the bounds or stride of a loop whose body may modify T

4. a function call where any actual parameter is an expression containing T

5. any argument to an array operation (see Section 5.4) on T

By root symbol we mean that T is the base of an lvalue expression AST.

This notion of a root symbol in Definition 2 means, for example, in the case of an array
subscript lvalue, that T appears as the name of the array, rather than in the subscript. Note
that S will still be seen by T in the case of:

T[1+S] <-- 7;

because it appears inside an expression in an assignment to T .
Note also that this analysis is conservative, since S will be seen by T if T is assigned

a reference to S anywhere in the program. It is also the case that conditional assignment
of S to T adds S to T ’s seen-by table entry permanently regardless of whether or not the
condition expression would or could ever be satisfied. Rule 4 arises from the fact that no
inter-procedural analysis is performed, so it is simply assumed that all root symbols T in a
function call see all expressions S appearing in any argument. The seen-by relation should
thus be viewed as an upper bound on possible dataflow.

Dead Code Elimination

The main purpose of the dataflow analysis pass described above is to build a primitive dead
code elimination (DCE) tool. Ressort’s DCE works by iteratively computing the transitive
closure of the seen-by relation for those symbols whose immediate seen-by sets are empty.
This continues until no new symbols are found to be seen only by no others or only by others
already in the set of dead symbols. Then, all declarations of dead symbols are removed from
the AST during a depth-first traversal, during which time any blocks, loops, or if statements
are removed whose bodies are empty or contain only Nops.

A base case is necessary to ensure the entire AST is not pruned away. We define a notion
of being seen by the output keep the output array of a compiled operator o↵ the dead symbol
set. Thus, the seen-by rules in Definition 2 are amended as follows:

• Any symbol inside a Return() statement is seen by the output

• Any symbol inside a Printf() is also seen by the output

Any symbol seen by the output will never have an empty seen-by set.
It should be noted that this DCE pass is not a very powerful one, owing the conservative

dataflow analysis used as its input. It could be improved significantly if a static single as-
signment (SSA) transformation were applied prior to dataflow analysis, as this would prune
all updates to variables after their actual output-visible values are captured. However, we
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deemed this e↵ort unnecessary for the main use case of Ressort’s DCE, which was sim-
ply to eliminate vast swathes of superfluous accessor state memento (Section A.2) updates
generated by the frontend compiler.1

Translation to C++

Array and Record Structs

Since IRep arrays have an implicitly stored length, translation to C++ involves storing
that length explicitly. Ressort handles this by generating a distinct C++ structure type
for every type T used inside an IRep IRArray(T) type in a compiled operator’s AST, and
then replacing all references to lvalues with that type to structure-indirect lvalues. If the
original value was an automatic variable, it a HeapAlloc() is also emitted at the modified
declaration site. This is somewhat complicated in the case of nested arrays, where a loop is
required to produce the intended allocation:

var a: arr_arr_IRInt[10][20]

The above pretty-printed IRep array declaration translates into:

Typedef _arr_IRInt {
items: arrptr_IRInt
len: Index

}

Typedef _arr_struct__arr_IRInt {
items: arrptr__arr_IRInt
len: Index

}

var a: _arr_struct__arr_IRInt
a.len <-- 20
a.items <-- HeapAlloc[ ArrExpr(struct _arr_IRInt,a.len) ]
ForPar(_arr_i_0 = 0...20 by 1) {

Deref(a.items)[_arr_i_0].len <-- 10
Deref(a.items)[_arr_i_0].items <--

HeapAlloc[
ArrExpr(BaseExpr(IRInt(false)),
Deref(a.items)[_arr_i_0].len) ]

}

1This is not merely for aesthetic reasons or to assist in the debugging of compiled operators. There
are various architectural reasons why some of these state declarations were duplicated, and though those
declarations are theoretically idempotent, the C compiler targets did not support this usage.
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Despite the e↵orts to avoid malloc (HeapAlloc) calls inside operators’ record processing
loops, this structure is unlikely to impact performance in practice, since nested arrays will
rarely be used as automatic variables emitted by operator code generators (Appendix C).

We note also that the type names in this output is mangled: arrptr arr IRInt is
really Ptr(Arr( arr IRInt)), a pointer to an array of arr IRInt structures. Since the
name of a array struct type corresponds to the type of the array, it must be mangled into a
permissible C++ identifier.

Function Linearization

In order to emit C++ code, the IRep translator must un-nest all nested function declarations.
This is assisted by the constrained scope available to function bodies, which means that
function declaration statements may simple by extracted and prepended before the original
outer function declaration. Extracted functions are also renamed if another function of the
same name would appear in the same global scope. For example:

Func f1(
x: UInt,
y: ptr_UInt) : {

Func f1(
x: UInt,
y: ptr_UInt) : {

Deref(y) <-- x*x
}
f1(x=x, y=y)
f1(x=Deref(y), y=y)

}

Translates into

Func __LIN__f1_1(
x: UInt,
y: ptr_UInt) : {

Deref(y) <-- x*x
}
Func f1(

x: UInt,
y: ptr_UInt) : {

__LIN__f1_1(x=x, y=y)
__LIN__f1_1(x=Deref(y), y=y)

}
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Parallelization with OpenMP

The design of ROFL deliberately exposes as much parallelism as possible through IRep par-
allel for loops. The more independent sub-structures are described by a ROFL array’s type,
the more layers of nested parallel looping will be generated. This sounds like a strict benefit
for e�ciency; each parallel construct will induce a corresponding OpenMP loop in the C++
translation, and will supply the latter’s compiler and runtime with more parallelism to ex-
ploit. However, it is not necessarily clear that so large a concession of control is optimal. As
an alternative, Ressort supports a mode of operation in which OpenMP parallel for loops
are generated only the outermost parallel IRep loops. We anticipate that future versions of
the compiler will exploit parallel inner loops for vectorization, depending on the complexity
of control flow inside.
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Appendix C

Code Generation for Shu✏e Kernel
Primitives

The final stage of the frontend compiler described in Chapter 4 is algorithm elaboration. This
entails the generation of IRep code (i.e. construction of an AST) that actually implements
the primitive operators supplied by ROFL. In this chapter, we examine (1.) the common
infrastructure and interfaces provided by the frontend compiler to code generators for each
primitive, (2.) the space of low-level tuning choices that code generators must make, and (3.)
details of individual operators’ implementations. Chapter 7 will later present the impact of
these parameters in our experiments.

C.1 Overview

Harnessing Scala to Build Parameterized Code Generators

For almost every ROFL primitive, there exists a corresponding code generator whose job it
is to spell out in the intermediate language the actual algorithm implied by the semantics of
that primitive in ROFL. A code generator resembles a ROFL operator generator of the sort
described in Chapter 3 in that it is also a Scala program whose output is itself a program
in the IRep DSL generated according to an algorithm-specific configuration like that shown
in Figure C.1. We refer to this space of di↵erent output programs generated by di↵erent
configuration parameters as the low-level tuning space, and discuss that space here for a few
algorithms in particular.

Hiding Details of Relation Structure

Code generators mostly expect to transform one input array of records into another, and
are not concerned with the details of how those records are organized into nested array
structures. The frontend compiler therefore presents to code generators an interface that
hides many of these details behind an IRepArrayWrapper data type. (Section A.1).
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1 case class RecStreamConfig(

2 unroll: Int = 8, // Number of times to unroll the stream loop

3 prefetch: Int = 1, // number of SW prefetch instructions to emit

4 prefetchStride: Int = 8, // stride of successive prefetch instructions

5 prefetchOffset: Int = 8) // dist. from end of regular loads to start prefetch

Figure C.1: Record Stream Configuration: all code generators that process their input
records in a sequential stream can ask the Ressort framework to unroll their main loop and
prefetch future inputs wherever hardware prefetchers fail to.

Only a few kinds of operators break this abstraction by imposing constraints on the
types of their input wrappers. For example, nested array reductions require a nested array
wrapper. Such exceptions are marked in the first step of DAG generation at any node
requiring special treatment. We distinguish canonical operators from these special ones, and
use the former term to denote those that expect flat arrays of records as input and produce
one as output. Code generators for canonical operators rely on the IRepArrayWrapper
abstraction to indicate how many records to process (via the windowSize field), and what
lvalue refers to the nth record in the input and output arrays.

Where nested array parallelism exists in a given operator composition, it is the job of the
frontend compiler to emit the nested parallel for loops that exploit it; the code generator is
responsible merely for innermost loop that processes records directly. Code generators need
to produce this loop themselves because they might not examine each input record only
once, and might access indices out of order.

C.2 Record Streams

Many code generators process their input relations sequentially in a streaming access pattern.
By abstracting the loop generation logic for this pattern into a library, Ressort allows all
streaming operators to benefit from shared transformation passes without any additional
work on the part of the generator author. In particular, each such operator accepts a
streaming configuration (Figure C.1) that specifies whether the library should unroll the
record processing loop and insert software prefetch instructions. The streaming library
automatically performs this transformation and inserts any necessary fix-up code to handle
the case where the input size is not a multiple of the unrolling factor. The prefetch is
expressed as an IRep Prefetch() statement, which in the GCC-based C++ backends results
in a builtin prefetch() directive. We examine the impact of this parameter on a
partitioning operator for the ARM Cortex A9 platform in Section 7.1.

Although this example is of limited general-purpose applicability due to the prevalence of
highly-accurate hardware prefetching support in modern microarchitectures, it demonstrates
the flexibility of Ressort’s embedded DSL approach to code generation. It is useful for
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operators that do very little computation on their input records and are thus dominated by
loop bookkeeping. Moreover, we intend in the future to add analogous support for more
interesting access patterns such as hash table probes.

C.3 Partitioning Primitives

Much of the code generation currently implemented by Ressort pertains to histogram-based
partitioning. We examine some of these primitives in more detail in this section, but note
that they share a few common features.

Wrappers for Histogram-based Arrays

Firstly, they do break somewhat the abstraction of flat record arrays that other code gen-
erators rely on, as they require a specific kind of ancillary data structure, the histogram,
which they manipulate in various ways. At the time of this writing, the requirement of a
histogram-based input for some operators is still not reflected in the ROFL type system and
type checker, so violations of that requirement manifest instead during the later elaboration
phase of compilation in the frontend.

Some of these primitives also break the abstraction by requiring a nested array as input.
The MergeHistograms() operator is one prominent example, since its job is to consoli-
date per-thread histograms into a single, master histogram. In this case, as in others, we
rely on the isInternalReduction flag, which gets set for any MergeHistograms() DAG
node to indicate that it removes one layer of nesting from one of its own internal data
structures. This causes an appropriately-modified output wrapper to be generated for the
MergeHistograms() code generator.

Histogram-Specific Array Operations

Histogram-based algorithms also require certain more specialized array operations: prefix
sums and array rotations. Ressort supports these through dedicated constructs in the IRep
language (Section 5.4) accessed through methods supplied by IRepArrayWrapper objects.

Histogram Prefix Sums

For example, the ROFL ReduceHistograms() primitive must be applied to the output a
histogram building operator in order to produce one whose entries indicate the o↵sets of
each partition’s beginning in the output bu↵er, as opposed to a mere count of the number of
records in each partition. This is naturally accomplished as a prefix sum, whose domain of
operation is the entire extent of the histogram wrapper’s current window (Section A.1). Thus,
the code generator for ReduceHistograms() simply returns the result of the wrapper’s built-
in prefixSum() method, which imposes the o↵sets and indirections specified by all layers of
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the histogram’s wrapper type in order to finally produce an IRep PrefixSum() statement
over a suitably translated range.

However, ReduceHistograms() also supports a flag to indicate whether the histogram is
divided among multiple threads (i.e. it is itself a nested array), in which case this reduction
must (1.) check that the input array is nested and (2.) use a slightly di↵erent algorithm to
take account of the per-thread semantics. One concern that might arise in this context is the
serialization bottleneck imposed by a large prefix sum reduction in the case of a high-radix
operator and large number of threads. The obvious solution to this di�culty is to introduce a
parallelized prefix sum tree code generator. The architecture of Ressort’s compiler makes this
a rather trivial substitution of one module for another, but as we have not yet seen histogram
reduction as a bottleneck in any experiments thus far, we have neglected to implement this
feature.

Post-Move Histogram Restoration

Aside from the prefix-sum and histogram merge operations mentioned above, these partition-
ing methods require one additional array operation: after the evaluation of MoveRecordsHist(),
which distributes records to their designated partitions, the histogram’s contents will cor-
respond to the locations of the ends of each partition in the output bu↵er, rather than
their beginnings. Because it is the o↵set of the beginning that is needed during subsequent
operations, the histogram must be restored to the post-ReduceHistograms() state.

The RestoreHistogram() primitive accomplishes this task by generating an array rota-
tion operation, which, like prefix sums, is another IRep language construct provided by the
wrapper API. It simply shifts all elements in a histogram array over by one, wrapping the
(in this case) the rightmost element around to the zeroth position. Although this issue could
have been addressed in other ways, we think supporting the left- and right-rotate operations
as native language constructs will allow for more natural expression of similar tasks in the
future.

C.4 Sorting Primitives

As Section 3.3 explains, the ROFL language includes few sorting algorithms as primitives,
as most e�cient sorting methods derive from compositions of other, non-sorting operators.
Currently only insertion sort is supplied directly, though a future version may provide, for
instance, a bitonic sort network generator. Insertion sort itself is nevertheless a useful illus-
tration of how low-level tuning in code generators works.

Insertion Sort

A straightforward insertion sort code generator’s main body is concise enough to fit entirely
in the few lines of Figure C.2:
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1 // Default, untuned case: just emit two nested loops

2 def genInsertionSort(

3 input: IRepArrayWrapper,

4 output: IRepArrayWrapper): IrAst = {

5 ForBlock(i, input.windowSize, {

6 DecAssign(tmp, recType, input.access(i)) +

7 DecAssign(j, Index(), i) +

8 While((j > 0) && (Key(output.access(j-1)) > Key(tmp)), {

9 Assign(output.access(j), output.access(j-1)) +

10 Assign(j, j-1)

11 }) +

12 Assign(output.access(j), tmp)

13 })

14 }

Figure C.2: Default code generator for the InsertionSort() ROFL primitive: bu↵er layout
is hidden by wrapper types, only two nested loops are returned as an IRep AST

This excerpt demonstrates two important features: first, that a modicum of syntactic
sugar permits the expression of IRep programs almost natively alongside their supporting
Scala sca↵olds, and second, that even simple programs are e↵ectively templates, or recipes for
applying a primitive operator over any input and output bu↵er structure containing records
of any type. Key() expressions constrain comparison to only those bytes of a record that
matter for sorting, which may otherwise be arbitrarily typed. The only fixed type is Index,
which denotes an o↵set into a bu↵er and normally translates to C++ size t.

A more interesting variant of this simple recipe is one that attempts to perform insertion
sort entirely in registers. The C++ translation of any IRep output from the above generator
will necessarily compile into a loop of O(N2) dynamic loads and stores, since every insertion
requires accessing array elements with the loop induction variables as indices. It is possible,
however, to “unroll” this loop completely, and generate a di↵erent instruction sequence for
an insertion at each possible index in a small, fixed-size array. By eliminating all but the
initial loads into the bu↵er and stores back out to memory, the number of dynamic memory
references decreases to O(N).

Figure C.3 depicts a simple recursive Scala function that generates IRep code to insert
the nth element into a register-allocated bu↵er. Assuming some other code is generated
to declare these registers–really just automatic variables entrusted to the C++ compiler’s
judgment–the insertNth code is passed a function buf() that tells the name (lvalue AST)
of the nth of these. Recursive Scala function calls elaborate a large IRep AST.

This will of course result in redundant code sequences when done for all n < N , as each n
duplicates the work of all m < n. Somewhat surprisingly, GCC with the -O3 option manages
to coalesce all redundant such code sequences into one compact block, at least on certain
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1 def insertNth(n: Integer)

2 (implicit elem: LValue, buf: Int => LValue): IrAst = {

3 if(n > 0) { // Scala ‘if‘ controls codegen

4 IfElse(Key(buf(n-1)) > Key(elem), { // IRep ‘If‘ to be emitted

5 (buf(n) := buf(n-1)) +

6 insertNth(n-1) // Recursive Scala call results

7 }, // in complex AST structure

8 (buf(n) := elem)) // ‘buf‘ function tells how

9 } else { // to access nth array elem,

10 (buf(n) := elem) // in reg-alloc’d buffer

11 }

12 }

Figure C.3: Scala code for an “unrolled insertion sort” IRep code generator: Returns an
AST implementing the insertion of the nth element into an insertion-sorted output array.

architectures. Section D.2 reports the results of this method from a few of them. Although
there is an obvious increase in static code size, the cost of a few compulsory instruction
cache misses can be recuperated in reduced dynamic instruction count if the number of
sub-problems is su�ciently large.
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Appendix D

Supplementary Performance Data

This appendix contains supplementary performance data from the evaluation in Chapter 7.
For the most part, we tried to present results from only one platform there if all others
followed similar curves, deferring those instead to this appendix.

D.1 Partitioning Results

Analysis of Memory Bandwidth Usage

To calibrate our radix partitioning results against the memory bandwidth measurements in
Table 6.2, we propose a simple analytic model of memory tra�c for the partitioning operator.
For a KP32 relation R of N records, the following memory references are generated for each
record:

1. Build Histogram:

a) Read 8 bytes from each R[n] – sequential

b) Read 4 bytes from Hist[(part)] – in cache

c) Write 4 bytes to Hist[(part)] – in cache

2. Move Records:

a) Read 8 bytes from each R[n] – sequential

b) Read 4 bytes from Hist[(part)] – in cache

c) Write 4 bytes to Hist[(part)] – in cache

d) Write 8 bytes to Output[(o↵set)] – random

In this model, we assume the lines marked “in cache” really do correspond to cache hits,
that lines marked “sequential” read the indicated number of bytes from DRAM, and that
the one marked “random” generates:
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(a) Throughput (b) L2 Misses / Record

(c) Instructions per Cycle (d) DTLB Misses / Record

Figure D.1: Single-thread Radix Partitioning on an Ivy Bridge (50 outer trials):
There is a moderate upswing in IPC as the radix surpasses R = 214 (in the case of the
smallest relations), but this is due to an increased instruction count from histogram prefix
sum phase, which contributes at least 16K > 0.01M operations to the overall runtime and
is quite visible when the relation size is small.

• For low radices (r < 8): one 8B read and one 8B write = 16B

• For high radices: one 64B read and one 64B write (two cache lines) = 128B

However, since peak throughput can only be realized in the low-radix regime, we assume a
transfer of 16 bytes for the output step, giving a total transfer of 24 bytes per record. Thus,

BW
DRAMi(N) = 24

bytes

rec
N (D.1)

We use this model to compute the estimated fraction of theoretical and measured peak
bandwidth achieved by our radix partition operator on each machine. We report numbers
only for the radix that gives each platform’s highest throughput at the maximum number of
threads. Table 7.1 contains these estimates.

Ivy Bridge

Partitioning on the Cortex A9 (NVIDIA Tegra3) The contrast between the perfor-
mance profiles for 16M- and 128K-record relations cleanly reveals the di↵erence in throughput
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(a) Throughput (b) L2 Misses / Record

(c) Instructions per Cycle (d) DTLB Misses / Record

Figure D.2: Single-thread Radix Partitioning on Boxboro (50 outer trials).

(a) Throughput (b) L2 Misses / Record

(c) Instructions per Cycle (d) DTLB Misses / Record

Figure D.3: Single-thread Radix Partitioning on Haswell (50 outer trials).
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(a) Throughput (b) L2 Misses / Record

(c) Instructions per Cycle (d) DTLB Misses / Record

Figure D.4: 40-thread Radix Partitioning on Boxboro (50 outer trials).

(a) Throughput (b) Instructions / Cycle

(c) L3 Misses / Record (d) L2 Misses / Record

Figure D.5: Scaling Radix Out-of-Cache Radix Partitioning on Ivy Bridge: 109

Records
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(a) Throughput (b) L1 Misses per Record

Figure D.6: Software Prefetch-Assisted Partitioning on an NVIDIA Tegra3: Results
obtained from a record stream configuration (Section C.2) with 4 degrees of unrolling, 8
record stride and o↵set.

for problems that fit in the L2 cache versus those that do not (recall from Table 6.1 that the
Tegra3 has a 1MB L2, which is just enough to contain 128K*8B=1MB records).

It is striking that throughput is so bad for large relation sizes even at low radices, which
should make essentially streaming accesses to the outer levels of the memory hierarchy. It
is regrettable that we do not have access to L2 miss statistics from the Tegra3 board, which
would indicate whether or not this is the case. Since the L1 miss, DTLB miss, and instruction
counts per records are all the same in the low radix regime, and since the L1 miss rate is
roughly one per record, it seems likely that these L1 misses are also compulsory L2 misses
for the larger relations.

A simple change to the ROFL compiler configuration (Section C.2) tests this hypothesis
by generating partition code with software prefetch instructions automatically inserted into
an unrolled record processing loop. Figure D.6 shows the resulting throughputs obtained for
16M records with di↵erent numbers of prefetch instructions in a loop unrolled four times.
Each prefetch is taken starting at an o↵set of eight records (one cache line) with a stride
of one cache line. Throughput improved by approximately 25%. While this is far from the
order of magnitude gap between large and small sizes, it does suggest that with additional
tuning, this gap could be closed.

On the Tegra 3, it is worthwhile to use multiple passes even at r = 15, and even more
profitable at r = 20. Figure D.7 omits the r = 12 curve in order to highlight the impact of
software prefetch: in the case of r = 15, multi-pass is only worthwhile when prefetch is used;
without it, the di↵erence is negligible.
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(a) Throughput (b) L1 Misses per Record

Figure D.7: Multi-pass Partitioning on Tegra 3: 16M records

D.2 Sorting Results

Insertion Sort

Insertion sort is the only sorting primitive currently supplied by ROFL. Its quadratic runtime
makes it suitable only for the Small Sort problem size. As such, it is really a benchmark
of core microarchitecture, rather than memory hierarchy or interconnect performance, so we
report only results for a single thread.

Results from the Intel platforms Figure D.8 shows sorting for the two Intel plat-
forms. The newer Haswell core consistently outperforms the older Nehalem. One obvious
microarchitectural di↵erence is a stronger branch predictor in Haswell, which reduces the
misprediction rate by a third in the steady state. The mispredict rate in either case levels
o↵ at one per record because insertion sort has one highly predictable for loop back branch,
and an inner, data-dependent while loop branch that’s taken n times for the nth element
in the worst case. In the steady state, this inner branch will always be predicted taken and
then mispredicted when a record exits the insertion loop. The higher misprediction rate on
the Nehalem must result from failure to reach the predict-always-taken state for that inner
branch.

Impact of “Unrolling” The unrolled insertion sort code generator (Figure C.2 in Sec-
tion C.4), which produces fully in-register insertion sort code, did improve throughput some-
what. The improvement is more pronounced on Nehalem than on Haswell, and seems due
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(a) Throughput (b) Branch Mispredictions

Figure D.8: Small Sort: Insertion Sort on the two Intel platforms. Zero unroll indicates
normal insertion sort was used, while 20 unroll means insertion functions for up to 20 elements
were generated (Figure C.2).

(a) Throughput (b) Branch Mispredictions

Figure D.9: Small Sort: Insertion sort on the Tegra 3
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(a) Throughput (b) Instructions per Record

(c) L1 Misses / Record (d) L2 Misses / Record

Figure D.10: Single-Threaded In-Cache LSB Sort on Ivy Bridge

mostly to higher branch prediction accuracy. In fact, the e�ciency di↵erence on Nehalem is
roughly the equal to the di↵erence between the unrolled code’s performance across the two
machines.

Results from the Tegra 3 It is unsurprising that the throughput curve of the Tegra 3’s
Cortex A9 core lies entirely below the minimum throughput of both Intel platforms. 1 The
lower clock rate, simpler pipeline, and higher non-CISC instruction count all contribute to
this e↵ect. Unrolling actually degrades throughput, since the compiler was unable to perform
the same code scheduling as it did in the x86 case, and so the dynamic instruction count is
higher on ARM rather than lower.

LSB and LSB-MSB Sort Results

1However, it has an odd profile: whereas both Intel machines’ throughput curves exactly track the
expected O(N/N2) = O(1/N) pattern, the Tegra 3’s throughput degrades linearly.
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(a) Throughput (b) Instructions per Record

(c) L2 Misses / Record

Figure D.11: Single-Threaded In-Cache MSB-LSB Sort on Ivy Bridge with 12-bit MSB
Partition
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