
Scalable Genome Resequencing with ADAM and avocado

Frank Nothaft

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-65
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-65.html

May 12, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Scalable Genome Resequencing with ADAM and avocado

by

Frank Austin Nothaft

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Patterson, Chair
Professor Anthony Joseph

Spring 2015

1

Abstract

Scalable Genome Resequencing with ADAM and avocado

by

Frank Austin Nothaft

Master of Science in Computer Science

University of California, Berkeley

Professor David Patterson, Chair

The decreased cost of genome sequencing technologies has made genome sequencing a viable
tool for clinical and populations genomics applications. The e�ciency of genome sequencing
has been further improved through large projects like the Human Genome Project, which
have assembled reference genomes for medically/agriculturally important organisms. These
reference quality assemblies have enabled the creation of genome resequencing pipelines,
where the genome of a single sample is computed by computing the di↵erence between a
given sample and the reference genome for the organism.

While sequencing cost has decreased by more than 10,000⇥ since the Human Genome
Project concluded in 2003, resequencing pipelines have struggled to keep pace with the grow-
ing volume of genomic data. These tools su↵er from limited parallelism because they were not
designed to use parallel or distributed computing techniques, and are limited by asymptoti-
cally ine�cient algorithms. In this thesis, we introduce two tools, ADAM and avocado. ADAM
provides an e�cient framework for performing distributed genomic analyses, and avocado
implements e�cient local reassembly to discover genomic variants. ADAM presents high level
APIs that allow for genomic analyses to be parallelized across more than 1,000 processors.
Using these APIs, we are able to achieve linear speedups when parallelizing several common
analysis stages.

2

Contents

Contents 2

1 Variant Identification Pipelines for Genomic Data 3
1.1 Introduction . 3
1.2 Background . 5
1.3 Pipeline Structure . 7
1.4 Related Work . 9

2 Genomic Data Storage and Preprocessing Using ADAM 11
2.1 Distributed Architectures for Genomics . 11
2.2 Layering . 12
2.3 Data Storage for Genomic Data . 15
2.4 Read Preprocessing Algorithms . 19

3 Variant Calling via Reassembly Using avocado 26
3.1 Modular Approaches for Variant Calling . 26
3.2 E�cient Reassembly via Indexed de Bruijn Graphs 27
3.3 Statistical Models for Genotyping . 35

4 Performance and Accuracy Analysis 38
4.1 Genomics Workloads . 38
4.2 Column Store Performance . 40

5 Conclusion 44
5.1 Future Work . 44
5.2 Conclusion . 45

Bibliography 46

3

Chapter 1

Variant Identification Pipelines for
Genomic Data

1.1 Introduction

Since the completion of the Human Genome Project in 2003, genome sequencing costs have
dropped by more than 10, 000⇥ [41]. The rapidly declining cost of sequencing a single human
genome has enabled large sequencing projects like the 1,000 Genomes Project [52] and the
Cancer Genome Atlas (TCGA, [60]). As these large sequencing projects perform analysis
that process terabytes to petabytes of genomic data, they have created a demand for genomic
analysis tools that can e�ciently process these scales of data [48, 55].

Over a similar time range, commercial needs led to the development of horizontally scal-
able analytics systems. The development and deployment of MapReduce at Google [13, 14]
spawned the development of a variety of distributed analytics tools and the Hadoop ecosys-
tem [4]. In turn, these systems led to other systems that provided a more fluent programming
model [62] and higher performance [65]. The demand for these systems has been driven by
the increase in the amount of data available to analysts, and has coincided with the devel-
opment of statistical systems that are accessible to non-experts, such as Scikit-learn [46]
and MLI [54].

With the rapid drop in the cost of sequencing a genome, and the accompanying growth in
available data, there is a good opportunity to apply modern, horizontally scalable analytics
systems to genomics. New projects such as the 100K for UK, which aims to sequence the
genomes of 100,000 individuals in the United Kingdom [21], and the Department of Veterans
A↵airs’ Million Veteran project [45] will generate three to four orders of magnitude more
data than prior projects like the 1,000 Genomes Project [52]. Additionally, periodic releases
of new reference datasets such as reference genomes necessitates the periodic re-analysis of
these large datasets. These projects use the current “best practice” genomic variant calling
pipelines [6], which take approximately 120 hours to process a single, high-quality human
genome using a single, beefy node [56]. To address these challenges, scientists have started to

4

apply computer systems techniques such as map-reduce [29, 36, 49] and columnar storage [19]
to custom scientific compute/storage systems. While these systems have improved analysis
cost and performance, current implementations incur significant overheads imposed by the
legacy formats and codebases that they use.

In this thesis, we demonstrate ADAM, a genomic data processing and storage system built
using Apache Avro, Parquet, and Spark [3, 5, 65], and avocado, a variant caller built on top
of ADAM. This pipeline is parallel and achieves a 28⇥ increase in throughput over the current
best practice pipeline, while reducing analysis cost by 66%. In the process of creating ADAM,
we developed a “narrow waisted” layering model for building scientific analysis systems. This
narrow waisted stack is inspired by the OSI model for networked systems [66]. However, in
our stack model, the data schema is the narrow waist that separates data processing from
data storage. Our stack solves the following three problems that are common across current
scientific analysis systems:

1. Current scientific systems improve the performance of common patterns by changing
the data model (often by requiring data to be stored in a coordinate-sorted order).

2. Legacy data formats were not designed with horizontal scalability in mind.

3. The system must be able to e�ciently access shared metadata, and to slice datasets
for running targeted analyses.

We solve these problems with the following techniques:

1. We make a schema the “narrow waist” of our stack to enforce data independence and
devise algorithms for making common genomics patterns fast.

2. To improve horizontal scalability, we use Parquet, a modern parallel columnar store
based o↵ of Dremel [37] to push computation to the data.

3. We use a denormalized schema to achieve O(1) parallel access to metadata.

We introduce the stack model in Figure 1.1 as a way to decompose scientific systems.
While the abstraction inversion used in genomics to accelerate common access patterns is

undesirable because it violates data independence, we also find that it sacrifices performance
and accuracy. The current Sequence/Binary Alignment and Map (SAM/BAM [33]) formats
for storing genomic alignments apply constraints about record ordering to enable specific
computing patterns. Our implementation (described in §1.3) identifies errors in two current
genomics processing stages that occur because of the sorted access invariant. Our implemen-
tations of these stages do not make use of sort order, and achieve higher performance while
eliminating these errors.

Additionally, this thesis describes the variant discovery and genotyping algorithms imple-
mented in avocado. avocado introduces a new algorithm for local reassembly that eliminates

5

Application
Transformations

Physical Storage
Attached Storage

Data Distribution
Parallel FS

Materialized Data
Columnar Storage

Evidence Access
MapReduce/DBMS

Presentation
Enriched Models

Schema
Data Models

Variant calling & analysis,

RNA-seq analysis, etc.

Disk, SDD, block

store, memory cache

HDFS, Tachyon, HPC file

systems, S3

Load data from Parquet and

legacy formats

Spark, Spark-SQL,

Hadoop

Enriched Read/Variant

Avro Schema for reads,

variants, and genotypes

Users define analyses

via transformations

Enriched models provide convenient

methods on common models

The evidence access layer

efficiently executes transformations

Schemas define the logical

structure of basic genomic objects

Common interfaces map logical

schema to bytes on disk

Parallel file system layer

coordinates distribution of data

Decoupling storage enables

performance/cost tradeoff

Figure 1.1: A Stack Model for Genomic Analyses

the expensive step of realigning reads to candidate haplotypes. Additionally, avocado in-
troduces a novel statistical model for genotyping that eliminates errors caused by statistical
models that optimistically assume the local independence of genomic loci.

All of the software (source code and executables) described in this thesis are available
free of charge under the permissive Apache 2 open-source license. ADAM is available at
https://www.github.com/bigdatagenomics/adam, and avocado is available at https://
www.github.com/bigdatagenomics/avocado.

1.2 Background

This work is at the intersection of computational biology, data management, and processing
systems. As such, our architectural approach is informed by recent trends in these areas.
The design of large scale data management systems has changed dramatically since the
papers by Dean and Ghemawat [13, 14] describing Google’s MapReduce system. Over a
similar timeframe, genomics has arisen due to improvements in data acquisition technologies.
For example, since the Human Genome Project finished in 2001 [28], the price of genomic
sequencing has dropped by 10,000⇥ [41]. This drop in cost has enabled the capture of
petabytes of sequence data, which has (in turn) enabled significant population genomics

https://www.github.com/bigdatagenomics/adam
https://www.github.com/bigdatagenomics/avocado
https://www.github.com/bigdatagenomics/avocado

6

experiments like the 1,000 Genomes project [52] and The Cancer Genome Atlas (TCGA,
[60]).

Although there has been significant progress in the development of systems for processing
large datasets—the development of first generation map-reduce systems [13], followed by
iterative map-reduce systems like Spark [65], as well as parallel and columnar DBMS [1, 27]—
the uptake of these systems in genomics has been slow. MapReduce’s impact has been
limited to tools that use the map-reduce programming model as an inspiration for API
design [36], or have been limited systems that have used Hadoop to näıvely parallelize existing
toolkits [29, 49]. These approaches are perilous for several reasons:

• A strong criticism levied against the map-reduce model is that the API is insu�-
ciently expressive for describing complex tasks. As a consequence of this, tools like
the GATK [36] that adopt map-reduce as a programming model force significant re-
strictions on algorithm implementors. For example, a GATK walker1 is provided with
a single view over the data (a sorted iterator over a specified region), and is allowed
limited reduce functionality.

• A major contribution of systems like MapReduce [14] and Spark [65, 64] is the ability
to reliably distribute parallel tasks across a cluster in an automated fashion. While the
GATK uses map-reduce as a programming abstraction (i.e., as an interface for writing
walkers), it does not use map-reduce as an execution strategy. To run tools like the
GATK across a cluster, organizations use workflow management systems for sharding
and persisting intermediate data, and managing failures and retries. This approach is
not only an ine�cient duplication of work, but it is also a source of ine�ciency during
execution: the performance of iterative stages in the GATK is bottlenecked by I/O
performance.

• The näıve Hadoop-based implementations in Crossbow [29] and Cloudburst [49] use
scripts to run unmodified legacy tools on top of Hadoop. This approach does achieve
speedups, but it does not attack overhead. Several of the methods that they parallelize
incur high overhead due to duplicated loading of indices2 and poor broadcasting of data.

Recent work by Diao et al [16] has looked at optimizations to map-reduce systems for
processing genomic data. They adapt strategies from the query optimization literature to
reorder computation to minimize data shu✏ing. While this approach does improve shu✏e
tra�c, several preprocessing stages cannot be transposed. For instance, reversing the order
of indel realignment and base quality score recalibration (see §1.3) will change the inferred
quality score distribution. Additionally, we believe that the shu✏e tra�c that Diao et al
observe is an artifact caused by an abstraction inversion present in many genomics tools.
This abstraction inversion requires that all genomic data is processed in sorted order, which

1The GATK provides walkers as an interface for traversing regions of the genome.
2For fast aligners, loading of large indices can be a primary I/O bottleneck.

7

necessitates frequent shu✏es. As we demonstrate in §1.3, these penalties can be eliminated
by restructuring the pre-processing algorithms.

One notable area where modern data management techniques have been leveraged by
scientists is in the data storage layer. Due to the storage costs of large genomic datasets,
scientists have introduced the CRAM format that uses columnar storage techniques and
special compression algorithms to achieve a 30% reduction in size over the original BAM
format [19]. While CRAM achieves high (� 50%) compression, it imposes restrictions
on the ordering and structure of the data, and does not provide support for predicates or
projection. We perform a more comprehensive comparison against CRAM in §4.2.

One interesting trend of note is the development of databases specifically for scientific
applications. The exemplar is SciDB, which provides an array based storage model as well
as e�cient linear algebra routines [10]. While arrays accelerate many linear algebra based
routines, they are not a universally great fit. For many genomics workloads, data is semistruc-
tured and may consist of strings, Boolean fields, and an array of tagged annotations. Other
systems like the Genome Query Language [25] have extended SQL to provide e�cient query
semantics across genomic coordinates. While GQL achieves performance improvements of up
to 10⇥ for certain algorithms, SQL is not an attractive language for many scientific domains,
which make heavy use of user designed functions that may be cumbersome in SQL.

1.3 Pipeline Structure

This thesis targets the acceleration of variant calling, which is a statistical process to infer the
sites at that a single individual varies from the reference genome.3 Although there are a va-
riety of sequencing technologies in use, the majority of sequence data used for variant calling
and genotyping comes from the Illumina sequencing platform, which uses a “sequencing-
by-synthesis” technique to generate short read data [38]. Short read refers to sequencing
runs that generate many reads that are between 50 and 250 bases in length. In addition to
adjusting the length of the reads, we can control the amount of the data that is generated
by changing the amount of the genome that we sequence, or the amount of redundant se-
quencing that we perform (the average number of reads that covers each base, or coverage).
A single human genome sequenced at 60⇥ coverage will produce approximately 1.4 billion
reads, which is approximately 600 GB of raw data, or 225 GB of compressed data. For each
read, we also are provided quality scores, which represent the likelihood that the base at a
given position was observed. In a variant calling pipeline, we perform the following steps:

1. Alignment: For each read, we find the position in the genome that the read is most
likely to have come from. As an exact search is too expensive, there has been an
extensive amount of research that has focused on indexing strategies for improving
alignment performance [32, 34, 63]. This process is parallel per sequenced read.

3The reference genome represents the “average” genome for a species. The Human Genome Project [28]
assembled the first human reference genome.

8

2. Pre-processing: After reads have been aligned to the genome, we perform several
preprocessing steps to eliminate systemic errors in the reads. This transformation may
involve recalibrating the observed quality scores for the bases, or locally optimizing the
read alignments. We will present a description of several of these algorithms in §1.3;
for a more detailed discussion, we refer readers to DePristo et al [15].

3. Variant calling: Variant calling is a statistical process that uses the read alignments
and the observed quality scores to compute whether a given sample matches or diverges
from the reference genome. This process is typically parallel per position or region in
the genome.

4. Filtration: After variants have been called, we want to filter out false positive variant
calls. We may perform queries to look for variants with borderline likelihoods, or we
may look for clusters of variants, which may indicate that a local error has occurred.
This process may be parallel per position, may involve complex traversals of the ge-
nomic coordinate space, or may require us to fit a statistical model to all or part of
the dataset.

This process is very time consuming to run; the current best practice pipeline uses the
BWA tool [32] for alignment and the GATK [15, 36] for pre-processing, variant calling, and
filtration. Current benchmark suites have measured this pipeline as taking between 90 and
130 hours to run end-to-end [56]. Recent projects have achieved 5–10⇥ improvements in
alignment and variant calling performance [47, 63], which makes the pre-processing stages
the performance bottleneck. Our experimental results have corroborated this, as the GATK’s
four pre-processing stages take over 110 hours to run on a clinical quality human genome
when run on an Amazon EC2 cr1.8xlarge machine.

For current implementations of these read processing steps, performance is limited by
disk bandwidth [16]. This bottleneck exists because the operations read in a SAM/BAM
file, perform a small amount of processing, and write the data to disk as a new SAM/BAM
file. We achieve a performance bump by performing our processing iteratively in memory.
The four read processing stages can then be chained together, eliminating three long writes
to disk and an additional three long reads from disk. Additionally, by rethinking the design
of our algorithms, we are able to reduce overhead in several other ways:

1. Current algorithms require the reference genome to be present on all nodes. This as-
sembly is then used to look up the reference sequence that overlaps all reads. The
reference genome is several gigabytes in size, and performing a lookup in the refer-
ence genome can be costly due to its size. Instead, wherever possible, we leverage the
mismatchingPositions field in our schema to embed information about the reference
in each read. This optimization allows us to avoid broadcasting the reference, and pro-
vides O(1) lookup. When this is not possible, we make use of a “region join” primitive,
which enables us to make use of the reference genome with minimal duplication.

9

2. Shared-memory genomics applications tend to be impacted significantly by false shar-
ing of data structures [63]. Instead of having data structures that are modified in
parallel, we restructure our algorithms so that we only touch data structures from a
single thread, and then merge structures in a reduce phase. The elimination of shar-
ing improves the performance of covariate calculation during BQSR and the target
generation phase of local realignment.

3. In a näıve implementation, the local realignment and duplicate marking tasks can su↵er
from stragglers. The stragglers occur due to a large amount of reads that either do
not associate to a realignment target, or that are unaligned. We pay special attention
to these cases by manually randomizing the partitioning for these reads. This resolves
load imbalance and mitigates stragglers.

4. For the Flagstat command, we are able to project a limited subset of fields. Flagstat
touches fewer than 10 fields, which account for less than 10% of space on disk. We
discuss the performance implications of this further in §4.2.

These techniques allow us to achieve a > 28⇥ performance improvement over current
tools, and scalability beyond 128 machines. We perform a detailed performance review
in §4.1.

1.4 Related Work

Several variant analysis toolkits exist, with the most well known analysis toolkit being the
GATK [15]. Additional toolkits include HugeSeq [26], STORMSeq [23], and SpeedSeq [11]. These
tools combine alignment, variant calling, and filtration into an easy to use package, and may
also orchestrate work distribution across a set of distributed machines. For example, the
GATK and HugeSeq make use of an improvised map-reduce model, while STORMSeq uses a
grid engine to distribute work according to a provided partitioning function. These tools
delegate to either the GATK’s HaplotypeCaller or UnifiedGenotyper, or FreeBayes [20] for
calling germline point events and INDELs. Platypus [47] is an additional notable toolkit
that directly integrates alignment with variant calling to improve computational e�ciency.

Although earlier methods such as the mpileup caller assumed the statistical independence
of sites [30] post-alignment, current variant calling pipelines depend heavily on realignment
based approaches for accurate genotyping [31]. These methods take two di↵erent approaches
to generate candidate sequences for realignment:

1. Realignment-only: Putative INDELs are extracted directly from the aligned reads, and
the reads are locally realigned.

2. Reassembly: The aligned reads are reassembled into haplotypes, which the reads are
aligned against.

10

The realignment-only approach is used in UnifiedGenotyper4 and FreeBayes, while
HaplotypeCaller, Platypus, and Scalpel [40] make use of reassembly. In both cases, we
perform the following algorithmic steps:

1. Candidate haplotypes are generated for realignment.

2. Each read is realigned to each haplotype, typically using a pair Hidden Markov Model
(HMM, see [17]).

3. A statistical model uses the read$haplotype alignments to choose the haplotype pair
that most likely represents the variants hypothesized to exist in the region.

4. The alignments of the reads to the chosen haplotype pair are used to generate statistics
that are then used for genotyping.

In haplotype reassembly, step 1 is broken down into two further steps:

1. An assembly graph (typically a de Bruijn graph) is constructed from the reads aligned
to a region of the reference genome.

2. All valid paths between the start and end of the graph are enumerated.

In both the realignment and reassembly approaches, local alignment errors (errors in
alignment within this region) are corrected by using a statistical model to identify the most
likely location that the read could have come from, given the other reads seen in this area.
These approaches are algorithmically di↵erent from global alignment because they make use
of local context when picking the sequence to align to, and the alignment search space is
much smaller, which enables the use of more expensive alignment methods.

De novo assembly provides another promising approach to variant discovery. In the de
novo formulation of assembly, the reads are not aligned to a reference genome. Instead,
“novel” contiguous fragments of sequence are assembled from the reads. Variants are called
by aligning these assemblies to the reference genome, and by realigning the reads against
the novel assemblies. Several implementations of de novo variant calling exist, most notably
the Cortex [22] and Discovar [61] assemblers. Although de novo assembly solves several
important issues seen by traditional variant callers (reference bias, structural variant detec-
tion), de novo assembly is currently too computationally expensive for widespread use in
genotyping.

4When used following IndelRealignment

11

Chapter 2

Genomic Data Storage and
Preprocessing Using ADAM

2.1 Distributed Architectures for Genomics

Due to both the growing volume of genomic sequencing data and the large size of these
datasets, sequencing centers face the increasingly di�cult task of turning around genomic
data analyses in a reasonable timeframe [48, 55]. While the per-run latency of current
genomic pipelines such as the GATK can be improved by manually partitioning the input
dataset and distributing work, native support for distributed computing is not provided. As
a stopgap solution, projects like Cloudburst [49] and Crossbow [29] have ported individual
analytics tools to run on top of Hadoop. While this approach has served well for proofs of
concept, it provides poor abstractions for application developers and makes it di�cult to
create novel distributed genomic analyses, and does little to attack sources of ine�ciency or
incorrectness in distributed genomics pipelines.

To address these problems, we need to reconsider how to build software for processing
genomic data. Modern genome analysis pipelines are built around monolithic architectures
and flat file formats. These architectures are designed to e�ciently run current algorithms
on single node processing systems, but impose significant restrictions. These restrictions
include:

• These implementations are locked to a single node processing model. Even the GATK’s
“map-reduce” styled walker API [36] is limited to natively support processing on a
single node. While these jobs can be manually partitioned and run in a distributed
setting, manual partitioning can lead to imbalance in work distribution and makes
it di�cult to run algorithms that require aggregating data across all partitions, and
lacks the fault tolerance provided by modern distributed systems such as Hadoop or
Spark [64].

• Most of these implementations assume invariants about the sorted order of records on

12

disk. This “stack smashing” (specifically, the layout of data is used to “accelerate” a
processing stage) can lead to bugs when data does not cleanly map to the assumed
sort order. Additionally, since these sort order invariants are rarely explicit and vary
from tool to tool, pipelines assembled from disparate tools can be brittle. We discuss
this more in §2.4 and footnote 1.

• Additionally, while these invariants are intended to improve performance, it is not
clear that these invariants actually improve performance. There are two common
sort invariants used in genomics: sort by reference position and sort by read name.
Changing between these two sort orders entails a full shu✏e and resort of the dataset.
Additionally, a sort is required after alignment to establish a sort order.

As noted above, current implementations are locked to a single node model. Projects
like Hadoop-BAM [42], SeqPig [50], and BioPig [43] have attempted to build a distributed
processing environment on top of current single node genomics APIs. However, several
problems must be solved in order to make distributed processing of genomic data productive:

• Current genomics data formats rely on a centralized header for storing experiment
metadata. Since the metadata is centralized, it must be replicated to all machines.

• A simple map-reduce or SQL-like API is insu�cient for implementing genomic analyses.
Rather, to enhance bioinformatician productivity, we need to define APIs that allow
developers to conveniently express algorithms.

In ADAM, we have taken a more aggressive approach to the design of APIs for processing
genomic data in a distributed system. Although modern genomics pipelines are built as
monolithic applications, we have chosen a layered decomposition for ADAM, that uses a schema
as a “narrow waist”. Instead of using a flat file format, as is traditional in genomics, we are
using this schema with Parquet (a commodity columnar store [5]) to store genomic data in
a way that both allows e�cient distributed read/write and that achieves high compression.
On top of this, we have added primitives that implement common genomic traversals in a
distributed manner. We have then used ADAM to implement common preprocessing stages
from commonly used genomics pipelines. ADAM’s preprocessing stages are between 1-5⇥ faster
than the equivalent GATK preprocessing stages, and achieve linear scaling out to 128 nodes.

2.2 Layering

The processing patterns being applied to scientific data shift widely as the data itself ages.
Because of this change, we want to design a scientific data processing system that is flexible
enough to accommodate our di↵erent use cases. At the same time, we want to ensure that
the components in the system are well isolated so that we avoid bleeding functionality across
the stack. If we bleed functionality across layers in the stack, we make it more di�cult

13

to adapt our stack to di↵erent applications. Additionally, as we discuss in §2.4, improper
separation of concerns can actually lead to errors in our application.

These concerns are very similar to the factors that led to the development of the Open
Systems Interconnection (OSI) model and Internet Protocol (IP) stack for networking ser-
vices [66]. The networking stack models were designed to allow the mixing and matching
of di↵erent protocols, all of which existed at di↵erent functional levels. The success of the
networking stack model can largely be attributed to the “narrow waist” of the stack, which
simplified the integration of a new protocol or technology by ensuring that the protocol only
needed to implement a single interface to be compatible with the rest of the stack.

Unlike conventional scientific systems that leverage custom data formats like BAM or
SAM [33], or CRAM [19], we believe that the use of an explicit schema for data interchange
is critical. In our stack model shown in Figure 1.1, the schema becomes the “narrow waist”
of the stack. Most importantly, placing the schema as the narrow waist enforces a strict sep-
aration between data storage/access and data processing. Additionally, this enables literate
programming techniques which can clarify the data model and access patterns. The seven
layers of our stack model are decomposed as follows, and are numbered in ascending order
from bottom to top:

1. Physical Storage: This layer coordinates data writes to physical media.

2. Data Distribution: This layer manages access, replication, and distribution of the
files that have been written to storage media.

3. Materialized Data: This layer encodes the patterns for how data is encoded and
stored. This layer determines I/O bandwidth and compression.

4. Data Schema: This layer specifies the representation of data, and forms the narrow
waist of the stack that separates access from execution.

5. Evidence Access: This layer provides us with primitives for processing data, and
allows us to transform data into di↵erent views and traversals.

6. Presentation: This layer enhances the data schema with convenience methods for
performing common tasks and accessing common derived fields from a single element.

7. Application: At this level, we can use our evidence access and presentation layers to
compose the algorithms to perform our desired analysis.

A well defined software stack has several other significant advantages. By limiting ap-
plication interactions with layers lower than the presentation layer, application developers
are given a clear and consistent view of the data they are processing, and this view of the
data is independent of whether the data is local or distributed across a cluster or cloud. By
separating the API from the data access layer, we improve flexibility. With careful design
in the data format and data access layers, we can seamlessly support conventional whole

14

file access patterns, while also allowing easy access to small slices of files. By treating the
compute substrate and storage as separate layers, we also drastically increase the portability
of the APIs that we implement.

As we discuss in more detail in §2.4, current scientific systems bleed functionality between
stack layers. An exemplar is the SAM/BAM and CRAM formats, which expect data to
be sorted by genomic coordinate. This order modifies the layout of data on disk (level
3, Materialized Data) and constrains how applications traverse datasets (level 5, Evidence
Access). Beyond constraining applications, this leads to bugs in applications that are di�cult
to detect.1 These views of evidence should be implemented at the evidence access layer
instead of in the layout of data on disk. This split enforces independence of anything below
the schema.

The idea of decomposing scientific applications into a stack model is not new; Bafna et
al [7] made a similar suggestion in 2013. We borrow some vocabulary from Bafna et al, but
our approach is di↵erentiated in several critical ways:

• Bafna et al consider the stack model specifically in the context of data management
systems for genomics; as a result, they bake current technologies and design patterns
into the stack. In our opinion, a stack design should serve to abstract layers from
methodologies/implementations. If not, future technology trends may obsolete a layer
of the stack and render the stack irrelevant.

• Bafna et al define a binary data format as the narrow waist in their stack, instead of a
schema. While these two seem interchangeable, they are not in practice. A schema is a
higher level of abstraction that encourages the use of literate programming techniques
and allows for data serialization techniques to be changed as long as the same schema
is still provided.

• Notably, Bafna et al use this stack model to motivate GQL [25]. While a query system
should provide a way to process and transform data, Bafna et al instead move this
system down to the data materialization layer. We feel that this inverts the semantics
that a user of the system would prefer and makes the system less general.

Deep stacks like the OSI stack [66] are generally simplified for practical use. Conceptually,
the stack we propose is no exception. In practice, we combine layers one and two, and layers
five and six. There are several reasons for these mergers. First, in Hadoop-based systems,
the system does not have practical visibility below layer two, thus there is no reason to split
layers one and two except as a philosophical exercise. Layers five and six are commingled
because some of the enriched presentation objects are used to implement functionality in
the evidence access layer. This normally happens when a key is needed, such as when
repartitioning the dataset, or when reducing or grouping values.

1The current best-practice implementations of the BQSR and Duplicate Marking algorithms both fail
when processing certain corner-case alignments. These errors are caused because of the requirement to
traverse reads in sorted order.

15

2.3 Data Storage for Genomic Data

A common criticism of bioinformatics as a field surrounds the proliferation of file formats.
Short read data alone is stored in four common formats: FASTQ [12], SAM [33], BAM, and
CRAM [19]. While these formats all represent di↵erent layouts of data on disk, they tend to
be logically harmonious. Due to this logical congruency of the di↵erent formats, we chose
to build ADAM on top of a logical schema, instead of a binary format on disk. While we do
use Apache Parquet [5] to materialize data on disk, the Apache Avro [3] schema is used as
a narrow waist in the system, that enables “legacy” formats to be processed identically to
data stored in Parquet with modest performance degradation.

We made several high level choices when designing the schemas used in ADAM. First, the
schemas are fully denormalized, which reduces the cost of metadata access and simplifies
metadata distribution. We are able to get these benefits without greatly increasing the
cost of memory access because our backing store (Parquet) makes use of run length and
dictionary encoding, which allows for a single object to be allocated for highly repetitive
elements on read. Another key design choice was to require that all fields in the schema
are nullable; by enforcing this requirement, we enable arbitrary user specified projections.
Arbitrary projections can be used to accelerate common sequence quality control algorithms
such as Flagstat [35, 44].

We have reproduced the schemas used to describe reads, variants, and genotypes below.
ADAM also contains schemas for describing assembled contigs, genomic features, and variant
annotations, but we have not included them in this section.

Listing 2.1: ADAM read schema

record AlignmentRecord {

/** Alignment position and quality */

Contig contig;

long start;

long oldPosition;

long end;

/** read ID, sequence, and quality */

string readName;

string sequence;

string qual;

/** alignment details */

string cigar;

string oldCigar;

int mapq;

int basesTrimmedFromStart;

int basesTrimmedFromEnd;

boolean readNegativeStrand;

16

boolean mateNegativeStrand;

boolean primaryAlignment;

boolean secondaryAlignment;

boolean supplementaryAlignment;

string mismatchingPositions;

string origQual;

/** Read status flags */

boolean readPaired;

boolean properPair;

boolean readMapped;

boolean mateMapped;

boolean firstOfPair;

boolean secondOfPair;

boolean failedVendorQualityChecks;

boolean duplicateRead;

/** optional attributes */

string attributes;

/** record group metadata */

string recordGroupName;

string recordGroupSequencingCenter;

string recordGroupDescription;

long recordGroupRunDateEpoch;

string recordGroupFlowOrder;

string recordGroupKeySequence;

string recordGroupLibrary;

int recordGroupPredictedMedianInsertSize;

string recordGroupPlatform;

string recordGroupPlatformUnit;

string recordGroupSample;

/** Mate pair alignment information */

long mateAlignmentStart;

long mateAlignmentEnd;

Contig mateContig;

}

Our read schema maps closely to the logical layout of data presented by SAM and BAM.
The main modifications relate to how we represent metadata, which has been denormalized
across the record. All of the metadata from the sequencing run and prior processing steps
are packed into the record group metadata fields. The program information describes the
processing lineage of the sample and is expected to be uniform across all records, thus it

17

compresses extremely well. The record group information is not guaranteed to be uniform
across all records, but there are a limited number number of record groups per sequencing
dataset. This metadata is string heavy, which benefits from column-oriented decompression
and makes proper deserialization from disk important. Although the information consumes
less than 5% of space on disk, a poor deserializer implementation may replicate a string per
field per record, which greatly increases the amount of memory allocated and the garbage
collection (GC) load.

Listing 2.2: ADAM variant and genotype schemas

enum StructuralVariantType {

DELETION,

INSERTION,

INVERSION,

MOBILE_INSERTION,

MOBILE_DELETION,

DUPLICATION,

TANDEM_DUPLICATION

}

record StructuralVariant {

StructuralVariantType type;

string assembly;

boolean precise;

int startWindow;

int endWindow;

}

record Variant {

Contig contig;

long start;

long end;

string referenceAllele;

string alternateAllele;

StructuralVariant svAllele;

boolean isSomatic;

}

enum GenotypeAllele {

Ref,

Alt,

OtherAlt,

18

NoCall

}

record VariantCallingAnnotations {

float variantCallErrorProbability;

array<string> variantFilters;

int readDepth;

boolean downsampled;

float baseQRankSum;

float clippingRankSum;

float fisherStrandBiasPValue = null;

float haplotypeScore;

float inbreedingCoefficient;

float rmsMapQ;

int mapq0Reads;

float mqRankSum;

float variantQualityByDepth;

float readPositionRankSum;

array<int> genotypePriors;

array<int> genotypePosteriors;

float vqslod;

string culprit;

boolean usedForNegativeTrainingSet;

boolean usedForPositiveTrainingSet;

map<string> attributes;

}

record Genotype {

Variant variant;

VariantCallingAnnotations variantCallingAnnotations;

string sampleId;

string sampleDescription;

string processingDescription;

array<GenotypeAllele> alleles;

float expectedAlleleDosage;

int referenceReadDepth;

19

int alternateReadDepth;

int readDepth;

int minReadDepth;

int genotypeQuality;

array<int> genotypeLikelihoods;

array<int> nonReferenceLikelihoods;

array<int> strandBiasComponents;

boolean splitFromMultiAllelic;

boolean isPhased;

int phaseSetId;

int phaseQuality;

}

The variant and genotype schemas present a larger departure from the representation used
by the Variant Call Format (VCF). The most noticeable di↵erence is that we have migrated
away from VCF’s variant oriented representation to a matrix representation. Instead of the
variant record serving to group together genotypes, the variant record is embedded within
the genotype. Thus, a record represents the genotype assigned to a sample, as opposed to a
VCF row, where all individuals are collected together. The second major modification is to
assume a biallelic representation2. This di↵ers from VCF, which allows multiallelic records.
By limiting ourselves to a biallelic representation, we are able to clarify the meaning of
many of the variant calling annotations. If a site contains a multiallelic variant (e.g., in
VCF parlance this could be a 1/2 genotype), we split the variant into two or more biallelic
records. The su�cient statistics for each allele should then be computed under a reference
model similar to the model used in genome VCFs. If the sample does contain a multiallelic
variant at the given site, this multiallelic variant is represented by referencing to another
record via the OtherAlt enumeration.

These representations achieve high compression versus the legacy formats. We provide
a detailed breakdown of compression in §4.2. ADAM data stored in Parquet achieves an
approximately 25% reduction in file size over compressed BAM for read data, and a 66%
reduction over GZIPped VCF for variant data.

2.4 Read Preprocessing Algorithms

In ADAM, we have implemented the three most-commonly used pre-processing stages from
the GATK pipeline [15]. In this section, we describe the stages that we have implemented,

2In a biallelic representation, we describe the genotype of a sample at a position or interval as the
composition of a reference allele and a single alternate allele. If multiple alternate alleles segregate at the
site (e.g., there are two known SNPs in a population at this site), we create multiple biallelic variants for
the site.

20

and the techniques we have used to improve performance and accuracy when running on a
distributed system. These pre-processing stages include:

1. Duplicate Removal: During the process of preparing DNA for sequencing, reads
are duplicated by errors during the sample preparation and polymerase chain reaction
stages. Detection of duplicate reads requires matching all reads by their position and
orientation after read alignment. Reads with identical position and orientation are
assumed to be duplicates. When a group of duplicate reads is found, each read is
scored, and all but the highest quality read are marked as duplicates.

We have validated our duplicate removal code against Picard [58], which is used by
the GATK for Marking Duplicates. Our implementation is fully concordant with the
Picard/GATK duplicate removal engine, except we are able to perform duplicate mark-
ing for chimeric read pairs.3 Specifically, because Picard’s traversal engine is restricted
to processing linearly sorted alignments, Picard mishandles these alignments. Since
our engine is not constrained by the underlying layout of data on disk, we are able to
properly handle chimeric read pairs.

2. Local Realignment: In local realignment, we correct areas where variant alleles
cause reads to be locally misaligned from the reference genome.4 In this algorithm, we
first identify regions as targets for realignment. In the GATK, this identification is done
by traversing sorted read alignments. In our implementation, we fold over partitions
where we generate targets, and then we merge the tree of targets. This process allows
us to eliminate the data shu✏e needed to achieve the sorted ordering. As part of this
fold, we must compute the convex hull of overlapping regions in parallel. We discuss
this in more detail later in this section.

After we have generated the targets, we associate reads to the overlapping target, if one
exists. After associating reads to realignment targets, we run a heuristic realignment
algorithm that works by minimizing the quality-score weighted number of bases that
mismatch against the reference.

3. Base Quality Score Recalibration (BQSR): During the sequencing process, sys-
temic errors occur that lead to the incorrect assignment of base quality scores. In this
step, we label each base that we have sequenced with an error covariate. For each
covariate, we count the total number of bases that we saw, as well as the total number
of bases within the covariate that do not match the reference genome. From this data,
we apply a correction by estimating the error probability for each set of covariates
under a beta-binomial model with uniform prior.

We have validated the concordance of our BQSR implementation against the GATK.
Across both tools, only 5000 of the ⇠180B bases (< 0.0001%) in the high-coverage

3In a chimeric read pair, the two reads in the read pairs align to di↵erent chromosomes; see Li et al [32].
4This is typically caused by the presence of insertion/deletion (INDEL) variants; see DePristo et al [15].

21

NA12878 genome dataset di↵er. After investigating this discrepancy, we have deter-
mined that this is due to an error in the GATK, where paired-end reads are mishandled
if the two reads in the pair overlap.

In the rest of this section, we discuss the high level implementations of these algorithms.

BQSR Implementation

Base quality score recalibration seeks to identify and correct correlated errors in base quality
score estimates. At a high level, this is done by associating sequenced bases with possible
error covariates, and estimating the true error rate of this covariate. Once the true error
rate of all covariates has been estimated, we then apply the corrected covariate.

Our system is generic and places no limitation on the number or type of covariates that
can be applied. A covariate describes a parameter space where variation in the covariate
parameter may be correlated with a sequencing error. We provide two common covariates
that map to common sequencing errors [39]:

• CycleCovariate: This covariate expresses which cycle the base was sequenced in. Read
errors are known to occur most frequently at the start or end of reads.

• DinucCovariate: This covariate covers biases due to the sequence context surrounding
a site. The two-mer ending at the sequenced base is used as the covariate parameter
value.

To generate the covariate observation table, we aggregate together the number of observed
and error bases per covariate. Algorithms 1 and 2 demonstrate this process.

Algorithm 1 Emit Observed Covariates
read the read to observe
covariates covariates to use for recalibration
sites sites of known variation
observations ;
for base 2 read do
covariate identifyCovariate(base)
if isUnknownSNP(base, sites) then
observation Observation(1, 1)

else
observation Observation(1, 0)

end if
observations.append((covariate, observation))

end for
return observations

22

Algorithm 2 Create Covariate Table
reads input dataset
covariates covariates to use for recalibration
sites known variant sites
sites.broadcast()
observations reads.map(read) emitObservations(read, covariates, sites))
table observations.aggregate(CovariateTable(), mergeCovariates)
return table

In Algorithm 1, the Observation class stores the number of bases seen and the number
of errors seen. For example, Observation(1, 1) creates an Observation object that has
seen one base, which was an erroneous base.

Once we have computed the observations that correspond to each covariate, we estimate
the observed base quality using equation (2.1). This represents a Bayesian model of the
mismatch probability with Binomial likelihood and a Beta(1, 1) prior.

E(Perr|cov) = #errors(cov) + 1

#observations(cov) + 2
(2.1)

After these probabilities are estimated, we go back across the input read dataset and
reconstruct the quality scores of the read by using the covariate assigned to the read to look
into the covariate table.

Indel Realignment Implementation

Although global alignment will frequently succeed at aligning reads to the proper region
of the genome, the local alignment of the read may be incorrect. Specifically, the error
models used by aligners may penalize local alignments containing INDELs more than a local
alignment that converts the alignment to a series of mismatches. To correct for this, we
perform local realignment of the reads against consensus sequences in a three step process.
In the first step, we identify candidate sites that have evidence of an insertion or deletion.
We then compute the convex hull of these candidate sites, to determine the windows we
need to realign over. After these regions are identified, we generate candidate haplotype
sequences, and realign reads to minimize the overall quantity of mismatches in the region.

Realignment Target Identification

To identify target regions for realignment, we simply map across all the reads. If a read
contains INDEL evidence, we then emit a region corresponding to the region covered by
that read.

23

Convex-Hull Finding

Once we have identified the target realignment regions, we must then find the maximal
convex hulls across the set of regions. For a set R of regions, we define a maximal convex
hull as the largest region r̂ that satisfies the following properties:

r̂ = [ri2 ˆRri (2.2)

r̂ \ ri 6= ;, 8ri 2 R̂ (2.3)

R̂ ⇢ R (2.4)

In our problem, we seek to find all of the maximal convex hulls, given a set of regions. For
genomics, the convexity constraint described by equation (2.2) is trivial to check: specifically,
the genome is assembled out of reference contigs5 that define disparate 1-D coordinate spaces.
If two regions exist on di↵erent contigs, they are known not to overlap. If two regions are on
a single contig, we simply check to see if they overlap on that contig’s 1-D coordinate plane.

Given this realization, we can define Algorithm 3, which is a data parallel algorithm for
finding the maximal convex hulls that describe a genomic dataset.

Algorithm 3 Find Convex Hulls in Parallel
data input dataset
regions data.map(data)generateTarget(data))
regions regions.sort()
hulls regions.fold(r

1

, r
2

) mergeTargetSets(r
1

, r
2

))
return hulls

The generateTarget function projects each datapoint into a Red-Black tree that con-
tains a single region. The performance of the fold depends on the e�ciency of the merge
function. We achieve e�cient merges with the tail-call recursive mergeTargetSets function
that is described in Algorithm 4.

The set returned by this function is used as an index for mapping reads directly to
realignment targets.

Candidate Generation and Realignment

Once we have generated the target set, we map across all the reads and check to see if the
read overlaps a realignment target. We then group together all reads that map to a given
realignment target; reads that don’t map to a target are randomly assigned to a “null”
target. We do not attempt realignment for reads mapped to null targets.

To process non-null targets, we must first generate candidate haplotypes to realign
against. We support several processes for generating these consensus sequences:

5
Contig is short for contiguous sequence. In alignment based pipelines, reference contigs are used to

describe the sequence of each chromosome.

24

Algorithm 4 Merge Hull Sets
first first target set to merge
second second target set to merge

Require: first and second are sorted
if first = ; ^ second = ; then
return ;

else if first = ; then
return second

else if second = ; then
return first

else
if last(first) \ head(second) = ; then
return first + second

else
mergeItem (last(first) [head(second))
mergeSet allButLast(first) [mergeItem
trimSecond allButFirst(second)
return mergeTargetSets(mergeSet, trimSecond)

end if
end if

• Use known INDELs : Here, we use known variants that were provided by the user to
generate consensus sequences. These are typically derived from a source of common
variants such as dbSNP [51].

• Generate consensuses from reads : In this process, we take all INDELs that are con-
tained in the alignment of a read in this target region.

• Generate consensuses using Smith-Waterman: With this method, we take all reads
that were aligned in the region and perform an exact Smith-Waterman alignment [53]
against the reference in this site. We then take the INDELs that were observed in
these realignments as possible consensuses.

From these consensuses, we generate new haplotypes by inserting the INDEL consensus
into the reference sequence of the region. Per haplotype, we then take each read and compute
the quality score weighted Hamming edit distance of the read placed at each site in the
consensus sequence. We then take the minimum quality score weighted edit versus the
consensus sequence and the reference genome. We aggregate these scores together for all
reads against this consensus sequence. Given a consensus sequence c, a reference sequence
R, and a set of reads r, we calculate this score using equation (2.5).

25

qi,j =

lriX

k=0

QkI[rI(k) = c(j + k)]8ri 2 R, j 2 {0, . . . , lc � lri} (2.5)

qi,R =

lriX

k=0

QkI[rI(k) = c(j + k)]8ri 2 R, j = pos(ri|R) (2.6)

qi = min(qi,R, min
j2{0,...,lc�lri}

qi,j) (2.7)

qc =
X

ri2r
qi (2.8)

In (2.5), s(i) denotes the base at position i of sequence s, and ls denotes the length of
sequence s. We pick the consensus sequence that minimizes the qc value. If the chosen
consensus has a log-odds ratio (LOD) that is greater than 5.0 with respect to the reference,
we realign the reads. This is done by recomputing the CIGAR and MDTag for each new
alignment. Realigned reads have their mapping quality score increased by 10 in the Phred
scale.

Duplicate Marking Implementation

Reads may be duplicated during sequencing, either due to clonal duplication via PCR before
sequencing, or due to optical duplication while on the sequencer. To identify duplicated
reads, we apply a heuristic algorithm that looks at read fragments that have a consistent
mapping signature. First, we bucket together reads that are from the same sequenced frag-
ment by grouping reads together on the basis of read name and record group. Per read
bucket, we then identify the 5’ mapping positions of the primarily aligned reads. We mark
as duplicates all read pairs that have the same pair alignment locations, and all unpaired
reads that map to the same sites. Only the highest scoring read/read pair is kept, where the
score is the sum of all quality scores in the read that are greater than 15.

26

Chapter 3

Variant Calling via Reassembly Using
avocado

3.1 Modular Approaches for Variant Calling

In this chapter, we present avocado, a variant caller built on top of ADAM. avocado has been
designed to enable users to run an end-to-end variant caller that makes use of the ADAM
preprocessing stages described in §2.4 along with state-of-the art variant calling methods,
without needing to spill to disk. avocado’s general pipeline structure is shown in Figure 3.1.

Filter and
Categorize

Reads

Filter
Input

Reads

Identify
Regions of
Complexity

Perform
Read Error
Correction

and
Remapping

Read
Based
Variant
Calls

Translate:
Read to

Reference
Oriented

Filter and
Categorize

Pileups

Pileup
Based
Variant
Calls

Combine
and

Validate
Calls

I/O Stages
Filtering

Variant Calling

Figure 3.1: The architecture of the avocado pipeline

In avocado, we support both read and reassembly based variant discovery, along with
multiple statistical methods for genotyping. Although the methods described in this thesis
target human germline variant calling, avocado’s local reassembly methods have been im-
plemented so that they can support somatic variant calling, and variant calling on polyploid
genomes.

In this chapter, we first talk about avocado’s novel local reassembler, which is able to
reduce the computational complexity of local reassembly. This algorithmic reformulation also

27

enables the reassembly of pooled/somatic and polyploid samples, as it makes no assumptions
about path count through the assembly graph. We then cover the statistical model used for
genotyping in avocado.

3.2 E�cient Reassembly via Indexed de Bruijn
Graphs

The accuracy of insertion and deletion (INDEL) variant discovery has been improved by the
development of variant callers that couple local reassembly with haplotype-based statistical
models to recover INDELs that were locally misaligned [2]. Reassembly is a critical com-
ponent of several prominent variant callers such as the Genome Analysis Toolkit’s (GATK)
HaplotypeCaller [15], Scalpel [40], and Platypus [47]. Although haplotype-based meth-
ods have enabled more accurate INDEL and single nucleotide polymorphism (SNP) calls [8],
this accuracy comes at the cost of end-to-end runtime [56]. Several recent projects have been
focused on improving reassembly cost either by limiting the percentage of the genome that
is reassembled [9] or by improving the performance of algorithms of the core algorithms used
in local reassembly [47].

The performance issues seen in haplotype reassembly approaches derives from the high
asymptotic complexity of reassembly algorithms. Although specific implementations may
vary slightly, a typical local reassembler performs the following steps:

1. A de Bruijn graph is constructed from the reads aligned to a region of the reference
genome.

2. All valid paths (haplotypes) between the start and end of the graph are enumerated.

3. Each read is realigned to each haplotype, typically using a HMM

4. A statistical model uses the read$haplotype alignments to choose the haplotype pair
that most likely represents the variants hypothesized to exist in the region.

5. The alignments of the reads to the chosen haplotype pair are used to generate statistics
that are then used for genotyping.

In this section, we focus on steps one through three of the local reassembly problem,
as there is wide variation in the algorithms used in stages four and five. Stage one (graph
creation) has approximately O(rlr) time complexity, and stage two (graph elaboration) has
O(hmax(lh)) time complexity. The asymptotic time cost bound of local reassembly comes
from stage three, where cost is O(hrlr max(lh)), where h is the number of haplotypes tested

28

in this region1, r is the number of reads aligned to this region, lr is the read length2, and
min(lh) is the length of the shortest haplotype that we are evaluating. This complexity
comes from realigning r reads to h haplotypes, where realignment has complexity O(lrlh).
We ignore the storage complexity of reassembly here, as our approach does not change the
storage complexity of the graph.

In this section, we introduce the indexed de Bruijn graph and demonstrate how it can
be used to reduce the asymptotic complexity of reassembly. An indexed de Bruijn graph
is identical to a traditional de Bruijn graph, with one modification: when we create the
graph, we annotate each k-mer with the index position of that k-mer in the sequence it was
observed in. This simple addition enables the use of the indexed de Bruijn graph for ⌦(n)
local sequence alignment with canonical edit representations for most edits. This structure
can be used for both sequence alignment and assembly, and achieves a more e�cient approach
for variant discovery via local reassembly.

Current variant calling pipelines depend heavily on realignment based approaches for
accurate genotyping [31]. Although there are several approaches that do not make explicit
use of reassembly, all realignment based variant callers use an algorithmic structure similar
to the one described earlier in this section. In non-assembly approaches like FreeBayes [20],
stages one and two are replaced with a single step where the variants observed in the reads
aligned to a given haplotyping region are filtered for quality and integrated directly into the
reference haplotype in that region. In both approaches, local alignment errors (errors in
alignment within this region) are corrected by using a statistical model to identify the most
likely location that the read could have come from, given the other reads seen in this area.

Although the model used for choosing the best haplotype pair to finalize realignments to
varies between methods (e.g., the GATK’s IndelRealigner uses a simple log-odds model [15],
while methods like FreeBayes [20] and Platypus [47] make use of richer Bayesian models),
these methods require an all-pairs alignment of reads to candidate haplotypes. This leads to
the runtime complexity bound of O(hrlr min(lh)), as we must realign r reads to h haplotypes,
where the cost of realigning one read to one haplotype is O(lr max(lh)), where lr is the read
length (assumed to be constant for Illumina sequencing data) and max(lh) is the length of
the longest haplotype. Typically, the data structures used for realignment (O(lr max(lh))
storage cost) can be reused. These methods typically retain only the best local realignment
per read per haplotype, thus bounding storage cost at O(hr).

For non-reassembly based approaches, the cost of generating candidate haplotypes is
O(r), as each read must be scanned for variants, using the pre-existing alignment. These
variants are typically extracted from the CIGAR string, but may need to be normalized [31].
de Bruijn graph based reassembly methods have similar O(r) time complexity for building
the de Bruijn graph as each read must be sequentially broken into k-mers, but these methods
have a di↵erent storage cost. Specifically, storage cost for a de Bruijn graph is similar to

1The number of haplotypes tested may be lower than the number of haplotypes reassembled. Several
tools (see [15, 20]) allow users to limit the number of haplotypes evaluated to improve performance.

2For simplicity, we assume constant read length. This is a reasonable assumption as many of the variant
callers discussed target Illumina reads that have constant length.

29

O(k(l
ref

+ l
variants

+ l
errors

)), where l
ref

is the length of the reference haplotype in this region,
l
variants

is the length of true variant sequence in this region, l
errors

is the length of erroneous
sequence in this region, and k is the k-mer size. In practice, we can approximate both errors
and variants as being random, which gives O(kl

ref

) storage complexity. From this graph,
we must enumerate the haplotypes present in the graph. Starting from the first k-mer in
the reference sequence for this region, we perform a depth-first search to identify all paths
to the last k-mer in the reference sequence. Assuming that the graph is acyclic (a common
restriction for local assembly), we can bound the best case cost of this search at ⌦(hmin lh).

The number of haplotypes evaluated, h, is an important contributor to the algorithmic
complexity of reassembly pipelines, as it sets the storage and time complexity of the re-
alignment scoring phase, the time complexity of the haplotype enumeration phase, and is
related to the storage complexity of the de Bruijn graph. The best study of the complexity
of assembly techniques was done by Kingsford et al. [24], but is focused on de novo assem-
bly and pays special attention to resolving repeat structure. In the local realignment case,
the number of haplotypes identified is determined by the number of putative variants seen.
We can näıvely model this cost with equation (3.1), where fv is the frequency with which
variants occur, ✏ is the rate at which bases are sequenced erroneously, and c is the coverage
(read depth) of the region.

h ⇠ fvlref + ✏l
ref

c (3.1)

This model is näıve, as the coverage depth and rate of variation varies across sequenced
datasets, especially for targeted sequencing runs [18]. Additionally, while the ✏ term mod-
els the total number of sequence errors, this is not completely correlated with the num-
ber of unique sequencing errors, as sequencing errors are correlated with sequence con-
text [15]. Many current tools allow users to limit the total number of evaluated haplo-
types, or apply strategies to minimize the number of haplotypes considered, such as filtering
observed variants that are likely to be sequencing errors [20], restricting realignment to IN-
DELs (IndelRealigner, [15]), or by trimming paths from the assembly graph. Additionally,
in an de Bruijn graph, errors in the first k or last k bases of a read will manifest as spurs
and will not contribute paths through the graph. We provide (3.1) solely as a motivating
approximation, and hope to study these characteristics in more detail in future work.

Formulation

To construct an indexed de Bruijn graph, we start with the traditional formulation of a de
Brujin graph for sequence assembly:

Definition 1 (de Bruijn Graph). A de Bruijn graph describes the observed transitions be-
tween adjacent k-mers in a sequence. Each k-mer s represents a k-length string, with a k�1
length prefix given by prefix(s) and a length 1 su�x given by su�x(s). We place a directed
edge (!) from k-mer s

1

to k-mer s
2

if prefix(s
1

){1,k�2} + su�x(s
1

) = prefix(s
2

).

30

Now, suppose we have n sequences S
1

, . . . ,Sn. Let us assert that for each k-mer s 2 Si,
then the output of function indexi(s) is defined. This function provides us with the integer
position of s in sequence Si. Further, given two k-mers s

1

, s
2

2 Si, we can define a distance
function distancei(s1, s2) = |indexi(s1)� indexi(s2)|. To create an indexed de Bruijn graph,
we simply annotate each k-mer s with the indexi(s) value for all Si, i 2 {1, . . . , n} where
s 2 Si. This index value is trivial to log when creating the original de Bruijn graph from
the provided sequences.

Let us require that all sequences S
1

, . . . ,Sn are not repetitive, which implies that the
resulting de Bruijn graph is acyclic. If we select any two sequences Si and Sj from S

1

, . . . ,Sn

that share at least two k-mers s
1

and s
2

with common ordering (s
1

! · · · ! s
2

in both Si

and Sj), the indexed de Bruijn graph G provides several guarantees:

1. If two sequences Si and Sj share at least two k-mers s
1

and s
2

, we can provably find
the maximum edit distance d of the subsequences in Si and Sj, and bound the cost of
finding this edit distance at O(nd),3

2. For many of the above subsequence pairs, we can bound the cost at O(n), and provide
canonical representations for the necessary edits,

3. O(n2) complexity is restricted to aligning the subsequences of Si and Sj that exist
before s

1

or after s
2

.

Let us focus on cases 1 and 2, where we are looking at the subsequences of Si and Sj

that are between s
1

and s
2

. A trivial case arises when both Si and Sj contain an identical
path between s

1

and s
2

(i.e., s
1

! sn ! · · · ! sn+m ! s
2

and sn+k 2 Si ^ sn+k 2 Sj8k 2
{0, . . . ,m}). Here, the subsequences are clearly identical. This determination can be made
trivially by walking from vertex s

1

to vertex s
2

with O(m) cost.
However, three distinct cases can arise whenever Si and Sj diverge between s

1

and s
2

.
For simplicity, let us assume that both paths are independent (see Definition 2). These three
cases correspond to there being either a canonical substitution edit, a canonical INDEL edit,
or a non-canonical (but known distance) edit between Si and Sj.

Definition 2 (Path Independence). Given a non-repetitive de Bruijn graph G constructed
from Si and Sj, we say that G contains independent paths between s

1

and s
2

if we can
construct two subsets S 0

i ⇢ Si,S 0
j ⇢ Sj of k-mers where si+n 2 S 0

i8n 2 {0, . . . ,mi}, si+n�1

!
si+n8n 2 {1, . . . ,mi}, sj+n 2 S 0

j8n 2 {0, . . . ,mj}, sj+n�1

! sj+n8n 2 {1, . . . ,mj}, and
s
1

! si, sj; si+mi , sj+mj ! s
2

and S 0
i

TS 0
j = ;, where mi = distanceSi(s1, s2), and mj =

distanceSj(s1, s2). This implies that the sequences Si and Sj are di↵erent between s
1

, s
2

,

We have a canonical substitution edit if mi = mj = k, where k is the k-mer size. Here,
we can prove that the edit between Si and Sj between s

1

, s
2

is a single base substitution k
letters after index(s

1

):

3Here, n = max(distanceSi(s1, s2), distanceSj (s1, s2)).

31

Proof regarding Canonical Substitution. Suppose we have two non-repetitive sequences, S 0
i

and S 0
j, each of length 2k+1. Let us construct a de Bruijn graph G, with k-mer length k. If

each sequence begins with k-mer s
1

and ends with k-mer s
2

, then that implies that the first
and last k letters of S 0

i and S 0
j are identical. If both subsequences had the same character at

position k, this would imply that both sequences were identical and therefore the two paths
between s

1

, s
2

would not be independent (Definition 2). If the two letters are di↵erent and
the subsequences are non-repetitive, each character is responsible for k previously unseen k-
mers. This is the only possible explanation for the two independent k length paths between
s
1

and s
2

.

To visualize the graph corresponding to a substitution, take the two example sequences
CCACTGT and CCAATGT. These two sequences di↵er by a C $ A edit at position three. With
k-mer length k = 3, this corresponds to the graph in Figure 3.2.

CCA

CAC

CAA

ACT CTG

TGT

AAT ATG

Figure 3.2: Subgraph Corresponding To a Single Nucleotide Edit

If mi = k�1,mj � k or vice versa, we have a canonical INDEL edit (for convenience, we
assume that S 0

i contains the k � 1 length path). Here, we can prove that there is a mj �mi

length insertion4 in S 0
j relative to S 0

i, k � 1 letters after index(s
1

):

Lemma 1 (Distance between k length subsequences). Indexed de Bruijn graphs naturally
provide a distance metric for k length substrings. Let us construct an indexed de Bruijn
graph G with k-mers of length k from a non-repetitive sequence S. For any two k-mers
sa, sb 2 S, sa 6= sb, the distanceS(sa, sb) metric is equal to lp + 1, where lp is the length of
the path (in k-mers) between sa and sb. Thus, k-mers with overlap of k � 1 have an edge
directly between each other (lp = 0) and a distance metric of 1. Conversely, two k-mers that
are adjacent but not overlapping in S have a distance metric of k, which implies lp = k � 1.

Proof regarding Canonical INDELs. We are given a graph G which is constructed from two
non-repetitive sequences S 0

i and S 0
j, where the only two k-mers in both S 0

i and S 0
j are s1 and s

2

and both sequences provide independent paths between s
1

and s
2

. By Lemma 1, if the path
from s

1

! · · ·! s
2

2 S 0
i has length k � 1, then S 0

i is a string of length 2k that is formed by
concatenating s

1

, s
2

. Now, let us suppose that the path from s
1

! · · ·! s
2

2 S 0
j has length

k+l�1. The first l k-mers after s
1

will introduce a l length subsequence L ⇢ S 0
j,L 6⇢ S 0

i, and
then the remaining k�1 k-mers in the path provide a transition from L to s

2

. Therefore, S 0
j

has length of 2k+ l, and is constructed by concatenating s
1

,L, s
2

. This provides a canonical
placement for the inserted sequence L in S 0

j between s
1

and s
2

.

4This is equivalently a mj �mi length deletion in S 0
i relative to S 0

j .

32

To visualize the graph corresponding to a canonical INDEL, take the two example se-
quences CACTGT and CACCATGT. Here, we have a CA insertion after position two. With k-mer
length k = 3, this corresponds to the graph in Figure 3.3.

CAC

ACT

ACC

CTG

TGT

CCA CAT ATG

Figure 3.3: Subgraph Corresponding To a Canonical INDEL Edit

Where we have a canonical allele, the cost of computing the edit is set by the need to
walk the graph linearly from s

1

to s
2

, and is therefore O(n). However, in practice, we will see
di↵erences that cannot be described as one of the earlier two canonical approaches. First,
let us generalize from the two above proofs: if we have two independent paths between s

1

, s
2

in the de Bruijn graph G that was constructed from Si,Sj, we can describe Si as a sequence
created by concatenating s

1

,Li, s2.5 The canonical edits merely result from special cases:

• In a canonical substitution edit, lLi = lLj = 1.

• In a canonical INDEL edit, lLi = 0, lLj � 1.

Conceptually, a non-canonical edit occurs when two edits occur within k positions of each
other. In this case, we can trivially fall back on a O(nm) local alignment algorithm (e.g.,
a pairwise HMM or Smith-Waterman, see [17, 53]), but we only need to locally realign Li

against Lj, which reduces the size of the realignment problem. However, we can further limit
this bound by limiting the maximum number of INDEL edits to d = |lLi � lLj |. This allows
us to use an alignment algorithm that limits the number of INDEL edits (e.g., Ukkonen’s
algorithm [59]). By this, we can achieve O(n(d+ 1)) cost.

Specialization for Local Reassembly

Thus far, we have assumed that we want to find the edits between two or more known
sequences. However, when performing local reassembly for variant discovery/calling, our
goal is to identify all possible variants and to associate probabilities to observations that
contain these variants. These hypothesized variants are generated by examining the reads
aligned to the reference at/near a given site.

However, we can adopt a “pooled” model that uses the indexed de Bruijn graph to
discover alternate alleles without performing a search for all haplotypes. Here, we extract
a substring R from a reference assembly, corresponding to the subsection of that reference
that we would like to reassemble. Then, we create a pooled “sequence” P , that is generated

5This property holds true for Sj as well.

33

from the k-mers present in the reads aligned to R. However, since P is a composite of the
pooled reads, we cannot assign indices to k-mers in P . Instead, we will rely wholly on the
path length properties demonstrated in §3.2 and the indices of k-mers in R to discover and
anchor alleles. First, let us classify paths where R and P diverge into two types:

• Spurs: A spur is a set S of n k-mers {s
1

, . . . , sn} where either s
1

or sn 2 R,P and all
other k-mers are 62 R,2 P , and where si ! si+1

8i 2 {1, . . . , n � 1}. If s
1

2 R, then
sn must not have a successor. Alternatively, if sn 2 R, than s

1

is required to not have
a predecessor.

• Bubbles: A bubble is a set S of n k-mers {s
1

, . . . , sn} where both s
1

and sn 2 R,P
and all other k-mers are 62 R,2 P , and where si ! si+1

8i 2 {1, . . . , n� 1}.

Currently, we disregard spurs. Spurs typically result from sequencing errors near the start
or end of a read. Additionally, given a spur, we cannot put a constraint on what sort of edit
it may be from the reference, which increases the computational complexity of processing
the spur. We concede that this may not be the best approach, but plan to explore better
options for for processing spurs in future work.

We can elaborate the graph and identify variants by walking the graph from the first
k-mer in R. Although haplotype elaboration algorithms have ⌦(hmin lh) cost where min lh
is the length of the shortest haplotype and h is the number of haplotypes described by the
graph, we can limit our graph traversal to have O(n) runtime cost where n = V (G) by
introducing a tail-recursive finite state machine (FSM). Whenever we reach a branch point
in the graph, our FSM will push state onto a stack, which allows us—with a few exceptions—
to avoid making multiple traversals through a single k-mer in the graph. Our FSM has the
following states:

• R, Reference: We are on a run of k-mers that are in R.

• A, Allele: We are on a run of k-mers that have diverged o↵ of the reference. We have
a divergence start point, but have not connected back to the reference yet. This could
be either a bubble or a spur.

• C, ClosedAllele: We were on a run of k-mers that had diverged o↵ of the reference,
but have just reconnected back to the reference and now know the start and end
positions (in R) of the bubble, as well as the non-reference sequence and length of the
bubble.

We allow the FSM to make the following state transitions, which are depicted in Fig-
ure 3.4:

• R ! R: We are continuing along a reference run.

• R ! A: We were at a k-mer 2 R, and have seen a branch to a k-mer 62 R.

34

• A ! A: We are continuing along a non-reference run.

• A ! C: We were on a non-reference run, and have just connected back to a reference
k-mer.

• C ! R: We have just closed out an allele, and are back at a k-mer 2 R.

R Continuing on reference

A

Branching to alt off reference

Alt hasn't rejoined reference

C

Alt is rejoining reference

Back on reference from alt

Figure 3.4: Finite State Machine for Pooled vs. Reference Assembly

We initialize the state machine to R, and start processing with the first k-mer from R.
Per k-mer, we evaluate the possible state transitions of each successor k-mer. If the set of
successor k-mers contains a single k-mer, we continue to that state. If the successor set
contains multiple k-mers, we choose a successor state to transition to, and push the branch
context of all other successor states onto our stack. If the successor set is empty, we pop a
branch context o↵ of the stack, and switch to that context. We stop once we reach a k-mer
whose successor set is empty, and our branch context stack is empty.

The implementation of the R and A states largely amount to bookkeeping. In the R state,
we must track the current position in R, and in A, we must record where we branched o↵ of
R, and L0, the bases we have seen since we branched6 o↵ of R. If we are in the A state and
walk to a k-mer 2 R, we then transition into the C state. Using the positions of our branch
point and the current k-mer in R, we are able to calculate the length of the reference path
via Lemma 1, while the length of the non-reference path is given by lL0 . The edited sequence
L present between the branch point and the current k-mer is given by trimming the first
k � 1 bases from L0. If we have a non-canonical edit, or a deletion in P relative to R, we
can look these bases up by indexing into R.

To improve computational e�ciency, we should emit statistics for genotyping while
traversing the graph. By doing this, we can eliminate the need for realignment in hap-
lotype reassembly. Since we have constructed a graph where every k-mer is anchored to a
reference position or to a position in a variant, or is in a spur, if we log several statistics when
processing reads from P , we can directly emit the probability observations that support a
reference base or a variant allele. Although the relevant statistics vary between di↵erent

6Although we are processing k-mers, we only need to reconstruct the sequence that the k-mers are
describing by taking the first base from each successive k-mer.

35

variant calling/genotyping algorithms, common statistics include base and mapping quality,
as well as strand of the observation. Additionally, genotyping algorithms that incorporate
phasing may want to identify observations that came from the same allele. These statistics
can be logged at a low cost when chopping the reads in P into k-mers.

As noted earlier in this section, we normally do not need to retrace through any k-mers
in the graph when processing the graph. However, we may need to retrace k-mers if we
have overlapping variants. For example, take the reference string ACTGCCGTCT, the SNV
ACTGCAGTCT, and the complex variant ACTGCAAGTCT7. For k = 4, both variants share the
4-mer AGTC, but both take independent paths from the reference 4-mer CTGC to AGTC. In this
case, we need to walk AGTC twice.

3.3 Statistical Models for Genotyping

The biallelic genotyping model in avocado is derived closely from the biallelic genotyping
model used in the samtools mpileup variant caller [30]. However, we make several mod-
ifications. First, we apply a windowing approach to unify “complex” events. Second, we
operate solely in log space. This is done in order to avoid the underflow issues discussed in
§2.3.6 of Li 2011 [30].

Windowing Algorithm

The site independence assumption in samtools mpileup serves as a simplification for the
statistical approaches that follow, but can be a source of error in the presence of INDELs and
other complex events. As asserted earlier in this section, we believe that we can arrive at a
canonical INDEL alignment via local reassembly. This canonicalization should resolve issues
due to read evidence for an INDEL allele being misaligned across multiple reads. However,
even after realignment, we cannot guarantee that we have observed the same alleles across
all samples, nor can we guarantee that all alleles are at a single site on the reference genome.
This is trivial to note: all deletions cover a region of the reference genome, not a single
site. As such, grouping together alleles by start position is not su�cient for correctness.
While performing a coordinate space self-join—as supported in ADAM—would be su�cient
for correctness, it would not be performant due to the number of observations being scored
in a large dataset. Instead, we apply the sweeping window approach given in Algorithm 5.

This algorithm maintains an open window that it uses to group together all observations
that are in the window. It is worth noting that this is di↵erent from a self-join or a groupBy.
Specifically, we group all observations into the smallest possible region that could fully
contain those observations. If multiple observations from the same read are grouped together,
we then combine the statistics from those observations, weighted by the number of bases
from the read contributing to each respective observation.

7At CCG, we have inserted an A between the two Cs, and changed the second C ! A. Alternatively, this
can be described as a deletion of the second C and an insertion of AA between CG.

36

Algorithm 5 Open Windows for Site Observations
observations the set of allele observations
contigs a description of the reference genome assembly
observations observations.repartitionAndSortWithinPartition(contigs)
sites ;
for partition 2 observations do
windowStart partition.head.start
windowEnd partition.head.end
site ;
for observation 2 partition do
if windowEnd <= observation.start then
site {observation}

else
window [windowStart, windowEnd)
sites.append((window, site))
site.append(observation)

end if
end for
if sites 6= ; then
window [windowStart, windowEnd)
sites.append((window, site))

end if
end for
return sites

Statistical Model

The biallelic genotyping model in avocado is derived directly from mpileup [30], except with
a translation to log space. We calculate log likelihoods from the site observations, and use
the major allele frequency (MAF)8 as a prior when normalizing. We use equation (3.2) to
calculate the log likelihood of the genotype state at a site. We define the terms used in
equation (3.2) in Table 3.1.

l(g) = �k logm+
jX

i=1

log(✏i(m� g) + (1� ✏i)g) +
kX

i=j+1

log(✏ig + (1� ✏i)(m� g)) (3.2)

We estimate the MAF via expectation-maximization. Equation (3.3) gives the update
equation for n samples. cs represents the contribution of sample s to the MAF, and ps(glMAF

)
is the probability of genotype state g for sample s, given l

MAF

. The MAF is treated as a
binomial prior.

8The frequency of the reference allele as observed at this site across all samples.

37

Table 3.1: Equation (3.2) Terms

Term Definition

m The copy number of the site.
g The genotype state, or number of reference alleles.
j Reads 2 k that support the reference allele.
k The total number of reads at the site
✏i The probability that observation i was in error.

l
MAF

= s(c
1

, . . . , cn) (3.3)

cs = s(ns,i, . . .)� s(ds,i, . . .), i 2 {0, . . . , g} (3.4)

ns,i = ps(i|lMAF

) + log i (3.5)

ds,i = ps(i|lMAF

) (3.6)

s(l
1

, l
2

) = l
1

+ log(1 + e
l2
l1) (3.7)

s(l
1

, l
2

, . . . , ln) = s(l
1

, s(l
2

, s(. . . s(ln�1

, ln)))) (3.8)

Equation (3.7) is a numerically stable algorithm for adding two log values to each other
and returning a log result. This equation is from Durbin et al [17]. To sum together an
array of log values, we compose equation (3.7) recursively into equation (3.8). In practice,
to improve numerical stability we sort the array before performing the recursive sum.

38

Chapter 4

Performance and Accuracy Analysis

Thus far, we have discussed ways to improve the performance of scientific workloads that are
being run on commodity map-reduce systems by rethinking how we decompose and build
algorithms. In this section, we review the improvements in performance that we are able
to unlock. ADAM achieves near-linear speedup across 128 nodes. Additionally, ADAM achieves
25-50% compression over current file formats when storing to disk.

4.1 Genomics Workloads

Table 4.1 previews our performance versus current systems. The tests in this table are run on
the high coverage NA12878 full genome BAM file that is available from the 1,000 Genomes
project.1 These tests have been run on the Amazon Web Services EC2 cloud, using the
instance types listed in Table 4.2. We compute the cost of running each experiment by
multiplying the number of instances used by the total wall time for the run and by the cost
of running a single instance of that type for an hour, which is the process Amazon uses to
charge customers.

Table 4.2 describes the instance types. Memory capacity is reported in Gibibytes (GiB).
Storage capacities are not reported in this table because disk capacity does not impact
performance, but the number and type of storage drives is reported because aggregate disk
bandwidth does impact performance. In our tests, the hs1.8xlarge instance is chosen to
represent a workstation. Network bandwidth is constant across all instances.

As can be seen from these results, our pipeline is at best three times faster than current
pipelines when running on a single node; at worst, we are approximately at parity. Addi-
tionally, ADAM achieves speedup that is close to linear on a cluster. This point is not clear
from Table 4.1, as we change instance types when also changing the number of instances
used. Figure 4.1 presents speedup plots for the NA12878 high coverage genome.

1The file used for these experiments can be found on the 1,000 Genomes ftp site, ftp.1000genomes.
ebi.ac.uk in directory /vol1/ftp/data/NA12878/high coverage alignment/ for NA12878.

ftp.1000genomes.ebi.ac.uk
ftp.1000genomes.ebi.ac.uk

39

Table 4.1: Summary Performance on NA12878

Tool EC2 BQSR IR DM Sort FS Total

[15] 1† 1283m 658m — — —

2075m1
[33] 1† — — 509m 203m 54m41
[57] 1† — — 44m50 83m 6m11
[58] 1† — — 160m 562m —
ADAM 1† 1602m 366m 143m 108m 2m17 2221m17

1/1.25⇥ 1.7⇥ 1/3.8⇥ 1/1.3⇥ 2.7⇥ 1/1.07⇥
ADAM 32? 74m 64m 34m56 39m23 0m43 223m2

17⇥ 10⇥ 1.2⇥ 2.1⇥ 8.6⇥ 9.3⇥
ADAM 64? 41m52 35m39 21m35 18m56 0m49 118m51

30⇥ 18⇥ 2.0⇥ 4.3⇥ 7.5⇥ 17⇥
ADAM 128? 25m59 20m27 15m27 10m31 1m20 73m44

49⇥ 32⇥ 2.9⇥ 7.9⇥ 4.3⇥ 28⇥

Table 4.2: AWS Machine Types

Machine Cost Description

† i2.8xlarge $6.20 32 proc, 244G RAM, 8 SDD
? r3.2xlarge $0.70 8 proc, 61G RAM, 1 SDD

When testing on NA12878, we achieve linear speedup out through 1024 cores; this rep-
resents 128 m2.4xlarge nodes. In this test, our performance is limited by several factors:

• Although columnar stores have very high read performance, their write performance
is low. Our tests exaggerate this penalty; since a variant calling pipeline will consume
a large read file, but then output a variant call file that is approximately two orders
of magnitude smaller, the write penalty will be reduced. In practice, we also use
in-memory caching to amortize write time across several stages.

• Additionally, for large clusters, straggler elimination is an issue. However, we have
made optimizations to both the Mark Duplicates and INDEL Realignment code to
eliminate stragglers by randomly rebalancing reads that are unmapped/do not map to
a target across partitions.

We do note that the performance of flagstat degrades going from 256 to 1,024 cores.
By increasing the number of machines we use to execute this query, we increase scheduling
overhead, which leads to degraded performance.

40

Figure 4.1: Speedup on NA12878

4.2 Column Store Performance

In §2.3, we motivated the use of a column store as it would allow us to better push processing
to the data. Specifically, we can use predicate pushdown and projections to minimize the
amount of I/O that we perform. Additionally, column stores provide compressed storage,
which allows us to minimize both the required I/O bandwidth and space on disk. In this
section, we’ll look at the performance that our columnar store achieves in terms of read per-
formance and compression. We will not look extensively at write performance; for genomic
data, write performance is not a bottleneck because our workflow computes a summarization
of a large dataset. As a result, our output dataset tends to be O(100 MB) while our input

41

dataset is in the range of O(10 GB) to O(100GB).

Compression

The Parquet columnar store [5] supports several compression features. Beyond traditional
block-level compression, Parquet supports run length encoding for repeated values, dic-
tionary encoding, and delta encoding. Currently, we make use of run length encoding to
compress highly repeated metadata values, and dictionary encoding to compress fields that
can take a limited range of values. Dictionary encoding provides substantial improvements
for genomic data; specifically, the majority of genomic sequence data can be represented with
three bits per base.2 This size is an improvement over our in-memory string representation
that allocates a byte per base.

In Table 4.3, we look at the compression we achieve on the NA12878 and HG000963 human
genome sequencing samples. We compare against the GZIP compressed BAM [33] format
and the CRAM format [19]. We achieve approximately a 1.25⇥ improvement in storage. This
is not as impressive as the result achieved by the CRAM project, but the CRAM project
applies specific compression techniques that make use of the read alignment. Specifically,
CRAM only stores the read bases that do not appear in the reference genome. As a genomic
variant is only expected at one in every 1,000 bases, and a read error at one in every 50
bases, this allows CRAM to achieve significant compression of the sequenced bases.

Table 4.3: Genomic Data Compression

NA12878
Format Size Compression

BAM 234 GB —
CRAM 112 GB 2.08⇥
Parquet 185 GB 1.26⇥

HG00096
Format Size Compression

BAM 14.5 GB —
CRAM 3.6 GB 4.83⇥
Parquet 11.4 GB 1.27⇥

For genomic datasets, our compression is limited by the sequence and base quality fields,
which respectively account for approximately 30% and 60% of the space spent on disk. Qual-
ity scores are di�cult to compress because they have high entropy. We plan to look into

2Although DNA only contains four bases (A, C, G, and T), sequenced DNA uses disambiguation codes
to indicate that a base was read in error. As a result, we cannot achieve the ideal two-bits per base.

3A link to the NA12878 dataset was provided earlier in this paper. The HG00096 dataset is available from
ftp.1000genomes.ebi.ac.uk in directory /vol1/ftp/data/HG00096/alignment/.

ftp.1000genomes.ebi.ac.uk

42

computational strategies to address this problem; specifically, we are working to probabilisti-
cally estimate the quality scores without having observed quality scores. This estimate would
be performed via a process that is similar to the base quality score recalibration algorithm
presented earlier in this paper.

Horizontal Scalability

The representation Parquet uses to store data to disk is optimized for horizontal scalability
in several ways. Specifically, Parquet is implemented as a hybrid row/column store where
the whole set of records in a dataset are partitioned into row groups that are then serialized
in a columnar layout. This hybridization provides us with two additional benefits:

1. We are able to perform parallel accesses to Parquet row groups without consulting
metadata or checking for a file split.

2. Parquet achieves even balance across partitions. On the HG00096 dataset, the aver-
age partition size was 105 MB with a standard deviation of 7.4 MB. Out of the 116
partitions in the file, there is only one partition whose size is not between 105–110MB.

Parquet’s approach is preferable when compared to Hadoop-BAM [42], a project that
supports the direct usage of legacy BAM files in Hadoop. Hadoop-BAM must pick splits,
which adds non-trivial overhead. Additionally, once Hadoop-BAM has picked a split, there is
no guarantee that the split is well placed. It is only guaranteed that the split position will
not cause a functional error.

Projection and Predicate Performance

We use the flagstat workload to evaluate the performance of predicates and projections in
Parquet. We define three projections and four predicates, and test all of these combinations.
In addition to projecting the full schema, we also use the following two projections:

1. We project the read sequence and all of the flags (40% of data on disk).

2. We only project the flags (10% of data on disk).

Beyond the null predicate (which passes every record), we evaluate the following three
predicates:

1. We pass only uniquely mapped reads (99.06% of reads).

2. We pass only the first pair in a paired end read (50% of reads).

3. We pass only unmapped reads (0.94% of reads).

43

Table 4.4: Predicate/Projection Speedups

0 1 2

0 — 1.7 1.9
1 1.0 1.7 1.7
2 1.3 2.2 2.6
3 1.8 3.3 4.4

Table 4.4 compares the performance of these projections. Projections are arranged in the
columns of the table while predicates are assigned to rows.

We achieve a 1.7⇥ speedup by moving to a projection that eliminates the deserialization
of our most complex field (the quality scores that consume 60% of space on disk), while
we only get a 1.3⇥ performance improvement when running a predicate that filters 50% of
records. This variation can be partially attributed to overhead from predicate pushdown;
we must first deserialize a column, process the filter, and then read all records who passed
the pushdown filter. If we did not perform this step, we could do a straight scan over all of
the data in each partition.

44

Chapter 5

Conclusion

In this thesis, we have introduced the ADAM and avocado systems. These systems present a
“green field” view of how we can store and process genomic datasets by using commodity,
scalable analytics systems. In addition to developing systems that can be used to process
genomic data on multiple nodes, we have used these systems to explore the programming
interfaces provided to people who are developing genomic data processing algorithms. We
believe that ADAM is a promising step towards a higher level data model and API for providing
reference aligned genomics datasets.

5.1 Future Work

We are in the process of evaluating avocado on the 1,000 Genomes dataset. Our e↵orts on
avocado are focused in two directions:

1. Improving system scalability. During the evaluation of avocado, we have identified
areas in the ADAM API that need optimization. Specifically, we would like to explore
general techinques for straggler mitigation. Although we have improved the perfor-
mance of the local assembler through algorithmic enhancements, the region join that
is used to create regions for reassembly su↵ers from stragglers due to uneven coverage
across the genome. Additionally, we believe that we can improve avocado’s perfor-
mance by eliminating unnecessary shu✏es. There is an unnecessary shu✏e between
the reassembly and genotyping phase caused by a sort invariant in the windowing
function (see §3.3).

2. Additionally, we are interested in improving the statistical models used for variant
calling. Although avocado implements local assembly, we can further improve our
accuracy by moving to a haplotype-aware genotyping model. Additionally, since our
local assembler can handle pooled samples, we hope to add a statistical model that
supports calling somatic variants.

45

Once we have added support for somatic variant calling, we plan to use avocado to re-
call the TCGA [60] to stress-test the performance and scalability of the system. Beyond
using such a large dataset to stress-test the performance of our systems, we believe that this
provides us with a good opportunity to evaluate the design choices made by the analytics
systems that we have built on (Apache Spark). While many large scale workloads run on
top of the Hadoop ecosystem are proprietary, our workload and data are publically available.
This enables us to perform a review of the performance characteristics of these systems at
scale, without being encumbered by a proprietary system.

5.2 Conclusion

In this thesis, we have advocated for an architecture for decomposing the implementation of
a scientific system, and then demonstrated how to e�ciently implement genomic processing
pipelines using the open source Avro, Parquet, and Spark systems [3, 5, 65]. We have
identified common characteristics across genomics systems, like the need to run queries that
touch slices of datasets and the need for fast access to metadata. We then enforced data
independence through a layering model that uses a schema as the “narrow waist” of the
stack, and used optimizations to make common, coordinate-based processing fast. By using
Parquet, a modern columnar store, we use predicates and projections to minimize I/O, and
are able to denormalize our schemas to improve the performance of accessing metadata. By
rethinking the architecture of scientific data management systems, we have been able to
achieve a 28⇥ performance improvements over conventional genomics processing systems,
along with linear strong scaling and a 63% cost improvement.

46

Bibliography

[1] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution in
column-oriented database systems. In Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of Data (SIGMOD ’06), pages 671–682. ACM, 2006.

[2] C. A. Albers, G. Lunter, D. G. MacArthur, G. McVean, W. H. Ouwehand, and
R. Durbin. Dindel: accurate INDEL calls from short-read data. Genome research,
21(6):961–973, 2011.

[3] Apache. Avro. http://avro.apache.org.

[4] Apache. Hadoop. http://hadoop.apache.org.

[5] Apache. Parquet. http://parquet.incubator.apache.org.

[6] G. A. Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A. Levy-Moonshine,
T. Jordan, K. Shakir, D. Roazen, J. Thibault, et al. From FastQ data to high-confidence
variant calls: The Genome Analysis Toolkit best practices pipeline. Current Protocols
in Bioinformatics, pages 11–10, 2013.

[7] V. Bafna, A. Deutsch, A. Heiberg, C. Kozanitis, L. Ohno-Machado, and G. Varghese.
Abstractions for genomics. Communications of the ACM, 56(1):83–93, 2013.

[8] R. Bao, L. Huang, J. Andrade, W. Tan, W. A. Kibbe, H. Jiang, and G. Feng. Review
of current methods, applications, and data management for the bioinformatics analysis
of whole exome sequencing. Cancer informatics, 13(Suppl 2):67, 2014.

[9] A. Bloniarz, A. Talwalkar, J. Terhorst, M. I. Jordan, D. Patterson, B. Yu, and Y. S.
Song. Changepoint analysis for e�cient variant calling. In Research in Computational
Molecular Biology, pages 20–34. Springer, 2014.

[10] P. G. Brown. Overview of SciDB: large scale array storage, processing and analysis. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’10), pages 963–968. ACM, 2010.

[11] C. Chiang, R. M. Layer, G. G. Faust, M. R. Lindberg, D. B. Rose, E. P. Garrison, G. T.
Marth, A. R. Quinlan, and I. M. Hall. SpeedSeq: Ultra-fast personal genome analysis
and interpretation. bioRxiv, page 012179, 2014.

http://avro.apache.org
http://hadoop.apache.org
http://parquet.incubator.apache.org

47

[12] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The Sanger FASTQ
file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.
Nucleic acids research, 38(6):1767–1771, 2010.

[13] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
In Proceedings of the 6th Symposium on Operating System Design and Implementation
(OSDI ’04). ACM, 2004.

[14] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[15] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. del Angel, M. A. Rivas, M. Hanna, et al. A framework for variation
discovery and genotyping using next-generation DNA sequencing data. Nature Genetics,
43(5):491–498, 2011.

[16] Y. Diao, A. Roy, and T. Bloom. Building highly-optimized, low-latency pipelines for
genomic data analysis. In Proceedings of the 7th Conference on Innovative Data Systems
Research (CIDR ’15), 2015.

[17] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ Press, 1998.

[18] H. Fang, Y. Wu, G. Narzisi, J. A. O’Rawe, L. T. J. Barrón, J. Rosenbaum, M. Ronemus,
I. Iossifov, M. C. Schatz, and G. J. Lyon. Reducing INDEL calling errors in whole
genome and exome sequencing data. Genome Med, 6:89, 2014.

[19] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney. E�cient storage of high
throughput DNA sequencing data using reference-based compression. Genome Research,
21(5):734–740, 2011.

[20] E. Garrison and G. Marth. Haplotype-based variant detection from short-read sequenc-
ing. arXiv preprint arXiv:1207.3907, 2012.

[21] Genomics England. 100,000 genomes project. https://www.genomicsengland.co.uk/.

[22] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nature genetics, 44(2):226–232,
2012.

[23] K. J. Karczewski, G. H. Fernald, A. R. Martin, M. Snyder, N. P. Tatonetti, and J. T.
Dudley. STORMSeq: An open-source, user-friendly pipeline for processing personal
genomics data in the cloud. PloS one, 9(1):e84860, 2014.

[24] C. Kingsford, M. C. Schatz, and M. Pop. Assembly complexity of prokaryotic genomes
using short reads. BMC bioinformatics, 11(1):21, 2010.

https://www.genomicsengland.co.uk/

48

[25] C. Kozanitis, A. Heiberg, G. Varghese, and V. Bafna. Using Genome Query Language
to uncover genetic variation. Bioinformatics, 30(1):1–8, 2014.

[26] H. Y. Lam, C. Pan, M. J. Clark, P. Lacroute, R. Chen, R. Haraksingh,
M. O’Huallachain, M. B. Gerstein, J. M. Kidd, C. D. Bustamante, et al. Detecting
and annotating genetic variations using the HugeSeq pipeline. Nature biotechnology,
30(3):226–229, 2012.

[27] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear. The
Vertica analytic database: C-store 7 years later. Proceedings of the VLDB Endowment,
5(12):1790–1801, 2012.

[28] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon,
K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing and analysis of the human
genome. Nature, 409(6822):860–921, 2001.

[29] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg. Searching for SNPs
with cloud computing. Genome Biology, 10(11):R134, 2009.

[30] H. Li. A statistical framework for SNP calling, mutation discovery, association mapping
and population genetical parameter estimation from sequencing data. Bioinformatics,
27(21):2987–2993, 2011.

[31] H. Li. Towards better understanding of artifacts in variant calling from high-coverage
samples. arXiv preprint arXiv:1404.0929, 2014.

[32] H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics, 26(5):589–595, 2010.

[33] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin, et al. The sequence alignment/map format and SAMtools. Bioinformatics,
25(16):2078–2079, 2009.

[34] Y. Li, A. Terrell, and J. M. Patel. WHAM: A high-throughput sequence alignment
method. In Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’11), SIGMOD ’11, pages 445–456, New York, NY, USA,
2011. ACM.

[35] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D. Joseph, and
D. A. Patterson. ADAM: Genomics formats and processing patterns for cloud scale
computing. Technical report, UCB/EECS-2013-207, EECS Department, University of
California, Berkeley, 2013.

[36] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al. The Genome Analysis Toolkit:

49

a MapReduce framework for analyzing next-generation DNA sequencing data. Genome
Research, 20(9):1297–1303, 2010.

[37] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vas-
silakis. Dremel: interactive analysis of web-scale datasets. Proceedings of the VLDB
Endowment, 3(1-2):330–339, 2010.

[38] M. L. Metzker. Sequencing technologies—the next generation. Nature Reviews Genetics,
11(1):31–46, 2009.

[39] K. Nakamura, T. Oshima, T. Morimoto, S. Ikeda, H. Yoshikawa, Y. Shiwa, S. Ishikawa,
M. C. Linak, A. Hirai, H. Takahashi, et al. Sequence-specific error profile of Illumina
sequencers. Nucleic acids research, page gkr344, 2011.

[40] G. Narzisi, J. A. O’Rawe, I. Iossifov, H. Fang, Y.-h. Lee, Z. Wang, Y. Wu, G. J. Lyon,
M. Wigler, and M. C. Schatz. Accurate de novo and transmitted INDEL detection in
exome-capture data using microassembly. Nature methods, 11(10):1033–1036, 2014.

[41] NHGRI. DNA sequencing costs. http://www.genome.gov/sequencingcosts/.

[42] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä, E. Korpelainen, and K. Hel-
janko. Hadoop-BAM: directly manipulating next generation sequencing data in the
cloud. Bioinformatics, 28(6):876–877, 2012.

[43] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang. BioPig: a Hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics, 29(23):3014–3019, 2013.

[44] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksigian, J. Kot-
talam, A. Ahuja, J. Hammerbacher, M. Linderman, M. Franklin, A. D. Joseph, and
D. A. Patterson. Rethinking data-intensive science using scalable analytics systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’15). ACM, 2015.

[45] U. D. of Veterans A↵airs. Million veteran program (mvp). http://www.research.va.
gov/mvp.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python.
The Journal of Machine Learning Research, 12:2825–2830, 2011.

[47] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. Twigg, A. O. Wilkie, G. McVean,
G. Lunter, WGS500 Consortium, et al. Integrating mapping-, assembly-and haplotype-
based approaches for calling variants in clinical sequencing applications. Nature Genet-
ics, 46(8):912–918, 2014.

http://www.genome.gov/sequencingcosts/
http://www.research.va.gov/mvp
http://www.research.va.gov/mvp

50

[48] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan. Computa-
tional solutions to large-scale data management and analysis. Nature Reviews Genetics,
11(9):647–657, 2010.

[49] M. C. Schatz. CloudBurst: highly sensitive read mapping with MapReduce. Bioinfor-
matics, 25(11):1363–1369, 2009.

[50] A. Schumacher, L. Pireddu, M. Niemenmaa, A. Kallio, E. Korpelainen, G. Zanetti, and
K. Heljanko. SeqPig: simple and scalable scripting for large sequencing data sets in
Hadoop. Bioinformatics, 30(1):119–120, 2014.

[51] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and
K. Sirotkin. dbSNP: the NCBI database of genetic variation. Nucleic acids research,
29(1):308–311, 2001.

[52] N. Siva. 1000 genomes project. Nature Biotechnology, 26(3):256–256, 2008.

[53] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197, 1981.

[54] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J. Franklin,
M. I. Jordan, and T. Kraska. MLI: An API for distributed machine learning. In 13th
IEEE International Conference on Data Mining (ICDM ’13), pages 1187–1192. IEEE,
2013.

[55] L. D. Stein et al. The case for cloud computing in genome informatics. Genome Biology,
11(5):207, 2010.

[56] A. Talwalkar, J. Liptrap, J. Newcomb, C. Hartl, J. Terhorst, K. Curtis, M. Bresler,
Y. S. Song, M. I. Jordan, and D. Patterson. SMASH: A benchmarking toolkit for
human genome variant calling. Bioinformatics, page btu345, 2014.

[57] A. Tarasov, A. J. Vilella, E. Cuppen, I. J. Nijman, and P. Prins. Sambamba: fast
processing of NGS alignment formats. Bioinformatics, 2015.

[58] The Broad Institute of Harvard and MIT. Picard. http://broadinstitute.github.
io/picard/, 2014.

[59] E. Ukkonen. Algorithms for approximate string matching. Information and control,
64(1):100–118, 1985.

[60] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A. Ozenberger, K. Ell-
rott, I. Shmulevich, C. Sander, J. M. Stuart, Cancer Genome Atlas Research Net-
work, et al. The Cancer Genome Atlas pan-cancer analysis project. Nature Genetics,
45(10):1113–1120, 2013.

51

[61] N. I. Weisenfeld, S. Yin, T. Sharpe, B. Lau, R. Hegarty, L. Holmes, B. Sogolo↵, D. Tab-
baa, L. Williams, C. Russ, et al. Comprehensive variation discovery in single human
genomes. Nature genetics, 2014.

[62] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.
DryadLINQ: A system for general-purpose distributed data-parallel computing using a
high-level language. In OSDI, volume 8, pages 1–14, 2008.

[63] M. Zaharia, W. J. Bolosky, K. Curtis, A. Fox, D. Patterson, S. Shenker, I. Stoica, R. M.
Karp, and T. Sittler. Faster and more accurate sequence alignment with SNAP. arXiv
preprint arXiv:1111.5572, 2011.

[64] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation (NSDI ’12), page 2. USENIX Association,
2012.

[65] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX conference on Hot
topics in Cloud Computing (HotCloud ’10), page 10, 2010.

[66] H. Zimmermann. OSI reference model–the ISO model of architecture for open systems
interconnection. IEEE Transactions on Communications, 28(4):425–432, 1980.

	Contents
	Variant Identification Pipelines for Genomic Data
	Introduction
	Background
	Pipeline Structure
	Related Work

	Genomic Data Storage and Preprocessing Using ADAM
	Distributed Architectures for Genomics
	Layering
	Data Storage for Genomic Data
	Read Preprocessing Algorithms

	Variant Calling via Reassembly Using avocado
	Modular Approaches for Variant Calling
	Efficient Reassembly via Indexed de Bruijn Graphs
	Statistical Models for Genotyping

	Performance and Accuracy Analysis
	Genomics Workloads
	Column Store Performance

	Conclusion
	Future Work
	Conclusion

	Bibliography

