
Axis-aligned Filtering for Interactive Physically-based
Rendering

Soham Uday Mehta

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-66
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-66.html

May 12, 2015



Copyright © 2015, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.



Axis-aligned Filtering for Interactive Physically-based Rendering

by

Soham Uday Mehta

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ravi Ramamoorthi, Chair
Professor James O’Brien
Professor Marty Banks

Spring 2015



Axis-aligned Filtering for Interactive Physically-based Rendering

Copyright 2015

by

Soham Uday Mehta



1

Abstract

Axis-aligned Filtering for Interactive Physically-based Rendering

by

Soham Uday Mehta

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ravi Ramamoorthi, Chair

Computer graphics rendering is undergoing a renaissance, with physically-based rendering
methods based on accurate Monte-Carlo image synthesis replacing ad-hoc techniques in a variety
of applications including movie production. In interactive applications like product visualization
or video games, physically-based lighting effects are increasingly popular. However, producing
photo-realistic images at interactive speeds still remains a challenge.

In Monte-Carlo rendering, a pixel’s color is computed by sampling and integrating over a high-
dimensional space. This includes effects like (1) motion blur, due to objects moving during the time
the camera shutter is open; (2) defocus blur, due to camera lens optics; (3) area and environment
map lighting, which is direct illumination coming from many directions; (4) global illumination,
due to light reflected from one surface to another. The color is sampled through ray- or path-tracing.
With insufficient rays, the image looks noisy because the integrand has high variance, and 1000s of
rays are needed (per pixel) for a pleasing image. Previous work has showed a Fourier analysis for
some of these effects, deriving a compact double-wedge spectrum, and a sheared filter that aligns
with the slope of the spectrum. This filter can remove noise from a very sparsely sampled Monte-
Carlo image, but is very slow. In this thesis, we will extend the Fourier analysis for more general
cases, and propose a less compact axis-aligned filter, that aligns with the frequency axes. The
resulting spatial bandwidths are then used for image-space filtering, that is orders of magnitude
faster than sheared filtering. The packing of the Fourier spectra also provides adaptive sampling
rates that minimize noise in conjunction with the adaptive filter. These algorithms improve speed
relative to converged ground-truth by about 30−60×, and we are able to demonstrate interactive
speed with a GPU ray-tracer. We also demonstrate an application of our method to mixed reality
with a Kinect camera.



i

Contents

Contents i

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Radiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Rendering Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Fourier Analysis and Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Soft Shadows 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Axis-Aligned Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Adaptive Sampling Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Diffuse Indirect Illumination 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Fourier Analysis of Indirect Illumination . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Axis-Aligned Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Multiple Effects 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



ii

5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Defocus Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Direct Illumination with defocus blur . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Indirect Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Sampling Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Environment Illumination and Application to Mixed Reality 76
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Differential Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Two-mode Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.6 Fourier Analysis for Environment Lighting . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Practical Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusion 97
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Bandlimits for Glossy BRDFs 100

B Motion Blur with Secondary Effects 102

C Two-mode Sampling Algorithm 105

D Derivation of Chapter 6, equation 11 108

E Verification of Chapter 6, equation 17 110

Bibliography 112



iii

Acknowledgments

I want to thank my advisor Prof. Ravi Ramamoorthi for providing invaluable guidance in the
progress of my work. His deep insights in the field of rendering were indispensable for the com-
pletion of this work.

I thank Prof. Fredo Durand from MIT who was a co-advisor of many of my projects. In par-
ticular, his expertise in Fourier analysis was extremely helpful. I also want to thank Prof. James
O’Brien for providing advice at various points, and for having me as a GSI for the undergraduate
Computer Graphics course, which was a great learning experience for me. I would also like to
thank Prof. Carlo Sequin and Prof. Maneesh Agrawala for welcoming me into their classes and
helping my knowledge of graphics grow. I also thank Prof. Alysoha Efros and Prof. Marty Banks
for providing constructive criticism as my qualifying exam and dissertation committee members.
I want to thank my colleagues Dr. Dikpal Reddy, Dr. Jiamin Bai, Dr. Michael Tao who pro-
vided great advice on graduate school. I want to thank my collaborators and friends Ling-Qi Yan,
Brandon Wang and Eric Yao for their inputs and contributions.

This work was supported in part by NSF grant CGV 1115242, an NVIDIA PhD fellowship,
GPU donations from NVIDIA, and funding from the Intel Science and Technology Center for
Visual Computing.



1

Chapter 1

Introduction

The central focus of this thesis is speeding up photo-realistic rendering in 3-dimensional com-
puter graphics. Rendering refers to converting a 3-dimensional virtual collection of objects with
different reflective properties, viewed through a camera illuminated by some light sources, into
a 2-dimensional red-green-blue image. The scene, i.e. objects, materials, lights and camera, is
assumed to be known. Rendering a single image requires computing the light reaching the camera
at each pixel, and each image typically contains about a million pixels.

1.1 Motivation
Computing the color at each pixel requires evaluation of a complicated integral involving light
energy bouncing around in the scene, in the steady state. Specifically, we deal with photo-realistic
rendering effects, commonly termed “distribution effects”, such as

1. Soft Shadows (integrating over an area light),

2. Indirect Illumination (integrating over light reflected from other objects or surfaces),

3. Depth of Field (Integrating over the all points on the camera lens),

4. Motion Blur (Integrating over time for which the camera shutter remains open),

5. Environment Lighting (Integrating over distant lighting coming from all directions).

The integrand consists of a high-dimensional “light field” that is a function of coordinates in
camera, light, and/or directional space. In most scenarios, the integrand light fields at adjacent or
nearby pixels overlap across multidimensional domains. But, in traditional rendering, computa-
tional results are not shared between pixels. These multidimensional effects are expensive, but also



CHAPTER 1. INTRODUCTION 2

crucial for realism in high quality offline rendering. Many approximate techniques have been pro-
posed for each effect, but they introduce bias and fail to produce the accurate result. The correct,
physically-based solution is only possible through Monte-Carlo path-tracing.

As the complexity within a pixel’s multidimensional domain increases, the computation time
required to render an image using Monte-Carlo path-tracing also increases. For example, for shad-
ows cast by an area light, as the light source becomes larger each pixel sees more complex geometry
and the occlusion signal has more variance. Capturing this variance, i.e. reducing the noise using
previous methods requires computing more samples for each pixel, which increases render times.
Another observation is that as the complexity of these effects increases, the final image content is
often smooth. Intuitively, for shadows, the larger the size of the light source, the blurrier (softer)
the shadows. This blur in turn removes high frequencies from the final image. Putting these two
observations together we come to an ironic conclusion. Using simple Monte-Carlo ray-tracing, as
the light size increases, more rays are required, but the complexity and spatial frequencies in the
final image actually decrease due to the blurring or filtering from the light source – and we end up
devoting more and more resources to compute a simpler and simpler result. One of the key insights
is that as complexity increases inside of a single pixel, it is often true that there is a corresponding
increase in overlap between the integral domains of nearby pixels. For example, nearby pixels see
the same blockers casting shadows from the light source. Similar arguments can be applied for
other distribution effects. At an intuitive level it seems obvious that we should be able to share
information to reduce the total computation in these cases. However, robustly deriving how much
information to share and how to share it fast is a more difficult problem, and it is the problem
addressed by this thesis.

1.2 Contributions
A large body of recent work has indicated that the number of rays in Monte-Carlo rendering can
be dramatically reduced if we share samples between pixels. Previous work has extended image
denoising techniques to Monte-Carlo images. Other work has showed a Fourier analysis for some
of these effects, deriving a compact filter that aligns with the slope of the spectrum. Although
these methods based on sheared filtering, statistical denoising or light field reconstruction can
denoise very sparsely sampled images, their practical filtering algorithms are very slow, making
them unsuitable for interactive use. In this thesis, we make a different set of tradeoffs. We use a
simple filter to reduce the number of Monte-Carlo samples considerably compared to brute force,
but less than some previous methods. However, we benefit in having an extremely simple filtering
step, which reduces to a spatially-varying image-space blur. This can be performed extremely fast,
and enables our method to be integrated in a GPU-accelerated ray-tracer. The final algorithm is
essentially an image denoiser which is very simple to implement and can operate with minimal
overhead. Our analysis also provides adaptive sampling rates which reduce noise throughout the
image. Therefore, we are able to achieve interactive frame rates while obtaining the benefits of
high quality ray-traced distribution effects.



CHAPTER 1. INTRODUCTION 3

Along with our practical contribution, we also make important theoretical contributions, con-
sisting of novel results in the Fourier analysis of light fields for soft shadows, indirect illumination,
defocus blur and environment illumination, showing that many spectra have a consistent double-
wedge Fourier power spectrum. In the case of indirect illumination, we show that the light field
has the double wedge spectrum even for non-parallel reflectors and receivers. In the case of en-
vironment illumination, the spectrum is the convolution of sheared Gaussians and is shaped like
an ellipsoid. In each case, we show how to band-limit this spectrum based on the lighting, BRDF
(diffuse and Phong) geometry terms. In the case of multiple effects, more than one bandlimit ap-
plies, so we separate the shading into texture and irradiance; our novel factorization scheme allows
pre-filtering noisy irradiance before multiplication with texture.

We now state our specific contributions succinctly:

1. We study the multidimensional signals listed in Sec.1.1 above in both the primal (for e.g.,
space-angle) and Fourier (frequency) domains. We show the structure of these signals in
the Fourier domain is similar, and is captured inside a “double-wedge” determined by some
minimum and maximum slope lines determined by the geometry of the scene. We then
show how this signal is bandlimited (See Sec.2.3) during intgeration. Previous work has
used a “sheared” or sloped filter to bound the double wedge, instead, our resulting filter is
“axis-aligned”, meaning it is a rectangle with edges aligned with the coordinate axes. The
axis-aligned filter effectively provides a filter width in image-space, allowing us to filter
noisy images to produce smooth but accurate images.

2. Based on the different bandlimits, we derive minimum sampling rates needed to accurately
reconstruct the image after filtering. This adaptive sampling scheme adds more samples in
image regions with small filter sizes and vice versa. We also provide higher-dimensional
adaptive sampling for the case of multiple simultaneous effects.

3. We provide fast implementations of our adaptive sampling and filtering schemes using ray-
tracing and filtering on a Graphics Processing Unit (GPU). Our implementation runs at 5-10
frames per second for simple effects and 2-5 seconds per image for complex effects. This
is about an order of magnitude faster than other state-of-the-art methods, for about the same
accuracy. Relative to equal visual quality ground truth, we are able to render images 30 to
60× faster.

1.3 Overview
This thesis is organized as follows. Chapter 2 gives the basic background theory for radiometry,
rendering, Fourier analysis and filtering. Chapters 3-6 discuss our algorithm for the distribution
effects listed in Sec. 1.1, including a detailed discussion of relevant previous work. Chapter 3
presents our technique for accurately rendering images with area light soft shadows at interactive
speeds. We examine the shadow light field in the frequency domain, showing that it is limited to a



CHAPTER 1. INTRODUCTION 4

double-wedge shape, and propose a novel axis-aligned filter that reduces to filtering the shading di-
rectly in image space. Our filter also provides adaptive per-pixel sampling rates. Chapter 4 extends
and expands these filtering ideas to reducing the number of rays when calculating indirect illumi-
nation at a pixel. The light field in this case requires a different parameterization but reduces to the
same double-wedge model, allowing us to apply the axis-aligned filter for fast filtering. Chapter
5 considers a more complex case with simultaneous defocus(or motion) blur, and soft shadows
and indirect illumination. We apply a two-level axis-aligned filter, in combination with two-level
adaptive sampling to separate the effects of lens (time), and area light and BRDF, allowing us to
reconstruct the image in a few seconds. Finally, in Chapter 6, we consider environment illumina-
tion. This requires a different curvature-dependent parameterization. The shading spectrum must
take both illumination and visibility into account, and we show that it is no longer a double-wedge,
but an ellipsoid. We demonstrate an application of our filter to a new domain in rendering, namely
mixed reality. In mixed reality, virtual objects are added to a real-world video stream, with phys-
ically correct shading – both virtual and real objects affect each other’s appearance. Chapter 7
summarizes our work, and suggests possible future work.



5

Chapter 2

Background

Rendering is the process of simulating how light travels (light transport) and is recorded on the
camera film. In this thesis, we will consider scenes with solid surfaces and no atmospheric (volu-
metric) effects. The basic operations for light transport are travel through free space and reflection.
Understanding light transport requires defining certain units of measurement, as explained below.

2.1 Radiometry
Radiometry is the study and quantification of light energy. Two of the most common measurements
of light are radiant flux and radiance. Flux Φ is a measurement of power, which is simply energy
per time (Watts). The energy of light is usually distributed unevenly across wavelengths, so Φ is
also a function of wavelength λ , and if it varies with time, also a function of time t. All following
radiometric quantities are also function of λ and t. For our analysis, this dependence is ignored
since λ and t do not change.

Radiance L is a measure of flux across a differential surface area dA, across a differential solid
angle dω , measured in W ·m−2 ·Sr−1:

L =
Φ

dAcosθdω
(2.1)

with θ being the angle between the normal n of the differential surface dA and the differential solid
angle dω . This essentially measures light through a cylinder in the limit as the cylinder becomes
infinitely thin. One of the most convenient properties is that radiance is constant along a ray in free
space. Throughout this thesis, we will study the structure of the radiance light field, that is, the
full 4-dimensional radiance field varying with space (x on a surface) and direction ω .

Irradiance E is the radiant flux received by a surface per unit area (measured in W ·m−2 and
can be computed from the radiance as:

E(x) =
∫

H+

L(x,ωi)cosθi dωi (2.2)



CHAPTER 2. BACKGROUND 6

Here H+ specifies the upper visible hemisphere of possible incoming light directions around the
surface normal n.

How light interacts with surfaces is modeled by the bidirectional reflectance distribution func-
tion, or BRDF [69]. The BRDF ρ(ωi,ωo) is classically defined to be a 4D function that relates
the differential incoming irradiance Ei along a direction ωi to the differential outgoing radiance Lo
along a direction ωo, at a given spatial location:

ρ(ωi,ωo) =
dLo(ωo)

dEi(ωi)
=

dLo(ωo)

Li(ωi)cosθi dωi
. (2.3)

One of the most commonly used BRDF models is the diffuse or Lambertian BRDF, ρ(ωi,ωo)=
kd , where kd is a spatially varying RGB texture. That is, the reflectance is independent of incoming
and outgoing directions. A commonly used Glossy (shiny) BRDF model is the Phong BRDF

ρ(ωi,ωo) = ks(r ·ωo)
n (2.4)

where r is the vector ωi reflected about the normal n, and n is a numeric exponent. Both mod-
els produce realistic-looking images, but are not physically-based. Modern renderers use more
sophisticated models such as the Torrance-Sparrow BRDF.

2.2 The Rendering Equation
The radiance reflected from a surface is defined by the reflection equation. This equation computes
the outgoing radiance Lo by integrating the product of the BRDF ρ and incoming radiance Li:

Lo(x,ωo)) =
∫

H+

ρ(ωi,ωo)Li(x,ωi)cosθi dωi (2.5)

As an approximation we can assume that the incoming light Li only comes from light emitters
in the scene (ignoring reflections from other surfaces). Simulating this subset of light paths is
called direct illumination, and can be computed directly from the reflection equation. Note that
visibility of the light source in any direction ωi is unknown (scene-dependent).

In the real world, light may reflect any number of times from surfaces before reaching the
camera pixel. Fully simulating this is more expensive, and is called global illumination. In this
case the outgoing light Lo and incoming light Li are related by Li(x,ωi) = Lo(R(x,ωi),−ωi), where
R(x,ωi) is the closest surface location looking from point x towards the ωi direction. By also
including light emitters Le we can then write the full rendering equation [44] as follows:

Lo(x,ωo) = Le(x,ωo)+
∫

H+
ρ(ωi,ωo)Lo(R(x,ωi),−ωi)cosθi dωi (2.6)



CHAPTER 2. BACKGROUND 7

Note that unknown surface-outgoing radiance Lo appears on both sides of the equation. Closed
form solutions to this equation can only be computed for the simplest of scenes.

For general scenes, solutions to equations 2.5 and 2.6 can be found by path-tracing. Specifi-
cally, we trace rays that simulate light paths and determine light-source visibility in eqn. 2.5 and
closest visible surface in eqn. 2.6. Usually, the set of feasible directions is infinite, so in theory
infinite rays would be required to estimate the integrals. In practice, Monte-Carlo ray-tracing is
used, wherein we only sample a random subset of directions. For more details on Monte-Carlo
ray-tracing for different problems in rendering, see [77].

2.3 Fourier Analysis and Filtering
In this thesis, we study the properties of the radiance light-field L(x,ωi) for various situations. This
light field is structured and sparse (low-dimensional), so we find it suitable to study it in the Fourier
or frequency domain. We define the Fourier Transform of a 1D function f (x) to be:

f̂ (Ω) = (2π)−1
∫ ∞

−∞
f (x)e− jxΩ dx, (2.7)

where Ω is the frequency. In general, f̂ is a complex-valued function. Fourier transforms of
higher-dimensional functions are defined analogously. Note that the original function f can also
be recovered from its Fourier transform f̂ :

f (x) =
∫ ∞

−∞
f̂ (Ω)e jxΩ dΩ (2.8)

Here j is the complex unit
√
−1. The power-spectral-density PSD of a signal in the Fourier domain

is simply the absolute value of its fourier transform squared, such as || f̂ (Ω)||2. Most light fields
and other signals encountered in rendering are bandlimited, that is the PSD is non-zero only in a
small range of frequencies. Specifically, we say f has a bandlimit B if∫ B

−B
|| f̂ (Ω)||2 dΩ > 0.99

∫ ∞

−∞
|| f̂ (Ω)||2 dΩ (2.9)

.

If an unknown signal has bandlimit B, it can be accurately reconstructed throughout its range
from discrete samples obtained at intervals of (2B)−1. This is the famous Shannon-Nyquist sam-
pling theorem and the minimum sampling rate is termed Nyquist rate. We will often try to deter-
mine the Nyquist rate for sampling the unknown light field to reduce computation.

A filter is a function that multiplies a Fourier spectrum usually to isolate a part of the frequency
range. In rendering, we typically use a low-pass filter, that is non-zero within some frequency range
[−B,+B]. Mathematically, applying a filter ĥ to an input signal spectrum ĝ gives:

f̂ (Ω) = ĝ(Ω)ĥ(Ω). (2.10)



CHAPTER 2. BACKGROUND 8

In practice, we apply the filter directly in spatial domain, since it doesn’t require us to compute any
Fourier transform explicitly. Spatial-domain filtering is a convolution operation:

f (x) =
∫

g(x−u)h(u)du. (2.11)

For more details on Fourier theory, refer to a basic text such as [31].



9

Chapter 3

Soft Shadows

3.1 Introduction
This chapter focuses on accurate and efficient rendering of soft shadows from planar area lights.
Soft shadows are a key effect in photorealistic rendering, and important to set the tone of a scene,
but are expensive because every location on the area light must be considered and sampled. While
real-time techniques [40, 43] have achieved impressive results, they rely on a variety of approxi-
mations, making no guarantee of convergence to ground truth while retaining some artifacts. On
the other hand, Monte Carlo shadow-ray tracing is the preferred offline rendering method since
it is physically-based, accurate and artifacts (noise that goes away with more samples) are well
understood. Monte Carlo rendering can now be GPU-accelerated, and ready-to-use raytracers are
available; we use NVIDIA’s Optix [76]. However, the number of samples per pixel for soft shad-
ows remains too large for interactive use.

We build on [25] to significantly reduce the number of Monte Carlo samples needed, while
still keeping the benefits of accurate raytraced occlusion. [25] developed a sheared filter in the
4D pixel-light space, that combines samples from many different pixels, at different light loca-
tions. However, the filtering step introduces considerable overhead of minutes, and the technique
is offline. In this thesis, we use simpler axis-aligned (rather than sheared) filters. (In this context,
axis-aligned or sheared refers to the shadow light field in the pixel-light domain, rather than the
2D image—we also use separable 1D filters along the image axes as a practical optimization, but
this is less critical.)

While the number of samples per pixel is somewhat increased in our axis-aligned method as
opposed to sheared filtering, post-processing reduces to a simple adaptive 2D image-space filter,
rather than needing to search over the irregular sheared filter for samples in the full 4D shadow light
field. Our method is easily integrated with existing Monte Carlo renderers, reducing the samples
required by 4×-10×.

The main benefit is that overhead is minimal (about 5 milliseconds), even in GPU raytracers,



CHAPTER 3. SOFT SHADOWS 10

(a) our method, 37 spp (samples per pixel) (b) equal time,
unfilt., 37 spp

(c) our method,
37 spp

(d) gr. truth
4000 spp

(e) equal error,
unfilt., 153 spp

Figure 3.1: (a) Soft shadows from a planar area light are computed accurately by raytracing at 2.3 fps,
with adaptive sampling and filtering using our method. The scene has 300K vertices and complex shadows.
Our method is simple, requires no precomputation and directly plugs into NVIDIA’s OptiX or other real-
time raytracer. (b) Soft shadows without filtering, equal time; note the considerable noise. (c) Our method
compares well to ground truth (d). (e) Equal error without filtering still has some noise making it visually
less acceptable. The scene is based on one first used in [Overbeck et al. 2006]. Readers are encouraged to
zoom into the PDF in all figures to see the noise and shadow details.

and interactive performance can therefore be achieved. Our specific contributions are:

1. Derivation of adaptive sampling rates and adaptive filter sizes for axis-aligned pixel-light
filtering of soft shadows.

2. Consistent sampling, wherein the filter size is adjusted for the sampling rate, ensuring con-
vergence as in standard Monte Carlo. Previous sheared filtering approaches still contain
some artifacts and typically do not guarantee convergence.

3. A simple Optix implementation where the filtering has minimal overhead. We achieve inter-
active frame rates (Fig. 3.1).

3.2 Previous Work
Real-Time and Accelerated Soft Shadows: The shadow mapping method [107] can be ex-
tended to soft shadow maps that consider occlusion from the entire area source [34, 3]. As noted
in [43], these methods make various tradeoffs of speed and accuracy. Soler and Sillion [95] provide
an analytic solution, but only for geometry in parallel planes. Shadow volumes [17] can also be ex-
tended to soft shadows using geometric ideas like penumbra wedges [6, 53] An analytic approach
based on beam tracing is proposed by [73], but is not yet fast enough for real-time use, especially
on complex scenes. Another body of work is precomputed relighting [93], but these are usually



CHAPTER 3. SOFT SHADOWS 11

limited to static scenes lit by environment maps. We require no precomputation and raytrace each
frame independently, allowing for dynamic scenes.

Monte Carlo and Ray-Traced Shadows: A number of accelerations that exploit coherence
have been proposed [38, 2], as well as methods to separate near and far-field effects [5], prefilter
visibility [52] and accelerate ray packets [11]. In contrast, we directly leverage a GPU raytracing
framework in Optix [76] but add an adaptive image-space filter in post-processing. A few recent
works have explored GPU acceleration of occlusion queries [27, 28] and sampled visibility [92].
It should be possible in future to combine our image-space filtering approach with these GPU
methods, but we currently only use the basic Optix raytracer.

Adaptive Sampling and Sheared Reconstruction: Our method adaptively samples the image
plane, inspired by the offline rendering methods of [35], and more recently [37] and [72]. We build
most closely on recent approaches for frequency analysis of shadows and light transport [13, 23,
54]. In particular, Egan et al. [25] develop a method for caching the 4D shadow light field with
very low sampling density, followed by a sheared pixel-light filter for reconstruction. Several other
recent papers have explored similar ideas for motion blur, depth of field, ambient occlusion and
more general effects [26, 96, 24]. However, the filtering phase is slow, often taking longer than
actual shadow casting. Sheared filtering must store the full 4D light field, and perform an irregular
search over it at each pixel. [56] use a GPU-accelerated reconstruction, but are still too slow for
interactive use. We use simpler axis-aligned filtering to develop a very efficient post-processing
algorithm that reduces to simple 2D adaptive screen-space filtering.

De-Noising: Our post-process is essentially an image de-noising operator, building on [87, 62,
108]. Recently, [88] describe an iterative approach to filter Monte Carlo noise, but this is still an
offline procedure for global illumination. We are also inspired by many recent image-processing
algorithms, such as [18]. However, these previous approaches are not designed for real-time use,
and also assume limited a-priori information about the scene. We use our theoretical analysis to
estimate the precise extent of the filter needed adaptively at each pixel.

3.3 Background
We now briefly introduce the basic spatial and frequency domain analysis of the occlusion func-
tion. The ideas are summarized in Fig. 3.2. In the next section, we define the various frequency
bandlimits precisely in physical units, and then proceed to derive filter sizes and sampling rates.
As in previous work, we introduce the theory with a 2D occlusion function (1 spatial dimension
on the receiver and light source); the extension to 2D images and lights is straightforward and we
provide details later of our implementation.



CHAPTER 3. SOFT SHADOWS 12

Receiver
x

y

Light

Occluders d1

d2
max

d2
min

(a) Schematic

x 

y
 

(b) Occlusion

d 1
/d 2   

 -
 1

Ωx
max

m
ax

d 1
/d

2 
   

- 
1

m
inΩy

0

Ωx

(c) Occlusion Spectrum

Figure 3.2: (a) The basic setup and coordinate system for analyzing occlusion, (b) The binary occlusion
function for flatland, and (c) Fourier spectrum of the occlusion function.

Assumptions: We use y for light coordinates and x for coordinates on a parameterization plane
parallel to the light source as shown in Fig. 3.2(a); Our goal is to compute the result h(x),

h(x) = r(x)
∫

f (x,y)l(y)dy, (3.1)

where f (x,y) is the occlusion or shadow function1, and l(y) is the light source intensity. We
assume planar area lights and generally use a gaussian form for l(y). We also focus on the diffuse
intensity (assuming the specular term will be added by a separate pass, as is common in many
applications), and that the irradiance from the light can be approximated at its center with r(x),
so we can focus purely on the occlusion f (x,y). These assumptions are similar to many previous
works [95, 25]. Textures can be included directly in r(x). Glossy or other BRDFs can also be
combined into the lighting function l(y), as discussed in [24], and simply require us to modify the
effective light frequency bandlimit in our formulae. However, we do not include these effects in
most of our examples, to focus on shadows. In practice, our method also works fairly well, without
modifications, when including only the cosine falloff in l(y), as seen in Fig. 3.11(a).

Occlusion Function: From the geometry of Fig. 3.2(a), we can derive the 2D occlusion function
f (x,y) in terms of a 1D visibility (g(·) is defined along the occluder plane parallel to the light
plane),

f (x,y) = g
(

d2(x− y)
d1

+ y
)
, (3.2)

where d2 is the distance from the light to the occluder and d1 is the distance from the light to
the receiver (note that d1 can depend on x since the receiver may not be planar). The occlusion
function f (x,y) has a regular structure with diagonal bands due to equation 3.2; the slope of the

1Note that [25] first define f in terms of a ray-space parameterization with a plane one unit away and then compute
the occlusion; we directly use f (x,y) to denote the occlusion.



CHAPTER 3. SOFT SHADOWS 13

bands will be given by −d2/(d1 − d2). If the occluder depths vary between dmin
2 < d2 < dmax

2 , f
typically looks like Fig. 3.2(b).

Fourier Analysis: The Fourier spectrum for equation 3.2 lies on a line with slope s = (d1/d2)−
1 (orthogonal to the spatial domain slope in Fig. 3.2(b)). In terms of Fourier spectra F and G,

F(Ωx,Ωy) =
d1

d2
δ (Ωy − sΩx)G

(
d1

d2
Ωx

)
. (3.3)

As noted in [13, 25], when we have a range of depths, most of the spectrum will lie in a union
of the lines for each depth, and hence be confined to a double wedge as shown in Fig. 3.2(c).2

Maximum and minimum slopes respectively are

smax =
d1

dmin
2

−1 smin =
d1

dmax
2

−1. (3.4)

3.4 Axis-Aligned Filtering
The frequency spectra define the sampling resolution and hence the filter sizes. In this section,
we derive the axis-aligned filters that we use. Note that axis-aligned here refers to the 2D (later
4D) pixel-light space, not the 2D image domain. We begin by introducing the frequency domain
bandlimits; we use precise physical units unlike many previous works. We then derive filter sizes
and apply them in screen-space (implementation details are later in Sec. 3.6).

3.4.1 Preliminaries: Frequency Domain Bandlimits
Frequencies in both dimensions, Ωx and Ωy, are measured in m−1, assuming world coordinates
are measured in meters. The limited resolution of the output image acts as a low pass filter in
the spatial (pixel) dimension. Ωmax

pix is the maximum displayable frequency in the pixel space, and
following earlier approaches, is taken to be Ωmax

pix = (1/d) m−1, where d is the projected distance
per pixel (i.e., the length in world coordinates that this pixel corresponds to, which also accounts
for effects like foreshortening).

The occlusion function F(Ωx,Ωy) is assumed to have a spatial bandlimit imposed due to the
smoothness of geometry causing the occlusion.3 There is no definite way to quantify this bandlimit,
so we will introduce it as a parameter Ωmax

g in our analysis. In particular, we first introduce a
parameter α , so that

α =
Ωmax

g

Ωmax
pix

∈ (0,1], (3.5)

2As discussed in [25], there are unusual configurations that violate these assumptions, but they do not arise in our
practical tests.

3In practice, sharp edges could produce infinite frequencies, but we limit ourselves here to pixel resolution for
practical purposes.



CHAPTER 3. SOFT SHADOWS 14

Ωy

Ωx
max

ΩL
max s1 s2

Ωx
Ωy
f

Ωx
f

(a)

Ωy

Ωx
max

shear

Ωsh

ΩL
max

s1 s2

Ωx

(b)

Figure 3.3: Schematic of (a) Axis-Aligned Filter, (b) Sheared Filter.

where Ωmax
g is the (unknown) bandlimit on the occluding geometry. The conservative approach

(which we use in our images) would simply set α = 1, i.e., use Ωmax
g = Ωmax

pix . From equation 3.3,

Ωmax
x = α

dmax
2
d1

Ωmax
pix = α(1+ smin)

−1Ωmax
pix . (3.6)

It is also useful to know the Ωy bandlimit of the occlusion function. From the geometry of
Fig. 3.2(c), it is clear that Ωy = sΩx, which leads to (d1/d2 −1)α(d2/d1)Ωmax

pix , and

Ωmax
y = α

(
1−

dmin
2
d1

)
Ωmax

pix . (3.7)

Finally, since effective visibility is the integration of the light internsity with the occlusion
function, frequencies in the occlusion function outside the light’s bandlimits Ωmax

L will be filtered
(Fig. 3.3(a)).

We assume the light is a Gaussian of standard deviation σ meters, so Ωmax
L = (1/σ) m−1. Of

course, Gaussian lights will not perfectly bandlimit, and the cutoff can also be scaled by a small
constant (e.g., using 2σ instead of σ ) without materially affecting the derivations. The numerical
constants used in our work are consistent, and agree well with empirical observations. We have also
experimented with constant (non-Gaussian) lights. These become Fourier domain sincs without
a strict frequency cutoff, but they do work in practice, with more conservative bandlimits (see
Fig. 3.11(b)).



CHAPTER 3. SOFT SHADOWS 15

3.4.2 Frequency Extent of Axis-Aligned Filter

We define the axis-aligned filter in the frequency domain as [−Ω f
x ,Ω

f
x ]× [−Ω f

y ,Ω
f
y ]. As shown in

Fig. 3.3(a),

Ω f
x = min

[
Ωmax

L
smin

,Ωmax
x

]
Ω f

y = Ωmax
L . (3.8)

The Ωy bandlimit simply comes from the light, while the Ωx bandlimit is induced by the light.
Ω f

x must also be clipped to Ωmax
x .

Even though the size of the axis-aligned filter in Fig. 3.3(a) is larger than the sheared filter in
Fig. 3.3(b), one important advantage is the decoupling of filtering over the spatial x and light y
dimensions. This reduces to a simple screen-space filter, as we will see next.

3.4.3 Towards filtering in Screen-Space
Spatial Domain Filters: The primal domain analogue of a frequency domain box filter is a sinc
filter, which decays slowly. Hence, we approximate both the fequency and primal domain filters
with Gaussians. In the primal or pixel domain, the standard deviation4 is β (x) = 1/Ω f

x .

Similarly, the standard deviation in the y-dimension γ(y) = 1/Ωf
y. However, Ωf

y = Ωmax
L =

(1/σ), and γ(y) =σ , which is simply the standard deviation of the original light source (in meters).
Thus, the filter in the y dimension simply integrates against the light source l(y). This integral can
be performed first and simply gives the standard noisy Monte Carlo result. Thereafter, we can
apply the x filter only in the spatial dimensions.

Shading Equations: Note that the x and y dimensions are treated separately in equation 3.1 (we
also omit r(x) in equation 3.1 for simplicity since it just multiplies the final result). The y dimension
involves an integral of the light and the visibility, which can be performed in any orthonormal basis
(either spatial or frequency domain). On the other hand, the x dimension is related to the final
image, and we must apply the axis-aligned filter (a spatial convolution) to remove replicas from
sampling. Putting this together,

h(x) =
∫

x′

∫
y
w(x− x′;β (x)) f̄ (x′,y)w(y;γ(y))dydx′, (3.9)

where w() are the spatial domain Gaussian filters, and f̄ is the sampled (noisy) visibility. To
simplify further, note per the earlier discussion that w(y;γ(y)) = l(y) is just the light source itself.
Hence, we can pre-integrate the lighting to obtain a noisy result h̄(x) to which we then apply a

4As described in equation 3.13, we actually find it better to use a value β (x) = k−1Ω f
x where k accounts for the

Gaussian energy being spread over multiple standard deviations, and we usually set k = 3.



CHAPTER 3. SOFT SHADOWS 16

simple Gaussian filter,

h̄(x′) =
∫

y
f̄ (x′,y)l(y)dy

h(x) =
∫

x′
h̄(x′)w(x− x′;β (x))dx′. (3.10)

The Gaussian filter w(x− x′) is given in the standard way by

w(x− x′;β ) =
1√
2πβ

exp
[
−∥ x− x′ ∥2

2β 2

]
, (3.11)

where in the 3D world, we set ∥ x− x′ ∥ to be the distance between two world-space locations, but
measured along the plane parallel to the light (motion normal to the light is excluded). In other
words, if | · | measures Euclidean distance and n is the light normal,

∥ x−x′ ∥2=| x−x′ |2 −
[
n · (x−x′)

]2
. (3.12)

Discussion: The simplicity of equation 3.10 is key for our algorithm. In essence, we are just
computing the standard noisy visibility h̄(x) followed by a denoising or filtering step to obtain
h(x). Our analysis is simply telling us exactly how much to filter (giving the value of β (x)) for
each spatial location, and β (x) is spatially-varying, depending on the local geometry and occluders.
So far, all of the discussion has been in world-space, but the filtering can be reduced to image-space
as discussed in our implementation (Sec. 3.6).

Unlike sheared filtering, we do not need to keep track of the full occlusion light field, which is
a major memory savings. Moreover, filtering happens only on the image, and we do not need to
search the light field for samples that fall inside an irregular sheared filter. Finally, β (x) ∼ 1/Ωf

x
and is given from equations 3.4 and 3.8 as,

β (x) =
1
k
· 1

µ
max

[
σ
(

d1

d2,max
−1
)
,

1
Ωmax

x

]
, (3.13)

where σ = 1/Ωmax
L is the standard deviation of the Gaussian for the light, and the factor of k

(we use k = 3) corrects for the spread of energy from the Gaussian filter across multiple standard
deviations. For now, µ = 1; it is a parameter we introduce later to allow the frequency (and hence
spatial) width of the filter to adapt to the number of samples, as described in Sec. 3.5.2.

This equation simply expresses the intuitive notion that shadows from close occluders can be
sharper and should be filtered less, while those from further occluders (smaller d2,max) can be
filtered more aggressively (see filter widths in Fig. 3.7(a,c)). Also, the lower frequency the light
(the larger σ is), the more we can filter.



CHAPTER 3. SOFT SHADOWS 17

Ωx
*

Ωy
*

Ωx Ωx
f max

Ωy
f

s1Ωx
f

(a)

Ωx
*

Ωy
*

2Ωx
f

Ωy
f

s1Ωx
max

(b)

Figure 3.4: Packing of spectra for axis-aligned filtering. The packing in (a) is denser, and will be used in
the rest of our analysis.

3.5 Adaptive Sampling Rates
Besides adaptive (spatially-varying) filtering, a second component of our method is to adaptively
choose the number of samples per pixel, and we now derive this sampling rate from the frequency
analysis. So far, we have considered the “critical” sampling and filtering, which is just adequate to
produce antialiased results. In practice, because of non-idealities in sampling and reconstruction
(including the use of Gaussian filters without perfect bandlimits), we would like to increase the
number of samples beyond the minimum required, just as in standard Monte Carlo rendering. Our
next contribution is to show how the image filter size can be decreased with inreasing sampling
rate, in the limit reducing to the standard pixel filter and guaranteeing a result consistent with
ground truth.

To determine the minumum sampling rates, we must pack the spectra such that adjacent copies
do not overlap the axis-aligned filter, to avoid aliasing error. The resulting frequency space sepa-
rations are denoted Ω∗

x and Ω∗
y. Note that the occlusion spectra themselves can overlap, but not in

the region of the filter—only frequencies in the axis-aligned filter are relevant for the final image;
higher frequencies are filtered out by the light source. The two possible compact packings of the
repeated spectra are shown in Fig. 3.4.

Packing (Fig. 3.4) Ω∗
x Ω∗

y

(a) Ω f
x +Ωmax

x Ω f
y +min(smaxΩ f

x ,Ωmax
y )

(b) 2Ω f
x Ω f

y + smaxΩmax
x



CHAPTER 3. SOFT SHADOWS 18

The difference in the sampling rates Ω∗
x ×Ω∗

y between the two is:

(Ω∗
x ×Ω∗

y)(a)− (Ω∗
x ×Ω∗

y)(b) = (Ωmax
x −Ω f

x)(Ω
f
y − smaxΩ f

x)≤ 0 (3.14)

since Ωmax
x ≥ Ω f

x and smaxΩ f
x = smaxΩ f

y/smin ≥ Ω f
y . So, (a) represents a tighter packing than (b).

It also corresponds intuitively to sampling at pixel resolution in x (if Ωmax
x ≈ Ωmax

pix ). In fact, as we
shall see next, we sample at each pixel as in standard Monte Carlo, and use the analysis above to
set per-pixel sampling rates.

3.5.1 Per-Pixel Sampling Rate
Extending the 2D analysis to 4D, the sampling rate is given by (Ω∗

x)
2(Ω∗

y)
2. Note that frequencies

are in units of m−1. To convert this to samples per pixel n, we multiply by the area of the pixel Ap
as well as the area of the light source Al (both in square meters),

n = (Ω∗
x)

2(Ω∗
y)

2 ×Ap ×Al. (3.15)

We will make the following simplifications
(1) For the pixel, (Ωmax

pix )2 ×Ap = 1.
(2) For the area light, (Ωmax

L )2 ×Al = 4. (Ωmax
L = σ−1 and we assume that the effective width of

the light is 2σ , so that Al = (2σ)2.)

In the common case (where we need not consider the min/max expressions), we know that
Ω f

x = Ωmax
L /smin, Ω f

y = Ωmax
L (equation 3.8), and Ωmax

x is given by equation 3.6. Hence, the sam-
pling rates for packing scheme (a) in Fig. 3.4 are

(Ω∗
x)

2 ×Ap =

[
Ωmax

L
smin

+α(1+ smin)
−1Ωmax

pix

]2

×Ap

=

(
2

smin

√
Ap

Al
+α(1+ smin)

−1

)2

(3.16)

(Ω∗
y)

2 ×Al =

[
Ωmax

L

(
1+

smax

smin

)]2

×Al = 4
(

1+
smax

smin

)2

,

from which we can derive the final sampling rate

n = 4
(

1+
smax

smin

)2
(

2
smin

√
Ap

Al
+α(1+ smin)

−1

)2

. (3.17)

Note that the sampling rate depends on smax and smin and is therefore spatially-varying (adaptive
for each pixel), as shown in Fig. 3.7(b,d).



CHAPTER 3. SOFT SHADOWS 19

0.8 1 1.2 1.4 1.6 1.8
0

20

40

60

80

frequency width scaling µ

sa
m

p
le

s 
p
er

 p
ix

el
 n

 

 

s
1
/s

2
 = 1

 = 2

 = 4

= 32

nmin= 5

= 12

s
1
/s

2

s
1
/s

2

nmin

nmin

(a)

0.6 0.8 1 1.2
0

20

40

60

80

normalized filter radius β/σ

sa
m

p
le

s 
p

er
 p

ix
el

 n

 

 

s
1
/s

2
 = 1

 = 2

 = 4

(β/σ)
max

s
1
/s

2

s
1
/s

2

(b)

Figure 3.5: Sampling beyond the minimum rate. (a) The number of samples varies quadratically with µ . The
values of nmin are shown for µ = 2. (b) The filter width β varies inversely with µ , in the limit approaching
a single pixel as in standard Monte Carlo.

Discussion: It is instructive to compare this sampling rate to that predicted by theory if no
filtering were done (we sample each point x separately as in standard Monte Carlo rendering). In
that case, the sampling rate Ω∗

y = 2Ωmax
y ; substituting equation 3.7,

nnofilter = 4
[

α
(

1−
dmin

2
d1

)
Ωmax

pix

]2

×Al

= 4
[

α
(

1−
dmin

2
d1

)]2
Al

Ap
, (3.18)

which can be very large because of the Al/Ap factor, since the light source area is usually much
larger than the area seen by a single image pixel. While Monte Carlo analysis is typically in terms
of statistical noise reduction (although see [22] for a Fourier view), this frequency analysis also
helps explain the large number of samples often needed to obtain converged soft shadows.

The minimum sampling rate required for a sheared filter (a similar result was derived in the
Appendix to [25] but not used in their actual algorithm) under the same conditions, is

nshear ≈ 4
(

1− smin

smax

)2 (
Ωsh ·d +α(1+ smin)

−1)2
, (3.19)

where d =
√

Ap is the linear size of the scene for one pixel. To make a comparison to axis-aligned
filtering, we can make Ω f

x explicit in the second factor in equation 3.17,

naxis = 4
(

1+
smax

smin

)2(
Ω f

x ·d +α(1+ smin)
−1
)2

, (3.20)



CHAPTER 3. SOFT SHADOWS 20

(a) our method, 27 samples per pixel (spp) (b) error vs.
spp

10 50 100 150 200
0.001

0.005

0.01

0.05

samples per pixel n

R
M

S
 E

rr
o
r

 

 

AS,    AF

AS,    UF

AS,    NAF

NAS, AF

NAS, UF

NAS, NAF

 n
m

in
=

 2
7

 0.006

0.02

 3
3

 6
3

 1
65

NAS: Non-Adap. Samp.
AS: Adap. Samp.

UF: Unfiltered
NAF: Non-Adap. Filt.

AF: Adap. Filt.

(c) loglog plot of RMS error vs. spp for various schemes

(d) equal samp.,
27 spp, NAS, UF

(e) equal samp.,
27 spp, AS, UF

(f) our method,
27 spp, AS, AF

(g) gr. truth (h) equal error,
63 spp, AS, UF

(i) equal error,
165 spp, NAS, UF

Figure 3.6: (a) The ‘Grids’ scene, (b) Difference images (scaled up 20×) show that our method converges
to ground truth with increasing sampling rate, (c) The RMS error (with respect to ground truth) versus
sampling rate. These plots show that our method is consistent, and that we obtain the best results by
combining adaptive sampling and adaptive filtering. (d) through (i) show equal sample and equal RMS
error comparisons for adaptive vs. non-adaptive sampling and filtering vs. no filtering. Note that our
method produces visually higher quality results than the somewhat noisy equal error comparisons. (Readers
are encouraged to zoom into the PDF to inspect the images and noise).

It can be seen that nshear < naxis as expected, since the sheared filter scale Ωsh <Ω f
x and smin < smax.

However, the reduction in Monte Carlo samples is more than offset by the additional complexity of
implementing the sheared filter which can introduce overheads of minutes. Our method is intended
to be a practical alternative where speed is of essence, somewhat increasing the needed samples
per pixel, but making the filter very fast and simple to implement.

3.5.2 Sampling beyond the minimum sampling rate
We now show how we can adapt the spatial filter to the samples per pixel. As we increase the
sampling rate, the replicas are separated by more than the minimum required for accurated an-
tialiased images. We can take advantage of this by using a more conservative smaller filter in the
primal domain (or a larger filter in the frequency domain), to provide more leeway for imperfect
reconstruction.



CHAPTER 3. SOFT SHADOWS 21

This approach has the desirable property that the image is consistent, improving with more
samples and converging to ground truth (in the limit, our filter will be a single pixel).

The free parameter is Ω f
x , with the spatial filter width depending on β ∼ 1/Ω f

x . We will denote
Ω f

x = µΩ f
x0, where µ measures how much the critical spatial filter Ω f

x0 is scaled. Making the
parameter µ explicit in equation 3.17,

n(µ) = 4
(

1+µ
smax

smin

)2
(

µ
2

smin

√
Ap

Al
+α(1+ smin)

−1

)2

. (3.21)

Given a desired value of µ , we can find the number of samples n (we typically use µ = 2). Note
that the number of samples is a quadratic function of µ , as shown in Fig. 3.5(a).

The variation of β = 1/Ω f
x with the number of samples per pixel n is shown in Fig. 3.5(b),

and is inversely related to µ . We see that a small increase in sampling density enables a more
conservative filter—that is faster to compute and reduces artifacts.

3.5.3 Evaluation and Discussion
Figure 3.6 evaluates our method on the grids scene (taken from [25]). While the geometry is
simple, the shadows are intricate. Figure 3.6(a) shows that our method produces smooth results
without artifacts, while Fig. 3.6(b) shows scaled-up error images with respect to ground truth. We
see that the errors are small even numerically, and decrease rapidly with increasing sample count.
Our algorithm converges in the limit, because we adjust the filter size to the number of samples.
The graph in Fig. 3.6(c) plots numerical error vs the number of samples n for various combinations
of sampling and filter. The minimum number of samples in these graphs is 9, which is our initial
sampling pass (as described later in Sec. 3.6).

First, consider unfiltered (UF) results, both with standard Monte Carlo (non-adaptive sampling
NAS) and adaptive sampling AS. We clearly see that our adaptive sampling method significantly
reduces error. We can also run NAS and AS with a fixed non-adaptive filter (NAF), with the filter
width chosen to best match the final image. A fixed-width filter cannot capture the complexity of
the shadows however, and the error of the red and yellow curves remains flat and does not converge
with increasing numbers of samples. Finally, consider the bottom two curves, where we apply our
adaptive filtering (AF) from Sec. 3.4. The error is considerably reduced. Adaptive Sampling (AS)
in addition to adaptive filtering further reduces error, though more modestly than without filtering.
For a fixed error, our method (dark blue curve, bottom AS, AF) reduces the sample count by
6×, compared to standard unfiltered Monte Carlo (magenta curve, top NAS, UF). With only 27
samples, we are able to produce high quality renderings that closely match ground truth; more
samples improve the results even further (Fig. 3.6(b)).



CHAPTER 3. SOFT SHADOWS 22

(a) ‘Bench’, scale β (b) ‘Bench’, spp n

(c) ‘Grids’, scale β (d) ‘Grids’, spp n

Figure 3.7: Visualization of filter width parameter β for bench (a) and grids (c) and samples per pixel n
(b) and (d). Unoccluded pixels, shown in black, are not filtered. The unoccluded pixels have the minimum
sample count of 9 from the first pass.

Finally, we show equal sample and equal error images in the bottom row of Fig. 3.6. Our
method has almost no noise, and is visually superior even to equal error comparisons that exhibit
some noise.

3.6 Implementation
We implemented our method within OptiX, on an NVIDIA GTX 570 GPU. Scenes used Wavefront
OBJ files and the BVH acceleration structure built into Optix. Therefore, our code only needs
to implement the adaptive sampling and filtering steps. For all scenes, the parameters used in



CHAPTER 3. SOFT SHADOWS 23

Base Raytraced Occlusion Our Algorithm Total
scene tris avg.

spp
1st
pass
(ms)

2nd
pass
(ms)

total
raytracing
(ms)

compute β
and n (ms)

adaptive
filtering
(ms)

total
overhead
(ms)

total
time
(ms)

fps (with/
without alg)

Grids 0.2 K 14.2 6.56 13.8 20.4 3.70 1.31 5.01 25.4 39 / 49
Bench 309 K 28.0 50.9 374 425 3.51 1.27 4.78 430 2.3 / 2.3
Tentacles 145 K 26.3 49.0 239 288 3.50 1.29 4.79 293 3.4 / 3.5
Spheres 72 K 33.8 56.9 285 342 3.70 1.29 4.99 347 2.9 / 2.9

Table 3.1: Timings of our scenes rendered at 640× 480. The last column shows that our precomputation
and filtering overheads (a total of about 5ms) have negligible impact on the total rendering time or frames
per second.

equations 3.13 and 3.21 were k = 3, α = 1 and µ = 2. The full source code is available from:
http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12

Sparse Sampling for Filter Size and Samples Per Pixel: In the first stage, we use a sparse
sampling of 9 rays (stratified over the light source) at each pixel, from which we compute d1 and
d2. Since the sampling is coarse, we can sometimes observe noise in these estimates (leading to
some noise visible in animations in our video).5 Most of the noise in the resulting filter width
calculation arises from completely unoccluded pixels. Therefore, for these unoccluded pixels, we
store the average values of d1 and d2 in a 5 pixel radius. We then compute the filter width β from
equation 3.13, visualized in Fig. 3.7(a,c). Notice how the filter width is smaller in more complex
shadow regions, such as those with close occluders. Finally, we compute the number of samples
at each pixel n using equation 3.21, visualized in Fig. 3.7(b,d). 6 Notice how more samples are
needed in regions with smaller filter width.

Adaptive Sampling and Filtering: We now cast n rays per pixel (including the original 9 rays);
each pixel can have a different n. We may thus obtain the noisy visibility h̄ (such as Fig. 3.6(e)).
We then filter to obtain the final image h per equation 3.10 (such as Fig. 3.6(a,f)).

Screen-Space Adaptive Filter: A practical challenge in adaptive filtering is that β corresponds
to object-space and is derived for a single spatial dimension x. But we need to develop an efficient
2D screen-space filter. We utilize the world-space distances between objects to compute the filter
weights in equation 3.11 using a depth buffer. Our practical system also uses a check on normal
variation to avoid filtering different objects or regions. (Spatial differences and depth discontinu-

5Some occluders may also be missed with only 9 rays leading to inaccurate estimates of filter sizes; however, we
are interested only in overall depth ranges. Note that this concern is shared by almost all adaptive methods. Our results
include self-shadowing, bumpy occluders and receivers, and contact shadows, showing that the initial sparse sampling
is robust.

6 Unlike some previous works, β and n always come directly from our equations (our implementation includes
appropriate min and max bandlimits where needed), with no need to identify special-case pixels that need brute force
Monte Carlo, as in [25].



CHAPTER 3. SOFT SHADOWS 24

ities are handled automatically by the Gaussian filter in equation 3.11. If available, a per-pixel
object ID check may also be used,7 but is not required.)

Finally, greater efficiency can be achieved if we can use two 1D separable filters along the
image dimensions. To do so, we write equation 3.11 as w(xi j − xkl) = w(xi j − xk j)w(xk j − xkl),
where i j and kl are pixel coordinates. This is a standard separation of the 2D distance metric
along the individual coordinates and is common for gaussian convolutions. In our case involving
spatially-varying filters, it is exact if the filter width β is the same within the pixels of interest (i j
and k j). In practice, it is a good approximation since β varies slowly, and we found almost no
observable differences between the 2D filter and our two separable 1D filters in practice.

Discussion: Our final implementation is entirely in screen space (with the additional informa-
tion of a depth buffer to compute world-space distances). Unlike previous work, we do not need to
store each ray sample individually, but rather operate directly on the integrated (noisy) occlusion
values at each pixel. This enables a very much smaller memory footprint. Moreover, our lin-
early separable adaptive filter has an algorithmic complexity essentially equal to that of a typical
gaussian blur, making the method very efficient.

3.7 Results
We tested our method on four scenes of varying complexity, including some used in previous
papers [74, 25]. Besides moving viewpoint and light source, our method supports fully dynamic
geometry since no precomputation is required. We show examples of animations and real-time
screen captures in the accompanying video.

Sampling Rate and Timings: Table 3.1 has details on the performance for our scenes. In all
cases, our theory predicted an average sampling rate of between 14 and 34 samples. Comparable
images with brute force raytracing typically required at least 150-200 samples. The total overhead
added by our algorithm averaged under 5 milliseconds, of which adaptive filtering took about 1.3
ms, and the time for determining the filter size and samples per pixel took about 3.6 ms. The
timings for the base OptiX raytracer are scene-dependent but substantially larger in all cases.

Note that our filter operates in image-space, and is therefore insensitive to the geometric com-
plexity of the scene; the memory requirements are also small. Our 5ms filtering time is 3 orders
of magnitude faster than the reconstruction reported by [56] and 4-5 orders of magnitude faster
than the minutes of overhead in [25]. This substantial speedup allows our method to be used in the
context of a real-time raytracer, which has not previously been possible. We are able to achieve
interactive performance—the simpler grids scene renders at over 30 frames per second, while we
achieve a performance of 2-4 fps on the other scenes, which have between 72K and 309K ver-

7In the unusual case that a pixel is surrounded entirely by objects of different IDs, we will not filter and provide
the standard Monte Carlo result.



CHAPTER 3. SOFT SHADOWS 25

(a) our method, 30 spp (b) equal time,
unfiltered, 30 spp

(c) our method,
30 spp

(d) equal error,
200 spp

Figure 3.8: Interactive soft shadows from a curved occluder onto a curved receiver, with an average of 30
samples per pixel.

tices. This is an order of magnitude faster than what brute-force OptiX raytracing can achieve, and
enables raytraced soft shadows at interactive rates.

Accuracy: Our scenes are chosen to show a variety of soft shadow effects. First, Fig. 3.8 shows
that we can accurately capture curved objects casting shadows on other curved objects, and that an
equal sample standard raytrace is considerably noisier. We have already evaluated the grids scene,
which has soft shadows of varying sizes, in Fig. 3.6. Our method does not under or overblur, and
reproduces accurate soft shadows across the entire image. Figure 3.1 shows intricate shadows cast
by fairly complex geometry, and also includes visual equal time and equal error comparisons with
standard Monte Carlo raytracing. It is clear that the noise is considerably reduced, and our images
match closely with ground truth. Finally, Fig. 3.9 shows shadows from thin occluders being cast on
a wavy ground plane. While the shadows form complex patterns, our method produces an accurate
result. Moreover, our results are visually better than even the equal error basic comparisons, that
still have noise, even with 4× to 9× more samples.

Note that we have only compared with standard Monte Carlo (the base OptiX raytracer), since
our technique differs fundamentally from previous rendering methods—we are trying to achieve
ray-traced image quality at close to real-time framerates. Our goal is accurate raytraced occlusion,
as opposed to most previous approximations for real-time soft shadows. Moreover, we are an
(many) order of magnitude faster than most prior work on offline soft shadows, since we build on
a GPU-accelerated raytracer. In the future, further speedups could potentially be achieved by also
GPU-accelerating the visibility sampling [92].

Comparison to De-Noising: Our final algorithm is essentially a denoising filter on the base
Monte Carlo image. Therefore, we include a comparison with image de-noising strategies in
Fig. 3.10. The fixed-width gaussian and bilateral filters (with parameters chosen by trial and error
to produce the best visual results) cannot achieve the accuracy of our adaptive filter. In particular, a



CHAPTER 3. SOFT SHADOWS 26

(a) our method, 23 spp

(b) equal time, unfilt., 23 spp (c) our method, 23 spp (d) ground truth, 5000 spp (e) equal error, 200 spp

Figure 3.9: Soft shadows for the ‘tentacles’ scene: (a) and (c) Our method, 23 spp (b) equal samples, no
filtering, 23 spp (d) ground truth (e) equal RMS error for unfiltered 200 spp still has some noise.

fixed width gaussian overblurs or underblurs; the latter causes noise to remain as seen in the insets.
Moreover, the fixed width gaussian is only slightly faster than our method, while the bilateral filter
is considerably slower (although further optimizations are possible).

The bm3d algorithm of [18] is more successful (although without additional information, it can
blur across object boundaries). However, denoising comes at the price of some blocky artifacts,
as seen in Fig. 3.10. Moreover, that method (like most other previous works) is not designed for
efficiency, taking 8 seconds.

Extensions: Initial tests indicate the method extends in practice to cosine-falloff shading and
non-Gaussian lights, without any modifications to the adaptive sampling or filtering steps. In
Fig. 3.11(a), we show the bench scene rendered with cosine falloff (the scene is shown in grayscale
to avoid masking subtle shading effects). In Fig. 3.11(b) we use a more challenging grids scene
(where they also shadow each other) and a uniform light. Although light band-limits no longer
strictly apply, and we do slightly overblur the shadows as expected, the method still performs well.
However, we did need to use more conservative settings µ = 3 in both examples.



CHAPTER 3. SOFT SHADOWS 27

(a) fixed blur,
0.003 sec

(b) bilateral filter,
200 sec

(c) bm3d,
8 sec

(d) our method,
0.005 sec

Figure 3.10: Comparison of accuracy and overheads of denoising methods for the ‘tentacles’ scene, all
using the same base 23 samples per pixel unfiltered image. (a) filtering with a constant kernel gaussian
takes slightly less time but overblurs contact shadow edges while retaining noise in low-frequency shadows,
(b) bilateral filtering cannot remove noise effectively in slow-varying shadows, and is computationally more
expensive, (c) bm3d performs quite well, but produces low frequency artifacts, and takes longer, (d) our
method performs best while being significantly faster.

Artifacts and Limitations: One of the main benefits of Monte Carlo rendering is that artifacts
(noise at low sample counts) are well understood and easily reduced (use more samples). A benefit
of our method is that it shares many of these properties: the main limitation is slight overblur at
some sharp shadow boundaries, and some flicker in video sequences (as in standard Monte Carlo),
both of which are easily addressed by more samples (higher µ). We have not undertaken a full
comparison to alternative rasterization and GPU-based soft shadow methods; it is possible that for
some scenes, they may produce comparable results to our system with smaller µ . However, our
method is consistent (Fig. 3.6), converging rapidly to ground truth. The framerates in table 3.1 are
at least an order of magnitude faster than most previous work on accurate shadow raytracing. Since
we introduce minimal overhead, that is the performance of the base OptiX raytracer. However, our
sample counts per pixel (an average of about n = 25), while low, are still too high for real-time
performance on very complex scenes; nevertheless we do demonstrate interactive sessions in the
video.



CHAPTER 3. SOFT SHADOWS 28

(a) visibility filtered with BRDF cosine term, 50 spp

(b) uniform intensity square light, 30 spp

Figure 3.11: Extensions of our method to filtering visibility combined with the diffuse BRDF cosine term, for
the ‘Bench’ scene in (a); and to non-Gaussian (uniform intensity) square lights for a modified ‘Grids’ scene
in (b). We can handle these cases well with a slightly higher sampling rate (µ = 3). In contrast, Ground
Truth requires approximately 8,000 samples per pixel in (a) and 4,000 spp in (b).



29

Chapter 4

Diffuse Indirect Illumination

4.1 Introduction
The previous chapter focused on interactive rendering of direct illumination from an area light. In-
teractive rendering of indirect illumination is also one of the main challenges of computer graphics.
In this chapter, we take an important step towards solving this problem for diffuse inter-reflections,
with both Lambertian and Phong receivers, based on physically-accurate Monte Carlo ray or path
tracing, followed by image-space filtering. Monte Carlo integration at each pixel has long been
regarded as the gold standard for accuracy—but not suitable for interactive use, with hundreds of
samples needed and slow render times. This has led to a number of real-time but approximate
alternatives, such as point-based gathering [104, 58] or voxel-based cone tracing [16]. We seek to
obtain the best of both worlds; physically accurate and interactive.

We are inspired by recent work on sheared filtering for motion blur and soft shadows by Egan
et al. [26, 24, 25], which has demonstrated dramatically reduced sample counts. In the previous
chapter (also Mehta et al. [63]), we developed an axis-aligned filtering method for area light soft
shadows on diffuse surfaces (axis-aligned or sheared refers to the pixel-light space, rather than the
image domain, although the method also uses an axis-aligned image filter). This approach trades
off a somewhat increased sample count for a much simpler filter, that reduces to an adaptive 2D
image-space gaussian blur, does not require storage or search over an irregular 4D domain, and
allows for adaptive sampling and adjustment of filter sizes to guarantee convergence with more
samples. However, none of these methods is designed for global illumination.

In this chapter, we extend the axis-aligned filtering method for indirect illumination, based
on an analysis of the frequency-domain structure of the indirect light field. Our theory considers
diffuse inter-reflections, but receiving surfaces can have general BRDFs. In practice, since our
approach is based on accurate path tracing and always converges in the limit, our method works
for diffuse and moderately glossy objects. Specific theoretical and practical contributions include:



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 30

Fourier Analysis of Indirect Illumination: Our main theoretical contribution (Sec. 4.3) is a
frequency analysis of indirect lighting. We provide an exact derivation (Secs. 4.3.1, 4.3.2), with-
out first-order assumptions inherent in previous works. This is essential for handling arbitrarily
oriented surfaces—unlike the constant velocity assumption in motion blur [26], we cannot assume
parallel receivers and reflecting surfaces. Oriented reflectors involve a nonlinear transformation
in the Fourier analysis, but surprisingly the spectrum of the indirect light field still lies in a dou-
ble wedge, bounded by the minimum and maximum depths of the reflector; this result enables us
to leverage much of the filtering theory in previous work. We also extend the theory to glossy
receivers (Sec. 4.3.3).

Bandlimits for Axis-Aligned Filtering of Indirect Lighting: In the previous chapter, we used
the light source (and its size) to bandlimit the occlusion function. However, there is no single light
source in global illumination; we show that the geometry/parameterization and BRDF play the role
of the bandlimit instead, and derive axis-aligned filter sizes, as well as adaptive sampling rates for
diffuse and glossy surfaces (Sec. 4.4).

Interactive Sampled Global Illumination: We demonstrate interactive global illumination
with one or more indirect bounces—with adaptive sampling and accurate Monte Carlo path tracing
using NVIDIA’s Optix GPU raytracer, followed by adaptive image filtering; an example is shown
in Fig. 4.1, and later in Figs. 4.6, 4.7, 4.8, 4.11.

4.2 Previous Work
Our method builds on Monte Carlo ray and path tracing, introduced in seminal papers of Cook
[14] and Kajiya [44]; these are still usually regarded as the gold standards for physically accurate
rendering; we leverage their accuracy, while achieving interactivity.

Interactive Global Illumination: A number of brute-force and approximate methods exist for
interactive global illumination [84], but do not usually guarantee physical accuracy or convergence.
These include interactive raytracing [102, 101]; we use the fast GPU raytracer in NVIDIA’s Optix,
but focus on reducing sample count and filtering. Our approach is orthogonal to GPU raytracer
accelerations [4]. Another method is approximate voxel-based cone tracing [16] on the GPU.
Point-based approaches include micro-rendering [83]. [104] (with refinements in [58]) raytrace
shading points and partition them into coherent shading clusters using adaptive seeding followed by
k-means, and then apply final gather to evaluate the irradiance using GPU-based photon mapping.
In contrast, we sample every pixel using Monte Carlo.

Precomputation: Precomputation-based methods [93] can be used for indirect illumination [39]
in relighting static scenes. Our approach does not require precomputation, and can be used with
dynamic geometry.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 31

(a) 1-bounce indirect, Our Method
avg. 63 samples per pixel (spp)

(b) Adaptive Sampling
and Filtering

(c) unfiltered 63 spp
adaptively sampled

(d) unfiltered 63 spp
uniformly sampled

(e) Our Method 63
adap. sample, filter

(f) Equal error
324 spp

Figure 4.1: (a) We render the Sponza Atrium with 262K triangles, textures and 1-bounce physically-based
global illumination at about 2 fps on an NVIDIA GTX 690 graphics card, with an average of 63 Monte
Carlo (adaptive) samples per pixel (spp) raytraced on the GPU with Optix, followed by adaptive image
filtering. (b) Adaptive sampling rates and filter widths (in pixels) derived from our novel frequency analysis
of indirect illumination. (c) Insets of the unfiltered result. Adaptive sampling produces lower noise in high-
frequency regions with small filter sizes (see right of bottom inset), with greater noise in low-frequency
regions, that will be filtered out. Compare to (d) uniform standard stratified Monte Carlo sampling with
uniformly distributed noise. Our method (e) after adaptive sampling and filtering is accurate at 63spp. (f)
Equal error at 324 spp, which is still noisy. Overhead in our algorithm is minimal, and we provide a speedup
vs equal error of 5×. Readers are encouraged to zoom into the PDF for this and all subsequent figures, to
more clearly see the noise and image quality.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 32

Adaptive Sampling: Irradiance caching (IC) and gradients [106, 105] attempt to extrapolate
irradiance on diffuse surfaces from neighboring pixels, tracing a pixel only if the error is high.
An extension to general low-frequency radiance is given by [51]. [35] provides a more general
adaptive sampling heuristic. Note that IC is used to determine where to put caches, not to compute
a sampling rate, and is not an interactive technique. Some IC heuristics approximate our results,
but our bandlimits are based on fundamental Fourier analysis. Closer to ourapproach, [50] use the
harmonic mean of occluder distances as a heuristic to set a filter width at each pixel, and use the
total filter weight around each pixel to estimate its sampling rate. Like IC, they do not guarantee
convergence either. In contrast, our adaptive filtering and sampling follows directly from the novel
Fourier analysis derivations. We also do not require their 3D tree of pixel locations to search for
potential contributing pixels at each point. Avoiding this search, and providing a simple gaussian
filter, dramatically reduces overhead and enables interactivity.

Adaptive Filtering: Recently, several adaptive filtering and reconstruction methods have been
proposed, but they are all designed for offline use. Building on [37, 72], Lehtinen et al. [56,
55] demonstrate GPU-accelerated reconstruction for temporal effects and indirect light fields, but
their methods take several minutes. Similarly, we are inspired by recent work on iterative filtering
of [88], and the anisotropic statistical filtering of [57] and [85], as well as simple image denoising
in graphics [87, 62]. But these are all offline methods, which enables more complex filtering and
adaptive sampling. In contrast, past work on fast global illumination has involved simple depth-
space heuristic filters [91], edge-avoiding wavelets [19], or filtering secondary scene attributes [8].
We differ in using frequency analysis to develop a spatially-varying image-space gaussian filter.

Frequency Analysis: We are inspired by Chai et al. [13] and Durand et al. [23], who introduce
the basic space-angle and pixel-light Fourier theory on which we build, as do many previous works
in this area [26, 96, 24, 25, 9]. We build most directly on the axis-aligned filtering approach of
the previous chapter ([63]), which reduces to simple 2D image-space filtering rather than irregu-
lar reconstruction from the 4D light field, and can therefore be implemented very efficiently, with
minimal time or memory overhead. We extend it non-trivially from soft shadows to global illumi-
nation, where there is no single light source, and we consider non-parallel geometry of receivers
and reflectors as well as glossy receivers.

4.3 Fourier Analysis of Indirect Illumination
In this section, we perform a Fourier analysis of the indirect illumination light field (the incoming
light from other objects, as a function of spatial location and incident angle). We assume that the
direct lighting is computed separately, and focus on the global component, using the geometry in
Fig. 4.2(a). We derive the wedge shape of the Fourier spectrum (Figs. 4.3b,c), which allows us
(Sec. 4.4) to apply a suitable axis-aligned filter, with adaptive sampling rates.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 33

v

n

x

1

z0

0

(x1,z1)

(x2,z2)

(x’,z0
+sx’)

Li(x,v)

Refle
ctor

Receiver

Lr(x’)

(a)

v

n

x

vc
-v

dv

dω
L i

L
o

θi
θo

1

(b)

Figure 4.2: (a) The (x,v) parameterization for the indirect illumination light field, and associated notation.
(b) Showing how the indirect illumination is reflected towards the camera.

We first consider a receiver, which is the surface seen at a pixel, illuminated by a reflector,
which is the nearest surface in a particular direction. We will later see that the theory extends natu-
rally to multiple reflectors at a range of distances and orientations. In essence, we are considering
final gather, which adds up the full indirect light (including multiple bounces) from reflectors.
Indirect bounces of light will generally be lower frequency, since the BRDF acts as a low-pass
filter at each bounce. This diffuse property of global illumination has been exploited in previous
works [67, 10]. We also utilize it in our theory, letting the receiver have a general BRDF, but as-
suming reflected light from the reflector is diffuse—we set filter sizes and sampling rates based on
this analysis. The practical algorithm always uses radiance values from accurate path tracing and
converges in the limit (but may slightly under or over-blur for non-diffuse indirect light with fewer
samples, as in Fig. 4.9). Our results show we can handle diffuse and moderately glossy objects
(Fig. 4.8).

We first derive the equations in flatland or 2D, using the (x,v) light field parameterization, as
in [23], and then show the extension of bandlimits to 3D in Sec. 4.4. x is measured along the local
plane of the receiver (globally, the receiver could of course be curved, as could the reflectors) and v
is measured on a plane parallel to the receiver plane, and a unit distance from it. We make minimal
assumptions on spatial properties of the global illumination; reflectors (and receivers) could have
complex textures or high-frequency lighting. As we will see, the shape of the Fourier spectrum is
determined by key features of the geometry and incoming light. The distance(s) of the reflector
will determine the slope (or range of slopes) of the indirect light field. The BRDF of the receiver,
and the parameterization, determine bandlimits of the Fourier spectrum.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 34

Ω
V
 

z0

Receiver

Reflector

ΩX 
0

1

sl
op

e 
=

 z
0

(a) Parallel Reflector L̂i
Ω

V
 

z1

Receiver

Reflector

ΩX 

z2

sl
op

e 
= 

z 1
sl

o
p
e 

=
 z

2

(b) Sloping Reflector L̂i

Ωv

ΩxΩh

max

Ωx
r

z m
ax

zmi
n

Ωx
max

(c) Axis-Aligned Filter

0.5

1

0
0 2 -2 

Ωv 

|h
d
|2

 

(d) Flatland hd PSD

−4 −2 0 2 4

−4

−2

0

2

4

Ωv1
 

Ω
v

2
 

(e) 3D hd PSD

Figure 4.3: (a) Spectrum of the indirect light field for a diffuse reflector at a single depth z0 is a line,
(b) Spectrum of the indirect light field for a diffuse reflector in the depth range [z1,z2] is a double wedge.
Because of discontinuities (high derivatives) at reflector end-points, significant energy is concentrated at
extreme slopes z1 and z2. (c) shows a schematic of the double wedge and our axis-aligned filter determined
by the BRDF/transfer bandlimit Ωmax

h (d) Power spectral density of our flatland diffuse receiver transfer
function hd . Ωmax

h = 2.0 captures 95% energy and (e) the same PSD in 3D, where we need a slightly higher
bandlimit of 2.8 (the blue box) to capture the same fraction.

4.3.1 Indirect Light from the Reflector
We first consider the indirect light from the reflector, and then show how this is integrated for
global illumination at the receiver.

Assume the reflector slope is s relative to the receiver, as shown in Fig. 4.2a. We parameterize
the indirect light field as Li(x,v) for a receiver point x in a direction v. Similarly, we parameterize a
reflector point by x′, so that its coordinates are (x′,z′) = (x′,z0+sx′), where z0 is the intercept of the
reflector line at x′ = 0. The reflected light is then given by Lr(x′)—this can include high-frequency
illumination, multiple bounces, and texture on the reflector, but has no directional information;
we focus on diffuse interreflections. However, the receiver can be glossy as discussed later in
Sec. 4.3.3. The reflector lies between (x1,z1) and (x2,z2), so that Lr(x′) = 0 unless x1 ≤ x′ ≤ x2.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 35

For a receiver point x in a direction v, the reflecting point is given by x′ = x+ zv, where z is
the distance perpendicular to the receiver, as shown in Fig. 4.2(a). Simple geometry1 dictates that
z = z0 + sx′ from which it follows that

z = z0 + s(x+ zv)⇒ z =
z0 + sx
1− sv

x′ = x+ zv ⇒ x′ =
x+ z0v
1− sv

, (4.1)

which implies that the indirect light field Li(x,v) = Lr(x′) is

Li(x,v) = Lr

(
x+ z0v
1− sv

)
. (4.2)

This is a simple relation of the indirect light field to the outgoing reflected light. In the special
case that s = 0, when receiver and reflector are parallel, it reduces to Li(x,v) = Lr(x+ z0v). In
that case, the 2D indirect light field Li is the 1D reflected or outgoing light Lr, sheared by an
amount proportional to the distance z0 of the reflecting surface. This first-order simplification is
analogous to the free space light propagation discussed in [23], and also mathematically similar
to the relation for the visibility function in [24]. Note however that there is no “visibility” term
in our case; rather we are considering the indirect illumination field. There is also no separate
lighting term, as there is for shadows. In essence, we consider the rendering equation, rather than
the reflection equation, and integrate over the reflector surface. Moreover, we generalize many
previous light field analyses, in explicitly considering a general slope s for the reflector, which
leads to the more general rational form above (with denominator of 1− sv).

4.3.2 Fourier Spectrum of Incident Light Field
We now conduct a frequency-space analysis.2 We denote Fourier domain quantities with a hat, and
arguments using Ω, and with the symbol j =

√
−1. Equation 4.2 now becomes

L̂i(Ωx,Ωv) =
∫ ∞

−∞

∫ ∞

−∞
Lr

(
x+ z0v
1− sv

)
e− j(xΩx+vΩv) dxdv. (4.3)

We first do the integral along x to compute the partial Fourier transform (denoted with a tilde on
top). If v is held fixed, the argument to Lr is simply a scale and shift of x, with the Fourier transform
being given by standard Fourier scale3 and shift theorems,

L̃i(Ωx,v) = e jz0vΩx(1− sv)L̂r [(1− sv)Ωx] (4.4)

L̂i(Ωx,Ωv) =
∫

e− jv(Ωv−z0Ωx)(1− sv)L̂r [(1− sv)Ωx] dv.

1These relations do not apply when x1 = x2, so that s = ∞. Parameterizing Lr by z instead of x′ in that case will
lead to a similar result.

2For readability, we omit numerical constant factors to normalize the Fourier transforms, that do not affect the
insights or the final results.

3Technically, the Fourier scale theorem requires the multiplicative factor | 1− sv |. Since the reflector has finite
extent and is in front of the receiver to reflect on to it, we take the positive sign without loss of generality.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 36

First, consider the special case of a parallel reflector with s = 0. In this case, L̂r(Ωx) comes
out of the integral, which reduces to a delta function with L̂i(Ωx,Ωv) = L̂r(Ωx)δ (Ωv − z0Ωx). The
Fourier spectrum is compact, essentially given by a shear of L̂r, and restricted to the line Ωv = z0Ωx
(Fig. 4.3a). This has the same mathematical form as the visibility function in [24, 63]. In those
works, they address a range of depths simply by extending the frequency spectrum to a double
wedge bounded by minimum and maximum depths. However, that extension is heuristic and not
formally justified. Equation 4.4 is more general, explicitly considering a general sloped reflector;
we proceed to formally derive the wedge spectrum in this case. We also explicitly consider the
finite extent of the reflector, thereby treating (dis)occlusion (directions where there is no indirect
light).

In equation 4.4, we make the substitutions u = (1− sv)Ωx so that v = (1−u/Ωx)/s and dv =
−du/(sΩx) so that,

L̂i(Ωx,Ωv) =
∫

e− j(Ωv−z0Ωx)(1−u/Ωx)/s uL̂r(u)
−du
sΩ2

x
(4.5)

=
−exp[− j(Ωv − z0Ωx)/s]

sΩ2
x

∫
uL̂r(u)e ju(Ωv−z0Ωx)/(sΩx) du.

The integral is now simply the inverse Fourier transform of uL̂r(u), evaluated at (Ωv−z0Ωx)/(sΩx).
Recall the Fourier transform of the derivative L′

r is L̂′
r(u) = juL̂r(u), so that,

L̂i(Ωx,Ωv) =
j exp[− j(Ωv − z0Ωx)/s]

sΩ2
x

L′
r

(
Ωv − z0Ωx

sΩx

)
. (4.6)

This is a general result, with the Fourier transform of the indirect light field expressed in terms
of the (derivative of) spatial content of the reflected light, and evaluated at a sheared and scaled
argument. The first term is simply a phase offset and an Ω−2

x falloff. The second term is more
interesting. Since Lr(x) only takes non zero values for x1 ≤ x ≤ x2 (the extent of the reflector), the
same holds for L′

r(x). Then, L̂r(Ωx,Ωv) takes non-zero values only when4

x1 ≤
Ωv − z0Ωx

sΩx
≤ x2 ⇒ (z0 + sx1)Ωx ≤ Ωv ≤ (z0 + sx2)Ωx. (4.7)

By definition z0 + sx1 = z1 and z0 + sx2 = z2. Therefore,

z1Ωx ≤ Ωv ≤ z2Ωx. (4.8)

In other words, the frequency spectrum lies in a double wedge, with slopes z1 and z2 bounded
by the minimum and maximum depths of the reflector, as shown in Fig. 4.3(b). (Note also the
significant energy at the extreme slopes z1 and z2, since the derivative L′

r in equation 4.6 is large at
the end-points of the reflector).

4The inequalities hold for s > 0. For s < 0, we must reverse the inequalities, but the same formula for the wedge
in equation 4.8 is obtained as long as we adopt the convention that z1 < z2.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 37

For the special case of a parallel reflector (s = 0), we have that z1 = z2 = z0, and the spectrum
is restricted to the single line Ωv = z0Ωx, as shown in Fig. 4.3(a). By taking the limit of s → 0 in
equation 4.6, one can derive5 L̂i(Ωx,Ωv) = L̂r(Ωx)δ (Ωv − z0Ωx).

Finally, for multiple reflectors, we combine the spectra for individual reflectors6, and use the
double wedge bounded by the minimum and maximum depths of all reflectors, a schematic of
which is shown in Fig. 4.3(c). Figure 4.4(c) verifies this numerically for a flatland scene with
multiple reflectors that also occlude each other.

4.3.3 Outgoing Light from the Receiver
We now consider the actual image, corresponding to the outgoing light after it is reflected from the
receiver. Let f (v,vc) be the receiver’s BRDF. We do not explicitly consider texture in this section,
which will simply modulate the reflected light. The reflected outgoing radiance towards camera c
from x can be written (see Fig. 4.2(b)):

Lo(x,vc(x)) =
∫

H2
Li(x,v) f (v,vc) cosθi dω . (4.9)

In flatland, cosθidω = (1+v2)−3/2 dv, as is derived in [23] and elsewhere (from Fig. 4.2, cosθi =
1/
√

1+ v2 and flatland ‘solid angle’ dω = dvcosθi/
√

1+ v2). Hence,

Lo(x) =
∫ ∞

−∞
Li(x,v)h(v,vc)dv (4.10)

h(v,vc) =
f (v,vc)

(1+ v2)3/2 . (4.11)

Here we have combined the BRDF, the cosine and the solid angle terms into a single transfer
function h. The 3D extension of these results is straightforward, and discussed briefly in Sec. 4.4.2;
we will see that we can use almost the same band-limits as derived from the flatland analysis. For
a diffuse receiver with coefficient kd ,

hd(v) = kd
1

(1+ v2)
3
2
. (4.12)

An analytic formula for the Fourier transform of hd is known in terms of Bessel functions, and is
plotted in Fig. 4.3(d).

5 Clearly, as s → 0, the L′
r term becomes a delta function of the form δ (Ωv − z0Ωx). To find the multiplier, by

definition of the delta function, we must integrate equation 4.6 over Ωv. First, substitute that w = (Ωv − z0Ωx)/(sΩx)
with dΩv = sΩxdw. Then, we simply want

∫
( j exp[− jwΩx]Ω−1

x )L′
r(w)dw. Simply integrating by parts, this reduces

to
∫

Lr(w)exp[− jwΩx]dw which is simply the Fourier transform L̂(Ωx). Thus, as s → 0, L̂i(Ωx,Ωv) = L̂(Ωx)δ (Ωv −
z0Ωx).

6As in most previous work on light field filtering [13, 25, 24, 63], the spectra do not strictly combine because of
occlusion between different reflectors, and there can be some leakage outside the wedge for the multiple reflector case.
As in previous work, the extent of leakage is empirically small and we neglect it.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 38

Receiver  x 

D
e
p

th
  

z
 

(a) flatland scene
x

v
 

(b) Li(x,v)

Ω
V
 

Ω
X
 

(c) L̂i(Ωx,Ωv)

Ω
V
 

ΩX 

ΩX 

Ωh 
max

r

(d) L̂i(Ωx,Ωv)ĥd(−Ωv)

L
O
 

ΩX 

ΩX 
r

(e) L̂o(Ωx)

Figure 4.4: Schematic for a flatland scene: (a) The configuration, where blue shows reflecting surface and
black shows receiving surface, and the white point is the light source; (b) The incident indirect light field Li
in false color; (c) The numerical double-wedge spectrum of (b); (d) The spectrum in (c) is multiplied by the
Fourier transform of hd; the black box is our filter, which captures 99% of the energy; (e) shows the Fourier
transform of Lo obtained by integrating (d) corresponding to equation 4.14; the red bars mark our spatial
domain filter.

Now, consider a receiver Blinn-Phong BRDF (with exponent m and specular coefficient ks).
The half-angle is (tan−1 v+ tan−1 vc)/2,

hs(v,vc) = ks
cosm (1

2

[
tan−1 v+ tan−1 vc

])
(1+ v2)

3
2

. (4.13)

In summary, Sec. 4.3 has analyzed the indirect light field in both the primal and Fourier do-
main. A key result is in formally deriving the wedge spectrum for an arbitrarily oriented reflector.
This result is mathematically similar to (but more general than) previous analyses of spectra for
soft shadows [24, 25, 63]. Our derivation is more accurate, applying to general configurations of
reflector and receiver. Moreover, there is no single light source per se, unlike shadows. In Sec. 4.4,
we build on these results to develop the Fourier space bandlimits and filters for the transfer func-
tion, and to select the adaptive sampling rates.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 39

4.4 Axis-Aligned Filtering
We now develop the bandwidths for an axis-aligned filter (which reduces to image-space blurring)
in a fashion similar to the previous chapter. Our filter in the Fourier domain is shown in Fig. 4.3(c).

We first write the Fourier equivalent of equation 4.10, which is simply a frequency domain
integral for L̂o, the spectrum of outgoing light:

L̂o(Ωx) =
∫

L̂i(Ωx,Ωv)ĥ(−Ωv)dΩv, (4.14)

where we keep the camera direction vc argument in h and ĥ implicit (or alternatively, since vc(x) is
a function only of the spatial pixel x, we can include it in the BRDF term).

4.4.1 Fourier and Spatial Reconstruction Filter
In the expression above, the transfer function ĥ (which includes the BRDF and geometry terms)
acts as a low-pass band-limiting filter on the indirect illumination light field. It plays much the
same role as the low-frequency lighting in [24] or the area light width in the previous chapter.
However, note the different representation that is necessary, compared to those papers. In essence,
our indirect illumination field Li is analogous to the visibility term in chapter 3, while our BRDF
and geometry term is analogous to the light intensity term. Also note that we do not need to
explicitly consider visibility. Of course, there will be directions where no reflector is present and
we receive no indirect light contribution; indeed, our Fourier spectrum derivation in Sec. 4.3.2
explicitly handles finite extent reflectors. Consider the frequency bandlimits from equation 4.14.
Assume ĥ has a frequency bandlimit Ωmax

h . Then, frequencies in L̂i higher than this value in Ωv
need not be considered during integration. This in turn induces a limit on the maximum spatial
frequency of L̂o, as seen in Fig. 4.3(c). The width of our reconstruction filter Ωr

x is:

Ωr
x = µ ·min

{
Ωmax

h
zmin

,Ωmax
x

}
, (4.15)

where µ is a scale factor (for now µ = 1) that enables over-sampling and convergence, as
discussed in Sec. 4.4.3, zmin is the minimum world-space distance to any reflector, and Ωmax

x is the
maximum spatial frequency that is always a limit (even if zmin is small). Similar to previous work,
we define Ωmax

pix as the maximum frequency in pixel space, with Ωmax
x = αΩmax

pix = αd−1, where d
is the projected distance per pixel7 and 0 < α < 1 is a constant. We use α = 0.3 in most of our
renderings.

We integrate over the v dimension (or in Fourier space Ωv). Therefore, axis-aligned filtering of
the indirect light field in x-v space reduces to a spatial filter over the noisy indirect illumination,

7The lateral size in terms of actual distance that pixel covers. This term also naturally accounts for perspective
effects and foreshortening.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 40

Ωx
*

Ωv
*

Ωx Ωx
r max

Ωh
max

zmaxΩx
r

0.8 1.0 1.2 1.4 1.6 1.80

100

200

300
zmax
zmin

2

4
{

nmin= 80

nmin= 29

Filter scaling µ

n

Figure 4.5: (a) Compact packing of spectra of the indirect light field in the Fourier domain. Ω∗
x and Ω∗

v
are the minimum sampling rates. (b) the per-pixel minimum sampling rate vs. fourier-space filter scaling µ
(image space filter size is inversely proportional to µ) for two different occluder depth ranges.

which is effectively a screen-space filter. In other words, we first compute the standard noisy Monte
Carlo global illumination result L̄o(x) using relatively few samples to evaluate equation 4.10. We
then filter,

Lo(x) =
∫

N (x− y;β ) L̄o(y)dy, (4.16)

where N is the primal domain gaussian filter with standard deviation β = 2/Ωr
x, since the Fourier

space standard deviation is taken to be 0.5×Ωr
x (in practice, we use Gaussian filters in spatial and

frequency domains as in previous work, instead of sincs or boxes).

4.4.2 Bandlimit of the Transfer Function
The remaining question is to find the numerical bandlimit Ωmax

h for the transfer function. In these
calculations, we can ignore the diffuse and specular coefficients kd and ks. For a Lambertian
receiver, given by equation 4.12, Fig. 4.3(d) shows the power spectral density (PSD) of the trans-
fer function, |ĥd(Ωv)|2. Ωmax

h = 2.0 captures 99% of the energy in ĥ. Moreover, as shown in
Fig. 4.4(d,e), we see that Ωmax

h = 2.0 is usually sufficient to capture approximately 99% energy in
L̂o since L̂i also usually decays with frequency.

For the 3D case (4D light field), the transfer function depends on the v = (v1,v2) coordinates,
and we denote this 3D extension as H(v,vc). We still have cosθi = 1/

√
1+v ·v and the solid angle

is given by dω = dv1 dv2 cosθi/(1+ v2
1 + v2

2). Therefore,

H(v,vc) =
f (v1,v2,vc1,vc2)

(1+ v2
1 + v2

2)
2 . (4.17)



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 41

Note that our final filter is only along the x dimension, and the PSD of H is symmetric in Ωv1

and Ωv2 . Figure 4.3(e) shows the PSD for the diffuse transfer function—we can use a bandlimit
slightly higher than the flatland case, Ωmax

h = 2.8, to capture 99% energy.

For the Blinn-Phong BRDF, the bandlimit Ωmax
h depends on vc and the exponent m. There

is no closed form analytic expression for the Fourier transform, but we can still obtain a simple
numerical linear fit between the exponent m and the band-limit for moderately glossy BRDFs, as
discussed in the Appendix for the 3D case. In summary, we use the numerical values,

Ωmax
h,d = 2.8 Ωmax

h,s (m) = 3.6+0.084m. (4.18)

The appendix also gives bandlimits for the Phong BRDF.

4.4.3 Adaptive Sampling Rates
Discrete sampling of a continuous signal (here, the indirect light field) can cause aliasing if the
sampling rate is not sufficient, even if we subsequently use the proper axis-aligned reconstruction
filter. The minimum sampling rate is that which just prevents adjacent copies of spectra from
overlapping.

As in the previous chapter, the most compact packing is that shown in Fig. 4.5(a), and the
minimum sampling rates in the Ωx and Ωv axes are:

Ω∗
x = Ωr

x +Ωmax
x =

Ωmax
h

zmin
+αΩmax

pix (4.19)

Ω∗
v = Ωmax

h + zmaxΩr
x = Ωmax

h

(
1+

zmax

zmin

)
.

The per-pixel sampling rate is then given as:

n =
[
(Ω∗

x)
2 ×Ap

]
×
[
(Ω∗

v)
2]

=

(
Ωmax

h

√
Ap

zmin
+α

)2

× (Ωmax
h )2

(
1+

zmax

zmin

)2

, (4.20)

where Ap is the spatial area in world-space subtended by a pixel Ap = d2, with
√

ApΩmax
pix = 1.

As in the previous chapter, we can also increase the sampling rate beyond the minimum re-
quired, and simultaneously reduce the filter size, so that our algorithm converges to Monte Carlo
ground truth in the limit. In the Fourier domain, we increase the filter size by a factor of µ > 1,
such that Ωr

x = µΩr
x0, where Ωr

x0 is the critical size given by equation 4.15. Then, the sampling
rate increases to

n(µ) = γ ·

(
µΩmax

h

√
Ap

zmin
+α

)2

× (Ωmax
h )2

(
1+µ

zmax

zmin

)2

, (4.21)



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 42

(a) 1-bounce indirect illumination, 60 spp

(b) Equal Time
64 spp

(c) Our Method (d) Equal Error
440 spp

(e) Gr. Truth
1024 spp

(f) (g)

Figure 4.6: (a) The diffuse Conference scene with 331K triangles is rendered at 3 fps with our method and
60spp, using 1-bounce of indirect illumination. Insets show (b) Equal time uniform MC at 64 spp is still
very noisy, (c) our method compared to (d) equal error uniform MC at 440 spp and (e) ground truth at 1024
spp; (f) minimum and maximum reflector distances zmin, zmax (g) screen-space filter radius in pixels, and per
pixel sampling rates. Our algorithm obtains accurate results 7× faster that basic path tracing.

where γ is a scaling factor for importance sampling discussed shortly. We can also use equa-
tion 4.21 with µ < 1; in practice, we find µ = 0.9 adequate in most cases. Figure 4.5(b) shows
how the effective samples per pixel vary with µ .

Importance Sampling Adjustment: The theory is derived assuming uniform angular sampling.
In rendering, more efficient importance sampling is used, where samples in the important regions
are already closer together. This enables us to adjust γ < 1 in equation 4.21 for lower sampling
rates, where γ depends on the receiver BRDF. For the diffuse cosine lobe, the incident angle may
vary in [0,π/2] but about 80% of energy is in [0,π/4], enabling γ ≈ 1/2. In practice, we use γ =
0.4, which we find provides adequate quality with lower sampling counts. For the specular lobe,
setting c = cos(π/4) = 1/

√
2, about 80% of energy is concentrated in the range [0,cos−1(c1/m)],



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 43

(a) 3-bounce indirect, 56 spp (b) Our Method,
56 spp

(c) Equal error,
298 spp

Figure 4.7: A Cornell Box scene (a) 3-bounce Indirect illumination, our method using an average 56 spp;
insets showing (b) our method compared, to equal error (c) at 298 spp, a 5× speedup.

and so we set γ = cos−1(c1/m)/(π/2). For Blinn-Phong exponent m = 20, this sets γ = 0.11.

4.5 Implementation
Given our derivation, the final implementation is simple. Our code uses the NVIDIA OptiX real-
time raytracing framework [76] on a GTX 690 GPU. We only need to implement a simple extension
for multi-bounce path tracing where desired, as well as the core of our adaptive sampling and
filtering passes in the OptiX GPU framework. Our method runs entirely on the GPU in three
passes, as described below:

Initial Raytracing for Filter Sizes and Adaptive Sampling: We first trace 16 stratified rays
over the visible hemisphere from each pixel/shading point, to compute the per-pixel zmin and zmax,
which are simply min/max world-space distances to geometry (reflectors).8 Example outputs are
shown in Fig. 4.6(f). Direct lighting is also computed in the standard way in this pass (for this work,
we used a single point light source in all examples), and we create buffers for pixel kd and ks values
so we can separate textures from radiance computation. We then use zmin and zmax to compute the
filter sizes and sampling rates according to equations 4.15 and 4.21 respectively, separately for the
diffuse and glossy components of the pixel. We use µ = 0.9 and α = 0.3, with γ set as discussed
earlier.

8 As in most adaptive sampling approaches, using only 16 initial rays can give noisy or incomplete estimates of
zmin and zmax, but we never visualize them directly, and only use these to set filter sizes and sampling rates. As seen
in our results, we found the final images to be high quality, with any additional accuracy not worth the cost of more
rays. We also tried filtering the z estimates, but found this actually worsened image quality/speed, leading to overly
conservative or aggressive sampling rates and filter sizes.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 44

(a) 2-bounce indirect, 85 spp (b) our method (c) ground truth

(d) 2-bounce indirect, 86 spp (e) Our method (f) ground truth

Figure 4.8: (a) 2-bounce indirect illumination on a Cornell Box scene with glossy vase and teapots (m= 12),
with average 85 spp. A close comparison to ground truth is shown in (b) and (c); in (d) we show 2-bounce
indirect illumination on the Sibenik Cathedral scene, with a glossy textured floor and red carpet (m = 20),
with average 86 spp. Insets in (e) and (f) show the accuracy of our filtering on glossy receivers.

For efficiency, we also use radiance values from the initial 16 samples, so we actually only need
n−16 samples in the second pass. Finally, we clamp the maximum sampling rate (the minimum
must already be at least 16 because of initial sampling). We use a maximum of 100 samples,
scaled up when µ > 1, i.e., 100µ . Correspondingly, we also clamp the minimum zmin to about 2%
of maximum scene dimension, since a zmin = 0 implies no filtering and leaves corners and edges
(such as wall intersections) noisy.

We visualize the resulting sampling rates and filter widths in Figs. 4.1(b) and 4.6(g). It is clear
that smaller filter sizes and higher sampling rates are used for close-by geometry, while regions
with further reflectors, such as the floor in Fig. 4.1, can use lower sampling rates and wider filters.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 45

Path Tracing: We use OptiX to (stratified and importance) sample each pixel’s hemisphere with
the adaptive sampling rates. If more than one bounce is desired, we use standard path tracing for
higher bounces. We compute the incoming radiance values and multiply with the BRDF (exclud-
ing textures). This gives a noisy estimate L̄o at each pixel, as shown in Fig. 4.1(c). Notice that
adaptive sampling ensures almost accurate results in high-complexity areas, such as the bottom
of the curtain (right of second inset), while showing considerable noise (many fewer samples) on
the floor. This is as desired with sampling optimized for filtering; larger filter widths on the floor
ensure an accurate final image (Fig. 4.1(e)).

Screen-Space Filtering: In the final pass, we actually do Gaussian filtering on L̄o, using the
spatial filter (equation 4.16). Like the previous chapter, we use a 2D screen-space filter, with a
depth buffer giving the world-space coordinates and distances required. Moreover, we perform
the standard separation of the Gaussian filter into two 1D filters along the image dimensions for
efficiency.9 Finally, we modulate filtered radiance by the textures for kd and ks.

In summary, the method consists of path-tracing (the core optimized OptiX raytracer), coupled
with initial estimates to set filter sizes, adjust sampling rates, and do screen-space filtering. The
latter steps are simple to implement and extremely fast. Overhead is minimal compared to Optix
(Table 4.1), and we achieve interactive speeds of 1-3 frames per second, often with nearly an order
of magnitude fewer samples than basic GPU path tracing.

4.6 Results
We show results of interactive global illumination on five scenes in Figs. 4.1, 4.6, 4.7, 4.8 and 4.11.
The accompanying video shows animations and screen captures with moving light source, view-
point and examples of dynamic geometry (no precomputation is required; each frame is rendered
independently). To focus on the global component, all images show indirect light only; direct
illumination is added separately in the first step (initial raytracing in Sec. 4.5).

Visual Fidelity and Speedups: Our method is accurate in a range of different scenarios, with
consistent reductions in sample counts over basic path tracing. Figure 4.1 shows an example
of the Sponza scene (262K triangles) with 1-bounce diffuse indirect illumination (surfaces are
Lambertian) and textures. Our image (Fig. 4.1a,e) is accurate with 63 average samples per pixel.
Equal error with stratified Monte Carlo is only achieved for 324 samples, and is visually still noisy.
Our method adds minimal overhead, so this is a speedup of 5×. Figure 4.6 shows similar results for
the diffuse conference scene with 331K triangles. Our method requires only 60 samples per pixel.
The overhead is minimal, with equal time Monte Carlo being only 64 samples. Equal error (still
noisy) is only obtained for 440 samples, a speedup of about 7×. We demonstrate the extension to
multi-bounce diffuse indirect illumination by path tracing in Fig. 4.7. Note the curved surfaces of

9As in Chapter 3, this separation is strictly accurate only if the gaussian width β is the same across all pixels in
the filter but in practice we find almost no noticeable difference, since β usually varies slowly.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 46

(a) Our Method, 86 spp (b) Ground Truth (c) Our method, 226 spp

Figure 4.9: Evaluating the theoretical approximation of diffuse indirect light. (a) Shows over-blurring (and
hence darkening) of glossy-to-diffuse and glossy-to-glossy in an inset from the Sibenik Cathedral scene,
when using µ = 1 at 86 spp. However, we match ground truth (b) closely using µ = 2 at 226 spp, shown in
(c).

the dragon, and complex structures on the elephant’s trunk in the insets, that our method renders
accurately at 56 samples per pixel (close examination will show a slight overblur on the trunk).

Figure 4.8 shows that we can handle moderately glossy receivers for a modified Cornell box
(vase and teapots are glossy with Blinn-Phong exponent 12), and for the Sibenik scene with tex-
tures and 75K triangles (floor and red carpet have Blinn-Phong exponent 20). Nevertheless, the
method matches accurately, capturing the glossy reflections, and color-bleeding near edges. Again,
a speedup of about 5× is achieved, over simply using path-tracing in OptiX.

Figure 4.9 evaluates our use of the “diffuse interreflection” approximation to set sampling rates
in Sec. 4.3, which does not fully consider high frequencies in glossy-to-diffuse or glossy-to-glossy
interactions (however, receiver glossiness is fully handled as noted above). While our filter sizes
depend on this approximation, note that our method operates on accurate path tracing input, and
will therefore always converge in the limit with more samples. In Fig. 4.9 we see that we slightly
overblur (and hence darken) for µ = 1, but glossy-to-diffuse transfer is almost fully accurate for
µ = 2.

Quantitative Accuracy: We also evaluated our method quantitatively in Fig. 4.10, showing
RMS errors vs average number of samples for the conference scene from Fig. 4.6. The error of our
method (blue curve) is significantly below stratified Monte Carlo at all sample counts. Moreover,
even just using filtering on uniform sampling (green curve) gives a substantial improvement. Note
that our method is physically-based and consistent. As we increase the number of samples (higher
µ), we do converge to ground truth and error decreases (also shown visually in insets), This is in
contrast to most other solutions for fast, approximate global illumination.

Timings and Overhead: In table 4.1, we show timings for steps of our algorithm on different
scenes, rendered at a resolution of 640× 480. We obtain most of the benefits of axis-aligned fil-
tering as in the previous chapter, even though our algorithm is somewhat more complex (involving
additional texture buffers, and passes to handle diffuse and specular components). The total over-



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 47

1006040 200 300 500

0.03

0.02

0.01

0.005

Uniform MC unfiltered

Uniform MC filtered
Our Method

Avg. samples per pixel

R
M

S
 E

rr
o
r

n
o
u
r 

=
 6

0

n
M

C
 =

 4
4
0

n
M

C
F
 =

 9
2

(a) (b)

Figure 4.10: (a) Shows a log-log plot of the RMS pixel error vs average sampling rate for the Conference
scene of Fig. 4.6. In (b) we show insets from the conference scene (showing error relative to ground truth
magnified 10×). It can be seen that our method converges to ground truth both numerically and visually
with more samples.

Optix Ray/Path tracing Our algorithm Total
scene tris avg.

spp
num.
bounces

1st
pass
(ms)

2nd
pass
(ms)

total
(ms)

compute
spp
(ms)

adaptive
filtering
(ms)

total
overhead
(ms)

total
time
(ms)

fps (with/
without
alg)

Sponza
(Fig. 1)

262 K 63 1 181 580 761 10 55 65 826 1.21 / 1.31

Conference
(Fig. 6)

331 K 60 1 87 274 361 9 46 55 416 2.40 / 2.77

Cor. Box
(Fig. 7)

145 K 56 1 70 291 361 9 63 72 433 2.31 / 2.77

2 70 802 872 10 62 72 944 1.06 / 1.14
3 72 1423 1495 10 64 74 1569 0.63 / 0.67

Sibenik
(Fig. 8d)

75 K 86 1 110 440 550 10 50 60 610 1.64 / 1.82

2 108 1402 1510 12 52 64 1574 0.64 / 0.67
Cor. Box
(Fig. 11)

16.7 K 59 1 70 248 318 12 49 61 379 2.64 / 3.14

2 68 622 690 10 57 67 757 1.32 / 1.44

Table 4.1: Timings of our scenes rendered at 640× 480. Our filtering overhead is small compared to the
sampling time, and our impact on the fps is small.



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 48

(a) 1-bounce indirect, 59 spp

(b) 59 spp
unfilt., 0.32 sec

(c) our method,
0.38 sec

(d) Equal error
361 spp, 2 sec

(e) IPP,
1 sec

(f) BM3D,
5 sec

(g) gr. truth
1024 spp, 6 sec

Figure 4.11: A Cornell Box scene (a) 1-bounce indirect illumination, our method using an average 59 spp
at 2.7 fps; insets showing (b) our method unfiltered, (c) our method, filtered, (d) Equal error image with
uniform MC 361 spp, (e) Importance Point Projection (IPP, arrows show high frequency details are lost
and some regions are over-darkened) (f) Image denoising (BM3D, arrows show blurred geometry edges and
artifacts due to noise in input) (g) Reference image with 1024 spp.

head in a frame is about 60-70 ms, which is small compared to the cost of OptiX path tracing,
and results in only a marginal decrease in the performance of the real-time raytracer. Note that
additional bounces in path tracing do cause a slowdown in the Optix raytracer, essentially linear in
the number of bounces as expected, but do not affect our algorithm.

Note that our filter operates only in image-space and therefore has limited memory require-
ments (buffers for the noisy image, depth, and textures). We achieve a sample count reduction
and speedup of 5−8× on most scenes, with interactive frame rates of 1−3 fps. Note that we are
limited only by the speed of the real-time raytracer, and using further GPU raytracing accelera-
tions would provide further speedups. To our knowledge, this is one of the first demonstrations of



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 49

(a) Ambient Occlusion, 63 spp (b)

Figure 4.12: Ambient Occlusion on the Sponza scene using an average of 63 spp runs at 1.2 fps.

accurate interactive global illumination, based on principled Monte Carlo sampling. Alternative
methods, discussed next, either sacrifice accuracy, or are offline, adding overheads of seconds to
minutes.

Comparisons: In Fig. 4.11, we include comparisons to two alternative approaches. First,
Fig. 4.11(e) considers the importance point-projection (IPP) method for global illumination ([58],
building on [104]). We use the authors’ code on their scene. Because only a few shading points
are used, errors can occur in regions of complex interreflections, especially near edges, as shown
the insets. Figure 4.11(f) compares to standard image denoising using a state of the art denoiser
bm3d [18]; this still takes a few seconds, and can overblur or underblur (retain noise) in some
regions, since it is not informed of the precise filter size from our frequency analysis. Newer de-
noisers for rendering [57, 85] have impressive results, but often report render times in the minutes,
as does the indirect light field reconstruction approach of [55]. Thus, previous approaches aim
for high quality or high accuracy; we differ in providing accurate results for interactive global
illumination.

Extension—Ambient Occlusion: Our theory applies to any outgoing function on the reflectors.
If we simply set it to 1, then we will directly compute the complement of ambient occlusion
(rays that hit a reflector return 1, rays that miss return 0). This is an accurate interactive ambient
occlusion calculation, several orders of magnitude faster than [24]. We show an example result in
Fig. 4.12, computed at interactive rates of 1-2 fps.

Limitations: As shown in our numerical simulations and real experiments, the double wedge
model is a good representation of the Fourier spectrum for indirect illumination. However, highly
curved receivers and reflectors can lead to ‘leaking’ spectra outside theoretical predictions. This is
not usually a significant practical problem (see accurate dragon and elephant insets in Fig. 4.7), and



CHAPTER 4. DIFFUSE INDIRECT ILLUMINATION 50

we also alleviate it in a number of ways. We implement a normal threshold (set to 10◦), beyond
which radiance values are not used in the filtering. This avoids filtering across very different
orientations.10 Our axis-aligned filter is looser than previous sheared filters to capture more of the
spectrum leaks. And, we can always increase sample count (and µ) to converge to ground truth.
Our average sample counts are low (∼ 60) for global illumination, but still high enough to prevent
fully real-time performance on complex scenes. However, we are 1-3 orders of magnitude faster
than equally accurate Monte-Carlo based rendering methods, providing interactive frame rates.
Finally, the theory is limited to diffuse interreflections on general BRDF receivers; in practice
(Figs. 4.8, 4.9) it works for Lambertian and moderately glossy receivers/reflectors.

10This reduced filter size may however lead to fewer samples in the filter footprint than theory recommends. It is
possible to adjust the adaptive sampling for this, but we found the overhead added by this additional pass not worth
the marginal improvement in quality.



51

Chapter 5

Multiple Effects

5.1 Introduction
In the previous two chapters, we showed how to correctly filter noisy soft shadows and indirect
illumination. These methods are limited to rendering single effects rather than full distribution ray-
tracing with multiple effects, and extending them to a higher-dimensional rendering domain is a
challenge. Specifically, coupling between the irradiance and texture components of light transport
(due to motion or defocus blur) hinders sparse sampling and reconstruction in proportion to the
bandwidth of each individual component.

In this chapter, we provide an axis-aligned method for image-space filtering that can handle a
combination of different effects, namely defocus blur (primary), soft shadows and indirect illumi-
nation (secondary). We do not consider motion blur in the main chapter since our GPU ray-tracer
doesn’t support it, but we provide a proof-of-concept description with results, in Appendix B. We
derive a multi-dimensional end-to-end frequency analysis that handles a combination of effects.
Our analysis differs from previous works in that it provides filtering bandwidths separately for
both the noisy texture and illumination using a simple geometric approach. We introduce factoring
of the radiance integral to more efficiently sample and filter each component. Previous methods
either (i) filter the full high-dimensional light field [56, 55], resulting in large overhead, or (ii) use
expensive atomic computation [9] for each ray interaction to compute the overall bandwidth for
the noisy pixel color without factoring texture and irradiance. Our primary contributions are:

Combined frequency analysis for primary and secondary effects: Our main theoretical con-
tibution is the geometric and Fourier analysis of both direct and indirect illumination under lens
(defocus) blur for diffuse surfaces. We extend the flatland 2D Fourier analysis of the previous
chapters (also [25, 64]) to the 3D light-field in a position-lens-light space for direct or position-
lens-angle space for indirect. We derive how the light field is bandlimited due to integration over
the lens, light, and angle. Our approach is end-to-end unlike the atomic operations of [23, 9]. This
makes our parameters easier to evaluate, without requiring complex frequency analysis along light



CHAPTER 5. MULTIPLE EFFECTS 52

(a) Our Method, 138 rpp, 3.14 sec

(b) Equal time,
176 rpp, 3.11 sec

(c) Our method,
138 rpp, 3.14 sec

(d) Eq. quality,
5390 rpp, 130 s.

(e) No factoring,
138 rpp, 3.10 sec

defocus filter (pixels)

num. primary rays

(f) Primary filter
and rpp

1

20

1

64

indirect filter (pixels)

num. indirect rays

(g) Indirect filter
and rpp

Figure 5.1: (a) The CHESS scene, with defocus blur, area light direct and indirect illumination, rendered
at 900×1024 with an average 138 atomic rays per pixel (rpp), in 3.14 sec on an NVIDIA Titan GPU. We
compare to different methods in the insets. The top row inset is a sharp in-focus region while the other two
regions are defocus blurred. In (b) we compare to equal time stratified Monte Carlo (MC) sampling with
176 rpp; in (c), Our method; and in (d), Equal quality MC with 5390 rpp is 40× slower. One of the key
contributions of our method is factoring of texture and irradiance, so that irradiance can be pre-filtered
before combining with texture. Without factoring, the defocus filter cannot remove noise for in-focus regions
as shown in (e), top inset. In (f) and (g) top row, we show filter size for texture and indirect irradiance. Black
pixels indicate that factoring cannot be used and irradiance cannot be pre-filtered. In the bottom row we
show number of primary rays and indirect samples respectively. Our method uses separate sampling rates
and filters for primary and secondary effects which makes it more effective.



CHAPTER 5. MULTIPLE EFFECTS 53

paths.

Factoring texture and irradiance: Our main practical contribution is a method to approximate
the integral of color (radiance) at each pixel as a product of texture and irradiance integrals. In
the absence of defocus blur and spatial anti-aliasing, the primary hit is a single location per-pixel,
making factorization trivial, as assumed by previous irradiance filtering (e.g. irradiance caching)
methods. However, due to defocus blur, the texture and irradiance are coupled. We propose to use
the texture-irradiance factoring approximation when the error is below a threshold. For example,
an image region with a high-frequency texture (Fig. 1(e) top row) cannot be filtered without factor-
ization, since we do not want to blur the texture. Hence, a large number of secondary rays would
previously need to be traced to reduce the noise in soft shadows and indirect illumination.

Two-level adaptive sampling strategy: Our method is based solely on ray-tracing for all render-
ing effects. Instead of naively path tracing each pixel, we allocate rays to primary and secondary
effects in proportion to their frequency content while maintaining physical correctness, as depicted
in Fig.1(f,g) lower row. For example, at an in-focus pixel with soft shadows we allocate a sin-
gle lens ray but multiple light shadow rays. At an out-of-focus pixel with no soft shadows, we
have an adequate number of primary rays, and a single shadow ray per primary ray. Similarly, we
predict the sampling rate for indirect illumination taking into account both the local illumination
frequency, and defocus. Previous adaptive sampling methods like [9] only provide a single sam-
pling rate at each pixel and hence are inefficient in reducing ray-tracing cost.

As before, we have integrated our method into NVIDIA’s Optix ray-tracer [76] and implemented
our reconstruction method on the GPU. We achieve about 4× ray count reduction compared to
equal RMS error MC (quantitative) and about 30× compared to equal visual quality ground truth
MC (qualitative). Figure 5.12 emphasizes this point. Our method has a low reconstruction over-
head of under 200 ms, and can be easily combined with a GPU ray-tracer. We demonstrate render
times of 3-10 seconds1 for a variety of scenes.

5.2 Previous Work
[14] and [44] first introduced Monte Carlo distribution ray and path tracing for evaluating pixel
radiance using the rendering equation. Building on the basic framework of physically based ren-
dering, we use adaptive sampling and filtering to efficiently produce physically-based renderings
with depth of field, and area light direct and indirect illumination.

Image Filtering and Noise-guided Reconstruction: Image filtering has been a popular approach
to remove noise in images generated by MC ray-tracing, because of its simplicity and efficiency.
Geometric information such as normals, textures, and depths, can play an important role for pre-

1Multiple effects are slower than single effects (previous chapters) since we need more rays, and images are
rendered at higher resolution for this chapter.



CHAPTER 5. MULTIPLE EFFECTS 54

dicting noise in rendered images. Methods that use a denoising approach based on noise esti-
mation from geometric parameters include the use of the cross bilateral filter [83], the A-Trous
wavelet transform [19], adaptive wavelet rendering [72] and the filtering of stochastic buffers [91].
Other examples are random parameter filtering (RPF, [88]) which has a high computation and stor-
age cost, [57] that uses Stein’s unbiased risk estimator for sampling and bandwidth selection for
anisotropic filters, and [85] which uses non-local means filtering and residual errors to guide sam-
pling density. [45] give a noise estimation metric to locally identify the amount of noise in different
parts of the image, and adaptively sample and filter using standard denoising techniques. Another
novel approach is that of [89] which uses compressed sensing. [21] use ray color histograms to
guide filtering. These methods do not exploit the geometric and Fourier structure of the light field
and require either high sampling rates or high reconstruction overheads. Our method is also differ-
ent from 2D post-processing solutions [61, 78] that blur a 2 or 2.5D image with spatially-varying
filters according to depth or motion, since we filter an image obtained by accurate ray and path
tracing. Further, using a primary filter given by the circle of confusion or motion vector does not
filter noisy secondary effects.

Light Field Analysis: These methods attempt to reconstruct the full high-dimensional light field.
Multi-dimensional adaptive sampling and reconstruction [36] improves upon [65], and uses sam-
ple contrast to guide adaptive sampling, followed by anisotropic reconstruction of the light field.
[56] and [55] proposed a reconstruction method for motion and defocus blur from sparse sampling
of the 3D/5D (spatial position, lens and time) light field that uses velocity and depth information
to reproject samples into each pixel, but with a high memory and computation overhead.

Fourier-guided Adaptive Sampling and Filtering: As in the previous two chapters, we build
on recent approaches that have studied the frequency aspects of light transport in static scenes,
e.g. [42, 80, 23]. They presented an a-priori frequency analysis to perform adaptive sampling and
appropriate reconstruction. [96] proposed to adaptively sample primary rays by predicting image
bandwidth and per-pixel variance of incoming light, to efficiently ray-trace and reconstruct im-
ages with depth of field. They used a sampled representation of the spectrum which is expensive
and prone to noise. 5D covariance tracing [9] uses a covariance representation that is compact
and stable, addressing the full 5D (space-angle-time) light field, and focuses on atomic operations
to achieve generality. We instead use an image-space axis-aligned filter combined with adaptive
sampling for both primary and secondary effects in a single framework.

Our method is simpler and faster than covariance tracing and generalizes axis-aligned filtering
to combine primary and secondary effects. Moreover, our texture-irradiance factorization improves
on methods that only filter the final pixel radiance, without filtering irradiance. Those methods are
inefficient for in-focus regions. Methods that retain the full light field (individual samples) such
as [56, 55, 88] can filter the noisy irradiance separately but have a high storage and reconstruction
overhead. The concurrent work of [100] demonstrates a much faster, interactive formulation of
sheared filtering for depth of field. They separate the image into depth layers, and simplify the 4D
filter into splatting and screen-space convolution steps.



CHAPTER 5. MULTIPLE EFFECTS 55

Sample 1

Sampling 

rate

Filter Widths

Texture

Irradiance

Radiance

Filter

Select Filter

Output

Sample 2

Figure 5.2: A simplified flow chart of the algorithm. In two sampling (ray-tracing) passes, we adaptively
sample the noisy per-pixel texture, irradiance and radiance. These are then filtered and combined to produce
an accurate radiance value.

5.3 Overview
We describe our algorithm in brief to motivate the theoretical analysis and highlight the main
contributions. A block diagram is shown in Fig 5.2. We first sparsely path trace each pixel to
identify frequency bandwidths for each of the effects under consideration, namely the defocus
blur, area light direct illumination and indirect illumination. Through this sparse sampling, we can
predict the local Fourier structure of the high-dimensional light field for both direct and indirect
illumination. Sections 4-6 derive this structure and corresponding reconstruction bandwidths.

For both the direct and indirect components at a pixel, we need to decide if approximating
the radiance integral by factoring into a product of texture and irradiance integrals is possible.
Knowing the Fourier structure of the local light field gives us the required sampling rates for each
component, as derived in Section 7. In a second path-tracing pass, we trace the minimum adequate
number of primary rays to sample world location and texture, and then for each primary ray, trace
an appropriate number of secondary rays to compute the irradiance. Then, in the first filtering pass,
if the factorization was determined valid, we filter the factored direct and indirect irradiance. In a
second filtering pass, we take the combined color at a pixel and apply the defocus filter. This gives
the final noise free image. Implementation details are provided in Section 8.

Assumptions: The key assumption underlying our analysis is that surfaces are diffuse. Lambertian
BRDFs allow a simple end-to-end equation for multiple effects since there is no angle-dependence.
However, our practical method works well for moderately glossy surfaces, and all of our results
include glossy direct and indirect illumination. Note that we always filter samples obtained by
accurate ray or path tracing using the full BRDF. We also assume Gaussian lens aperture trans-
mission and area light intensity, like previous methods based on frequency analysis. We evaluate
the direct illumination form factor for a surface at the center of the light to simplify analysis and
implementation, as in previous work.



CHAPTER 5. MULTIPLE EFFECTS 56

Focal Plane

Surface

f

z

Lens

au

Sx/W

λ

(a)

Ωx

Ωu

Ωx

Ωpix

d

max

rm
inΩu

max

r m
ax

(b)

Figure 5.3: (a) Ray-tracing geometry for defocus blur. (b) Fourier spectrum and axis-aligned filter for
defocus blur.

5.4 Defocus Blur
We now describe our Fourier light field analysis which guides our bandwidth prediction. We first
consider defocus blur only, assuming diffuse surfaces and a thin lens model. Secondary effects are
discussed in the next two sections. Defocus blur is a distribution effect produced by primary (eye)
rays, traced from the camera lens of finite aperture out to the world focal plane.

Our derivation is in flatland, but the extension to the 3D world is straightforward. The set up
is shown in Fig 5.3(a). The screen resolution is 2W , lens aperture is 2a and focal distance is f
(in world space; we do not explicitly need to involve the focal length). Pixel coordinates x (pixel
units) range in [−W,W ]; lens coordinates u (dimensionless) range in [−1,1]. A primary ray (x,u)
is traced from world location (au,0) to (Sx/W, f ), where 2S is the world space size (meters) of
the focal plane. Consider a parallel surface at depth z from the lens, parametrized by λ , i.e. λ is
the world x-coordinate along the object. Then, the intersection with the object, of the primary ray
(x,u) is

λ = au+
z
f

(
Sx
W

−au
)
=

Sz
W f

(
x+auW

f − z
Sz

)
. (5.1)

Let us denote

r(x,u) =
aW
S

(
f

z(x,u)
−1
)

(5.2)

as the width of the circle of confusion (in pixel units) for the ray hitpoint (x,u). We also define
the magnification ℓp = (Sz/W f ) measured in meters per pixel, which transforms pixel-space x
to world space λ . For a non-parallel surface, r(x,u) changes for each ray, since the depth is not



CHAPTER 5. MULTIPLE EFFECTS 57

constant. Since the surface is pure diffuse, the light field at the camera sensor is

L(x,u) = Lo(λ ) = Lo(ℓp · (x+ ru)). (5.3)

Here Lo(λ ) is the intensity reflected by the receiver with argument λ in meters. The Fourier
transform of the light field is

L̂(Ωx,Ωu) =
1
ℓp

δ (Ωu − rΩx)L̂o

(
Ωx

ℓp

)
. (5.4)

All frequencies on the spatial axis are in pixel−1 units. Each parallel receiver surface contributes
a line in Fourier space (Ωx,Ωu), with slope given by its circle of confusion. Due to sloped or
multiple receivers, the spectrum is a double wedge, as shown in Fig 5.3(b). The final color c at
pixel x is

c(x) =
∫

L(x,u)A(u)du, (5.5)

where A(u) is the lens aperture function. The Fourier transform of the pixel-domain color is

ĉ(Ωx) =
∫

L̂(Ωx,Ωu)Â(−Ωu)dΩu. (5.6)

The lens aperture function bandlimits L̂(Ωx,Ωu), on the lens frequency axis, so that we can apply
a simple filter to ĉ as shown in Fig 5.3(b). The spatial bandwidth of the axis-aligned filter is

Ωd
x = min

{
Ωmax

pix , Ωmax
u /rmin

}
. (5.7)

Here Ωmax
pix = 0.5 is the maximum allowed pixel bandlimit (corresponding to 1 sample per pixel)

and Ωmax
u is the bandlimit of A(u). This becomes an image-space filter implemented as a Gaussian

with std. deviation Ωd
x . We use the superscript d to denote defocus filter width, since we have

different filters for different effects. We assume the lens to be a Gaussian with a 2σ width over
u ∈ [−1,1], so σ = 1, implying a standard deviation of σ̂ = 1 in Fourier space and Ωmax

u = σ̂ = 1.
Since the primal-domain defocus filter width Rd

x (in pixels) is inversely proportial to the Fourier
domain filter width, eqn. 5.7 implies:

Rd
x = max{2, rmin} . (5.8)

The minimum width of 2 pixels corresponds to the filter weight for the adjacent pixel going to zero.
As intuition would suggest, for diffuse surfaces, the defocus filter width is simply the smallest cir-
cle of confusion at a pixel. The actual bandlimit can be somewhat smaller for glossy highlights,
but the difference (from using a filter width derived for diffuse) is usually not noticeable.

Discussion: [9] arrive at a similar result for the lens matrix that tranforms the light field’s co-
variance matrix. Although they are also able to handle glossy surfaces and occlusions in the same
framework, their approach is also more complex and requires additional data structures for occlu-
sion testing. [96] also give a light field analysis for defocus blur, using a series of atomic shears,



CHAPTER 5. MULTIPLE EFFECTS 58

and use the predicted shape of the power spectrum to guide sampling and filtering. However, our
approach is end-to-end unlike the approach of concatenating atomic operators used in both [9] and
[96]. Neither of these papers explicitly equates the slope of the defocused light field to the local
circles of confusion. The concurrent work of [100] does derive a very similar frequency analysis
for defocus blur, but does not explore the connections with direct and indirect illumination that we
study next.

5.5 Direct Illumination with defocus blur
While texture samples at a pixel are functions of the random lens position alone, incident radiance
samples (direct and indirect) are functions of two random parameters: the lens position and the
illumination direction. Hence, reconstruction can be more efficient if the pixel irradiance can be
pre-filtered to remove noise due to incoming direction. To avoid the overhead of storing the full
light field (individual ray samples), we propose a novel method to factor the integrated texture and
irradiance. This allows us to filter efficiently and work with lower sampling rates than [9] who con-
sider all effects but only derive a single filter width at each pixel. To motivate our filtering scheme
with factored irradiance, we first study the illumination integral, and perform a frequency analysis
of the incident light field. Sections 5 and 6 treat direct and indirect illumination respectively, in
combination with defocus blur.

Consider a flatland scene illuminated with an area light with intensity function I(y) which is
a Gaussian over a support [−ℓI, ℓI]. Similar to the lens function, the light bandlimit is Ωmax

y =
1/ℓI . As before, we sample the lens u, for each screen (pixel) coordinate x, and each sample
corresponds to a world location λ (x,u). We now trace secondary shadow rays from λ to y on the
light, as depicted in Fig 5.4(a). For the differential geometry at λ , we parametrize the texture and
illumination in (x,u,y) coordinates, and define k(x,u) = k(λ ) as the diffuse texture, f (x,u,y) as the
form factor (two cosine terms divided by distance-squared) and V (x,u,y) as the light visibility for
the ray pair (x,u,y). We use the form factor evaluated at the center of the light fc(x,u) = f (x,u,0)
(as in [25, 63]) because this simplifies both analysis and implementation. The pixel radiance due
to direct illumination from the area light is given by

Ldir(x) =
∫

u k(x,u)
(∫

y f (x,u,y)V (x,u,y)I(y)dy
)

A(u)du

=
∫

u k(x,u) fc(x,u)
(∫

yV (x,u,y)I(y)dy
)

A(u)du.
(5.9)

Factoring Texture and Irradiance: Equation 5.9 suggests that the irradiance (the inner inte-
gral) is integrated with both the light and the lens functions, while the texture term is integrated
with the lens function. To pre-filter the irradiance term, we must factor the radiance into a product
of integrated texture and irradiance. We first define the expectation of a function b over a kernel
A as EA[b] ≡

∫
b(u)A(u)du. Here A(·) is chosen to be the lens function satisfying

∫
A(u)du = 1.

Then we invoke the standard identity from statistics,

EA[b1 ·b2] = EA[b1] ·EA[b2]+EA[(b1 −EA[b1])(b2 −EA[b2])]. (5.10)



CHAPTER 5. MULTIPLE EFFECTS 59

Surface

u

x

y

Light

k(x,u)

(f.V)(x,u,y)

d1
d2

(a)

Ωx

Ωy

Ωu

x

u y

(b)

Figure 5.4: (a) Path tracing geometry for defocus blur and soft shadows (area light shown in yellow). (b)
Power Spectrum of V, |V̂ (Ωx,Ωu,Ωy)|2, for a simple flatland scene with non-parallel geometry, showing our
double-cone model holds for this case.

The second term is negligibly small if either b1 or b2 is almost constant, or if they are uncor-
related over the support of A(u). Thus, when the texture k(x,u) and the incident light intensity
fc(x,u)

∫
V (x,u,y)I(y)dy are either constant or uncorrelated w.r.t. u, we can approximate equa-

tion 5.9 as

Ldir(x)≈
∫

k(x,u)A(u)du·∫
fc(x,u)A(u)(

∫
V (x,u,y)I(y)dy)du.

(5.11)

We can rewrite this last approximation as

Ldir(x)≈ kdir(x) ·Edir(x), (5.12)

where we have defined the integrated texture term as

kdir(x) =
∫

k(x,u)A(u)du (5.13)

and the integrated irradiance term as

Edir(x) =
∫

fc(x,u)A(u)(
∫

V (x,u,y)I(y)dy)du. (5.14)

Almost all image-space global illumination methods ([32, 105, 64], etc. and Chapter 3 and 4)
factor out the texture term and work with the irradiance. However, methods that deal with defocus
blur cannot do this directly. If only the pixel radiance is filtered in image space (e.g. [9], [57]), in a
region with high frequency texture and small or no defocus, the shadow filter cannot be used (else
the texture will be incorrectly blurred), and the light visibility will have to be sampled densely to
remove noise. Our proposed factorization allows us to pre-filter the irradiance term by the light
bandlimit separately, before multiplication by texture and applying the defocus blur filter. Without
factoring, the pixel color frequency is only determined by defocus blur magnitude, since the tex-
ture term is not filtered by the light. To derive the filter and sampling rate for the irradiance, we



CHAPTER 5. MULTIPLE EFFECTS 60

perform a frequency analysis of the visibility V (x,u,y).

Frequency analysis of light visibility in (x,u,y) space: We first perform a frequency analysis
of the light visibility in (x,u,y) space, considering a parallel plane of occluders. As previously dis-
cussed in Chapter 2, let g(·) be the one-dimensional visibility in the occluder plane. The set up is
as shown in Fig 5.4(a). Let ρ = d2/d1, where d1 and d2 are distances of receiver and occluder from
the light respectively. Then, the shadow light field on the receiver surface, is2 g(ρλ +(1−ρ)y).
Hence, we have

V (x,u,y) =V (λ ,y) = g(ρλ +(1−ρ)y)
= g(ρℓp(x+ ru)+(1−ρ)y)≡ g(αx+βu+ γy). (5.15)

In the last step we have introduced the parameters α ,β ,γ to simplify the representation. Perform-
ing a 3D Fourier transform gives:

V̂ (Ωx,Ωu,Ωy) =
∫ ∫ ∫

g(αx+βu+ γy)
exp(− j(xΩx + yΩy +uΩu))dxdudy

=
1
α

ĝ
(

Ωx

α

)
δ
(

Ωu −
β
α

Ωx

)
δ
(

Ωy −
γ
α

Ωx

)
.

(5.16)

This is a line through the origin in 3D frequency space, normal to the isosurface plane defined
by eqn. 5.15. Due to the integration with aperture and light in eqn. 5.14, this line is bandlimited
(clipped) by the planes |Ωu| ≤ Ωmax

u and |Ωy| ≤ Ωmax
y . The two slopes given by the delta functions

in eqn. 5.16 imply that the line is clipped along Ωx to |Ωx| ≤Ωmax
u /r and |Ωx| ≤ ℓpΩmax

y /(ρ−1−1).
Let

s = ρ−1 −1 = (d1/d2)−1. (5.17)

s is analogous to r defined in eqn. 5.2. For non-parallel and multiple receivers and occluders,
the visibility spectrum becomes a bandlimited double-cone in frequency space. As illustrated in
Fig 5.4 (b) with a flatland simulation, this is a good approximation for arbitrarily oriented surfaces
and area lights. The filter width (in per-pixel units) that can be used to filter Edir according to the
light bandlimit then becomes

Ωs
x = min

{
Ωmax

pix , ℓpΩmax
y /smin, Ωmax

u /rmin

}
(5.18)

Equivalently, the primal-domain filter size in pixels is

Rs
x = max

{
2, ℓIsmin/ℓp, rmin

}
. (5.19)

Filtering using factoring: In practice, we can use factoring (eqn. 5.12) wherever the error3 ||Ldir −
kdir ·Edir|| (obtained from a first sparse sampling pass) is small enough. For the pixels where the

2In general there will also be a constant offset in the argument of g(.) here, if the origins of the x and y coordinates
are not aligned. However, the constant offset does not affect the Fourier energy spectrum, so we ignore it.

3|| · || is the standard euclidean distance between RGB colors.



CHAPTER 5. MULTIPLE EFFECTS 61

(a) Ldir (b) kdir (c) Edir (d) SepDir

Figure 5.5: (a) The direct radiance Ldir for the CHESS scene from the first sampling pass (16 spp), (b) The
factored texture kdir and (c) the separated irradiance Edir. (d) The factorization error ||Ldir − kdir ·Edir|| is
below a threshold except at the pixels marked black (shown smoothed with a median filter).

factorization is valid, we can filter Edir separately, by the shadow filter Ωs
x, then multiply by kdir and

filter the product by the defocus filter Ωd
x . Pre-filtering allows lower sampling rates for the light

visibility, thus saving on expensive ray-tracing. For pixels where the factorization is not valid,
we filter the pixel radiance Ldir(x) for defocus only. Usually these are pixels with a large defocus
width, and hence can gather radiance information from many neighboring pixels, implying a lower
sampling rate. Hence, most pixels can work with low sampling rates which are derived in Section
7.

In Fig 5.5(a) we show the pixel radiance Ldir from the first sampling pass, and compare it to the
integrated texture kdir in (b) and the integrated irradiance Edir in (c). The thresholded error is shown
as a binary flag in (d). Object silhouettes or regions with high defocus blur cannot be factored, but
those with soft shadows on smooth textures can. About 80% of pixels are separable for this scene,
but the fraction is larger for indirect illumination, and other scenes. This makes our method much
more efficient since we can pre-filter noisy irradiance.

Glossy Surfaces: Our filter widths Ωd
x and Ωs

x are derived assuming diffuse surfaces. Even though
we do not handle glossy surfaces explicitly in our theory, our approximations work well for glossy
direct and non-caustic indirect illumination, as demonstrated in our renders, all of which have
glossy surfaces. This is because our filter is axis-aligned, and can capture a lot of energy that leaks
beyond the double-wedge model. We also filter an accurately path traced illumination for both
diffuse and glossy components. To handle direct illumination on a glossy surface, suppose ê is the
primary ray (x,u), and r̂ is the direction from the hitpoint of the primary ray to the light’s center,
reflected about the hitpoint normal. Then the Phong BRDF gloss factor evaluated at the light center
is simply (−ê · r̂)m ≡ p(x,u). We can separate p(x,u) out into the texture term. Explicitly, k(x,u)
in eqn. 5.13 becomes

k(x,u) = kd(x,u)+ ks(x,u)p(x,u) (5.20)

where kd and ks are the diffuse and specular textures respectively.



CHAPTER 5. MULTIPLE EFFECTS 62

5.6 Indirect Illumination
The total pixel radiance is the sum of the integrated direct and indirect radiance, i.e. L(x) =
Ldir(x)+Lind(x), and we treat the two components independently. Many of the same arguments,
including factorization, that apply in the direct case, also apply to indirect illumination.

We use the same parametrization as the previous chapter, where incident radiance is a function
of linearized direction v measured in a plane parallel to the local receiver. The indirect radiance
Lind at pixel x is the integral of the texture k(x,u), the BRDF and geometry term4 h(v) and in-
coming indirect radiance li(x,u,v) reflected from the nearest surface in direction v. We can also
factorize the texture and irradiance as follows:

Lind(x) =
∫

k(x,u)(
∫

h(v)li(x,u,v)dv)A(u)du
≈
∫

k(x,u)A(u)du ·
∫

A(u)(
∫

h(v)li(x,u,v)dv)du
≡ kind(x) ·Eind(x).

(5.21)

This is similar to the direct lighting equation, with the light intensity I replaced by the transfer func-
tion h. If the factorization error ||Lind − kind ·Eind|| is small, we use the factored product kind ·Eind.
Factoring allows pre-filtering the Eind term and reducing the sampling rate required. If factoring is
not possible, the radiance Lind can still be blurred by the defocus filter, and a moderate sampling
rate suffices.

Assuming diffuse reflectors, the spectrum of the incident indirect radiance li is also similar to
that of the light visibility V from the previous section. Extending the result of the previous chapter,
individual reflectors contribute lines in the Fourier space with slope along the Ωx×Ωv plane given
by the reflector depth z at (x,u,v). The slope along the Ωx ×Ωu plane is given by the circle of
confusion r at (x,u). Similar to eqn. 5.18, the filter width for Eind is given by

Ωi
x = min

{
Ωmax

pix , ℓpΩmax
v /zmin, Ωmax

u /rmin

}
. (5.22)

Ωmax
v is the bandlimit of the low-pass transfer function h; the numerical values for diffuse and

glossy BRDFs can be found in Chapter 4 and Appendix A. The primal domain filter size is

Ri
x = max

{
2, zmin/(ℓpΩmax

v ), rmin
}
. (5.23)

Glossy Surfaces: The diffuse and glossy transfer functions h(v) are different (we need not
know their exact forms), and the v dependence cannot be dropped to separate h from the Eind inte-
gral as we did for f (x,u,y) in direct illumination. In other words, an approximation like eqn. 5.20
cannot be made for indirect illumination. For the factorization kind ·Eind to work for a surface with
both diffuse and glossy components, each of Lind,kind,Eind must be evaluated and stored separately

4The BRDF term is most generally a function of the world location also, i.e. h(x,u,v). We assume that the surface
visible in a small neighborhood around a current pixel (for all u) is flat, and drop the x,u dependence.



CHAPTER 5. MULTIPLE EFFECTS 63

for the diffuse and glossy components. In the filtering pass, both diffuse and glossy Eind are filtered
according to their own bandwidths given in equation 5.22 and then combined with the appropriate
kind.

5.7 Sampling Rates
Point sampling of the high-dimensional light field can cause aliasing if the sampling rate is not
sufficient, even if we subsequently use the proper axis-aligned reconstruction filter. The minimum
sampling rate is that which just prevents adjacent copies of spectra from overlapping our baseband
filter. Similar to the previous chapters, we derive the minimum distance between aliases of spectra,
Ω∗

x ,Ω∗
u,Ω∗

y ,Ω∗
v , and multiply these to obtain the per-pixel sampling rates. However, the major

difference is that we derive different sampling rates for both primary and secondary rays. We
allocate rays in proportion to the frequency content of each effect, instead of using a fixed number
of secondary rays per primary ray at each pixel as has been done in previous work.

In the first sampling pass, we trace a fixed number of rays per pixel to estimate bandwidths and
sampling rates for the next pass. In our main (second) sampling pass, at each pixel, we first send np
primary rays from the lens, then for direct illumination we trace a number of shadow rays for each
of these np primary rays so that the total number is ndir. For indirect illumination, for each primary
ray a certain number of indirect radiance samples are obtained, so that the total number is nind. In
addition, our secondary sampling rates vary depending on whether we use the exact radiance, or
factored texture and irradiance. Superscripts ‘c’ (combined) and ‘f’ (factored) are used to denote
these two different secondary sampling rates respectively.

For determining the primary sampling rate, we need only consider simple defocus blur (assum-
ing diffuse surfaces). Our axis-aligned filter was described in Section 4. The minimum primary
sampling rate is obtained considering aliasing in Ωx ×Ωu space, as shown in Fig. 5.6(a). We have,

np = (Ω∗
x)

2(Ω∗
u)

2

= (Ωmax
pix +Ωd

x )
2(1+ rmaxΩd

x )
2.

(5.24)

Although [96] use power spectral energy and variance to determine their sampling rate, their
overall sampling density in defocused regions looks similar to ours. However, their sampling
method is quite different as they obtain image and lens samples in Fourier space.

Secondary sampling rate with factored texture and irradiance: For area light direct illumi-
nation, the visibility in equation (7) must be sampled sufficiently to avoid aliasing in each of the
(x,u,y) dimensions. At pixels with factored direct illumination, filtering Edir clips it to a spatial
Fourier width of Ωs

x. This case is illustrated in Figure 5.6(b), with projections of the spectrum on
two coordinate planes instead of the full volumetric spectrum for clarity. The minimum separa-
tion for no aliasing along each axis follows similarly from the 2D packing for defocus only; the



CHAPTER 5. MULTIPLE EFFECTS 64

Ωx

*Ωx

*Ωu

Ωpix
d max

Ωu
max

rmaxΩx
d

Ωx

Ωu

(a)

Ωx

Ωpix
max

Ωy
max

Ωx
s

Ωy

Ωu
max

Ωu

(b)

Figure 5.6: (a) Packing of aliases for defocus only, showing the spatial and lens sampling rates Ω∗
x and Ω∗

u
(b) Packing for aliases of the light visibility V . The yellow and grey double wedges are the projection on
the Ωx ×Ωy and Ωx ×Ωu planes respectively. Aliases not shown for clarity. The minimum sampling rates
Ω∗

x ,Ω∗
y and Ω∗

u are analogous to those shown in (a).

per-pixel sampling rate for V (x,u,y) (secondary shadow rays) is

n f
dir = (Ω∗

x)
2(Ω∗

u)
2(Ω∗

y)
2ℓ2

I

= (Ωmax
pix +Ωs

x)
2(1+ rmaxΩs

x)
2(1+ ℓIsmaxΩs

x/ℓp)
2 (5.25)

Similarly, for indirect illumination the indirect light field li in equation (12) must be sampled more
to avoid aliasing in each of the (x,u,v) dimensions. When factored irradiance is used, the spectrum
is clipped to a bandlimit Ωi

x. The sampling rate is then,

n f
ind = (Ω∗

x)
2(Ω∗

u)
2(Ω∗

v)
2

= (Ωmax
pix +Ωi

x)
2(1+ rmaxΩi

x)
2(Ωmax

v + zmaxΩi
x/ℓp)

2 (5.26)

Secondary sampling rate without factoring: If the direct radiance cannot be factored into
texture and irradiance, only the defocus filter must be applied to the radiance. The light field
spectrum is then clipped to a bandlimit Ωd

x . The direct illumination sampling rate is then

nc
dir = (Ωmax

pix +Ωd
x )

2(1+ rmaxΩd
x )

2(1+ ℓIsmaxΩd
x/ℓp)

2 (5.27)

Finally, without factorization, the indirect illumination sampling rate is

nc
ind = (Ωmax

pix +Ωd
x )

2(1+ rmaxΩd
x )

2(Ωmax
v + zmaxΩd

x/ℓp)
2 (5.28)

Discussion: Observe from eqns. 5.7, 5.18 that Ωs
x ≤ Ωd

x ≤ Ωmax
pix . As expected, if the pixel is in

focus (i.e., either f = z or a = 0) the number of primary rays per pixel is np = (2Ωmax
pix )2 = 1 since



CHAPTER 5. MULTIPLE EFFECTS 65

rmax = rmin = 0. Similarly, nc
dir = np if we have a point light with ℓI = 0. This means we only take

one visibility sample if the light size shrinks to zero, verifying that our formulae work in the limit.
Further, observe that n f

dir ≤ nc
dir, since the former uses a smaller spatial bandlimit. This is expected,

since the ability to filter the irradiance Edir allows for a lower secondary sampling rate. Also note
that at a pixel that uses factored irradiance, the defocus is typically small, and then n f

dir ≥ np since
the secondary sampling rate has an extra (Ω∗

y)
2 term in eqn. 5.25. Then we must trace n f

dir/np ≥ 1
secondary rays per primary ray5.

We now qualitatively discuss our practical sampling rates shown in fig 5.8(e)-(g). First, in the
region marked ‘A’, we have a high defocus and depth variance, and hence we provide more rays
for all effects (i.e. np,ndir,nind are all large, but this type of region covers only a small part of the
image). In the region marked ‘B’, which is in-focus, we need few primary rays but many indirect
samples since it has nearby reflectors. In ‘C’, the wall is defocused but at a constant depth, so a
few primary rays suffice, but more direct and indirect samples are needed.

Convergence with increasing sampling rate: As discussed before, we can control our sampling
rates with a user-defined parameter µ . To implement this, each reconstruction bandwidth is simply
scaled by µ and the sampling rates are then computed as above. For example, the primary sampling
rate as a function of µ becomes:

np(µ) = (Ωmax
pix +Ωd

x (µ))2(1+ rmaxΩd
x (µ))2, (5.29)

where Ωd
x (µ) = min

{
Ωmax

pix ,µ ·Ωd
x

}
. Thus, we can smoothly control our speed and accuracy, and

converge to ground truth with increasing ray count. We demonstrate this quantitatively as an error-
vs-rpp plot in Fig. 5.12(e). Controlling sampling rate and filter size using µ can also be used
to speed-up our method by starting with low µ and updating the image with increasing µ , and
refreshing if the camera or light is changed. We demonstrate this interactive pre-view rendering
system in our video.

5.8 Implementation
A flow chart of our algorithm is shown in Figure 5.7. All quantities are concisely defined in Table
1 which also points to the relevant equations.
Our algorithm is implemented in multiple consecutive pixel shader passes in NVIDIA’s Optix ray-
tracer. The source code will be made available online upon publication.

1. Sampling pass 1: We first trace 16 paths per pixel into the scene. A single path is one
primary lens ray, one secondary shadow ray, and a one-bounce indirect sample (separate

5However, a pixel with constant texture and high defocus can also allow factorization. In this and some other
cases, we may also have n f

dir < np, but for physical correctness we trace one secondary ray per primary ray.



CHAPTER 5. MULTIPLE EFFECTS 66

Sampling

Pass 1

Secondary

Filter Primary 

Filter

Sampling 

Pass 2

Figure 5.7: Flow chart of the algorithm for the direct component only; the indirect component is handled
similarly. Filled blocks are variables stored in memory, empty blocks are operations. Refer to table 1 for
definitions of variables.

Quantity Description Equation

Ldir integrated color, direct component 5.9
kdir integrated texture, direct component 5.13
Edir integrated illumination, direct component 5.14
Lind integrated color, indirect component 5.21
kind integrated texture, indirect component 5.21
Eind integrated illumination, indirect component 5.21

SepDir Boolean, set if direct factorization error is small 5.30
SepInd Boolean, set if indirect factorization error is small 5.30

rmin,rmax min, max circle of confusion in pixels 5.2
smin,smax min, max soft shadow slopes 5.17
zmin,zmax min, max reflector distance for indirect -

Ωd
x depth-of-field filter width 7

Ωs
x direct illumination filter width 16

Ωi
x indirect illumination filter width 19

np Num. primary (lens) rays 5.24
nc

dir Num. light shadow rays if SepDir = 0 5.27
n f

dir Num. light shadow rays if SepDir = 1 5.25
nc

ind Num. indirect samples if SepInd = 0 5.28
n f

ind Num. indirect samples if SepInd = 1 5.26

Table 5.1: A list of the variables we store in a per-pixel buffer. The defining equation for each variable is
indicated in the last column.



CHAPTER 5. MULTIPLE EFFECTS 67

for diffuse and glossy). We draw lens samples, light samples (for direct) and hemisphere
samples (for indirect) from a 4× 4 stratification each, and match the samples with random
permutations [90]. At each pixel we accumulate the colors Ldir,kdir,Edir,Lind,kind,Eind. The
direct parameters smin,smax, indirect parameters zmin,zmax and defocus parameters cmin,cmax,
and the lens-averaged world location, projected area Ap, and normal are computed. From
these we compute the filter widths Ωr

x,Ωs
x,Ωi

x and set flags:

SepDir = ||Ldir − kdir ·Edir||< 0.01
SepInd = ||Lind − kind ·Eind||< 0.01 (5.30)

2. Sampling pass 2: The primary and secondary sampling rates np,n
f
dir,n

c
dir,n

f
ind and nc

ind are as
discussed in Section 7. We run a 3×3 max-filter on the ray counts, and a median filter on the
factorization flags, to reduce noise and artifacts. Next, for pixels with SepDir = 1, we trace
np primary rays, and from each primary hit-point trace n f

dir/np shadow rays when SepDir =
1 and nc

dir/np shadow rays otherwise. Samples are fully stratified6 over each dimension
(lens, light, hemisphere) and matched by random permutation as in the first pass. A similar
sampling scheme applies for indirect illumination. Instead of importance sampling which
gives noisier estimates of sampling rates and filter sizes, we apply explicit Gaussian weights
to lens and light samples. This sampling pass updates the noisy color buffers, reducing the
noise so that it can be removed by filtering.

3. Irradiance Filtering: In this pass, only the direct and indirect illumination Edir and Eind are
filtered. We filter using world space distances and filter width Ωs

x and Ωi
x. Lens-averaged

world space locations λ and normals are used since there is no single world space loca-
tion per-pixel due to defocus. Explicitly, the weight we apply to the direct irradiance of a
neighboring pixel j for a central pixel i is

wi( j) = exp
{
−16||λ (i)−λ ( j)||2 · (Ωs

x(i)/ℓp(i))2} (5.31)

Note that the projected pixel length ℓp converts Ωs
x into meters. For adjacent pixels i and j,

||λ (i)−λ ( j)|| ≈ ℓp(i); if Ωs
x = 0.5 then wi( j) = exp(−4). Hence, the constant 16 is chosen

so that sharp shadow edges are not blurred. We do not filter between pixels with normals
differing by more than 10◦.

4. Defocus Filtering: Finally, we choose between the exact radiance and factored product of
texture and filtered irradiance. The direct and indirect components are added, as:

L(x) = SepDir · (kdir ·Edir)+SepDir · (Ldir)

+SepInd · (kind ·Eind)+SepInd · (Lind)
(5.32)

6This requires that we round up np to p2 and ndir to p2s2 where p,s are integers. We did not use low-discrepancy
sampling based on (0,2) sequences since it requires rounding to a power of two, while other sequences caused some
artifacts.



CHAPTER 5. MULTIPLE EFFECTS 68

The final pass filters the total pixel radiance L(x) using a screen-space gaussian filter of width
Ωd

x to compute the final color; the weights are analogous to equation 5.31,

wi( j) = exp
{
−16(i− j)2 · (Ωd

x (i))
2
}
. (5.33)

In both filtering passes, at current pixel i, a neighboring pixel j is rejected if w j(i) < 0.01,
i.e. if i does not fall in the filter radius of j. This mitigates errors due to noisy estimation of
filter radii, and prevents bleeding of sharp regions into blurry regions.

5.9 Results
We show results of distributed rendering with defocus blur, area light direct and one-bounce in-
direct illumination on five scenes with high-frequency textures and both diffuse and glossy sur-
faces. The accompanying video shows animations and screen captures with a moving light source
and viewpoint, and examples of dynamic geometry. Our images are rendered on an Intel Xeon,
2.26GHz, 2 core desktop with a single Nvidia Titan GPU. Each frame is rendered independently,
without any precomputation (except possibly the raytracer BVH). We report the total individual
rays per pixel instead of the more common samples per pixel. In vanilla MC, a single ‘sample’ is 1
primary ray, 1 direct sample (1 shadow ray) and 1 one-bounce indirect sample (2 rays), i.e. a total
of 4 rays.

Our method is accurate in a range of different scenarios, with consistent reductions in sample
counts over basic path tracing. Figure 1 shows the CHESS scene (21K triangles), with mid-depth
focus. Our image (a,c) is noise-free with 138 average rays per pixel (rpp) in only 3.14 sec. Equal
visual quality ground truth MC (d) requires 5390 rpp and 40× more time. Careful inspection
reveals some noise even with 5390 rpp. Since our overhead is minimal, equal time MC (b) is only
176 rpp, and is very noisy due to the high dimensionality of the light field. We also compare to
(e), obtained by simply filtering the radiance without factoring texture and irradiance. Noise from
secondary effects is retained in the in-focus region in the top inset. Figure 5.8 shows similar results
for the STILL LIFE scene with complex geometry and 128K triangles. Our method with only
178 rpp is perceptually comparable to stratified MC with 4620 rpp. Two more scenes, SIBENIK
CATHEDRAL in Fig. 5.9 and TOASTERS in Fig. 5.11, with comparisons are discussed below. We
also include ground truth insets, obtained at about 15000 rpp, in these figures. Figure 5.12, the
ROOM scene, demonstrates that our method can produce fast results for scenes with complex light
paths.

5.9.1 Timings
As demonstrated in Fig. 5.10, to obtain the same visual quality and noise level as our method, MC
path-tracing requires about 30× more rays, so we get a corresponding speed-up. In Table 5.2, we
show timings for the sampling and filtering parts of our algorithm on our scenes, all rendered at
1024×1024. We obtain most of the benefits of axis-aligned filtering, even though our algorithm is



CHAPTER 5. MULTIPLE EFFECTS 69

(a) Our method, 178 rpp, 7.40 sec

(b) Equal time,
220 rpp, 7.4 sec

(c) Our method,
178 rpp, 7.4 sec

(d) Eq. quality,
4620 rpp, 4.5
min

Rx in pixels
d

primary rays (np)

A C

B

A C

B

(e) Primary rpp
and filter

Rx in pixels
s

shadow rays (ndir)

A C

B

A C

B

(f) Direct rpp
and filter

1

20

1

64
Rx in pixels
i

indirect rays (nind)

A C

B

A C

B

(g) Indirect spp
and filter

Figure 5.8: The STILL LIFE scene, with defocus blur, area light direct and indirect illumination, rendered
in 7.40 sec with an average 178 rays per pixel (rpp). The insets compare (b) equal time stratified MC, (c)
our method, and (d) equal quality stratified MC with 4620 rpp (275 sec). In (e)-(g), we show heatmaps for
our three filter widths and sampling rates, namely for defocus, and direct and indirect illumination. A more
detailed discussion is provided near the end of Sec. 7.



CHAPTER 5. MULTIPLE EFFECTS 70

(a) Our method, 192 rpp, 6.23 sec

(b) Equal time,
229 rpp, 6.3 sec

(c) Our Method,
192 rpp, 6.2 sec

(d) Eq. quality,
5400 rpp, 3.5
min

(e) Gr. Truth,
16400 rpp

(f) SURE,
200 rpp, 4 min

(g) AMLD,
200 rpp, 4 min

Figure 5.9: (a) The SIBENIK CATHEDRAL scene, with area light direct and indirect illumination, and
foreground defocus, with an average 192 rays per pixel (rpp) requires 6.23 sec; and insets showing (b)
equal time stratified MC with 229 rpp, (c) Our method, (d) Equal quality with 5400 rpp and (e) Ground
truth with 16400 rpp. We also compare to (f) SURE, with 200 rpp rendered in 4 min and (g) AMLD with 200
rpp in 4 min.



CHAPTER 5. MULTIPLE EFFECTS 71

Scene Tris rpp Sample Filter Total Over-
(sec) (sec) (sec) head

CHESS 21K 138 2.97 0.15 3.14 5.4%
STILL LIFE 128K 178 7.26 0.12 7.40 2.7%
SIBENIK 75K 192 6.10 0.11 6.23 3.2%
TOASTERS 2.5K 125 3.43 0.16 3.61 5.5%
ROOM 100K 181 8.08 0.15 8.25 2.4%

Table 5.2: Render times for all scenes at 1024×1024. An extra overhead of 0.02 sec (20 ms) is incurred for
determining filter sizes and sampling rates - this is not shown in the table above, but is included as part of
total and overhead in the last two columns. Our overall render times are under 10 seconds, and the filtering
overhead is very small compared to the ray-tracing time.

much more complex (with separate direct and indirect illumination, as well as separate radiance,
irradiance and texture buffers). The total overhead in a frame is between 110 and 160 ms, which is
small compared to the cost of OptiX path tracing (between 3 and 9 seconds), and results in only a
marginal decrease in the performance of the real-time raytracer. Our current filter implementation
uses only Optix; preliminary tests show a speed-up of over 4× on CUDA using image tiling.
Although our overhead is currently about 5%, stratified MC still manages about 20% more rays (as
seen in all our scenes which include equal-time rpp) in the same time, since our method produces an
unbalanced GPU load. Our filter operates only in image-space and therefore has limited memory
requirements (about 150 MB due to storing various buffers). Note that we are limited only by
the speed of the raytracer, and using further GPU raytracing accelerations would provide further
speedups. This is one of the first demonstrations of distributed rendering that runs in seconds and
not minutes of time, based on principled Monte Carlo sampling. Alternative methods, discussed
next, add overheads of 10 sec to 1 min.

5.9.2 Quantitative Accuracy
We evaluated the accuracy of our method quantitatively; in Fig. 5.12(e) we show average per-pixel
RMS error vs average number of rays for the ROOM scene. The error of our method (blue curve)
is significantly below stratified Monte Carlo at all sample counts, and for the same error we require
about 4× less rays. As we increase the number of rays (higher µ , eqn. 5.29), we do converge to
ground truth and error decreases. This is in contrast to most previous solutions for filtering MC
images which do not provide a simple solution to converge with increasing ray count. Since our
method replaces some of the noise with some bias, equal perceptual error is achieved at over 30×
fewer ray counts, as illustrated in Fig. 5.10.



CHAPTER 5. MULTIPLE EFFECTS 72

MC, 3500 rpp MC, 5220 rpp MC, 7000 rppOur, 180 rpp

Figure 5.10: We compare stratified MC and our method with increasing sample count for an inset from the
ROOM scene (Fig. 5.12). Stratified MC visually matches our method for about 5220 rpp. At 180 rpp, our
method is very slightly over-blurred, but MC at 5220 rpp shows more noise (zoom in) in comparison.

5.9.3 Comparisons
We have already discussed comparison to brute-force equal time and equal visual quality MC. In
Figs. 5.9(f,g) and 5.11(f,g), we include comparison insets to two alternative recent approaches to
MC denoising. Insets of the other methods use a similar average number of rays.

We compare to SURE, [57], since for the same quality, they are faster than other recent approaches
such as [88, 86], etc. The comparison insets show that SURE slightly over-blurs both in-focus and
out-of-focus regions if the original image is very noisy. The authors’ implementation with PBRT
requires around 4 min, with a filtering overhead of 1 min due to its multiple filtering passes. It
also requires a slightly higher sampling rate for the same quality. Adaptive Multi-Level Denoising
(AMLD, [45]) demonstrated faster results using PBRT for adaptive sampling and BM3D [18] for
denoising. We used the authors’ code for producing the images. AMLD produces results of nearly
the same quality as ours. There is some under-blur in the TOASTERS and over-blur in SIBENIK;
however in some regions it can also perform better. Their overhead is still around 20 seconds (total
time 3 min), making our method much faster. We do not compare to Covariance tracing [9] since
the method has high overhead (reported as 2.5 min, total time 25 min on CPU) and implementation
is complex.

5.10 Limitations
Direct and indirect illumination reflected from glossy surfaces cannot be treated with a simple
approach like ours, and more complex analysis is required. Our diffuse bandwidths can result in
some over-blurring of specular highlights. Like most image-space filtering methods, we need to
allocate a lot of samples to pixels where out-of-focus and in-focus objects overlap, since such pixels
(generally few in number) cannot be filtered without blurring the in-focus object. Our approach
also requires each light source to be handled separately, so scenes with many lights are an issue.
Our sampling rates and filter sizes based on frequency analysis may not always be sufficient to
eliminate noise completely at high-variance pixels (Fig. 5.9c lower inset). Since frequency analysis



CHAPTER 5. MULTIPLE EFFECTS 73

(a) Our method, 125 rpp, 3.61 sec

(b) Equal time,
147 rpp, 3.7 sec

(c) Our Method,
130 rpp, 3.6 sec

(d) Eq. quality,
4620 rpp, 3 min

(e) Gr. Truth
14800 rpp

(f) SURE,
150 rpp, 2.5 min

(g) AMLD,
128 rpp, 2 min

Figure 5.11: (a) The TOASTERS scene, with area light direct and indirect illumination, and mid-depth
focus, rendered with an average 125 rays per pixel in total 3.61 sec; Insets showing (b) equal time stratified
MC with 147 rpp, (c) Our method, (d) Equal quality with 4620 rpp, (e) Ground Truth with 14800 rpp; and
comparisons to (f) SURE, 128 rpp, 2.5 min and (g) AMLD, 128 rpp, 2 min.



CHAPTER 5. MULTIPLE EFFECTS 74

(a) Our method, 181 rpp, 8.25 sec (b) Equal time,
219 rpp, 8.1 sec

(c) Our method,
181 rpp, 8.2 sec

(d) Eq. quality,
5220 rpp, 5 min

(e) No factoring,
181 rpp, 8.1 sec

100 200 300 400 600 103

0.01

0.02

0.03
Stratified MC

Our Method

800
Avg. rays per pixel

R
M

S
 E

rr
o
r

(f) RMSE vs rpp

Figure 5.12: (a) The ROOM scene, with area light direct and indirect illumination, and foreground defocus,
rendered with an average 181 rays per pixel (rpp) in total 8.25 sec (b) Insets showing equal time stratified
MC with 219 rpp, (c) Our method, (d) Equal quality MC with 5220 rpp (e) without factoring texture and
irradiance, noise in in-focus regions is not filtered. In (f) we show RMS error relative to ground truth, for
our method and stratified MC. Our method requires 4× fewer rays than stratified MC for the same RMS
error.



CHAPTER 5. MULTIPLE EFFECTS 75

is only effective on locally smooth surfaces, high-frequency bump or normal mapping cannot be
handled. Spatial anti-aliasing cannot be done directly because our factorization requires that only
one image sample per pixel be taken. But it is easy to do indirectly, for example, for 4× AA, render
the image at 4× resolution, with Ωmax

pix = 0.25 (which requires fewer rays) and then downsample.
An example of this is shown for the SIBENIK scene in the accompanying video.



76

Chapter 6

Environment Illumination and Application
to Mixed Reality

6.1 Introduction
In chapter 3, we explained filtering direct illumination (soft shadows) from area lights. Another
commonly used light source model in physically-based as well as real-time rendering is the envi-
ronment light source, where a surface receives illumination from light sources located at infinity,
i.e. from every direction. Indirect illumination from an environment light source can be handled

(a) Input RGB and
normals

(b) Our Method, 5.7 fps

G
ro

u
n

d
 T

ru
th

  
  

  
  

 O
u

r 
M

e
th

o
d

  
  

 E
q

. 
s
a

m
p

le
s
 M

C

Direct V    R        Direct R    V       Indirect V    R      Indirect R    V

(c) Zoom-in Comparisons

Figure 6.1: We start with a stream of RGBD images from a Kinect camera, and use SLAM to reconstruct the
scene. (a) shows the input RGB image and reconstructed normals. In this DESK scene, we insert a virtual
rubik’s cube, a newspaper, and a coffee mug, as shown in (b) where environment illumination (both direct
and 1-bounce indirect) are computed using Monte Carlo (MC) path tracing followed by filtering. The full
system runs at 5.7 fps. We show comparisons of our result with unfiltered MC with equal samples, which is
very noisy, and reference, which takes 60× longer to render.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 77

similar to chapter 4, however, the dominant direct illumination component behaves differently
from area light soft shadows of chapter 3. In the past, various approximate techniques for environ-
ment lighting have been proposed, such as spherical harmonics and precomputed radiance transfer.
Monte Carlo (MC) ray tracing is the physically accurate technique for rendering photo-realistic im-
agery with environment illumination. However, the number of rays needed to produce a visually
pleasing noise-free image can be large, resulting in hours to render a single image.

As in the previous chapters, on smooth surfaces, shading from environment illumination is
often slowly varying, and hence one approach for fast rendering is to exploit the smoothness by
appropriately filtering a sparsely-sampled Monte Carlo result (see Fig. 5.1). We extend the axis-
aligned filtering algorithm of the previous chapters, previously limited respectively to area light
direct illumination and indirect illumination only, to filter environment illumination (direct and
indirect) adaptively in screen-space. The filtering scheme is fast and in screen-space, and at the
same time does not overblur the shading.

In Sec.6.6, we analyze the illumination, and resulting image shading in the Fourier domain.
While previous work [23] has conducted such a frequency analysis, we provide new insights into
the shape of spatio-angular radiance spectra. The 2D (flatland) light fields of incident illumination
and visibility have different slopes. We show that convolution of the corresponding spectra in
Fourier space, is an oriented ellipsoid, unlike previous double-wedge models (see Fig. 6.4). By
understanding the nature of this spectrum, we derive an axis-aligned filter and compute the spatial
shading bandwidth, for both diffuse and glossy cases. Using our Fourier analysis and bandwidth
prediction, we derive Gaussian image space filters (Sec. 7) for environment map direct lighting.
In addition, we make two minor changes to previous axis-aligned filtering methods – (i) Temporal
filtering, to use the result of the previous frame as an input to our filter, which helps reduce noise
and (ii) Anti-aliasing for primary visibility with 4 samples per pixel.

We demonstrate our technique applied to rendering mixed reality (MR). The fundamental ob-
jective of MR applications for immersive visual experiences is seamlessly overlaying virtual mod-
els into a real scene. The synthesis has two main challenges: (1) stable tracking of cameras (pose
estimation) that provides a proper placement of virtual objects in a real scene, and (2) plausible
rendering and post processing of the mixed scenes. For the first challenge, there are many exist-
ing techniques that can be leveraged. In this paper, we use dense simultaneous localization and
mapping (SLAM) algorithms [68, 41] that provide the estimated 6DOF camera pose, as well as
scene geometry in the form of per-pixel positions and normals. For the second challenge, many
approaches use either rasterization with a dynamic but noisy real-world mesh obtained directly
from a depth camera [49], or Monte Carlo ray-trace a fixed pre-defined real-world mesh [47]. We
provide a two-mode path-tracing method that uses a denoised real-world vertex map obtained from
the SLAM stage. As described in Sec. 6.5, a fast GPU ray-tracer is used for the virtual geometry,
while real geometry is intersected with rays traced in screen space. Finally, we use our filtering
scheme on a 16 samples/pixel noisy MC result to remove noise. This gives us the quality of a
purely path-traced result at interactive rates of 5 frames/second. Note, we assume all real surfaces
are diffuse, while virtual objects can be diffuse or glossy. The environment lighting is obtained by



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 78

photographing a mirrored ball.

6.2 Previous Work
Environment Illumination: The most popular approach for real-time rendering with environment
lighting is to use spherical harmonics [81] with pre-computed ambient occlusion, or more gener-
ally, precomputed radiance transfer [94]. This approach is limited to low-frequency lighting, and
requires pre-computation that does not support dynamic MR.

Rendering in MR: A pioneering work in light transport for MR was presented by Fournier et
al. [29], based on radiosity. It was later extended using image based lighting derived from a light
probe [20]. Gibson and Murta [33] present a hardware-rendering approach using pre-computed
basis radiance-maps and shadow maps. Cossairt et al. [15] synthesize inter-reflections without
knowing scene geometry, using a controlled set-up to capture and re-project a 4D radiance light
field. Recently, some work has adapted more modern techniques for MR, such as differential in-
stant radiosity [49] using imperfect shadow mapping, and delta voxel cone-tracing [30]. While
they show fast impressive results, they are not physically accurate.

Our approach is based purely on ray-tracing. Closest to our approach are differential progres-
sive path tracing [47] and differential irradiance caching [46], which compute direct and indirect
illumination using path-tracing. Both methods use pre-determined real-world mesh geometry. Dif-
ferential progressive path-tracing uses only one sample/pixel/frame on the combined scene geom-
etry. Since they do not filter their result, only a very noisy image is achievable in real-time. The
user must wait without camera motion for the image to become noise-free. We overcome this lim-
itation through the use of fast yet accurate filtering, and fast accumulation of 16 samples per pixel
per frame. Further, we use screen-space ray-tracing for real objects. Methods like Kán and Kauf-
mann [48] demonstrate reflections, refractions and caustics through the use of differential photon
mapping, which improves the realism. We can handle reflections and refractions, but we did not
implement caustics, which would require photon mapping. We use pure ray-tracing and focus on
low- to mid-frequency shading.

To improve the realism of inserted virtual objects, many works focus on post-processing tech-
niques to match color palette and noise between pixels belonging to real and virtual objects. Our
goal in this paper is primarily to provide a photorealistic rendering system for MR scenes. We do
not focus on tracking/reconstruction quality, lighting estimation, and post-processing techniques.

Screen-space Ray-tracing (SSRT): We introduce a hybrid ray-tracing scheme that uses screen-
space rays to find intersections with real geometry represented as a vertex map. Mark et al. [60]
use depth information to re-render an image from a nearby viewpoint. This idea can be extended
to screen-space ray-tracing, where rays traverse pixels and test depth for intersection – a technique
that has been used for local specular reflections [97, 59]. We use SSRT to compute direct and
indirect illumination as well. Like many previous works, the real-world mesh is represented as a



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 79

dynamically updated vertex map of the current frame. Hence, real objects not visible in the current
frame do not affect the shading of virtual objects. One could potentially use the global volumetric
signed-distance function maintained by the SLAM back-end for ray-tracing; however, this would
be extremely slow.

Fourier Analysis and Axis-aligned Filtering: As in the previous chapters, we are inspired by
Chai et al. [12] and Durand et al. [23], who introduce the basic Fourier theory for space-angle
and pixel-light light fields. The latter work, Fourier Analysis of Light Transport (FLT), models
light-surface interactions atomically, and derives the Fourier equivalent for each interaction. Their
Fourier spectra are parallelograms, while we show that the spectra can actually have an ellipsoidal
shape; our bandwidths are more accurate. More recently, Belcour et al. [9] model the shading
spectrum as a Gaussian covariance matrix that is the product of matrices for each atomic interac-
tion, that is expensive and slow to compute. We use an end-to-end geometric approach that directly
gives the object space bandwidth and is fast to compute. Bagher et al. [7] use bandwidth predic-
tion to shade different materials under environment lighting via heirarchical shading, but do not
consider occlusion.

Egan et al. [24] show that the Fourier spectrum for ambient occlusion in a position-angle space
is a double wedge, and demonstrate a sheared filter that tightly fits the spectrum. They demonstrate
good results for low-frequency environment lighting with 32 samples/pixel, although they do not
take the interaction of BRDF and visibility into account, and their filter is offline.

The previous chapters 3 and 4 ([63] and [64]) are respectively useful only for area light soft
shadows and indirect illumination. We extend this approach to handle environment lighting, which
requires a different curvature-dependent parametrization, since the light sources are at infinity.
While these previous works and chapters treat the spectrum to be strictly a double-wedge, the
spectra in this chapter are not restricted to this model. The axis-aligned filter size is no longer
dependent on only the BRDF or the lighting bandlimit, but combines the effect of both terms in a
non-trivial way.

Denoising Monte-Carlo Images: Image filtering is a popular approach to remove noise in MC
images, because of its simplicity and efficiency. Geometric information such as normals, textures,
and depths, can play an important role for predicting noise in rendered images. The state of the
art in this domain includes [45] (AMLD) that gives a noise estimation metric to locally identify
the amount of noise in different parts of the image, with adaptive sampling and filtering using
standard denoising techniques. Other approaches include use of Stein’s unbiased risk estimator
(SURE,[57]), ray histogram fusion [21] and adaptive local regression [66]. These approaches sup-
port general rendering effects, but have a high reconstruction overheads in seconds, and are offline.
Recently, [99] (Fast-ANN) have shown approximate-nearest-neighbor collaborative filtering for
general images at real-time speeds. We compare results to AMLD and Fast-ANN.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 80

6.3 Differential Rendering
Our MR rendering system is based on the differential rendering method of Debevec [20]. The
idea is to estimate the pixel color considering only real objects, and considering both real and
virtual objects, and add the difference to the raw camera image. Let LR be the (per-pixel, outgoing)
radiance due to real objects only, and LRV be the radiance due to both real and virtual objects
(including indirect illumination between them). Then, differential rendering composites the final
image per the equation:

Lfinal = (1−M) ·LRV +M · (LRV −LR +Lcam) (6.1)

Here, M is the fraction of the pixel covered by real objects, and Lcam is the input radiance image.

Calculating the radiances LR and LRV implicitly requires knowledge of the real-object BRDF
and texture. Under the assumption that all surfaces are diffuse, only the real-object RGB texture
(albedo) kR is unknown. We show that eqn. 6.1 can be written purely in terms of irradiances,
without the need to explicitly estimate kR.

We separate all outgoing radiances into a product of irradiance E and texture k. The first
term in eqn. 6.1 corresponds to the contribution of a virtual object, so we replace LRV with kV ERV
where kV is known virtual object texture and ERV is the pixel irradiance considering both real and
virtual objects. The second term corresponds to the contribution of real objects, and we write
LRV −LR = kR(ERV −ER). Like previous works, the estimate of kR is kR = Lcam/ER. Substituting
this into eqn. 6.1, we get:

Lfinal = (1−M) · kV ERV +M · (kR(ERV −ER)+Lcam)

= (1−M) · kV ERV +M ·
(

Lcam

ER
(ERV −ER)+Lcam

)
Simplifying,

Lfinal = (1−M) · kV ERV +M ·
(

ERV

ER
Lcam

)
. (6.2)

Thus, we have eliminated the unknown kR completely. Our task now is to estimate ER and ERV .

Glossy Virtual Objects: Above, we consider only diffuse real and virtual objects, so that the
radiance can be factored into texture and irradiance. However, we can easily handle glossy virtual
objects. In the glossy case, the LRV in the first term of eqn. 6.1 would be split into a spatial texture
and outgoing radiance that depends on viewing angle. We may represent this outgoing radiance
with the same symbol ERV , without changing the resulting analysis. We follow this convention for
glossy virtual objects throughout the paper for simplicity. In Sec. 6.6.3, our theory treats glossy
BRDFs rigorously.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 81

   Sampling

(ray-tracing) CompositeFilteringSLAM

filter sizes

ER ,ERV

Lfinal

ER   , ERV ,

Previous

  frame

   camera,

scene geom.

dir dir

ER   , ERV
ind ind

Lcam

Figure 6.2: An abstract flowchart of our MR system. Stored input/output variables are enclosed in blue
boxes, and computational steps are enclosed in white boxes. We start with dense SLAM to estimate camera
pose and scene geometry from depth, followed by sparse Monte Carlo sampling to compute noisy estimates
of four irradiance values (Refer to Sec. 6.4 for more details). We then filter the irradiances using our theory,
also using the values from the previous frame for further noise reduction. The filtered values are then used
to composite the final image, as explained in Sec. 6.3.

6.4 Overview
Figure 6.2 shows an overview of our MR system. Our system can be abstracted into four distinct
stages; each stage is briefly explained below.

We take the RGBD stream from a Kinect camera and use the depth data to estimate camera
pose and scene geometry. To realistically render virtual objects, the scene lighting in the form of
an environment map must be known. We obtain the environment map from an image of a reflective
metallic ball, using a camera looking down from above (the environment map may not be changed
except for simple rotations). The entire pre-processing is done once for a single scene; each of the
following stages runs per-frame at interactive speed.

1. Dense SLAM: The first step is camera tracking and scene reconstruction, to estimate per-
pixel world-coordinates, normals as well as camera pose (rotation+translation), from the depth
images. We use InfiniTAM [79], an open-source implementation of GPU-based voxel-hashing
Kinect fusion [70]. It is fast, running at about 50 fps, and provides high quality scene reconstruc-
tion. Reconstructed normals for each scene are shown in the corresponding figures. While we can
support dynamic geometry, both real and virtual, the SLAM backend is not robust to dynamic real
objects. So, we only demonstrate dynamic virtual objects.

2. Sampling: We use two Monte Carlo path-tracing passes to estimate per pixel illumination
without and with virtual objects. Each is the sum of direct illumination from an environment light
source and 1-bounce indirect illumination, i.e., ER = Edir

R +E ind
R , and ERV = Edir

RV +E ind
RV . Thus, we

compute four independent components: Edir|ind
R|RV . The sampling algorithm is described in Sec. 6.5,

with detailed pseudo-code in Appendix C.

3. Filtering: Obviously, the Monte Carlo sampled result is very noisy, and hence in the next
stage, we filter each of the four irradiances using physically-based filters. The filter bandwidths
are derived using Fourier analysis in Sec. 6.6. To reduce noise further, we also save the unfiltered



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 82

irradiances from the previous frame, and use them as additional inputs to our filter. Details of this
temporal filtering are discussed in Sec. 6.7.

4. Compositing: The last step involves compositing the final MR image, using the filtered
values ER and ERV and the input RGB image, according to eqn. 6.2.

6.5 Two-mode Sampling Algorithm
In this section, we discuss our sampling algorithm (step 2 in the overview above). We aim to
compute the pixel color using physically-based Monte Carlo sampling. The input is the camera
position, per-pixel real object world positions and normals, and virtual object geometry as a triangle
mesh. The output of the algorithm is per-pixel out-going illumination, namely Edir

R , E ind
R , Edir

RV , and
E ind

RV , as explained in Sec. 3.

Previous works achieve this by tracing two kinds of rays: one that intersects only real geometry,
and one that intersects both real and virtual geometry. Path-tracing using these two ray types is
described in Kán and Kaufmann [47], but our method is slightly different. For the virtual geometry
we use meshes, since most virtual models are mesh-based, and the NVIDIA OptiX [75] ray-tracer
is very suitable to intersect mesh geometry. However, we do not assume a known mesh model
of the real world, and using a mesh-based ray-tracer for real geometry (per-frame vertex map) is
wasteful. A screen-space ray-tracer (SSRT) computes the same result much faster, by traversing
the vertex map starting from the origin pixel, and returns the world position of the intersection.
We use a hierarchical traversal method adapted from [98]. Since only the current frame is used,
off-screen real objects will not affect the shading; the effects of this limitation are quite subtle
for diffuse scenes. This can be addressed by using SSRT on a higher field-of-view vertex map
rendered in the SLAM stage, at the cost of performance.

6.5.1 Algorithm
We propose a two-mode path-tracer that traces OptiX rays to intersect only virtual geometry, and
screen-space rays to intersect only real geometry. Our sampling algorithm is explained in detail in
Appendix C.

First, we compute 4 primary samples per pixel (spp) for anti-aliasing, and we determine whether
a real or a virtual object is visible at the current sample and update the mask M (see Sec. 3). Next,
we compute 4 secondary samples for each of the 4 primary samples, so we compute a total of 16
spp for each of direct and indirect illumination. For direct illumination, we importance sample the
environment map (see Sec. 5.2), as this gives the least amount of noise for very little overhead.
For indirect illumination, we sample the cosine hemisphere for diffuse surfaces (real and virtual)
and a Phong lobe for glossy surfaces (virtual only).

In the sampling step, we also save the (average) world location, normal, virtual texture kV .
We also record the minimum hit distance for direct and indirect illumination; these are required



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 83

Our Pre-computed Importance Sampling, 1024 spp BRDF Importance Sampling, 4096 spp (Ground Truth)

Figure 6.3: Our pre-computed sampling strategy introduces no visible difference.

for filtering. Since texture is multiplied with irradiance after filtering, we approximate ⟨k ·E⟩ ≈
⟨k⟩ · ⟨E⟩, where ⟨⟩ denotes the mean of the quantity at a pixel. This approximation works on most
pixels except on silhouettes, where the error is usually small.

6.5.2 Importance sampling the environment map
Traditional importance sampling1 involves pre-computing a cumulative distribution function (CDF)
of the 2D environment map and then generating samples at each pixel by finding the inverse CDF
for a uniform stratified random sample. However, performing 16 such look-ups per-frame per-pixel
is slow, so instead we pre-compute a large number of importance samples (4096) and store them
to a buffer. Then, at each pixel we perform 16 random stratified look-ups into the buffer. This is
somewhat analogous to a virtual-point-light approach, except we use a very large number of lights
and sample randomly.

In Fig.6.3, we compare a 1024 spp image rendered with random sampling of our pre-computed
importance samples, to a ground truth image with 4096 spp BRDF importance sampling. There is
no visual difference, and the numeric (RMS, per channel) error is 10−5.

6.6 Fourier Analysis for Environment Lighting
So far, we have computed the quantities Edir

R , etc. as per the flowchart in Fig. 2, from our sampling
phase above (stage 2). However, since we only use 16 samples per pixel, the results are noisy, and
accurate rendering requires filtering (stage 3). We now discuss our filtering theory, that computes
the required bandwidths; Sec. 7 discusses the actual filtering given these bandwidths.

1Complex importance sampling strategies such as [1] are more effective at importance sampling and could also
be used.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 84

(a) (b)

b
θ

occ

occ

(c) (d)

Figure 6.4: (a) Geometry for diffuse flatland case without considering visibility, (b) Power spectrum of Li

and axis-aligned filter. In (c) we show the flatland geometry with an occluder at depth z and (d) shows the
power spectrum Ĝ, defined in eqn. 6.11, which is the product of the two sheared Gaussians (shaded blue),
and has an ellipsoidal shape (shaded red); Bx is our conservative estimate of its bandwidth.

Our main contribution is the Fourier analysis of direct illumination from an environment map,
considering occluders and visibility. We first perform a 2D Fourier analysis of the shading in a
position-angle space, and then show that the shading is bandlimited by the BRDF in the angular
dimension. The resulting axis-aligned filter provides a simple spatial bandwidth for the shading.
In practice, the pre-integrated noisy per-pixel irradiance can be filtered using a Gaussian kernel of
variance inversely related to the bandwidth, without altering the underlying signal.

6.6.1 Diffuse without visibility
As in previous works, we perform our analysis in flatland (2D). As explained in Sec. 6.4, the 2D
results provide a bound on the 3D result, even though there is no simple analytic formula for 3D.
We begin with the simplest case. Parameterize a diffuse receiver surface of curvature κ by x along



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 85

x

θ

0 0.5 1
−π/2

0

π/2

(a) Li ×V

Ω

xΩ

θ

−5 0 5 10

5

0

−5

−10

(b) ||Ĝ||2

−5 0 5

0

2

4

Ωθ

 

||L  ||e 
2

|| f  ||
2

Be Bf 

(c) ||L̂e||2, || f̂ ||2

−4 −2 0 2 4
0

0.04

0.08

0.12

Ωx

||
E

||
2

^

Bx Bx 
*

(d) ||Ê||2

Figure 6.5: Verification of eqn. 6.13 for the simple flatland setup of Fig. 3(c) with κ = 0.5 and one occluder
at θocc = 0 and z= 2, using a Gaussian-sinusoid product for illumination. (a) shows the product Li×V (x,θ)
for this setup. (b) shows the power spectrum ||Ĝ||2 of (a). In (c) we show the 1D power spectra of Le and
f , showing bandlimits Be = 3 and B f = 1. (d) shows the 1D power spectrum Ê of the surface irradiance.
Eqn. 6.13 gives Bx = 2.5, while numerically the bandwidth of Ê is B∗

x = 1.9, thus showing that our estimate
is conservative and reasonably tight. The FLT estimate in this case is Bx = 1.0, causing significant energy
loss.

a tangent plane defined at the origin x = 0. Note that κ is defined as the change in the normal angle
(relative to the origin normal) per unit change in x; it is assumed positive but the analysis extends
easily for negative curvatures. Consider the set-up shown in Fig. 6.4(a). Let the environment
illumination be Le(·), with angles to the right of the normal being positive and to the left being
negative. The illumination is assumed to have an angular bandwidth of Be (i.e., 99% energy of
||L̂e(Ωθ )||2 lies in |Ωθ | < Be). We now analyze the 1D surface irradiance given by the reflection



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 86

equation in flatland:

E(x) =
∫ π/2

−π/2
Li(x,θ)cosθ dθ =

∫
Li(x,θ) f (θ)dθ . (6.3)

We have re-written the equation with a clamped cosine function f (θ) = cosθ for θ ∈ [−π/2,π/2]
and 0 otherwise. The Fourier transform of eqn. 6.3 is straightforward,

Ê(Ωx) =
∫

L̂i(Ωx,Ωθ ) f̂ (Ωθ )dΩθ (6.4)

The incoming direction θ at x corresponds to the direction θ +κx at the origin. Then,

Li(x,θ) = Le(θ +κx). (6.5)

The 2D Fourier power spectrum of Li is a single line through the origin , with slope κ−1

(see [12]). This line is bandlimited in the angular dimension by f̂ . Let this bandlimit be B f . Then,
as shown in Fig. 6.4(b), the bandwidth of Ê is Bx = κ ·min

{
Be,B f

}
. In most interesting cases, we

have Be > B f , so that
Bx = κB f . (6.6)

This simple result (also derived in [23]) shows that higher curvature produces higher shading fre-
quency. We now build upon this simple analysis to extend the result to include visibility and glossy
BRDFs.

6.6.2 Diffuse with visibility
We now refine the above result by including an infinite occluder at depth z, as shown in Fig. 6.4(c).
The occluder blocking angle θb for a point at a small x > 0 on the curved surface can be written in
terms of the angle at the origin θocc = θb(0):

θb(x)≈ tan−1
(

z tanθocc − x
z+κx2

)
−κx

≈ tan−1
(

tanθocc −
x
z

)
−κx

≈θocc − x
cos2 θocc

z
−κx

(6.7)

In the second step, we ignore the offset κx2 of the point below the plane of parametrization, since it
is quadratic in x. In the last step we use Taylor approximation to expand the arctan: tan−1(α +x)≈
tan−1 α + x/(1+α2) for x << 1. This is similar to [82]. Thus, for small curvature and small
displacement x, we get θb(x) = θocc −λx where

λ = κ + cos2 θocc/z (6.8)



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 87

Finally, note that the visibility at x is

V (x,θ) = H(θ −θb(x)), (6.9)

where H(·) is a step function that takes value 0 when its argument is positive and 1 otherwise.
Hence, the irradiance including visibility can be written as:

E(x) =
∫

Li(x,θ)V (x,θ) f (θ)dθ

=
∫

Le(θ +κx)H(θ −θocc +λx) f (θ)dθ .
(6.10)

To find the spatial bandwidth of E(x), we find the Fourier transform (full derivation is provided in
Appendix D):

Ê(Ωx) =
1

λ −κ

∫
L̂e

(
−Ωx −λΩθ

λ −κ

)
Ĥ
(

Ωx −κΩθ
λ −κ

)
e j(...) f̂ (Ωθ )dΩθ

=
∫

Ĝ(Ωx,Ωθ ) f̂ (Ωθ )dΩθ

(6.11)

The phase term e j(...) due to the θocc offset in H is ignored for brevity; we are only concerned with
the magnitude of the integrand. Both terms L̂e and Ĥ are 1-D functions sheared in 2-D along lines
of slopes λ−1 and κ−1, respectively. Since the respective 1-D functions are both low-pass (i.e.
99% energy lies in a small frequency range), the product Ĝ is shaped roughly like an ellipsoid.
This is shown in Fig. 6.4(d). The shape of the spectrum is no longer a simple line for a single
depth occluder.

From eqn. 6.11, G is bandlimited in Ωθ by the bandwidth of f , i.e. B f . Since L̂e has the smaller
slope is λ−1, the worst case spatial bandwidth of Ê is that of this term. Part of the bandwidth is
from the center line, specifically B f λ . The bandwidth has an additional component due to the
non-zero spread of the L̂e term in eqn. 6.11. Since the one-sided width of L̂e(Ω) is Be, the width
of this term is Be(λ −κ). Thus, our conservative estimate of the spatial bandwidth of Ê is

Bx = B f λ +Be(λ −κ) (6.12)

This bandwidth is the sum of what one would get considering only visibility (first term), and the
extra bandwidth due to the lighting (second term). However, it is not simply the sum of bandwidths
due to illumination and visibility when considered separately, as one may have expected from the
form of eqn. 6.10. Using the definition of λ (eqn. 6.8), we can re-write the filter width as:

Bx = κB f +(cos2 θocc/z)(B f +Be) (6.13)

We verified that our predicted bandwidth holds for many flatland cases. One such set up is
shown in Fig. 6.5. Observe the shape of the spectrum Ĝ. The predicted bandwidth slightly overes-
timates the true bandwidth.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 88

(a) (b)

Figure 6.6: (a) Flatland geometry for shading with glossy BRDF. (b) The shading spectrum is the product of
the two sheared Gaussians (shaded blue), and has an ellipsoidal shape (shaded red); Bx is our conservative
estimate of its bandwidth.

The case with multiple occluders at different depths cannot be solved analytically; we find the
most conservative bound by considering the closest occluder (smallest z). However, in this case,
the spectrum is not a well-defined double-wedge as in previous works.

6.6.3 Glossy BRDF
We will now derive the bandwidth for shading on a curved glossy surface in flatland. Visibility is
not considered, since it introduces an intractable triple product, but we intuitively add the effect of
visibility at the end. As before, the surface is lit with a 1D environment illumination Le relative
to the origin, and the camera is at an angle θcam from the origin. The camera is assumed distant
compared to the scale of surface being considered. The setup is shown in Fig. 6.6(a). The surface
BRDF is assumed rotationally invariant, that is, only the difference of the incoming and outgoing
angles determines the BRDF value. 2 Numerically, ρ(θi,θo) = ρ(θi+θo), where the + sign is due
to angles being measured relative to the normal. Then, the radiance reflected to the camera is

L0(x,θcam) =
∫ π/2

−π/2
Li(x,θ)ρ(θ ,θo)cosθ dθ

=
∫

Le(θ +κx)ρ(θcam +θ −κx) f (θ)dθ
(6.14)

This equation is similar to eqn. 6.10, except that the slopes of the two terms have opposite signs.
The Fourier transform has the same form, with minor differences:

L̂o(Ωx,θcam) =
1

2κ

∫
L̂e

(
Ωx +κΩθ

2κ

)
ρ̂
(

Ωx −κΩθ
2κ

)
e j(...)

f̂ (Ωθ )dΩθ

(6.15)

2This holds for the commonly used Phong glossy model, but similar to Durand et al. [23] our analysis can be
extended for other models.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 89

As before, the phase term e j(...) is ignored for brevity. The terms L̂e and ρ̂ are low-pass, and sheared
along lines of slopes −κ−1 and κ−1, respectively. Their product is visualized in Fig. 6.6(b). Thus,
the conservative bandwidth estimate for L̂o is

Bx = κB f +2κ min
{

Be,Bρ
}

= κ
(
B f +2Bρ

) (6.16)

Here Bρ is the angular bandwidth of the BRDF ρ(·). Comparing to eqn. 6.13, we see that the
angular bandlimit has effectively increased from B f to B f +2Bρ . Thus, we can modify eqn. 6.13
to include the effect of a visibility discontinuity and rewrite the generalized bandwidth as

Bx = κ
(
B f +2Bρ

)
+(cos2 θocc/z)

(
B f +2Bρ +Be

)
(6.17)

We provide a numerican evaluation of this bandwidth estimate in Appendix E, similar to Fig. 6.5.

6.6.4 Extension to 3D
The flatland results above can be extended to 3D. Directions in 3D can be parameterized in spher-
ical coordinates (θ ,ϕ); however, there is no simple linear form in terms of curvature in 3D which
makes the analysis tedious. However, we can restrict to a fixed ϕ – along the direction of maximum
curvature – and perform our analysis. The resulting bandwidth is a conservative bound for the true
bandwidth considering the full hemisphere of directions, since the normal angle θ changes most
rapidly along the maximum curvature direction. In practice, computing the maximum curvature
per pixel is difficult, and we instead determine screen-space curvatures κX ,κY , which bound the
bandwidth along the image X ,Y axes. The filter size is the reciprocal of the bandwidth.

In Fig. 6.7, using a purely virtual and untextured scene under an outdoor environment map
(direct illumination only), we show that our flatland analysis works well in 3D using screen space
curvatures. In (b), we show the mean of X and Y filter size. Note how the filter size depends on
curvature, BRDF and occluder distance.

6.6.5 Indirect Illumination
The above analysis derives filter bandwidths for the direct illumination terms Edir

R ,Edir
RV . We must

also filter the sparsely-sampled noisy indirect illumination terms, E ind
R ,E ind

RV . For indirect illumi-
nation, we use the axis-aligned filter derived in chapter 4 (also [64]). For any configuration of
reflectors at a minimum distance zmin from the receiver, with BRDF bandlimit Bh, the bandwidth
formula is:

Bind
x = Bh/zmin (6.18)

For the diffuse case, Bh ≈ 2.8. For a Phong BRDF with exponent m, Bh ≈ 4.27+ 0.15m (see
chapter 4).



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 90

Our Method, 0.12 sec

Env. map

Filter size Input MC

0.09 sec

Reference

5.5 sec

Our Method

0.13 sec

FLT

0.21 sec

AMLD

48 sec

Fast ANN

0.25 sec

Our Method, 0.12 sec

Env. map

Filter size Input MC

0.08 sec

Reference

5.1 sec

Our Method

0.12 sec

FLT

0.20 sec

AMLD

35 sec

Fast ANN

0.24 sec

Figure 6.7: We demonstrate our filtering method on two purely virtual untextured scenes, with a diffuse and
a phong (exponent 64) object on a diffuse plane. We show our result with an input of 16 spp (using temporal
filtering, Sec. 7), that runs at about 8 fps (resolution 720×720). We also show the environment map used,
and warm-to-cool filter size (inverse bandwidth). In the insets, we compare to unfiltered 16 spp MC input,
reference with 1024 spp (60× slower). We also compare to three other methods with 32 spp input: FLT[23]
which blurs shadows, AMLD[45] which is offline and blurs geometric edges, and Fast ANN[99], which is
only 2× slower than ours, but produces artifacts. All methods work well on glossy objects (bottom row
insets) since the noise is small.

6.6.6 Discussion
We discuss the novelty of and compare our contributions against previous works. We first empha-
size that chapter 3 which treats area lights at finite distances and chapter 4 which treats indirect
illumination from nearby reflectors, are both not applicable to environment lighting. An important
difference from FLT [23] is the consideration of the source illumination bandwidth. They combine
the effect of visibility and BRDF without doing a full derivation; their eqn. 21 gives the following
bandwidth in object space (ignoring the scaling of d/(n ·v)):

BFLT
x = (2κ + z−1)Bρ , (6.19)

Comparing to our bandwidth, eqn. 6.17, the FLT approach ignores the Be term, which arises from
our exact evaluation of the convolution of illumination and visibility, and the ellipsoidal shape of
the spectrum. Thus, FLT underestimates the shading bandwidth of high frequency lighting with
nearby occluders, resulting in blurring high frequency shading effects when used for filtering.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 91

6.7 Practical Filtering
We now discuss how the bandwidths derived above can be used to filter noisy irradiances. Before
the filtering stage, we run a CUDA kernel to compute per-pixel screen-space curvatures κX ,κY as

κX(x,y) =
angle(n(x,y),n(x+1,y))
||p(x,y)−p(x+1,y)||

(6.20)

where n is the normal and p is the world position3. The sampling pass stores the minimum occluder
distances for direct (we ignore occluders which block samples with intensity below a threshold of
0.1) and indirect illumination. Then, filter bandwidths along each axis, BX ,BY are computed –
using eqn. 6.17 for direct illumination and 6.18 for indirect illumination (BX = BY for indirect). Be
is taken to be the 99% energy bandwidth of the 2D Fourier spectrum of the environment map in
lat-long coordinates.

A naive implementation of a 2D Gaussian filter of radius R has Θ(R2) complexity. Analogous
to previous axis-aligned filtering papers, the filter is separable into two stages, aligned along the
image X and Y axes, reducing the complexity to Θ(R). We now provide the formulae for the 2-step
separated filter. Let E(x,y) denote a raw noisy irradiance value at the pixel (x,y), and Ē denote the
filtered value. Then,

EX(x,y) =
∑|i|<R wxy(x+ i,y)E(x+ i,y)

∑|i|<R wxy(x+ i,y)
(6.21)

EX denotes the intermediate value resulting from filtering only in the X-direction. The filtered
result is given as:

Ē(x,y) =
∑| j|<R wxy(x,y+ j)EX(x,y+ j)

∑| j|<R wxy(x,y+ j)
. (6.22)

The filter kernel is a Gaussian:

wxy(x+ i,y) = exp(−2B̄2
X ||p(x,y)−p(x+ i,y)||2) (6.23)

Since the bandwidth estimates are also noisy, we use the average square bandwidth of the source
and target pixel B̄2

X = 0.5(B2
X(x,y)+B2

X(x+ i,y)). Similarly, wxy(x,y+ j) uses the bandwidth BY .

Temporal filtering: Since we only use 16 samples per pixel, the result from the sampling stage
is very noisy, and the filtering can still leave some residual noise in temporal sequences, leading to
distracting flickering. Hence, we do temporal filtering where the filter also extends to the previous
frame. This scheme is physically accurate, assuming the illumination does not change (at a given
world location) between two consecutive frames – which is a good assumption in most situations
except rapid geometry or light source motion. Let E ′ be the irradiance value from the previous

3The curvature sign is the sign of the dot-product between the vector joining world coordinates and n(x,y)



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 92

frame, and (x′,y′) be the pixel in the previous frame with the closest world location to pixel (x,y),
i.e., p(x,y)≈ p′(x′,y′). First, filter along X :

E ′
X(x,y) =

∑|i|<R w′
xy(x

′+ i,y′)E ′(x′+ i,y′)

∑|i|<R w′
xy(x′+ i,y′)

(6.24)

The weights are modified to

w′
xy(x

′+ i,y′) = exp(−2B̄2
X ||p(x,y)−p′(x′+ i,y′)||2) (6.25)

Note that the center of the kernel is offset to (x′,y′), unlike eqn. 6.23. To see why this is important,
imagine that there is camera motion between the two frames only along Y . Then, if the filter were
to be centered at (x,y), there may be no pixel x+ i where ||p(x,y)−p′(x+ i,y)|| is small resulting
in few or no useful values of E ′ and artifacts in the final result.

We can now combine the results of eqns. 6.21 and 6.24, and filter along the Y -axis to produce
the final filtered value:

Ē(x,y) =

 ∑
| j|<R

wxy(x,y+ j)EX(x,y+ j)+

w′
xy(x

′,y′+ j)E ′
X(x

′,y′+ j)


∑| j|<R wxy(x,y+ j)+w′

xy(x′,y′+ j)
. (6.26)

6.8 Results
We show four mixed reality scenes with environment map direct and indirect illumination, all
rendered at the Kinect camera’s VGA (640×480) resolution. Our results include a variety of real-
life scenarios augmented with diffuse as well as glossy virtual objects that blend in seamlessly.
The accompanying video shows animations and screen captures demonstrating temporal stability.
Our images and video are rendered on an Intel Core i7, 3.60GHz desktop with a single NVIDIA
Titan GPU, using CUDA v6.5 and OptiX v3.5.

In Fig.6.1, we show a simple DESK scene about (1 meter)3 in size. A diffuse Rubik’s cube,
coffee mug and newspaper are inserted into the real image/video, and they blend in plausibly. The
insets show the 4 primary modes of interaction. Direct illumination shadows cast from virtual to
real objects are shown in the left-most column 1, and from real to virtual objects are shown in
column 2. Similarly indirect illumination color bleeding from virtual to real objects is captured in
column 3, and virtual to real color bleeding is shown in column 4. In addition, corresponding insets
from the unfiltered, and converged reference images are also shown for comparison. In Fig. 6.8, we
show intermediate steps of our system for the DESK scene, including each of the four irradiances
Edir

R , E ind
R , Edir

RV , E ind
RV , and their correspoding filter sizes, as obtained from our theory.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 93

σ
R
dir

σ
R
ind

(a) Real-only filters

E
R
dir

E
R
ind

(b) ER

σ
RV
dir

σ
RV
ind

(c) Real+Virtual Filters

E
RV
dir

E
RV
ind

(d) ERV

L
cam

k
V

(e) Lcam,kV

Figure 6.8: We show intermediate quantities in our filtering algorithm for the DESK scene of Fig. 1. Filter
sizes are shown as color-coded standard deviations of the world-space Gaussians, σ = 1/Bx, using the
appropriate bandwidths Bx. The filter sizes in (a) are used to filter the irradiance computed considering
only real objects, i.e. Edir

R ,E ind
R using only real geometry; and the filtered results are shown in (b). Similarly,

irradiances considering the full real-virtual geometry, Edir
RV ,E

ind
RV are filtered using the filters in (c); the results

are shown in (d). Observe how addition of virtual objects affects nearby filter sizes due to the introduced
occlusions. The final result, computed using eqn. 6.2, requires two additional quantities – input radiance
image Lcam, and the virtual object texture kV – shown in (e).

Figure 6.9, FURNITURE, shows a larger scene of about (2 meter)3 size consisting of furniture
and a plastic mannequin. A diffuse sofa cushion and a wooden table, and a glossy (phong exponent
64, Bρ = 10) trashcan are inserted. The insets show the 3 key regions of real-virtual interaction.
Corresponding insets from the unfiltered image, and converged reference image are also shown for
comparison. All of our scenes are captured in the same large room with a number of area lights
(with a different set of lights used for each scene); the environment map for this scene is shown in
(a). We used Be = 4.

Figure 6.10 shows a kid’s PLAYROOM scene, of about (2 meter)3 size. We insert a diffuse doll,
a toy robot and a stool (on the right) which matches the real stool (on the left). The insets show
the parts of each virtual object. Corresponding insets from the unfiltered image, and converged
reference image are also shown for comparison.

Figure 6.11, shows a multi-compartment SHELF scene about 2 meters wide, with some real
or virtual objects in each compartment. We insert a diffuse gift box, a diffuse book and a glossy
(phong exponent 64) metal bowl. The metal bowl reflects both the environment map and the local
geometry, and is not over-blurred. Corresponding insets from the unfiltered image, and converged
reference image are also shown for comparison.

Timings: We provide timings for each stage of our system in Table 6.1. Our overall speed is
5.7 fps for the fastest and 4.9 fps for the slowest scenes. For the SLAM step, compared to [79],
we use a higher number of iterations for the ICP step for greater pose accuracy. We use a fixed



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 94

Scene SLAM Optix SSRT Filter Total FPS

DESK 22 85 44 24 175 5.7
FURNITURE 26 98 44 23 191 5.2
PLAYROOM 26 105 40 23 194 5.2
SHELF 27 110 41 25 203 4.9

Table 6.1: Detailed timings of our scenes (in milliseconds) rendered at 640×480. Our filtering overhead is
small compared to the rendering time. We achieve interactive frame rates on a variety of complex scenes.

voxel size of (3 cm)3; the timings differ by scene due to different voxel grid sizes. The sampling
stage is split into an Optix pass and a CUDA screen-space pass, as explained in Appendix C; each
sub-stage takes roughly equal time, and the entire stage accounts for three-quarters of the com-
putational cost. The filtering stage, using a 30× 30 neighborhood around each pixel, runs under
25 msec (including temporal filtering), and is under 15% of the total cost. To reduce read/write
overheads, we store colors with 8 bits per channel and other quantities as half-precision (16 bits)
floats. The compositing stage takes negligible time, and is hence not reported.

6.8.1 Comparisons
Figure 6.7 compares insets of our result with the result of filtering with the bandwidth from FLT[23]
(see Sec 6.6). Their bandwidth ignores the illumination bandlimit Be resulting in over-blurred
shadows.

We also compare to a state-of-the-art Monte Carlo adaptive sampling and multi-level denoising
algorithm, AMLD [45], and Fast-ANN image denoising [99], each with 32 spp input. AMLD is
offline, with 10 sec filtering overhead, and preserves harder shadow edges but blurs geometric
edges slightly since the method is not explicitly aware of geometry. Our method also slightly blurs
shadow edges due to our bandlimited light assumption, but runs at real-time (40 ms overhead).
Fast-ANN is real-time with 80 ms filtering overhead (2× of ours), but produces artifacts on smooth
untextured images since it relies on finding similar patches using normals.

We do not compare against real-time but approximate MR rendering methods (e.g., Knecht et
al.[49]), since their goal is not to produce physically-accurate renderings. They also use different
input (marker-based tracking or pre-defined real meshes) which makes it difficult to produce iden-
tical images. Delta voxel cone-tracing [30] uses only point light sources. In general, these methods
produce biased images (not physically accurate), or retain noise [47].

6.8.2 Limitations and Future Work
We describe some limitations of our work that are excellent avenues for future work. Our filtering-
based approach assumes that the environment illumination is band-limited, and hence cannot han-
dle high frequency components such as small bright lights. Simply using a large Be will result



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 95

in small filter size leaving visible residual noise, while using a large filter size would result in
over-blurring. As in Nowrouzezahrai et al. [71], this can be treated by separating out high fre-
quency illumination into a small set of point lights, then using our approach for the low frequency
component.

For our MR system, since we use SLAM with a coarse noisy input depth, the reconstructed
geometry is often not perfectly aligned with the RGB image, which causes artifacts. Although our
theory supports dynamic real objects, we do not demonstrate it since our SLAM backend cannot
handle moving geometry robustly. All these issues can be mitigated using a more robust SLAM
and higher accuracy input depth. We assume that all real surfaces are diffuse, since estimating the
true BRDF even with a simple model is difficult at interactive speed. This can be addressed in
future work. Further, we do not handle caustics, since our method is based on ray-tracing, and the
filtering theory does not treat specular to diffuse light transport.

(a) Input RGB, env.
map

(b) Our Method, 5.2 fps (c) Input
MC

(d) Our (e) Refer-
ence

Figure 6.9: For this FURNITURE scene, the input image is shown in (a) (top), along with the captured
environment illumination (bottom). The augmented image with a virtual cushion, wooden table and a glossy
trashcan with physically correct illumination, is shown in (b). We compare our result (16 spp, 0.19 sec) with
unfiltered Monte Carlo (16 spp), which is very noisy, as well as reference (1024 spp, 12 sec) which is 60×
slower.



CHAPTER 6. ENVIRONMENT ILLUMINATION AND APPLICATION TO MIXED
REALITY 96

(a) Input RGB and
normals

(b) Our Method, 5.2 fps (c) Input
MC

(d) Our (e) Refer-
ence

Figure 6.10: The PLAYROOM scene with input image and 3D reconstruction are shown in (a). We insert a
virtual doll, toy robot, and a stool (the one on the right), with physically correct illumination, as shown in
(b). We compare our result (16 spp, 0.19 sec) with unfiltered Monte Carlo (16 spp), which is very noisy, as
well as reference (1024 spp, 12 sec) which is 60× slower.

(a) Input RGB and
normals

(b) Our Method, 4.9 fps (c) Input
MC

(d) Our (e) Refer-
ence

Figure 6.11: The SHELF scene input image and 3D reconstruction are shown in (a). We insert a diffuse
gift-box and a book, and a glossy bowl, as shown in (b). We compare our result (16 spp, 0.20 sec) with
unfiltered Monte Carlo (16 spp), which is very noisy, as well as reference (1024 spp, 13 sec) which is 60×
slower.



97

Chapter 7

Conclusion

Computer graphics rendering is undergoing a renaissance, with physically-based rendering meth-
ods based on accurate Monte Carlo (MC) image synthesis replacing ad-hoc techniques in a variety
of applications including movie production. In interactive applications like product visualization or
video games, physically-based lighting effects are increasingly popular. Photo-realistic rendering
is classically achieved through Monte-Carlo path-tracing, which requires tracing many thousands
of rays at each pixel in a high-resolution image. Ray-tracing is computationally expensive and
therefore Monte-Carlo rendering takes minutes of time per image. In the last decade or so, com-
puter graphics researchers have developed techniques that dramatically reduce the number of rays
needed in Monte-Carlo rendering by sharing information between neighboring pixels. However,
many of these methods based on sheared filtering, statistical denoising or light field reconstruction
require an expensive post-processing step, and end up taking tens of seconds per image.

In this thesis, we proposed to use simple axis-aligned filters to reduce the number of Monte
Carlo samples considerably compared to brute force, but less than some previous methods. How-
ever, because our filtering step is very simple, essentially a spatially-varying image-space blur, and
it can be performed extremely fast if implemented appropriately. We utilize the powerful parallel
computing capabilities of GPUs by implementing our filter as a per-pixel parallel kernel, and also
by using a GPU-accelerated ray-tracer. In our algorithm, the filtering step has minimal cost, and
takes only about 5% of the total time – the rest being taken up by the sampling or ray-tracing step.
Previous methods utilize much larger fractions of the render time for filtering.

For each distribution effect (except chapter 6), we provided adaptive sampling rates which help
in reducing noise throughout the image. Therefore, we are able to achieve interactive frame rates
while obtaining the benefits of high quality ray-traced distribution effects. We demonstrated a
variety of results for each effect using complex textured scenes with diffuse and glossy BRDFs,
running at a 5-10 frames per second for simple effects and 2-5 seconds per image for complex
effects. This is about an order of magnitude faster than other state-of-the-art methods, for about
the same accuracy. Relative to equal visual quality ground truth, we are able to render images 30
to 60× faster.



CHAPTER 7. CONCLUSION 98

We also made several theoretical contributions in the Fourier analysis of light fields for soft
shadows, indirect illumination, defocus blur and environment illumination. We derived the Fourier
spectrum for indirect illumination for the case of non-parallel reflectors and receivers. For envi-
ronment illumination, we showed that the spectrum is the convolution of sheared Gaussians and is
shaped like an ellipsoid. We showed how to band-limit the various spectra based on the lighting,
BRDF (diffuse and Phong) geometry terms. To be able to handle multiple effects, we presented
two different bandwidths for separated texture and irradiance. Another important contribution of
our work was to precisely identify the minimum required per-pixel sampling rates, since regions
with small filter sizes need more samples to eliminate noise. We also showed how to adjust the
filter with the sampling rate, to enable convergence.

7.1 Future Work
There are several cases our set of algorithms cannot currently handle (as described in the preceding
chapters) which make excellent avenues for future work. Extending our approach to a wider range
of rendering problems would be crucial for its wide adoption. We do not handle specular-to-diffuse
indirect illumination, namely caustics. Caustics are difficult to parametrize into simple light fields,
and they are also hard to render with ray-tracing and typically require photon-mapping or Metropo-
lis light transport. Although we showed filtering environment illumination, we do not handle the
case of many discrete light sources in the scene – it could also be possible to combine our approach
with a many-lights framework [103] to handle more general lighting environments. Handling more
general BRDF models beyond the simple diffuse or Phong in our assumptions, such as the popular
Cook-Torrance, is another possibility. In this work, we do not consider volume rendering effects
such as multiple scattering through fog or fluids, but many of the smoothness assumptions apply
to volumetric scattering effects as well, and hence our approach could be extended to these cases.

Our algorithms exploit spatial coherence or similarity within a single image. Very often, users
wish to render a sequence of images of the same scene with some sort of animation or camera
motion. As one may expect, there is a lot of coherence in the temporal domain as well, that is, the
color at a given world location changes slowly across neighboring frames. Clearly, information
can be shared in the temporal domain as well, but one needs to define a precise temporal filter
for accurate reconstruction. We are investigating the frequency behavior and filtering of shading
across time, considering a fixed spatial location. A combined spatio-temporal filter could reduce
sampling rates by about 100× relative to equal quality Monte-Carlo.

Another avenue for future work is to look at slightly more complex filter designs than our
simple axis-aligned filter. This filter should still be almost as fast in implementation but also
reduce the required sampling rate by a factor of two or so. One possibility is to simplify the 4D
sheared filter into four 1D sheared filters [109]. This requires storing all the samples at each pixel
(as for the previous sheared filters), but is almost as fast as axis-aligned filtering, and works with
about 3 times fewer samples. Another idea is to use a combination of two smaller axis-aligned
filters, one in the first quadrant of the Fourier plane, and another in the third quadrant. These



CHAPTER 7. CONCLUSION 99

filters would individually capture half of the double wedge spectrum, thus preserving the signal’s
frequency content, but also allow closer packing of aliases due to their smaller size. This could
allow for a two to three times lower sampling rate for the same quality and higher speed compared
to our method.

We believe the “sample and denoise” paradigm to be quite powerful as a unifying approach to
achieve real-time physically-based distribution effects and we see our approach being integrated
into production renderers and into real-time video games once it is more robust and general. How-
ever, this integration is non-trivial since production and game rendering systems have a different
set of constraints and requirements, making this an exciting area for future work. Our novel ap-
plication of axis-aligned filtering to mixed reality also opens up new directions for research in
interactive physically-based rendering for mixed and augmented reality.



100

Appendix A

Bandlimits for Glossy BRDFs

The 2D Blinn-Phong BRDF in the v parameterization was described in equation 4.13. Here, we
discuss the extension to 3D and resulting bandlimit Ωmax

h . Referring to Fig. A.1(a), the half vector
in the v plane is

vh =
lvc + lcv

l + lc
(A.1)

where l =
√

1+ v2
1 + v2

2 and lc =
√

1+ v2
c1
+ v2

c2
. Then the 3D Blinn-Phong transfer function is

Hs(v,vc) =
cosm θh

l4 =
1

l4(1+ v2
h1
+ v2

h2
)m/2 (A.2)

The Fourier transform of Hs will depend on the direction vc and has no simple analytic form.
However, since the choice of the v1,v2 axes is arbitrary (and we never actually compute using this
parametrization), we simply use Ωmax

h as an upper bound on the bandlimit of Hs for any value of
vc (given fixed m). For 99% energy, we can plot a curve of Ωmax

h vs m, as shown in Fig. A.1(b),
which can be fit with a simple linear approximation in the range 4 < m < 50,

Ωmax
h (m) = 3.6+0.084m. (A.3)

Similarly, in the Phong case, the angle of interest θr,c is between the reflection direction (1,−v)
and the camera direction (1,vc). Hence, the 3D Phong transfer function is

Hs(v,vc) =
cosm θr,c

l4 =
(1− v1vc1 − v2vc2)

m

l4 lm lm
c

(A.4)

The bandlimit now closely fits the approximation,

Ωmax
h (m) = 4.27+0.15m. (A.5)



APPENDIX A. BANDLIMITS FOR GLOSSY BRDFS 101

1

v
n

Receiver

θh

vhvc
-v

θr,c

10 20 30 40 50

4

6

8

10

12

 

 

Blinn-Phong Data
Phong Data
Blinn Phong Fit
Phong Fit

BRDF exponent m

Ω
hm

ax

Figure A.1: (a) Geometry for Phong and Blinn-Phong BRDFs in our parameterization. (b) Our linear
approximation for the transfer function bandlimit Ωmax

h for Blinn-Phong and Phong BRDFs, as a function
of the exponent m, is a close match to the numerical data.



102

Appendix B

Motion Blur with Secondary Effects

In Chapter 5 we described a factored axis-aligned filtering scheme for defocus blur with area light
direct and indirect illumination. We now explain how the factored axis-aligned filtering and two-
level adaptive sampling framework can be used for rendering motion blur with direct and indirect
illumination. We assume no defocus blur; the combined analysis is left for future work.

Factoring: The equations for computing factored texture and irradiance are similar to eqn. 5.12.
Lens coordinate u is replaced by time t, and the lens function is replaced by the shutter function.
Instead of simply using the factoring error, for motion blur, factoring is enforced at all pixels with
a single primary hit velocity. Pixels with two or more visible surfaces with different velocities are
not factorizable.

Filtering: We follow the Fourier analysis for texture and irradiance under motion blur in [26].
At a given pixel, assume there is a single surface moving with image-space speed vp > 0. The
texture filter width is

Ωm
x,p = min

{
Ωmax

pix ,Ωmax
t /vp

}
(B.1)

The superscript ‘m’ denotes motion blur. The extra subscript ‘p’ indicates that this is a primary
texture filter width. Ωmax

t is the shutter bandwidth, inversely related to shutter open time. Similarly,
if a static surface receives a shadow moving with image-space speed vs > 0, then the irradiance
(Edir) filter width is

Ωm
x,s = min

{
Ωmax

pix ,Ωmax
t /vs

}
(B.2)

The subscript ‘s’ indicates that this is a secondary, or irradiance filter width. These equations are
analogous to eqn. 5.7 for defocus blur. Note that these filters are 1-D Gaussians in image space,
oriented in the direction of the velocity v, unlike the 2-D symmetric Gaussian defocus filter. The
irradiance is also filtered according to the area-light filter width given in eqn. 5.18. For indirect
illumination, we only apply the standard irradiance filter based on minimum reflector depth; this is
found to filter out noise due to reflector motion with an adequate sampling rate. As stated before,
factoring and filtering cannot be used at a pixel if there are two or more surfaces with different



APPENDIX B. MOTION BLUR WITH SECONDARY EFFECTS 103

velocities. We apply a small 3×3 pixel-wide filter to the radiance to reduce noise at such pixels.
Recall that for defocus blur, the irradiance was pre-filtered and filtered again by the defocus filter
after combining with texture. For motion blur, the motion blur filters are applied independently to
texture and irradiance, since a moving surface may receive shadows that are not motion-blurred.

Sampling: In the first pass, we trace 9 paths per pixel. Since we only filter motion-blurred texture
at a pixel with a single moving surface, the number of primary rays (second pass) is similar to
eqn. 5.24:

np = (Ωmax
pix +Ωt

x)
2(1+ vΩt

x)
2 (B.3)

This equation is used only at pixels with a single moving visible surface and/or a single moving
shadow. At pixels with more than one velocity for the primary hit or the shadow, we enforce a large
constant primary sampling rate (64 rays), and apply a small 3× 3 pixel-wide filter. The number
of secondary shadow rays is similar to eqn. 5.25. The sampling rate for indirect can be computed
similar to eqn. 5.26, but we found that the (Ω∗

t )
2 term can be ignored.

Results: We implemented our algorithm for motion blur with soft shadows and indirect illu-
mination on Intel’s CPU-parallel Embree ray-tracer (since the Optix ray-tracer does not support
motion-blur ray-tracing). In Fig. B.1, we show a cornell box scene with textures and moving ob-
jects. The insets (c, d, e), from top to bottom, show a moving teapot, shadow of the moving teapot
on a moving sphere, and shadow of a static sphere on a moving textured plane. We are able to
filter noise from all kinds of motion blur effects while reducing ray-count 23× and rendering time
by 14× compared to equal-quality stratified MC. In Fig. B.1 (b) we show heatmaps of the primary
and indirect sampling rate, and in (f) we show the texture filter weights used by specific pixels in
the insets, to show how they filter using neighboring pixel values. These filters are aligned in the
motion direction, unlike the isotropic defocus filter.



APPENDIX B. MOTION BLUR WITH SECONDARY EFFECTS 104

(a) Our method, 155 rpp, 15.0 sec

indirect rays (nind)

B

A C

B

primary rays (np)
1

64

1

64

(b) Sampling Rate

(c) Equal time,
260 rpp, 14.0
sec

(d) Our
method,
155 rpp, 15.0
sec

(e) Equal qual-
ity,
3660 rpp, 198
sec

1

0

(f) Texture filter
weight

Figure B.1: A Cornell Box scene, with motion blur and area light direct and indirect illumination, rendered
at 1024×1024 with an average 155 rays per pixel (rpp) in total 15.0 sec. The insets compare (c) equal time
stratified MC with 260 rpp (d) our method, and (e) equal quality stratified MC with 3660 rpp (198 sec). In
(b) we show the per-pixel primary and indirect sampling rates; (f) shows the filter weights used by certain
pixels for their neighboring pixels.



105

Appendix C

Two-mode Sampling Algorithm

In Chapter 6, we propose a two-mode path-tracer that traces OptiX rays to intersect only virtual
geometry, and screen-space rays to intersect only real geometry. The pseudo-code for the sampling
algorithm is given in Algorithm 1. For brevity, we omit obvious function arguments. Position and
normal are abbreviated to ‘pos’ and ‘n’; real and virtual quantities are separated with suffixes ‘_r’
and ‘_v’ respectively.

The main blocks in the code are explained below:
Lines 3-12: The outer loop consists of 4 samples per pixel (spp) anti-aliasing, and we determine
whether a real or a virtual object is visible at the current sample and update the mask M.
Line 13: This loop computes 4 secondary samples for each of the 4 primary samples, so we com-
pute a total of 16 spp for each of direct and indirect illumination.
Lines 14-25: For direct illumination, we importance sample the environment map, as this gives the
least amount of noise for very little overhead. In line 15, an environment map importance sample is
obtained, and in lines 18-19, the functions trace_optix_sray and trace_ss_sray return hit distances
(−1 if no hit) for OptiX and screen-space shadow rays respectively.
Lines 26-40: For indirect illumination, we sample the cosine hemisphere for diffuse surfaces (real
and virtual) and a Phong lobe for glossy surfaces (virtual only). Line 27 samples the BRDF to
produce a sampling direction, and in lines 28-29, trace_optix_iray and trace_ss_iray return the
indirect radiance and hit distance for OptiX and screen-space indirect rays respectively. In line
28, for screen-space rays, radiance from the secondary hit is computed by Lcam image look-up.
In line 29, radiance from the secondary hit for OptiX rays (that intersect only virtual surfaces) is
computed by tracing a secondary shadow ray to an environment map sample.

Although not shown in Algorithm 1, we also save the (average) world location, normal, virtual
texture kV . We also record the minimum hit distance for direct and indirect illumination; these
are required for filtering. Since texture is multiplied with irradiance after filtering, we require the
approximation ⟨k ·E⟩ ≈ ⟨k⟩ · ⟨E⟩, where ⟨⟩ denotes the mean of the quantity at a pixel.



APPENDIX C. TWO-MODE SAMPLING ALGORITHM 106

This algorithm can be implemented in a single Optix pixel-shader kernel execution. However,
Optix kernels are optimized only for ray intersection testing, and thread divergence reduces speed
of this one-kernel approach significantly due to the screen-space ray-tracing component. Hence,
we implement the algorithm in two passes. A first Optix pass traces only the Optix rays, storing
the intersection results in a buffer. A second CUDA pixel shader pass traces the screen-space rays
and also combines the result of screen-space and Optix ray-tracing, per lines 21-26 and 32-42 of
the pseudo-code.



APPENDIX C. TWO-MODE SAMPLING ALGORITHM 107

Algorithm 1

1: for each pixel do

2: E_dir_r = E_dir_rv = E_ind_r = E_ind_rv = 0, M = 0

3: for i = 1 : 4 do ◃ Anti-aliasing

4: is_real = false

5: {pos_v ,n_v ,depth_v} = trace_primary_ray_optix(...)
6: {pos_r ,n_r ,depth_r} = real_world_map(...)
7: if depth_v =−1 OR depth_r < depth_v then

8: is_real = true, M += 0.25

9: pos = pos_r, n = n_r

10: else

11: pos = pos_v, n = n_v

12: end if

13: for j = 1 : 4 do ◃ Secondary Samples

14: // Direct Illumination

15: sample = get_importance_sample(...)
16: L_env = env_map[sample.xy]

17: ray_dir = {pos, sample_to_direction(sample.xy)}
18: hit_dist_v = trace_optix_sray(ray_dir)

19: hit_dist_r = trace_ss_sray(ray_dir)

20: if is_real and hit_dist_r =−1 then

21: E_dir_r += L_env * cos_theta / sample.pdf

22: end if

23: if hit_dist_r =−1 and hit_dist_v =−1 then

24: E_dir_rv += L_env * cos_theta / sample.pdf

25: end if

26: // Indirect Illumination

27: ray_ind = {pos, sample_BRDF(...)}
28: {hit_dist_v, L_ind_v} = trace_optix_iray(ray_ind)

29: {hit_dist_r, L_ind_r} = trace_ss_iray(ray_ind)

30: if hit_dist_r > 0 and hit_dist_v> 0 then

31: if hit_dist_r > hit_dist_v then

32: E_ind_rv += L_ind_v

33: else

34: E_ind_rv += L_ind_r

35: end if

36: end if

37: // Cases where dist=−1 not shown

38: if is_real and hit_dist_r > 0 then

39: E_ind_r += L_ind_r

40: end if

41: end for

42: end for

43: E_{dir|ind}_{r|rv} /= 16 // normalize quantities

44: end for



108

Appendix D

Derivation of Chapter 6, equation 11

Here we prove eqn. 6.11. Taking the 1D Fourier transform of eqn. 6.10 gives:

Ê(Ωx) =
∫∫

Le(θ +κx)H(θ −θocc +λx) f (θ)e− jxΩx dθ dx

=
∫ (∫∫

Le(θ +κx)H(θ −θocc +λx)e− jxΩxe− jθΩθ dxdθ
)

f̂ (−Ωθ )dΩθ

=
∫

Ĝ(Ωx,Ωθ ) f̂ (Ωθ )dΩθ

(D.1)

In the second step, we have used the inverse Fourier transform f (θ) =
∫

f̂ (−Ωθ )e− jθΩθ dθ , and
the Fourier transform of f satisfies f̂ (−Ωθ ) = f̂ (Ωθ ).

Since both Le and H are 1D functions sheared along constant slopes, their Fourier transforms
are straight lines through the origin. The spectrum of the product Ĝ(Ωx,Ωθ ) is then a convolution
of two lines of different slopes. We now derive Ĝ explicitly:

Ĝ(Ωx,Ωθ ) =
∫∫

Le(θ +κx)H(θ −θocc +λx)e− jxΩxe− jθΩθ dxdθ

=F {Le(θ +κx)}∗F {H(θ −θocc +λx)}

=
∫∫

L̂e(ωθ )δ (ωx −κωθ )

Ĥ(Ωθ −ωθ )δ (Ωx −ωx −λ (Ωθ −ωθ ))e− jθoccΩθ dωx dωθ

(D.2)

We use the property
∫

f (x)δ (ax−b)dx = f (b/a)/|a| to simplify the integral of the product of two
delta functions.∫

δ (ωx −κωθ )δ (Ωx −ωx −λ (Ωθ −ωθ ))dΩx = δ (Ωx −κωθ −λ (Ωθ −ωθ )) (D.3)



APPENDIX D. DERIVATION OF CHAPTER 6, EQUATION 11 109

Substituting this into eqn. D.2 and applying the delta function integral property once again, we
get:

Ĝ(Ωx,Ωθ ) = e− jθoccΩθ

∫
L̂e(ωθ )Ĥ(Ωθ −ωθ )δ (Ωx −κωθ −λ (Ωθ −ωθ ))dωθ

=
e− jθoccΩθ

λ −κ
L̂e

(
−Ωx +λΩθ

λ −κ

)
Ĥ
(

Ωθ −
−Ωx +λΩθ

λ −κ

)
=

e− jθoccΩθ

λ −κ
L̂e

(
−Ωx −λΩθ

λ −κ

)
Ĥ
(

Ωx −κΩθ
λ −κ

) (D.4)



110

Appendix E

Verification of Chapter 6, equation 17

In Chapter 6, Fig.6.5 verifies eqn.6.13 for a particular diffuse flatland set-up. Here, we provide
a similar verfication for eqn.6.17, the glossy case. As shown in Fig.E.1 below, eqn. 6.17 over-
estimates the true bandwidth, since we simply combine eqn. 6.16 and eqn. 6.13. However, this
estimate works well for filtering glossy surfaces as shown in Fig.6.7.



APPENDIX E. VERIFICATION OF CHAPTER 6, EQUATION 17 111

x

θ

0 0.5 1
−π/2

0

π/2

(a) Li ×V ×ρ

Ω

xΩ

θ

−5 0 5 10

5

0

−5

−10

(b) ||Ĝ||2

−5 0 5

0

0.5

1.0

Ωθ

 

||L  ||e 
2

||ρ||
2

B

ρB

e 

(c) ||L̂e||2, ||ρ̂ ||2

−4 −2 0 2 4
0

0.5

1.0

Ωx

||
E

||
2

^

Bx 
*

(d) ||Ê||2

Figure E.1: Verification of eqn.6.17 for the simple flatland setup of Fig. 3(c) with a glossy (n = 32) surface
with κ = 0.5 and one occluder at θocc = π/4 and z = 2 (cos2 θocc/z = 0.25), under high-frequency illumi-
nation. (a) shows the product Li ×V (x,θ) for this setup. (b) shows the power spectrum ||Ĝ||2 of (a). In (c)
we show the 1D power spectra of Le and ρ , showing bandlimits Be = 4 and Bρ = 3.5. (d) shows the 1D
power spectrum Ê of the surface irradiance, showing the true bandwidth B∗

x ≈ 3. Eqn.6.17 (B f = 1)gives
Bx = 4+0.25×12 = 7. Our estimate is conservative but not tight.



112

Bibliography

[1] Sameer Agarwal et al. “Structured Importance Sampling of Environment Maps”. In: ACM
Trans. Graph. 22.3 (2003), pp. 605–612.

[2] M Agrawala et al. “Efficient Image-Based Methods for Rendering Soft Shadows”. In: SIG-
GRAPH 2000. 2000, pp. 375–384.

[3] T Annen et al. “Real-time all-frequency shadows in dynamic scenes”. In: ACM Transac-
tions on Graphics (SIGGRAPH 08) 27.3 (2008), Article 34, 1–8.

[4] D. Antwerpen. “Improving SIMD Efficiency for Parallel Monte Carlo Light Transport on
the GPU”. In: High Performance Graphics. 2011.

[5] O. Arikan, D. Forsyth, and J. O’Brien. “Fast and detailed approximate global illumination
by irradiance decomposition”. In: ACM Transactions on Graphics (SIGGRAPH 05) 24.3
(2005), pp. 1108–1114.

[6] U. Assarsson and T. Möller. “A Geometry-Based Soft Shadow Volume Algorithm Using
Graphics Hardware”. In: ACM Transactions on Graphics (SIGGRAPH 03) 22.3 (2003),
pp. 511–520.

[7] Mahdi M. Bagher et al. “Interactive Rendering of Acquired Materials on Dynamic Geom-
etry Using Bandwidth Prediction”. In: Proceedings of the ACM SIGGRAPH I3D’12. 2012,
pp. 127–134.

[8] P. Bauszat, M. Eisemann, and M. Magnor. “Guided Image Filtering for Interactive High
Quality Global Illumination”. In: Computer Graphics Forum (EGSR 11) 30.4 (2011), pp. 1361–
1368.

[9] Laurent Belcour et al. “5D Covariance Tracing for Efficient Defocus and Motion Blur”. In:
ACM Trans. Graph. 32.3 (2013), 31:1–31:18.

[10] A Ben-Artzi et al. “A Precomputed Polynomial Representation for Interactive BRDF Edit-
ing with Global Illumination”. In: ACM Transactions on Graphics 27.2 (2008), Article 13,
1–13.

[11] C. Benthin and I. Wald. “Efficient ray traced soft shadows using multi-frusta tracing”. In:
High Performance Graphics 2009. 2009, pp. 135–144.

[12] Jin-Xiang Chai et al. “Plenoptic Sampling”. In: SIGGRAPH ’00. 2000, pp. 307–318.



BIBLIOGRAPHY 113

[13] J Chai et al. “Plenoptic Sampling”. In: SIGGRAPH 00. 2000, pp. 307–318.

[14] R Cook, T Porter, and L Carpenter. “Distributed Ray Tracing”. In: SIGGRAPH 84. 1984,
pp. 137–145.

[15] Oliver Cossairt, Shree Nayar, and Ravi Ramamoorthi. “Light Field Transfer: Global Illu-
mination Between Real and Synthetic Objects”. In: ACM Trans. Graph. 27.3 (2008), 57:1–
57:6.

[16] C. Crassin et al. “Interative indirect illumination using voxel cone tracing”. In: Computer
Graphics Forum 30.7 (2011), pp. 1921–1930.

[17] F. Crow. “Shadow Algorithms for Computer Graphics”. In: SIGGRAPH 77. 1977, pp. 242–
248.

[18] K. Dabov et al. “Image Denoising by sparse 3D transform-domain collaborative filtering”.
In: IEEE Transactions on Image Processing 16.8 (2007), pp. 2080–2095.

[19] Holger Dammertz et al. “Edge-avoiding À-Trous Wavelet Transform for Fast Global Il-
lumination Filtering”. In: Proceedings of the Conference on High Performance Graphics.
Saarbrucken, Germany, 2010, pp. 67–75.

[20] Paul Debevec. “Rendering Synthetic Objects into Real Scenes: Bridging Traditional and
Image-based Graphics with Global Illumination and High Dynamic Range Photography”.
In: SIGGRAPH ’98. 1998, pp. 189–198.

[21] Mauricio Delbracio et al. “Boosting Monte Carlo Rendering by Ray Histogram Fusion”.
In: ACM Transactions on Graphics 33.1 (2014), 8:1–8:15. ISSN: 0730-0301. DOI: 10.
1145/2532708. URL: http://doi.acm.org/10.1145/2532708.

[22] F Durand. A Frequency Analysis of Monte-Carlo and other Numerical Integration Schemes.
Tech. rep. MIT-CSAIL-TR-2011-052 http://hdl.handle.net/1721.1/67677. MIT CSAIL, 2011.

[23] F Durand et al. “A Frequency Analysis of Light Transport”. In: ACM Transactions on
Graphics (Proc. SIGGRAPH 05) 25.3 (2005), pp. 1115–1126.

[24] K. Egan, F. Durand, and R. Ramamoorthi. “Practical Filtering for Efficient Ray-Traced
Directional Occlusion”. In: ACM Transactions on Graphics (SIGGRAPH Asia 11) 30.6
(2011).

[25] K Egan et al. “Frequency Analysis and Sheared Filtering for Shadow Light Fields of Com-
plex Occluders”. In: ACM Transactions on Graphics 30.2 (2011).

[26] K Egan et al. “Frequency analysis and sheared reconstruction for rendering motion blur”.
In: ACM Transactions on Graphics (SIGGRAPH 09) 28.3 (2009).

[27] E. Eisemann and X. Decoret. “Visibility Sampling on GPU and Applications”. In: Com-
puter Graphics Forum (EG 07) 26.3 (2007), pp. 535–544.

[28] V. Forest, L. Barthe, and M. Paulin. “Accurate Shadows by Depth Complexity Sampling”.
In: Computer Graphics Forum 27.2 (2008), pp. 663–674.



BIBLIOGRAPHY 114

[29] Alain Fournier, Atjeng S. Gunawan, and Chris Romanzin. “Common Illumination Between
Real and Computer Generated Scenes”. In: Graphics Interface. May 1993, pp. 254–262.

[30] T.A. Franke. “Delta Voxel Cone Tracing”. In: ISMAR. Sept. 2014, pp. 39–44.

[31] Claude Gasquet and Patrick Witomski. Fourier Analysis and Applications: Filtering, Nu-
merical Computation, Wavelets. Springer, 1998.

[32] R Gershbein, P Schröder, and P Hanrahan. “Textures and Radiosity: Controlling Emission
and Reflection with Texture Maps”. In: SIGGRAPH 94. 1994, pp. 51–58.

[33] Simon Gibson and Alan Murta. “Interactive Rendering with Real-World Illumination”. In:
Eurographics Workshop on Rendering. 2000, pp. 365–376.

[34] G. Guennebaud, L. Barthe, and M. Paulin. “Real-time Soft Shadow Mapping by Backpro-
jection”. In: EGSR 06. 2006, pp. 227–234.

[35] B Guo. “Progressive Radiance Evaluation Using Directional Coherence Maps”. In: SIG-
GRAPH 98. 1998, pp. 255–266.

[36] T Hachisuka et al. “Multidimensional Adaptive Sampling and Reconstruction for Ray
Tracing”. In: ACM Transactions on Graphics 27.3 (2008), 33:1–33:10.

[37] T Hachisuka et al. “Multidimensional adaptive sampling and reconstruction for ray trac-
ing”. In: ACM Transactions on Graphics (SIGGRAPH 08) 27.3 (2008).

[38] D. Hart, P. Dutré, and D. Greenberg. “Direct illumination with lazy visibility evaluation”.
In: SIGGRAPH 99. 1999, pp. 147–154.

[39] M Hasan, F Pellacini, and K Bala. “Direct to Indirect Transfer for Cinematic Relighting”.
In: ACM Transactions on Graphics (Proc. SIGGRAPH 06) 25.3 (2005), pp. 1089–1097.

[40] J. Hasenfratz et al. “A survey of Real-Time Soft Shadow Algorithms”. In: Computer
Graphics Forum 22.4 (2003), pp. 753–774.

[41] Shahram Izadi et al. “KinectFusion: Real-time 3D reconstruction and interaction using a
moving depth camera”. In: Symposium on User Interface Software and Technology. 2011,
pp. 559–568. ISBN: 978-1-4503-0716-1.

[42] X Tong J. Chai and H Shum. “Plenoptic Sampling”. In: SIGGRAPH 00. 2000, pp. 307–
318.

[43] G. Johnson et al. “Soft irregular shadow mapping: fast, high-quality, and robust soft shad-
ows”. In: I3D 2009. 2009, pp. 57–66.

[44] J Kajiya. “The Rendering Equation”. In: SIGGRAPH 86. 1986, pp. 143–150.

[45] Nima Khademi Kalantari and Pradeep Sen. “Removing the Noise in Monte Carlo Render-
ing with General Image Denoising Algorithms”. In: Computer Graphics Forum (Proc. of
Eurographics 2013) 32.2 (2013), pp. 93–102.

[46] Peter Kán and Hannes Kaufmann. “Differential Irradiance Caching for Fast High-Quality
Light Transport Between Virtual and Real Worlds”. In: ISMAR. 2013, pp. 133–141.



BIBLIOGRAPHY 115

[47] Peter Kán and Hannes Kaufmann. “Differential Progressive Path Tracing for High-Quality
Previsualization and Relighting in Augmented Reality”. In: ISVC 2013, Part II, LNCS
8034. Ed. by George Bebis. 2013, pp. 328–338.

[48] Peter Kán and Hannes Kaufmann. “High-Quality Reflections, Refractions, and Caustics in
Augmented Reality and their Contribution to Visual Coherence”. In: ISMAR. 2012, pp. 99–
108.

[49] Martin Knecht et al. “Reciprocal Shading for Mixed Reality”. In: Computers and Graphics
36.7 (2012), pp. 846–856.

[50] Janne Kontkanen, Jussi Räsänen, and Alexander Keller. “Irradiance Filtering for Monte
Carlo Ray Tracing”. In: Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer,
2004, pp. 259–272.

[51] J. Krivanek et al. “Radiance Caching ofr Efficient Global Illumination Computation”. In:
IEEE Transactions on Visualization and Computer Graphics 11.5 (2005), pp. 550–561.

[52] D. Lacewell et al. “Raytracing prefiltered occlusion for aggregate geometry”. In: IEEE
Symposium on Interactive Raytracing 08. 2008.

[53] S. Laine et al. “Soft shadow volumes for ray tracing”. In: ACM Transactions on Graphics
(SIGGRAPH 05) 24.3 (2005), pp. 1156–1165.

[54] D Lanman et al. “Shield Fields: modeling and capturing 3D occluders”. In: ACM Transac-
tions on Graphics (SIGGRAPH ASIA 08) 27.5 (2008).

[55] Jaakko Lehtinen et al. “Reconstructing the Indirect Light Field for Global Illumination”.
In: ACM Transanctions on Graphics 31.4 (2012), 51:1–51:10.

[56] J. Lehtinen et al. “Temporal light field reconstruction for rendering distribution effects”.
In: ACM Transactions on Graphics 30.4 (2011).

[57] Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. “SURE-based Optimization for Adaptive
Sampling and Reconstruction”. In: ACM Transactions on Graphics 31.6 (2012), 186:1–
186:9.

[58] D. Maletz and R. Wang. “Importance Point Projection for GPU-based Final gathering”. In:
Computer Graphics Forum (EGSR 11) 30.4 (2011), pp. 1327–1336.

[59] Michael Mara et al. Fast Global Illumination Approximations on Deep G-Buffers. Tech.
rep. NVR-2014-001. NVIDIA Corp., 16, 2014, p. 16.

[60] William R. Mark, Leonard McMillan, and Gary Bishop. “Post-rendering 3D Warping”. In:
Symp. on Interactive 3D Graph. 1997, pp. 7–16.

[61] Nelson L. Max and Douglas M. Lerner. “A two-and-a-half-D motion-blur algorithm”. In:
Proceedings of SIGGRAPH 85. 1985, pp. 85–93.

[62] M. McCool. “Anisotropic diffusion for Monte Carlo noise reduction”. In: ACM Transac-
tions on Graphics 18.2 (1999), pp. 171–194.



BIBLIOGRAPHY 116

[63] S. Mehta, B. Wang, and R. Ramamoorthi. “Axis-Aligned Filtering for Interactive Sampled
Soft Shadows”. In: ACM Transactions on Graphics 31.6 (2012), 163:1–163:10.

[64] Soham Uday Mehta et al. “Axis-Aligned Filtering for Interactive Physically-Based Diffuse
Indirect Lighting”. In: ACM Transactions on Graphics 32.4 (2013), 96:1–96:12.

[65] D Mitchell. “Spectrally Optimal Sampling for Distribution Ray Tracing”. In: SIGGRAPH
91. 1991, pp. 157–164.

[66] Bochang Moon, Nathan Carr, and Sung-Eui Yoon. “Adaptive Rendering Based on Weighted
Local Regression”. In: ACM Trans. Graph. 33.5 (2014), 170:1–170:14.

[67] S Nayar et al. “Fast separation of direct and global components of a scene using high fre-
quency illumination”. In: ACM Transactions on Graphics (SIGGRAPH 2006) 25.3 (2006).

[68] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. “DTAM: Dense
tracking and mapping in real-time”. In: International Conference on Computer Vision
(ICCV). 2011, pp. 2320–2327.

[69] F E Nicodemus, J C Richmond, and J J Hsia. “Geometrical Considerations and Reflectance”.
In: National Bureau of Standards (Oct. 1977).

[70] M. Nießner et al. “Real-time 3D Reconstruction at Scale using Voxel Hashing”. In: ACM
Trans. Graph. 32.6 (2013), 169:1–169:10.

[71] Derek Nowrouzezahrai et al. “Light Factorization for Mixed-frequency Shadows in Aug-
mented Reality”. In: ISMAR. 2011, pp. 173–179.

[72] R Overbeck, C Donner, and R Ramamoorthi. “Adaptive Wavelet Rendering”. In: ACM
Transactions on Graphics (SIGGRAPH ASIA 09) 28.5 (2009).

[73] R. Overbeck, R. Ramamoorthi, and W. Mark. “A Real-time Beam Tracer with Application
to Exact Soft Shadows”. In: EGSR 07. 2007, pp. 85–98.

[74] R Overbeck et al. “Exploiting Temporal Coherence for Incremental All-Frequency Re-
lighting”. In: EuroGraphics Symposium on Rendering. 2006, pp. 151–160.

[75] Steven G. Parker et al. “OptiX: A General Purpose Ray Tracing Engine”. In: ACM Trans.
Graph. 29.4 (2010), 66:1–66:13.

[76] S. Parker et al. “OptiX: A General Purpose Ray Tracing Engine”. In: ACM Transactions
on Graphics (SIGGRAPH 10) 29.4 (2010), 66:1–66:13.

[77] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Implemen-
tation. Morgan Kaufmann, 2004.

[78] Michael Potmesil and Indranil Chakravarty. “A lens and aperture camera model for syn-
thetic image generation”. In: Proceedings of SIGGRAPH 81. 1981, pp. 297–305.

[79] V. A. Prisacariu et al. “A Framework for the Volumetric Integration of Depth Images”. In:
ArXiv e-prints (2014). arXiv: 1410.0925.

[80] R Ramamoorthi and P Hanrahan. “A Signal-Processing Framework for Inverse Render-
ing”. In: SIGGRAPH 01. 2001, pp. 117–128.



BIBLIOGRAPHY 117

[81] Ravi Ramamoorthi and Pat Hanrahan. “An Efficient Representation for Irradiance Envi-
ronment Maps”. In: SIGGRAPH ’01. 2001, pp. 497–500.

[82] Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. “A First-order Analysis of
Lighting, Shading, and Shadows”. In: ACM Trans. Graph. 26.1 (2007).

[83] T. Ritschel et al. “Micro-rendering for Scalable, Parallel Final Gathering”. In: ACM Trans-
actions on Graphics 28.5 (2009), 132:1–132:8.

[84] T. Ritschel et al. “The State of the Art in Interactive Global Illumination”. In: Computer
Graphics Forum 31.1 (2012), pp. 160–188.

[85] F. Rouselle, C. Knaus, and M. Zwicker. “Adaptive Rendering with Non-Local Means Fil-
tering”. In: ACM Transactions on Graphics 31.6 (2012), 195:1–195:11.

[86] Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. “Adaptive Sampling and Re-
construction Using Greedy Error Minimization”. In: ACM Transactions on Graphics 30.6
(2011), 159:1–159:12.

[87] H. Rushmeier and G. Ward. “Energy preserving non-linear filters”. In: SIGGRAPH 94.
1994, pp. 131–138.

[88] P. Sen and S. Darabi. “On Filtering the Noise from the Random Parameters in Monte Carlo
Rendering”. In: ACM Transactions on Graphics 31.3 (2012).

[89] Pradeep Sen, Soheil Darabi, and Lei Xiao. “Compressive Rendering of Multidimensional
Scenes”. In: Proceedings of the 2010 International Conference on Video Processing and
Computational Video. 2011, pp. 152–183.

[90] Peter Shirley and R. Keith Morley. Realistic Ray Tracing. 2nd ed. Natick, MA, USA: A.
K. Peters, Ltd., 2003. ISBN: 1568811985.

[91] P. Shirley et al. “A local image reconstruction algorithm for stochastic rendering”. In: ACM
Symposium on Interactive 3D Graphics. 2011, pp. 9–14.

[92] E. Sintorn and U. Assarsson. “Sample Based Visibility for Soft Shadows using Alias-Free
Shadow Maps”. In: Computer Graphics Forum (EGSR 08) 27.4 (2008), pp. 1285–1292.

[93] P Sloan, J Kautz, and J Snyder. “Precomputed Radiance Transfer for Real-Time Rendering
in Dynamic, Low-Frequency Lighting Environments”. In: ACM Transactions on Graphics
(SIGGRAPH 02) 21.3 (2002), pp. 527–536.

[94] Peter-Pike Sloan, Jan Kautz, and John Snyder. “Precomputed Radiance Transfer for Real-
time Rendering in Dynamic, Low-frequency Lighting Environments”. In: ACM Trans.
Graph. 21.3 (2002), pp. 527–536.

[95] C Soler and F Sillion. “Fast Calculation of Soft Shadow Textures Using Convolution”. In:
SIGGRAPH 98. 1998, pp. 321–332.

[96] C Soler et al. “Fourier depth of field”. In: ACM Transactions on Graphics 28.2 (2009).

[97] Tiago Sousa, Nick Kasyan, and Nicolas Schulz. “Secrets of CryENGINE 3 Graphics Tech-
nology”. In: SIGGRAPH Courses (2011).



BIBLIOGRAPHY 118

[98] Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. “Maximum Mipmaps for Fast, Accurate, and
Scalable Dynamic Height Field Rendering”. In: Symp. on Interactive 3D Graph. 2008,
pp. 183–190.

[99] Yun-Ta Tsai et al. “Fast ANN for High-Quality Collaborative Filtering”. In: High-Performance
Graphics. 2014.

[100] Karthik Vaidyanathan et al. “Layered Light Field Reconstruction for Defocus Blur”. In: To
appear in ACM Transactions on Graphics (2014). http://software.intel.com/en-us/articles/layered-
light-field-reconstruction-for-defocus-blur.

[101] Ingo Wald et al. “State of the Art in Ray Tracing Animated Scenes”. In: STAR Proceed-
ings of Eurographics 07. Ed. by Dieter Schmalstieg and Ji\vrí Bittner. The Eurographics
Association, Sept. 2007, pp. 89–116.

[102] I. Wald et al. “Interactive Global Illumination using Fast Ray Tracing”. In: Rendering
Techiques (EGWR 02). 2002.

[103] B. Walter et al. “Multidimensional lightcuts”. In: ACM Transactions on Graphics 25.3
(2006), pp. 1081–1088.

[104] R. Wang et al. “An efficient GPU-based approach for interactive global illumination”. In:
ACM Transactions on Graphics 28.3 (2009).

[105] G Ward and P Heckbert. “Irradiance Gradients”. In: Eurographics Rendering Workshop
92. 1992, pp. 85–98.

[106] G. Ward, F. Rubinstein, and R. Clear. “A ray tracing solution for diffuse interreflections”.
In: SIGGRAPH 88. 1988, pp. 85–92.

[107] L. Williams. “Casting Curved Shadows on Curved Surfaces”. In: SIGGRAPH 78. 1978,
pp. 270–274.

[108] R. Xu and S. Pattanaik. “A Novel Monte Carlo Noise Reduction Operator”. In: IEEE Com-
puter Graphics and Applications 25.2 (2005), pp. 31–35.

[109] Ling-Qi Yan et al. Fast 4D Sheared Filtering for Interactive Rendering of Distribution
Effects. Tech. rep. UCB/EECS-2014-174. EECS Department, University of California,
Berkeley, Oct. 2014.




