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Hold ’em or Fold ’em? Aggregation Queries under Performance Variations

Gautam Kumar Ganesh Ananthanarayanan Sylvia Ratnasamy Ion Stoica

Abstract
Systems are increasingly required to provide re-

sponses to queries, even if not exact, within stringent
time deadlines. These systems parallelize computations
over many processes and aggregate them hierarchically
to get the final response (e.g., search engines and data
analytics). Due to large performance variations in clus-
ters, some processes are slower. Therefore, aggregators
are faced with the question of how long to wait for out-
puts from processes before combining and sending them
upstream. Longer waits increase the response quality as
it would include outputs from more processes. However,
it also increases the risk of the aggregator failing to pro-
vide its result by the deadline. This leads to all its re-
sults being ignored, degrading response quality. Our al-
gorithm, Cedar, proposes a solution to this quandary of
deciding wait durations at aggregators. It uses an online
algorithm to learn distributions of durations at each level
in the hierarchy and collectively optimizes the wait du-
ration. Cedar’s solution is theoretically sound, fully dis-
tributed, and generically applicable across systems that
use aggregation trees since it is agnostic to the causes
of performance variations. Evaluation using production
latency distributions from Google, Microsoft and Face-
book using deployment and simulation shows that Cedar
improves average response quality by over 100%.

1 Introduction
Systems using aggregation trees in their computation are
increasingly pervasive (e.g., web search engines and ap-
proximate querying frameworks [1]). These computa-
tions have many parallel processes with aggregators ar-
ranged hierarchically to combine their outputs. Figure 1
shows a simple abstract illustration. Modern systems that
use aggregation trees run on large clusters and are re-
quired to provide responses to queries, even if inexact,
within stringent time deadlines [2, 3, 1, 4].

Endemic to large clusters are broad performance vari-
ations, resulting in some processes being much slower
than others. These variations can arise due to net-
work congestion [5, 6, 2] as well as systemic con-
tentions [7, 8, 9, 10]. For instance, production traces
show that RTT values in Bing’s search cluster can vary
by a factor of nearly 50× [6].

Due to slow processes, every aggregator faces the de-
cision of how long to wait for outputs from processes be-
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Figure 1: Aggregation Trees. On arrival of a query, com-
putations are spawned across multiple parallel processes
whose outputs are combined using aggregators to produce
the final response.

fore aggregating and sending the results upstream. The
wait duration has direct implication on the quality of the
response. We define response quality as the fraction of
process outputs that are included in the response; simi-
lar definitions of quality (or application throughput) have
been used in many recent proposals [2, 11]. The longer
the aggregator waits, the higher the quality of the overall
response. However, longer wait durations also increase
the risk of the aggregator failing to provide its results to
the root by the deadline. If it misses its deadline, all its
results are ignored by the root, thus lowering quality of
the final response.1 In this paper, we ask the question:

How long should every aggregator wait to maximize
overall response quality within the deadline?

The main observation behind our solution is that the
durations of the queries follow a certain distribution type,
and that it is possible to quite accurately compute the pa-
rameters of this distribution by observing a few process
outputs. In particular, we use the durations of the pro-
cesses that finish first to predict the durations’ distribu-
tion, and use this distribution to optimize the response
quality by appropriately setting the wait-time for the ag-
gregator.

However any approach to learn the distribution pa-
rameters must overcome the following challenges. First,
learning must be done in an online fashion on a per-query
basis given that different queries can vary substantially
owing to the different amount of work they might need
to perform. Second, given that we need to learn the dis-

1While aggregators can periodically update the root with their re-
sults, systems avoid such a design because, (i) it increases network load
by a factor as much as the number of updates, and (ii) it complicates the
root and aggregator executions along with their failure semantics. Pro-
duction systems, to the best of our best knowledge, avoid such periodic
updates.
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tribution parameters online, the approach must be based
on only the earliest completed processes. Naturally, this
introduces a bias as the learning will not see the tail of
the distribution, i.e., the outputs of the processes that take
longest to complete. Third, since we also target systems
with short deadlines (∼ 100−200ms), the learning must
be distributed, i.e., not require aggregators to combine
their samples, to avoid communication overheads.

To address the above challenges, we propose Cedar, an
online algorithm to pick the wait duration for each aggre-
gator. Cedar learns the distribution of process durations
during a query’s execution using statistically grounded
techniques. It avoids the measurement bias due to ob-
serving only the earliest available process outputs by us-
ing the properties of order statistics [12]. Once it learns
the distribution of process durations, Cedar picks a wait
duration based on the query’s end-to-end deadline, as
well as the time taken by aggregators themselves to com-
bine and send the results to the root.

Since Cedar learns the distribution parameters with
high accuracy even using a small number of samples,
each aggregator can estimate the parameters standalone
without pooling their samples. Thus, Cedar can be im-
plemented in a fully distributed manner.

Cedar’s solution has the following key advantages.
• It considers the problem of deadline-aware schedul-

ing end-to-end, i.e., aiming to improve application
performance instead of just individual processes.

• It makes no assumptions about the source of per-
formance variations among processes nor does it
attempt to mitigate such variations. This general-
ity differentiates our solution from many prior ef-
forts that assume specific causes like network con-
gestion [2, 7, 11]. Such generality is critical for
any solution to work well in practice because there
is no single cause for performance variations and
accurate modeling of these complex systems has
proven challenging so far [10, 13, 9, 14]. In this
way, Cedar’s performance benefits are agnostic to
the cause of these variations, whether they occur be-
cause of CPU, memory, network or disk contention.

• Unlike many prior solutions that require changes at
the network layer [5, 2, 11], Cedar can be imple-
mented entirely at the endhosts. This leads to a sim-
pler and easily deployable solution. Furthermore,
Cedar is robust across different workloads.

To the best of our knowledge, prior work on dealing
with performance variations has not explored optimiz-
ing the wait duration at aggregators. Optimizing along
this simple design dimension leads to remarkably good
results in our experiments. We evaluate Cedar using a
prototype implementation over the Spark framework [15]
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Figure 2: A typical web search computation that aggre-
gates results across many functional silos [10]. The small
rectangles at the leaves denote processes of the computa-
tion.

deployed on 80 machines on EC2, as well as through ex-
tensive simulations. Cedar improves the quality of results
by up to 100% in simulations and deployment replay-
ing production traces from Facebook and Bing’s analyt-
ics clusters as well as Google and Bing’s search clusters.
The near-optimal performance is due to accurate learning
of distribution parameters using order statistics leading
to as little as 5% estimation error as well as a theoreti-
cally sound algorithm to select the correct wait duration
given the distributions.

2 Aggregation Queries
Aggregation queries are widely prevalent in modern sys-
tems. We describe two such systems—web services and
data analytics frameworks—that strive to provide results
of the best quality (but not necessarily exact) within a
deadline. We then quantify performance variations in
production clusters that run these systems.

2.1 Production Systems

Search Queries: Web search engines store indexes of
crawled web content on large distributed clusters. The
indexes are often divided into functional silos. To re-
spond to a search query, lookups are performed on dif-
ferent machines within every relevant silo, effectively
resulting in a computation of many parallel processes
whose outputs are aggregated hierarchically (as shown
in Figure 2). Every aggregator ranks results from nodes
downstream and sends the top few of them upstream.
The eventual response is based on results that arrive at
the root by the deadline. The higher the number of pro-
cesses whose outputs are included in the response, the
better its quality and relevance [2], which in turn has
significant competitive and financial implications [16].
Similar hierarchical computations are also invoked in the
creation of a user’s “wall” page in Facebook [5].

Typically, process durations are primarily influenced
by contentions for multiple local resources as they read
and compute on indexes from the underlying storage.
Aggregator durations, on the other hand, are influenced
more by networking and scheduling aspects.
Approximate Analytics: Interactive data analytics
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Figure 3: A query to an interactive data analytics system
compiled into a DAG of hierarchical parallel processes.

frameworks (e.g., Dremel [17], BlinkDB [1]) are pro-
jected to be crucial in exploiting the ever growing data.
These frameworks allow users to specify deadlines in the
query syntax, and they strive to provide the best quality
response within that deadline [3, 2]. Queries are com-
piled to a DAG of phases (or hierarchies) where each
phase consists of multiple parallel processes. Figure 3
shows a DAG of a sample query. While the communi-
cation pattern between hierarchies can be either many-
to-one or all-to-all, every aggregator aggregates results
from nodes downstream and sends them upstream. The
quality of responses is, again, dictated by the number of
processes whose outputs are included in the response.

2.2 Performance Variations

The nature of large clusters is that processes exhibit sig-
nificant and unpredictable variations in their comple-
tion. These variations arise due to network conges-
tion or contention for resources on individual machines.
We present variations (in increasing order of magni-
tude) from three production deployments—RTT varia-
tions in Microsoft Bing’s search cluster [6], process du-
rations in Google’s search cluster [10], and task comple-
tion times in Facebook’s and Bing’s production analyt-
ics cluster [18]. These clusters already have a variety
of mitigation strategies to prevent processes from strag-
gling [5, 6, 7, 8, 9].

The objective of describing these variations is two
fold. First, is to show the prevalence and magnitude of
performance variations, and also that they occur due to
multiple reasons. Second, is to present building blocks
for constructing a workload for aggregation queries in
the absence of access to an end-to-end trace from sys-
tems as described in §2.1.
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Figure 4: Distribution of RTTs in Bing’s search cluster.
The median value is 330µs while the 90th and 99th per-
centile values are 1.1ms and 14ms, respectively.

Figure 4 plots the distribution of RTT values in Bing’s

search cluster. The RTT values show a long-tailed dis-
tribution (median, 90th percentile and 99th percentile
values of 330µs, 1.1ms and 14ms) caused due to spo-
radic network congestion. Variations among processes
in Google’s search cluster are primarily borne out of
scheduling delays and network congestion on highly uti-
lized machines/links [10]. While the distribution is rel-
atively narrow, the magnitude of the variation is signifi-
cantly higher. The median value is 19ms while the 99th

percentile is over 65ms.
The task durations in Facebook’s and Bing’s analytics

clusters vary considerably more (factor of 1600×) and
are caused by a combination of systemic contention for
local resources (memory, CPU and disk IO). Note that
these clusters already have speculation strategies [7, 8]
for stragglers. When the earlier of the original or specu-
lative copies finish, the unfinished task is killed; we ex-
clude durations of such killed tasks. Further, task du-
rations have recently fallen by a factor of two to three
orders of magnitude with the advent of in-memory clus-
ter frameworks (e.g., Spark [15], Dremel [17]). At small
task durations, effectiveness of existing straggler miti-
gation strategies are diminished owing to their reactive
nature of observing a straggler before scheduling specu-
lative copies [9].

The upshot from these production traces is that per-
formance variations are large and occur due to many
reasons. Ideally, algorithms to decide wait durations at
aggregators should take a holistic end-to-end view of
the variations and automatically adapt to any changes
in the distributions, without being tied to the underlying
specifics. Before proceeding to our solution, Cedar, in
§4, we quantify the criticality of picking the right wait-
duration in §3 using an idealized scheme.

3 The Case for Optimizing Wait Duration
We illustrate the value of picking the optimal wait du-
ration at aggregators by comparing the difference in re-
sponse quality between an ideal scheme and intuitive
straw-man solutions. We focus on the traces from Face-
book’s Analytics (MapReduce) cluster in this section,
though our evaluations (§5) are based on a number of
production and synthetic workloads.

We assume a two level (or stage) hierarchy as shown
in Figure 5, where X1 and X2 denote the distribution of
times taken by nodes in the first and the second levels of
the hierarchy, respectively, with k1 and k2 being the “fan
out” at these levels.2 There is an end-to-end deadline, D,
imposed on the query which is common knowledge to
workers and aggregators alike. However, while the ag-
gregators know the top-level deadline, they can’t exactly

2Two or three levels are common in the systems we focus on. How-
ever, we will show later that our model works with any number of lev-
els.
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Figure 5: A simple two level hierarchy. Let X1 and X2 be
distribution of times taken in the first and the second levels
of the hierarchy, respectively.

determine how long it will take to ship the aggregated re-
sult upstream. As mentioned in §1, one of the strengths
of our model is that since X1 and X2 represent the dura-
tion of the entire stage subsuming all types of variations,
the performance improvement doesn’t depend on their
exact cause, be it network, CPU, memory or disk.

3.1 Setting Wait Durations

Recall that wait duration at aggregators directly impacts
overall response quality; we measure quality by the frac-
tion of processes whose outputs are included in the fi-
nal result.3 If the wait duration is too short, outputs
that would have arrived before the deadline are missed
thereby degrading overall response quality. If the wait
duration is too large, the aggregator misses its deadline
which leads to outputs of all its processes (including the
completed ones) being ignored upstream, again degrad-
ing overall response quality. Therefore, our problem is
to calculate the right wait duration at aggregators that
maximizes overall response quality given a deadline of
D.
Proportional-split: A natural straw-man solution to
pick the wait duration is to continuously learn statistics
about the underlying distributions X1 and X2 from com-
pleted queries, and split the deadline proportionally be-
tween the different levels based on the learned parame-
ters. In fact, such a technique of estimating parameters
from recent query behavior is in deployment in Google’s
clusters [4]. For a two-level tree (Figure 5), the wait du-
ration is set as D×

(
µ(X1)

µ(X1)+µ(X2)

)
, where µ(X1) is the

mean of the stage duration distribution X1. We refer to
such a scheme as “Proportional-split”. 4

Ideal Solution: We compare the Proportional-split base-
line with an idealized scheme that has a priori informa-
tion about the distribution of process as well as aggrega-
tor durations of every query. It uses that information to
pick the wait duration that maximizes overall response
quality. We measure the percentage improvement in re-
sponse quality of the idealized scheme over the straw-

3Our model is easily extensible to weighted process outputs (Ap-
pendix A).

4Other statistics like median and (mean + stdev) exhibit similar re-
sults. Futher, we also considered other baselines like equally dividing
the deadline between the stages or subtracting the mean of X2 from the
deadline, but they fare much worse.
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Figure 6: Ideal solution’s improvement in response quality
over straw-man solutions for varying deadlines. Distribu-
tion X1 is from the map tasks and X2 is from the reduce
tasks in the Facebook cluster. The fanout is kept constant
at 50 (both k1 and k2) giving a total of 2500 processes.

man solutions. The ideal scheme serves as a ceiling to es-
timate the maximum achievable improvement; the higher
the improvement, the more the potential for Cedar.

3.2 Potential Gains

Recall from §2.2 that the clusters from which we ob-
tain our traces already have a variety of straggler mit-
igation strategies deployed. Despite that, we see sub-
stantial scope for improvement in quality of the over-
all response between the Proportional-split and the Ideal
scheme. In Figure 6, the deadline for the query is varied
from 500s to a really high value of 3000s while the fanout
factors k1 and k2 are kept constant at 50 (based on [6]).
Picking the right wait duration can improve average re-
sponse quality by over 100% compared to Proportional-
split, i.e., the response includes outputs of 100% more
processes. Also, while it is ideally possible to achieve
high response quality (say 90%) at deadline values of
> 1000s, the baseline fails to achieve such response qual-
ity even at an extremely large deadline of 3000s. Note
that Proportional-split, even though it knows the distri-
butions, ignores query-specific variations since it uses a
single distribution over the recent set of queries. Over-
all, potential for such high gains, despite the presence
of straggler mitigation strategies, shows the criticality of
setting the right wait duration.
Summary: Our analysis shows that setting the right wait
duration for aggregators (i) has substantial potential to
improve response quality (by over 100%), and (ii) is non-
trivial and simple straw-man solutions fall significantly
short.

4 Cedar: Algorithm Description
The aggregator estimates the optimal wait time by learn-
ing the distribution parameters of process durations dur-
ing a query’s execution. The two main steps in doing
so are, (i) learning the distribution based on the comple-
tion times of only the early processes in the query, and
(ii) collectively optimizing for the wait duration taking
into account the time taken by aggregators themselves to
combine and send the results to the root. We describe
these steps after presenting an overview.
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〈ProcessOutput〉 outputSet← φ . Response Initialization
numOut puts← 0

procedure PARALLELHIERARCHICALCOMP(D)
SetTimer(D,TIMEREXPIRE)
ListenResponse(PROCESSHANDLER)

procedure PROCESSHANDLER(ProcessOutput to)
. On arrival of a process’s output

outputSet +← to . to added to outputSet
numOutputs +← 1
if numOutputs == k1 then

SetTimer(0,TIMEREXPIRE); return

Distribution X1← FITDISTRIBUTION(outputSet)
double wait← CALCULATEWAIT(D, k1, X1)

. Also uses Distributions Xi’s and ki’s for higher
levels (global)

double remWait← wait− elapsedTime
. Subtract time elapsed so far.

SetTimer(remWait,TIMEREXPIRE)
ListenResponse(PROCESSHANDLER)

procedure TIMEREXPIRE

return outputSet

Pseudocode 1: Cedar’s algorithm for executing aggrega-
tion queries with deadline of D. The algorithm describes
the functioning of an aggregator at the lowest layer with
k1 processes whose durations are modeled as X1, aggrega-
tors up the hierarchy work similarly. FITDISTRIBUTION is
described in §4.2 to estimate X1 and CALCULATEWAIT is
described in §4.3.
4.1 Overview

Pseudocode 1 outlines Cedar’s end-to-end functioning.
The aggregator begins by setting a timer for the dead-
line, D (PARALLELHIERARCHICALCOMP). On arrival
of every process’s output (PROCESSHANDLER), Cedar

improves its estimation of the distribution (FITDISTRI-
BUTION) and updates its wait duration (CALCULATE-
WAIT). The aggregator returns with the available out-
puts when no process finishes in its current wait duration
(TIMEREXPIRE).

Typically, higher levels in the hierarchy, i.e., aggrega-
tors, have little variation in the distribution of their du-
rations across queries (X2 for the two-stage tree demon-
strated in Figure 5). This is because aggregation opera-
tions are mostly similar across different queries (for ex-
ample, sum and mean, which have similar complexities).
These trends are observed in our analysis of traces from
Google and Bing. These two traces are primarily from
higher level aggregator operations and exhibit little vari-
ation across queries. Thus, Cedar learns the above stage
distributions offline based on completed queries.

FITDISTRIBUTION concerns itself with learning the

Table 1: Table of Notation

D , Deadline at the top-level aggregator
n , Number of stages in the aggregation tree
Xi , Stage duration distribution for the ith stage

(1 being bottom-most)
ki , Fan-out at the ith stage

X ,k , Stage duration distribution and fan-out
when a single stage is considered

X(i) , ith-order statistic of X
qn , Maximum achievable quality for an n-level

tree (under given D, X ′i s and k′is).

distributions of process durations, X1. As evidenced in
the Facebook distributions, process durations exhibit sig-
nificant variation across queries. Processes execute cus-
tom code that involve a wide variety of compute and IO
operations (across disk, network) leaving them suscepti-
ble to many resource contentions. As an illustration, the
computation involved for a search query like “Britney
Spears” may take considerably lesser time compared to a
more sophisticated query like “Britney Spears Grammy
Toxic” because the latter involves a combination of index
lookups. Therefore, it becomes imperative to determine
the distribution of process durations per query.

CALCULATEWAIT, then, uses both X1 and higher
level distributions, X2, . . . ,Xn, to calculate the optimal
wait duration for every aggregator.

We explain the learning of distribution of process du-
rations (FITDISTRIBUTION) in §4.2. §4.3 explains the
calculation of the optimal wait duration for aggregators
(CALCULATEWAIT). Table 1 lists the relevant notations.

4.2 Learning the Distribution

Cedar estimates the parameters of the distribution of pro-
cess durations online during the query’s execution. The
estimation involves two aspects—distribution type (e.g.,
log-normal, exponential), and relevant distribution pa-
rameters (e.g., mean and standard deviation).

4.2.1 Distribution Type

Inspection of process durations from our traces show that
the distribution type across different queries remains un-
changed, even though the parameters of the distribution
vary. Therefore, estimating the distribution type is an
offline process that is repeated periodically across many
completed queries. We periodically fit percentile values
using rriskDistributions [19] package to find the best fit
of distribution type.

In our traces, log-normal distribution gave the best fit
for each of the traces. The fit for the Facebook traces
resulted in less than 1% error in mean and median; even
at high percentiles the error was low. Google’s percentile
values for process durations fit with < 5% error even at
the 99th percentile. Log-normal distribution gave the best
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fit for the Bing traces as well with 1% error in median
and 2% error in mean. More details about the goodness
of our fit can be found in Appendix B.5

Regardless of the distribution type, its parameters ex-
hibit considerable variation on a query to query basis. We
estimate them online, during the query’s execution.

4.2.2 Estimating Parameters of Distribution

We consider a single level in which an aggregator ob-
serves process duration distribution given by X with a
fan-out of k (omitting the subscript that denotes the level
since we are concerned with a single stage in this sec-
tion). The objective is to estimate the parameters of the
distribution X based on the durations of only the com-
pleted processes thus far. Denote the number of pro-
cesses that have completed at this point to be r, where
r < k. A naive attempt at estimating the parameters of
the distribution would be to simply calculate the mean
and standard deviation using the r samples. Such an em-
pirical calculation would, however, be sub-optimal be-
cause the r samples are biased, i.e., these are not uni-
formly sampled r values from the distribution but rather
the smallest r values out of k samples from the distri-
bution. The key challenge in learning the parameters of
the distribution is, therefore, eradicating this bias. As we
show in §5, this bias can affect the accuracy of learnt
parameters considerably.

We alleviate the sampling bias using order statis-
tics [12]. Given a distribution, X in our case, and k ran-
dom samples drawn from the distribution, the rth order
statistic denotes the distribution of the random variable
corresponding to the rth-minimum of the k samples. The
key insight that Cedar uses is that the time taken for the
rth process output received is not a random sample ob-
tained from the distribution X , but instead, is a random
sample obtained from the rth order-statistic of the k sam-
ples drawn from X .6 In this way, Cedar models each
process duration as per a different distribution which are
given by the order statistics for the given distribution.

Formally, denote the random variables corresponding
to the first r order statistics (or process durations in our
case) by X(1),X(2), . . .X(r) (the subscript denotes the order
they arrive in),7 and let x(1),x(2), . . . ,x(r) be the observed
values of process durations for the received outputs. The
maximum likelihood estimate, θ , of the distribution pa-

5One concern is that log-normal fit does seem to falter near the ex-
treme tail (say upwards of 99.5 percentile); the tail being generally bet-
ter modeled by distributions like Pareto [20]. Such high percentiles,
however, would consist of processes whose outputs will not be aggre-
gated irrespective of any optimization of wait-duration given the heavy-
tail behavior of such systems. Thus Cedar’s performance doesn’t suf-
fer due to this and remains near-optimal (§5).

6Order statistics are dependent on the sample size (or k in our case).
7X(i) is not to be confused with Xi that signifies the stage duration

distribution for the ith stage.

rameters (e.g., λ for exponential distributions, or µ,σ for
normal/log-normal distributions), is written as: θMLE =
argmaxθ P(X(1) = x(1),X(2) = x(2), . . . ,X(r) = x(r);θ).

Unfortunately, it is computationally expensive to max-
imize the above likelihood expression in an online set-
ting. Instead, we compute the maximum likelihood es-
timates of the parameters θ independently from each
random variable X(i) and average the estimates together.
While some internals of the estimation algorithm vary
depending on the distribution type, the general idea re-
mains the same. We present the details for log-normal
and normal distributions. The maximum likelihood esti-
mates for the order-statistics for the standard log-normal
distribution are known, denoted by o1,o2, . . . ,ok hence-
forth.8 Since there are two parameters to estimate, µ ,
and σ , at least two outputs are required. Let t1 and t2
denote the arrival times for the first two responses. Then,
we have ln t1 = µ̂ + σ̂ ln o1, and ln t2 = µ̂ + σ̂ ln o2.
This gives us the first estimate of µ and σ . The ith es-
timate comes from ti and ti+1 and the final estimates are
obtained by averaging individual estimates. The method
for normal distribution is similar; the equations do not
have a logarithm on either side.

4.3 Optimal Wait Duration

Once the underlying distribution is estimated, the next
step is selection of the optimal value of the wait dura-
tion to maximize the quality (CALCULATEWAIT in Pseu-
docode 1, and Pseudocode 2). As before, we focus our
attention only on the quality contributed by a single ag-
gregator, since the contribution of different aggregators
to the overall quality is independent of each other.

At a high level, the intuition is to model the expected
gain and loss in qualities due to a small additional wait.
We next formalize the gain and loss in quality. For
ease of understanding, we present the analysis for a two-
level tree (§4.3.1), before generalizing it to a n-level tree
(§4.3.2).

4.3.1 Two-level tree

Consider an aggregator that has waited for t units of time
and has not received all the outputs. A small additional
wait of ∆t can result in additional responses being col-
lected by the aggregator.

Improvement in Quality: The probability that a
process’s output is received by the aggregator in time
(t, t +∆t] is given by a =

(
φX1(t +∆t)− φX1(t)

)
, where

φX1 is the CDF of X1. The number of additional out-
puts from processes received in the ∆t interval, then,
is a binomial random variable with success probability
a. The expected number of additional outputs received
(given that the random variable is binomial) is then k1a,

8These are values that are available online or can be computed quite
accurately using a simple simulation.
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where k1 is the maximum number of outputs (fanout)
that an aggregator can collect. These additional pro-
cesses add to the quality of the final response only if they
reach the top-level aggregator in time whose probability
is b = φX2(D− (t +∆t)). The expected gain due to these
additional outputs is given by multiplying a with b:

k1(φX1(t +∆t)−φX1(t)) ·φX2(D− (t +∆t)) (1)

Since quality is the fraction of process outputs, the ex-
pected gain in quality is obtained by dividing the above
expression by k1.

Reduction in quality: The additional wait of ∆t, how-
ever, might lead to all the outputs of the aggregator
(including the additional garnered ones) not being in-
cluded in the final result. This happens if the aggrega-
tor itself misses its deadline and is ignored altogether.
The expected number of outputs received till time t is

k1
(φX1 (t)−[φX1 (t)]

k1)
1−[φX1 (t)]

k1
(Appendix C). The probability that

the deadline is missed due to the additional waiting is
φX2(D− t)− φX2(D− (t + ∆t)). However, the above
loss only occurs if all the outputs have not been col-
lected by the aggregator, which happens with probabil-
ity
(
1− [φX1(t)]

k1
)
. Thus, the expected loss in process

outputs is obtained by multiplying the above three ex-
pressions:

k1(φX1(t)− [φX1(t)]
k1) · (φX2(D− t)−φX2(D− (t +∆t)))

(2)
Dividing the above expression by k1 gives us the ex-
pected loss in quality.

4.3.2 Extension to n-level tree

Denote the number of levels in the aggregation
tree to be n, the fanout of each level denoted
by k1,k2, . . . ,kn, and stage duration distributions by
X1,X2, . . . ,Xn; X1 being the lowermost stage. Denote
qn(D,X1,k1,X2,k2, . . . ,Xn,kn) (abbreviated as qn(D)
whenever X1,k1, . . . ,Xn,kn can be treated implicit) to be
the maximum quality (in expectation) of this aggregation
tree. The previous section formulated the gain and loss
in q2.

To extend our formulation to more than two levels, we
devise a recursive formulation by expressing the gain and
loss in qn in terms of qn−1. The key observation that we
make is that the maximum quality achieved under a cer-
tain deadline, qn(D), is exactly the same as the maximum
probability that a particular process’ output reaches the
root. This happens only when each aggregator in the hi-
erarchy selects the optimal wait-duration. For a single
level tree, q1(D) is simply the probability of a process
output reaching the (only) aggregator by the deadline D.
Thus, q1(D,X1,k1) = P[X1 ≤ D] = φX1(D).

Therefore, the changes to the expressions for gain and
loss of quality are as follows.

procedure CALCULATEWAIT(D, k1, Distribution X1)
. Also uses Distributions Xi’s and ki’s for higher

levels (global)

double wait← 0 . Wait Duration
double q← 0; bestQ← 0 . Quality
for double c = 0; c≤ D; c += ε do

. Incremental search in steps of ε

double G = QUALITYGAIN(c,X1,k1) . Eqn. 3
double L = QUALITYLOSS(c,X1,k1) . Eqn. 4
q+← G−L
if q≥ bestQ then

bestQ← q
wait← c

return wait

Pseudocode 2: Calculation of the optimal wait duration
by balancing gain and loss. The optimal wait duration de-
pends on the distributions X1,X2, . . . ,Xn, deadline D and the
fanouts k1,k2, . . . ,kn.
Improvement in quality: The probability that the addi-
tional outputs collected in ∆t reach the root is qn−1(D−
(t +∆t),X2,k2, . . . ,Xn,kn), i.e., the maximum achievable
quality for the n− 1 level tree beginning at X2 (abbrevi-
ated as qn−1(D− (t +∆t)) below). For a two level tree,
this is q1(D−(t+∆t),X2,k2)= φX2

(
D−(t+∆t)

)
. Thus,

the expression for gain in quality for a two-level tree, or
q2, is

(
φX1(t +∆t)−φX1(t)

)
·q1

(
D− (t +∆t),X2,k2

)
,

Equation 1. Thus, the expected gain in quality for an
n-level tree is:(

φX1(t +∆t)−φX1(t)
)
·qn−1

(
D− (t +∆t)

)
(3)

Reduction in quality: To get the expression for n levels,
we need to replace φX2(.) by qn−1(.) in Equation 2 which
gives:(

φX1(t)−[φX1(t)]
k1
)
·
(

qn−1
(
D−t

)
−qn−1

(
D−(t+∆t)

))
(4)

The loss in q2 is
(

φX1(t) − [φX1(t)]
k1
)
·
(

q1(D −

t,X2,k2)−q1(D− (t +∆t),X2,k2)
)
, Equation 2.

This recursive nature enables us to simply extend our
algorithm to any number of levels.

4.3.3 Picking Wait Duration

Pseudocode 2 describes the algorithm for picking the op-
timal wait duration. Note that since the closed form so-
lution is not known, we compute the wait duration by
searching the space in small increments of ε . The net
change in quality is the difference between the expres-
sions in Equation 3 and Equation 4. We pick the value
of wait duration which maximizes the quality. By keep-
ing the value of ε to be small, we can reduce the dis-
cretization error. Note that while Pseudocode 2 provides
a serial exploration of the space for wait duration, the
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exploration is easily parallelizable, i.e., we can perform
the calculation for each value of ε independently. Fur-
ther, one can simply precompute these wait-durations for
recorded distributions.

5 Evaluation
We evaluate Cedar using an implementation over the
Spark framework [15] and a simulator. We first explain
the methodology of our evaluation before proceeding to
present the results.

5.1 Methodology

Implementation: We implement Cedar’s algorithm over
Spark [15]. Spark caches data in-memory allowing for
fast interactive querying. For this, we first implement an
aggregator that can do partial aggregation, i.e., send re-
sults upstream after some timeout even when a subset of
the lower level tasks have completed. Along with mi-
nor changes in the scheduler, we are able to run an entire
partition aggregate workflow. Finally, we implement the
baseline and Cedar’s algorithm in the aggregators to se-
lect appropriate wait-duration. The total code is ∼ 300
LOC in Scala; but Cedar’s algorithm took < 50 LOC.
We deploy Cedar on an EC2 cluster of 80 quad-core ma-
chines (320 slots to run processes).
Simulator: Our simulator mimics aggregation queries
and can take as its input different fanout factors, dead-
lines, as well as distributions (both real-world distribu-
tions as well as synthetic). We use the simulator to eval-
uate Cedar’s sensitivity to fanout values (§5.4), and when
there are multiple levels in the aggregation tree(§5.5).
Workloads: We simulate Cedar using production traces
from Facebook’s Hadoop cluster [18], RTT values in
Bing’s search values [6], task duration statistics from
Bing’s production analytics cluster [18], and statistics
from Google’s search cluster [10]. We also evaluate
the effect of variances in the distributions by syntheti-
cally injecting them to the original traces. For the latter,
we change the parameters of a log-normal approximation
learned from the traces.

Primary Workload: We use the production traces from
the Facebook cluster as our primary workload where we
have exact durations of map and reduce tasks per job.
For a particular job, process durations are given by the
map tasks and aggregator durations are given by the re-
duce tasks. In this way, we are able to replay individual
jobs. Since, we have perfect information of task dura-
tions, we are also able to dissect Cedar’s performance in
detail (§5.3).

While this workload is not user-facing, we believe
it to be representative of cluster variations. Regard-
less, Cedar’s algorithm is robust to different distributions
as shown by a comprehensive evaluation on workloads
based on both production and synthetic traces (§5.6 and

§5.7).
Topology: We use a two level hierarchy for all our ex-
periments (except when experimenting with multiple lev-
els). Unless otherwise specified, the fanout at the lower
level is fixed at 50 (based on values in Bing’s cluster [6])
and the upper layer fanout is also set to be 50. For Spark
results, we set the lower layer fanout to be 20 and upper
layer fanout to be 16 giving us a total of 320 processes.
We also analyze the sensitivity of Cedar’s gains to the
fanout.
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(a) Spark Implementation

51%

33%

22%

17%

100%

11%

FacebookMR

Proportional-Split Cedar Ideal

(b) Simulation

Figure 7: Improvement in Response Quality. X1 is per
Facebook’s Map distribution and X2 is per Facebook’s Re-
duce distribution for different queries. The fanout at both
levels is fixed at 50.

Metric: Our figure of merit is the increase in av-
erage response quality compared to the baseline of
“Proportional-split” defined in §3. Proportional-split es-
timates the distribution in every level in the hierarchy
from previous queries by fitting the best parameters.
Therefore, if the quality of response achieved with our
baseline and Cedar is QualityB and QualityC respectively,
the improvement is defined as 100× QualityC−QualityB

QualityB
.

We also report other percentile values, when appropri-
ate, to show the spread in improvements. Further, we
also compare Cedar’s performance to the “ideal” scheme
described in §3. The ideal scheme is aware of distribu-
tion of process durations of all queries, and represents
the maximum achievable improvement.

We start with the highlights of our results.
• Response quality improves by over 100% with
Cedar compared to straw-man solutions. The abso-
lute value of the quality goes to over 0.9. (§5.2)

• Online estimation of distribution parameters using
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Figure 8: CDF of Percentage improvement of individual
queries. The deadline is set to 1000s. We only look at
queries having > 5% quality in the baseline approach to
prevent percentage improvement from being unreasonably
high.

order statistics results in less than 5% error even
with very few samples. (§5.3)

• Cedar’s gains hold up for different fanouts and dif-
ferent distributions. (§5.4 and §5.7)

• Cedar’s importance only increases with number of
stages in aggregation trees. (§5.5)

• Cedar’s algorithm is robust across different distribu-
tions. (§5.6 and §5.7)

5.2 Improvement in Response Quality

Figure 7 plots the average response quality achieved by
Proportional-split as well as Cedar, along with the rela-
tive improvements for the Facebook workload.9 Our re-
sults show three key points. First, Cedar significantly im-
proves the quality of the response over Proportional-split
(the improvements lie between 10−197% in deployment
and 11−100% in simulation). These results reinforce the
extent to which variations in the distribution can affect
response quality and the importance of picking the right
wait duration. Second, while Cedar consistently pushes
the quality to over 0.9 at deadlines > 1000s, the baseline
cannot achieve a similar quality even at a humongous
deadline of 3000s. Third, Cedar’s performance closely
matches that of the ideal system that is aware of process
distribution of the query beforehand (Figure 7b).

Figure 8 plots the distribution in improvements at the
deadline of 1000s. 40% of the queries see their quality
improve by over 50%. However, the bottom one-fifth
of queries see little gains. This is primarily due to the
long tail in the distribution of process durations in these
queries, leaving little scope for improvement in quality
regardless of the wait duration. Improvement in quality
of these queries will occur only by specific techniques
that reduce systemic and network contentions. Efforts to
that end are focus of many current research projects, and
Cedar’s algorithms will beneficially coexist with them.

5.3 Dissecting Cedar’s Learning

We next turn to dissecting Cedar’s performance to better
understand the reasons behind the improvements. There

9We prune the trace to only consider jobs with > 2500 map tasks
(for 2500 processes) and > 50 reduce tasks (for 50 aggregators).
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Figure 9: Variation in % error in estimation of the µ and σ

parameters of Facebook’s distribution (log-normal with µ

= 4.77 and σ = 0.84) with the number of responses that have
arrived at the aggregator (maximum of 50). The baseline is
the empirical estimates for µ and σ from the responses.
are two factors in Cedar’s learning mechanism contribut-
ing to its gains—eliminating bias in received samples us-
ing order statistics (§5.3.1); and a simple yet accurate
online learning algorithm (§5.3.2).

5.3.1 Estimation using Order Statistics

Recall from §4.2 that Cedar uses order statistics to esti-
mate the mean µ and standard deviation σ of the distri-
bution. This helps us to eradicate the error in its estimates
despite being provided a biased sample of durations from
only the early processes. We compare it with an “empiri-
cal” technique that estimates the mean and standard devi-
ation directly from the available responses, and is hence
susceptible to biased samples.

Figure 9 compares the error in Cedar’s estimation to
the empirical technique, as the number of samples in-
creases. Cedar’s estimation of µ is not only more ac-
curate, the error also drops off to less than 5% when at
least ten processes have completed. Error in estimation
of σ is relatively higher (∼ 20%), however it has a lesser
effect on the wait duration. This is also evidenced by
Cedar’s improvements closely matching an ideal scheme
(Figure 7).

Regardless, Cedar’s improvements in response quality
are 30− 70% higher than the empirical technique (Fig-
ure 10), due to the use of order statistics in its learning.

3

Proportional-Split Cedar with empirical estimates

Cedar

FacebookMR+Empirical+Spark

Figure 10: Spark implementation results showing that
Cedar’s learning algorithm provides significant benefits
over using empirical estimates for the parameters.

5.3.2 Importance of Online Learning

Cedar estimates the wait duration by learning the pa-
rameters of the distribution per query in an online fash-
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ion. Such learning has significant impact on perfor-
mance. To illustrate this, we consider the processes
in the aggregation tree to be first operating at a lower
load than Facebook’s map distribution, and use a log-
normal(2.77,0.84) distribution to model X1 (i.e., we
keep σ to be as per the Facebook’s distribution but with
lower µ). Figure 11 shows what happens when the load
increases, and the distribution becomes the same as Face-
book’s map distribution. If Cedar’s optimal wait-duration
computation algorithm is used when the load is low, then
the quality of the responses was > 90%. However, if the
same wait-duration (that was ideal previously) is used
when the load increases then the quality of responses
drops. Since Cedar learns the distribution in an online
fashion, it is able to cope with such load fluctuations.

FacebookMR*Offline*Spark

10

Proportional-Split Cedar without online learning

Cedar

Figure 11: Spark implementation results showing that
Cedar copes well with load fluctuations that can increase
(or decrease) mean process durations by learning the dis-
tributions in an online fashion.

5.4 Effect of Fanout

While our experiments so far have assumed a fanout
of 50 at both levels based on values from Bing’s clus-
ter [6], we evaluate the performance of Cedar with differ-
ing fanout values using our trace-driven simulator.

Equal fanout at both levels. We vary the fan-out value
of both the levels in the hierarchy and plot the results in
Figure 12a. We observe that at lower values of fanout,
Cedar’s gains are slightly lower. This is because at lower
values of fanout, there are quadratically fewer processes
and hence reduced variation between process durations.
Therefore, the potential gains achievable by Cedar are
slightly less. However, beyond a fanout of 25, Cedar’s
estimation starts showing value with ∼ 50% gain.

Different fanout across levels. We now compare the
performance of Cedar for differing values of fanout in
the two hierarchies. The fanout in the upper level of the
hierarchy, k2, is set to 50 while the lower level’s fanout,
k1, is varied between 5 and 50. Figure 12b plots the im-
provement in response quality with the ratio of k1 to k2.
Beyond a value of 0.2 for the ratio, the improvements sta-
bilize and hover around 55%. Varying the ratio of k1 over
k2 to over 1 does not change the trend in improvements.

0 10 20 30 40 50
Fanout k1 =k2

0

20

40

60

80

100

% 
Im

pr
ov

em
en

t 
in

 
 R

es
po

ns
e 

Q
ua

lit
y

(a) Same Fanout

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Fanout k1 /k2

0

20

40

60

80

100

% 
Im

pr
ov

em
en

t 
in

 
 R

es
po

ns
e 

Q
ua

lit
y

(b) Different Fanout

Figure 12: Simulation results showing that Cedar’s gains
hold up when the structure of the aggregation tree changes.
In (a), we keep the fanout at both the levels. In (b), we
choose different fanout for the lower-level while keeping the
upper-level fanout at 50. The deadline is set to 1000s.
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Figure 13: Simulation results showing that Cedar performs
even better when the number of levels in the aggregation
tree increases.

5.5 Multiple Stages

Given that Cedar’s formulation is recursive, it is directly
applicable to aggregation trees with more than two stages
in the hierarchy. To evaluate if Cedar’s gains hold up
when the number of levels in the hierarchy increase,
we consider a 3-stage aggregation tree. We model the
lowest level using Facebook’s Map distribution and the
upper two levels using Facebook’s Reduce distribution.
Figure 13 compares the percentage improvement in re-
sponse quality over the baseline (proportional-split) for
a two-level and a three-level aggregation tree. Since,
the three-level would require higher deadline values to
achieve the same quality, we instead plot quality of the
baseline approach on the x-axis to make a fair compar-
ison. We observe that not only Cedar’s gains hold up,
they provide greater improvements for higher number of
stages. This is because Cedar near-optimally balances the
deadline among the different stages which becomes more
crucial as the number of stages increase.

5.6 Other Production Workloads

In this section, we consider a number of different setups
based on other production workloads.
Interactive workload: The Hadoop workload at Face-
book, while representative of performance variations en-
cumbering large clusters, has really large process and ag-
gregator durations. We consider a workload where the
lower stage is modeled as per the Facebook’s map dis-
tribution (albeit expressed in ms) and the upper stage is
modeled by the Google’s distribution (already in ms).
Thus, this workload has higher variations in the lower
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Figure 14: Improvement in Response Quality. X1 is per
Facebook’s map distribution and X2 is per Google’s distri-
bution. The fanout at both layers is 50.Cosmos
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Figure 15: Improvement in Response Quality. X1 is per
Cosmos’s extract distribution and X2 is per Cosmos’s full-
aggregate distribution. The fanout at both levels is fixed at
50.
stage compared to the upper stage. We believe this to be
representative of partition-aggregate workflows for the
following two reasons. First, processes at the lower lev-
els perform arbitrary user-defined functions and hence
are susceptible to multiple local systemic contentions (as
in the Facebook traces), while aggregators perform rel-
atively standard functions and are more influenced by
networking and scheduling factors (as in the Google and
Bing traces). Second, variation in process durations is
statistically expected to be higher than among aggrega-
tors because there are far more of them in a query. Since
the Facebook distribution has much higher variation than
the Google trace, our assumption helps match the statisti-
cal expectation. The deadline is varied from 140−170ms
(based on quoted deadlines values for production search
queries [5, 2]). Figure 14 plots the results. Cedar provides
significant improvements over the baseline algorithm and
manages to nearly match ideal performance even in this
scenario.

Analytics cluster at Bing: We obtained statistics about
the task duration values from an analytics cluster run-
ning in production at Bing. We run Cedar on this work-
load. The lower stage is modeled using the statistics from
extract phase with a mean duration of 422s and stan-
dard deviation of 1006s; and the upper stage is modeled
as per the full-aggregate phase with a mean duration of
193s and standard deviation of 92s. Despite the fact that
Cedar’s online learning algorithm is not in play here due
to the lack of task durations per job, Cedar provides con-
siderable improvements in response quality as shown in

Figure 15 and comes close to the ideal scheme. We ex-
pect the improvements to only be higher if the per-job
task durations were available.
Similar Distribution at both stages: We also used sim-
ilar distribution for X1 and X2, that are derived from each
of Bing, Google and Facebook distributions. We evalu-
ate Cedar for varying values of σ of X1, i.e., the lower
stage.10 The upshot is that Cedar’s performance contin-
ues to match the gains of an ideal scheme.
Bing’s Distribution: We consider the case where both
the stages are distributed as per the Bing distribution (a
log-normal fit with parameters, µ = 5.9 and σ = 1.25,
in µs). We are interested in the case when both lev-
els have different amount of variabilities and thus, vary
the σ parameter of the process duration distribution. We
plot the % improvement over Proportional-split and also
compare against the improvement of the ideal scheme in
Figure 16a.
Google Distribution: We perform a similar experiment
as above when both stages are distributed as per Google’s
cluster (log-normal fit with parameters, µ = 2.94 and σ

= 0.55 in ms). Figure 16b shows how the performance
gains (compared to Proportional-split) varies as the vari-
ability increases among process durations.
Facebook Distribution: Finally, we use the distribution
from Facebook’s Hadoop cluster logs for X2 and samples
from a log-normal fit for these map-task durations for
X1, studying the performance gains as one induces more
variance in the first stage in Figure 16c.

5.7 Other Distribution Types

Since all our traces fit the log-normal distribution, our
results thus far, were based on that. To demonstrate that
Cedar is agnostic to the type of distribution, we evalu-
ate its performance with the Gaussian distribution. The
experiment uses a two-level tree with process durations
distributed normally with mean 40ms at both the levels;
the standard deviation being 10ms and 80ms for the top
and bottom levels respectively (keeping variance at bot-
tom level higher than above levels). As Figure 17 shows,
while the percentage improvements are smaller than the
log-normal cases, Cedar achieves quite high absolute val-
ues of quality. This is expected given that normal distri-
butions are not heavy tailed.

6 Discussion and Related Work
Straggler mitigation techniques work to reduce the vari-
ability in task durations [8, 9, 7, 5, 21, 6]. First, Cedar can
complement these mitigation techniques, since stragglers
still occur despite them (as seen in our traces). Second,
by virtue of being reactive, straggler mitigation tech-
niques fail to work effectively when process durations

10The results for varying σ of X2 look similar and we omit them in
the interest of space.
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(c) Facebook-Facebook
Figure 16: Same Distributions: Percentage Improvement in Response Quality as the σ parameter of X1 is varied. µ

parameter of log-normal distributions X1 and X2 and σ parameter of X2 are obtained from (a) Bing, (b) Google, and (c),
Facebook distributions.
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Figure 17: Cedar’s performance with the Gaussian distri-
bution. The percentages on the bars denote the improve-
ment that Cedar provides over Proportional-Split.

are sub-second, as for interactive queries [9], whereas
Cedar still works well. Third, while straggler mitiga-
tion techniques attempt to remove variance from within
a query (or a job), some queries are inherently more ex-
pensive (computationally or otherwise) than other. Cedar
tailors a query-specific wait duration to improve applica-
tion performance.
In approximate analytics, recent work, GRASS [3], has
looked at mitigating stragglers in approximate-analytics.
Unlike GRASS, Cedar’s benefits hold whether or not
a stage is single-wave (the common case for partition-
aggregate style workloads, e.g., web-search) or multi-
wave. This is because while GRASS primarily focusses
on the question of which task to schedule when a slot
frees up within one stage of a job, Cedar focuses on
optimizing the wait time between stages. This leads
to two important differences. First, GRASS considers
each stage of a job independently; Cedar optimizes the
stages jointly (by optimizing wait-durations at aggrega-
tors). Second, GRASS’s scheduling benefits only “multi-
wave” stages in a job – i.e., stages with more tasks than
slots available. Cedar treats the question of when and
how tasks should be scheduled as orthogonal. Thus, in
summary, the two are complementary.
Deadline-aware scheduling has garnered significant at-
tention recently, both in systems [22, 23, 24] and net-
working [25, 2, 11, 26] communities. The networking
community has focussed on meeting flow deadlines such
that the application throughput (analogous to response
quality) is maximized. However, such approaches aim
to improve the performance of a single level. Cedar’s
approach is end-to-end, in that it aims to maximize the

final response quality without worrying about individual
stages. The systems community has also been looking at
providing job SLOs [22], but the focus has been on jobs
that require exact results which do not trade-off quality
of the response with its latency. Kwiken [24] improves
performance of request-response workflows using a vari-
ety of techniques including request reissues, catching-up
on laggards, and trading off accuracy for responsiveness.
Cedar’s approach is closest to the last technique in that it
solves the dual problem of maximizing accuracy under
a desired responsiveness. Cedar differs as it considers
the entire partition-aggregate workflow in a holistic way.
Further, Cedar’s online learning algorithm using order-
statistics can aid in determining reissue budget across
stages in a better way.

Consider the alternate system model of running an
approximate-query system where the deadline is set such
that x% of the process outputs are collected at the root.
This imposes a threshold on response quality instead
of its latency. Since Cedar’s algorithm is solving the
dual problem, it can be applied to such systems as well,
i.e.,Cedar can provide the same quality threshold (x%)
at a lower deadline value thereby improving query’s re-
sponse time.

7 Conclusion

We formalize the dilemma that an aggregator faces whilst
deciding whether it should wait for additional time in the
hope of getting new process outputs, or to stop in or-
der to meet the upper-level deadline. We show that wait-
time duration selection has great potential (over 100%) to
improve the quality of responses within tight time bud-
gets. Our solution Cedar, builds upon (i) an algorithm
to perform online estimation of stage-duration distribu-
tion parameters; and (ii), a theoretically optimal algo-
rithm to maximize the expected quality given the distri-
butions. We show that Cedar achieves near-optimal im-
provements in response qualities under a variety of dis-
tributions, most notably so when there is high variability
in the system.
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Figure 18: Goodness of log-normal fit for Facebook Data.
(a) shows that the part of the distribution that Cedar is inter-
ested in is much more accurately modeled by a log-normal
fit compared to the original distribution. (b) shows that the
coefficient of determination (r2 value) is greater than 0.9 for
more than 90% of the jobs

A Weighted Process Outputs
Consider the case when each process output is not
equally important. Denote w :O→ [0,1] to be the quality
function that assigns a weight to x ∈ O between [0, 1].
The constraint is that ∑x∈O w(x) = 1. Given that Cedar
maximizes the response quality in expectation the analy-
sis in §4.3 holds true. For example, the additional quality
garnered due to an additional waiting of ∆t can be written
as Eq = ∑x∈O w(x) · px where px denotes the probability
that the output comes in the interval (t, t +∆t]. Clearly,
px is still equal to φX1(t+∆t)−φX1(t) and is independent
of x. Therefore, Eq = px ∑x∈O w(x) = px. The analysis
for other terms is also similar to this and thus, the algo-
rithm holds.

B Goodness of Fit
We characterize the goodness of fit for our data. As
stated before, we checked against a variety of distribu-
tions and log-normal distribution gave us the best fit.
This section aims to characterize how well did the data
fit the log-normal distribution. We took logarithm of the
durations to test the normality of data using a quantile-
quantile plot [27]; being interested the r2-values (coef-
ficient of determination). A linear quantile-quantile plot
illustrates a linear relationship between the data and the
model. For the Facebook data, we observed that a large
number of queries had low r2-values, the outliers mostly
being in the initial values and towards the tail. For the
purposes of Cedar, the initial few outputs will always
be aggregated even with a non-optimal value of wait-
duration. Further, given the long-tail behavior of the
data, higher percentiles, say 99% or 99.5%, will be strag-
glers which will not be aggregated irrespective of any
optimization of the wait-duration. We remove the first
10% and the last 0.5% of the data and observe that the
fit improves considerably. As an example, consider Fig-
ure 18a which shows a job for which the coefficient of
determination goes up from 0.77 to 0.99 when the dataset
is trimmed slightly. The CDF for the 100 jobs sampled

from the set is plotted in Figure 18b both for the original
as well as trimmed durations. The coefficient of determi-
nation is greater than 0.9 for more than 90% of the jobs.

Bing’s data had a heavier and longer tail compared
to Facebook’s data (considered per query), e.g., the 99th

percentile was 42× the median value. Even the 95th per-
centile was 15× the median value. Thus, we truncated
the distribution till 95th percentile giving us a coefficient
of determination of 0.98 (compared to 0.94 when the dis-
tribution was truncated to 99th percentile).

C Expected Number of Process Outputs
Consider one of the bottom-most aggregators in the ag-
gregation tree with X1 as the the distribution of process
durations and k downstream processes. We explain the
calculation for the number of responses that this aggrega-
tor has received till time t, N(t). The conditional expecta-
tion that we want is E[N(t)|N(t) 6= k], since the decision
on waiting more arises only when more outputs have to
arrive. Denote the probability of receiving a particular
output by time t by p = φX1(t). The probability of not
receiving all outputs by time t is P[N(t) 6= k] = 1− pk.
The conditional probability of receiving r process out-
puts by time t given N(t) 6= k is P[N(t) = r|N(t) 6= k] =
(k

r)pr(1−p)k−r

1−pk for r < k, and 0 for r = k. The conditional
expectation can now be derived as follows:

E[N(t)|N(t) 6= k] =
k−1

∑
r=1

r P[N(t) = r|N(t) 6= k]

=
k−1

∑
r=1

r

(k
r

)
pr(1− p)k−r

1− pk

= k
p

1− pk

k−1

∑
r=1

(
k−1
r−1

)
pr−1(1− p)k−r

= k
p

1− pk

k−2

∑
m=0

(
k−1

m

)
pm(1− p)k−1−m

= k
p

1− pk

[( k−1

∑
m=0

(
k−1

m

)
pm(1− p)k−1−m

)
− pk−1

]
= k

p
1− pk

[
1− pk−1

]
= k

φX1(t)− [φX1(t)]
k

1− [φX1(t)]k
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