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Abstract

In mathematical modeling of genetic regulation networks, the classical assumption is that the direction

of regulation by a regulator (activation or repression) on a specific target gene is fixed. However exper-

imental studies have suggested that the direction of gene regulation might be concentration-dependent.

Earlier modeling work assumed only specific transcription factors behave in this concentration-dependent

manner. Nevertheless, based on our in vivo DNA occupancy measurements of transcription factors and

target gene mRNA expressions, we propose that concentration-dependent activation or repression might

be a more general phenomenon. More specifically, we assume a regulator is activating at low concen-

trations and repressing at high concentrations, and we use the regulation of even-skipped stripe 2 (eve2)

during Stage 5 of Drosophila embryogenesis as a case study. Our general approach is to describe the dy-

namic evolution of target mRNA concentration using a set of parametric Ordinary Differential Equations,

which incorporate target gene mRNA transcription and degradation, and transcription factor expression

and in vivo DNA occupancies. We show our model is better at predicting regulator importance and

the effect of transcription factor mutations than two commonly used monotone models, where each reg-

ulator either activates or represses the target gene, but not both. In addition, our model generates

spatial-temporal maps of factor activity, highlighting the times and spatial locations at which different

transcription factors might regulate target gene expression levels. Finally, we use our model to design

mutation experiments that help us to verify our assumption of concentration-dependent regulation by

determining whether transcription factors that are currently thought to either only activate or repress

eve2 in fact act in a concentration-dependent manner.

1 Introduction

Precise control of spatial-temporal gene expression patterns by transcription factors plays a central role in

metazoan development. Quantitative, predictive mathematical models of this process are attractive because

they provide precise hypotheses about the behavior of the system which can then be tested experimentally.

These models take as input the protein expression patterns of transcription factors and seek to predict the

output RNA patterns that these proteins drive via specific cis-regulatory regions (CRRs). Two of the central

questions that these models address are which transcription factors function on each CRR and do these

proteins activate or repress transcription and if so with what shaped mathematical function?

To select which transcription factors regulate a given CRR, models to date have used either qualitative

biological information, generally derived from molecular genetic experiments, or the existence of strong
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correlations between input transcription factor protein expression and the output CRR driven mRNA pattern

[1, 2]. Many of these models have in addition determined the level at which each transcription factor binds

to the CRR using in vitro data for the affinity of the proteins for specific DNA sequences, provided from

a Position Weight Matrix (PWM) [3, 4]; whereas the other models have not employed DNA binding data

[1, 2, 5, 6].

The above models, however, are unlikely to accurately reflect the range of transcription factors bound

to CRRs in cells or their levels of DNA occupancy. In vivo crosslinking studies establish that CRRs are

each bound in cells by more sequence specific DNA binding proteins than the 3-6 typically included in

previous models [7]. Several tens of proteins can be bound to a single CRR over a range of DNA occupancies

that result in regulatory responses varying from strong to weak [7]. In addition, measured levels of in vivo

DNA occupancy are poorly predicted by models that use PWM data alone because they do not take into

account competitive inhibition by nucleosomes or cooperative DNA binding between regulatory proteins [4, 8].

Therefore, to better represent the situation in vivo, here we have established models that rely strongly on in

vivo crosslinking data for a large number of the major regulators within a network. Our goal is to determine

how accurately output patterns can be predicted given in vivo DNA binding data and what mathematical

functions best describe the likely regulatory behavior of transcription factors in controlling CRR output.

Most spatio-temporal models have assumed that the direction of regulation by a transcription factor

(activation or repression) on a specific target CRR is fixed [9, 10, 11, 12, 13, 14, 15]. For example, linear,

Hill, and Exponential models as well as sign-definite Boolean networks have all been used to represent

such monotonic regulation. A number of experimental studies [16, 17, 18, 19, 20] and several modeling efforts

[21, 22, 2, 5], however, have suggested that the direction of gene regulation might depend on the concentration

of the transcription factor in the cell. For example, three animal transcription factors have been shown to

activate some targets at low concentration but to repress them at higher concentrations [16, 17, 18, 19, 20].

In addition, here we show that of the relationship between measured transcription factor DNA occupancy

in vivo and the rate of change in transcription for a specific CRR is best fit by a gaussian function that

implies that most transcription factors activate the CRR when they are bound at low levels yet repress it

when they occupy it at higher levels. Therefore, we have compared models that use two of the most common

monotonic functions, Hill and Exponential, and a Gaussian function that allows concentration dependent

effects to determine which more accurately reflects the known properties of the system.

To develop our models, we have examined control of the even-skipped stripe 2 (eve2)CRR by a set of 14

regulators in the Drosophila blastoderm embryo. The eve2 CRR is one of the most thoroughly characterized

developmental CRRs and the blastoderm network has been subject to extensive genetic screens that have

identified the majority of transcription factors that convey spatial patterning information to it [30, 25, 26, 23].

As part of the Berkeley Drosophila Transcription Network Project (BDTNP), we have previously generated

in vivo DNA binding data for 17 of the major regulators of spatial patterning in the Drosophila blastoderm

[23] and have also established a cellular resolution, three dimensional VirtualEmbryo that quantitates the

expression patterns of many transcription factors and their targets. To allow our proposed models, here we

have extended the VirtualEmbryo to include the LacZ reporter gene expression pattern driven by the eve2

CRR.

In preliminary models that did not employ DNA binding data, we previously showed that the regulation of

eve gene expression was more accurately captured by Ordinary Differential Equations (ODEs) that fit to the

rate of change in mRNA expression than by static models that examined correlation between transcription
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factor and target gene expressions at a fixed time point [20]. Therefore, here we have again adopted (paramet-

ric) ODEs and have posed the parameter estimation problem as the optimization of a squared loss function

between the experimentally measured wildtype mRNA patterns and the model’s predictions. Our results

show that models based on in vivo DNA binding data for many transcription factors predict the measured

spatial-temporal patterns driven by the eve2 CRR quite well. A Gaussian model that allows concentration

dependent effects agrees better with experimental genetic data on how transcription factors control the eve2

CRR than does monotonic models and also agrees more closely with the relative importance of each tran-

scription factor suggested by rank order of measured levels of DNA occupancy of the transcription factors in

vivo. This result suggests that concentration dependent effects may be more common than previous studies

suggest. Finally, we use our model to design mutation experiments that test our prediction of concentration-

dependent regulation by determining whether transcription factors act in a concentration-dependent manner

or not.

1.1 Model of transcription control

The eve2 CRR is most strongly patterned along the Anterior/Posterior (A/P) axis of the Drosophila blasto-

derm embryo. Genetic screens have identified nine transcription factors that initiate developmental patterning

along this axis of the embryo: the A/P early transcription factors Bicoid (Bcd), Caudal (Cad), Dichaete (D),

Giant (Gt), Hunchback (Hb), Huckebein (Hkb), Knirps (Kni), Krüppel (Kr), and Tailless (Tll). All nine

of these regulators have been found to bind at moderate to high levels to the eve2 CRR in vivo [23]; and

although classic molecular genetic studies have only shown that four of these proteins directly regulate this

CRR (BCD, GT, HB and KR) [24, 30, 25, 26], there is no evidence that the other five proteins do not.

Therefore, we have included all nine of the A/P early regulators in our models to explore the potential role of

each factor. Genetic screens have also identified additional transcription factors that control developmental

patterning either along the A/P axis at later times or along the Dorsal/Ventral (D/V) axis. A number of

these additional regulators also bind to the eve2 CRR in vivo, though generally at lower levels than the

A/P early regulators [23]. D/V regulators have been shown to have weak (∼ 30%) effects on the expression

levels of eve stripe 2 [27] and a modest role for late A/P regulators cannot be ruled out. Therefore, we have

included five of these further regulators in our models so that they more realistically represent the complex-

ity of transcription factor DNA binding in vivo and capture weak regulatory events to which this CRR is

potentially subject: Dorsal (Dl), Paired (Prd) and Runt (Run), Snail (SNA), and Twist (TWI).

To model the control of the eve2 CRR by these 14 transcription factors, we first measured expression

for all 14 of these proteins and for the LacZ reporter mRNA driven by this CRR at four consecutive ∼ten

minute intervals during the blastoderm stage. Expression was measured by multiphoton microscopy and

the resulting image data was transferred into our VirtualEmbryo to quantitate expression in each of the

∼ 6, 000 cells of the embryo at each interval (e.g. Fig. 1). The transcription factor protein expression data

was then used to calculate the level of each protein binding to the eve2 CRR in each cell by disaggregating

chromatin immunoprecitation with microarray technology (ChIP-chip) DNA binding measurements obtained

from whole embryos (Fig. 1). The ChIP-chip data for all transcription factors was first normalized such that

the most highly bound regions in the genome had the same score, and thus the scores on the eve2 CRR

reflect the relative strength of binding of each protein versus its most strongly controlled target genes. Our

disaggregation of the ChIP-chip scores on the eve2 CRR assumes that for a given transcription factor, DNA

occupancy in each cell is proportional to the protein’s expression (Fig. 1). Previous modeling of in vivo DNA
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binding suggests this assumption is a reasonable approximation as the chromatin accessibility is similar in

most cells at this stage of development and interactions between transcription factors, which could modify

occupancy differently in different subsets or cells, is limited [4].
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Figure 1: Overview of modeling approach. Flow diagram showing model input and output for a simplified
version of the eve2 CRR with 5 transcription factor inputs. Cellular protein concentration of each tran-
scription factor (top left) is used to disaggregate the whole embryo in vivo ChIP-chip measurements of DNA
binding of that transcription factor (top right) on the eve2 CRR into each cell of the embryo. This compu-
tation is shown for one particular time point and three cells located anteriorly, centrally and posteriorly on
the lateral side of the embryo (middle panel). Outcome of the model is a spatial-temporal expression pattern
of eve2 mRNA (bottom panel). Result at one particular time point is shown here. We show gene expression
and protein concentration data in two formats: as a three-dimensional embryo or as a two-dimensional rect-
angular projection of the unrolled surface of an embryo. All three-dimensional embryo images in this paper
are shown with anterior to the left, posterior to the right, dorsal to the bottom and ventral to the top. All
two-dimensional projections of embryos are shown with anterior to the left, posterior to the right, ventral in
the middle and dorsal in the top and bottom.

Our model then takes these spatial-temporal patterns of DNA binding as input and predicts the spatial-

temporal expression pattern that the CRR produces. The transcriptional process is modeled by a set of ODEs

that takes the expression pattern of eve2 mRNA at the first time point Stage 5:9-25 as an initial condition

to simulate eve2 mRNA pattern for all subsequent time points.
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1.2 Gaussian relationship between transcriptional rate and DNA binding

Since LacZ mRNA has a half-life of less than 6 min, which is shorter than the time scale of gene expression

changes, it is plausible to assume that the expression of mRNA is proportional to the transcriptional rate [3].

We also approximated the DNA binding of transcription factors as constant between successive measurement

time points. Then, to determine the relationship between transcriptional rate and the level of DNA binding

of transcription factors, we plotted the change in LacZ mRNA expression in each cell between two successive

time points versus the binding of each factor in that cell during this time interval (Fig. 2). We found

that while some transcription factors, such as Hb, showed a monotone correlation between the level of

transcription factor binding and the change in transcriptional output between subsequent time points, many

other transcription factors showed a more complex relationship. It appeared that many transcription factors

activate the eve2 CRM when they are bound at low binding levels and repress this same CRM at higher

binding levels.

Thus, we performed hypothesis testing for monotonicity on each transcription factor’s regulation data,

using the methods described in [28]. The null hypotheses are that the relationship between transcriptional

rate and the level of DNA binding of a transcription factor is either monotonically increasing or monotonically

decreasing, which corresponds to transcription factors being either activators or repressors. Corrections for

multiple testing were made using weighted Bonferroni, where the weights are the transcription factor ChIP-

chip scores. Corrected p-values for each hypothesis test are shown in Table S1. We found that at a 5%

significance level, the null hypotheses are rejected for Kr and Gt. In other words, for these two transcription

factors, the correlation data support the idea that they act in a concentration dependent manner. We do

not feel at this stage one can rule out the possibility that some of other transcription factor may also act in

a concentration dependent manner given the apparent ‘up’ and ‘down’ relationships seen in Fig. 2.

As a result, for each regulator, we plotted three functions that each minimized the sum of squared

error between their functional values and the experimentally measured changes in mRNA expression. The

monotone functions, Exponential and Hill, represent models where transcription factors are either activators

or repressors, whereas the Gaussian function can be used to describe concentration-dependent activation

or repression by transcription factors. Performances of the three functions were compared using weighted-

root-mean-square-error (Ew−RMS). For each function, we computed its Ew−RMS by first computing the

square root of the sum of squared fitting errors for each transcription factor and then, a weighted average

across all 14 transcription factors using factors’ ChIP-chip scores as weights. We found that the Gaussian

function’s Ew−RMS was marginally less than those of the two monotone models (Table 1). This suggested

that Gaussian functions might be a reasonable candidate for describing the rate of transcriptional regulation

when controlled by a set of factors bound to the CRR.

2 Mathematical Model

2.1 CRR binding data

We compute the CRR-binding levels of transcription factors in each cell using cellular resolution transcription

factor proteins’ expression data and embryo resolution ChIP-chip binding data. Let xi,j(t) ∈ R+ and ci,j(t) ∈

R+ represent the CRR-binding level and protein expression of the ith transcription factor in the jth cell at
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Figure 2: Change in mRNA expression versus DNA binding of transcription factors. Horizontal axis repre-
sents the DNA binding level of a transcription factor in one cell at time t. Vertical axis represents the change
in mRNA expression in the same cell between time t and t+1. Each blue data point corresponds to one cell
in the embryo between two given measurement time points, and are taken from experimental data. Solid red
curve represents the Gaussian function that minimizes the RMS error, in the vertical direction, between the
curve and experimental data points. Solid green curve represents the Exponential function that minimizes
the same RMS error. Dashed magenta curve represents the Hill function that minimizes the same RMS error.
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Table 1: Comparison of best fit Gaussian, Exponential and Hill functions to change in LacZ mRNA expression
versus transcription factor binding data in Fig. ??

Gaussian Exponential Hill
Ew−RMS 0.2627 0.2667 0.2639

% increase in Ew−RMS compared to Gaussian - 1.6 0.5

Table shows the root-mean-square (RMS) error for each function; weighted by transcription factor ChIP-chip
scores (Ew−RMS), and the percentage increase in Ew−RMS of the Exponential and Hill functions compared to the

Gaussian function, respectively. Ew−RMS =

∑

i

(

wi|| ¯δyi − δyi||
)

∑

i
wi

, where ¯δyi is the vector of measured change in

LacZ mRNA expression between 2 successive time points in each cell for the ith transcription factor, δyi is the
same change in LacZ mRNA expression predicted by Gaussian/Exponential/Hill functions and wi is the ChIP-chip
score of the ith transcription factor.

time t, respectively. In addition, we use bi to represent ChIP-chip score of the ith regulator. Finally we

denote the time that ChIP-chip measurements are taken as τ . The binding level of the ith transcription

factor in the jth cell at time t is then approximated using

xi,j(t) =
bici,j(t)

∑J
j=1

ci,j(τ)
(1)

for i = 1, . . . , I and j = 1, . . . , J , where I is the number of transcription regulators and J is the number

of cells in the embryo. This method follows the law of mass action applied to the elementary reaction of

binding between regulator proteins and nucleotides on the CRR. This binding model has been successfully

applied by others [4, 49].

2.2 CRR transcription model

We model the regulation of eve2 expression by 14 transcription factors: Bicoid, Caudal, Dichaete, Dorsal,

Giant, Hunchback, Huckebein, Knirps, Krppel, Paired, Runt, Snail, Tailless and Twist. We define a vector

y(t) := [y1(t), y2(t), . . . , yJ(t)]
T ∈ R

J
+, whose components represent the concentration of eve2 mRNA in a

single cell, and use a parametric model where we have a group of Ordinary Differential Equations (ODEs)

with unidentified parameters. Each ODE describes the dynamics of eve2 mRNA concentration yj inside a

single cell:

dyj

dt
= k

∏I
i=1

fi(xi,j)− λyj , (2)

where xi,j is as defined in Sec. 2.1 and k, λ ∈ R+ are unknown parameters. Furthermore, fi represents

the regulation function for the ith transcription factor. Its mathematical form depends on the transcription

model under consideration:
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Gaussian model: fi(xi,j) = exp

(

−
(xi,j − ρi)

2

ω

)

,

Exponential model: fi(xi,j) = exp (ρixi,j) ,

Hill model: fi(xi,j) = 1A(i)

(

xω
i,j

ρωi + xω
i,j

)

+ 1R(i)

(

1−
xω
i,j

ρωi + xω
i,j

)

,

(3)

where ρi ∈ R, i = 1, 2, . . . , I and ω ∈ R+ are further unknown parameters, A is the set of activators and

R is the set of repressors. In addition, 1χ(·) : {1, 2, . . . , I} → {0, 1} is the indicator function where 1χ(i) = 1

if i ∈ χ and 1χ(i) = 0 if i 6∈ χ. The first term in Eq.2 represents the effect of transcription factor regulation

on eve2 and the second term represents mRNA degradation.

The sign of the partial derivative of the regulation function fi with respect to the binding level xi,j and

evaluated at a specific binding x∗

i,j ,
∂fi
∂xi,j

(x∗

i,j) , indicates the regulatory direction of transcription factor i in

cell j at the binding level x∗

i,j . If
∂fi
∂xi,j

(x∗

i,j) > 0, then for a unit increase in the binding level of transcription

factor i, keeping all remaining transcription factors’ binding unchanged, the value of the function fi will

increase. Hence the rate of transcription of the mRNA,
dyj

dt
, will also increase. This corresponds to an

activating effect. On the other hand if ∂fi
∂xi,j

(x∗

i,j) < 0, then for a unit increase in the binding level of the ith

transcription factor, fi and hence
dyj

dt
will decrease. This corresponds to repressive effect. The magnitude of

this partial derivative represents the strength of regulation. Note that the direction and strength of regulation

depends both on the function fi and the binding level x∗

i,j .

For monotonic models, the regulation function fi is such that, given i and j, ∂fi
∂xi,j

(x∗

i,j) is of the same

sign for all x∗

i,j ≥ 0, i = 1, 2, . . . , I and j = 1, 2, . . . , J . For the Exponential model,

∂fi

∂xi,j

(x∗

i,j) = ρi exp
(

ρix
∗

i,j

)

. (4)

Therefore if transcription factor i’s corresponding parameter ρi is positive, then Eq. 4 is positive for all

x∗

i,j ≥ 0 . In other words, transcription factor i always activates the transcription of the target gene. On the

other hand, if ρi is negative for transcription factor i, then Eq. 4 is negative for all x∗

i,j ≥ 0, and hence the

transcription factor is always a repressor. Similarly for the Hill model. For an activator,

fi(xi,j) =
xω
i,j

ρωi + xω
i,j

(5)

and its partial derivative is

∂fi

∂xi,j

(x∗

i,j) =
ωρωi x

∗
ω−1

i,j
(

ρωi + x
∗
omega

i,j

)2
≥ 0, ∀x∗

i,j ≥ 0. (6)

For a repressor, the regulation function is

fi(xi,j) =
ρωi

ρωi + xω
i,j

(7)
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and its partial derivative is

∂fi

∂xi,j

(x∗

i,j) =
−ωρωi x

∗
ω−1

i,j
(

ρωi + x∗
ω

i,j

)2
≤ 0, ∀x∗

i,j ≥ 0. (8)

Therefore in monotonic models, transcription factors either always activate or always repress the tran-

scription of the target gene, despite its binding level to the DNA.

In the Gaussian model, whether a transcription factor is activating or repressing the target gene depends

on its binding level. Based on our data, we assume it to be generally activating at low binding levels and

repressing at high binding levels. More specifically, ∂fi
∂xi,j

(x∗

i,j) is positive when x∗

i,j < ρi, corresponding to

up-regulation; and ∂fi
∂xi,j

(x∗

i,j) is negative when x∗

i,j > ρi, corresponding to down-regulation.

2.3 Nonlinear least squares formulation

We define a vector θ, whose components are the parameters of our model. For both the Gaussian and the

Hill models θ := [k, λ, ω, ρ1, . . . , ρI ]
T ∈ {R3

+ × R
I}, and for the Exponential model θ := [k, λ, ρ1, . . . , ρI ]

T ∈

{R2
+ × R

I}.

The parameters are estimated by choosing the set of parameter values with which the model best describes

the experimental data. In other words, we would like to minimize the error between our model’s output and

the data. Recall that our experimental data is a sequence of eve2 mRNA concentrations measured at four time

points, t0, t1, . . . , t3, throughout stage 5 of embryogenesis. Mathematically, this is posed as an optimization

problem

argmin
θ

J(θ) =
∑3

n=1
‖yθ(tn)− ỹ(tn)‖

2

subject to yθ(t0) = ỹ(t0)

dyθ,j

dt
= k

∏I
i=1

fθ,i(xi,j)− λyθ,j , ∀j

k, λ, ω > 0

(9)

where yθ(t) is the vector solution to the set of ODE constraints in Eq. 9 with parameters θ and ỹ(t) is

the set of experimentally measured wildtype eve2 mRNA concentration values from the VirtualEmbryo that

has been processed as described in Sec. 1.1.

2.4 Numerical implementation and algorithms

Values of the function fθ,i can be very small for certain combinations of binding concentrations and parameter

values. Repeated multiplication of small numbers may then cause arithmetic underflow of the product or

arithmetic overflow of the scaling parameter k. To overcome this, we define k̂ := ln(k) and rewrite the ODE

constraints in Eq. 9 as

dyθ,j

dt
= exp

(

k̂ −
1

ω

∑I
i=1

(xi,j − ρi)
2

)

− λyθ,j . (10)
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We solved this constrained nonlinear (and nonconvex) optimization problem using the MATLAB function

fmincon with trust-region-reflective algorithm. The approximated Hessian matrix is computed using finite

differences.

We computed the solution of the ODEs, yθ, and the gradient of the objective function, ∇θJ , analytically

by approximating the binding concentrations of transcription factors as constant between successive measure-

ment time points. With this approximation, the first term in Eq. 10 became a constant for all t ∈ [tn, tn+1),

which we denoted αθ,j,n. Therefore the system became piecewise linear and time invariant:

dyθ,j

dt
= αθ,j,n − λyθ,j , (11)

for t ∈ [tn, tn+1) and n = 0, 1, 2, 3.

This allows us to easily write down an analytical solution for yθ(tn) as a function of yθ(t0), which is

known:

yθ(tn) =
[

∏n−1

l=0
Aθ,n

]

yθ(t0) +
∑n−2

m=0

[

∏n−1

l=m+1
Aθ,l

]

Bθ,m +Bθ,n−1, (12)

where

Aθ,n = exp(− λ(tn − tn−1)) ∈ (0, 1),

Bθ,n = λ−1 (1−Aθ,n)αθ,n ∈ R
J
+,

αθ,n = [αθ,1,n, . . . , αθ,J,n]
T ∈ R

J .

(13)

In addition the gradient of the objective function is given by

∇θJ = 2
∑3

n=1
∇θyθ(tn)

T (yθ(tn)− ỹ(tn)) . (14)

Since the problem is nonconvex, and gradient-based search algorithms only guarantee convergence to local

minima, the fmincon function is repeatedly run for different initial parameter guesses in order to find the

global minimum.

3 Results

3.1 Model fit to training data: wildtype eve2 mRNA

We assessed the fit of our model to the training data, wildtype eve2 mRNA pattern, both qualitatively

and quantitatively. Experimentally measured eve2 stripe, regulated by the early eve2 CRM in this study,

weakens towards the end of Stage 5, and the stripe is stronger in the lateral and dorsal regions than it is in

the ventral region (Fig. 3). Simulation results from our Gaussian model match these qualitative experimental

observations.
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Experimental Data

Gaussian Model

5:9-25% 5:26-50% 5:51-75% 5:76-100%

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Exponential Model

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Hill Model

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Low Expression High Expression

Figure 3: Comparison of model predictions for the training data. The top row of embryos represents the
training data - experimentally measured wildtype eve2 mRNA patterns at 4 time points 5:9-25%, 5:26-50%,
5:51-75% and 5:76-100%. The bottom three rows represent the predictions by the Gaussian, Exponential
and Hill models respectively. The color of each cell in the embryo represents mRNA expression. Red/black
colored cells correspond to higher mRNA expression. Yellow/white colored cells correspond to low/no mRNA
expression. The mRNA expressions in all embryos are plotted on the same scale. Note that the eve2 pattern
at initial time point 5:9-25% is identical for all models and the experimental data. This is because all dynamic
models use the experimental eve2 pattern at time point 5:9-25% as the initial condition for the ODEs.
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Table 2: Mean-Squared-Error (MSE) of each model’s fit to training data (wildtype eve2 pattern)

Gaussian Exponential Hill
26.74 34.64 25.55

Quantitatively, we measured the goodness-of-fit of the model to the training data using mean-squared-

error. Mean-squared-error (MSE) is a commonly used statistical measure of how well model fits experimental

data, where a lower value of MSE qualitatively means that a model better fits the data. Table 2 shows the

MSE of the Gaussian model. Our solution shows low levels of eve2 expression in the anterior and posterior of

the embryo. This is probably because our model only includes 14 out of more than 21 transcription factors

bound to the eve2 CRR at this stage of embryogenesis [23].

In addition, our model is able to produce eve2 mRNA pattern de Novo. In other words, we first trained

the model using a modified training set that contains eve2 mRNA pattern at an additional earlier time point

Stage 5:5-8, which is zero throughout the whole embryo. Then we simulate the learnt model using the set

of normal transcription factor expressions as inputs and zero mRNA expression as initial condition for the

ODEs (Fig. S1).

3.2 Effect of ChIP-chip measurement noise

To validate our model, we investigated how noise in ChIP-chip binding measurements affects our model’s fit to

training data. More specifically, during the training stage, we added zero mean Gaussian distributed random

measurement noise to the ChIP-chip binding data, while keeping both transcription factor and LacZ mRNA

expression data unchanged. We then simulated the trained model using original binding data (without noise)

and transcription factor expression data, and computed the MSE between experimentally measured mRNA

patterns and the model’s results. For each standard deviation of the measurement noise, this training and

testing process was repeated 10 times and the average MSE was recorded.

When the magnitude of measurement noise is small (standard deviation up to ∼ 0.1), the mean squared

prediction error does not increase significantly (less than approximately 10%) (Fig. 4). As noise increases

further, the model’s prediction error increases rapidly. This result provides the first piece of evidence that

our model is not over-fit, as it does not have enough parameters to fit it to noise.

3.3 Model prediction of relative strength of transcription factors

We were also able to determine the relative strengths of transcription factors in the formation of eve2 stripe

pattern predicted by the model. To do this, we simulated mutant embryos in silico. Take Gt for example,

we changed the ChIP-chip binding for Gt to the CRR to α% of its measured (wildtype) value, and kept

the binding of all other transcription factors unchanged. We chose α = 30 for all 14 transcription factors.

We then used the same disaggregation method to re-compute Gt’s binding level in each cell of the mutant

embryo and simulated the mRNA pattern for this Gt mutant. The MSE between this simulation result and

experimentally measured wildtype mRNA patterns was computed. This MSE is larger than that between

our model’s simulation results for the wildtype embryo and the experimentally measured wildtype mRNA

patterns. In particular, a larger increase in MSE from the wildtype simulation results to the mutant results

indicates a transcription factor with stronger regulation power, since its binding levels to the CRR has a
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Figure 4: Mean-squared-error (MSE) of Gaussian model versus standard deviation of ChIP-chip measurement
noise. For each noise standard deviation, independent zero-mean Gaussian noise is added to every transcrip-
tion factor’s ChIP-chip binding measurement. The Gaussian model is trained using this noise corrupted
ChIP-chip data. The trained model is then used to reproduce the training data - wildtype eve2 pattern, us-
ing un-corrupted ChIP-chip binding and transcription factor expression data. The MSE between the model’s
prediction and the experimentally measured pattern is computed. For each noise standard deviation, this
process is repeated ten times and the average value of MSE is plotted here.

larger effect on the resulting transcriptional output. We then ranked all 14 regulators in order of decreasing

importance. This rank list closely matched the rank order of ChIP-chip scores of the transcription factors

(Table 3).

3.4 Model predictions of mutation experiments

Our model was trained using wildtype eve2 mRNA patterns. For model validation, we used our model to

predict genetic mutant patterns of eve2 mRNA. Published experimental results show that decreasing the

binding of Gt causes eve stripe 2 to broaden anteriorly, whereas decreasing the binding of Kr causes the

stripe to broaden into the posterior of the embryo [30, 25, 26, 40, 41]. When Bcd’s or Hb’s binding to

eve2 CRR is reduced, weaker stripe intensities are experimentally observed [29, 30, 25, 26, 41]. Our model’s

predictions correctly capture all the distinguishing features of these four mutations (Fig. 5 shows the mutant

results for Kr and Gt, Fig. S3, S4, S5 and S6 show results for all four mutants).

3.5 Factor activity plots

The model generated by our technique can be visualized as spatial-temporal maps of factor activities. These

maps show the strength and variation of predicted regulation effects of transcription factors at different

positions in the embryo and at different time points. More specifically they plot the amount of change in

the rate of mRNA transcription caused by a unit increase in the transcription factor’s binding. An example

is shown in Fig. 6 for Stage 5:9-25. It shows the regulation effect of 4 transcription factors (directly or

indirectly) on the formation of eve stripe 2. Blue values indicate marginal repressive effects (i.e. a unit

increase in the regulators binding will cause a reduction in the rate of eve mRNA formation), and yellow/red
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Experimental Data
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KR Mutant
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Figure 5: Comparison of model predictions for Gt and Kr mutants. For both (A) and (B), the first row
shows experimental images of the wildtype embryo (left) and mutant embryo (right) from the literature, the
bottom three rows show predictions of the wildtype embryo (left) and mutant embryo (right) by the Gaussian,
Exponential and Hill models respectively. (A) Kr mutation. Experimental images are from [40], and show
eve stripes 2, 3 and 7. Experimentally, stripe 2 expands posteriorly and fuses with stripe 3 in the Kr mutant
embryo. The Gaussian model correctly predicts this posterior expansion of stripe 2 in the mutant. Both the
Exponential and Hill models are not able to produce this. (B) Gt mutation. Experimental images are from
[30]. Only eve stripe 2 is shown. Experimentally, stripe 2 expands anteriorly in the Gt mutant embryo. All
three models correctly predict this mutant behavior.
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Table 3: Comparison of transcription factor ranking as given by ChIP-chip scores and that predicted by each
model

Rank ChIP-chip Gaussian Exponential Hill
1 Kr Kr Gt Gt
2 Gt Gt Twi Hb
3 Kni Hb Kni Sna
4 Hkb D Kr Kni
5 Cad Kni Hb D
6 D Cad Dl Prd
7 Tll Hkb Bcd Kr
8 Bcd Dl D Bcd
9 Run Bcd Tll Tll
10 Dl Tll Sna Cad
11 Hb Run Hkb Run
12 Twi Twi Cad Dl
13 Sna Sna Prd Hkb
14 Prd Prd Run Twi

Transcription factors ranked higher in the list correspond to stronger regulators of eve2 gene.

values correspond to marginal activating effects (i.e. a unit increase in the regulators binding will cause an

increase in the rate of eve mRNA formation).

3.6 Comparison to monotone models

To help the understanding of our Gaussian model and establish its usefulness, we compared it with two

commonly used monotone models: Exponential [3] and Hill [9, 11] model. The performance of three models

is compared under three metrics: MSE, regulator importance ranking and mutation predictions. The MSE

measures the goodness-of-fit of each model to the training data, and a lower value of MSE qualitatively

means that a model better fits the training data. We used Spearmans Rank Correlation Coefficient (SRCC)

to measure the linear correlation between the ranked list of transcription factor strengths predicted by a

model and the rank order of ChIP-chip scores of the transcription factors. SRCC values closer to 1 are

better. Finally for mutation predictions, we compared all three models predictions for Kr, Gt, Bcd and Hb

mutants with published experimental results.

The Exponential model’s MSE was 30% larger than that of the Gaussian model, indicating the former

model has a poorer fit to the training data (Table 2). On the other hand, the Hill model appears to

better fit the training data than the Gaussian model with a 4% less MSE (Table 2). However, examining

the models’ predicted rank order of regulators (Table 4), it is clear that those predicted by the monotone

models correlate less well with the rank order given by the ChIP-chip scores, than the order predicted by the

Gaussian model. Quantitatively, the Gaussian model had a SRCC of 0.78 with the ChIP-chip rank order,

whereas the Exponential and Hill model’s SRCC values were 0.33 and 0.10, respectively. Finally, all three

models correctly predicted weakening in eve stripe 2’s intensity for Bcd and Hb mutants (Fig. S3, S4), and

an anteriorly broadened stripe for Gt mutants (Fig. 5). However both monotone models were not able to

predict the posterior expansion of eve stripe 2 for a Kr mutant, whereas the Gaussian model was able to

(Fig. 5).

To summarize, the Gaussian model outperformed the Exponential model under all three metrics consid-
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Low Expression High Expression

Repression ActivationNo Effect

Figure 6: Transcription factor activity plots. Protein concentrations of four regulators (Bcd, Gt, Hb, Kr)
and their activities (activation or repression) at time point 5:9-25%. Solid black lines delineate the boundary
of eve stripe 2. The first row represents protein concentration. Color of cells represents concentration of
proteins. Red/black colored cells correspond to higher concentrations. Yellow/white colored cells correspond
to little/no protein concentration. The second row represents the regulation activity of each factor. Color
of cells represents the direction and magnitude of regulatory activity. Blue cells indicate repressive effects.
Yellow/red cells correspond to activating effects.

Table 4: Comparison of Spearman’s Rank Correlation Coefficient (SRCC) between the rank order of ChIP-
chip scores of the transcription factors and the rank order predicted by each model

Gaussian Exponential Hill
0.78 0.33 0.10

SRCC = 1 corresponds to perfect match between the rank order of ChIP-chip scores and the rank order predicted
by a model, thus SRCC values closer to 1 are better.
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ered; whereas the Hill model appeared to have poor predictive power despite being the best fit, amongst

the three models, to the training data. Thus the Hill model seemed to be over-fit to the training data.

Consequently, our systems identification results lend evidence that the Gaussian model may more accurately

describe gene regulation than the commonly used monotonic Exponential and Hill models.

We repeated above comparison by adding a general ubiquitous activator to the set of transcription reg-

ulators [24], and we found that this did not affect the comparison results between the Gaussian and the

monotone models. Details of this comparison are contained in Appendices A and B.

4 Discussion

Using our concentration-dependent Gaussian model, we made some genetic mutation predictions (Fig. 7)

that can be implemented experimentally to test our hypothesis of concentration-dependent regulation, by

determining whether transcription factors that are currently thought to either only activate or repress eve2

in fact act in a concentration-dependent manner.

For example, Kr is commonly described as a repressor and functions to establish the posterior boundary

of eve stripe 2 [30, 25, 26, 40, 41]. Our model also predicted that Kr is a repressor for eve2 in the posterior

region of the stripe. Yet it is also predicted to be an activator for eve2 in the anterior region of the stripe

where its binding levels are lower (Fig. 6). Similar results were predicted in [20], where a nonparametric

modeling methodology was used. Thus according to our model, increasing the binding of Kr by 100% would

decrease eve mRNA expression near the posterior of the stripe, but would increase its expression in the

anterior region. This would result in a thinning and anterior shift of eve2 in the mutant.

The function of Bcd is not straightforward, despite the apparent agreement. The need for Bcd to success-

fully establish eve2 suggests it is an activator [29, 30, 25, 26, 40, 41, 42]. However, at the anterior tip of the

embryo, where Bcd is most highly expressed, no expression of eve2 is observed and the two main repressors

of eve2, Gt and Kr, are also present at low concentrations. Various studies have searched for eve2 repressors

in this region and candidates such as Torso, Capicua, Sap18 and Slp1 have been identified [43, 44, 45, 46, 47],

yet none of these studies have been conclusive. This apparent paradox could be reconciled if Bcd’s regulation

was concentration-dependent: it is an activator around stripe 2 where its binding is low, and is a repressor

in the anterior of the embryo where its binding is high (Fig. 6). Numerous published results have suggested

that Bcd may act as a repressor either directly or indirectly: Bcd contains a self-inhibitory domain that has

been shown to repress its own activity in Drosophila tissue culture cells [48, 49]; proteins such as Torso,

Capicua and Sap18 have been suggested to interact with Bcd to repress Bcd target genes [44, 45, 46, 47].

Furthermore, [2, 35] have shown in their modeling work that allowing concentration-dependent activation or

repression for Bcd improves predictions for a number of Drosophila segmentation genes mRNA patterns. To

experimentally verify the repressor activity from Bcd, our model predicts that lowering Bcd binding to 10%

of its wildtype value would lead to an increase in expression of eve mRNA in the anterior of the embryo.
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Wildtype 10% BCD Mutant 200% KR Mutant

10% BCD Mutant 200% KR Mutant

Model Prediction

Difference between Mutant and Wildtype

Low Expression High Expression

No Change IncreaseDecrease

Figure 7: Concentration-dependent predictions. The first row shows the Gaussian model’s prediction for eve2
mRNA pattern in the following three cases at Stage 5:51-75% : wildtype, mutant embryo with Bcd binding
reduced to 10% of its wildtype value, mutant embryo with Kr binding increased to 200% of its wildtype
value. Red/black colored cells correspond to higher concentrations. Yellow/white colored cells correspond
to little/no protein concentration. The second row shows the difference in the eve2 mRNA expression in the
mutant compared to the wildtype. Yellow/red cells indicate eve2 mRNA expression is higher in the mutant
than in the wildtype. Blue cells indicate a decrease in mRNA expression in the mutant embryo.
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A Supplementary Tables

Table S1: Weighted Bonferroni corrected P-values for monotone hypothesis test

Transcription factor ChIP-chip score P-value for H1 P-value for H2

Kr 6.4 0.001 0.003
Gt 5.2 0.001 0.001
Hkb 5.0 0.223 0.103
Kni 5.0 0.412 0.001
Cad 4.7 0.007 0.065
D 4.5 0.001 0.899
Tll 4.3 0.998 0.010
Bcd 3.2 0.448 1.000
Run 2.7 0.001 1.000
Dl 2.6 1.000 0.004
Hb 2.1 0.999 0.001
Twi 1.4 0.001 0.640
Sna 1.3 1.000 1.000
Prd 1.2 1.000 0.001

H1 is the null hypothesis that the relationship between the change in mRNA expression and the binding level of
transcription factor ‘X’ is monotone and increasing. H2 is the null hypothesis that the relationship between the
change in mRNA expression and the binding level of transcription factor ‘X’ is monotone and decreasing.

Table S2: Comparison of MSE of each model’s fit to training data (wildtype eve2 pattern)

Gauss. Gauss.
+ X

Gauss.
de

novo

Exp. Exp.
+ X

Exp.
de

novo

Hill Hill +
X

Hill de
novo

26.74 25.47 39.75 34.64 31.55 54.56 25.55 24.47 39.02

Gauss. represents the Gaussian model. Exp. represents the Exponential model. Model + X represents the
corresponding model with a general ubiquitous activator X added to the set of transcription factors. Model de
novo represents the corresponding model with zero mRNA expression at an additional stage 5:5-8. MSE values
computed using data at last 3 time points for all models, i.e. stages 5:26-50, 5:51-75 and 5:76-100.
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Table S3: Comparison of transcription factor ranking as given by ChIP-chip scores and that predicted by
each model

Rank ChIP-
chip

Gauss. Gauss.
+ X

Gauss.
de

novo

Exp. Exp.
+ X

Exp.
de

novo

Hill Hill +
X

Hill de
novo

1 Kr Kr Kr Kr Gt Gt Gt Gt Gt Gt
2 Gt Gt Gt Gt Twi Kni Bcd Hb Hb Hb
3 Kni Hb Hb Hb Kni Hb Kr Sna Cad D
4 Hkb D D D Kr Twi Hb Kni D Bcd
5 Cad Kni Kni Hkb Hb Kr D D Kni Kr
6 D Cad Cad Kni Dl Bcd Kni Prd Kr Dl
7 Tll Hkb Hkb Cad Bcd Dl Dl Kr Bcd Run
8 Bcd Dl Dl Bcd D D Hkb Bcd Run Cad
9 Run Bcd Bcd Run Tll Hkb Run Tll Tll Kni
10 Dl Tll Tll Dl Sna Tll Tll Cad Prd Prd
11 Hb Run Run Tll Hkb Run Cad Run Hkb Hkb
12 Twi Twi Twi Sna Cad Sna Sna Dl Dl Tll
13 Sna Sna Sna Twi Prd Cad Twi Hkb Sna Sna
14 Prd Prd Prd Prd Run Prd Prd Twi Twi Twi

Gauss. represents the Gaussian model. Exp. represents the Exponential model. Model + X represents the
corresponding model with a general ubiquitous activator X added to the set of transcription factors. Model de
novo represents the corresponding model with zero mRNA expression at an additional stage 5:5-8. Transcription
factors ranked higher in the list correspond to stronger regulators of eve2 gene.

Table S4: Comparison of transcription factor ranking as given by ChIP-chip scores and that predicted by
each model

Gauss. Gauss.
+ X

Gauss.
de

novo

Exp. Exp.
+ X

Exp.
de

novo

Hill Hill +
X

Hill de
novo

0.78 0.78 0.78 0.33 0.42 0.62 0.10 0.56 0.32

Gauss. represents the Gaussian model. Exp. represents the Exponential model. Model + X represents the
corresponding model with a general ubiquitous activator X added to the set of transcription factors. Model de
novo represents the corresponding model with zero mRNA expression at an additional stage 5:5-8. SRCC = 1
corresponds to perfect match between the rank list given by ChIP-chip scores and the rank list predicted by a
model, thus SRCC values closer to 1 are better.
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B Supplementary Figures

Experimental Data

5:4-8% 5:26-50% 5:51-75% 5:76-100%5:9-25%

De Novo Gaussian Model

5:4-8% 5:26-50% 5:51-75% 5:76-100%5:9-25%

De Novo Exponential Model

5:4-8% 5:26-50% 5:51-75% 5:76-100%5:9-25%

De Novo Hill Model

5:4-8% 5:26-50% 5:51-75% 5:76-100%5:9-25%

Low Expression High Expression

Figure S1: Predictions for training data by de novo models.
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Experimental Data

5:9-25% 5:26-50% 5:51-75% 5:76-100%

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Gaussian Model

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Gaussian Model + Ubiquitous Factor X

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Exponential Model

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Exponential Model + Ubiquitous Factor X

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Hill Model

5:9-25% 5:26-50% 5:51-75% 5:76-100%

Hill Model + Ubiquitous Factor X
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Figure S2: Predictions for training data by standard models and models with ubiquitous activator X.
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BCD MutantWildtype

Figure S3: Comparison of model predictions for Bcd mutants.

23



HB MutantWildtype

Figure S4: Comparison of model predictions for Hb mutants.
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GT MutantWildtype

Figure S5: Comparison of model predictions for Gt mutants.
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Experimental Data

Wildtype KR Mutant
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Gaussian Model + Ubiquitous Factor X

De Novo Gaussian Model

Exponential Model

Exponential Model + Ubiquitous Factor X

De Novo Exponential Model

Hill Model
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Figure S6: Comparison of model predictions for Kr mutants.
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