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Matrix Multiplication Algorithm Selection
with Support Vector Machines

Omer Spillinger∗†, David Eliahu§†, Armando Fox‡†, and James Demmel¶

Abstract—We present a machine learning tech-
nique for the algorithm selection problem, specifically
focusing on algorithms for dense matrix multiplica-
tion. Dense matrix multiplication is a core component
of many high-performance computing and machine
learning algorithms [1], but the performance of matrix
multiplication algorithms can vary significantly based
on input parameters and hardware architecture. We
build performance models for multiple machines using
support vector machines (SVMs) [2] and show that only
a sparse exploration of the input space is sufficient to
accurately predict the best choice of algorithm over a
wide range of possible inputs. We find that by using this
classifier-based approach to choose the best algorithm
to use at runtime, we are able to achieve as much as
a 26% increase in average performance over choosing
a single algorithm a priori. This is within 1.5% of the
performance possible with a perfect algorithm selector.

I. Introduction
Algorithm designers produce an ever-increasing set of

techniques for solving an ever-wider set of problems. The
factors that influence an algorithm’s performance are
complicated, and building an accurate analytical model
given input parameters and hardware platform can require
extensive domain expertise. Performance can vary signifi-
cantly from system to system due to differences in factors
such as memory hierarchy and number of processors. For
these reasons, selecting the optimal algorithm for a partic-
ular problem has become a challenge in itself, particularly
in fields where performance is critical such as scientific
computing and machine learning.

When there exist multiple algorithms that solve the
same problem, the typical approach is to always use the
algorithm with the best average performance on a given
problem distribution. However, this is problematic because
there are many algorithms that are uncompetitive on
average, but are ideal for some problem instances with
certain sets of inputs [3].

The benefits of algorithm selection are twofold: per-
formance can be optimized for all problem instances,
and algorithm designers can focus on developing separate
algorithms that target different portions of the problem
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space. A solution to the algorithm selection problem would
enable the development of libraries that could intelligently
choose the optimal algorithm for a particular set of inputs.
Users would be oblivious to the underlying algorithmic
implementation, confident that the library will choose the
proper algorithm for the given inputs and hardware.

An analytical approach to this problem—developing a
theoretical model of algorithm performance a priori—
is not sensible in most cases. Such models are complex,
and building one requires significant effort and domain
expertise. More importantly, this approach does not gen-
eralize since performance models are dependent on both
the algorithm and the performance characteristics of a
particular machine.

One could also take an empirical approach: simply
measure how algorithms perform on a given machine under
different inputs. A naïve solution would be to exhaustively
search the space of possible inputs; this is intractable
in the general case, and even in situations where the
range of possible inputs is finite, exhaustive search is time
consuming.

The complexity of performance modeling lends itself to a
machine learning approach. Rather than building a model
of machine performance that depends on factors such as
the memory hierarchy and number of cores, we train a
classifier on a set of training examples to predict the best
algorithm to use for a particular machine. In contrast to
exhaustive search, a classifier-based approach need not
explore a large portion of the search space. The user can
make an explicit tradeoff between classifier accuracy and
training time.

In this work, we present and evaluate an SVM-based
algorithm selector for the problem of dense matrix mul-
tiplication. We choose this problem for several reasons.
First, matrix multiplication is an important component of
many scientific computing and machine learning tasks, and
it is often the performance bottleneck for those tasks [1].
Thus, even relatively small performance gains for ma-
trix multiplication can translate into significant savings
for large tasks. Second, matrix multiplication is easily
parameterizable—in general, performance is dictated by
the dimensions of the input matrices. Finally, a plethora
of matrix multiplications algorithms exist in the literature.
We explore two implementations: the Intel Math Kernel
Library (MKL) algorithm [4], and the communication-
avoiding recursive algorithm, CARMA [5]. The CARMA
and MKL implementations are substantially different,
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which leads to noticeable variation in relative performance
across different machines.

We evaluate our algorithm selector on a set of rect-
angular matrix multiplication problems ranging in size
from 64 × 64 to 4096 × 4096 (a state space of over 65
billion possible inputs) and on three hardware platforms.
All problems we explore fit in DRAM on all of our
machines. We define accuracy as the fraction of times
the faster algorithm is chosen by our classifier. Despite
wide variations in performance across multiple machines
for both CARMA and MKL, we show that our classifier
achieves accuracy ranging from 85% to 87%.

Contrary to standard classification problems, our key
measure of success is not classification accuracy—rather,
we aim to maximize the average performance improve-
ment of algorithm selection over preselecting a single
algorithm. Higher classifier accuracy does not necessarily
imply higher average performance because for problem
sizes where the two algorithms have similar performance,
choosing the faster algorithm does not have a significant
effect on the average performance. Our technique yields
performance that, in the worst case, falls within 1.5%
of a perfect algorithm selector. Compared to choosing
a single algorithm in advance, our approach increases
average performance by up to 11% versus CARMA alone
and 26% versus MKL alone.

II. Contributions
In this work we offer a methodology for solving the

algorithm selection problem. We build a model using SVM
to predict relative algorithm performance at runtime. In
addition, we weight training datapoints in order to build
a model that correctly classifies a higher percentage of the
problem instances with the most significant performance
variations. We show the potential of this approach for
linear algebra algorithms, as we achieve up to a 26%
performance improvement over selecting a single algorithm
in advance.

III. Related Work
The idea of using machine learning techniques to im-

prove performance on complex architectures is not new.
In fact, the algorithm selection problem has been defined
as early as 1976 [6]. Increasingly complicated machine
architectures and compilers motivate a shift from theo-
retical to empirical approaches. However, most literature
on this topic focuses on autotuning for templated code
optimization problems using regression models [7]. Our
approach is not limited to autotuning within an algorithm
template, as we are more interested in performance varia-
tions between paradigmatically different algorithms (such
as industry-standard linear algebra algorithms and their
communication-avoiding counterparts) [5].

One way to tackle algorithm selection involves distilling
problems into a set of features from which to model
runtime performance. After collecting performance data

from sample problems, regression may be used to learn a
real-valued function of the features [3]. This process can
be repeated for an arbitrary number of algorithms for a
given type of problem. The best algorithm to select would
be the one with the lowest predicted runtime based on the
available models. Unlike our SVM [2] approach, which uses
relative performance to determine the optimal algorithm,
this approach allows for portable models without other
algorithms as dependencies. In other words, our approach
builds models that are only effective for selecting an
algorithm from the set of algorithms that were used in
training the classifier. However, high prediction accuracy
requires sufficient domain expertise to define appropriate
features, e.g. memory access patterns and parallelism char-
acteristics. Our SVM approach requires no such domain
expertise.

Autotuning has also been used for solving NP-complete
problems such as propositional satisfiability (SAT). The
algorithms required for these problems are highly complex.
Therefore, empirical studies are far more practical than
theoretical analysis for modeling their performance. There
is no single algorithm that is optimal for all SAT problem
instances. Together, the infeasibility of theoretical models
and the performance variations between SAT algorithms
motivate building empirical hardness models (computa-
tionally inexpensive predictors of algorithm runtime) [8].

The algorithm selection problem can also be modeled
as a Markov decision process (MDP). Different algorithms
that solve a given problem represent actions, and state
transitions occur when recursive calls are made. Cost is
derived from the time required to solve a problem. The
objective is to determine a policy that minimizes expected
execution time. If a recursive algorithm generates multiple
subproblems, the MDP is cloned for each of the state
transitions [9]. This research focuses on using reinforce-
ment learning in order to make optimal algorithm selection
decisions at each recursive call. The machine learning is
tightly coupled with the algorithm’s execution whereas
SVM treats algorithms as black boxes.

Another relevant research topic is the improvement
of exhaustive search techniques. Heuristics may be used
for terminating exhaustive search early if near-optimal
implementations are found. In addition, run-time decision
rules can be used to select fast implementations based
on run-time input [10], [11]. Although this approach is
similar to ours, it explores a two-dimensional rather than
three-dimensional space of tuning parameters and tunes
variables within a single algorithmic template while we
focus on algorithm selection.

Algorithm selection is highly relevant to compiler re-
search. The PetaBricks programming language allows
users to express algorithm selection at the language
level [12]. Similarly, OpenTuner [13], a general framework
for program autotuning, supports algorithm selection. The
framework demonstrates effective usage of ensembles of
search techniques to explore complex search spaces. Our
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TABLE I: Machines used in this study.

Machine Cores Threads CPU Type
Hopper 24 24 AMD ‘MagnyCours’
Emerald 32 64 Intel Xeon X7560
Boxboro 40 80 Intel Xeon E7-4860

SVM approach for algorithm selection could be integrated
into the OpenTuner project in order to enhance its auto-
tuning capabilities.

IV. Data
Our project takes an empirical approach to the algo-

rithm selection problem. Thus, our first step is to collect
the data from which to build our model.

A. Generating Data
We featurize matrix multiplications based on the di-

mensions of the input matrices: m, k, and n. These
features represent the size of each dimension of a matrix
multiplication of the form A × B, where A is an m × k
matrix and B is a k × n matrix. We generate random
dense matrices with real-valued floating point numbers.
The matrices range in size from 64×64 to 4096×4096, and
we vary each dimension in 10 evenly-spaced increments
across this range. Note that this means we generate a
variety of rectangular matrices, not just square ones.

This step results in 1000 matrix multiplications (i.e.,
combinations of m, k, and n). We run each of these
matrix multiplications using both of our algorithms under
test (MKL and CARMA) and record the performance of
each multiplication in billions of flops per second (Gflops).
We repeat each multiplication fifteen times and compare
the max performance for each algorithm (because max is
the best measure of an algorithm’s peak performance on
a given machine)1. We performed this process on three
separate machines, building three independent models.
The machines we used are shown in Table I.

To multiply the matrices, we wrote a custom timing
mechanism in C to measure the performance of MKL and
CARMA. Our program allocates three matrices (A, B, and
C), initializes them with random floating-point numbers
between -1 and 1, and warms the cache before each trial.
To ensure that the computation takes sufficient time for
accurate measurements, we multiply enough matrices such
that the total time of all multiplications is at least 0.2
seconds. We then divide the total time by the number of
multiplications to calculate the time for a single matrix
multiplication. To compute Gflops, we divide 2−9∗m∗k∗n
by the time for a single multiplication2.

1We found that fifteen iterations is the number sufficient to mea-
sure maximum performance on our machines.

2Each entry of the resulting m×n matrix C requires 2k operations
(k multiplies and k adds), hence this total for Gflops.

B. Limitations
Our data has a few limitations. First, our largest matrix

is 4096 × 4096. While this is a large matrix, it still fits
in DRAM on all of our machines; we did not explore ex-
tremely large matrix sizes, though we believe our technique
is general enough to scale to those as well. Secondly, some
of our machines exhibit significant variability across mul-
tiple multiplications of the same dimensions. The average
coefficients of variation were 0.08, 0.05, 0.11 for Hopper,
Emerald, and Boxboro, respectively. This variability is a
result of how the matrices are allocated across NUMA
regions, which we do not control. To accurately evaluate
how fast the multiplication would run with an ideal data
layout, we took the max performance measurement over
fifteen trials. Our classification results were strong (see
Section VII), so we do not believe that this approximation
had a major impact on our evaluation or the significance
of our results.

V. Training
As described in section IV-A, we featurize dense matrix

multiplication using the sizes of the input matrices: m, k,
and n. We train our classifier on evenly-spaced datapoints
within this three-dimensional space.

We view our training data as points within a d-
dimensional space, where d is the number of features (or
input parameters). In our case, d = 3 because our features
are the matrix dimensions m, k, and n. Our goal is to train
a classifier to identify which regions within the entire d-
dimensional parameter space should be solved by which
algorithm.

A. SVM Configuration
SVM is a powerful tool for solving pattern classification

problems. However, its main drawback in our application
is that datapoints in the training data set are all given
equal weight in determining the optimal partitioning of the
space. Weighted support vector machines (WSVMs) allow
the relative importance of datapoints to be taken into
account. One application of WSVM is reducing the impact
of outliers on the classification rate [14]. We are trying to
do the opposite: in our case, an outlier represents an area
of the parameter space where one algorithm significantly
outperforms the other. We would like to ensure that these
areas of extreme performance variation are correctly clas-
sified, even if it means misclassifying neighboring regions
where performance variation is not as pronounced.

Intuitively, we expect the decision boundary to be highly
nonlinear. Therefore, we choose to use support vector ma-
chines for classification, as these are known to have good
performance for nonlinear classification [2]. Specifically, we
use LibSVM’s [15] implementation of SVM. We select the
Gaussian radial basis function (RBF) kernel [16] due to its
high performance on non-linear spaces, and set the RBF
constant (gamma) to 1.0−6. We use the standard SVM
algorithm C-SVC [2], [17] with a cost parameter of 1.0.
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Fig. 1: Training results for each machine. Green dots
represent datapoints where MKL is faster, and red dots
represent datapoints where CARMA outperforms MKL.
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Fig. 2: Heat plots. Color scale is a polynomial function
of how much faster one algorithm is than the other (see
legend for scale).
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Fig. 3: Histograms of CARMA performance relative to
MKL for training data.
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Fig. 4: Histograms of selected algorithm performance rel-
ative to the optimal algorithm for test data.
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Finally, we set the weight wi for each class i to 1.0 so that
no algorithm is inherently favored over another.

B. Training Data

We trained the classifier on three different machines:
Hopper, Emerald, and Boxboro (see Table I). For each
machine, we used the maximum number of available cores.

Our results, shown in Figure 1, were surprising. While
we expected some machine-to-machine variation, the re-
gions where each algorithm performs better are substan-
tially different across machines. We do not have a the-
oretical model to explain this variation, which further
illustrates the value of our empirical machine learning
approach. This is a key result: techniques that do not
consider per-machine variation are certain to use the
wrong algorithm in many cases. We also note that the
regions of optimal performance for each algorithm are in
fact nonlinear.

C. Weighting the Data Instances

Some regions of the parameter space may exhibit ex-
treme performance variation. In these cases, it is beneficial
to classify those regions correctly at the expense of mis-
classifying other areas where each algorithm’s performance
is comparable. In order to address this, we use Weighted
SVM (WSVM) [14]. This allows us to assign a weight
to each training point. The magnitude of each weight
depends linearly on the performance improvement of the
faster algorithm relative to the slower algorithm. The
lower a training example’s weight, the less significant that
datapoint is in creating the model.

For a given sample point s, Pf (s) is the performance in
Gflops/sec of the faster of the two algorithms and Ps(s)
is the performance of the slower algorithm. We choose a
scalar constant C, and compute the weight w(s) by the
following formula:

w(s) = C ·
(

Pf (s)
Ps(s) − 1

)
With this weight function, more of the regions with

high performance disparities are correctly classified. We
choose C = 5.0 (we achieved the best performance with
this value) and use the WSVM implementation from the
LIBSVM Tools library [15].
Figures 2 and 3 shows the relative performance variation

between MKL and CARMA for the entire parameter
space. There are clear regions where correct classification
improves our performance metric significantly, even if they
are small regions that don’t drastically affect classifier
accuracy. Although there are some apparent performance
patterns across machines (namely matrices with large
k and small m and n are consistently dominated by
CARMA), algorithm selection is not trivial in most re-
gions.

TABLE II: Classifier Accuracy.

Machine Accuracy
Hopper 86.8%
Emerald 87.0%
Boxboro 84.6%

VI. Classifying
To evaluate our classifier, we randomly generate values

for m, k, and n within our training space. For each of the
three machines, we generate 1000 datapoints (a datapoint
being a (m, k, n) tuple) and replicate our data-collecting
procedure to time the multiplications. We use this data as
the basis to evaluate our classifier. For each test datapoint,
we use the SVM model for the specific machine to generate
the classifier’s prediction. Given the predicted labels and
the true algorithm performance measurements, we are
ready to evaluate our classifier.

VII. Evaluation
We evaluate classifier performance as well as selection

performance. The former shows how accurate our model
is, while the latter shows how valuable our model is for
improving overall performance.

A. Classifier Performance
To evaluate the classifier’s performance, we measure

its accuracy. We simply divide the number of correctly
classified test datapoints by the total number of test
datapoints. The classifier achieved above 84% accuracy on
each of our machines. See Table II for complete accuracy
results and Figures 5 and 4 for a visual representation of
the test data.

B. Selection Performance
We also performed tests to quantify the benefit of using

our algorithm selection technique. The question we wish
to answer is: how much performance do we gain by using
our classifier to select the optimal algorithm? The answer
depends on the machine, as well as what algorithm would
have been chosen otherwise.

In order to quantify the value of using our algorithm
selector, we calculated four statistics based on the test
data. Selection vs CARMA Only and Selection vs MKL
Only measure the average percent improvement of using
the selector to choose an algorithm versus always choosing
CARMA or MKL, respectively. These statistics include
the penalty of incorrect algorithm selections, and provide
insight into the value of using our classifier for algorithm
selection.

We also compare our technique to both the best and
worst case scenarios. Gain Over Worst measures the
average gain in performance of our classifier over the
worst possible algorithm at each datapoint. Similarly, Loss
Under Best measures how far our classifier is from a 100%
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Fig. 5: Testing results for each machine. Blue dots rep-
resent datapoints where our classifier correctly predicts
which algorithm was faster, and orange dots represent
incorrect classifications.
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Fig. 6: Convergence plots for each machine. High accuracy
is achieved with very few training samples.
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ideal algorithm selector: it simply averages the percent loss
of our classification versus the correct classification for all
data points.

The highest Selection vs CARMA Only is 10.8% (on
Hopper), and the highest Selection vs MKL Only is 25.7%
(on Boxboro). Boxboro also yields a Selection vs CARMA
Only of 9.1%, which shows that one cannot simply choose
the “better on average” algorithm and always expect to
achieve near-optimal performance across the parameter
space. In fact, all three machines show relatively “bal-
anced” performance in the sense that neither CARMA nor
MKL dominate the majority of the parameter space. These
are the cases in which our algorithm selection technique
provides the greatest value. All of these statistics are
shown in detail in Table III.

The average performance loss resulting from an incor-
rect classification ranges from 12% to 14%, indicating that
the majority of misclassifications occur in areas where
CARMA’s and MKL’s performance are comparable. By
comparison, the Average Correct Classification Gain (i.e.
the average performance gain of correctly classified data-
points) ranges from 27% to 43% (see Table VI). In other
words, when we correctly classify a datapoint, the faster
algorithm is on average 27% to 43% faster than the slower
algorithm. Also, the most extreme performance gap is
an 11× speedup of CARMA over MKL (on Boxboro).
Therefore, Average Misclassification Error rates of 12%
are relatively low, especially considering that misclassifi-
cations occur at only 14% of the test datapoints (accuracy
is roughly 86%).

Our algorithm selection technique is very close to op-
timal: on the three machines tested, Loss Under Best
never exceeds 1.5% on average. In other words, using
our classifier’s set of selected algorithms yields at least
98.5% of the maximum performance possible across the
set of test data we used. This attests to the value of
our classifier; although accuracy does not exceed 87% (see
Table II), performance reaches at least 98.5% of optimal.
These statistics are shown in detail in Table III.

C. Impact of Weighting Datapoints

Table IV shows the performance gains of our classifier
without using weighted datapoints (as described in Sec-
tion V-C). Comparing Table IV with Table III shows that
on all three machines, for all four statistics described in
Section VII-B, the weighted SVM classifier outperforms
the unweighted version. Therefore, we conclude that using
weighted SVM for algorithm selection is superior to using
unweighted SVM.

D. Properties of Misclassifications

For any complex performance space (such as ours), we
can expect that our algorithm selector will not always
choose the optimal algorithm. The data shows this: al-
though we get close to optimal performance (1.1% to 1.5%

below optimal, see Table III), we still have some misclassi-
fications. Table V shows Average Misclassification Error,
which is the average performance penalty of misclassified
datapoints3.
An important observation is that the majority of incor-

rect classifications occur on or near the decision bound-
aries our classifier generates. This is due to the fact that
along these decision boundaries, the performance of MKL
and CARMA is comparable: on any given trial, CARMA
may slightly outperform MKL, or MKL may marginally
beat CARMA. Therefore, the algorithm that our classifier
selects along a decision boundary may not match the
given instance of test performance data that we gathered,
even though the actual performance difference is relatively
minor. These misclassified marginal points explain why
classifier accuracy is roughly 86%, while performance is
within 1.5% of optimal.

To visualize this phenomenon, we simplify the problem
by reducing it to two-dimensional algorithm selection. By
only considering datapoints along planes within the three-
dimensional parameter space, we are able to train and test
a two-dimensional classifier (see Figure 7)4. Observe that
in the two-dimensional planes that we chose (namely the
k − (m = n), m − (k = n), and n − (m = k) planes),
incorrect decisions occur near the boundary determined
by our SVM classifier.

E. Classifier Convergence
As with all other classifiers, our algorithm selection tech-

nique requires the user to specify how many datapoints
will be used to train the model. This exposes a tradeoff:
classifier accuracy versus training time. The more training
datapoints we use, the better the model. However, once
our classifier has converged, additional training points
do not improve the model and require extra time and
resources to generate.

In order to measure how many datapoints are required
to train an accurate classifier, we explore the effects of
reducing the size of our training set. In this experiment,
we randomly select X% of our original 1000 training
points, for X ranging from 1% to 100%. After training our
classifier with this random X% subset of our training data,
we measure the resulting accuracy on the test data. We use
accuracy to track classifier convergence (rather than one
of the performance metrics described in Section VII-B)
because although we are concerned with performance,
the classifier is considered “trained” when accuracy has
converged.

Figure 6 shows these convergence plots for each ma-
chine. It is immediately apparent that we need much
fewer than 1000 training datapoints to build an accurate

3Average Misclassification Error only takes into account misclas-
sified datapoints, and does not consider gains of correctly classified
datapoints.

4We use MATLAB [18] to generate the SVM model due to
MATLAB’s built-in ability to show the decision boundary.
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Fig. 7: 2D versions (for visualization purposes). All data generated on Emerald. Observe that the majority of incorrect
classifications (orange dots in testing plots) occur along the decision boundary, where CARMA and MKL exhibit
similar performance behavior.
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TABLE III: Runtime performance gains of our algorithm selector.

Machine Selection vs
CARMA Only

Selection vs
MKL Only

Gain Over
Worst Selection

Loss Under
Best Selection

Hopper 10.8% 14.1% 26.3% -1.4%
Emerald 10.5% 11.7% 23.4% -1.1%
Boxboro 9.1% 25.7% 36.3% -1.5%

TABLE IV: Runtime performance gains of our algorithm selector (without weighting datapoints).

Machine Selection vs
CARMA Only

Selection vs
MKL Only

Gain Over
Worst Selection

Loss Under
Best Selection

Hopper 9.7% 12.5% 24.8% -2.5%
Emerald 10.0% 10.7% 22.4% -1.6%
Boxboro 9.0% 25.5% 36.1% -1.7%

TABLE V: Average performance penalty of misclassified
data points (does not consider correctly classified data-
points).

Machine Average
Misclassification Error

Hopper 13.7%
Emerald 12.3%
Boxboro 12.7%

TABLE VI: Average performance gain of correctly clas-
sified data points (does not consider misclassified data-
points).

Machine Average Correct
Classification Gain

Hopper 30.4%
Emerald 26.8%
Boxboro 42.9%

model. Of course, the actual number of training points
required will vary by machine and algorithm. For example,
Boxboro requires roughly 100 datapoints to build an accu-
rate model, whereas Hopper and Emerald require 150-200
datapoints to converge. This is due to the fact that per-
formance patterns on Boxboro are less complex. We don’t
have a theoretical model to understand this complexity,
further validating the value our empirical approach.

VIII. Future Work
In this project, we examined dense matrix multiplication

on three shared-memory machines. However, the approach
of using SVM to partition a feature space based on algo-
rithm performance patterns can be generalized to a wide
variety of other algorithms and architectures. We aim to

evaluate additional linear algebra algorithms such as QR
decomposition and sparse matrix multiplication. Further-
more, we are interested in gathering data on distributed-
memory machines in which higher communication costs
magnify the performance gains that can be achieved by
communication-avoiding algorithms such as CARMA.

In addition to exploring algorithms for problems other
than matrix multiplication, we aim to study the effect of
a higher-dimensional feature space on the performance of
our algorithm selection methodology. Moreover, we are
interested in evaluating our approach on a set of more
than two algorithms for solving a particular problem. Our
current weighting system does not generalize to sets of
three or more algorithms. We seek to maximize the number
of cases in which the selected algorithm offers significantly
better performance than the alternative algorithms. On
the other hand, correctly classifying datapoints in which
the algorithms’ exhibit comparable performance is lower
priority. When there are only two algorithms, the for-
mula must only account for the relative performance of
algorithm A versus algorithm B. In the three algorithm
case, one must account for the performance of algorithm
A versus algorithm B, algorithm B versus algorithm C,
and algorithm A versus algorithm C. It would be necessary
to devise a more general weighting formula that ensures
that the optimal algorithm is selected when the impact on
performance is greatest.

IX. Conclusion

We’ve tackled the problem of algorithm selection for
HPC and machine learning problems, specifically focusing
on dense matrix multiplication. This problem is challeng-
ing due to the complexity of analyzing machine perfor-
mance a priori and due to per-machine variation in algo-
rithm performance, the latter of which was dramatically
reflected in our training results. We found that using SVM
for algorithm selection can be valuable, with performance

10



improvements of up to 26% over preselecting a single algo-
rithm. Moreover, achieving that level of accuracy requires
a small training set—only a few hundred data points in
our experiments.

We believe this technique has promise for improving the
performance for a variety real applications. The status quo
requires developers to think carefully about the machines
and data their applications will use, analyze the expected
performance, and then choose their algorithm appropri-
ately, hoping they’ve made the right choice for all cases.
This need not be the case: we’ve demonstrated that our
approach is feasible and in general improves performance,
with up to 26% increase in performance in the best case,
and within 1.5% of optimal algorithm selection.
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