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Abstract

We present multi-column text region iden-
tification support for Ocular, the unsu-
pervised historical printed document tran-
scription project of Berg-Kirkpatrick et.
al (2013). We use structured predic-
tion with rich features defined on the in-
put document and incorporate a transi-
tion model based on prior document lay-
out assumptions. Our model is trained us-
ing a structured-SVM objective on a ran-
domly selected set of historical documents
from The Proceedings of Old Bailey cor-
pus. For learning, we use loss-augmented
Viterbi decoding with a weighted Ham-
ming loss function. We present our suite
of features that achieve a 37.4 F1 text score
and 39.4 F1 non-text improvement in text
region identification over the Ocular base-
line text cropper.

1 Introduction

Applications of the Ocular historical optical char-
acter recognition (OCR) system have been limited
thus far because it requires images that are already
divided into individual text lines. Once the the
text regions are identified, it can efficiently seg-
ment lines with a semi-markov model. However,
Ocular currently only has rudimentary text region
identification that can only identify one text region
per document. Futhermore, it only supports doc-
uments that have a single text region without the
presence of other document elements and signifi-
cant noise factors. In those limited cases, Ocular
achieves a relative reduction in word error rate of
22% compared to other state-of-the-art OCR sys-
tems when tested on historical documents.

The issue is that Ocular is unable to support a
wide range of historical documents because many
of them have a variety of layouts and significant

noise factors. Thus, text region identification is a
significant issue which precedes the Ocular OCR
system and is the issue on which we target our ef-
forts. We define our problem of text region iden-
tification as identifying which parts of a document
contain a body of text.

Text region identification is a complex prob-
lem. One reason is that there are multi-column
layouts in historical documents (Figure 1a), and at
test time we do not know the particular layout of
a document. Furthermore, documents differ not
only in the number of text regions but also in the
types of elements that compose the page (Figure
1b). These challenges are compounded by the fact
that historical documents are noisy - there is ro-
tational variance, inking gradients, and scanning
errors which make this problem difficult.

From our historical data set, we observe that the
combination of a variety of document elements
gives rise to numerous possible layouts. For ex-
ample, layouts can include a large title text, sev-
eral diagrams, interspersed headers and line di-
viders, along with the main body of text of vary-
ing number of columns. We analyze thousands of
documents and find that the vast majority of pa-
pers have a layout with either one or two central
vertically aligned columns of text, with a few of
the document elements just mentioned. In our ap-
proach to text region identification, we focus on
documents of these layouts as they seem to com-
prise the majority of the historical Old Bailey cor-
pus.

The three main contributions of this paper are
presenting a model, learning algorithm, and fea-
ture set that can perform effective text region iden-
tification on historical documents of a variety of
layouts, compounded with many sources of noise.

2 Challenges

Text region identification is an important problem
because without it, we cannot perform historical



OCR.
We first present challenges to historical OCR in

general that also apply to text region identification.
Then we will outline the main text region identi-
fication challenges we will be addressing in this
paper.

2.1 Historical OCR Challenges
Three significant historical OCR problems include
that of unknown fonts, typesetting model noise,
and inking variations. For one, the fonts are not
regular like handwriting but have a set of under-
lying, albeit unknown, glyphs. Secondly, these
documents which were often printed on wooden
blocks have wandering baselines (Figure 1d) and
other effects of mechanical flaws. Lastly, due to
inking level variations some characters become
over inked blobs and others become under-inked,
partial characters (Figure 1c).

2.2 Text Region Identification Challenges
Historical documents suffer from a high degree of
distributed pixelated noise. We observe distributed
patches of black and white pixels that overlay the
original image in many historical documents. For
instance, in areas where where we expect a white
border, we observe random distributions of black
pixels in various degrees of density and spread.
This noise is often overlaid on text which distorts
the characters (Figure 2a). From our studies, this
seems to be primarily due to the mechanical print
process, dust and physical distortions to the docu-
ment, and scanning noise.

Secondly, there is no regularity even when it
comes to the border pixel representations of many
historical documents. Some borders are domi-
nantly white, others black. Furthermore there are
various border shapes and color gradients (Figures
2b and 2d). Because of the large variation in even
the borders of the document, it is difficult to an-
chor our algorithms on border patterns with any
degree of confidence.

Documents also exhibit a degree of rotational
variance. While there are some measures we use
to partially correct the rotation, in many cases a
small amount of rotational variance remains on
the corrected document. Even small amounts of
rotational variance can increase the complexity of
identifying text dividing regions (Figure 2c).

Thirdly, text bodies have a wide range of pixel
representations. Text lines differ in the type and
length of their characters. For instance, shorter

lines have less characters and header text has more
spacing around it (Figure 2e). Furthermore, the
resolution of the image scales the pixel represen-
tations accordingly. To address this, our system
learns the various pixel representations at various
scales.

2.3 Major Sub-Problems
The two most significant problems are (A), finding
text dividing regions and (B), adapting to for over-
exposed or under-exposed areas.

(A) is the problem of identifying text dividers,
the dividing pixels between two regions of text
(Figure 3a). Sometimes there is a stretch of white
pixels as a divider whereas other times it can be
dividing line. Often times most of the document
is a text region and the text dividing regions are
a small subset of the document image. However,
these small text region dividers determine the doc-
ument layout so precision in text region identifi-
cation is important. We address problem (A) by
learning patterns that effectively distinguish text
and non-text columns even in the presence of all
the noise factors mentioned in sections 2.1 and 2.2.

(B) is the problem of identifying text regions
where the text is over-exposed (over-whitened) or
under-exposed (over-darkened) (Figure 3b). The
exposure changes are often uneven within and
across documents. Furthermore, they are hard to
predict as the changes can be sudden - even ad-
jacent lines of text can have drastically different
levels of exposure. The varying levels of exposure
is likely due to a combination of inking variation,
scanning errors, and subsequent contrast enhance-
ment. These effects vary in intensity and gradient
so we address (B) with feature sets that can gener-
alize across varying levels exposure.

Throughout this paper we will refer back to sub-
problems (A) and (B) and explain how our model
and feature set address them.



(a) Left: A historical document from the 1700s that has two
main text regions. We observe page number artifacts on the
top of the page as well as significant darkening on the sides
of the scanned image, much of which bleeds into the text
regions. Right: A historical document from the 1800s with
one text region. This document contains various elements: a
page title section, indented region of text near the top, and a
line divider.

(b) Title page with a title, header, paragraph character break,
subtext, and lists. Historical documents can have a number
of combination of these elements and in differing degrees of
prominence.

(c) Top: An under-inked document with resolution loss and
pixel noise added through the scanning process. The bot-
tom right words “NOT GUILTY” are barely legible. Bottom:
An over-inked image with a significant amount of distributed
pixelated noise.

(d) The text exhibits a wandering baseline likely due to me-
chanical flaws.

Figure 1: Historical Documents. Historical documents can have many types of layouts and sources of
noise.



(a) Interspersed throughout the docu-
ment is the presence of pixel discol-
orations. These could be due to physi-
cal artifacts, the scanning process or the
contrast enhancement algorithm.

(b) A scanned page with a striped border
that seems to show the edges of a stack
of pages in the background.

(c) Many documents exhibit a notice-
able, and sometimes significant, level of
rotational variance. Furthermore, some-
times the pages are slightly stretched
which adds another dimension of dis-
tortion. This document exhibits enough
rotational variance such that it becomes
difficult to detect a vertical column di-
vider.

(d) Left: Some pages lack a border on the left side but have a black divider on
the right. Middle: Pages with an irregular border make it difficult to differentiate
between noisy borders and text. The variation of the border pixels easily confuse
basic features that look only at locally contrasting pixels. Right: An image with
black borders and a noisy background. Here the border of the page is not lined up
to the edge of the image.

(e) Top: The ending line of text is part
of the main body of text but has a differ-
ent pixel representation and pattern than
the full lines of text. Looking at the
pixel representation differences, the few
characters left on the short bottom line
is much closer to blank space with noise
rather than a full line of text. Bottom:
The lines at the end of a section tend to
be shorter in terms of pixels.

Figure 2: Text Region Identification General Challenges



(a) Left: Some documents have a black line divider. Middle: Other documents have a
white gap divider. Right: A white gap text divider with minor rotational variance and
pixelated noise.

(b) Document Exposure. Left: Instances of over-exposure (over-whitening). It applies within a document either as a sudden
shift or in a gradual gradient fashion (bottom half of the image). Middle: An under-exposed (over-darkened) document. The
darkening from the background spills onto the T regions. Right: Under-exposure due to over-inking, perhaps compounded by
contrast enhancement.

Figure 3: Text Region Identification Major Sub-Problems



3 Inference Notation

In our subsequent discussions, we will shorthand
text as T and non-text as NT.

A column, which we will denote as c, will
exclusively refer to a bundle of vertical pixel
columns of fixed width, ρ. For each document, we
predict on columns, because it is too fine grained
to predict on individual pixel vectors.

We investigate two types of models: unstruc-
tured predictors that consider each column in iso-
lation and our final structured predictor that jointly
predicts column emissions and transitions, which
we will fully describe in Section 5.

4 Unstructured Models

First, we present the baseline and our unstructured
models.

4.1 Baseline Model
The baseline model (Berg-Kirkpatrick et al., 2013)
maximizes a heuristic objective by exhaustively
looking at all possible split points of a document
to find a start and end partition of a T region. The
heuristic objective considers the variance of black
pixels across columns.

However, the baseline model only supports the
identification of one T region. In the limited case
of documents with a simple single T region and no
other elements and significant sources of noise, it
performs very well.

4.2 Independent Classifier
The first model we experiment with is an indepen-
dent support vector machine (SVM) classifier that
classifies each column in isolation (Figure 4). The
independent classifier classifies each column inde-
pendently using a rich set of features that are de-
scribed in Section 8.

This model performed reasonably well in learn-
ing T and NT predictors; however some of the pre-
dictions were nonsensical as there is no notion of
a reasonable transition. For instance, in some pre-
dictions there would be a single T prediction sur-
rounded by two NT predictions (Figure 5).

4.3 Independent Classifier with Hidden
Markov Model Post-Processing

We expect that a column is more likely to be T
given the previous column is predicted to be T,
with a similar pattern for NT. To express label
stickiness we run a hidden Markov model (HMM)

Figure 4: Independent classifier output prediction.
Each document is broken up into an ordered se-
quence of columns. Each column is either pre-
dicted to be T (gray rectangles) or NT (transparent
rectangles).

Figure 5: The T (gray) prediction is surrounded
by two NT (white) columns. Such sharp transi-
tions are not accurate in the context of language
documents. We expect continuums of either T or
NT.



Figure 6: Top : The independent classifier’s pre-
dictions on the document. The shaded columns
indicate T predictions. Bottom: The HMM post-
processed inference. The HMM post-processing
takes the output of the independent classifier as
input and evaluates the best path given prior as-
sumptions expressed as fixed emission and transi-
tion probabilities.

as a post-processing step over the independent
classifier’s output. The HMM uses a fixed transi-
tion scoring model that encodes the FSM of Figure
9. The HMM post-processing step can be thought
of an error correcting step where the independent
classifier’s predictions are corrected in favor of
having adjacent predictions to share the same la-
bel.

To express our bias towards adjacent prediction
label similarity, we set the probability of transi-
tioning between dissimilar states to be very low,
and the probability of transitioning to the same
state to be high. For the emission distribution, we
set the probability of emitting the same input la-
bel with high probability, but allotted some small
probability mass to allow for label mutations. We
run the Viterbi algorithm to find the best path and
return that as our HMM post-processed output.

We find the HMM post-processing step has the
effect of mildly persuading the predictions to be
locally sticky. We observed it to smooth the in-
put predictions. See Figure 6 for an example of
how the HMM step positively corrected the input
labels. However it sometimes had the opposite ef-
fect of compounding errors as seen in Figure 7.

Figure 7: Top: The independent classifier’s pre-
dictions on the document (from Figure 6). Bottom:
The HMM post-processed result that is worse
than the original independent classifier’s predic-
tion. The HMM model changed columns adjacent
to an incorrect T prediction to be incorrectly T as
well (on the left and right sides of the HMM post-
processed document).

5 Structured Model

The key difference from our unstructured models
is that whereas before there were only emission
features, our structured models jointly learn the
emission and transition features.

5.1 Structured SVM

Our final model is a structured SVM.
Let D = (d1, . . . , dN ) be our collection of la-

beled documents. Each document dn is defined as
dn = (cni : i ∈ 1...|dn|), where dn is the nth
document in D, |dn| is the number of columns
in dn, and cn,i is the ith column of dn. Let
yn,i ∈ {T,NT} be the label of cn,i. Our model
is parameterized by a vector of feature weights, w.

We use a sequence structured predictor that in-
corporates a linearly parameterized emission scor-
ing model and a linearly parameterized transition
scoring model. Refer to Figure 8 for a visualiza-
tion of the structured model with its HMM struc-
ture. The model scores full sequences of T or NT
labels for the columns of the input document, dn.

The predictor function ŷ looks for the highest
scoring path along the HMM defined on dn. We



Figure 8
Structured Prediction Model. Top: The top half visualizes the HMM model on which we perform exact
inference. The gray dn node is our document whose pixel values are stored as a two-dimensional double
array. Each yi is the unknown label of column cn,i of dn. There are |dn| emission nodes for document
dn, one for each column. Our emission model is expressed as wT f(yi, d), the dot product of emission
features and their corresponding weights. Similarly our transition model is expressed as wT g(yi−1, yi).



can write the operation as follows:

ŷ(dn) = argmax
y=(y1,y2,y3...)

[score(y, dn;w)] (1)

Here the score of ŷ(dn) is the scoring function of
our model – it breaks down as the sum of all emis-
sion and transition potentials. The score operation
can be written as follows:

score(y, dn;w) =
∑
i=1

wT f(yi, dn)+ (2)∑
i=2

wT g(yi−1, yi)

The feature function is f , which we describe in
8. The transition model is g. We describe the sim-
ple binary state transition model in Section 5.2.
Our final augmented transition model is described
in Section 5.3. The transition features are explored
in Section 8.1.

During the decode phase we perform loss-
augmented Viterbi decoding which we describe in
Section 6.2.

5.2 Binary Transition Model
We start with the binary transition model, which
encodes the finite-state machine (FSM) of Figure
9. However it has several issues. For one, it allows
the model to toggle between T and NT without
constraint and penalty such that isolated T and NT
predictions do not incur any more penalty than ad-
jacent same state predictions. Secondly, we have
no way of knowing and constraining the number
of predicted T regions. Clearly, given our data set,
there is a reasonable maximum number of distinct
T regions. However, the binary transition model
cannot express our prior knowledge.

5.3 Augmented Transition Model
Our solution is to augmented the transition model
with additional structure and encode additional in-
formation within each state. Our augmented tran-
sition model encodes the FSM shown in Figure 10.

First we index the states. For instance, T0 signi-
fies that it is the first T region (from left to right),
whereas NT1 is the second NT region. Secondly
we can constrain the model to support χmaximum
T regions. Thirdly, we encode our prior knowl-
edge of possible state transitions as constraints
on the possible transitions. For instance, T0 can
only transition to itself or NT1. Because of the
heavy restrictions on the possible transitions, we

Figure 9: Binary Transition Space FSM. The only
possible prediction outputs per column are T and
NT . The are very few constraints on this loose
transition model and the model need not start with
either state in its prediction on a document. Each
of the two states can either self-loop or transition
to that of the other type without limit. This model
does not penalize isolated predictions such as the
predictions in Figure 7.

were able to incorporate the extra states without a
significant speed decrease in our Loss-Augmented
Viterbi decoding step.

The augmented transition model addresses iso-
lated T and NT predictions and guides the model
to make the best prediction given the constraint
of having at maximum χ possible T regions. As
we will explore in Section 11, our final SVM
Model with the augmented transition model per-
forms achieves a 62% improvement over the base-
line in T predictions and a 71.3% improvement in
NT predictions.



Figure 10: Augmented Transition Model FSM. Each circle represents a possible state. This contrasts
with the original binary transition model in three ways. For one, it indexes each of the two binary states
(T, NT ). Secondly, we can constrain model to support at max χ (a hyper-parameter) T regions. The
dotted circles represent possible extensions of the number of T and NT regions if χ were increased.
Thirdly, we enforce a water-fall like transition of states from lower to higher indexes so the model adapts
its predictions to our prior assumptions about the number of T and NT regions and possible transitions.

Figure 11: Augmented Transition Model SVM Predictions. A visualization of the predictions defined
on a document. We observe that with the guidance of additional structure and constraints, the model’s
predictions are much more accurate.



6 Structured Learning

Our structured SVM attempts to minimize a train-
ing loss objective.

6.1 Loss Function
We use a loss function that measures the weighted
Hamming loss of column predictions. The optimal
penalty we found for predicting a false positive T
(γT) is 2 while the penalty for a false NT prediction
(γNT) is 1. Getting the right label has no penalty.
The higher γT helps correct for the default bias of
predicting everything to be T. We analyze our loss
function sensitivity results in Section 11.3.2.

6.2 Loss-Augmented Viterbi Decoding
Online learning algorithms like the perceptron are
commonly used for for structured problems. How-
ever, we found that models such as the perceptron
performed poorly on our data set.

We use loss-augmented Viterbi decoding
(Taskar, 2004) with a weighted Hamming Loss
function, L(dn, Yn, ŷn(dn)), where Yn is the set
of gold labels for dn.

A necessary condition for our structured learn-
ing algorithm to be efficient is that the loss func-
tion factors in the same way the model score does
so that the same decoding algorithm can be used to
perform a loss-augmented decode. Luckily, Ham-
ming loss does factor over the emission and tran-
sition scoring functions.

We use a structured training objective that is
maximized using subgradient descent (Kummer-
feld et al., 2015).

7 Data

Our data set was randomly selected and labeled
from the Proceedings of Old Bailey corpus of
scanned grayscale historical court documents. We
found that the vast majority of documents had ei-
ther one or two major T regions so we focused our
data set on those types of documents.

7.1 Document Pre-Processing
These scanned Old Bailey images are then pre-
processed.

For the first pre-processing step, the image
is straightened through a heuristic objective that
maximizes the pixel variation. The image straight-
ener only does minor rotation adjustments within
a fixed range where it is found to be the most ef-
fective. This helps eliminate some degree of ro-

tational variance. However it is unable to correct
significantly rotated documents or documents with
a high degree of noise (factors mentioned in Sec-
tion 2).

Secondly, the grayscale pixel values are cast
as either black or while pixels according to a set
threshold. The result is a binary colored image
with only white and black pixels.

8 Features

Here we describe our feature set. Our feature set
consists of a total of 42827 features. The large
number of features is partially due to the high level
of variation and noise in historical documents. But
as we will see in Section 11.4, only a few thousand
of these features dominate the predictions. The
over 25, 000 columns in our training set give us
the statistical support to learn weights for a large
number of features.

8.1 Transition Features

Our transition features are defined on transitions
between adjacent pairs of states. Though we con-
sidered increasing the context of the transition fea-
tures, it would greatly increase the complexity of
our model and learning algorithm. Furthermore,
we find that adjacent transition features are suffi-
cient.

The transition model encodes the FSM in Fig-
ure 10. We learn the weights (Figure 8) of the
transition model which are edge transition scores
between the FSM states. The constraints we im-
pose upon the transition model is equivalent to fix-
ing−∞ for the non-existent transition edges in the
FSM.

8.2 Basic Features

In this section we detail features that look at sim-
ple metrics of the document. These sets of basic
features were designed to provide coarse separa-
tion between T and NT columns.

In following sections 8.3 and 8.4 we detail our
more complex features.

8.2.1 Black and White Transitions
We featurize the number of black and white pixel
transitions in a given column.

The number of color transitions differ among
columns within a document. Often times the
NT edges have less color transitions. To ad-
dress the over-exposed and under-exposed docu-



ments (problem (B)), we bin the sizes to general-
ize across documents.

8.2.2 Color Ratio
We bin the ratio of black to white pixels for a given
column and its adjacent columns. This feature is
designed to find a range of color ratios that de-
scribe most T columns. Variations of this feature
attempt to capture the color ratios of the transitions
between T and NT regions.

8.2.3 Average Segment Size
Given that characters are a structured mix of black
and white pixels, we sought to capture the differ-
ing average sizes of contiguous black and white
pixel segments. In addition to binning, we also
featurize the color we are finding contiguous seg-
ments of. After analyzing common glyph pixel
representations, we expected that we could learn
average white and black segment sizes that de-
scribe T columns.

8.2.4 Major Axis Position
The major axis is the axis orientation in which we
divide the document into columns. So far, all of
our example images had an X major axis, meaning
that the columns appear vertical and have start and
end X coordinates.

We featurize the binned percentage position
along the major axis - using the midpoint of
the column as the indicator. We observe that T
columns generally cluster near the center and NT
columns cluster on the edges and the middle. This
feature introduces a gradient of T and NT likeli-
hood along both axis of the document, as we per-
form our analysis on both X and Y major axis
(Section 10.1 describes our experimental setup).

8.3 Pattern Features
Our next set of features learns patterns of subsec-
tions of the document. These features employ vot-
ing, smoothing and sorting methods to distill the
most prominent patterns. To address problem (A),
the sorting of most prominent patterns within a
document allow us to identify the signature pat-
terns of T dividing regions. To address problem
(B), these features generalize well through voting
and smoothing the learned sub-image patterns.

8.3.1 Connected Components
Our connected component feature searched for
and featurized connected components in lexical
order. We expected connected components to be

able to learn rough glyph patterns. For perfor-
mance reasons, we bound the search region and
number of pixels to explore. We bound the search
region to the column we are featuring on cn,i
as well as the two adjacent columns, cn,i−1 and
cn,i+1.

We find that the shape of the connected compo-
nent alone is not helpful. Perhaps this is partly due
to the fact that most character glyphs suffered from
either over-inking or under-inking so we could not
find reliable identifiers. But we find that even
when we encoded the color of the connected com-
ponent, it was only marginally helpful.

A variation of our connected component fea-
ture encodes the binned location, binned size, and
color of the connected component. We expected
that T connected components would have charac-
teristic binned sizes, colors (either of the character
or white space that forms the contours of a charac-
ter), and locations. We sorted the connected com-
ponents by their centroid coordinates (with a x, y
lexical ordering) and took only the k biggest con-
nected components.

8.3.2 Histogram
Our histogram features span of range of granular-
ities in an attempt to capture general gradients to
address problem (B) and to capture transitions be-
tween T and NT regions to address problem (A).

Basic Histogram The basic histogram features
break up the column pixels into square m × m
pixel matrices and pick the top khist (a feature
hyper-parameter) matrices of highest frequency.

Extended Histogram The original histogram
suffered from over-fitting the training set, lead-
ing to low dev set scores. Thus, our extended
histogram looks at a larger square area, divides it
into four quadrants which in turn vote on the quad-
rants representative color. The representative color
is the most ubiquitous color within that quadrant.
However, since even in T regions, there is often
more white space than black, we boost the voting
power of the black pixel count by a factor ω which
we tuned to 1.6.

8.3.3 Pixel Bands
We sought to learn multi-line T regions by learn-
ing pixel bands that are flexible enough to accom-
modate noise.

A horizontal pixel band is defined as one or
more rows of pixels of a given column. See Fig-



ure 12 for an example of horizontal pixel bands.
To compensate for the level of noise, we band our
pixels at a coarser level of granularity by combin-
ing more than one than row vector of pixels with
voting and boosting methods mentioned in Sec-
tion 8.3.2. The height and width of each band, the
voting or boosting method for each band, and the
number of bands to be featurized are fixed hyper-
parameters. Similarly, we featurize vertical pixel
bands.

We hypothesized that featuring on a combina-
tion of pixel rows (horizontal bands) would help
address distributed pixelation noise and learn band
patterns that address problem (B). Over-exposed
T areas would learn a set of over-exposed T pixel
bands and under-exposed T regions would learn
under-exposed T pixel bands. Learned pixel bands
that are wide enough to span T diving regions
(and that also include some of the surrounding T
columns) help address problem (A) by learning the
patterns of T dividing regions.

Figure 12: Horizontal Pixel Bands. We aim to
capture patterns in characters and strings of char-
acters by learning their pixel band patterns. All
the pixels row vectors in a single colored rectangle
are combined together, through voting and boost-
ing methods, into a horizontal band. We learn pat-
terns from these bands instead of pixel vectors.

8.4 Signal Features

One major insight into our problem is to inter-
pret an image as a signal and apply signal analysis
techniques. In the context of our problem, we av-
erage the pixel values of a column and its neigh-
bors and interpret the averaged pixel vector as a
signal. In this section we detail features designed
to find signal periods and wave approximations.

Signal Pre-Processing Our averaged signal vec-
tor v (averaged along the major axis) is of dimen-

sions d× 1, where d is the dimension of the image
along the major axis. Given v, we truncate both
ends of the signal at points we found to effectively
cut off most NT regions. The goal of truncating
v is to find generate a signal vector that is mostly
T when featurizing a T column, and is mostly NT
when featurizing on a NT column (there is often
less noise when we cut off the borders of the doc-
ument). The truncated signal vector v′ is the pro-
cessed signal vector which we define our signal
features on.

8.4.1 Fast Fourier Transform
We compute a FFT on v′ and take the top Kfft
frequencies (ωfft) with highest magnitude. One
variation of this feature computes the short-time
Fourier transform over v′ with various window
sizes.

We found that settingKfft ∈ [1, 3] to be the most
effective. From the output of the FFT computa-
tion, a few dominant frequencies seem to domi-
nate and are effective in distinguishing T from NT.
Thus, the top Kfft ωfft are effective in addressing
problems (A) and (B). For problem (A), this fea-
ture has high precision which allows us to identify
T dividing regions accurately. For problem (B),
it is able to learn different T signals for different
exposure levels.

8.4.2 Filter Functions
We also hypothesized that we could hand craft
other filter functions that match the general shape
and frequency of not only T regions but also of the
layout of the document by adjusting the frequency
of these filter functions. Thus, we designed a set
of simple filter functions and tested them with var-
ious periods and offsets.

We evaluate the alignment of the column with
each filter function by projecting the signal onto
the length of v′ and computing a dot product,
which is then binned. For example, we project a
sine wave with a frequency of 20 pixels and 0 off-
set onto v′. Then we calculate the alignment dot
product and bin the dot product.

The two most effective filter functions we de-
signed are a periodic rectangular wave, and a sine
wave of varying periods.

9 Caching and Speed Performance

Because many of the features are computationally
expensive, often with O(n2) runtimes, we had to



implement several layers of caching to make pa-
rameter optimization feasible. First is the doc-
ument data cache. The memory requirements
of pre-processing the documents are large, often
spiking up to 12 gigabytes. Thus, we cached to
disk only the fields of the interest to the model and
discarded the rest. Secondly we designed individ-
ual feature caches, specialized for each data set.
This decreased the run time by a factor of 15.

The final run-time of our SVM model on the full
data set with 25 training iterations is 720 seconds.

10 Experimental Setup

We used primal sub-gradient optimization with
our SVM model until our training objective
reaches convergence. Along with our our final
model, we collected data for the other unstructured
models to provide comparison.

All results are evaluated on the held-out test set.

10.1 X and Y Major Axis Experiments

To perform full text region identification, we also
had to perform the same analysis in on both X and
Y major axis orientations to bound the T and NT
regions in both dimensions. In the follow data ta-
bles and figures, the major axis will be denoted
with either horizontal (X major axis) or vertical
(Y Major axis) in the title.

10.2 Evaluation

We evaluate the output of our text region identifi-
cations model using two metrics: F1 T score and
F1 NT score.

When computing the F1 scores, the label space
is that of the augmented transition model (Section
5.3 ) unless otherwise specified. The indexes in
the augmented transition model enforce a stricter
criteria of correctness such that the labels have to
match in type and index. For example, a T0 pre-
diction with a T1 gold label would be counted as
incorrect because the indexes do not match. This
stricter criteria is useful in that it implicitly pro-
vides an ordering of the T regions for subsequent
language analysis.

We also verified that our loss function objective
correlates well with the F1 scores.

To verify that our models were better predictors
on the augmented transition model as well as the
binary label space (T,NT), we tested our models
on the binary label set as well.

10.3 Initialization and Tuning

We divided our data into three sets: training, dev,
and test. We used the training set to train our mod-
els. For the dev set, we used that to benchmark
and tune our hyper-parameters. The test set was
our held out set - the set that was untouched until
generating our final benchmark scores that we re-
port in Section 10. Furthermore, all the documents
were randomized before partitioning into the three
data sets.

Our hand labeled data set consists of 387 docu-
ments of which 233 are in the training set, 116 are
in the dev set, and 38 are in the test set. Though
minor inconsistencies of the hand labeled data
might contribute some noise, we find the differ-
ences to be small and at most sway our resulting
F1 scores by two percent.

11 Results and Analysis

11.1 Overall Improvements

Our evaluation results are summarized in Tables 1
and 2. We computed macro-average F1 T and F1
NT scores across the documents. For our macro-
averages, we weighted the individual document F1
scores by the number of columns in each docu-
ment. Across the batches of experiments, we ran-
domized the data with different randomizing seeds
to smooth out any noise.

Our SVM model achieves an average F1 T of
97.1 and an F1 NT score of 94.8. We find that the
baseline system achieved a F1 T of 59.7 and F1 NT
of 55.3. This means that while the baseline about
half the columns correctly, our system with sub-
stantially higher precision and recall predicts over
95% of the columns correctly. This represents a
substantial improvement over the baseline as well
as the unstructured models we experimented with.

When we transpose our documents to run the
Y orientation analysis, we find that most our doc-
uments do not contain more than one T body in
that orientation. We did not expect any improve-
ment as the baseline model already achieved a F1
T of 98 and a F1 NT of 91.6. However, we still
observed small but noticeable improvements over
the already impressive baseline statistic. The re-
sults can be seen in Tables 3 and 4. Our SVM
model is achieves a 1.06% FT T and 5.11% FT NT
improvement on the baseline, giving us a Y major
axis F1 T of 99.0 and F1 NT of 96.3.



Table 1: Model (Horiz.) Statistics

Model T Prec. T Recall NT Prec. NT Recall F1 T F1 NT

Baseline 59.7 59.6 55.1 55.6 59.7 55.3
Ind. Classifier 82.1 82.9 83.1 80.5 82.5 81.8
Ind. + Post HMM 74.6 75.6 76.1 73.0 75.1 74.5
SVM 97.4 96.8 94.0 95.5 97.1 94.8

Table 2: Model (Horiz.) Improvements over Baseline

Model F1 T F1 T (%) F1 NT F1 NT (%)

Baseline 0.0 0.0 0.0 0.0
Ind. Classifier 22.8 38.2 26.4 47.7
Ind. + Post HMM 15.4 25.8 19.2 34.6
SVM 37.4 62.7 39.4 71.3

11.2 Binary Label Space comparison

The baselines did not naturally support the in-
dexed label set as it only supports one column of
text. In order to make fair comparisons we also
computed the F1 T and F1 NT scores over binary
transition space. The results are summarized in
Tables 5 and 6. Even on the binary label space, we
find that our system still has a substantial 26.9 F1
T and 48.7 F1 NT improvement over the baseline.

11.3 Sensitivities

For some notable hyper-parameters, we computed
statistics at a range of values to show trends in how
each of those hyper-parameters affects the results.

11.3.1 Regularization
We also analyzed various sensitivities of the
model. One parameter of interest is the regular-
ization.

We hypothesized that documents of wildly
different layouts compounded with differences
across time (differing font and preferred layouts)
and noise would require a high regularization con-
stant. Our horizontal orientation results are shown
in Figures 13a and 13b. Our vertical orientation
results are shown in Figures 13c and 13d.

The results indicate that the one possible opti-
mum regularization constant C is in the order of
magnitude of 10−6, achieving an F1 T of 96.9
and an F1 NT of 94.3. Interestingly, the model is
largely agnostic toC when it’s value is in the range
of 10−10 to 10−1. Perhaps this indicates that our
feature successfully generalizes such that we do
not require significant smoothing from C.

However, when C reaches 1, there is a sharp
decline of F1 T and F1 NT that continues as C in-
creases until values become either undefined (de-
noted as 0 in the figures), such as F1 T when
C ≥ 102, or reach an asymptotic lower bound,
such as F1 NT when C ≥ 102.



Table 3: Model (Vert.) Statistics

Model T Prec. T Recall NT Prec. NT Recall F1 T F1 NT

Baseline 96.5 99.6 98.1 85.9 98.0 91.6
Ind. Classifier 52.7 53.3 70.8 67.9 53.0 69.3
Ind. + Post HMM 75.7 76.9 80.7 75.5 76.3 78.0
SVM 99.1 98.9 96.0 96.6 99.0 96.3

Table 4: Model (Vert.) Improvements over Baseline

Model F1 T F1 T (%) F1 NT F1 NT (%)

Baseline 0.0 0.0 0.0 0.0
Ind. Classifier -45.0 -45.9 22.3 -24.4
Ind. + Post HMM -21.7 -22.2 -13.6 -14.9
SVM 1.0 1.1 4.7 5.1

Table 5: SVM (Horiz.) Binary Label Space Performance

Model T Prec. T Recall NT Prec. NT Recall F1 T F1 NT

Baseline 92.3 59.4 35.5 81.8 72.2 49.5
SVM 98.6 99.6 98.3 94.7 99.1 96.5

Table 6: SVM (Horiz.) Binary Label Improvements

Model F1 T F1 T (%) F1 NT F1 NT (%)

Baseline 0.0 0.0 0.0 0.0
SVM 26.9 37.2 48.7 98.3
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(a) We notice that regularization constants of a magnitude
smaller than 1 tend to have minimal impact on the F1 T
score on the test set. There were small but noticeable dif-
ferences and the optimal regularization constant we found is
C = 10−6, which generates an F1 T score of 0.969.
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(b) Our model is largely invariant to regularization within
reasonable ranges as shown by the cluster in the upper right.
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(c) Similar the the SVM X major axis regularization sensi-
tivity data, there is a sharp drop of F1 T and F1 NT scores
when the regularization constant rises above 1.0.
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(d) The regularization frontier graph shows that our model’s
performance is largely independent of the amount of regular-
ization in the Y major axis orientation as well.

Figure 13: Regularization Analysis. Results of both X major axis (horiz.) and Y major axis (vert.)
experiments.



11.3.2 Loss
We hypothesized that lower extremes of loss
penalties would lead to degraded performance as
false predictions would no longer be penalized ac-
cordingly - such that correct and incorrect predic-
tions do not reflect differently in the loss objec-
tive. Our low extreme loss penalties results shown
in Figures 14a and 14b confirm our hypothesis.
Losses as low as 0.01 are still effective but there is
a sharp drop in in F1 T around magnitudes 10−2.
Interestingly, the decrease in T prediction does not
decrease monotonically.

We also performed the same loss sensitivity
analysis on the Y major axis. The loss sensitiv-
ity trends are similar. Our X major axis results are
summarized in Figure 14 and our Y major axis re-
sults are summarized in Figure 15.

It is important to note that though we have two
loss parameters, each influences both the T and NT
statistics. For instance, the loss of a false NT pre-
diction affects the T precision and recall. The ef-
fects of varying the values of one label on the re-
sults of the opposite label are summarized in Fig-
ures 16 and 17. One pattern is that the higher the
loss of false T, the more we decrease our preci-
sion NT and increase our recall T score. The same
applies for NT. We can make sense of this as see-
ing a trade-off between T and NT statistics. Once
we have tuned our other hyper-parameters, we are
unable to increase both T and NT recall scores as
we have already reached optimal F1 T and F1 NT
scores.

11.3.3 Training Iteration Sensitivity
We also tested the model’s sensitivity to the num-
ber of training iterations. Refer to Figure 18a for
our sensitivity results. We observe that though the
training score continues to increase, our dev F1
T score reaches an optimum around 25 iterations,
which was our final value. After 25 iterations the
data starts to over-fit.

We notice that our model learns fairly quickly
and is robust to the number of training iterations.
Our dev statistics with at least one iteration, the
dev F1 T do not vary more by more than one and
our dev F1 NT statistics do not vary by more than
four.

11.3.4 Column Width Sensitivity
We tested the model’s sensitivity to the fixed width
of all columns (specified by hyper-parameter ρ).
ρ can be interpreted as the amount of context for

each prediction as the number of pixels most fea-
tures consider is dependent on ρ. Our results are
summarized in Table 18c.

We find that setting ρ to 10 pixels is optimal.
This could be indicative that observing less pixel
vectors does not provide enough information and
is too sensitive to noise. On the other hand, larger
ρ values may set the prediction granularity to be
too coarse to capture the sometimes short transi-
tions between T and NT regions.

11.4 Feature Analysis

To evaluate the effectiveness of feature sets, we
first looked at the number of weighted features in
each feature set (Table 7) and then the value of the
weights.

In our experiments we found the most effective
basic features are the black and white transition
feature, color ratio, and major axis position fea-
tures. The most effective pattern features are the
horizontal and vertical pixel bands. The most ef-
fective signal features are the FFT, STFT and filter
function features.

Among the three feature families, the signal fea-
tures are by far the most effective. When compar-
ing the effects of a single feature family, the signal
features contribute to an over 30.0 increase in F1
T.

Perhaps the significant impact of the pattern and
basic contrast feature sets indicate that there is a
significant amount of information that is present
in a simple analysis of the pixel values. This is not
surprising as humans do not need a large amount
of information or processing to decipher the loca-
tion of the T regions. In this sense, the challenge
is designing features that effectively capture these
obvious patterns.

We were surprised to find that the signal fea-
tures to be the most effective. To measure individ-
ual feature set effectiveness, we turned off other
features and only enabled the feature set of interest
and compared it to the baseline performance. The
signal based feature sets achieved approximately a
F1 T increase of 30 and a F1 NT increase of and
28 over the baseline. We hypothesized that there
might be regularities in any document as printed
text in nature has structure and regularity. Our re-
sults confirmed the fact that the FFT, STFT and
custom filter function feature sets are able to find
such regularities that are not captured by the pat-
tern features.
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(a) The results confirm our hypothesis that low extremes of
loss lead to reduce performance. However we did not expect
non-monotonically decreasing results.
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(b) The fact that we can continually improve both our pre-
cision T and recall T scores perhaps implies that we haven’t
optimized our loss false T values and reached a true perfor-
mance frontier where there is a trade-off between precision
and recall.
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(c) The precision T and recall T sensitivity to loss false T
correlate as expected. Thought the F1 NT response has a clear
trend, there is observable fluctuation.

0.85 0.90 0.95 1.00
0.85

0.90

0.95

1.00

Precision T

Re
cal

l T
SVM (Horiz.) Loss False T Frontier

(d) Interestingly, at the low extreme ranges of loss false T
(Figure 14a), a decrease in precision does not imply an in-
crease in recall.
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(e) There is a significant impact when loss false NT becomes
positive - a jump from a precision NT of 0.741 when loss
false NT is 0 to a precision NT of 0.940 when loss false NT is
1.0.
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(f) Loss false NT seems not to have as much impact on pre-
cision NT and recall NT scores compared to the loss false T
effect on T statistics (Figure 14d).

Figure 14: Loss Analysis (Horiz.). Low extreme loss and loss false T results.



0 2 4 6 8 10
0.90

0.92

0.94

0.96

0.98

1.00

Loss False T

SVM (Vert.) Loss False T Sensitivity

Precision T
Recall T
F1 T
F1 NT

(a) We find that precision NT and recall NT are equal when
the loss of false NT is approximately 2.
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(b) The precision T and recall T frontier with the loss of a
false T prediction has the frontier curvature we expect. We
can tune the model to be on any point of the frontier graph by
tuning the loss.
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(c) Similar to our horizontal axis results, our loss false NT
affects our results much more than loss false T.
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(d) The shape of the frontier graph for tuning the loss of a
false NT prediction is analogous to that in Figure 15b.

Figure 15: Loss Analysis (Vert.). Loss false T and loss false NT results.
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(c) A continued trend is that our loss false NT scores are
more sensitive than our loss false T scores.
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(d)

Figure 16: Loss Results (Horiz.). Loss effects on the opposite label.
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(a) We find that precision NT and recall NT are equal when
the loss of false NT is approximately 1.
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(b) While the loss false NT value varies, we notice our pre-
cision T and recall T frontier shape remains the same.
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(c) The point where precision NT and recall NT are equal
remains at approximately 1. However, the loss of false T
has much more pronounced effects than that of loss false NT
(compared to Figure 17a).
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(d) There is some variation when computing the frontier
points. There are some values of loss false T that are strictly
worse such as the point around 0.92 precision NT and 0.90
recall NT.

Figure 17: Loss Results (Vert.). Loss effects on the opposite label.
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(a) Our model quickly reaches convergence within 30 train-
ing iterations. With our set of features and fixed hyper-
parameters, the model starts to over-fit around training itera-
tion 25.
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(b) The fact that our model is relatively robust to the num-
ber of training iterations is reflected in the clustering of the
points.
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(c) We find that ρ = 10 is optimal. Smaller values of ρ do
not seem to provide enough context to make accurate predic-
tions while larger values of ρ are too wide to identify short
transitions between T and NT regions.
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(d) In the range of [5 − 10] the results do not vary much as
shown by the cluster of points hovering over the F1 T value
of 97.

Figure 18: Training Iteration and Column Width Sensitivity



Table 7: Feature Set Frequencies

Feature Set Indexed Weighted Weighted (%)

BW Transition 138 58 42.0%
Color Ratio 4,317 932 21.6%
Major Axis Pos. 121 46 38.0%
Horiz. Pixel Band 19,580 3150 16.1%
Vert. Pixel Band 5,455 932 17.1%
Histogram 67 0 0.0%
Filter Functions 859 357 41.6%
FFT 787 225 28.6%
STFT 91 38 41.8%

11.5 Possible Extensions

Perhaps treating the image pixels as a signal is a
technique that can be applied in various other con-
texts to discover hidden regularities. Furthermore,
the effectiveness of the custom filter functions pos-
sibly implies that generating custom functions to
match our intuitions of the shape of the data is a
simple way to capture non-obvious patterns in the
data. These custom functions were effective de-
spite not being finely tuned. They only needed to
generally reflect the shape of the text lines or the
layout of the document.

11.6 Error Analysis

We found that though our SVM model consis-
tently and significantly outperformed the baseline
and other models, there are a few common sources
of error.

One major source of error is the highly vari-
able level of pixel noise which is most prominent
on the edges of the document. It seems to trick
our model into predicting a sequence of T on the
edges (which are generally NT). Because of our
constraint of allowing χ maximum number of T
regions, entering a T region at the edges can lead
to significant performance hits. For instance, if the
first T region is used on the edge columns (which
are really NT regions) of a two T region document,
all the predictions over the first actual T region will
be incorrect because their indexes will be off. A
related error is that the system fails to identify T
regions near the borders because of a learned bias
that T regions are generally in the center (though
in certain cases it still predicts edge regions to be
T).

Another source of error seems to be problem
(B) (over and under-exposure) in the extremes, a

source of error we have partially found a solution
to. In some extremes, documents are so whitened
that they appear to be highly pixelated areas of
NT white space even though there are T regions
within. For future extensions, it would be interest-
ing to adapt a gradient to our feature sets. Interest-
ingly, it handles extremely under-exposed (over-
darkened) images much better than over-whitened
images.

12 Conclusion

The first major contribution of the paper is devel-
oping a model that jointly learns (with the aug-
mented transition model) emission and transition
features that allow us to perform effective histor-
ical text region identification. Secondly, we find
that learning with a loss-augmented Viterbi HMM
decoder is not only efficient (we are able to factor
the Hamming loss) but also effective in learning
the optimal weights. Lastly, we design relevant
and generalizable sets of basic contrast features,
pattern features and signal features that allow us to
capture both the obvious and latent characteristics
of T and NT regions. Our final system gives sub-
stantial and comprehensive improvements in text
region identification for historical documents with
varying degrees of noise.
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