
Closed-loop decoder adaptation algorithms for brain-
machine interface systems

Siddharth Dangi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-75
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-75.html

May 13, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Closed-loop decoder adaptation algorithms for brain-machine interface systems

by

Siddharth Dangi

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jose Carmena, Chair
Professor Anant Sahai

Professor Bruno Olshausen

Spring 2015

Closed-loop decoder adaptation algorithms for brain-machine interface systems

Copyright 2015
by

Siddharth Dangi

1

Abstract

Closed-loop decoder adaptation algorithms for brain-machine interface systems

by

Siddharth Dangi

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jose Carmena, Chair

Brain-machine interfaces (BMIs) aim to assist patients suffering from neurological injuries
and disease by enabling them to use their own neural activity to control external devices
such as computer cursors or robotic arms, or even drive movements of their own body via
muscle stimulation. At the heart of a BMI system is the decoding algorithm, or “decoder”,
that translates recorded neural activity into control signals for a prosthetic device. Decoders
are often initialized offline by first recording neural activity while a subject performs real
movements, or observes or imagines movements, and then fitting a decoder to predict these
movements from the neural activity. However, BMIs are fundamentally closed-loop systems,
since BMI users receive performance feedback (e.g. by visual observation of the prosthetic’s
movements), and the prediction power of decoders trained offline does not directly correlate
with closed-loop performance. In other words, a high level of BMI performance can not
necessarily be achieved solely by optimizing decoder parameters in an open-loop setting.

Two different mechanisms have been leveraged in the closed-loop regime to facilitate
performance improvements. The first mechanism, neural plasticity or brain adaptation, is
the ability of neurons to adapt their receptive fields and tuning properties to facilitate per-
formance improvements. The second, a newly-emerging paradigm known as Closed-Loop
Decoder Adaptation (CLDA), aims to update decoder parameters during closed-loop BMI
operation in order to make the decoder’s output more accurately reflect the user’s intended
BMI movements. In this work, we leverage the power of CLDA to both improve and main-
tain BMI performance. First, we introduce a CLDA algorithm that can rapidly improve
BMI performance independent of method by which the decoder is seeded, which may be
crucial for clinical applications where patients have limited movement and sensory abilities
due to motor deficits. We then present a general framework for the design and analysis
of CLDA algorithms, and demonstrate that mathematical convergence analysis can be a
useful paradigm for evaluating the convergence properties of a prototype CLDA algorithm
before experimental testing. Next, we then apply the CLDA technique to demonstrate high-
performance, proficient BMI control based on local field potential signals instead of spikes,
and demonstrate that there is broad flexibility in the frequencies that could potentially be

2

used for LFP-based BMI control. Finally, we introduce a new CLDA algorithm called Re-
cursive Maximum Likelihood that adapts decoder parameters very rapidly and efficiently,
and possesses a variety of useful properties and practical algorithmic advantages. We test
all of our algorithms and methods in closed-loop experiments by training macaque monkeys
to perform a center-out reaching task using either spiking activity or local field potentials
to control a 2D computer cursor. Overall, our work makes important progress towards
demonstrating the power of closed-loop decoder adaptation as a useful tool for developing
high-performance brain machine interface systems.

i

To Sebastian, Jeeves, and Cartman.

ii

Acknowledgments

There were many times early on when I wanted to quit. Don’t get me wrong — working
on algorithms for brain-controlled prosthetic devices was awesome...but what if I had chosen
a different research area that I would have liked even more? What if my PhD took forever
to complete? What if I didn’t want to continue BMI research forever because I had found
lots of other things interesting too, and instead wanted to explore other areas after my PhD?
Whenever I ever walked into his office feeling uncertain with these questions or others on
my mind, my advisor Jose Carmena always made sure that walked out feeling reassured,
motivated, determined, and most of all — excited! (I still haven’t found anyone else who
talks as excitedly — and rapidly — when discussing something they are passionate about!)
I certainly wouldn’t have made it to the end of my PhD without his support, but more
importantly, he helped me come to the realization that getting a PhD is not about the final
destination, but about the journey. It’s indeed been a fun ride, and I know that even as I
explore other fields and develop new interests and passions in the years ahead, the things
I’ve learned and the skills I’ve developed along the way during my PhD will be invaluable
to me. I have Jose to thank for being such a good advisor, mentor, and friend.

I would also like to thank Anant Sahai, Bruno Olshausen, and Jan Rabaey for serving
on my qualifying exam committee, and Anant and Bruno for serving on my dissertation
committee as well. Their advice and support has meant a lot to me.

As a graduate student, I couldn’t have asked for better lab-mates and colleagues —
directly or indirectly, they’ve all had an impact on me and helped me along the way. I’m
very grateful to Simon Overduin and Amy Orsborn for selflessly helping to teach me to work
with our monkeys, all while expecting nothing in return. Even after being trained to run my
own monkey experiments, I was incredibly fortune that Amy, Simon, Helene Moorman, and
Suraj Gowda had already spent countless hours training Sebastian, Jeeves, and Cartman —
the monkeys whose data enabled the research presented in this dissertation. Vivek Athalye,
Preeya Khanna, and Kelvin So are all great friends, and they made our 4-person Sutardja
Dai office a lively and exciting place to come into work every day. (Vivek — no matter how
many times I secretly practiced at night while you weren’t in the office, you always had my
number in our mini-basketball battles.) Ryan Neely would wake up at 4:30am, run 20 miles
or jog up a mountain, and then come into work at the same time as the rest of us and do
awesome science — whether he knew it or not, he was an inspiration to me and everyone
else in the lab. Aaron Koralek and I never hung out much and didn’t have the opportunity
to work together, but his distinctive laugh alerted all of us when he was nearby and always
brightened everyone’s day. Andrea and Nerea — thanks for being such good friends, showing
me around San Sebastian and Tubingen, and even teaching me some Spanish! Ander — I
truly admire your passion for what you do, your determination to get it done, and your
leadership to make it happen. Thanks for welcoming me into your home and hosting me,
during times of both good and bad health. Simon, Ryan Canolty, Maryam Shanechi, and
Samantha Summerson — you were an incredibly talented group of post-docs, and we were
all lucky to have you in our lab as colleagues and friends. Ale Dominguez — you were the

iii

best lab manager one could ask for, one of the friendliest and kindest people I’ve met, and
also one of the funniest – you always confused me, Suraj, and Vivek without knowing it!

I’ve collaborated with so many people over the years. In particular, Amy Orsborn and I
partnered together on much of the work and experiments involving SmoothBatch, and I was
fortunate to have joined the lab at the perfect time that enabled us to work together. Kelvin
So and I also collaborated very closely on the closed-loop LFP BMI work, and there are few
other people in the world with whom running monkey experiments together or co-writing
papers could be so smooth, painless, and enjoyable. Finally, Suraj and I worked together
on so many things that I don’t even know where to start. It was truly fantastic that I had
someone as smart and talented, and as good of a friend as him that I could ask a question to
or discuss an idea with at any time, in lab or in our apartment. My time at Berkeley would
not have been nearly as fun without him to share much of it with.

Graduate school is a roller coaster of highs and lows, and I wouldn’t have made it to
the end of the ride without my friends. Dan, Cam, Arjun, Suraj, Julian, and Kevin – our
3-on-3 basketball battles at Live Oak Park were something I looked forward to every single
week, and know I will miss dearly once we leave this place and move on to other things.
Arjun — you’ve been a really great friend (and even better doppelganger) since undergrad,
and you could always be counted on to grab food with me on a moment’s notice and talk
about anything at any time of the day or night. Fulbert Chan — it’s eerie how pretty much
every time my research wasn’t going well, you would start a funny conversation with me
on gchat, which would make me crack a smile and help me take my mind off of things.
Shervin, Julian, Kevin, and Suraj — our Bonita Ave. apartment wouldn’t have won any
awards for appearance or earthquake safety readiness, but you all helped make it such a
memorable place, were terrific roommates, and will be life-long buddies. To all my friends
— the birthday celebrations at Jupiter, Cal football games, trips to Tahoe, Super Bowl
parties, and all the other little things that we did together helped keep me sane and happy,
and I hope we will have many more of them in the years to come.

Finally, I would like to thank my family. To my sister, Shalini – I know the 8-year-old me
had begged mom and dad for a brother, but despite all the teasing and tough love, it turns
out I couldn’t have asked for a better sibling and I can’t imagine what my life would be like
without you. To my parents, Salil and Vinita — you were born and raised in India without
wealth or priviledge, yet somehow, through years and years of hard work, managed to leave
home behind, make it to America, and start your family here. My "accomplishments" pale
in comparison to what you both have done, and for your own continual sacrifices to make
sure that Shalini and I had the opportunity for a better life, I am eternally grateful.

iv

Contents

Acknowledgements ii

Contents iv

1 Introduction 1

2 Decoding Methods 5
2.1 Kalman Model and filter equations . 5
2.2 BMI Decoder Implementation . 6
2.3 Decoder Seeding . 6

2.3.1 Initializing A and W . 6
2.3.2 Initializing C and Q . 7

3 SmoothBatch: Improving BMI performance independent of initialization 9
3.1 Introduction . 9
3.2 Methods . 10

3.2.1 Electrophysiology . 10
3.2.2 Behavioral Task . 11
3.2.3 BMI Decoder . 12
3.2.4 Closed-Loop Decoder Adaptation Algorithm: SmoothBatch 13
3.2.5 Data Analysis . 14

3.2.5.1 Behavioral Performance Metrics 14
3.2.5.2 Decoder Metrics . 14
3.2.5.3 Offline Seed Decoder Prediction Power 15

3.3 Results . 16
3.3.1 SmoothBatch BMI Performance Improvements 16
3.3.2 Kalman Filter Decoder Evolution During SmoothBatch 18
3.3.3 Performance Improvement’s Dependence on Decoder Seeding 21

3.4 Discussion . 23

4 Design considerations for CLDA algorithms 27
4.1 Introduction . 27
4.2 Methods . 30

v

4.2.1 Experimental procedures . 30
4.2.2 Decoding Algorithm . 32
4.2.3 KF CLDA Algorithms . 32

4.2.3.1 Batch maximum likelihood estimation 33
4.2.3.2 Adaptive Kalman Filter . 33
4.2.3.3 SmoothBatch . 34

4.3 CLDA Design Principles . 34
4.3.1 Time-scale of adaptation . 35
4.3.2 Selective parameter adaptation . 38
4.3.3 Smooth decoder updates . 41
4.3.4 Intuitive CLDA parameters . 42

4.4 Convergence Analysis . 43
4.4.1 Proposed convergence measures . 44
4.4.2 Case study: SmoothBatch algorithm 46
4.4.3 Time evolution of SmoothBatch’s MSE 47
4.4.4 Rate of convergence . 48
4.4.5 CLDA parameter trade-offs . 48
4.4.6 Effect of decoder’s seeding . 49
4.4.7 Improving the SmoothBatch algorithm 50
4.4.8 Experimental validation . 51

4.5 Discussion . 58

5 BMI control using local field potentials 61
5.1 Introduction . 61
5.2 Materials & Methods . 62

5.2.1 Electrophysiology and behavioral task 62
5.2.2 Decoding algorithm . 63
5.2.3 Closed-loop decoder adaptation . 64
5.2.4 Performance evaluation . 65

5.3 Results . 66
5.3.1 Testing different frequency bands . 69
5.3.2 Testing different numbers of LFP channels 71

5.4 Discussion . 73

6 Achieving rapid closed-loop decoder adaptation: Recursive Maximum
Likelihood algorithm 78
6.1 Introduction . 78
6.2 Neurophysiological Methods . 79

6.2.1 Electrophysiology . 79
6.2.2 Behavioral task . 80
6.2.3 Feature extraction . 82
6.2.4 Performance evaluation . 82

vi

6.3 Computational Methods . 82
6.3.1 Decoder model . 82
6.3.2 Estimating intended movements . 83
6.3.3 Recursive Maximum Likelihood (RML) CLDA algorithm 84
6.3.4 Recursive update rules on sufficient statistics 85
6.3.5 Half-life reparametrization . 89
6.3.6 Avoiding costly matrix inversions . 89
6.3.7 Generalization to batch-based parameter updates 91

6.4 Results . 91
6.4.1 RML decoder adaptation . 91
6.4.2 Performance comparison to SmoothBatch 95

6.5 Discussion . 101

7 Conclusion 103
7.1 Thesis Contributions . 103
7.2 Pitfalls . 104
7.3 Future Work . 105

Bibliography 106

1

Chapter 1

Introduction

Brain-machine interfaces (BMIs) aim to assist patients suffering from neurological injuries
and disease by enabling them to use their own neural activity to control external devices
such as computer cursors or robotic arms, or even drive movements of their own body via
muscle stimulation. Various forms of BMI control have been demonstrated in rodents [1–
3], non-human primates [4–15], and humans [16–19]. However, significant improvements
in both reliability (lifetime usability of the interface) and performance (achieving control
and dexterity comparable to natural movements) are still needed to achieve clinically viable
neuroprostheses for humans [20, 21].

A fundamental component of any BMI is the decoding algorithm, or “decoder”, that trans-
lates recorded neural activity into control signals for a prosthetic device (see Figure 1.1)1.
The Kalman filter is one popular decoding algorithm choice for brain-machine interface sys-
tems; in Chapter 2, we review the Kalman filter model and equations and its application
to the BMI setting. Decoders such as Kalman filters are often initialized offline by record-
ing neural activity while a subject performs real movements [4–8], observes movements [22],
or imagines moving [9, 14, 16, 17], and fitting a decoder to predict these movements from
the neural activity. However, BMIs are fundamentally closed-loop systems, since BMI users
receive performance feedback (e.g. by visual observation of the prosthetic’s movements).
Recent research shows that the prediction power of decoders trained offline does not di-
rectly correlate with closed-loop performance, perhaps due to the inherent feedback-related
differences between open- and closed-loop systems [23, 24]. These results suggest that per-
formance improvements cannot be achieved solely by finding an optimal open-loop decoding
algorithm, and therefore highlight the importance of treating BMIs as closed-loop systems.

1Figure courtesy of Amy Orsborn.

2

Neural
Activity

Actuator
(e.g. Cursor)

Visual
Feedback

position or
velocity

movement

Decoding
Algorithm

Figure 1.1: Example closed-loop diagram for a brain-machine interface system.

After the decoder has been initialized, two different mechanisms have been leveraged
in the closed-loop regime to facilitate performance improvements. The first mechanism,
neural plasticity or brain adaptation, is the ability of neurons to adapt their receptive fields
and tuning properties to facilitate performance improvements. For instance, previous work
from Ganguly and Carmena demonstrated that when monkeys practiced BMI control with
a “stable circuit” consisting of a fixed decoder and stable neurons, they developed a stable
neural “map” of the decoder that enabled performance improvements, was readily recalled
across days, and was robust to interference from a second learned map [13]. The second,
a newly-emerging paradigm known as Closed-Loop Decoder Adaptation (CLDA), aims to

3

update decoder parameters during closed-loop BMI operation in order to make the decoder’s
output more accurately reflect the user’s intended BMI movements.

Developing CLDA algorithms capable of rapidly improving performance, independent
of initial performance, may be crucial for clinical applications where patients have limited
movement and sensory abilities due to motor deficits. Given the subject-decoder interactions
inherent in closed-loop BMIs, the decoder adaptation time-scale may be of particular impor-
tance when initial performance is limited. In Chapter 3 we present SmoothBatch, a CLDA
algorithm for a Kalman filter decoder which updates decoder parameters on a 1–2 min time-
scale using an exponentially weighted sliding average. The algorithm was experimentally
tested with one nonhuman primate performing a center-out reaching BMI task. Smooth-
Batch was seeded four ways with varying offline decoding power: 1) visual observation of a
cursor, 2) ipsilateral arm movements, 3) baseline neural activity, and 4) arbitrary weights.
Our results show that SmoothBatch rapidly improved performance regardless of seeding, and
that after decoder adaptation ceased, the subject maintained high performance. Moreover,
performance improvements were paralleled by SmoothBatch convergence, suggesting that
CLDA involves a co-adaptation process between the subject and the decoder.

Designing the SmoothBatch CLDA algorithm required making multiple important deci-
sions, including choosing the time-scale of adaptation, selecting which decoder parameters
to adapt, crafting the corresponding update rules, and designing CLDA parameters. These
design choices, combined with the specific settings of CLDA parameters, will directly af-
fect the algorithm’s ability to make decoder parameters converge to values that optimize
performance. In Chapter 4, we present a general framework for the design and analysis of
CLDA algorithms, and support our results with experimental data of two monkeys perform-
ing a BMI task. First, we analyze and compare existing CLDA algorithms to highlight the
importance of four critical design elements: the adaptation time-scale, selective parameter
adaptation, smooth decoder updates, and intuitive CLDA parameters. Second, we intro-
duced mathematical convergence analysis, using measures such as mean-squared error and
KL divergence, as a useful paradigm for evaluating the convergence properties of a proto-
type CLDA algorithm before experimental testing. By applying these measures to an existing
CLDA algorithm, we demonstrated that our convergence analysis is an effective analytical
tool that can ultimately inform and improve the design of CLDA algorithms.

Intracortical brain–machine interfaces (BMIs) have predominantly utilized spike activity
as the control signal — however, an increasing number of studies have shown the utility of
local field potentials (LFPs) for decoding motor related signals. Yet currently, it is unclear
how well different LFP frequencies can serve as features for continuous, closed-loop BMI
control. In Chapter 5, using closed-loop decoder adaptation as a tool to adapt decoder
parameters to subject-specific LFP feature modulations during BMI control, we demonstrate
2D continuous LFP-based BMI control. We trained two macaque monkeys to control a
2D cursor in a center-out task by modulating LFP power in the 0–150 Hz range. While
both monkeys attained control, they used different strategies involving different frequency
bands. One monkey primarily utilized the low-frequency spectrum (0–80 Hz), which was
highly correlated between channels, and obtained proficient performance even with a single

4

channel. In contrast, the other monkey relied more on higher frequencies (80–150 Hz),
which were less correlated between channels, and had greater difficulty with control as the
number of channels decreased. We then restricted the monkeys to use only various sub-
ranges (0–40, 40–80, and 80–150 Hz) of the 0–150 Hz band. Interestingly, although both
monkeys performed better with some sub-ranges than others, they were able to achieve BMI
control with all sub-ranges after decoder adaptation, demonstrating broad flexibility in the
frequencies that could potentially be used for LFP-based BMI control. Overall, our results
demonstrate proficient, continuous BMI control using LFPs and provide insight into the
subject-specific spectral patterns of LFP activity modulated during control.

In some applications, the time required for initial decoder training and any subsequent
decoder recalibrations could be potentially reduced by performing continuous adaptation, in
which decoder parameters are updated at every time step during these procedures, rather
than waiting to update the decoder at periodic intervals in a more batch-based process.
In Chapter 6, we present recursive maximum likelihood (RML), a CLDA algorithm that
performs continuous adaptation of a Kalman filter decoder’s parameters. We demonstrate
that RML possesses a variety of useful properties and practical algorithmic advantages. First,
we show how RML leverages the accuracy of updates based on a batch of data while still
adapting parameters on every time step. Second, we illustrate how the RML algorithm is
parameterized by a single, intuitive half-life parameter that can be used to adjust the rate
of adaptation in real time. Third, we show how evenwhen the number of neural features is
very large, RML’s memory-efficient recursive update rules can be reformulated to also be
computationally fast so that continuous adaptation is still feasible. To test the algorithm
in closed-loop experiments, we trained three macaque monkeys to perform a center-out
reaching task by using either spiking activity or local field potentials to control a 2D computer
cursor. RML achieved higher levels of performance more rapidly in comparison to a previous
CLDA algorithm that adapts parameters on a more intermediate timescale. Overall, our
results indicate that RML is an effective CLDA algorithm for achieving rapid performance
acquisition using continuous adaptation.

Finally, in Chapter 7, we conclude by summarizing the main contributions of this disser-
tation and proposing some directions for future work.

5

Chapter 2

Decoding Methods

2.1 Kalman Model and filter equations
The Kalman filter (KF) is a linear, recursive estimator for estimating an unknown state xt
as it evolves over time, given noisy observations yt of the state. Specifically, the standard
form of the filter assumes the following state evolution and state observation models:

xt = Axt−1 + wt, wt ∼ N (0,W) (2.1)
yt = Cxt + qt, qt ∼ N (0, Q) (2.2)

where wt and qt are additive Gaussian noise terms with covariance matrices W and Q,
respectively. The inference problem that the Kalman filter solves (optimally, assuming that
the models above are accurate) is computing the minimum mean squared error estimate x̂t
of the state xt at each time step, given the history of observations {yt, yt−1, yt−2, ...}. The
Kalman filter performs this estimation at recursively at each filter iteration using an efficient,
linear algorithm — in other words, it computes the estimate x̂t using only: 1) the most recent
observation, yt, and 2) and its own previous estimate x̂t−1.

In particular, on each iteration, the Kalman filter uses first its previous kinematic state
estimate x̂t−1 (and estimate covariance Pt−1) to generate the a priori estimate x̂t|t−1 (and
estimate covariance Pt|t−1) of xt:

x̂t|t−1 = Ax̂t−1

Pt|t−1 = APt−1A
T +W

Secondy, it calculates the Kalman gain Kt, and uses the observation yt to generate the
a posteriori estimate x̂t (and estimate covariance Pt) by making an additive correction to
x̂t|t−1:

Kt = Pt|t−1C
T
(
CPt|t−1C

T +Q
)−1

6

x̂t = x̂t|t−1 +Kt

(
yt − Cx̂t|t−1

)
Pt = (I −KtC)Pt|t−1

The estimate covariance matrix Pt at each time-step represents the filter’s confidence in its
own state estimates. Specifically, the diagonal terms of Pt represent the KF’s variances for
its estimates of the state vector variables (i.e., larger values reflect lower confidence). Note
that during standard operation of the filter, Pt quickly converges to a steady-state matrix P
that depends only the model parameters {A,W,C,Q}.

2.2 BMI Decoder Implementation
The Kalman filter is a common decoding algorithm choice for BMI applications [25, 26]. In
the context of a BMI, xt is a vector representing the intended state of prosthetic device (e.g.,
a computer cursor, prosthetic limb, robotic wheelchair, etc.) and yt is a vector of features
of recorded neural activity. In the work presented in subsequent chapter, all experimental
sessions used a Kalman filter (KF) as the decoding algorithm during closed-loop control.
For simplicity, we focused in particular on BMI cursor control — however, it is important
to note that the Kalman filter and our presented closed-loop decoder adaptation methods
do apply more generally to other types of BMI systems. For BMI cursor control, we used
a position-velocity KF, in which the KF state vector xt is defined to include the position
(p) and velocity (v) of the cursor at time t, along both the horizontal (x) and vertical (y)
directions of the screen:

xt =
[
px,t py,t vx,t vy,t 1

]T
.

The constant term 1 and a corresponding extra column of C are added to account for neural
observations yt with non-zero means.

2.3 Decoder Seeding
From the above equations, it is evident that the KF model is parametrized by the matrices
{A,W,C,Q}. Hence, in order to use a KF as a decoding algorithm for a brain-machine
interface, these matrices must be seeded with initial values.

2.3.1 Initializing A and W

In our experiments, the state evolution model parameters (A and W matrices, describing
cursor dynamics) were defined to model the system physics, with position components set
as the integral of velocity, as in [27]:

7

A =


1 0 dt 0 0
0 1 0 dt 0
0 0 axx

v axy
v 0

0 0 ayx
v ayy

v 0
0 0 0 0 1



W =


0 0 0 0 0
0 0 0 0 0
0 0 wxx

v wxy
v 0

0 0 wyx
v wyy

v 0
0 0 0 0 0


where dt is the time between successive Kalman filter iterations. The velocity state

transition model (Av and Wv) were fit using their maximum-likelihood estimates

Av =

[
axx
v axy

v

ayx
v ayy

v

]
= V2V

T
1

(
V1V

T
1

)−1
Wv =

[
wxx
v wxy

v

wyx
v wyy

v

]
=

1

N − 1
(V2 − AV1) (V2 − AV1)T

where N is the total number of measured time-points, and V1 and V2 are matrices that are
formed by tiling recorded velocity kinematics for times [1, N − 1] and [2, N], respectively. In
order to allow for BMI control that would mimic natural arm movements as much as possible,
A and W were fit for all seeding methods using a data set of arm movements collected while
the subject moved the cursor directly using movements of his arm.

2.3.2 Initializing C and Q

In our closed-loop BMI experiments, the state observation model parameters (C and Q
matrices) were initialized (“seeded”) using one of five different methods:

1. Visual Feedback, or VFB: C and Q were trained using neural activity recorded as the
subject passively viewed a video of a cursor moving on a screen.

2. Ipsi: C and Q were trained using neural activity recorded as the subject moved the
cursor using ipsilateral arm movements.

3. Contra: C and Q were trained using neural activity recorded as the subject moved the
cursor using contralateral arm movements.

4. Baseline: C and Q were trained using neural activity recorded during quiet sitting.

8

5. Shuffled: A VFB decoder was first trained, and the rows of C and rows/columns of Q
were then randomly shuffled in order to randomize the assignment of decoder weights
to neural features.

For seeding methods 1–4, the observation model (C and Q matrices, describing neural ac-
tivity’s relation to cursor movement) were fit using their maximum-likelihood estimate

C = Y XT
(
XXT

)−1 (2.3)

Q =
1

N
(Y − CX) (Y − CX)T (2.4)

where the Y andX matrices are formed by tiling recorded neural activity and cursor kinemat-
ics, respectively. For VFB seeding, a visual cursor was moved through artificially generated
trajectories (straight trajectories, Gaussian speed profiles, 800 ms reach duration). The sub-
ject viewed the cursor movement while seated in the primate chair, receiving pseudo-random
rewards on 25% of all trials. While no effort was made to constrain subject behavior, the
animal typically sat quietly and looked at the display. Recorded neural activity and the
artificially generated cursor kinematics were used for decoder estimation. Baseline seeding
was performed using the same protocol as VFB, but with the display turned off so that
the subject did not see anything. Ipsi and contra decoder seeds were created with neural
data ipsilateral or contralateral to the arm kinematics recorded as the subject performed the
center-out task with his arm.

9

Chapter 3

SmoothBatch: Improving BMI
performance independent of initialization

The work presented in this chapter was performed in collaboration with Amy L. Orsborn,
Helene G. Moorman, and Jose M. Carmena, and was published in IEEE Transactions on
Neural Systems and Rehabilitation Engineering [28].

3.1 Introduction
Brain-machine interfaces (BMIs) have great potential to restore function to patients with
motor disabilities including amputees and those suffering from spinal cord injury, stroke, and
amyotrophic lateral sclerosis. Early work has provided a solid proof of concept for BMIs,
with several groups showing demonstrations of rodents [1], nonhuman primates [4–14], and
humans [16, 17] controlling artificial actuators using neural activity. However, in order to
make BMI systems widely clinically viable, significant improvements in reliability (lifetime
usability of the interface) and performance (achieving control and dexterity comparable to
natural movements) are needed [20, 21].

BMI systems use an algorithm (the “decoder”) to translate recorded neural activity (e.g.,
spike trains) into a control signal (e.g., position) for an external actuator such as a com-
puter cursor. The BMI user receives performance feedback, typically in the form of visual
observation, creating a closed feedback system. Thus, BMIs allow a user to modulate their
neural activity to achieve a desired goal. BMI decoders are usually created in open-loop by
first recording neural activity as a subject makes movements [4–8, 12, 27, 29, 30] or imagines
moving [9, 14, 16, 17], and then training a decoder to predict these movements from the neu-
ral activity. However, open-loop decoder prediction power does not directly correlate with
closed-loop performance [23, 24], suggesting that improvements in BMI performance cannot
be achieved solely by finding an optimal open-loop decoding algorithm. Instead, recent work
shows that significant improvements in performance can come from insights into the closed-
loop BMI system, in which brain and machine adaptation play pivotal roles. For instance,

10

Ganguly and Carmena [13] showed that when a subjects practiced BMI control with a fixed
decoder, they learned a stable neural representation of the decoder, and the development of
these stable representations paralleled improvements in control. In other words, the brain
can adapt to improve performance. Other researchers have taken the opposite approach,
investigating methods of closed-loop decoder adaptation (CLDA) to improve performance
[2, 5, 27, 30, 31]. These studies show that closed-loop BMI performance can be significantly
improved by using known or inferred task goals, or evaluative feedback, during closed-loop
BMI control to modify the decoder.

CLDA algorithms typically have two components: 1) a method to infer a subject’s in-
tended movement goals during closed-loop control, and 2) a rule to update the decoder’s
parameters. One particularly interesting aspect of candidate decoder update algorithms is
the time-scale on which they update the decoder. Gilja et al. [27] used a batch-based al-
gorithm that applies one discrete decoder update 10–15 min after the initial seeding, while
Shpigelman et al. [30] used a real-time update rule that adjusts the decoder at every decoder
iteration. Given that closed-loop BMI performance involves an inherent interplay between
the subject and the decoder, the rate at which the decoder changes will likely influence
performance and the algorithm’s ability to improve control. Moreover, this time-scale of
adaptation may be paramount in situations where initial closed-loop performance may be
severely limited, such as clinical applications for patients that cannot enact natural move-
ment because of spinal cord injury or other neurological disorders [32]. It is thus worthwhile
to identify the most appropriate time-scale of decoder adaptation to yield efficient CLDA
algorithms that rapidly and robustly improve BMI performance regardless of initial closed-
loop performance. Previous work [32] suggests that an algorithm using an intermediate
(1–2 min) timescale may be ideal for situations with limited initial performance. Here, we
present a new CLDA algorithm called SmoothBatch, which updates the decoder on this
timescale. This algorithm implements a sliding average of decoder parameters estimated on
small batches of data. SmoothBatch uses the method developed by Gilja et al. [27] to infer
the subject’s intended kinematics in a center-out task. We present experimental validation
using data from one nonhuman primate subject. We also explore the algorithm’s ability to
improve closed-loop BMI performance independent of the initial decoder performance (seed)
by comparing SmoothBatch’s performance using four different decoder seeding methods:
1) visual observation of cursor movement, 2) ipsilateral arm movement, 3) neural activity
during quiet sitting, and 4) arbitrary weights.

3.2 Methods

3.2.1 Electrophysiology

One adult male rhesus macaque (macaca mulatta) was used in this study. The subject was
chronically implanted with microwire electrode arrays for neural recording. One array of 128
teflon-coated tungsten electrodes (35 m diameter, 500 µm wire spacing, 8×16 array configu-

11

ration; Innovative Neurophysiology, Durham, NC) was implanted in each brain hemisphere,
targeting the arm areas of primary motor cortex (M1) and dorsal premotor cortex (PMd).
Localization was performed using stereotactic coordinates from rhesus brain anatomy [33].
Each array was positioned targeting M1, and due to the size of the array, extended rostrally
into PMd. All procedures were conducted in compliance with the National Institutes of
Health Guide for Care and Use of Laboratory Animals and were approved by the University
of California, Berkeley Institutional Animal Care and Use Committee. Unit activity was
recorded using a combination of two 128- channel MAP and OmniPlex recording systems
(Plexon Inc, Dallas, TX). Single and multiunit activity was sorted using an online sorting ap-
plication (Plexon, Inc, Dallas, TX), and only neural activity with well-identified waveforms
were used for BMI control.

3.2.2 Behavioral Task

The subject was trained to perform a self-paced delayed 2-D center-out reaching task to
eight targets (1.7 cm radius) uniformly spaced about a 14-cm-diameter circle. The animal
sat in a primate chair, head restrained, and observed reach targets displayed via a computer
monitor projecting to a semi-transparent mirror parallel to the floor. Figure 3.1 shows an
illustration of the task setup and trial time-line. Trials are initiated by moving the cursor to
the center target and holding for 400 ms. Upon entering the center, the reach target appears.
After the center-hold period ends, the subject is cued to initiate the reach (via target flash),
after which he must move the cursor to the peripheral target within a given 3 s time-limit
and hold for 400 ms to receive a liquid reward. If the subject makes an error, defined as
failure to hold at the center or target, or failure to reach the target within the time-limit,
the trial is aborted and must be restarted. The subject has an unlimited amount of time to
enter the center target to initiate a trial. Reach targets were presented in a block structure,
with pseudo-randomized order within each block of eight targets. Initial task-training was
conducted with the animal making arm movements. The arm was placed in a 2D KINARM
exoskeleton (BKIN Technologies, Kingston, ON, Canada), which constrained movements to
the horizontal plane parallel to and just under the reach-target display. A cursor co-localized
with the center of the subject’s hand was displayed on the screen to provide visual feedback of
hand location. During BMI operation, the subject performed the center-out task by moving
the cursor under neural control. The subject’s arm were removed from the KINARM and
confined within the primate chair. The subject was proficient (overtrained) in the center-out
task with arm movements before BMI experiments commenced.

12

Figure 3.1: Behavioral task. (A) and (B) show a top-view of the experimental setup. The
nonhuman primate subject sat in a primate chair viewing a 2-D center-out task projected in
front of them. Initial training (and ipsi decoder seeding) was performed with the animal per-
forming the task with his arm inside a 2-D exoskeleton (A). In BMI, the task was performed
with the animal’s arm removed from the exoskeleton and the cursor position controlled via
BMI predictions (B). (C) Time-line of task events.

3.2.3 BMI Decoder

Online closed-loop BMI control was implemented using a Kalman filter (KF) decoder (see
Chapter 2) with binned neuron spike counts as the choice of neural features yt. Online
BMI control was implemented using PlexNet (Plexon Inc., Dallas, TX) to stream neural
data on a local intranet from the Plexon recording system to a dedicated computer running
Matlab (The Mathworks, Natick, MA). Neural firing rates were estimated with a 100 ms bin
width. Neural ensembles of 16–36 (26.5±4.45; mean±STD) neurons were used. Units were
selected only based on waveform quality. Decoders were initialized using four of the methods
described in Section 2.3:

1. Visual Feedback (n = 20)

2. Ipsi (n = 8)

13

3. Baseline (n = 17)

4. Shuffled (n = 11)

3.2.4 Closed-Loop Decoder Adaptation Algorithm: SmoothBatch

Once a seed decoder was created, CLDA was used to improve performance. The algorithm
used, SmoothBatch, updates the decoder on an intermediate (1–2 min) time-scale. The sub-
ject performed the center-out task under BMI control as the algorithm updated the decoder.
The subject’s intended kinematics were inferred from the observed BMI performance using
the technique developed by Gilja et al. [34, 35], which assumed that the subjects intends
to reach straight to the target at all times and rotates observed cursor velocities to point
towards the current task target. The observed neural activity and intended kinematics were
collected for a short (1–2 min) interval. Each batch of data was used to construct a new
estimate of the C and Q matrices (using 2.3 and 2.4), Ĉ and Q̂. The BMI decoder was then
updated using a weighted sum:

C(i+1) = αC(i) + (1− α)Ĉ

Q(i+1) = βQ(i) + (1− β)Q̂

where i indexes discrete decoder iterations and α, β ∈ (0, 1) determine the speed of adapta-
tion. We report α and β in terms of the half-life of the update process — i.e., how long it
takes for the influence of a Ĉ estimate in the BMI decoder to reduce by half. The half-lives
for C and Q, denoted by hc and hq, are related to α and β on the open interval (0, 1) as
follows:

αhc/b = 1/2 and βhq/b = 1/2

where b is the batch size. Note that and values depend upon both the half-life and batch size.
To avoid conducting a vast parameter search of both batch size and half-life experimentally,
SmoothBatch was first implemented in a BMI simulator that utilizes an empirically verified
model of the user’s learning process during closed-loop BMI operation [36]. Preliminary
results from the simulator allowed were used to narrow down the search space, which was
then explored in experiments. Batch sizes of 40–100 s and C and Q half-lives of 90–300 s
were tested experimentally. Rough optimization showed that batch sizes of 60–100 s and
half-lives of 90–210 s produced the most rapid performance improvements. All presented
data use parameters within this range; the majority (n = 46) use an 80 s batch and 120 s
half-life. In all cases, C and Q half-lives were set to be equal so that these matrices were
updated at the same time. Also note that the A and W matrices (which parameterize the
cursor dynamics model) were held fixed. As soon as a new decoder update was calculated,
it was used for subsequent BMI predictions.

14

3.2.5 Data Analysis

3.2.5.1 Behavioral Performance Metrics

Only successfully initiated trials (i.e., entering the center and successfully holding until the
go-cue) were considered for analysis, allowing for three possible outcomes: a successful reach,
a target-hold error, or a reach time-out. The subject would typically leave the center early
(a false-alarm) on approximately 10% of all attempts to initiate a reach, both during neural
and arm control. The task structure did not penalize these errors, likely leading to the
high false-alarm rate. Thus, they were excluded from analysis. Task behavior was quan-
tified by analyzing trial outcomes both by percentage and event rates. The success, reach
time-out, and error percentages over time were calculated using a sliding average (75 trial
window) to estimate the evolution of performance within the session. The corresponding
rates for these different trial outcomes were quantified by binning the event times (60 s wide,
non-overlapping bins). The event percentage metric provides an estimate of overall task
performance, while the event rates provide more temporal information about task perfor-
mance (e.g., periods of inactivity when the subject is unable to initiate a trial will not be
reflected in the trial-based percentage). A threshold of 8 successes/min was used to assess
SmoothBatch’s improvement time. The task required the subject to hit each presented reach
target before moving to the next target. Therefore, achieving 8 successes/min typically cor-
responds to the subject successfully acquiring all targets, demonstrating control across the
entire workspace. Reach times were quantified as the time between the cursor leaving the
center target and entering the peripheral target or occurrence of a time-out error. Evolution
of trajectory quality were estimated using metrics adopted from literature for pointing device
evaluation and previously used to evaluate BMIs [17]. Average movement error (ME) and
movement variability (MV) around the task-relevant axis (i.e., perpendicular to the reach
target) were quantified. ME and MV are defined as

ME =

√∑
|yi|

n
and MV =

√∑
(yi − ȳ)2

n

where yi is the perpendicular distance from the task-axis at time-point i and ȳ is the mean
of y across the trajectory. ME and MV were computed for each trajectory using the time
from leaving the center to arriving at the distal target or occurrence of a time-out error.

3.2.5.2 Decoder Metrics

The changes in KF matrices C and Q were computed as the decoder was updated using
SmoothBatch. The Frobenius norm of the differences of consecutive update step were used
to look at overall matrix adaptation. The velocity terms (in x and y directions) in the C
matrix and their evolution in time were also analyzed. While the Kalman filter decoder
estimated both position and velocity, analysis of the Kalman gains obtained showed that

15

neural activity makes the strongest contributions to the cursor velocity, making these terms
of particular importance for the decoder. Our Kalman filter assumes

yi ≈ Ci,1px + Ci,2py + Ci,3vx + Ci,4vy + Ci,5

where yi is the firing rate of unit i. Ignoring position terms, this is a standard velocity tuning
model [30]. A unit’s velocity preferred-direction (PD) and modulation-depth (MD) are given
by

PDi = tan−1
(
Ci,4
Ci,3

)
MDi =

√
C2
i,3 + C2

i,4

To assess how the decoder direction-tuning model evolved, the mean change in PD across
neurons was quantified. More strongly tuned neurons (larger MD) contribute more to BMI
performance than non-tuned units (small MD). Hence, changes in PDs of neurons with
high MD more directly influence decoder performance. To capture this, the magnitude of
PD change for a given unit was weighted by that unit’s MD in the final decoder. The
average weighted change in PD for the full decoder (∆wPD) was calculated by averaging
this weighted PD change across units. ∆wPD is defined as

∆wPD (t) =
1

M

M∑
i=1

(
MDi (T)

maxi (MD (T))
|PDi (t)− PDi (t− 1)|

)
where M is the total number of units in the decoder, andt ∈ [1, T] indexes each decoder
during adaptation.

3.2.5.3 Offline Seed Decoder Prediction Power

The offline prediction power of seed decoders were computed using the R2 correlation co-
efficient between measured kinematics and predicted kinematics (x and y components of
position and velocity). In ipsi seeds, measured kinematics corresponded to observed arm
movements. In VFB and baseline seeds, the display cursor’s kinematics were used as the
measured kinematics. Note that in baseline seeding, the cursor was not viewed by the sub-
ject. Finally, for shuffled decoders, the decoder was used to predict kinematics using neural
activity recorded during a VFB condition recorded within the same session, and those pre-
dictions were compared with the display cursor kinematics.

16

3.3 Results

3.3.1 SmoothBatch BMI Performance Improvements

SmoothBatch CLDA rapidly and reliably improved closed-loop BMI performance, despite
being seeded with decoders constructed in the absence of contralateral arm movements.
Figure 3.2 shows the evolution of task performance for a representative baseline seed session.
As seen in the events per minute (quantified with a 120 s bin-width to reduce behavioral noise;
Figure 3.2A), the subject was not readily able to perform the task with the seed decoder
(only a few trials were initiated). After a few minutes (1–2 decoder updates), the subject was
able to initiate trials but with limited control as shown by the increased rate of reach time-
out events (Figure 3.2A) and the highly irregular reach trajectories in the first attempted
reaches (3.2C). Performance improved gradually until approximately 10 min, when success
percentage and rate both markedly improved.

17

Figure 3.2: BMI task performance improvements using SmoothBatch closed-loop decoder
adaptation for one representative baseline seeded session. (A) Sliding average (75 trial win-
dow) of task performance rates (top) and binned event hit-rates (bottom, 120 s bin width)
during SmoothBatch adaptation and upon fixing the decoder. (B) Distribution of reach-
times for the first and last 100 reaches during SmoothBatch operation, and the first 100
reaches upon fixing the decoder. Dashed lines and shaded regions indicate mean and stan-
dard error of the mean, respectively, for each. (C) Progression of reach trajectories during
the session. Three reaches to each target are shown for the first attempted reaches of the ses-
sion (left), first successful reaches during SmoothBatch (left middle), last successful reaches
during SmoothBatch (right middle), and the last successful reaches with a fixed decoder
(right).

These rapid, nonlinear performance improvements were observed across all sessions (in-
cluding all decoder seed types). Initial performance started at 0.018±0.133 successes/min
and exceeded 8 successes/min (which roughly corresponds to attaining successful reaches to
all targets) within 13.1±5.5 min. Performance increased up to maximum rates of 14.3±1.37
successes/minute (maximum 88.04±5.3% trial success percentage) within 20.75±5.93 min
(all mean±std; n = 56, all seed types). Reach trajectories (Figure 3.2C) showed improvement
between the first success and late in SmoothBatch adaptation, becoming more stereotyped.
Similarly, reach times showed a marked reduction from the first to last 100 trials during
SmoothBatch, and remained low after the decoder was held fixed after adaptation ceased

18

(Figure 3.2B). Across all sessions, SmoothBatch significantly improved reach trajectory kine-
matics. The mean reach times, ME, and MV for the last 100 trials during SmoothBatch
were significantly smaller than those of the first 100 trials in the session (Wilcoxon paired
test, p > 0.05). At the end of SmoothBatch adaptation, the subject achieved average reach
times of 1.23±0.16 s, ME of 0.771±0.088 cm, and MV of 0.593±0.067 cm (all mean±std;
n = 56, all seed types).

As seen in the example session in Figure 3.2, performance typically improved gradually,
requiring multiple batch updates before sufficient task performance was achieved. Many de-
coder seeds, particularly arbitrary seeds like baseline and shuffled, yielded decoders the sub-
ject could not readily use—even limiting the ability to initiate trials. On average, 1.23±1.1
batch updates were required before the subject successfully initiated a trial, 3.03±2.1 up-
dates occurred before the first successful reach, and 7.43±3.6 updates occurred before the
subject was able to successfully reach all eight targets. SmoothBatch improved the decoder
gradually and did not jump to a high-performance solution in a single iteration.

The ultimate goal of CLDA is to find a decoder that will allow the subject to readily
gain proficient control of the BMI to perform a variety of tasks. In many situations, par-
ticularly unstructured tasks, it may not always be possible to infer the user’s movement
goals. Hence, it is highly desirable for task performance to be maintained after decoder
adaptation has ceased. To test this, after the subject attained adequate performance (≥ 10
trials/min, approximated by the experimenter), SmoothBatch adaptation was stopped and
the subject performed the BMI task with a fixed decoder. As seen in Figure 3.2, the subject
was able to maintain high task performance and accurate reaches after the decoder was held
fixed. Across all sessions, no significant changes in performance were found after fixing the
decoder. Because the subject used fixed decoders for varying periods of time across sessions,
behavioral measures were compared between the final moments of SmoothBatch adaptation
(last estimate of successes per minute; success percentage for the last 75 trials) and early
fixed-decoder performance (successes per minute for the first 15 min; success percentages
for the first 100 initiated trials). Neither the successes per minute nor the success percent-
ages were significantly different between the end of SmoothBatch adaptation and fixing the
decoder (Wilcoxon paired test, p = 0.733 and p = 0.1, respectively; n = 54, two sessions
with insufficient data with a fixed decoder were excluded from analysis). Furthermore, mean
reach times for the last 100 trials during SmoothBatch showed no significant difference from
that of the first 100 trials with the decoder fixed (Wilcoxon paired test, p = 0.55). Mean
ME and MV, however, showed a small (approximately 12%), significant increase between
the last 100 trials in SmoothBatch and the first 100 trials with a fixed decoder (Wilcoxon
paired test, p < 0.05), suggesting a very slight drop in trajectory precision.

3.3.2 Kalman Filter Decoder Evolution During SmoothBatch

The SmoothBatch algorithm showed convergence towards a stable decoder solution during
adaptation. Figure 3.3A displays the Frobenius norm in the element-wise change in con-
secutive C and Q decoder matrices across time, showing that the change rapidly decreased

19

for both matrices. This convergence was also seen in the velocity-weights in C, with the
preferred directions assigned to each unit stabilizing over time. Fig. 3(B) shows the average
magnitude of PD change weighted by neuron modulation depth (∆wPD) during Smooth-
Batch adaptation. Task performance (successes/min) is overlaid, showing that convergence
of the velocity PDs was strongly correlated with behavioral improvements. Polar plots of
all decoder units’ tuning (PD and MD) for example decoders during SmoothBatch adap-
tation are shown in Figure 3.3C (corresponding time-points are indicated in Figure 3.3B).
The initial baseline-seeded decoder assigned weak tuning to all units. Near the point of sig-
nificant behavioral improvement, as the decoder weights were converging, the MDs of units
had significantly increased and a few units had PDs near those of the final decoder. Once
performance significantly improved, the tuning model very closely resembled that of the fi-
nal decoder. Across all sessions, the average ∆wPD between the decoder being used when
the subject was first able to successfully reach all eight targets and the final decoder was
6.52±4.48◦, as compared to 23.79±12.17◦ for the initial seed decoder (mean±std; n = 56,
all seed types).

20

Figure 3.3: Kalman filter decoder evolution during SmoothBatch closed-loop decoder adap-
tation for one representative session seeded with baseline activity (same session as shown in
Fig. 2). (A) The matrix norm of changes in the C and Q matrices between decoder updates
converges as SmoothBatch continues. (B) The mean change in units’ velocity preferred di-
rections weighted by relative tuning strength (∆wPD) also converges. The convergence of
the velocity tuning solution parallels behavioral performance improvements. (C) Velocity
tuning decoder evolution for example time-points (1–4, indicated in B). The tuning of each
unit is represented in polar coordinates, where the line length indicates modulation-depth
and its orientation shows the preferred direction. Note that 1 (upper left) is on a different
scale than 2–4.

21

3.3.3 Performance Improvement’s Dependence on Decoder
Seeding

SmoothBatch CLDA improved BMI performance independent of the initial decoder seeding
method. Each seeding method had a varying amount of offline predictive power, as sum-
marized in Figure 3.4A. VFB and ipsi seedings contained the most information about all
kinematic variables while baseline and shuffled seeds had little to no predictive power. De-
spite differences in offline power of the decoders, all seeds reached similar final performance
after adaptation. Figure 3.4B compares early success rates (first estimate within the ses-
sion) to the maximum rate achieved, separated by seed type. A Kruskal–Wallis analysis of
variance (KW-ANOVA) showed no significant effect of seed type on maximum performance
(p > 0.05). All seeds achieved similar reach trajectory precision as well. Figure 3.4C shows
the average ME for the first and last 100 trials within the SmoothBatch session, as well as
average estimates from arm movements for comparison. The final reach kinematics parame-
ters (MV, ME, nor reach time) showed a significant dependence on seed type (KW-ANOVA,
p > 0.05). Performance improvements did, however, occur on different time-scales depending
on the initial decoder seed. Figure 3.4D shows the amount of time it took for performance
to exceed a threshold of 8 successful trials/min (left) and reach the maximum rate (right)
for each session, sorted by seed decoder type. A KW-ANOVA showed that time to reach the
8 trials/min threshold depended on seed type. VFB seedings, which contained the strongest
offline decoding power, improved significantly faster than all other types (p < 0.05). No
other significant differences among groups were found. The offline R2 power of the seed de-
coder showed weak correlations with time to reach threshold (Figure 3.4E). Pooling all data,
significant correlations were only found for px and py (R = −0.329, p = 0.014; R = −0.393,
p = 0.003, respectively). The time to reach threshold performance also showed no clear
relation to the distance (∆wPD) between the seed and final decoders (Figure 3.4F), sug-
gesting that algorithmic convergence/step size alone does not limit improvement. The time
to achieve maximum performance, however, showed no significant differences across groups
(Fig. 4(D); KW-ANOVA, p > 0.05) and no significant correlation with offline prediction
power or ∆wPD (not shown; p > 0.05).

22

Figure 3.4: SmoothBatch performance improvement across different decoder seeding types.
(A) Offline decoder prediction power for endpoint position and velocity (x and y components)
for all decoder seed types. Bars indicate mean across all performed sessions, error bars show
standard error of the mean. (B) Initial and maximum performance rates of SmoothBatch
sessions, separated by seed types. Points show individual sessions; bars and error bars show
mean and standard error of the mean, respectively. (C) Average movement error (ME) for
the first (early) and last (late) 100 trials during SmoothBatch adaptation, separated by
seed condition. Average ME across eight arm movement sessions (arm) are shown at right
for comparison. Format as in panel C. (D) SmoothBatch performance improvement times
(time for successes per minute to exceed 8 trials/min) and time to achieve the maximum
performance rate for all sessions and all decoder seed types. Format as in panel C. (E)
Relationship between seed decoder predictive power (R2 for x-component of position) and
time to reach threshold performance. Points are individual sessions, color-coded by seed
type, and line shows linear regression (R = −0.329, p < 0.05). (F) Relationship between
relative distance between seed decoder and final decoder’s velocity tuning models (∆wPD)
and time to reach threshold performance. Points are individual sessions, color-coded by seed
type, and line shows linear regression (not significant).

As seen by the wide spread in ∆wPD (3.4F), few initial seed decoders, even ones that
contained significant offline decoding power, had velocity PD assignments close to those of
the final SmoothBatch solution (note that on average, significant performance improvements
were not seen until ∆wPD < 6.52±4.48◦). A KW-ANOVA showed that ∆wPDs were signif-
icantly larger for baseline seeds than VFB (p < 0.05); no other groups showed statistically
significant differences.

23

3.4 Discussion
We found that the SmoothBatch CLDA algorithm, which updates on an intermediate timescale
(1–2 min), was able to improve closed-loop BMI performance rapidly and robustly, indepen-
dent of initial decoder seeding. The subject was readily able to achieve proficient center-out
task performance (88.04±5.3% success rate, 1.23±0.16 s reach times, 0.771±0.088 cm ME,
and 0.593±0.067 cm MV) across 56 experimental sessions. Importantly, improvements were
rapid (success rates exceeding 8 trials/min in an average of 13.1±5.5 min), and occurred reli-
ably in all sessions despite decoders being seeded using four different methods. Performance
was also maintained upon ceasing adaptation and holding the decoder fixed, with no drop
in task performance or reach times, and only slight (12%) increases in ME and MV.

Comparison across BMI studies represent a current challenge in the field [21]. Studies use
incongruous task designs and different types of neural activity, obscuring direct comparisons.
The use of different animal models (e.g., animals with arms free to move versus partial or
full movement restriction) across studies may further confound cross-study comparisons.
Furthermore, the field has not established standard metrics for performance evaluation,
limiting the ability to quantitatively compare results. In an effort to make this work more
readily comparable to future studies, we report performance metrics commonly used to
evaluate pointing-devices like computer mice (MV and ME). Comparisons to one human
BMI study (not explicitly utilizing CLDA or across-session learning) reporting MV and ME
metrics shows that SmoothBatch has markedly reduced mean ME and MV relative to their
best results ([17] MV: 1.2 cm, SmoothBatch 0.587 cm; [17] ME: 2.3 cm, SmoothBatch: 0.759
cm). Moreover, MV and ME results for SmoothBatch approach those of natural movements
(MV: 0.35±0.17 cm, ME: 0.44±0.20 cm; mean±std across 2025 trials in eight arm movement
session).

The success of SmoothBatch is a clear testament to the power of the CLDA principle [2,
5, 30, 31, 34, 35]. In the limit of long batch sizes and α = β = 0, Gilja et al.’s batch algorithm
is a special case of SmoothBatch. The longer data batches used by Gilja et al. allow for
more accurate parameter estimation, eliminating the need for averaging. However, waiting
to collect sufficient data for a single model update greatly reduces the update frequency, thus
reducing the rate at which the user sees performance improvements. In the work of Gilja
et al., using decoders seeded from contralateral arm movements and BMI performed during
overt arm movements, their subjects were able to attain > 90% task performance with the
seed decoder before any CLDA intervention. This initial high level of performance allows
for a significant improvement in reach kinematics after a single batch-based decoder update
[34, 35].

SmoothBatch, however, is ideally suited to address a different problem—how can we use
CLDA to generate a high-performance BMI given an initial decoder with severely limited
closed-loop performance? CLDA may be a particularly useful tool in clinical applications,
where many factors could limit initial closed-loop performance (see below). In these applica-
tions, collecting sufficient data for a batch-based decoder update is challenging. We recently
showed that when starting from poorly performing seed decoders, as many as 3–5 6-min

24

batch updates were required to produce adequate closed-loop BMI performance [32]. Fur-
thermore, the slow update rates reduce subject motivation, since subjects were required to
use poorly performing decoders for 6–10 min [32]. Though SmoothBatch sacrifices accuracy
in each parameter estimation step due to a smaller batch-size than the Gilja et al. algorithm,
the increased decoder update frequency provides the user with more rapid feedback and may
facilitate faster improvement.

The progress of improvements seen in SmoothBatch also further suggest that using CLDA
may involve a bootstrapping or co-adaptation process between the brain and decoder when
starting from limited closed-loop BMI performance. SmoothBatch required multiple decoder
update steps before performance improved significantly, progressing to gradually let the sub-
ject initiate trials, then reach a few targets, and finally reach all targets. This progression
may be due in part to the exponentially weighted averaging and short data-batches used.
However, the batch-sizes and half-lives used here correspond to relatively aggressive adapta-
tion rates (α = β ∈ [0.55, 0.77]) and on average, more than one half-life’s worth of updates
occurred before adequate performance was achieved. Moreover, we recently showed a similar
progression using purely batch-based algorithms [32]. This suggests that creating an opti-
mal decoder in a single update step may be highly infeasible when starting from severely
limited closed-loop performance. Instead, intermediate adaptation time-scale algorithms like
SmoothBatch provide the subject with more rapid feedback and gradually adapt the decoder,
facilitating a co-adaptation process and yielding rapid performance improvements.

SmoothBatch uses a sliding average of model parameter estimates based on small amounts
of data, which is similar to the approach used by Taylor et al. [5]. They also show that their
co-adaptive algorithm is able to yield proficient closed-loop BMI control when seeded with
randomly initialize parameters. This suggests that an intermediate time-scale adaptation
approach may ideal for such applications.

One concern in using an adaptive algorithm is convergence. Our previous work [32]
showed that a real-time adaptive CLDA algorithm [37] improved performance and increased
subject motivation via rapid updates, but temporally overfit the data causing performance
degradation after decoder adaptation ceased. Here, we show that SmoothBatch rapidly
converges (Figure 3.3). The subject was also readily able to maintain task performance
after decoder adaptation ceased, showing that the algorithm converged towards a general
task solution and avoided overfitting. C and Q matrices did exhibit small fluctuations (i.e.,
changes did not fully converge to zero, see Figure 3.3), however these did not noticeably
effect task performance, suggesting they may only be driven by behavioral and neural vari-
ability. It may also be possible to optimize batch size and half-life parameters to further
improve convergence. For instance, increasing the batch size as a function of task perfor-
mance could allow the algorithm to take large, rapid steps while the decoder is “far” from
a high-performance decoder, and smaller steps to fine-tune the model as it nears the final
solution. Additional work to fully optimize the batch and half-life parameters may also yield
yet faster improvement speeds.

The idea of CLDA involving a co-adaptation between the subject and decoder is further
implied by the fact that SmoothBatch’s improvement rate depended upon the initial decoder

25

seed. While SmoothBatch was able to improve performance regardless of the seed, decoders
seeded with neural activity during VFB improved more rapidly than arbitrary (baseline and
shuffled) or ipsilateral arm-movement (ipsi) seeds. VFB seeds had the highest level of of-
fline decoding power, consistent with observations that imagined/viewed movements evoke
motor cortex activity [38–40]. Times to achieve a threshold of eight successful trials/min
were weakly correlated with the decoder’s offline prediction power, suggesting that the algo-
rithm can more readily improve performance if initiated with decoder with some movement
decoding power.

However, our results also suggest that offline prediction power is not the sole factor
in how quickly SmoothBatch can improve performance. Ipsi decoder seeds had moderate
offline prediction power, greater than that of baseline and shuffled seeds, consistent with
findings of population-level representations of ipsilateral arm movements in motor cortex
[29]. Yet, no statistically significant differences in improvement times were detected between
ipsi, baseline or shuffled seeds. Furthermore, the times to achieve maximum performance
rates were uncorrelated with offline prediction power. This is consistent with the Taylor et
al. finding that the speed of adaptation did not differ when their co-adaptive population
vector algorithm was initialized with PD estimates from arm movements or with random
assignments [5].

Interestingly, we also found that on average the velocity tuning models for all seeds were
“far” from that of the final decoder, despite containing varying degrees of offline prediction
Figure 3.4D; only baseline seeds had significantly larger ∆wPD than VFB). This combined
with the observation that offline prediction power alone is not indicative of SmoothBatch
improvement rates, is consistent with the emerging notion that closed-loop BMI performance
is not necessarily related to open-loop predictions [23, 24]. The many differences between
BMI and natural movement — for instance congruent proprioceptive feedback is absent
during BMI — may significantly alter the neural activity of the motor networks [14, 40].
Performance improvements in SmoothBatch did not appear to be limited by relative dis-
tance between initial and final decoders (Figure 3.4D). However, the difference between the
subject’s evoked neural activity between arm movements and closed-loop control would in-
fluence his performance in BMI, possibly affecting this co-adaptation process by influencing
user strategy (e.g., causing frustration). We did see noticeable variability in improvement
times across all decoder seed types, which could be related to subject strategies/motivation
and the co-adaptation process. Additional work is needed to explore the exact mechanisms
underlying performance improvements and the aspects of a seed decoder that influence fi-
nal improvement. Such insights could yield further reductions in performance improvement
times.

In conclusion, here we show that SmoothBatch can readily improve performance in a
relatively short time, even with ill-conditioned seed decoders. Additional work to explore
SmoothBatch’s operation—the influence of adaptation parameters and the subject-decoder
co-adaptation process—could also further improve the algorithm’s operation. The ability to
quickly and robustly generate high-performance BMIs independent of the subject’s initial
closed-loop BMI performance could be useful for clinical applications. For paralyzed patients,

26

seeding decoders with arm movements is not feasible. Many patients will also lack propri-
oceptive feedback during closed-loop BMI operation, potentially limiting their performance
[14]. Furthermore, noninvasive human BMI studies have shown significant inter-subject
variability in the ability to volitionally modulate neural activity, which greatly impacts their
ability to operate BMIs [41]. All of the decoder seeding methods presented here are compat-
ible with many patient populations: VFB, baseline, and shuffled decoders could be created
for any patient regardless of motor disability, and ipsi seedings could be used for unilater-
ally paralyzed patients such as stroke victims. Our work shows that SmoothBatch CLDA,
an algorithm that updates the decoder on an intermediate time-scale during closed-loop
operation, can reliably improve BMI performance in all of these cases.

27

Chapter 4

Design considerations for CLDA
algorithms

The work presented in this chapter was performed in collaboration with Amy Orsborn,
Helene G. Moorman, and Jose M. Carmena, and was published in Neural Computation [42].

4.1 Introduction
The concept of Closed-Loop Decoder Adaptation (CLDA) has shown great promise as a
mechanism to both improve and/or maintain closed-loop BMI performance. A wide range
of CLDA algorithms have been developed and tested for various purposes (see Table 4.1 for
a sampling of prior work). While some CLDA algorithms strive to improve control accu-
racy when limited information is available to create an initial decoder [28], other algorithms
aim to maintain the control accuracy of already high-performing decoders [43]. While these
algorithms all represent implementations of CLDA, they are designed to operate in char-
acteristically different ways. Indeed, when developing a CLDA algorithm, there are many
different design choices to be made, including choosing the time-scale of adaptation, selecting
which decoder parameters to adapt, crafting the corresponding update rules, and designing
CLDA parameters. These decisions may significantly impact an algorithm’s performance.
For instance, a CLDA algorithm’s ability to improve closed-loop BMI performance may be
particularly sensitive to the time-scale at which it adapts decoder parameters [28, 32]. To
date, little work has been done to explore how algorithms’ design choices influence their per-
formance. Similarly, few techniques have been established to assess algorithms’ convergence
properties. Ideally, CLDA algorithms should be designed to make the decoder’s parameters
converge rapidly to or maintain values that are optimal for high-performance BMI control.
While conducting closed-loop BMI experiments is ultimately the only conclusive way to eval-
uate a CLDA algorithm’s convergence properties, such experiments are lengthy and costly.
Although closed-loop simulation methods [36, 44, 45] could potentially be used to study
convergence, these tools have not yet been used for this purpose. Aside from these tools,

28

there are currently limited methods for exploring the parameter space and predicting the
convergence properties of a prototype CLDA algorithm before experimental testing. Better
understanding how different design elements of a CLDA algorithm influences its closed-loop
performance and convergence will be critical to developing high-performance BMIs.

In this chapter, we present a general framework for the design and analysis of CLDA
algorithms. First, we identify and explore a core set of important design considerations that
frequently arise when designing CLDA algorithms. For instance, we evaluate the effects of an
algorithm’s time-scale of adaptation, which can significantly impact both the subject’s level of
engagement and the rate of performance improvements. Next, we underscore the importance
of selective parameter adaptation by demonstrating why adapting certain decoder parameters
can lead to undesired effects on performance. We then illustrate how smooth parameter
updates can help mitigate the impact of unreliable batches of data, especially when initial
performance is limited. Finally, we stress the importance of designing CLDA parameters
that are readily interpretable, a property which can help avoid conducting large parameter
sweeps and simplify parameter selection in experimental work.

We then introduce mathematical convergence analysis, using measures such as mean-
square error (MSE) or KL divergence, as a useful precursor to closed-loop experiments that
can further inform CLDA design and constrain the necessary experimental testing. We
choose the SmoothBatch CLDA algorithm [28] as a case study to demonstrate the utility
of our analysis. Our analysis predicts that SmoothBatch’s MSEs converge exponentially to
steady-state values, and that both these values and the rate of convergence are independent
of the decoder’s seeding method. Experimental data from two non-human primate subjects
across 72 sessions serves to support our predictions and validate our convergence measures.
Finally, guided by our convergence predictions, we propose a specific method to improve the
SmoothBatch algorithm by allowing for time-varying CLDA parameters. Overall, our study
of CLDA design considerations sheds light on important aspects of the design process, while
our mathematical convergence analysis serves as a useful tool that can inform the design of
future CLDA algorithms prior to conducting closed-loop experiments.

29

Table 4.1: Sampling of prior work on CLDA algorithms. The CLDA focus represents how
each particular algorithm was used in its respective study.

CLDA
Algorithm Decoder CLDA focus Form of CLDA updates

[5]
Population

vector
algorithm

improving from
low performance

iterative refinement of
tuning properties based on
current performance, errors
from most recent block,
and best weights from a

past block

[2] Kalman
filter

improving from
low performance

batch maximum likelihood
estimation using data from
a trial-by-trial sliding block

[30] Kernelized
ARMA

maintaining
performance

replacement of old
examples in training set

with new examples

[35] Kalman
filter

improving from
moderate-to-

high
performance

batch maximum likelihood
estimation

[46] Wiener
filter

maintaining
performance

remapping of a lost
neuron’s decoder weights
using next closest neuron’s

weights

[31]

Time-
Delayed
Neural
Network

improving and
maintaining
performance

decoder adapted within a
reinforcement learning
(actor-critic) framework
using an error signal

representing the gradient of
user’s reward expectation

[43] Kalman
filter

maintaining
performance

Bayesian regression
self-training updates

[37]
Adaptive KF

Kalman
filter

improving from
low performance stochastic gradient descent

[28]
SmoothBatch

Kalman
filter

improving from
low performance

weighted average of current
parameters with new batch

maximum likelihood
estimates

[18] Kalman
filter

improving from
low performance

iteratively updated filter
parameters during

successive closed-loop
calibration blocks

30

4.2 Methods

4.2.1 Experimental procedures

CLDA algorithms were experimentally tested using intracortically recorded neural activity
from two non-human primates. Electrophysiology and behavioral protocols have been previ-
ously described in [32] and [28]. Briefly, 128-electrode microwire arrays (35 µm diameter, 500
µm wire spacing, 8×16 array configuration; Innovative Neurophysiology, Durham, NC) were
implanted in both brain hemispheres of two adult male rhesus macaque monkeys. Arrays
were positioned to target the arm areas of primary motor cortex (M1), and due to their size,
extended rostrally into dorsal premotor cortex (PMd). Unit activity was recorded using a
combination of two 128-channel MAP and OmniPlex recording systems (Plexon Inc, Dallas,
TX). Single and multi-unit activity was sorted using an online sorting application (Plexon
Inc, Dallas, TX), and only units with well-identified waveforms were used for BMI control.

Monkeys were head restrained in a primate chair and observed a task display via a
computer monitor projecting to a semi-transparent mirror parallel to the floor. They were
trained to perform a self-paced 2D center-out reaching task to 8 circular targets uniformly
spaced around a circle. During BMI operation, the subjects’ arms were confined within the
primate chair as they performed the task by moving the cursor under neural control. Figure
4.1 shows an illustration of the task set-up and trial timeline. Reach targets were presented
in a block structure of 8 targets with pseudo-randomized order within each block. Targets
were spaced 7 cm (subject 1) or 6.5 cm (subject 2) away from the center. Target sizes of
1.2–1.7 cm radius, center and target holds of 250–400 ms, and reach times of 3–5 s were used.
All procedures were conducted in compliance with the National Institutes of Health Guide
for Care and Use of Laboratory Animals, and were approved by the University of California,
Berkeley Institutional Animal Care and Use Committee.

31

Task Goals

intended kinematics
(inferred)

Decoder
modi�caton

Recorded
Neural
Activity

Actuator

Visual
Feedback

position or
velocity

movement

Decoding
Algorithm

Bayesian
Regression

evaluative
feedback
signals

Decoder

1

2

6

3

5

4

87

7cm

Target
Cue

Go
Cue

Hold
(400ms)

At
Target

Center
Appears

Move to
center

Reach
(< 3s)

Reward

Hold
(400ms)

1

2

6

3

5

4

87

7cm

A B

C

Brain-ControlArm Movement

D

-

Figure 4.1: Experimental set-up and Closed-Loop Decoder Adaptation (CLDA).
Illustration of the experimental task set-up for arm movements (A) and closed-loop BMI
experiments (B), and trial timeline for the center-out task (C). Panel D illustrates the concept
of Closed-Loop Decoder Adaptation. The decoder is modified as a subject uses it in closed-
loop control (gray). The signals used to modify the decoder can be attained in several ways,
including using 1) task-goals to infer a subject’s intentions (orange), 2) Bayesian methods
to self-train the decoder (green), or 3) neural signals (purple).

32

4.2.2 Decoding Algorithm

All experimental sessions used a Kalman filter (KF) as the decoding algorithm during closed-
loop control, with binned neural firing rates as the choice of neural features. Online BMI
control was implemented using PlexNet (Plexon Inc, Dallas TX) to stream neural data on a
local intranet from the Plexon recording system to a dedicated computer running MATLAB
(The Mathworks, Natick, MA). Neural firing rates were estimated with a 100 ms bin width.
Neural ensembles of 16-36 (26.5± 4.45; mean±STD) neurons were used. Units were selected
only based on waveform quality.

Each test of a CLDA algorithm used a decoder initialized using one of the five of methods
described in Section 2.3:

1. Visual Feedback (n = 32)

2. Contra (n = 2)

3. Ipsi (n = 8)

4. Baseline (n = 17)

5. Shuffled (n = 13)

The structures of the KF state transition model parameters (A and W) were constrained
during fitting to obey physical kinematics, such that integrating the velocity from one KF
iteration perfectly explains position at the next iteration (see [27] for further details). As
discussed below, these parameters were typically held fixed during CLDA. In order to allow
for BMI control that would mimic natural arm movements as much as possible, A and W
were fit for all seeding methods using a 30-minute data set of arm movements collected while
the subject performed the center-out task in manual control. In experiments where A andW
were adapted (see Section 4.3; VFB and contra seeds only), these matrices were initialized to
their maximum-likelihood estimates calculated from the recorded kinematic data collected
specifically for seeding. For seeding methods 1–4, the KF observation model parameters, C
and Q, were seeded using batch maximum-likelihood estimates based on 8 minutes of neural
and kinematic data.

4.2.3 KF CLDA Algorithms

In the following sections, we review some existing CLDA algorithms for KF decoders that
will be compared within our analyses. These algorithms update the decoder as the subject
performs the center-out task in closed-loop BMI control. For each algorithm, the subject’s
intended cursor kinematics are inferred from the observed kinematics using the method
developed by Gilja et al. [27], which assumes that the subject always intends to move in

33

a straight line towards the target, and rotates observed cursor velocities accordingly. For
reasons discussed in Section 4.3, we typically only update the KF decoder’s observation
model parameters (see Section 4.3). As such, update rules for only the C and Q matrices are
given below for each CLDA algorithm. (The Batch algorithm’s update equations for A and
W , when these parameters are also adapted, are presented in [28]). Each time new values
for these decoder parameters are calculated, they are immediately used in the decoder as
part of subsequent BMI control.

4.2.3.1 Batch maximum likelihood estimation

One paradigm for KF CLDA algorithms entails collecting data and processing the entire
batch at once to update the decoder’s parameters. In this approach, the updated C and Q
matrices are set to their maximum likelihood estimates based on the batch of data. We refer
to this method as the Batch algorithm. The Batch algorithm’s update rules are

Ĉ = Y XT
(
XXT

)−1 (4.1)

Q̂ =
1

N

(
Y − ĈX

)(
Y − ĈX

)T
(4.2)

where the Y and X matrices are formed by tiling N columns of recorded neural activity
and kinematics, respectively. The size of the data batch is parametrized by the batch period
Tb , N · dt (where dt is the time between KF decoder iterations).

4.2.3.2 Adaptive Kalman Filter

The Adaptive Kalman Filter (Adaptive KF or AKF; [37]) is a CLDA algorithm designed to
update the KF’s observation model parameters at every decoder iteration, which corresponds
to every 100 ms in our experiments. If we let i index discrete decoder iterations, the Adaptive
KF’s update rules are

C(i+1) = C(i) − µ
(
C(i)xt − yt

)
xTt

Q(i+1) = αQ(i) + (1− α)
(
yt − C(i+1)xt

) (
yt − C(i+1)xt

)T
where yt and xt represent neural firing rates and an estimate of the user’s intended kinematics,
respectively, at time t1. The update rule for C is derived by writing this matrix as the
solution to an optimization problem, and then using stochastic gradient descent with step-
size µ to iteratively make small corrections to it at every decoder iteration. The Adaptive
KF’s update rule for Q, on the other hand, is of heuristic form, and effectively represents a
weighted average (with parameter α ∈ [0, 1]) of the current value of Q with a single-iteration
estimate of Q.

1Note that here, t actually equals i. However, we choose to maintain both as separate indices in order
to be consistent with other algorithms such as SmoothBatch, where they are different because the decoder
is not updated at every iteration.

34

4.2.3.3 SmoothBatch

The SmoothBatch CLDA algorithm [28] periodically updates the KF decoder’s observation
model (C and Q matrices) by performing a weighted average of the current parameters
with those estimated from a new batch of data using the Batch algorithm. The observed
neural activity and intended cursor kinematics are collected over one batch period. This
batch of data is then used to construct new Batch estimates, Ĉ and Q̂, of the C and Q
matrices using (4.1) and (4.2). Finally, the observation model parameters are updated using
a weighted average:

C(i) = (1− ρ) Ĉ(i) + ρC(i−1) (4.3)
Q(i) = (1− ρ) Q̂(i) + ρQ(i−1) (4.4)

where i indexes discrete batch periods and the weighting parameter ρ ∈ (0, 1) controls the
influence of Ĉ and Q̂ on the new parameter settings.

4.3 CLDA Design Principles
The development of a CLDA algorithm involves making multiple crucial design decisions
such as:

• how often to apply update rules (the time-scale of adaptation)

• whether or not to update all decoder parameters

• how to update decoder parameters (the actual parameter update formulas or “update
rules”)

• how to set CLDA algorithmic parameters (e.g., step-sizes or learning rates)

Ideally, these design choices should enable a CLDA algorithm to make the decoder’s pa-
rameters converge rapidly to or maintain values that are optimal for high-performance BMI
control. In the following sections, we explore these design choices by examining various as-
pects of the Batch, Adaptive KF, and SmoothBatch CLDA algorithms. We focus primarily
on SmoothBatch, which has been demonstrated to improve BMI control accuracy even when
initial performance is severely limited due to an unfavorable seeding [28]. For instance, with
patients such as paralyzed individuals or amputees that would be likely clinical targets of
BMI technology, seeding methods involving overt movements wouldn’t be feasible, and there-
fore other methods that typically result in a lower level of initial performance would need to
be used. Despite our focus on SmoothBatch, however, we will see that many of its design
properties are likely to be shared by other CLDA algorithms, even when their underlying
purpose is characteristically different.

35

4.3.1 Time-scale of adaptation

A CLDA algorithm’s time-scale of adaptation refers to the frequency with which its update
rules are applied to adapt the decoder’s parameters. In a clinical setting with paralyzed
patients, initial closed-loop BMI performance may be limited. As such, it is critical to de-
velop CLDA algorithms capable of rapidly improving control accuracy regardless of initial
performance. Given the subject-decoder interactions inherent in closed-loop BMI systems,
the time-scale of adaptation may be particularly important in these situations. Indeed, pre-
vious work comparing two CLDA algorithms (the Batch and AKF algorithms) operating
on different time-scales showed that the adaptation frequency can have a significant impact
on CLDA performance [32]. We recently showed that the SmoothBatch algorithm, when
operating on an intermediate time-scale (1-2 minutes), successfully and robustly improves
performance independent of the initial decoder [28]. Here, we extend these results by com-
paring experimental data from the Batch, AKF, and SmoothBatch algorithms to highlight
the role of adaptation time-scale.

All three CLDA algorithms were experimentally tested with one non-human primate
subject2, starting from limited task performance (Batch and AKF using VFB seeds, n = 7
and n = 2, respectively; SmoothBatch using VFB, Ipsi, Baseline, and Shuffled seeds, n = 64).
For all algorithms, the state transition model (A and W) was held fixed. Sessions selected
for comparison had comparable task settings and neural ensemble sizes. Figure 4.2A shows
examples of the Batch, AKF, and SmoothBatch algorithms’ performance in representative
sessions. The evolution of task performance is illustrated with moving averages (75 trial
window) of percentages of trial outcomes (i.e. success, reach-error, or hold error; upper
panels) and rates of each task event (estimated via binning events in 120 s non-overlapping
bins; lower panels). Each CLDA algorithm was able to improve performance, as evidenced
by increases in success percentages and rates, and corresponding decreases in errors during
adaptation. However, the algorithms differ significantly in how well the subject is able to
maintain performance after adaptation ceases (i.e., when using a fixed decoder). For both the
Batch and SmoothBatch algorithms, the subject readily maintained performance upon fixing
the decoder. However, for the AKF, task performance (both success percentage and rate)
dropped significantly after CLDA was ceased. Performance changes were assessed in two
ways. First, we compared the maximum success rate during adaptation with the maximum
rate during first 15 minutes of using the fixed decoder. Second, we compared the success
percentage during the last 50 trials during adaptation to that of the first 50 trials with the
fixed decoder. Figure 4.2D depicts the percent change in the success rate for all sessions,
sorted by CLDA method. Batch (n = 7) and SmoothBatch (n = 64) showed no significant
changes in performance (Wilcoxon paired test, p > 0.05). Note that a decoder update
occurs between the adapt and fixed portion for the Batch algorithm, which may explain the
slight (though not statistically significant) increase in performance observed. Only one AKF

2The Batch and AKF algorithms were not tested in the second subject. Two SmoothBatch sessions
in subject 1 did not have sufficient data with the fixed decoder to assess the post-CLDA maintenance of
performance, and thus were excluded from our analysis.

36

session had sufficient data with a fixed decoder to allow for comparison, but this session
shows a very large drop in performance. Success percentages showed identical trends (Batch
and SmoothBatch had no significant change; Wilcoxon paired test, p > 0.05; not shown).

The adaptation time-scale also has a significant influence on the rate of performance
improvements. Improvement slopes were quantified by computing the change in success
rate (or percentage) from the start of adaptation to the maximum achieved during adap-
tation, and dividing by the time required to achieve that maximum performance. Figure
4.2E shows the success rate improvement slope for all sessions sorted by CLDA algorithm.
SmoothBatch shows significantly faster improvements than both Batch and AKF algorithms
(Kruskal-Wallis analysis of variance, p < 0.05). The AKF improves most slowly, though
not statistically significant from that of Batch. Identical trends were found when comparing
percentage-based slope estimates.

One key aspect of the adaptation time-scale is the frequency with which the subject sees
improvements in performance. This may be particularly important when starting from lim-
ited performance when the subject has little to no ability to control the cursor. For instance,
the Batch algorithm requires the subject to persist in trying to use this poorly performing
decoder for long periods of time, which may cause frustration, lack of motivation, or highly
variable user strategies. By contrast, the AKF and SmoothBatch give the subject feedback
more rapidly, keeping them more engaged in the task and potentially avoiding these user-
related complications that could hinder the algorithm’s progress. Subject engagement was
assessed by calculating the number of trials the subject attempted to initiate (via entering
the center target) during the first 10 minutes of CLDA. Here, only sessions with VFB seeds
were used to avoid potential differences due to the initial decoder [28]. Figure 1F shows that
the subjects initiated significantly more trials in SmoothBatch sessions than Batch sessions
(Kruskal-Wallis analysis of variance, p < 0.05). AKF sessions similarly show more trial ini-
tiations, though not significantly different from Batch or SmoothBatch. This suggests that
increasing the frequency of user feedback can indeed increase user engagement. Increased
engagement, in turn, likely contributes to the CLDA algorithm’s ability to improve perfor-
mance. Together, these analyses show the importance of the CLDA algorithm time-scale
when starting from limited initial performance.

37

0 10 20 30
0

50

100

P
er

ce
nt

0 10 20 30
0

5

10

E
ve

nt
s/

M
in

Time (min)

0 50 100
0

50

100

P
er

ce
nt

0 50 100
0

5

10

E
ve

nt
s/

M
in

Time (min)

0 20 40
0

50

100

P
er

ce
nt

0 20 40
0

5

10

E
ve

nt
s/

M
in

Time (min)

-50

0

50

B
at

ch

AK
F SB

P
er

ce
nt

 C
ha

ng
e

0

0.5

1

1.5

B
at

ch

AK
F SB

Im
p

ro
ve

m
en

t
S

lo
p

e
((e

ve
nt

s/
m

in
) /

 m
in

)

0

50

100

150

B
at

ch

AK
F SB

In

iti
at

ed
 T

ria
ls

Adapt Fixed

Adapt

AKF

SmoothBatch

Batch

Fixed

Adapt Fixed

Success
Hold Error
Reach Time-Out

A

B

C

D

E

F

Figure 4.2: Performance comparison of three CLDA algorithms that operate on
different time-scales. (A) Experimental performance for each algorithm calculated using
both moving averages (75 trial window) of percentages of trial outcomes (i.e. success, reach-
error, or hold error) and rates of each task event (estimated via binning events in 120 s
non-overlapping bins). (D) Percent change in the success rate across all sessions, sorted by
CLDA algorithm. (E) Improvement slope of the success rate for all sessions, sorted by CLDA
algorithm. (F) Number of trials the subject attempted to initiate (via entering the center
target) during the first 10 minutes of CLDA.

38

4.3.2 Selective parameter adaptation

BMI decoding algorithms are often characterized by several different parameters. For in-
stance, a KF decoder is parametrized by four matrices, {A,W,C,Q}, each with different
physical interpretations within a cursor control BMI system. A and W characterize the
state transition model and represent cursor kinematics, while C and Q form the observation
model that represents the mapping between neural activity and cursor movement. The KF
combines these two models in a recursive algorithm to predict cursor movement, and its con-
fidence in the models (related to the covariance matrices W and Q) ultimately determines
their relative contributions to the final state estimate via a Kalman gain matrix, K.

A priori, a KF CLDA algorithm should adapt all four matrices since they all contribute
to the final observed cursor movement. Indeed, previous work with Batch-based KF CLDA
updated all KF parameters [27]. However, experimental evidence reveals that repeated adap-
tation of the full KF model, as is often needed when starting from limited initial performance
(see Section 4.3.1), can have negative consequences. In particular, decoded cursor velocities
show marked decreases with each successive update of KF parameters. Analysis of the ma-
trices across consecutive CLDA updates reveals a clear explanation for these consequences.
Figure 4.3A shows the changes (relative to their initial values) in the cursor velocity and
norms of the Kalman gain (top), and KF matrices (transition model, middle; observation
model, bottom) across Batch CLDA sessions where the full KF is adapted. Thick lines show
the mean across all sessions (n = 9; 4 VFB seeds, 5 Contra seeds), and shading shows stan-
dard error. (Note that not all sessions contained the same number of Batch CLDA updates.)
The mean predicted cursor speed decreased significantly with each CLDA update. Inter-
estingly, the Kalman gain shows a parallel decrease in amplitude (estimated via the matrix
norm). Inspecting the KF matrices reveals large and rapid decreases in W and significant
increases in C. A and Q matrices, by contrast show no clear trends. Inspection of matrices
shows that W typically decreases by an order of magnitude over the course of CLDA.

As noted above, the covariance matrix W plays a crucial role in determining the relative
contributions of the state and observation models. Smaller W matrices indicate that the KF
is more confident in its linear state transition model, and thus will give less weight to the
neural data when forming a prediction (reflected by a smaller Kalman gain). We see that
the state transition model, A, does not change significantly, but rather that the confidence in
this model increases with each CLDA update. State transition models in BMIs (and models
of natural arm movements) typically have damped velocity dynamics [27]. Thus, decreasing
the weight on the system input — the neural data — inherently reduces cursor velocity. As
such, the observed decreases in W likely contribute significantly to the cursor slowing found
with CLDA updates.

To test this hypothesis, consecutive Batch updates were performed while holding the
state transition model (A and W) fixed. The speed, Kalman gain, and KF matrices for
these sessions are shown in figure 4.3B (formatting identical to 4.3A; n = 19, all VFB
seeds). Here, we see that fixing A and W eliminates cursor slowing. In fact, cursor speeds
show a slight increase, accompanied by small increase in the Kalman gain. Changes in the

39

observation model are similar to changes in sessions where all matrices were adapted. This
selective adaptation improved performance more successfully than full adaptation because
it did not inherently limit cursor velocity.

While all KF matrices contribute to cursor movement, and thus are candidates for adap-
tation, it is important to consider their physical interpretations and the system as a whole
before selecting what parameters to adapt. Given that the state transition model represents
cursor kinematics, intuition suggests that the model should not change dramatically. In fact,
the A matrices show little to no change, as expected. However, the cursor movements used
for decoder parameter updates are themselves generated by a KF with kinematics specified
by the decoder. Thus, the KF becomes increasingly confident in its model of cursor move-
ment, driving decreases in W and corresponding decreases in cursor speed. If we instead
interpret the KF as having a fixed model of cursor kinematics, and only adapt the map-
ping between the subject’s neural activity and cursor movement, we avoid this problem of
recursively refitting a dynamics model on itself. For this reason, SmoothBatch only modifies
the C and Q matrices of the KF. Similarly, other CLDA algorithms for the KF update only
these parameters as well [43].

BMI decoders typically contain multiple parameters, and therefore deciding which pa-
rameters to update is an essential design choice for CLDA algorithms. Our experiments have
demonstrated that CLDA algorithms for KF decoders should not adapt the state transition
model parameters, as this leads to reductions in cursor velocity and other undesirable ef-
fects. More generally, these results may suggest that it is undesirable to update any decoder
parameters that represent a prior model on movement. Instead, CLDA algorithms should
primarily focus on adapting parameters that represent the mapping between the subject’s
neural activity and their intended movements.

40

0 1 2 3 4 5
-100

-50

0

0 1 2 3 4 5 6

0

50

100

0 1 2 3 4 5

-100

-50

0

R
el

at
iv

e
ch

an
ge

 (%
)

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5

0

200

400

Number of CLDA Updates
0 1 2 3 4 5 6

0

200

400

Number of CLDA Updates

Mean Cursor Speed
Norm(K)

Norm(A)
Norm(W)

Norm(C)
Norm(Q)

Norm(C)
Norm(Q)

Norm(A)
Norm(W)

Mean Cursor Speed
Norm(K)

A B

Figure 4.3: Advantages of CLDA with selective parameter adaptation for a
Kalman filter decoder. Changes (relative to their initial values) in mean cursor speed and
norm of the Kalman gain (top row), and KF model matrices (middle and bottom rows) across
Batch CLDA sessions. (A) Adaptation of all KF parameters {A,W,C,Q} leads to dramatic
decreases in cursor speed. (B) Selective adaptation of only the KF state observation model
parameters {C,Q} avoids undesirable decreases in cursor speed.

41

4.3.3 Smooth decoder updates

CLDA algorithms typically collect and process real-time data, such as the user’s neural
activity and BMI cursor movements, to form parameter updates that will improve per-
formance. However, occasionally an algorithm may encounter unreliable data that, if not
properly addressed, can have a negative impact on performance. For instance, if the BMI
user is distracted or not paying attention for a short time during data collection, the pa-
rameter updates formed from that data could be inaccurate. Such unreliable data can be
especially concerning for certain types of CLDA algorithms, such as the Batch algorithm.
In these types of algorithms, new parameter estimates completely overwrite and replace the
decoder’s current parameters at every CLDA update. Whenever the algorithm encounters
unreliable data, current decoder parameters are replaced with new, inaccurate estimates, and
the BMI user could struggle to adapt accordingly. One potential solution to this problem is
to detect unreliable data and reject it, using either an automated algorithm or manual super-
vision. However, for CLDA algorithms that aim to improve control accuracy when starting
from low performance, most initially collected data is at least to some degree “unreliable”.
For example, a 2D BMI cursor’s movements can often appear random and not goal-directed
when initial control is severely limited. In these situations, the subject could either be (un-
successfully) attempting to control the cursor, or simply distracted and disengaged from the
task. Since it is difficult to distinguish between these cases and reject the unreliable data,
a CLDA algorithm has no choice but to operate on the entire dataset. In addition, since
the cursor in this example may not explore the full workspace, there may not be sufficient
variability in the corresponding collected batch of data to form accurate parameter estimates
that could enable cursor control in all directions.

For CLDA algorithms that aim to operate from limited initial performance, one proven
solution to encountering unreliable data is to perform smooth decoder updates. For instance,
the SmoothBatch algorithm [28] is designed to facilitate gradual updates of parameters,
rather than completely overwriting them. SmoothBatch performs a weighted average of
current parameters with new parameter estimates, which helps prevent a single unreliable
batch of data from causing drastic parameter changes that could impede improvements in
performance. If fact, it can be shown that SmoothBatch’s update rules can be formally
interpreted as the solutions to the following optimization problems:

C(i) = arg min
C

[
(1− ρ)

∥∥∥C − Ĉ(i)
∥∥∥2

F
+ ρ

∥∥C − C(i−1)∥∥2
F

]
(4.5)

Q(i) = arg min
Q

[
(1− ρ)

∥∥∥Q− Q̂(i)
∥∥∥2

F
+ ρ

∥∥Q−Q(i−1)∥∥2
F

]
(4.6)

42

where ‖M‖F denotes the Frobenius norm of a matrix M , which is defined as:

‖M‖F ,

√∑
i

∑
j

|mij|2 =
√

Tr (MTM). (4.7)

The cost functions in (4.5) and (4.6) are designed to meet two competing objectives: pro-
ducing updated parameters that are near the batch maximum likelihood estimates, yet still
close to the previous parameter setting. SmoothBatch’s update rules therefore achieve a
balance of both objectives that can be adjusted as desired by setting the weighting param-
eter ρ ∈ (0, 1). For instance, as ρ → 1, the cost functions increasingly penalize deviations
from the previous parameter setting, C(i−1) and Q(i−1), forcing SmoothBatch to make very
smooth parameter updates. As ρ → 0, the cost functions instead penalize deviations from
the Batch parameter estimates, Ĉ(i) and Q̂(i). In the special case of ρ = 0, SmoothBatch
reduces to the Batch algorithm:

C(i) = Ĉ(i) and Q(i) = Q̂(i).

Therefore, SmoothBatch is effectively a regularized version of the Batch algorithm that di-
rectly aims to achieve smooth parameter updates. When initial BMI performance is limited
and unreliable data is difficult to avoid, CLDA algorithms like SmoothBatch that ensure
smoothness in their parameter updates can avoid large, disruptive parameter changes. By
mitigating the impact of unreliable batches of data on performance, CLDA algorithms with
smooth parameter updates can help ensure that a high level of BMI performance will even-
tually be reached.

4.3.4 Intuitive CLDA parameters

CLDA parameters refer to the step-sizes, learning rates, and other algorithmic parameters
of a particular CLDA algorithm. The ability of a CLDA algorithm to effectively facilitate
BMI performance improvements will greatly depend on the settings of these CLDA param-
eters. Note that these are distinct from decoder parameters such as the KF model matrices
{A,W,C,Q}. A common approach to identifying a favorable setting of algorithmic param-
eters is to conduct a rigorous parameter sweep. While this technique works well offline, it
is often infeasible in an online experimental setting, especially if any CLDA parameters lack
intuitive interpretations. If there is no reference for what a parameter’s order of magni-
tude should be, the parameter test space increases significantly, making a vast parameter
sweep time-consuming or even infeasible. Given the inherent time constraints involved when
performing closed-loop BMI experiments, this approach quickly becomes impractical.

In contrast, designing CLDA parameters with intuitive interpretations can greatly sim-
plify parameter selection. As an example, the SmoothBatch algorithm’s weighting parameter
ρ is designed to implement a clear and intuitive linear trade-off between achieving the max-
imum likelihood estimates of parameters and maintaining the current parameter setting.

43

Since ρ is restricted to the range [0, 1], the experimenter can perform a much more focused
parameter sweep in order to identify an appropriate value. In addition, the clear interpre-
tation of both boundary values helps provide an intuitive feel for the parameter. Moreover,
another useful interpretation of ρ can be obtained by recursively expanding SmoothBatch’s
update rule (e.g., for C):

C(i) = (1− ρ) Ĉ(i) + ρC(i−1)

= (1− ρ) Ĉ(i) + ρ
(

(1− ρ) Ĉ(i−1) + ρC(i−2)
)

= . . .

= (1− ρ)
(
Ĉ(i) + ρĈ(i−1) + . . .+ ρiĈ(1)

)
+ ρiC(0)

= (1− ρ)
i∑

j=0

ρjĈ(i−j) + ρiC(0) (4.8)

where C(0) represents the initial (seed) value of the matrix. From this expansion, we see
that SmoothBatch’s update rules effectively implement an exponentially-weighted moving
average of past maximum likelihood estimates. In other words, the weights attached to past
maximum likelihood estimates experience exponential decay. Thus, in addition to being a
weighting parameter, ρ also has an intuitive interpretation as the weighting factor of an
exponentially-weighted moving average.

Furthermore, this reformulation reveals another intuitive parametrization of the algo-
rithm. Since the maximum likelihood estimates

{
Ĉ(i), i ≥ 1

}
occur Tb seconds apart, one

can define a “half-life” h as

ρh/Tb =
1

2
. (4.9)

The half-life h represents the time it takes for a previous maximum likelihood estimate’s
weight in the decoder to be reduced by a factor of two. Therefore, the SmoothBatch CLDA
parameters {Tb, ρ} can be conveniently reparametrized as {Tb, h}. Since the batch period
and the half-life both have units of time, this reparametrization provides yet another intuitive
representation of SmoothBatch’s CLDA parameters.

Overall, the multiple interpretations of ρ and its ability to be reparametrized into the
half-life demonstrate the intuitive nature of SmoothBatch’s algorithmic parameters. When
a CLDA algorithm is designed like SmoothBatch to have CLDA parameters with clear and
intuitive interpretations, appropriate values of these parameters will be simpler to choose
in an experimental setting, thereby maximizing the algorithm’s ability to rapidly improve
closed-loop performance.

4.4 Convergence Analysis
Ideally, CLDA algorithms should be designed to make the decoder’s parameters converge
rapidly to or maintain values that are optimal for high-performance BMI control. Pre-

44

sumably, for every decoding algorithm there exist optimal settings of decoder parameters
that allow the user to maximize BMI performance. Since decoder parameters are typically
continuous-valued, it is unrealistic to expect a CLDA algorithm to achieve an optimal pa-
rameter setting exactly. Instead, a CLDA algorithm should aim to make decoder parameters
converge close to an optimal setting. Analyzing the design of a CLDA algorithm with respect
to this objective raises multiple important questions. How close to this optimal setting will
decoder parameters converge? How fast does convergence occur? How do CLDA parameters
affect convergence, and what tradeoffs are inherent in the choices of these parameters? How
does the decoder’s seeding method affect convergence? While conducting closed-loop BMI
experiments is ultimately the only definitive way to address these questions conclusively,
such experiments are often lengthy and costly.

Developing a method to predict and analyze the convergence properties of CLDA algo-
rithms, before testing them experimentally, would greatly facilitate and expedite the CLDA
algorithm design process. While closed-loop simulation methods could potentially be used to
study convergence, these tools have not yet been used for this purpose [36, 45]. In this section,
we explore a novel paradigm — mathematical convergence analysis under reasonable model
assumptions. Using mean-square errors and KL divergence to quantify a CLDA algorithm’s
convergence ability, we can analyze how an algorithm will perform under different settings
of its CLDA parameters. To demonstrate the utility of our analysis, we apply our measures
to the SmoothBatch algorithm to make predictions about and gain insight into its conver-
gence properties. Experimental testing with two monkeys performing a BMI task across 72
sessions validates the utility of our convergence measures. These results demonstrate that
mathematical convergence analysis is an effective analytical tool that can ultimately inform
the design of CLDA algorithms.

4.4.1 Proposed convergence measures

Each time a CLDA algorithm’s update rules are applied, some of the decoder’s parameters
are changed. If we consider the evolution of one of these parameters as forming a sequence,
we can then investigate whether this sequence will converge near the corresponding optimal
parameter value. Notationally, we use a superscript (i) to denote the ith term in the sequence.
For example, θ(0) denotes the initial (seed) value of a parameter θ, θ(1) denotes its value after
the first CLDA update, and so on.

Let θ∗ denote the optimal value of some parameter θ. To quantify convergence, we seek
some measure of the deviation of θ(i) from θ∗. One candidate measure is the difference
between the expected value of θ(i) and the optimal value θ∗:

E
[
θ(i)
]
− θ∗

Intuitively, one might expect that if a CLDA algorithm is effective at improving BMI per-
formance, then for each decoder parameter θ, this difference should tend towards 0 as more

45

parameter updates are performed:

lim
i→∞

E
[
θ(i)
]
− θ∗ = 0.

Despite its simplicity, however, a critical shortcoming of this condition is that it is only a
first-order convergence measure. In other words, it does not provide any measure of the
“variance” of θ(i) around θ∗, which could be very large even if the first-order condition holds.
To measure this variance, we consider the following second-order measure, the (normalized)
Mean-Square Error (MSE)3 of a parameter θ at update iteration i:

MSE(i) (θ) ,
E
[∥∥θ(i) − θ∗∥∥2

F

]
‖θ∗‖2F

. (4.10)

Note that in the above definition, the added normalization ensures that MSE(i) (θ) is not
affected by the general scaling of the parameter θ.

While a highly performing decoder will necessarily have low MSEs, all decoders with the
same MSEs may not necessarily result in the same performance. Because of this problem,
we propose using an additional, more probabilistic convergence measure, KL divergence
(KLD), to support our analysis. Our intuition for using KL divergence is as follows. Let xN1
and yN1 be shorthand notation for observed intended kinematics {xt}Nt=1 and neural activity
{yt}Nt=1, respectively. In addition, let θ(i) and θ∗represent the set of decoder parameters at
update iteration i and the optimal set of parameters, respectively (and let pθ(i) and pθ∗ be
the distributions on

{
xN1 , y

N
1

}
induced by these parameter sets). Then the KL divergence

between θ∗ and θ(i) is:

KLD
(
θ(i)
)

= DKL (pθ∗‖pθ(i))

= E

[
log

p
(
xN1 , y

N
1 |θ∗

)
p (xN1 , y

N
1 |θ(i))

]
.

= E
[
log p

(
xN1 , y

N
1 |θ∗

)]
− E

[
log p

(
xN1 , y

N
1 |θ(i)

)]
where we have defined the shorthand notation KLD

(
θ(i)
)
. In other words, it is the dif-

ference between the expected log likelihood under the distributions induced by θ∗ and θ(i),
respectively. Our intuition for using KL divergence as a convergence measure is as follows: if
KLD (θ1) = KLD (θ2) for two sets of parameters θ1 and θ2, then the averaged probability of
observing

{
xN1 , y

N
1

}
is the same under both θ1 and θ2. In other words, the KL divergence has

a probabilistic interpretation of equality that is not present with MSE, our first convergence
measure.

3We have invoked the expectation operator E [·], because θ(i) is random variable before conducting
a closed-loop CLDA experiment. However, after an experiment has been conducted, MSE is no longer
a random quantity, but rather a sequence (indexed by i) that can be calculated from the corresponding
sequence

{
θ(i), i ≥ 0

}
(see Appendix for proposed methods of choosing θ∗). Therefore, it is important to

note that experimental traces of MSEs are actually just SEs (“squared errors”).

46

4.4.2 Case study: SmoothBatch algorithm

The convergence measures that we have proposed are general enough to apply to a large class
of decoders and CLDA algorithms. However, to concretely demonstrate the application of
these convergence measures to a real CLDA algorithm, we choose the SmoothBatch algorithm
as a specific example in the sections that follow. SmoothBatch updates the observation
model parameters of a Kalman filter decoder by periodically performing a weighted average of
current parameters with maximum likelihood estimates from a new batch of data (see Section
4.2.3.3). The SmoothBatch algorithm has multiple CLDA parameters — the weighting
parameter ρ, the batch period Tb, and the half-life h. By using SmoothBatch’s parameter
update rules and applying our convergence measures for θ ∈ {C,Q}, we can predict the trade-
offs inherent in the choices of these parameters and gain valuable insight into SmoothBatch’s
convergence properties.

In order to facilitate our mathematical convergence analysis, we must first make cer-
tain model assumptions. To make our calculations tractable, we will assume that the KF
models hold true — i.e., that there exist underlying matrices {A,W,C,Q} for which (2.1)
and (2.2) hold true. Furthermore, we will assume that a KF decoder with its parameters
set to these matrices would allow the user to maximize BMI performance. Accordingly,
since these matrices then effectively represent the optimal parameter setting, we will denote
them as {A∗,W ∗, C∗, Q∗}. Finally, we will assume that these true, underlying matrices are
unchanging over time.

With these model assumptions, we can apply our convergence measures to analyze the
SmoothBatch algorithm. In the following sections, we focus our attention directly on the
results of our calculations, and we refer the reader to the Appendix for the full derivation
of these results. Using the Frobenius matrix norm and evaluating (4.10) for θ ∈ {C,Q} by
substituting in SmoothBatch’s update rules, we find that SmoothBatch’s MSEs for C and
Q are of the form:

MSE(i) (C) = ρ2i ·
∥∥C(0) − C∗

∥∥2
F

‖C∗‖2F
+
(
1− ρ2i

) 1− ρ
1 + ρ

· fC (Tb)

‖C∗‖2F
(4.11)

MSE(i) (Q) = ρ2i ·
∥∥Q(0) −Q∗

∥∥2
F

‖Q∗‖2F
+
(
1− ρ2i

) 1− ρ
1 + ρ

· fQ (Tb)

‖Q∗‖2F
(4.12)

where fC (Tb) and fQ (Tb) denote monotonically decreasing functions of the batch period Tb.
We can use the same model assumptions to apply our second convergence measure,

KL divergence. For our KF decoder model, we find that the KL divergence between the
probability distributions under θ∗ = {C,Q} and θ(i) =

{
C(i), Q(i)

}
to be

KLD
(
θ(i)
)

= DKL (pθ∗‖pθ(i))
1

2
log

(
detQ(i)

detQ∗

)
+

1

2

(
tr
[
Q(i)−1

Q∗
]
−m

)
(4.13)

+
1

2
tr
[(
C∗ − C(i)

)T
Q(i)−1 (

C∗ − C(i)
)
Mx

]
. (4.14)

47

Due to the matrix inverses in (4.14) and the particular form of SmoothBatch’s updates, the
KL divergence turns out not to be an ideal measure for predicting SmoothBatch’s convergence
properties. As a result, we will instead utilize KL divergence as a secondary convergence
measure to both analyze SmoothBatch’s actual experimental performance and validate pre-
dictions derived from our primary measure, MSE. It is important to note, however, that for
other CLDA algorithms with different parameter update rules, KL divergence may actually
be a more tractable measure than MSE, and therefore more useful for predicting convergence
properties.

In the following sections, we further interpret (4.11) and (4.12) to analyze SmoothBatch’s
convergence properties and their dependence on the batch period Tb, the weighting parameter
ρ, the half-life h, and the decoder’s initial seeding.

4.4.3 Time evolution of SmoothBatch’s MSE

Since a CLDA algorithm’s goal is to make decoder parameters converge close to the optimal
parameter setting, it is critical to determine how close these parameters can get. Can we
expect an algorithm’s MSEs to decrease over time to zero, or will they instead settle at
non-zero values? If the latter holds true, then how to do choices of the algorithm’s CLDA
parameters affect these values? Our convergence analysis allows us to answer these questions
and predict how SmoothBatch’s MSEs evolve over time. Rearranging terms in (4.11), we
can express SmoothBatch’s MSE for C as:

MSE(i) (C) = ρ2i

(∥∥C(0) − C∗
∥∥2
F

‖C∗‖2F
− 1− ρ

1 + ρ

fC (Tb)

‖C∗‖2F

)
︸ ︷︷ ︸

,MSEtr(C)

+
1− ρ
1 + ρ

fC (Tb)

‖C∗‖2F︸ ︷︷ ︸
,MSEss(C)

.

Our analysis predicts that SmoothBatch’s MSE for C can be decomposed into the sum of
a transient term, MSEtr (C), that decays as ρ2i and a steady-state value, MSEss (C), that
remains unchanged over time (note that the same analysis applies to SmoothBatch’s MSE for
Q). If the SmoothBatch algorithm is applied for long enough, the transient terms will decay
significantly, and the steady-state terms will dominate the MSEs. Therefore, our analysis
predicts that SmoothBatch’s MSEs for C and Q will settle to non-zero steady-state values:

MSEss (C) =
1− ρ
1 + ρ

fC (Tb)

‖C∗‖2F
and MSEss (Q) =

1− ρ
1 + ρ

fQ (Tb)

‖Q∗‖2F
. (4.15)

From (4.15), we can analyze how SmoothBatch’s steady-state MSEs are affected by
changes in its CLDA parameters. For instance, since fC (Tb) and fQ (Tb) are both monoton-
ically decreasing functions of the batch period Tb, increasing this parameter (for a fixed ρ)
results in a decrease of the steady-state MSEs. Similarly, increasing the weighting parameter
ρ (for a fixed Tb), or increasing the half-life h (for a fixed ρ or Tb) has the same effect. Using
these relationships, we have a principled way to adjust SmoothBatch’s CLDA parameters

48

in order to achieve lower steady-state MSE values. However, as we will see, adjusting these
same parameters also affects another quantity — the transient decay rate.

4.4.4 Rate of convergence

Although it is desirable for a CLDA algorithm to have low steady-state MSE values, it is
equally important for it to achieve fast rates of convergences. For instance, even if one could
design a CLDA algorithm with zero steady-state MSEs, the algorithm would be useless if
its convergence rate was too slow for a real experiment. Fortunately, the transient terms of
SmoothBatch’s MSEs decay as ρ2i, predicting that these MSEs exhibit exponential conver-
gence to their steady-state values. In order to make this exponential convergence more clear,
we can write ρ2i in terms of the exponential function, thereby directly casting the transient’s
decrease over time as an exponential decay:

MSE(i) = exp

(
−2i ln

1

ρ

)
·MSEtr + MSEss.

Note that this equation holds for both C and Q. Moreover, by introducing the batch period
Tb into both the numerator and denominator, and using the fact that the product Tbi
corresponds to the time of the ith CLDA update, we can roughly express MSE directly as a
function of the time t:

MSE(t) ≈ exp

(
−

2 ln 1
ρ

Tb
t

)
·MSEtr + MSEss.

From this expression, we observe that by decreasing either ρ or Tb (while keeping the other
parameter fixed), one can increase the rate of convergence, and therefore allow SmoothBatch
to reach its steady-state MSEs faster. Finally, using the definition of the half-life h in (4.9),
we find that we can also express the rate of convergence as:

MSE(t) ≈ exp

(
−2 ln 2

h
t

)
·MSEtr + MSEss.

This equation allows us to express the convergence rate solely in terms of h, and predicts that
another way to increase the convergence rate is to simply decrease the half-life. In addition,
from the properties of exponential decay, this result further implies that the time it takes
for the transient MSE to decrease to a certain fraction (e.g., 0.01) of its original value is also
proportional to h. Thus, our analysis predicts that h is directly tied to the convergence rate
of SmoothBatch’s MSEs, thereby confirming the notion of the half-life as an intuitive CLDA
parameter as stated in Section 4.3.4.

4.4.5 CLDA parameter trade-offs

The predicted effects of changes to SmoothBatch’s CLDA parameters on both the MSE
decay rate and steady-state MSEs are summarized in Table 4.2. Note that for certain

49

CLDA parameter changes, the predicted effects are indeterminate or result in no change.
Overall, our analysis predicts that the SmoothBatch algorithm exhibits a fundamental trade-
off between achieving a faster rate of convergence and lower steady-state MSEs. In general,
increases in SmoothBatch’s CLDA parameters lower its steady-state MSEs, but they also
lead to a slower convergence rate, thereby increasing the total adaptation time required to
reach steady-state. The opposite effect occurs when SmoothBatch’s CLDA parameters are
decreased.

Table 4.2: Summary of the predicted effects of changes to SmoothBatch’s CLDA parameters
on the MSE convergence rate and steady-state MSEs.

Increasing this
parameter

while holding
this one fixed

results in the following effect on the:
MSE convergence rate steady-state MSEs

ρ Tb decrease decrease
h no change indeterminate

Tb ρ decrease decrease
h no change indeterminate

h ρ or Tb decrease decrease

4.4.6 Effect of decoder’s seeding

Another important consideration is how decoder initialization affects different aspects of
convergence. Since C(0) and Q(0) represent the initial values of the KF observation model,
the decoder’s seeding clearly determines the initial MSEs before any closed-loop decoder
adaptation has been performed:

MSE(0) (C) =

∥∥C(0) − C∗
∥∥2
F

‖C∗‖2F
and MSE(0) (Q) =

∥∥Q(0) −Q∗
∥∥2
F

‖Q∗‖2F
.

However, C(0) and Q(0) do not appear in any of our expressions for either the rate of conver-
gence or the steady-state MSEs. Therefore our analysis predicts that the decoder’s seeding
method does not affect either of these two quantities4. Since the steady-state MSE is a
measure of the deviation of parameters from the optimal parameter setting — which in turn
relates directly to performance — our convergence analysis predicts that the decoder’s ini-
tial seeding should not affect the level of performance achievable using the SmoothBatch
algorithm.

4Note that the seeding method can still affect the total time to achieve convergence — for example, the
time required for the transient MSEs to decay below a certain level — but our analysis predicts that it will
not affect the rate at which the transient MSEs decay.

50

4.4.7 Improving the SmoothBatch algorithm

Our analysis of the SmoothBatch algorithm has predicted a key trade-off between the con-
vergence rate and the steady-state MSEs. However, with our new understanding of how
SmoothBatch’s CLDA parameters affect its convergence properties, we may be able to re-
engineer the algorithm to overcome this seemingly fundamental limitation, and further im-
prove the algorithm’s performance. Specifically, we would like to modify SmoothBatch to
achieve lower steady-state MSEs without significantly sacrificing the convergence rate. We
propose allowing CLDA parameters to vary in time. Since the seed decoder’s parameters
may initially be far from their optimal setting, one could perform aggressive adaptation
early to make large parameter updates that bring the parameters into the right “ballpark”.
However, as decoder parameters near their optimal values, more fine-tuned adaptation could
be used to avoid potentially disruptive large parameter updates.

We propose using a time-varying version of SmoothBatch’s ρ parameter, where ρ(i) → 1 as
i increases so that parameter updates become smoother as time progresses. Letting ρ , ρ(1)

and choosing a decay factor α < 1, our proposed method for increasing ρ(i) over time is to
make 1− ρ(i) decay exponentially as i increases:

1− ρ(i) , αi−1 (1− ρ)

Rearranging terms, we propose the following systematic method for increasing ρ(i) over time:

ρ(i) , 1− αi−1 (1− ρ) , α < 1 (4.16)

Figure 4.4 illustrates the predicted effects of implementing a time-varying weighting param-
eter for an example case where Tb = 80 s and ρ(1) = 0.63. The decay factor α governs the
rate at which the weighting parameter will increase over time (Figure 4.4A). As closed-loop
decoder adaptation is performed, the transient MSEs are predicted to decay differently de-
pending on α (4.4B, log-scale). For standard SmoothBatch (α = 1), the transient MSEs
decay exponentially to zero, but when ρ(i) is time-varying (α < 1), they decay at slightly
slower rates. If ρ(i) is increased too quickly (e.g., α ≤ 0.8), lower steady-state MSEs are
achieved (4.4C), but the transient MSEs no longer decay to zero (i.e., they are no longer
“transient”). However, when the weighting parameter is increased at an appropriate rate
(e.g., α ≈ 0.9), a significant, order-of-magnitude reduction in the steady-state MSEs can be
achieved with very little difference in how the transient MSEs decay. In other words, our
analysis predicts that with appropriate increases in the weighting parameter over time, we
can overcome SmoothBatch’s seemingly fundamental tradeoff, and achieve lower steady-state
MSEs without significantly sacrificing the convergence rate.

51

0 20 40
0.6

0.8

1

time (min)

ρ

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

time (min)

R
e
m

a
in

in
g

 f
ra

c
ti

o
n

o
f

tr
a
n

s
ie

n
t

M
S

E
s

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

alpha

R
e
la

ti
v
e
 m

a
g

n
it

u
d

e
o

f
s
te

a
d

y
−

s
ta

te
 M

S
E

s

A

B

C

α = 1

α = 0.99

α = 0.95

α = 0.9

α = 0.8

α = 0.5

Figure 4.4: Improving the SmoothBatch CLDA algorithm by using a time-varying
ρ parameter. (A) Trajectory of the weighting parameter ρ over time for different values
of the decay factor α. (B) Predicted decay of the transient MSEs over time as closed-
loop decoder adaptation is performed. (C) Predicted magnitude of the steady-state MSEs,
relative to standard SmoothBatch, after 40 minutes of adaptation has been performed. For
α ≈ 0.9, a significant reduction in the steady-state MSEs can be achieved with very little
difference in how the transient MSEs decay. The batch period and the initial value of ρ were
set to Tb = 80 s and ρ(1) = 0.63 for this example.

4.4.8 Experimental validation

To test our convergence predictions, we evaluated the performance of the SmoothBatch
algorithm by conducting closed-loop experiments with two non-human primates performing
a center-out task across 72 sessions. Figure 4.5 shows empirical traces of MSEs and the
KLD, along with their exponential fits, for a sample session (see Appendix for details on

52

the fitting procedure). As predicted by our convergence analysis, the MSEs indeed appear
to decay exponentially and eventually settle to non-zero steady-state values. Across all
sessions, exponential functions fit these traces more accurately than linear functions. The
average squared-error for exponential fits to traces of both MSEs and KLD were significantly
smaller than for linear fits (Wilcoxon paired test, p < 10−6).

53

0 20 40
0.6

0.8

1

time (min)

ρ

0 10 20 30 4010−15

10−10

10−5

100

time (min)

R
em

ai
ni

ng
 fr

ac
tio

n
of

 t
ra

ns
ie

nt
 M

S
E

s

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

alpha

R
el

at
iv

e
m

ag
ni

tu
d

e
of

 s
te

ad
y−

st
at

e
M

S
E

s

A

B

C

α = 1
α = 0.99
α = 0.95
α = 0.9
α = 0.8
α = 0.5

Figure 4.5: Experimental traces of MSEs (A and B) and KLD (C) for a session in which
SmoothBatch was performed after VFB seeding.

54

Next, we analyzed the relationships between different settings of SmoothBatch’s CLDA
parameters and the corresponding empirically fit MSE decay rates and steady-state MSEs.
Table 4.2 summarizes the predicted relationships for all of SmoothBatch’s CLDA parameters.
To simplify the results presented here, we focus only on the weighting parameter ρ. We
restrict our analysis to sessions with 1) more than one data point for a given ρ and with 2)
the same seeding condition (VFB), to isolate effects caused only ρ (n = 29). As predicted
by convergence analysis, MSE decay rates are negatively correlated with ρ for both C (r =
−0.37; p < 0.05) and Q (r = −0.27; p = 0.15) (Figure 4.6A–C). In addition, steady-state
MSE values are negatively correlated with ρ for both C (r = −0.50; p < 0.05) and Q (r =
−0.33; p = 0.08), further confirming the predictions derived from our convergence analysis
(Figure 4.6D–F). Decay rates and steady-state values of KLDs showed similar correlations
with ρ as MSEs.

55

A B C

R = -0.37,
p < 0.05

R = -0.27,
p = 0.15

R = -0.2,
p = 0.29

R = -0.50,
p < 0.05

R = -0.33,
p = 0.08

R = -0.41,
p < 0.05

D E F

0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

S
te

ad
y-

st
at

e
va

lu
e,

 M
S

E
(C

)

ρ
0.7 0.8 0.9

0

0.5

1

1.5

S
te

ad
y-

st
at

e
va

lu
e,

 M
S

E
(Q

)

ρ
0.7 0.8 0.9

0

50

100

ρ

S
te

ad
y-

st
at

e
va

lu
e,

 K
LD

0.7 0.8 0.9
0

0.2

0.4

D
ec

ay
 R

at
e,

 M
S

E
(C

)

ρ
0.7 0.8 0.9

0

0.5

1

D
ec

ay
 R

at
e,

 M
S

E
(Q

)

ρ
0.7 0.8 0.9

0

0.4

0.8

D
ec

ay
 R

at
e,

 K
LD

ρ

Figure 4.6: Empirically-found relationships between SmoothBatch’s ρ CLDA pa-
rameter and different aspects of convergence. (A–C) Experimental decay rates of
MSEs (A and B) and KLD (C), plotted vs. the weighting parameter ρ across all sessions
with VFB seeding. (D–F) Experimental steady-state values of MSEs (D and E) and KLD
(F), plotted vs. the weighting parameter ρ across all sessions with VFB seeding.

56

Finally, we tested the prediction that the decoder’s initial seeding method should not
affect either the MSE decay rate or the steady-state MSEs. Figure 4.7 shows the decay rates
(top row) and steady-state values (bottom row) for MSE (C) (left), MSE (Q) (middle), and
KLD (right), separated by seeding condition. We restrict our analysis to sessions with the
same value of ρ to isolate effects of initialization (60 sessions total; VFB, n = 22; Baseline,
n = 17; Shuffled, n = 11; Ipsi, n = 8; Contra, n = 2). Bars indicate the mean, error
bars show standard error of the mean, and points show individual session data. A Kruskal-
Wallis analysis of variance reveals some statistically significant differences in decay rates and
steady-state values (differences indicated on the figure). However, no seeding conditions show
consistent differences across any of the KF measures or convergence properties. Consistent
with this result, previous work comparing behavioral improvements across seeding conditions
revealed no significant differences across seeding conditions [28]. Specifically, all sessions
reached similar final performance, and the time required to achieve maximum performance
did not depend on the initialization.

57

0

0.2

0.4

D
ec

ay
 R

at
e,

 M
S

E
(C

)

0

0.5

1

D
ec

ay
 R

at
e,

 M
S

E
(Q

)

0

0.5

1

1.5

D
ec

ay
 R

at
e,

 K
LD

0

0.2

0.4

0.6

S
te

ad
y-

st
at

e,
 M

S
E

(C
)

VF
B

B
as

el
in

e
Sh

uf
�e

d
Ip

si
C

on
tra

0

0.5

1

S
te

ad
y-

st
at

e,
 M

S
E

(Q
)

VF
B

B
as

el
in

e
Sh

uf
�e

d

C
on

traIp
si

0

50

100

S
te

ad
y-

st
at

e,
 K

LD

VF
B

B
as

el
in

e
Sh

uf
�e

d
Ip

si
C

on
tra

A B C

D E F

Ipsi < VFB Ipsi < Shuf�ed

Ipsi < Baseline Ipsi < Shuf�edShuf�ed < VFB,
 Baseline

Ipsi < VFB

Figure 4.7: Experimental decay rates and steady-state values of MSEs (A and B) and KLD
(C) across different decoder seedings.

58

4.5 Discussion
Closed-loop decoder adaptation is a powerful paradigm for rapidly improving online BMI
performance. Here, we have established a general framework for the design and analysis
of CLDA algorithms. We first identified a core set of important design considerations that
frequently arise when designing CLDA algorithms. We explored the consequences of choosing
different time-scales of adaptation, motivated the idea of selective parameter adaptation,
illustrated the need for performing smooth parameter updates, and stressed the importance of
having intuitive CLDA parameters. We then introduced mathematical convergence analysis
as an effective design tool for predicting the convergence properties of a prototype CLDA
algorithm before conducting closed-loop experiments. Using the SmoothBatch algorithm
[28] as our case study, we demonstrated the ability to predict how CLDA parameters affect
different aspects of convergence, and understand the resulting tradeoffs that are inherent in
the choices of these parameters. We also characterized the effects of adjusting SmoothBatch’s
CLDA parameters, and found that the algorithm exhibits a fundamental tradeoff between
the rate of convergence and the steady-state MSEs. By allowing for a time-varying weighting
parameter, we found that we can achieve significantly lower MSEs with very little sacrificing
of the rate of convergence. Although we demonstrated the utility of our convergence analysis
using SmoothBatch as a particular example, our methods can be generally applied to a large
class of other decoders and CLDA algorithms.

CLDA algorithms can operate on a variety of different decoders and can have different
underlying goals, which may influence important aspects of their design. In clinical situa-
tions where motor deficits prevent patients from enacting the types of natural movements
often used to seed the decoder, other methods of decoder initialization must be used (e.g.,
visual feedback seedings — see Section 4.2.2) that may result in low initial performance.
The SmoothBatch algorithm has been demonstrated to achieve high-performance BMIs in
these settings [28]. CLDA algorithms that aim to achieve different goals may differ from
SmoothBatch in important aspects of their design. For instance, while SmoothBatch has
been demonstrated to rapidly improve performance when operating on an intermediate time-
scale of adaptation, a longer time-scale may be more appropriate for other algorithms with
a different CLDA focus. As an example, Gilja et al. used batch maximum likelihood esti-
mates of parameters to adapt a KF decoder. Using decoders seeded from contralateral arm
movements and BMI performed during overt arm movements, subjects attained greater than
90% performance with the seed decoder in a center-out task. As a result, a single CLDA
update formed from a 10-15 min batch of collected data was sufficient to achieve a significant
improvement in reach kinematics [27]. However, when attempting to improve performance
from unfavorable seedings, such a large batch period would be counterproductive — it would
force the BMI user to persist for a long time with what might be a poorly performing decoder,
and thus would likely reduce subject engagement in the task. Therefore, a single update of
decoder parameters would likely not achieve significant performance improvements. Instead,
high performance in this case could only be achieved either by performing multiple CLDA
updates [28] or holding the decoder fixed long enough to facilitate the emergence of a stable

59

motor memory [13].
Different types of CLDA training signals may also be more appropriate for other CLDA

algorithms. Li et al. recently developed a CLDA algorithm for a KF decoder that aims to
maintain long-term BMI control accuracy using an adaptive method of self-training updates
[43]. Unlike SmoothBatch, Li et al.’s algorithm used overt arm movements to seed the
decoder and was designed to sustain the accuracy of already high-performing decoders by
adapting to neuronal plasticity and instability in neural recordings. As a result, Li et al.’s
algorithm was able to directly use a Kalman smoothed version of decoder outputs as its
training signal (it does not need to estimate the user’s “intended kinematics”). In contrast,
when SmoothBatch is used to improve performance from poor decoder seedings, the initial
decoded cursor outputs are naturally a poor reflection of the user’s intended kinematics, and
therefore Kalman smoothing would not be an effective training signal5.

Despite differences in the operation and goals of CLDA algorithms, some design elements
are still likely to be shared in common by many CLDA algorithms. For example, despite
its vastly different purpose, Li et al.’s algorithm maintains the property of selective decoder
adaptation like SmoothBatch and does not adapt the KF’s transition model parameters.
Many algorithms are also designed in one way or another to have smooth decoder updates.
Taylor et al. developed a CLDA algorithm for a PVA decoder in which the next set of
decoder weights was determined from a corrected version of the current weights along with
past weights that resulted in good performance [5]. Gage et al. estimated new KF parame-
ters using a trial-by-trial sliding block of data, thus naturally allowing for smoothness across
successive estimates [2]. Li et al.’s algorithm also achieved smooth updates, albeit in a char-
acteristically different way, by endowing decoder parameters with probability distributions
and updating them using Bayesian regression updates.

Closed-loop decoder adaptation should synergize well with previous results that have
demonstrated the importance of neural plasticity in the BMI learning process [3, 5, 6, 11, 13,
47]. With respect to the learning and retention of neuroprosthetic skill, a study by Ganguly
and Carmena demonstrated the importance of a stable neural map [13]. Some studies may
have misinterpreted these results — for instance, contrary to Li et al.’s representation of
these results, Ganguly and Carmena did not assert that a fixed decoder may be sufficient
for long-term control accuracy [43]. Rather, they showed that a “stable circuit”, consisting
of a fixed decoder and stable neurons, can facilitate the development of a stable neural map
of the decoder that enables performance improvements, can be readily recalled across days,
and is robust to interference from a second learned map. However, even if CLDA is used
to achieve initial rapid gains in performance, it is likely that subsequent fixing of decoder
parameters could still allow the formation of such a stable map.

While our convergence predictions are consistent with our experimental results, we still
find some variability in our results that is not accounted for by our analysis. For instance,
calculating convergence measures from experimental data requires explicit assumptions that

5SmoothBatch instead uses Gilja et al.’s method for explicitly estimating intended cursor kinematics
[27].

60

could introduce variability (see Appendix). As an example, the true underlying mapping be-
tween the observed neural firing rates yt and the kinematic state xt of the cursor is unlikely
to be exactly linear with additive Gaussian noise. Existing work does suggest that incorpo-
rating nonlinearities into the KF could be beneficial, and that this decoding framework can
be successfully used for CLDA [43]. Exploring system nonlinearities may, then, be a fruitful
avenue for future research. However, we feel the design principles highlighted in this study of
linear decoders will likely translate to nonlinear applications. Indeed, our findings regarding
selective adaptation of KF matrices are consistent with the approach used by Li et al. using
a non-linear KF.

Despite the aforementioned variability, all of our data show clear trends consistent with
our convergence analysis predictions (e.g., the signs of all calculated correlations are con-
sistent with our predictions). Indeed, the goal of our convergence analysis is not to predict
the exact value of the MSEs of different decoder parameters. Instead, what we are more
interested in is finding the general form of the MSEs, in order to understand both how they
evolve over time and how they are affected by CLDA parameters (like SmoothBatch’s ρ, Tb,
and h). Furthermore, our methods should not only be able to evaluate a wide range of ex-
isting CLDA algorithms, but also provide insights into ways of improving these algorithms.
Our convergence analysis techniques accomplish these goals, thus demonstrating that they
can be an effective analytical tool for evaluating and informing CLDA algorithm design.

61

Chapter 5

BMI control using local field potentials

The work presented in this chapter was performed in collaboration with Kelvin So, Amy L.
Orsborn, Michael C. Gastpar, and Jose M. Carmena, and was published in the Journal of
Neural Engineering [48].

5.1 Introduction
Intracortical BMI studies have traditionally used single- and multi-unit activity as control
signals, due to the fact that the discharge of motor cortical neurons correlates with different
movement parameters, and that these cells can be volitionally modulated irrespective of
physical movement using biofeedback [49]. On the other hand, certain features of local field
potentials (LFPs), which are the extracellular potentials resulting from the synaptic activity
in a neuronal population, have also been shown to exhibit similar tuning properties [50].
For instance, initiation of arm movement has been shown to reliably modulate power in
the LFP beta band (∼15–30 Hz) [51]. In addition, other studies have shown that muscle
activity, eye movements, and reaching and grasping kinematics can all be decoded from LFP
activity to varying degrees of accuracy [52–54]. This makes LFPs an attractive alternative to
single- and multi-unit activity in BMIs because they are more robust to signal degradation
over time [55] and contain more information than other less invasive field potentials such as
electroencephalography (EEG) and electrocorticography (ECoG) signals.

Despite the promising properties of LFPs for BMI control, only a few studies to date have
used them explicitly as an input signal in BMIs [56–58], with one study demonstrating 2-D
continuous BMI control [58]. In that study, Flint et al. trained decoders offline biomimet-
ically (using neural activity recorded during overt arm movements) and held them fixed
thereafter. While proficient BMI control was achieved in this way, the biomimetic approach
may constrain the subject to modulate neural activity during a closed-loop BMI task in a
way similar to activity evoked during natural arm movements. For instance, a low frequency
feature known as the local motor potential (LMP) has been found to be informative in de-
coding kinematic parameters of arm-related movements [59], and Flint et al. indeed reported

62

that the LMP and the 0–4 Hz band were the most informative features for LFP-based BMI
control [60]. However, little is known about the degree of flexibility of the brain to modulate
LFP oscillations of higher frequencies, or whether a broader range of frequencies can be used
for BMI control with LFPs.

Here, we apply closed-loop decoder adaptation (CLDA) [42] during LFP-based BMI con-
trol to adapt the decoder to subject-specific modulations of different LFP frequency bands.
Using CLDA in combination with an assistive control paradigm, we trained two non-human
primates to perform a center-out task using LFP activity in the 0–150 Hz range. We then
analyzed the relative importance of the different frequency bands towards each monkey’s
cursor control. While both monkeys obtained proficient control of the cursor under iden-
tical task settings, the frequency bands most important to control were characteristically
different between both monkeys. Next, we constrained the BMI control input to various fre-
quency sub-ranges (0–40 Hz, 40–80 Hz, and 80–150 Hz) and found that our offline analyses
accurately predicted the bands with which the monkeys achieved the best online perfor-
mance. Interestingly, while each monkey performed better using certain frequency ranges,
both monkeys were able to achieve BMI control well above chance level with all sub-ranges
after decoder adaptation, suggesting that broad ranges of LFP frequencies can potentially
be used for closed-loop BMI control. Finally, we found that the particular frequency bands
most important for each subject’s control influenced the number of channels they needed,
due to differences in the correlations across channels at different frequencies. Overall, our
results demonstrate proficient, continuous BMI control using LFPs and shed light on the
range of frequencies that can potentially be used, with implications for channel and feature
selection.

5.2 Materials & Methods

5.2.1 Electrophysiology and behavioral task

Two adult male rhesus macaques (macaca mulatta) were chronically implanted in the brain
with bilateral microwire arrays of 128 teflon-coated tungsten electrodes (35 µm diameter,
500 µm wire spacing, 8×16 array configuration; Innovative Neurophysiology, Durham, NC),
targeting the arm areas of primary motor cortex (M1) and dorsal premotor cortex (PMd). All
procedures were conducted in compliance with the NIH Guide for Care and Use of Laboratory
Animals and were approved by the University of California–Berkeley Institutional Animal
Care and Use Committee.

LFP signals were sampled at 1 kHz using a 128-channel MAP recording system (Plexon
Inc., Dallas, TX) and streamed to a dedicated computer running MATLAB (The Mathworks,
Natick, MA) to implement feature extraction and closed-loop BMI control. Channels were
referenced to ground and signal quality was visually inspected each day (channels with clear
artifacts were removed). For each channel, we estimated the spectral power in 15 consecutive
10-Hz bands from 0–150 Hz using the multi-taper method [61]. Spectral estimation was

63

A

Move to
center

Hold
300ms

Reach
~1-2s

Hold
400ms

…

Kalman filter

Spectral power

B

Figure 5.1: Experimental setup. (A) Illustration of the BMI task set-up. (B) Trial
timeline for the BMI center-out task.

performed every 100 ms using a sliding window containing the most recent 200 ms of raw LFP
activity. The estimates of log spectral power in different frequency bands, across multiple
LFP channels, were used as neural features for closed-loop BMI control (Figure 5.1A).

The monkeys were head-restrained in a primate chair as they performed a self-paced 2-D
center-out task. Monkeys were previously trained to perform this task by performing reaches
using their right arm. During BMI control, the monkeys did not perform these arm reaches,
as their arms were confined within the primate chair. Trials were initiated by moving the
cursor under neural control to the center target and holding for 300 ms, after which the
monkeys had to reach to one of eight peripheral targets uniformly spaced about a 13 cm
diameter circle and hold for 400 ms to receive a liquid reward (target radii = 1.7 cm). The
monkeys were then required to move the cursor back to the center target to initiate the next
trial. If the monkeys failed to hold or reach the target within 10 s, the trial was restarted
without reward (Figure 5.1B).

5.2.2 Decoding algorithm

A Kalman filter (KF) decoding algorithm (“decoder”) was used to implement closed-loop BMI
control. While there is no explicit delay between the kinematic state and neural activity in
the KF model, each measurement yt of extracted LFP features contained information from
neural activity up to 200 ms in the past. C and Q were initially constructed by shuffling the
rows and columns of a previous set of C and Q matrices that were trained with native arm
reaches from the subject. These initial parameters were then updated during closed-loop
BMI operation using the SmoothBatch CLDA algorithm (see 5.2.3). We typically adapted

64

these parameters only during initial closed-loop control, and did not perform additional
CLDA on the same decoder throughout the rest of the experiment.

During the first training session of each experiment, we utilized an assistive control
paradigm [62] simultaneously with CLDA. After decoder initialization, the cursor was tem-
porarily assisted towards the target. Specifically, the cursor trajectory was determined by:

−−−→vcursor = α · −−−→vassist + (1− α) · −−→vuser

where −−→vuser is the decoded output from the Kalman filter, −−−→vassist is a vector that points
directly towards the current target, and −−−→vcursor is a weighted average of the two that deter-
mines the final cursor output shown to the subject. The weighted average was set by the
assist level α ∈ [0, 1], which was manually adjusted in real-time depending on the subject’s
performance (at α = 0, the cursor was fully controlled by the subject). The assist speed was
set to 0.8 cm/s to match the natural speed of the cursor when the subject performed the
center-out task under manual control. All analyses were performed on data with the cursor
under full volitional control (0% assist).

5.2.3 Closed-loop decoder adaptation

Closed-loop decoder adaptation (CLDA) is an emerging paradigm for improving or main-
taining the online performance of brain-machine interfaces. By adapting the decoder’s pa-
rameters during closed-loop BMI operation (i.e., while the subject is using the BMI), CLDA
algorithms aim to match the decoder’s output to the subject’s particular pattern of neural
activity [2, 5, 18, 27, 28, 30, 31, 37, 43, 46]. In our experiments, we used the SmoothBatch
CLDA algorithm to adapt the KF decoder’s parameters during initial closed-loop control.
The SmoothBatch CLDA algorithm has been previously used in spike-based BMI experi-
ments, where it was demonstrated to rapidly improve BMI performance independent of the
decoder’s initialization method [28]. Furthermore, SmoothBatch has also been shown to
possess a variety of favorable algorithmic convergence properties [42].

To illustrate how the SmoothBatch CLDA algorithm operates, let C(i−1) and Q(i−1) de-
note the current observation model parameters of the KF decoder. SmoothBatch first collects
a batch of neural activity and cursor kinematics as the subject operates the BMI cursor in
closed-loop control using a decoder with these parameters. Next, the algorithm generates an
estimate of the user’s intended cursor movements. For example, in our experiments, we used
Gilja et al.’s method for inferring intended cursor kinematics (“innovation 1” of the ReFIT-
KF algorithm), which assumes that the subject always intends to move to directly towards
the current target [27]. Other methods for estimating intended movements could also be
used in conjunction with SmoothBatch, such as Shpigelman et al.’s supervised method [30]
or Li et al.’s unsupervised method [43]. Using the estimate of intended cursor kinematics
and the recorded neural activity, SmoothBatch then constructs batch maximum likelihood
estimates, Ĉ and Q̂, of the C and Q matrices using the following equations:

Ĉ = Y XT
(
XXT

)−1 (5.1)

65

Q̂ =
1

N

(
Y − ĈX

)(
Y − ĈX

)T
(5.2)

where the Y and X matrices are formed by tiling N columns of recorded neural activity and
intended kinematics, respectively. The size of the data batch is parametrized by the batch
period Tb , N · dt (where dt is the time between decoder iterations). Finally, the algorithm
updates the observation model parameters using a weighted average:

C(i) = (1− ρ) Ĉ(i) + ρC(i−1) (5.3)
Q(i) = (1− ρ) Q̂(i) + ρQ(i−1) (5.4)

where i indexes discrete batch periods and the weighting parameter ρ ∈ [0, 1] controls the
influence of Ĉ and Q̂ on the new parameter settings. Note that SmoothBatch does not
update the KF transition model parameters A and W . We typically reparametrize ρ in
terms of a half-life h (i.e., the time it takes for a previous maximum likelihood estimate’s
weight in the decoder to be reduced by a factor of 2):

ρh/Tb =
1

2
.

where Tb is the size of the batch (“batch period”) measured in units of time. In our experi-
ments, batch periods and half-lives were typically chosen in the ranges Tb ∈ [1, 6] mins and
h ∈ [0.5, 15] mins.

5.2.4 Performance evaluation

We quantified performance by measuring the target acquisition rate in trials/min and the
percentage of initiated trials (those in which the subject was able to hold for 300 ms at
the center) that ended in a success, both of which were computed using a 5 minute sliding
window with 30 s steps. For comparison, we estimated the chance rate (measured to be
0.3 trials/min at a 0% assist level) by simulating 30 minutes of the task performed using a
random walk trajectory (generated with the same transition model parameters as the Kalman
filters used for BMI control). We also measured trajectory quality using reach time (RT),
normalized path length (NPL), movement error (ME), and movement variability (MV); see
[28] for details on each metric.

To perform approximate comparisons of BMI cursor control performance across studies
(see Discussion), we calculated a summary statistic using the Fitts Law derived index of dif-
ficulty, which has been proposed as a standardized assessment method for neural prostheses
[63]. The index of difficulty, measured in bits, is calculated based on the distance to target
(“Distance”) and target diameter (“Window”) as:

Index of difficulty = log2

(
Distance + Window

Window

)

66

From this value and the mean reach time, we calculate throughput in Fitts bits/sec as:

Throughput =
Index of difficulty
Mean reach time

We refer the reader to [27] for further details on throughput calculation.

5.3 Results
During an initial set of experiments, we randomly chose 20 channels from the right M1/PMd
implants and extracted the spectral power from fifteen 10-Hz bands, spanning 0–150 Hz, as
input features to the decoder. Both animals attained full control of the 2-D cursor using
CLDA with the assistive control paradigm. Assistive control started at 100% (α = 1) and
was reduced to zero after day 1 and CLDA was stopped after day 2. Both animals performed
the task under full volitional control for two additional days. The target acquisition rate
without assist improved from day 2 to 4 for both monkeys (Pearson’s correlation coefficient,
Monkey S: R = 0.34, p < 0.001; Monkey J: R = 0.30, p < 0.001). The average target
acquisition rates on the 4th day for Monkey S and Monkey J were 10.6± 2.4 trials/min and
5.8± 2.9 trials/min, respectively. The average success percentage was 78%± 6% for Monkey
S and 72% ± 8% for Monkey J. Figure 5.2A shows typical reach trajectories, rate of target
acquisition, and chance level for both monkeys on the 4th day of the series.

Trial-averaged spectrograms for each of the 8 target directions, along with tuning curves
for each frequency band, are shown in Figure 5.2B–C for the two monkeys. The modulation
depth, defined as the difference between the highest and lowest points of the tuning curve, is
shown for each frequency in Figure 5.2D. Monkey S showed highest modulation in the 0–20
Hz frequency range, with another peak in the 50–80 Hz range, but decreasing modulation
at higher frequencies. In contrast, Monkey J showed highest modulation depth in both 0–20
Hz and 80–150 Hz range. In addition, the LFP modulations during BMI control were also
considerably different than those during natural arm control. Figure 5.3 shows the trial-
averaged spectrograms, tuning curves and modulation depth plots in prior training sessions
where Monkey S performed the same center-out task using natural arm reaches (no brain
control). The characteristic decrease in beta band (15–40 Hz) power during movement was
clearly evident during natural arm movement, but did not occur during BMI control.

Although tuning curves are one representation of the relationship between cursor move-
ment and neural activity, they do not fully capture the exact mechanism by which the cursor
position is generated from the neural activity at each iteration, since this is specified by the
BMI decoder. To provide further insight into the LFP activity modulated during control, we

67

A

Fr
eq

ue
nc

y
(H

z)

Time (s) Time (s)
C

Monkey S

Time (min) Time (min)

tr/
m

in

tr/
m

in

Monkey J

Z-
sc

or
e

B

M
od

. d
ep

th

D

M
od

. d
ep

th

Figure 5.2: Neural activity during closed-loop BMI control. (A) Left: Typical reach
trajectories to the eight center-out targets on the fourth day of the series for both monkeys.
Right: Target acquisition rate on 4th day. Gray line indicates chance rate. (B) Trial-
averaged spectrograms illustrating the z-scored log power on one channel during successful
reaches for both subjects. (C) Tuning curves for each of the 15 spectral power features (on
one particular channel) used for closed-loop control. Line thickness reflects standard error
of the mean. (D) Modulation depth as a function of LFP frequency.

68
Fr

eq
ue

nc
y

(H
z)

Time (s)
Z-

sc
or

e
M

od
. d

ep
th

A

C

B

Figure 5.3: Neural activity during natural arm movement. (A) Trial-averaged spec-
trograms illustrating the z-scored log power on one channel during natural arm reaches in a
center-out task for Monkey S. Dotted line indicates the go cue. (B) Tuning curves for each of
the 15 spectral power features (on one particular channel). Line thickness reflects standard
error of the mean. (C) Modulation depth as a function of LFP frequency.

examined the KF decoder’s observation model parameters (C and Q), which capture the re-
lationship between cursor kinematics and observed neural activity. Since our KF state vector
models cursor position and velocity, the rows of C reflect the preferred position and velocity
directions of different LFP features. For instance, Figure 5.4A illustrates the preferred veloc-
ity directions for each 10-Hz frequency band (averaged across channels) as assigned in C. In
combination with the covariance structure modeled in Q, these preferred velocities ultimately
determine how feature modulations of different features contribute to cursor movement at
each iteration. For example, Figure 5.4B (top) shows the contributions to the cursor dis-
placement from each LFP frequency band (averaged across channels) during an example
trial. Each individual vector represents the net cursor displacement during the reach due to
the modulations of a particular frequency band (together, the vectors add to produce the
overall cursor displacement). The underlying modulations of neural activity (averaged over
the course of the reach) that were generated to create this trajectory are shown in Figure
5.4B (bottom). Hence, to generate the trajectory shown, Monkey S increased the 0–20 Hz
activity while reducing activity from 30–80 Hz.

In order to identify the LFP frequencies within the 0–150 Hz range that were most
important for each monkey’s overall BMI control, we calculated a movement contribution
profile for each monkey by similarly decomposing the cursor movement across all successful
trials. We considered three broad groups of frequencies — 0–40 (approximately the delta,
theta, mu, and beta bands), 40–80 (low gamma), and 80–150 Hz (high gamma) — and

69

determined the contribution of each frequency group, measured as a percentage of the total
displacement. The resulting percentages directly measure which frequencies were responsible
for moving the cursor on the screen (Figures 5.4C–D, pie charts). For Monkey S, the 0–40 Hz
and 40–80 Hz bands together accounted for an average of 84% of the cursor movement per
reach, while the higher frequencies (80–150 Hz) only accounted for 16% of the movement.
Interestingly, Monkey J’s movement contribution profile was markedly different than that
of Monkey S. For Monkey J, the 80–150 Hz and 0–40 Hz bands were most responsible for
cursor movement (46% and 34%, respectively).

As another way to measure the importance of different LFP frequencies for closed-loop
control, we performed a leave-one-out offline sensitivity analysis by removing frequency
groups from the Kalman filter decoder model and measuring the resulting increases in the
steady-state Kalman error variances. These increases measure the impact on the decoder’s
confidence in its state estimates if the corresponding features were not used in closed-loop
decoding (Figures 5.4C–D, bar graphs). For Monkey S, removing the 0–40 Hz and 40–80
Hz bands resulted in larger increases (34% and 17%) in the Kalman error variances than
removing the 80–150 Hz frequencies (5%), suggesting that the 0–80 Hz frequencies were rel-
atively more important. On the contrary, for Monkey J, removing the 80–150 Hz frequencies
resulted in the largest increase (25%) in the error variance compared to removing the 0–40
Hz or 40–80 Hz bands (12% and 6% increase, respectively), suggesting that 80–150 Hz was
more important than the other two frequency groups for Monkey J.

5.3.1 Testing different frequency bands

To test the predictions derived from our analyses, we conducted multiple experimental series
in which both monkeys were restricted to only use features extracted from various sub-ranges
(0–40 Hz, 40–80 Hz, and 80–150 Hz) of the full 0–150 Hz (from the same 20 channels) for
closed-loop BMI control. Each series was composed of 3–4 days, with CLDA and assistive
control performed on the first day starting from shuffled decoder parameters as before. On
subsequent days, CLDA was used on rare occasions only if performance decreased drastically.
Figure 5.5 depicts both monkeys’ performance, measured using average success percentage,
mean reach time and normalized path length, across these multiple frequency series.

Among the three frequency groups, Monkey S performed best in all metrics (success
percentage, RT, NPL, MV, and ME) when using 40–80 Hz for closed-loop control. This
result is consistent with his movement contribution profile (Figure 5.4C), which showed
that the 40–80 Hz band accounted for an average of 41% of cursor movement during trials.
However, the contribution profile showed that the 0–40 Hz band also accounted for a large
percentage of movement (43%), and furthermore, our Kalman sensitivity analysis predicted
0–40 Hz to be the most important band for Monkey S. These analyses suggested that the
combination of the two frequency bands (0–40 and 40–80 Hz) might allow Monkey S to
achieve a higher level of performance. As such, we conducted an additional frequency series

70

A B

C Monkey S Monkey J

40-80Hz
(20%)

80-150Hz
(16%)

80-150Hz
(46%)

0-40Hz
(43%)

40-80Hz
(41%)

0-40 40-80 80-150 0-40 40-80 80-150
Freq. removed (Hz) Freq. removed (Hz)

%
 e

rr
or

 in
cr

ea
se

1dB/(cm/s)
M

od
ul

at
io

n
(d

B
)

%
 e

rr
or

 in
cr

ea
se

D

0-40Hz
(34%)

Figure 5.4: Importance of different LFP features to closed-loop BMI control. (A)
Preferred velocity directions for each 10-Hz frequency band as assigned in the KF observation
model matrix C for Monkey S. (B) Top: Cursor trajectory (dashed gray line) during an
example reach to the top target. Each colored vector indicates the net cursor displacement
during the reach resulting from a particular frequency band. The vectors from all frequency
bands add to produce the overall cursor displacement. Bottom: The underlying modulations
of neural activity generated during the sample reach. (C–D) Movement contribution profiles
(pie charts, left) and sensitivity analyses (bar graphs, right) across three groups of frequencies
— 0–40, 40–80, and 80–150 Hz, for both monkeys. Movement contribution profiles were
calculated by decomposing the subjects’ movements on successful trials into contributions
from the three groups of frequencies, as in (B, top). Sensitivity analyses reflect increases
in the Kalman error variances when certain groups of frequencies are removed from the KF
decoder model.

71

in which Monkey S used 0–80 Hz for control. As expected, with respect to all metrics, Monkey
S performed best across all frequency series when using 0–80 Hz. For instance, Monkey S’s
reach times were significantly lower when using 0–80 Hz than any other band (p < 0.001 for
comparisons to each of the other four frequency series; Kruskal-Wallis ANOVA). Differences
in mean normalized path length, movement error, and movement variability when using 0–
80 Hz versus any other band were also all significant (p < 0.001 for ME, MV, and NPL;
Kruskal-Wallis ANOVA).

Conversely, among all bands, Monkey J performed best using 80–150 Hz in all metrics
(p < 0.001 for differences in RT, NPL, ME, and MV; Kruskal-Wallis ANOVA). Indeed,
these findings confirm the results of Monkey J’s movement contribution profile and Kalman
sensitivity analysis, both of which predicted 80–150 Hz to be most important for his cursor
control (Figure 5.4D). Moreover, just as those analyses had predicted 0–40 Hz to be second
most important, Monkey J indeed performed second-best across all frequency series when
using 0–40 Hz. Finally, Monkey J performed worst across all metrics when using 40–80 Hz,
a result that is also consistent with predictions from the analysis.

Although we found that both monkeys performed better with some frequency sub-ranges
than others, it is interesting to note that they were still able to achieve BMI control with all
sub-ranges after initial decoder adaptation. Overall, these results suggest that there may be
broad flexibility in the frequencies that could potentially be used for closed-loop LFP-based
BMI control.

5.3.2 Testing different numbers of LFP channels

We also investigated the impact of reducing the number of channels on BMI control. Due
to the close proximity of adjacent channels on the electrode array, the correlation between
the raw LFPs from channels on the same array often exceeds 0.95. Hence, it is possible that
multiple channels on the same array may not contribute additional information or degrees
of freedom.

We varied the number of channels used for control in Monkey S from 50 channels to
1 channel (all from the right hemisphere, split between M1 and PMd) and tested each
configuration for 3–4 days. We found that reach times decreased over time irrespective
of the number of channels used (Figure 5.6A). We repeated the 50 channel configuration
after the last series (1 channel series) and the reach times rapidly approached that of the
previous series and kept decreasing. As mentioned above, one reason for the apparent low
impact of the number of channels may be due to the high correlation between all LFP
channels on a single electrode array. Comparing the power of each frequency band across
20 channels, we found high correlations between channels at frequencies below 80 Hz, but
lower correlations at higher frequencies (Figure 5.6C). Since Monkey S relied primarily on
modulating frequencies below 80 Hz for control, the redundancy across channels in the input

72
%

 s
uc

ce
ss

N

PL
(a

.u
)

Frequency range (Hz)

A

B

Monkey S Monkey J

Frequency range (Hz)

%
 s

uc
ce

ss

N
PL

(a
.u

)

R
ea

ch
 ti

m
e

(s
)

C

R
ea

ch
 ti

m
e

(s
)

Figure 5.5: Closed-loop BMI control with different sub-ranges of LFP frequencies.
Experimental performance, measured using (A) success percentage, (B) reach time (RT,
seconds) and (C) normalized path length (NPL, arbitrary units), of both subjects across
multiple experimental series in which various sub-ranges of the full 0–150 Hz range were
used as neural features for closed-loop control. Bars indicate the mean across the entire
series, and error bars indicate standard error of the mean.

73

was especially prominent. For Monkey S, our results suggested that the volitional modulation
of different frequency bands, from even a single channel, was sufficient for 2-D cursor control.

We also tested BMI control in Monkey J with a 20 channel and 1 channel configuration
(Figure 5.6B). In contrast to Monkey S, Monkey J’s initial reach times with 1 channel input
were dramatically higher than the 20 channel input series that was used earlier. While the
reach times decreased with training, the high initial increase in reach times when switching
from 20 channels to a single channel for Monkey J suggested that the removal of channels
from the same hemisphere had a greater detrimental effect for Monkey J than for Monkey S.
The disparity may result from the difference in frequency bands most important for cursor
control between Monkey S and J, and the correlations across channels for those frequency
bands. For Monkey J, the 80–150 Hz band accounted for most of the cursor movement, but
was also less correlated among channels (Figure 5.6D). Hence, there was less redundancy
across channels compared to Monkey S, resulting in a greater effect on performance when
channels were removed. Overall, we found that the effect of the number of LFP channels
used on BMI control can vary depending on the strategy of frequency modulations used by
a particular subject.

5.4 Discussion
By using an adaptive approach (CLDA) to fit decoder parameters, we match the decoder
output to the modulations of LFP evoked by the monkeys as they attempted to move the
cursor towards the target. This paradigm allows the cursor to be controlled by the spe-
cific LFP modulations evoked by the subject during closed-loop BMI control. As a result,
while both monkeys were trained on identical task settings, our movement contribution and
sensitivity analyses revealed differences between monkeys in the contribution and relative
importance of each LFP frequency band. We tested the analysis results empirically by re-
quiring the monkeys to perform the same task using only sub-ranges of the entire 0–150
Hz band. For Monkey S, the 0–40 Hz (delta, theta, mu, and beta bands) and 40–80 Hz
(low gamma), contributed significantly to the cursor movement (43% and 41%, respectively)
based on the movement contribution profile. Subsequently, Monkey S performed best across
all performance metrics when using frequencies 0–80 Hz and worst when these frequencies
were removed. In contrast, for Monkey J, the 80–150 Hz (high gamma) range contributed the
most out of the three groups to cursor movement in our analysis (46%), and indeed Monkey
J performed significantly better across all metrics when using 80–150 Hz for closed-loop con-
trol. However, it is interesting to note that both monkeys were able to achieve above chance
level performance using all of the frequency sub-ranges, even when they didn’t include the
most important frequency bands for each monkey.

A prior LFP-based BMI study by Flint et al. also extracted LFP spectral power as
neural features, but sub-divided frequencies in a different way: 0–4, 7-20, 70–115, 130–200,

74

50
channels

4
channels

20
channels

1
channel

50
channels

A
1
channel

20
channels

C
0-10 Hz 110-120 Hz

B

D Monkey S Monkey J

Monkey S Monkey J

Day

Channel # Channel #

C
ha

nn
el

 #

Freq. (Hz) Freq. (Hz)

Day

R
ea

ch
 ti

m
e

(s
)

R

Figure 5.6: Closed-loop BMI control with different numbers of LFP channels.
Experimental performance of (A) Monkey S and (B) Monkey J, measured using reach time,
across multiple experimental series in which varying numbers of LFP channels were used in
the decoder for closed-loop control. (C) Correlation matrices for Monkey S depicting the
correlations across channels for the 0–10 Hz and 110–120 Hz frequency features (i.e., log
power in different frequency bands). (D) Average correlation between features values on
different channels for both subjects.

and 200–300 Hz [58]. In addition, Flint et al. utilized the local motor potential (LMP) — a
very low-pass filtered version of the time-domain LFP signal — as a feature for closed-loop
control. In a related initial study [60], Flint et al. reported that the LMP and the power
in the 0–4 Hz band appeared to be among the most informative features for control for
both subjects (together, they accounted for 80% and 43% of the features used in their two
monkeys). A key difference compared to the current study was that Flint et al. used a fixed
decoder trained from neural activity collected as the monkey performed natural reaches.
Since the decoder parameters did not adapt, the subjects may have been constrained to
modulate neural activity in ways similar to the activity used to fit the decoder; namely, those
generated during natural reaches. Given that the LMP has been shown to be informative in
decoding movement trajectories and reach direction [59], it is not surprising that the LMP
was found to be the one of the most informative features for control when using a fixed
decoder trained from natural reaches. In the current study, the decoder was initialized using
a random shuffling method and fit with an adaptive procedure, using neural activity evoked
during closed-loop BMI control. Hence, subjects were not constrained to modulate neural
activity in a predefined way. The range of informative frequencies in our results indicate that

75

a broader band of LFP frequencies can potentially be effective for closed-loop BMI control.
This result is consistent with recent findings that LFP power in the 30–50 Hz range and
ECoG power in the 75–105 Hz range can be volitionally modulated during closed-loop BMI
in a operant conditioning paradigm [57, 64, 65].

Are there frequencies that are inherently more readily modulated than others in a closed-
loop BMI setting? Hwang et al. [56] reported that LFP power in the 0–10 Hz and 20–40
Hz bands in the parietal reach region could be volitionally modulated to initiate trials.
Engelhard et al. [57] found that the 30–50 Hz band could be robustly modulated when a
constraint to use this range is directly imposed. When such constraints are relaxed, our
results indicate that the range of frequencies that subjects modulate can vary from subject
to subject. One potential reason for the variation may be due to the recording quality of high
frequencies from the electrode array. From the time of initial array implantation to the time
of the present study, the LFP power in frequencies above 80 Hz decreased by approximately
10 dB for Monkey S (~3 years post implant) but only 2 dB for Monkey J (~1.5 years post
implant). Hence, the low contribution of the 80–150 Hz band to BMI control for Monkey S
may be a result of the low signal-to-noise ratio in that frequency band. Nonetheless, Monkey
S was able to obtain control well above the chance level using both these and other frequency
bands (e.g., 0–80 Hz), indicating that broad ranges of LFP frequencies can potentially be
used for a closed-loop BMI.

While the randomized decoder initialization may have some effect on the subjects’ control
strategy, we believe this effect to be negligible. The trained decoder that is achieved using
the SmoothBatch CLDA algorithm ultimately depends on the patterns of spectral power
modulations evoked by the subject, and the co-occurrence of those patterns with different
directions of cursor movement. Therefore, if the subject uses roughly the same control
strategy each time a new decoder is trained using CLDA, then the final trained decoder
parameters will end up very similar, regardless of the initialization. Furthermore, due to the
high level of assistive control during the initial CLDA, the cursor initially moves accurately
regardless of the decoder’s initialization, thereby significantly reducing any effect of the
decoder’s initialization on the subject’s visual feedback and resulting control strategy.

An important implication that follows from the monkeys’ choice of modulated frequencies
is the effect on BMI control when the number of channels used are reduced, which relates to
broader questions about the range of LFP signals. Past studies have suggested that LFPs
can reflect neuronal processes 0.5–2 mm away [66]. Modulations of low frequencies (8–30
Hz) have been observed across wide areas of the motor cortex [67], while ECoG studies
have reported spatially specific activity at higher frequencies (>40 Hz) [59]. The correlation
between channels for the different frequency bands in the current study are consistent with
these previous studies —namely, low frequencies were more correlated than high frequencies
across the array. Moreover, the monkeys’ task performance when using varying numbers of
channels for control also confirms these results, as Monkey J performed worse than Monkey
S when using fewer channels due to his greater dependence on higher LFP frequencies.

76

Comparison of BMI performance

Development of intracortical brain-machine interfaces to date have largely focused on spike
activity as the only source of control input. The present study adds to a growing body of
evidence that extracellular field potentials, measured through either intracortical arrays (i.e.
LFP) or electrodes on the cortical surface (i.e. ECoG), are viable alternatives for BMIs.
To compare the level of BMI performance reported here with that of other studies in the
literature, we calculated the throughput in bits per second for various studies (see Methods).
Throughput is a summary statistic that uses the mean reach time and Fitts Law derived
index of difficulty [68, 69], which has been proposed as a standardized assessment method
for neural prostheses [63]. Table 5.1 compares the BMI performance achieved in this study
with a sampling of other notable closed-loop BMI cursor control studies using spikes, LFPs,
ECoG, and EEG. For consistency, all studies listed in the table used a 4- or 8-target center-
out task, except for Flint et al., 2013 [58] (we chose to include this study as well because
it represents essentially the first demonstration of closed-loop continuous 2-D control with
LFPs). To calculate throughput for Monkey S and J in the present study, we used the mean
reach times from their 0–80 Hz and 80–150 Hz experimental series, respectively. Due to a
wide range of varying task parameters in the literature (e.g., center-out vs. point-to-point
reaching), it should be noted that the throughput metric is imperfect and does not allow
for an exact comparison of cursor control performance across BMI studies. For instance,
the calculation of the index of difficulty does not incorporate target hold time, an important
aspect which undoubtedly affects the difficulty of the task (we have therefore listed the target
hold time for each study as an additional indicator of task difficulty). However, despite its
limitations, the throughput metric captures important aspects of target acquisition tasks
such as target size, target distance, and reach time, and it therefore allows us to perform
approximate comparisons between studies. Overall, with respect to the throughput metric,
we found that our LFP-based BMI performance compares favorably with that of spike-based
studies, and exceeds the performance of other studies using LFPs, ECoG, and EEG.

Practical considerations for neuroprosthetics

Local field potentials can potentially augment single-unit activity as control signals for neu-
roprosthetics to increase robustness and longevity. Our paradigm for achieving LFP-based
BMI control is an important step forward towards clinically viable neuroprosthetics. We
show that BMI control with LFPs can be achieved from initial arbitrary decoder parameters
by using CLDA. In a similar study involving closed-loop LFP-based BMI control, Flint and
colleagues recorded neural activity while the subject performed the cursor control task using
overt arm movements to train a biomimetic decoder. However, this procedure may constrain
the subject to modulate neural activity in ways similar to activity evoked during natural
arm movements.

77

Table 5.1: Performance comparison to other BMI cursor reaching studies. Comparison of
the BMI performance achieved in this study with a small sampling of recent closed-loop BMI
cursor control studies using spikes, LFPs, ECoG, and EEG. Throughput in bits per second
is computed by calculating an index of difficulty (measured in bits) based on task settings
and dividing by the mean reach time (measured in seconds). The index of difficulty of a task
is calculated based upon the distance to targets and the target size (see Methods).

Neural
signal

Study Target
hold
time
(ms)

Index of
difficulty
(bits)

Reach
time
(s)

Through-
put
(bits/s)

Spikes Taylor et al., 2002 [5] N/A 0.80 1.50 0.53
Kim et al., 2008 [17] 500 2.89 5.51 0.52
Ganguly & Carmena, 2009 [13] 100 2.37 2.30 1.03
Orsborn et al., 2012 [28] 400 1.36 1.23 1.10
Gilja et al., 2012 [27] 500 1.07 0.59 1.81

LFP Flint et al., 2013 [58] 100 N/A N/A 0.73
Present study (Monkey S) 400 1.27 1.31 0.97
Present study (Monkey J) 400 1.27 1.35 0.94

ECoG Schalk et al., 2008 [70] 0 1.71 2.13 0.80
EEG Wolpaw et al., 2004 [71] 0 1.18 1.90 0.62

Our BMI paradigm allows the decoder’s parameters to be uniquely optimized for the
specific types of spectral power modulations evoked by the subject during closed-loop con-
trol. Using CLDA and an assistive control paradigm, both monkeys in this study achieved
proficient performance with different ranges of LFP frequencies. Such flexibility in the neural
features used for closed-loop BMI control could be important for patients with deficits in
their ability to volitionally modulate certain LFP frequencies.

78

Chapter 6

Achieving rapid closed-loop decoder
adaptation: Recursive Maximum
Likelihood algorithm

The work presented in this chapter was performed in collaboration with Suraj Gowda, Helene
G. Moorman, Amy L. Orsborn, Kelvin So, Maryam Shanechi, and Jose M. Carmena, and
was published in Neural Computation [72].

6.1 Introduction
A CLDA algorithm that enables rapid performance acquisition could present a variety of
advantages in certain situations. When initial BMI performance with a seed decoder is
poor, subjects may lose motivation and become disengaged from the task if performance
improves too slowly. However, by using a CLDA algorithm during an initial calibration or
training session that provides them with improved BMI performance more quickly, subjects
would be more likely to remain engaged. After initial decoder training, such an algorithm
could also prove useful in helping to maintain a high level of performance. For example,
in a scenario where the user must participate in a periodic (e.g., daily) decoder adjustment
procedure, such an algorithm could make this process much less burdensome by shortening
the required recalibration time. Furthermore, if sudden channel loss or electrode array shifts
occur that disrupt BMI operation, it would be desirable to have an algorithm that could
allow performance to recover rapidly.

One potential way to achieve rapid acquisition or recovery of performance is to design a
CLDA algorithm that adapts decoder parameters on a fast time-scale by performing “contin-
uous adaptation” — in other words, updating parameters at every decoder iteration. Here,
we introduce a Recursive Maximum Likelihood (RML) algorithm that formulates the adap-
tation of KF parameters in terms of a weighted maximum likelihood estimation problem,
which naturally allows more recently observed data to be more influential than past data

79

in decoder updates. We demonstrate that RML possesses a variety of useful properties
and practical algorithmic advantages. First, we show how unlike some continuously adap-
tive methods such as stochastic gradient descent that can produce noisy individual updates,
RML leverages the accuracy of updates based on a batch of data while still adapting pa-
rameters on every iteration. Second, we illustrate how the algorithm’s rate of adaptation is
parametrized by an easily interpretable “half-life” parameter that, unlike typical batch-based
algorithms, can be adjusted in real-time. Third, we show how even if the number of neural
features is very large, RML’s memory efficient recursive update rules can be reformulated
to avoid costly matrix inversions so that continuous adaptation remains feasible. Finally,
although RML is designed for continuous adaptation, we illustrate how RML’s update rules
are naturally modified to perform batch updates within the same algorithmic framework.
We then test the RML algorithm in closed-loop experiments with three macaque monkeys
trained to perform a 2-D center-out cursor control task using either spiking activity or lo-
cal field potentials. In comparison to SmoothBatch [28], a previous CLDA algorithm that
adapts parameters on a more intermediate time-scale, we show that RML achieves higher
levels of performance following a short period of adaptation, with an average across subjects
of 16% lower movement error, 18% lower movement variability, 17% lower reach times, and
13% lower normalized path length. Overall, our results demonstrate that RML is an effective
CLDA algorithm for achieving rapid performance acquisition using continuous adaptation.

6.2 Neurophysiological Methods

6.2.1 Electrophysiology

Spiking activity (monkeys C and J) and local field potentials (monkey S) were used for
BMI control in this study. All three monkey subjects were adult male rhesus macaques that
were chronically implanted with bilateral microwire arrays of 128 Teflon-coated tungsten
electrodes (35 µm diameter, 500 µm wire spacing, 8×16 array configuration; Innovative
Neurophysiology, Durham, NC), targeting the arm areas of primary motor cortex (M1) and
dorsal premotor cortex (PMd). Monkey C was also implanted bilaterally with 64-channel
arrays (similar to those previously mentioned) in ventral premotor cortex (PMv), although
units from these arrays were not used for BMI control. All procedures were conducted in
compliance with the NIH Guide for Care and Use of Laboratory Animals and were approved
by the University of California–Berkeley Institutional Animal Care and Use Committee.

Neural activity was recorded using an OmniPlex system (Plexon Inc., Dallas, TX) for
monkey C and a MAP system (Plexon Inc.) for monkeys J and S. For monkey C, spiking
activity was sorted using the PlexControl online sorting application (Plexon, Inc.), and only
neural activity with well-identified waveforms (high signal-to-noise ratio and low variability
in waveform shape) were used for BMI control. For monkey J, channel-level activity [73]
was defined by setting thresholds for each channel at 5.5 standard deviations from the mean
while the subject sat quietly for 2 minutes at the start of each session. The SortClient sorting

80

application (Plexon, Inc.) was then used to define unit templates, which typically captured
all threshold crossings, in order to reject non-neuronal artifacts during BMI sessions. For
monkey S, local field potential (LFP) signals were sampled at 1 kHz with channels referenced
to ground, and signal quality was visually inspected each day (channels with clear artifacts
were removed).

6.2.2 Behavioral task

The monkeys were head-restrained in a primate chair and had their arms confined within the
chair while performing a self-paced 2-D center-out task. Monkeys were previously trained
to perform this task using their right arm. Figure 6.1 depicts the task structure and trial
timeline. Trials were initiated by moving the cursor under neural control to the center
target and holding for 300 ms, after which the monkeys had to move the cursor to one of
eight peripheral targets and hold for 300 ms to receive a liquid reward (target radii = 1.2
cm). If the monkeys entered a peripheral target but left before completing the required hold
duration, a target hold error was assessed and no reward was given. The distance from the
center to a peripheral target was 10 cm for monkey C and 6.5 cm for monkeys J and S.
After every trial, the monkeys were required to move the cursor back to the center target to
initiate the next trial. If the monkeys failed to hold or reach the target within 10 s, the trial
was restarted without reward.

81

Decoding
Algorithm

Peripheral
target

appears

Target
go cue

Hold at
center

Center
target

appears

Reach to
center

Reach to
target

Reward

Hold at
target

A

B

Figure 6.1: Experimental setup. (A) Illustration of the BMI task set-up. (B) Trial
timeline for the BMI center-out task.

82

6.2.3 Feature extraction

Neural data was streamed to a dedicated computer running MATLAB (The Mathworks,
Natick, MA) or Python to implement feature extraction and closed-loop BMI control. For
monkeys C and J, spike counts binned at 100 ms were passed into the decoder as neural
features for closed-loop BMI control. For monkey S, the LFP spectral power in consecutive
10-Hz bands from 0–80 Hz was estimated for each channel (in a subset of 20 channels)
using the multi-taper method. Spectral estimation was performed every 100 ms using a
sliding window containing the most recent 200 ms of raw LFP activity. These log spectral
power estimates, across multiple frequency bands and LFP channels, were then used as
neural features for closed-loop BMI control. See [48] for more details on LFP-based BMI
methodology.

6.2.4 Performance evaluation

We used the following metrics to assess the quality of successful reach trajectories:

1. Movement Error (ME; cm). The average deviation of movement perpendicular to the
reach direction; measures the straightness of the reach trajectory.

2. Movement Variability (MV; cm). The standard deviation of movement errors perpen-
dicular to the movement direction; measures the consistency of the reach trajectory.

3. Reach Time (RT; secs). The time between the go cue and entering the peripheral
target; measures the speed of the reach movement.

4. Normalized Path Length (NPL; arbitrary units). The distance traveled between leaving
the center and entering the target, divided by the straight-line distance; measures the
“extra” distance traversed relative to a straight-line trajectory.

6.3 Computational Methods

6.3.1 Decoder model

We used a Kalman filter (KF) decoding algorithm (“decoder”) to implement closed-loop BMI
control (see Chapter 2 for more details). Here, we focus on BMI cursor control, although our
methods apply more generally to other types of BMI systems. In our experiments, the vector
of neural observations yt was composed of either spike counts binned at 100 ms (monkeys C
and J) or log spectral power estimates in consecutive 10-Hz bands from 0–80 Hz (monkey
S). See Section 6.2.3 for more details on neural feature extraction.

The KF model is parametrized by the matrices {A,W,C,Q}. The transition model
parameters A and W were trained using a data set of arm movements collected while the
subject performed the center-out task in manual control, and these parameter estimates

83

were used across all sessions. We constrained the structures of A and W so that these state
transition model parameters modeled position as the integral of velocity plus noise [27]. In
contrast, the observation model parameters C and Q were initialized (“seeded”) differently
during each session using one of the following two methods: 1) Visual Feedback, or 2) Shuffled
(see Section 2.3 for more details).

When performing decoder adaptation during the initial training phase of a session, only
the C and Q parameters of the KF were updated by the RML algorithm, since these param-
eters model the mapping between intended cursor movements and observed neural activity.
Since A and W model cursor dynamics, which were not expected to vary from session to
session, these parameters were held fixed during all sessions [42].

In conjunction with CLDA, we simultaneously used an assistive control paradigm [62]
during the initial decoder training only to temporarily assist the cursor towards the target.
In this phase, the cursor trajectory was determined by:

−−−→vcursor = α · −−−→vassist + (1− α) · −−→vuser

where −−→vuser is the decoded output from the Kalman filter, −−−→vassist is a vector that points
directly towards the current target, and −−−→vcursor is a weighted average of the two that de-
termines the final cursor output shown to the subject. The magnitude of −−−→vassist was set to
correspond to a speed of 2 cm/s if the cursor was not currently inside a target, and 0 cm/s
otherwise. The weighted average was set by the assist level α ∈ [0, 1]. The starting assist
level (typically 0.6) was linearly decreased concurrently with CLDA, reaching 0 at the same
time that CLDA was ceased. All performance analyses were conducted on data with no
assist and with the cursor under full volitional control by the subjects.

6.3.2 Estimating intended movements

In the context of BMI cursor control, a Kalman filter decoder outputs a sequence {x̂t} of
decoded cursor kinematics over time. If the decoder’s parameters are not yet optimized or
the user has not learned to use the decoder for accurate cursor control, the user will likely
make movement errors when attempting to control the cursor. In order to perform closed-
loop decoder adaptation during a calibration phase, one could estimate the user’s intended
cursor kinematics over time, which we will denote as {x̃t}. Multiple methods for estimating
intended kinematics have been presented in the literature [27, 30, 43, 74]. In the present
study, we chose to use Gilja et al.’s method (“innovation 1” of the ReFIT-KF algorithm),
which assumes that the user always intends to move the cursor directly towards the next
target [27]. Given estimates {x̃t} of the user’s intended cursor kinematics and simultaneously
recorded neural features {yt}, a CLDA algorithm such as RML can then update the KF
decoder’s parameters in order to make future decoded outputs more accurately reflect the
user’s underlying intention.

84

6.3.3 Recursive Maximum Likelihood (RML) CLDA algorithm

Here, we introduce the Recursive Maximum Likelihood (RML) algorithm for adapting the
parameters of a KF decoder during closed-loop control. Let us assume that we have a method
for generating estimates of the user’s intended cursor kinematics at each time-step. Let x̃1:n
and y1:n represent the collection of these intended kinematics and observed neural activity,
respectively, up to iteration n:

x̃1:n , {x̃1, x̃2, . . . , x̃n}
y1:n , {y1, y2, . . . , yn}

Let θ(n) =
{
C(n), Q(n)

}
represent the current KF observation model parameters that are

used as part of the BMI decoder on iteration n. In order to fully specify the RML algorithm,
we must specify update rules that dictate how to produce θ(n+1). To derive these update
rules, let us consider the log likelihood function l

(
θ(n+1); y1:n, x̃1:n

)
, which is defined as the

log probability of observing the neural activity y1:n if this data originated from a model
parametrized by θ(n+1) (and x̃1:n was the corresponding set of intended cursor kinematics):

l
(
θ(n+1); y1:n, x̃1:n

)
= log p

(
y1:n|θ(n+1), x̃1:n

)
=

n∑
t=1

log p
(
yt|θ(n+1), x̃t

)
Here, one option (known as maximum likelihood estimation) would be to update the KF
parameters by setting θ(n+1) to be the parameters that maximize the log likelihood:

θ(n+1) = arg max
θ

n∑
t=1

log p (yt|θ, x̃t)

In this approach, all data points from t = 1 to n contribute equally to the objective.
However, since more recently observed data is often more relevant for accurate parameter
estimation than past data, it is often more desirable to assign greater weight or importance
to more recent data points. By doing so, one can naturally allow more recently observed
data to be more influential in decoder updates. Therefore, let us instead consider a weighted
log likelihood objective function lw (·) that contains a monotonically increasing weighting
function β (t):

lw
(
θ(n+1); y1:n, x̃1:n

)
=

n∑
t=1

β (t) log p
(
yt|θ(n+1), x̃t

)
For the RML algorithm, we choose an exponentially decaying weighting function:

β (t) = λn−t (6.1)

85

where λ ∈ (0, 1]. RML’s update rules for C and Q are then derived by solving the following
weighted maximum likelihood problem:

θ(n+1) = arg max
θ

n∑
t=1

λn−t log p (yt|θ, x̃t) (6.2)

Since yt|θ, x̃t ∼ N (Cx̃t, Q), we have that:

log p (yt|θ, x̃t) = const.− n

2
log |Q| − 1

2

n∑
t=1

λn−t (yt − Cxt)T Q−1 (yt − Cxt)

We can then calculate the derivatives of the weighted log likelihood objective with respect
to C and Q:

∂

∂C

n∑
t=1

λn−t log p (yt|θ, x̃t) = Q−1
n∑
t=1

λn−t (yt − Cx̃t) x̃Tt

∂

∂Q

n∑
t=1

λn−t log p (yt|θ, x̃t) = −n
2
Q−1 +

1

2
Q−1

(
n∑
t=1

λn−t (yt − Cx̃t) (yt − Cx̃t)T
)
Q−1

Setting these derivatives equal to 0 and solving, we therefore have the following basic rules
for updating C and Q after the nth iteration of the Kalman filter:

C(n+1) =

(
n∑
t=1

λn−tytx̃
T
t

)(
n∑
t=1

λn−tx̃tx̃
T
t

)−1
(6.3)

Q(n+1) =
1− λ
1− λn

n∑
t=1

λn−t
(
yt − C(n+1)x̃t

) (
yt − C(n+1)x̃t

)T
(6.4)

6.3.4 Recursive update rules on sufficient statistics

One of the main advantages of choosing the exponentially decaying weighting function β (t)
in equation 6.1 is that the resulting update rules (equations 6.3 and 6.4) can be re-written
in a simpler, recursive form so that they do not require storing histories x̃1:n and y1:n. Let
us define new parameters R, S, T , and EBS (“effective batch size”) as:

R(n+1) ,
n∑
t=1

λn−tx̃tx̃
T
t

S(n+1) ,
n∑
t=1

λn−tytx̃
T
t

T (n+1) ,
n∑
t=1

λn−tyty
T
t

EBS(n+1) ,
n∑
t=1

λn−t

86

Then, by substituting these definitions into equations 6.3 and 6.4, it is straightforward to
show that we can express C(n+1) and Q(n+1) exclusively in terms of these new parameters as:

C(n+1) = S(n+1)
(
R(n+1)

)−1
(6.5)

Q(n+1) =
1

EBS(n+1)

(
T (n+1) − S(n+1)R(n+1)−1

S(n+1)T
)

(6.6)

From these equations, we see that once we have determined the updated values R(n+1),
S(n+1), T (n+1), and EBS(n+1), then the data x̃1:n and y1:n are no longer needed to determine
C(n+1) and Q(n+1). Therefore, an intuitive interpretation of R, S, T , and EBS is that they
are sufficient statistics for the weighted maximum likelihood estimation of C and Q.

The advantage of introducing these sufficient statistics — rather than adapting C and Q
directly as in equations 6.3 and 6.4 — is that they are easily updated at every iteration in
a recursive fashion. For example, for S(n+1) we have:

S(n+1) =
n∑
t=1

λn−tytx̃
T
t

=
n−1∑
t=1

λn−tytx̃
T
t + ynx̃

T
n

= λ

(
n−1∑
t=1

λn−1−tytx̃
T
t

)
+ ynx̃

T
n

= λS(n) + ynx̃
T
n

and likewise for the others. Therefore, in order to determine the updated values C(n+1) and
Q(n+1), we first simply update R(n), S(n), T (n), and EBS(n) recursively as follows:

R(n+1) = λR(n) + x̃nx̃
T
n (6.7)

S(n+1) = λS(n) + ynx̃
T
n (6.8)

T (n+1) = λT (n) + yny
T
n (6.9)

EBS(n+1) = λEBS(n) + 1 (6.10)

and then update C and Q as in equations 6.5 and 6.6. This parameter update procedure is
depicted in Figure 6.2.

In some continuously adaptive methods such as stochastic gradient descent, parameters
are updated at each iteration based on a single data point. Importantly, however, such
methods do not necessarily guarantee the accuracy of individual updates, but rather rely
on the successive combination of multiple updates to produce accurate adjustments to pa-
rameters. While RML also performs continuous adaptation and uses a single data point
at each iteration in the update equations 6.7–6.10, those equations are used to update the
RML sufficient statistics, not the decoder parameters. Indeed, since the updated sufficient

87

statistics are then subsequently used update the decoder, each overall decoder update still
represents the solution to a weighted batch maximum likelihood estimation problem. In this
way, RML is able to leverage the accuracy of updates based on a batch of data, while still
adapting parameters on every iteration.

88

Kalman �lter
decoder

Update KF
parameters:

Update
su�cient
statistics:

Estimate
intended

kinematics

z-1

Extract
neural

features

Update cursor
on screen

z-1

x̂t−1

Visual feedback

C, Q

R, S, T,
EBS

yt
x̂t

x̃t

Figure 6.2: RML algorithm block diagram. Block diagram illustrating how the RML
algorithm is used to adapt the parameters of a Kalman filter decoder. z−1 blocks represent
delay elements. Unlike other CLDA algorithms for KF decoders, RML first updates a set
of sufficient statistics (R, S, T , and EBS) before updating the actual KF C and Q matrices
directly.

89

6.3.5 Half-life reparametrization

Another advantage of the recursive form of RML’s update rules for the sufficient statistics is
that λ can be reparametrized more conveniently in terms of an intuitive half-life parameter
h. For instance, starting from equation 6.8 and using repeated substitution, one can show
that for any number of iterations k ≥ 0, we have that:

S(n+k) =
k−1∑
t=0

λk−1−tyn+tx̃
T
n+t + λkS(n)

In other words, we see that influence of the value S(n) in the future version of the parameter
S(n+k) decreases exponentially in k. By calculating when the factor λk is equal to one-half,
we can define a half-life h as:

λ
h
dt =

1

2
. (6.11)

where dt is the iteration period at which the Kalman filter decoder is being run (e.g., 100
ms). One of the advantages of a continuously adaptive CLDA algorithm like RML is the
ability to instantaneously adjust adaptation rates, such as the half-life h. In our closed-loop
experiments testing the RML algorithm (see Section 6.4), we start with a relatively low
half-life or 30 s, which we continuously increase over the course of CLDA to a final value of
300 s. In this way, we begin CLDA by making large initial parameter updates that bring the
parameters into the right “ballpark”, while smoothly transitioning towards more conservative,
fine-tuned adaptation as decoder parameters begin to converge. While using a time-varying
half-life for SmoothBatch has also been proposed in previous work [28, 42], it has not yet
been tested in closed-loop spike-based experiments. Therefore, in our BMI experiments, we
compare RML against both the standard form of SmoothBatch with a non-changing half-life
(as originally tested in [28]) and SmoothBatch with a time-varying (albeit not continuously)
half-life.

6.3.6 Avoiding costly matrix inversions

The actual Kalman filter equations that perform state estimation require the computation
of a Kalman gain matrix on every iteration of filter. For instance, on iteration n + 1, the
Kalman gain is computed as:

Kn+1 = Pn+1|nC
(n+1)T

(
C(n+1)Pn+1|nC

(n+1)T +Q(n+1)
)−1

(6.12)

where Pn+1|n is the a priori estimation error covariance matrix [26]. If C and Q are being
adapted by a CLDA algorithm that does not update parameters on every iteration, then

90

Pn+1|n converges quickly to a constant matrix P after each update and repeated computation
of the inverse in equation 6.12 can be avoided until the next update, since the inverse does
not change. However, for a CLDA algorithm that performs continuous adaptation of C and
Q, this inverse is constantly changing and needs to be calculated on every iteration. When
the number of neural features (which corresponds to the number of rows/columns of the
matrix that needs to be inverted) is large, then the resulting matrix inversion calculation
may be too computationally expensive to be completed within a typical BMI decoder loop
time (e.g., 50–100 ms). For example, in a LFP-based BMI system where 20 features are being
extracted on each of 50 LFP channels, a 1000× 1000 matrix would need to be inverted.

To significantly reduce the computation involved in the Kalman gain calculation and make
a continuously adaptive CLDA algorithm like RML more computationally feasible when the
number of neural features is large, we can apply a formula known as the Woodbury matrix
identity [75]. By applying this identity to the matrix inversion in the Kalman gain, we can
compute this inverse in an alternate way that requires inverting a matrix of the same size as
Pn+1|n, which is typically very small (only 5× 5 in position-velocity KF decoders):

Kn+1 = Pn+1|nC
(n+1)TQ(n+1)−1 ×

[
I − C(n+1) ·(

Pn+1|n + C(n+1)TQ(n+1)−1

C(n+1)
)−1

C(n+1)TQ(n+1)−1

]
(6.13)

Nonetheless, this alternate formula still requires the computation of Q−1 on every iteration,
which would mean that a continuous adaptation approach would still be infeasible if Q is a
large matrix. However, two further applications of the Woodbury matrix identity can make
RML a viable CLDA algorithm. First, by taking inverses on both sides of RML’s update
rule for Q and then applying the Woodbury identity, we have that:

Q(n+1)−1

= EBS(n+1) ·
[
T (n+1)−1 − T (n+1)−1

S(n+1) ·

=
(
S(n+1)TT (n+1)−1

S(n+1) −R(n+1)
)−1

S(n+1)TT (n+1)−1

]
(6.14)

Second, if we apply the same identity to the update rule for T , we have that

T (n+1)−1

=
(
λT (n) + yny

T
n

)−1
=

T (n)−1

λ
− T (n)−1

yny
T
nT

(n)−1

λ (λ+ yTnT
(n)−1yn)

Therefore, rather than updating Q at every iteration and then having to calculate its inverse
to run the next iteration of KF equations, we can instead efficiently update T−1 directly,
which allows us to update Q−1 efficiently and use this value directly in equation 6.13. There-
fore, the above alternate update rules for Q−1 and T−1 can be used to achieve more efficient
decoder updates when computational resources are scarce.

91

6.3.7 Generalization to batch-based parameter updates

Although so far we have introduced RML exclusively as a CLDA algorithm for continu-
ous adaptation, RML’s update rules can be easily modified to perform batch-based updates
within the same algorithmic framework. Indeed, if we modify the weighted maximum likeli-
hood estimation problem in equation 6.2 so that consecutive groups of N ≥ 1 data points are
weighted equally, then it is straightforward to show that we arrive at the following analogous
update rules for our sufficient statistics:

R(n+N) = λR(n) +
N−1∑
t=0

x̃n+tx̃
T
n+t (6.15)

S(n+N) = λS(n) +
N−1∑
t=0

yn+tx̃
T
n+t (6.16)

T (n+N) = λT (n) +
N−1∑
t=0

yn+ty
T
n+t (6.17)

EBS(n+N) = λEBS(n) +N (6.18)

As before, C and Q are still updated according to equations 6.5 and 6.6 whenever these
sufficient statistics are updated. Intuitively, when N = 1, these update rules are equivalent
to those presented before in equations 6.7–6.10. When N > 1, the λ weighting factor is
reparametrized into a half-life h according to the following modified equation:

λ
h

N·dt =
1

2
. (6.19)

6.4 Results

6.4.1 RML decoder adaptation

Across all three subjects, the RML CLDA algorithm rapidly and reliably lead to acquisition
of high performance after CLDA ceased and decoder parameters were held fixed. Figure 6.3
illustrates monkey J’s performance during a representative session where the decoder was
seeded using the Shuffled procedure (see Section 6.3.1), resulting in an initial decoder with
which the monkey could not perform successful trials. A short period (5 minutes) of RML
adaptation was then performed. An assistive control paradigm was used concurrently with
CLDA, which accounts for the subject’s apparent high performance from the start of the
session. Upon turning off assist and ceasing decoder adaptation (dotted vertical line), the
subject was able to maintain performance under full volitional control. Figure 6.3C depicts
the subject’s typical reach trajectories to the eight center-out targets using the fixed (i.e.,
unchanging) decoder.

92

0 5 10 15 20 25
Time (min)

0

20

40

60

80

100

Pe
rc

e
n
ta

g
e

Success
Target hold error
Assist percentage

−5 0 5
Distance (cm)

−5

0

5

D
is

ta
n
ce

 (
cm

)

A

B

Figure 6.3: Closed-loop BMI performance with RML. Example application of the
RML algorithm (representative session from monkey J), starting from a KF decoder (seeded
using the Shuffled method) with which the subject could not perform successful trials. The
subject’s apparent high performance from the start is due to the the assistive paradigm that
was used concurrently with CLDA. Performance is plotted in terms of (A) percentage and
(B) rate of events/min. The dotted vertical line indicates the time at which assistance was
turned off, CLDA ceased, and decoder parameters were held fixed. (C) Representative reach
trajectories in the center-out task after RML adaptation was performed.

The evolution of decoder parameters during this example session is shown in Figure 6.4.
Since our KF state vector models cursor velocity, the rows of the KF C matrix can be used

93

to determine the preferred velocity directions of the different neural features being used for
decoding (binned spike counts for monkeys C and J, and LFP spectral power for monkey S).
By plotting the preferred velocity vectors for each neural feature as modeled in C, we can
visualize the direction tuning of different units in the decoder and observe how the decoder
changes over time as CLDA is performed. Figure 6.4A shows the preferred velocity directions
of the Shuffled seed decoder, which the subject is unable to perform successful trials. As
RML decoder adaptation is performed, the C matrix is rapidly updated to more closely
reflect the true velocity tuning (Figures 6.4B–D). By the end of adaptation (Figure 6.4E–F),
the decoder’s parameters begin to converge, leading to a final KF decoder that the subject
could use to skillfully control the cursor in the center-out task even after CLDA and assist
were ceased.

94

Unit 29a Unit 58a

Unit 72a Unit 73a

Unit 92a Unit 114a

0 min 1 min 2 min 3 min 4 min 5 min

Figure 6.4: Decoder evolution during RML adaptation. (A–F) Tuning plots repre-
senting the evolution of the decoder’s model of preferred velocity vectors of the different
units being used for BMI control, as CLDA is performed. This sequence of tuning evolution
corresponds to the same BMI session plotted in Figure 6.3.

95

6.4.2 Performance comparison to SmoothBatch

In order to measure the performance of the RML CLDA algorithm, we compared it against
SmoothBatch, a previously developed algorithm that has been demonstrated to rapidly im-
prove BMI performance independent of the decoder’s initialization method [28]. In each
session, starting from a Shuffled decoder seeding, a KF decoder was adapted for a short
amount of time (5 minutes; “short adaptation”), once each using either the RML or Smooth-
Batch algorithm (using a random ordering). During CLDA, we simultaneously used an
assistive control paradigm (see Section 6.3.1) in which assist started at 60% and decreased
linearly to 0% by the end of adaptation. Since RML is a continuously adaptive algorithm,
the half-life can be changed at every KF decoding iteration. Therefore, for RML adaptation,
a time-varying half-life was used that started at 30 s and increased linearly to 300 s over the
course of adaptation. For SmoothBatch, standard CLDA parameters of a 60 s batch size and
a 120 s half-life were used as originally described in [28]. (In additional experiments, a time-
varying half-life was also used with SmoothBatch — see below.) When decoder adaptation
and assist ceased after short adaptation, subjects then used the fixed decoder to perform the
2-D center-out task. Sessions in which the monkeys did not perform successful trials follow-
ing decoder adaptation are reported below but were not included in statistical significance
testing.

The shaded gray bars in Figure 6.5 illustrate the subjects’ performance with a fixed
decoder after short adaptation with either RML or SmoothBatch (SB) CLDA, averaged over
multiple sessions. The corresponding individual session data is plotted in Figure 6.6. For
all subjects, performance after RML was better than after SmoothBatch with respect to
movement error (ME), movement variability (MV), reach time (RT), and normalized path
length (NPL). Monkey C achieved 17% lower ME, 19% lower MV, 24% lower RT, and 16%
lower NPL after RML adaptation than after SB CLDA. Performance differences for monkeys
J and S were similar (ME: 13% and 18%, MV: 15% and 21%, RT: 15% and 12%, and NPL:
10% and 13%, respectively for J and S). Statistically, these performance differences were
significant (p < 0.05, one-sided, paired Wilcoxon signed-rank test) for all subjects across all
four performance metrics. Furthermore, RML adaptation proved to be more robust than
SmoothBatch, as all three subjects were able to successfully perform trials more often after
RML adaptation versus after SB adaptation. Out of a total of n = 12 sessions, monkey
C was unable or unwilling to successfully acquire targets in only 1 session after RML, but
this was the case in 6 of the sessions for SB. Monkey J (n = 16) and monkey S (n = 15)
performed the task in all sessions after RML adaptation, but each was unwilling or unable
to successfully acquire targets after SB adaptation in 4 of their respective sessions.

We also evaluated the subjects’ performance after a longer period of adaptation (10+
minutes; “extended adaptation”) with both algorithms (see white bars in Figure 6.5). For
this condition, decoders were seeded using the VFB (visual feedback) method. With more
extended decoder adaptation and a potentially more favorable decoder seeding, most dif-
ferences in performance were insignificant (only normalized path length for monkey C was
significantly lower after RML than after SB, p < 0.05). However, performance after RML

96

adaptation was still better than after SB adaptation in most cases, except for the reach
times for monkey C and movement variability for monkey S. Moreover, all three monkeys
performed successful trials after RML adaptation in all sessions (n = 7, 11, and 9 for monkeys
C, J, and S, respectively). However, both monkeys S and J were either unable or unwilling
to perform trials in one of their respective sessions after SB adaptation.

97

0.0

0.5

1.0

1.5

2.0

M
E
 (
cm

)

Monkey C
 (spike)

*

0.0

0.5

1.0

M
V
 (
cm

) *

0

1

2

3

R
T
 (
se
c)

*

1.0

1.5

2.0

N
P
L
(a
.u
.) *

*

R
M
L

S
B

R
M
L

S
B

0.0

0.5

1.0

%
 c
o
rr
e
ct *

0.0

0.5

1.0

Monkey J
 (spike)

**

0.0

0.2

0.4

0.6 **

0

1

2

3 *

1.0

1.2

1.4

1.6 *

R
M
L

S
B

R
M
L

S
B

0.0

0.5

1.0 **

0.0

0.5

1.0

Monkey S
 (LFP)

**

0.0

0.2

0.4

0.6
**

0

1

2
**

1.0

1.2

1.4
**

R
M
L

S
B

R
M
L

S
B

0.0

0.5

1.0 **

 *: p < 0.05
**: p < 0.01

: short adaptation condition
: extended adaptation condition

Figure 6.5: Performance comparison between the RML and SmoothBatch CLDA
algorithms (averaged data). For all three subjects, both RML and SmoothBatch (SB)
adaptation were performed starting from identical decoder seedings, across multiple sessions.
Shaded gray bars depict performance (averaged across sessions) with a fixed decoder after
a short adaptation period (5 minutes), starting from a Shuffled KF seeding. White bars
depict performance (averaged across sessions) with a fixed decoder after a more extended
adaptation period (10+ minutes), starting from a VFB seeding. Error bars denote standard
error of the mean, and asterisks indicate statistical significance (∗: p < 0.05, ∗∗: p < 0.01).
Performance was quantified by evaluating four different measures of cursor trajectory quality
on successful trials. Smaller values represent better performance for all metrics.

98

1.0

1.5

2.0

M
E
 (
cm

)

Monkey C
 (spike)

0.6

0.8

1.0

M
V
 (
cm

)

1.5

2.0

2.5

3.0

R
T
 (
se
c)

RML SB
1.0

1.5

2.0

N
P
L
(a
.u
.)

0.6

0.8

%
 c
o
rr
e
ct

1.0

Monkey J
 (spike)

0.3

0.4

0.5

0.6

2

3

4

RML SB

1.0

1.5

2.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

1.2

Monkey S
 (LFP)

0.3

0.4

0.5

0.6

1.5

2.0

2.5

3.0

RML SB

1.0

1.5

0.6

0.8

1.0

Figure 6.6: Performance comparison between the RML and SmoothBatch CLDA
algorithms (individual session data). Individual session data used to plot the averaged
data in Figure 6.5. The circle markers connected by each line represent the performance
after a short period (5 minutes) of RML and SmoothBatch CLDA, starting from a com-
mon Shuffled decoder seeding. A circle marker for one CLDA algorithm with no connected
line indicates that the monkey did not perform successful trials following CLDA with the
other algorithm. Performance is quantified by evaluating four different measures of cursor
trajectory quality on successful trials. Smaller values represent better performance for all
metrics.

To control for the possibility that the difference in half-life settings between both al-

99

gorithms might be responsible for the observed performance gap after a short amount of
adaptation, we conducted an additional set of experiments in which a time-varying half-life
was also used for SmoothBatch adaptation. Although the half-life could not be increased in-
stantaneously (at every KF iteration) as with RML, the half-life schedule for SmoothBatch
was set such that the first decoder update occurred with a half-life of 30 s and the last
decoder update occurred with a half-life of 300 s, to match the RML condition as closely
as possible. Figure 6.7 illustrates the subjects’ average performance with a fixed decoder
after short adaptation with either RML or SB, both with a time-varying half-life. For mon-
keys C and S, performance after RML was still better than after SmoothBatch across all
four performance metrics, and these differences were significant (p < 0.05, one-sided, paired
Wilcoxon signed-rank test) for almost all metrics (only the reach times for monkey S after
RML were not significantly larger than after SB). For monkey J, reach times and normalized
path length were lower after RML than after SB (difference in reach times was significant,
p < 0.05), and movement error and normalized path length were not significantly different
(p > 0.05). Overall, RML adaptation still proved to be more robust than SmoothBatch.
Notably, while all three subjects always performed successful trials after RML adaptation
in every session, they did not perform successful trials after SB adaptation in some sessions
(they were either unable or unwilling to do so). In particular, this occurred in 3 out of n = 7
sessions for monkey C, 1 out of n = 8 sessions for monkey J, and 3 out of n = 12 sessions
for monkey S.

100

0.0

0.5

1.0

1.5

M
E

 (
cm

)

Monkey C
 (spike)

*

0.0

0.2

0.4

0.6

0.8

M
V

 (
cm

) *

0

1

2

3

R
T

 (
se

c)

*

1.0

1.2

1.4

1.6

1.8

N
P

L
(a

.u
.) *

R
M

L

S
B

0.0

0.5

1.0

%
 c

o
rr

e
ct

0.0

0.5

1.0

Monkey J
 (spike)

0.0

0.2

0.4

0

1

2

3 *

1.0

1.2

1.4

R
M

L

S
B

0.0

0.5

1.0

0.0

0.5

1.0

Monkey S
 (LFP)

**

0.0

0.2

0.4

0.6
**

0

1

2

1.0

1.2

1.4
**

R
M

L

S
B

0.0

0.5

1.0
**

 *: p < 0.05
**: p < 0.01

Figure 6.7: Control comparison between the RML and SmoothBatch CLDA al-
gorithms (averaged data). Performance (averaged across sessions) with a fixed decoder
after a short adaptation period (5 minutes), starting from a Shuffled KF seeding. In con-
trast to the data plotted in Figure 6.5, where a time-varying half-life was used for RML
only, a time-varying half-life was used here for both RML and SmoothBatch. Error bars de-
note standard error of the mean, and asterisks indicate statistical significance (∗: p < 0.05,
∗∗: p < 0.01). Performance was quantified by evaluating four different measures of cursor
trajectory quality on successful trials. Smaller values represent better performance for all
metrics.

101

6.5 Discussion
By developing a continuously adaptive CLDA algorithm that updates parameters on every
decoder iteration, we have demonstrated the ability to achieve fast acquisition of BMI perfor-
mance when starting from potentially adverse seeding conditions. Since we used an assistive
control paradigm concurrently with CLDA, the subject appeared to have high performance
from the start, making it was difficult to measure how performance improved during the
course of decoder adaptation. Therefore, we chose to measure performance by stopping
CLDA (and assist) after a fixed amount of time and evaluating the subjects’ cursor con-
trol with a fixed decoder. When comparing our RML algorithm to a previously developed
CLDA algorithm (SmoothBatch) that is not continuously adaptive, we found that 3 macaque
monkey subjects using spiking activity or local field potentials achieved higher levels of per-
formance after a relatively short of period of RML adaptation compared to SmoothBatch
adaptation. When more extended adaptation was performed, both algorithms reached com-
parable levels of performance. One of the advantages of a continuously adaptive CLDA
algorithm is the ability to instantaneously adjust adaptation rates (such as the half-life h),
which we have leveraged in our experiments with RML. By starting with a relatively low half-
life (30 s) and gradually increasing this value over the course of CLDA, we aim to make large
initial parameter updates that bring the parameters into the right “ballpark”, while smoothly
transitioning towards more conservative, fine-tuned adaptation as decoder parameters begin
to converge. However, our control experiments testing SmoothBatch with a increasing half-
life showed that a time-varying half-life by itself does not account for the performance gap
after RML versus SmoothBatch CLDA, suggesting that continuous adaptation itself appears
to be important for rapid acquisition of performance.

Previous work in brain-machine interfaces and related fields has investigated compar-
isons between batch-based and continuously adaptive algorithms for improving performance
[32, 76, 77]. In brain-machine interfaces, continuously adaptive algorithms have been devel-
oped and tested in simulation for different decoder types and neural signal sources [37, 71,
76, 78–80], but not all algorithms fully translated to experimental settings when compared
to batch-based methods. For example, in [32], closed-loop experiments demonstrated that
CLDA with a continuously adaptive method led to performance improvements, but those im-
provements occurred relatively slowly and were not fully maintained upon fixing the decoder.
In the realm of human-machine interfaces, Danziger et al. conducted experiments in which
high-dimensional signals from a wearable glove were transformed to control the joint angles
of a simulated two-link robot arm [77]. Two learning algorithms — Moore-Penrose (MP)
pseudoinverse (batch) and LMS gradient descent (continuously adaptive) — were applied to
adapt the glove-to-robot transformation based on errors measured in past performance. Al-
though the LMS group outperformed a control group while the MP group did not, the LMS
subjects failed to achieve better generalization than the control subjects. Generalization
was also found to be a problem in [32], where closer inspection of the adapted parameter
trajectories revealed that with a continuously adaptive stochastic gradient method, some
parameters did not appear to converge, perhaps due to the method’s tendency to over-fit

102

on short time-scales. Indeed, in algorithms based on stochastic gradient methods, each indi-
vidual update to decoder parameters is based only on a single data point and therefore not
necessarily guaranteed to be accurate. In contrast, the SmoothBatch algorithm [28] avoids
this problem by making updates based on small (1–2 minutes) batches of data. However,
it too is partially limited by the fact that its data batches cannot be too small, or else the
corresponding batch parameter estimates used as part of the weighted averages in its update
rules will become too inaccurate. On the other hand, if the data batches are made to be
larger, then the batch parameter estimates will likely become more accurate, but then the
user must potentially wait for a long time for the next decoder update to occur. Since the
RML algorithm updates its sufficient statistics at each iteration before updating the KF
parameters themselves, each RML update is effectively still based on a (weighted) batch of
data. As a result, RML is able to perform continuous adaptation while still ensuring that
each decoder update results in a more potentially accurate adjustment of parameters than
would be achieved if each update was only based on a single data point.

Importantly, the RML algorithm is computationally fast and therefore feasible as a con-
tinuously adaptive CLDA algorithm for a wide variety of neural signal sources including
spikes, LFP, electrocorticography (ECoG), and electroencephalography (EEG). By first up-
dating a set of sufficient statistics that are then used to adapt the actual decoder parameters,
the RML algorithm is expressed in terms of recursive update rules that are computationally
simple and memory efficient. Moreover, when the number of neural features being passed
into the decoder is large, RML’s update rules can be reformulated using the matrix inversion
lemma to avoid costly matrix inversions in the KF equations that would otherwise make
continuous adaptation infeasible.

Overall, our results with RML indicate that continuous adaptation is indeed a feasible
and successful CLDA paradigm for rapid performance acquisition in BMIs. For these types of
continuously adaptive algorithms, it is important to determine whether CLDA will synergize
well with previous results that have demonstrated the importance of neural plasticity for
BMI learning [3, 5, 6, 11, 13, 47]. For instance, Ganguly and Carmena demonstrated that by
fixing the parameters of the BMI decoder and keeping neurons stable, a neural map of the
decoder forms that is stable across time, can be readily recalled, and is robust to interference
from a second learned map [13]. Therefore, even if continuously adaptive CLDA algorithms
are used to rapidly improve initial performance, subsequent practice with a fixed decoder
could potentially still lead to the formation of a stable map in order to achieve long-term
retention of neuroprosthetic skill.

103

Chapter 7

Conclusion

7.1 Thesis Contributions
This thesis makes a number of important contributions to the brain-machine interface field:

• We developed a CLDA algorithm called SmoothBatch that can rapidly and robustly
improved BMI performance regardless of initial closed-loop performance. In particu-
lar, we demonstrated the algorithm’s ability to improve closed-loop BMI performance
independent of whether the initial decoder was seeded using 1) visual observation of
cursor movement, 2) ipsilateral arm movement, 3) neural activity during quiet sitting,
or 4) arbitrary/shuffled weights. Such an algorithm could be paramount in situations
where initial closed-loop performance may be severely limited, such as in clinical BMI
applications for patients that cannot enact natural movement because of spinal cord
injury or other neurological disorders [28].

• While conducting closed-loop BMI experiments is ultimately the only conclusive way
to evaluate a CLDA algorithm’s convergence properties, such experiments are lengthy
and costly. We introduced common design considerations for CLDA algorithms and
demonstrated how mathematical convergence analysis, using measures such as mean-
square error (MSE) or KL divergence, can be a useful precursor to closed-loop experi-
ments that can further inform CLDA design and constrain the necessary experimental
testing. We applied our analysis to SmoothBatch as an example, and guided by the
convergence predictions that followed, we proposed a specific method to improve the
SmoothBatch algorithm by allowing for time-varying CLDA parameters [42].

• We demonstrated 2-D closed-loop BMI control using local field potential signals by
using the power of closed-loop decoder adaptation to adapt the decoder to the patterns
of neural activity elicited during BMI operation. Our work added to the growing body
of evidence that field potentials (LFP or ECoG) can be volitionally modulated well
enough to accurately control a 2-D cursor. Our post-experimental analysis showed
substantial differences in the patterns of LFP modulations between the two subjects

104

— when allowed a broad range of spectral power features to control the BMI, one
subject primarily utilized lower frequencies of the LFP for BMI control, while the
other preferred to use higher frequencies. The use of adaptive methods such as CLDA
can therefore be a useful tool that can help account for these inter-subject differences
[48].

• We developed a CLDA algorithm that enables rapid performance acquisition, which
can present a variety of advantages in certain situations. Our algorithm, recursive
maximum likelihood (RML), leverages the accuracy of updates based on a batch of data
while still both weighting recently observed data more heavily and efficiently adapting
parameters on every iteration. RML can help rapidly improve BMI performance when
the seed decoder is poor, and can also prove useful in helping to maintain a high level of
performance by shortening the required recalibration time during daily BMI operation
[72].

7.2 Pitfalls
In previous work, we developed some CLDA algorithms based on gradient descent. The first
algorithm, named the Adaptive Kalman Filter (AKF), used gradient-based update rules for
the A and C matrices of the Kalman filter, with the rules based on separate mean-squared
error objective functions [37]. For the W and Q covariance matrices, the AKF used update
rules of heuristic form. In later work, we extended this idea to develop another algorithm
called Likelihood Gradient Descent (LGA). In contrast to the AKF, LGA’s update rules are
based and are derived directly from a single, unified log likelihood objective function. When
we compared the performance of the LGA algorithm to the AKF in a 2-D center-out cursor
control task using a closed-loop simulator [36], the LGA outperformed the AKF. However,
in various closed-loop experiments, e.g., [32], neither of these algorithms performed as well
as other algorithms, such as SmoothBatch [28] or RML [72]. One common shortcoming of
both LGA and AKF that may explain their observed performance is the highly stochastic
nature of their gradient-based updates, as single time-point estimates of the gradient can be
quite noisy and inaccurate. Unlike these algorithms that produce noisy individual updates,
algorithms like RML that are not gradient-based may likely better leverage the accuracy of
updates based on a batch of data, while still being able to adapt parameters on every time
step like the AKF and LGA algorithms.

One downside of the RML algorithm is that the same CLDA framework may not extend
directly to other decoding models. For instance, when performing maximum likelihood
estimation for the parameters of a point-process filter (PPF), not all of the sufficient statistics
are in the form of sums like they are for the Kalman filter model. Therefore, the same RML-
style recursive update rules on sufficient statistics may not directly apply for the PPF model.

105

7.3 Future Work
While we have demonstrated high-level 2-D BMI control using only local field potential
signals, future work should explore the possibility developing BMI systems that use both
spike and LFP signals for prosthetic control. In addition, while we used 10-Hz frequency
bands as the basis for our extracted neural LFP features, a different arrangement of frequency
bands (e.g., smaller or larger bands, or bands with different sizes) may be more optimal.
Furthermore, other types of features entirely (e.g., time-domain features) could lead to higher
performance LFP-based control.

Overall, our results with the SmoothBatch and RML CLDA algorithms indicate that
CLDA is indeed a feasible and successful paradigm for rapid performance acquisition in
BMIs. In the experiments presented in this dissertation, we primarily developed CLDA
algorithms for a Kalman filter decoder operating with 100 ms between iterations. While the
Kalman filter is currently still a state-of-the-art decoding algorithm for BMI applications,
CLDA algorithms for other decoder architectures, should also be explored. Alternative
decoding architectures that operate on faster time-scales have been proposed, such as the
point-process filter (PPF) [78]. Since the PPF models the occurrence of individual spikes,
a PPF decoder would likely need to operate with <5 ms between iterations. Allthough the
RML algorithm may not be directly applicable to the PPF, it should be explored whether
CLDA on an even faster time-scale within a PPF framework [74] could enable more rapid
and accurate acquisition of BMI performance. Furthermore, with the recent re-emergence
of artificial neural networks within the machine learning field as a powerful tool for multi-
dimensional classification and regression problems, it should be explored whether CLDA
algorithms can be developed for neural network decoders to help leverage the power of deep
learning for BMI decoding applications.

106

Bibliography

[1] John K. Chapin, Karen A. Moxon, Ronald S. Markowitz, and Miguel A. L. Nicolelis.
Real-time control of a robot arm using simultaneously recorded neurons in the motor
cortex. Nature Neuroscience, 2(7):664–670, July 1999.

[2] Gregory J Gage, Kip A Ludwig, Kevin J Otto, Edward L Ionides, and Daryl R Kipke.
Naïve coadaptive cortical control. Journal of Neural Engineering, 2005.

[3] Aaron C. Koralek, Xin Jin, John D. Long Ii, Rui M. Costa, and Jose M. Carmena. Cor-
ticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature,
483(7389):331–335, March 2012.

[4] Mijail D Serruya, Nicholas G Hatsopoulos, Liam Paninski, Matthew R Fellows, and
John P Donoghue. Instant neural control of a movement signal. Nature, 416(6877):141–
142, March 2002. PMID: 11894084.

[5] Dawn M. Taylor, Stephen I. Helms Tillery, and Andrew B. Schwartz. Direct cortical
control of 3D neuroprosthetic devices. Science, 296(5574):1829 –1832, June 2002.

[6] Jose M Carmena, Mikhail A Lebedev, Roy E Crist, Joseph E O’Doherty, David M
Santucci, Dragan F Dimitrov, Parag G Patil, Craig S Henriquez, and Miguel A. L
Nicolelis. Learning to control a Brain–Machine interface for reaching and grasping by
primates. PLoS Biology, 1(2):e42, October 2003.

[7] S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, and R. A. Andersen. Cognitive
control signals for neural prosthetics. Science, 305(5681):258 –262, July 2004.

[8] Gopal Santhanam, Stephen I. Ryu, Byron M. Yu, Afsheen Afshar, and Krishna V.
Shenoy. A high-performance brain–computer interface. Nature, 442(7099):195–198,
July 2006.

[9] Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whitford, and Andrew B.
Schwartz. Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198):1098–
1101, June 2008.

[10] Chet T. Moritz, Steve I. Perlmutter, and Eberhard E. Fetz. Direct control of paralysed
muscles by cortical neurons. Nature, 456(7222):639–642, December 2008.

107

[11] Beata Jarosiewicz, Steven M Chase, George W Fraser, Meel Velliste, Robert E Kass,
and Andrew B Schwartz. Functional network reorganization during learning in a brain-
computer interface paradigm. Proceedings of the National Academy of Sciences of the
United States of America, 105(49):19486–19491, December 2008. PMID: 19047633.

[12] Joseph E. O’Doherty, Mikhail A. Lebedev, Timothy L. Hanson, Nathan A. Fitzsimmons,
and Miguel A. L. Nicolelis. A brain-machine interface instructed by direct intracortical
microstimulation. Frontiers in Integrative Neuroscience, 3, September 2009. PMID:
19750199 PMCID: 2741294.

[13] Karunesh Ganguly and Jose M. Carmena. Emergence of a stable cortical map for
neuroprosthetic control. PLoS Biology, 7(7):e1000153, July 2009.

[14] Aaron J. Suminski, Dennis C. Tkach, Andrew H. Fagg, and Nicholas G. Hatsopou-
los. Incorporating feedback from multiple sensory modalities enhances Brain–Machine
interface control. The Journal of Neuroscience, 30(50):16777 –16787, December 2010.

[15] C. Ethier, E. R. Oby, M. J. Bauman, and L. E. Miller. Restoration of grasp following
paralysis through brain-controlled stimulation of muscles. Nature, 485(7398):368–371,
May 2012.

[16] Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, Jon A. Mukand, Maryam
Saleh, Abraham H. Caplan, Almut Branner, David Chen, Richard D. Penn, and John P.
Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature, 442(7099):164–171, July 2006.

[17] Sung-Phil Kim, John D Simeral, Leigh R Hochberg, John P Donoghue, and Michael J
Black. Neural control of computer cursor velocity by decoding motor cortical spik-
ing activity in humans with tetraplegia. Journal of Neural Engineering, 5(4):455–476,
December 2008.

[18] Leigh R Hochberg, Daniel Bacher, Beata Jarosiewicz, Nicolas Y Masse, John D Simeral,
Joern Vogel, Sami Haddadin, Jie Liu, Sydney S Cash, Patrick van der Smagt, and John P
Donoghue. Reach and grasp by people with tetraplegia using a neurally controlled
robotic arm. Nature, 485(7398):372–375, May 2012. PMID: 22596161.

[19] Jennifer L Collinger, Brian Wodlinger, John E Downey, Wei Wang, Elizabeth C Tyler-
Kabara, Douglas J Weber, Angus J C McMorland, Meel Velliste, Michael L Boninger,
and Andrew B Schwartz. High-performance neuroprosthetic control by an individual
with tetraplegia. Lancet, 381(9866):557–564, February 2013. PMID: 23253623.

[20] Jose Millan and Jose Carmena. Invasive or noninvasive: Understanding brain-machine
interface technology [Conversations in BME. IEEE Engineering in Medicine and Biology
Magazine, 29(1):16–22, January 2010.

108

[21] Vikash Gilja, Cindy A Chestek, Ilka Diester, Jaimie M Henderson, Karl Deisseroth,
and Krishna V Shenoy. Challenges and opportunities for next-generation intracortically
based neural prostheses. IEEE Transactions on Bio-Medical Engineering, 58(7):1891–
1899, July 2011. PMID: 21257365.

[22] RemyWahnoun, Jiping He, and Stephen I Helms Tillery. Selection and parameterization
of cortical neurons for neuroprosthetic control. Journal of Neural Engineering, 3(2):162–
171, June 2006. PMID: 16705272.

[23] Karunesh Ganguly and Jose M Carmena. Neural correlates of skill acquisition with a
cortical brain-machine interface. Journal of Motor Behavior, 42(6):355–360, November
2010. PMID: 21184353.

[24] Shinsuke Koyama, Steven M Chase, Andrew S Whitford, Meel Velliste, Andrew B
Schwartz, and Robert E Kass. Comparison of brain-computer interface decoding algo-
rithms in open-loop and closed-loop control. Journal of Computational Neuroscience,
29(1-2):73–87, August 2010. PMID: 19904595.

[25] Wei Wu, Michael J Black, Yun Gao, Elie Bienenstock, Mijail Serruya, Ali Shaikhouni,
and John P Donoghue. Neural decoding of cursor motion using a kalman filter. Advances
in Neural Information Processing Systems, 15, 2003.

[26] Wei Wu, Yun Gao, Elie Bienenstock, John P Donoghue, and Michael J Black. Bayesian
population decoding of motor cortical activity using a kalman filter. Neural Computa-
tion, 18(1):80–118, January 2006. PMID: 16354382.

[27] Vikash Gilja, Paul Nuyujukian, Cindy A. Chestek, John P. Cunningham, Byron M.
Yu, Joline M. Fan, Mark M. Churchland, Matthew T. Kaufman, Jonathan C. Kao,
Stephen I. Ryu, and Krishna V. Shenoy. A high-performance neural prosthesis enabled
by control algorithm design. Nature Neuroscience, 15(12):1752–1757, 2012.

[28] A. Orsborn, S. Dangi, H. Moorman, and J. Carmena. Closed-loop decoder adaptation
on intermediate time-scales facilitates rapid BMI performance improvements indepen-
dent of decoder initialization conditions. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, PP(99):1, 2012.

[29] Karunesh Ganguly, Lavi Secundo, Gireeja Ranade, Amy Orsborn, Edward F. Chang,
Dragan F. Dimitrov, Jonathan D. Wallis, Nicholas M. Barbaro, Robert T. Knight, and
Jose M. Carmena. Cortical representation of ipsilateral arm movements in monkey and
man. The Journal of Neuroscience, 29(41):12948 –12956, October 2009.

[30] Lavi Shpigelman, Hagai Lalazar, and Eilon Vaadia. Kernel-ARMA for hand tracking
and brain-machine interfacing during 3D motor control. Advances in Neural Information
Processing Systems, 21, 2008.

109

[31] Babak Mahmoudi and Justin C. Sanchez. A symbiotic brain-machine interface through
value-based decision making. PLoS ONE, 6(3):e14760, March 2011.

[32] Amy L Orsborn, Siddharth Dangi, Helene G Moorman, and Jose M Carmena. Exploring
time-scales of closed-loop decoder adaptation in brain-machine interfaces. Proceedings
of the Engineering in Medicine and Biology Society Annual International Conference of
the IEEE, 2011:5436–5439, 2011. PMID: 22255567.

[33] George Paxinos, Xu-Feng Huang, and Arthur W. Toga. The Rhesus Monkey Brain in
Stereotaxic Coordinates. Academic Press, 1st edition, November 1999.

[34] V. Gilja, P. Nuyujukian, C.A. Chestek, J.P. Cunningham, B.M. Yu, S.I. Ryu, and K.V.
Shenoy. High-performance continuous neural cursor control enabled by feedback control
perspective. Computational and Systems Neuroscience (COSYNE 2010), 2010.

[35] V. Gilja, P. Nuyujukian, C.A. Chestek, J.P. Cunningham, J.M. Fan, B.M. Yu, S.I.
Ryu, and Shenoy K.V. A high-performance continuous cortically-controlled prosthesis
enabled by feedback control design. Society for Neuroscience (SFN 2010), 2010.

[36] John P Cunningham, Paul Nuyujukian, Vikash Gilja, Cindy A Chestek, Stephen I Ryu,
and Krishna V Shenoy. A closed-loop human simulator for investigating the role of
feedback control in brain-machine interfaces. Journal of Neurophysiology, 105(4):1932–
1949, April 2011. PMID: 20943945.

[37] S. Dangi, S. Gowda, R. Heliot, and J. M Carmena. Adaptive kalman filtering for
closed-loop brain-machine interface systems. In 2011 5th International IEEE/EMBS
Conference on Neural Engineering (NER), pages 609–612. IEEE, May 2011.

[38] Dennis Tkach, Jacob Reimer, and Nicholas G. Hatsopoulos. Congruent activity dur-
ing action and action observation in motor cortex. The Journal of Neuroscience,
27(48):13241 –13250, November 2007.

[39] Wilson Truccolo, Gerhard M. Friehs, John P. Donoghue, and Leigh R. Hochberg. Pri-
mary motor cortex tuning to intended movement kinematics in humans with tetraplegia.
The Journal of Neuroscience, 28(5):1163 –1178, January 2008.

[40] Aaron J Suminski, Dennis C Tkach, and Nicholas G Hatsopoulos. Exploiting multiple
sensory modalities in brain-machine interfaces. Neural Networks: The Official Journal
of the International Neural Network Society, 22(9):1224–1234, November 2009. PMID:
19525091.

[41] Benjamin Blankertz, Claudia Sannelli, Sebastian Halder, Eva M Hammer, Andrea
Kübler, Klaus-Robert Müller, Gabriel Curio, and Thorsten Dickhaus. Neurophysio-
logical predictor of SMR-based BCI performance. NeuroImage, 51(4):1303–1309, July
2010. PMID: 20303409.

110

[42] Siddharth Dangi, Amy L Orsborn, Helene G Moorman, and Jose M Carmena. Design
and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
Neural computation, 25(7):1693–1731, July 2013. PMID: 23607558.

[43] Zheng Li, Joseph E. O’Doherty, Mikhail A. Lebedev, and Miguel A. L. Nicolelis. Adap-
tive decoding for brain-machine interfaces through bayesian parameter updates. Neural
Computation, 23(12):3162–3204, 2011.

[44] Sen Cheng and Philip N Sabes. Modeling sensorimotor learning with linear dynamical
systems. Neural Computation, 18(4):760–793, April 2006. PMID: 16494690.

[45] Rodolphe Héliot, Karunesh Ganguly, Jessica Jimenez, and Jose M Carmena. Learning
in closed-loop brain-machine interfaces: modeling and experimental validation. IEEE
Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication
of the IEEE Systems, Man, and Cybernetics Society, 40(5):1387–1397, October 2010.
PMID: 20007050.

[46] Rodolphe Heliot, Subramaniam Venkatraman, and Jose M Carmena. Decoder remap-
ping to counteract neuron loss in brain-machine interfaces. Proceedings of the Engi-
neering in Medicine and Biology Society Annual International Conference of the IEEE,
2010:1670–1673, 2010. PMID: 21096393.

[47] Karunesh Ganguly, Dragan F. Dimitrov, Jonathan D. Wallis, and Jose M. Carmena.
Reversible large-scale modification of cortical networks during neuroprosthetic control.
Nature Neuroscience, 14(5):662–667, 2011.

[48] Kelvin So, Siddharth Dangi, Amy L Orsborn, Michael C Gastpar, and Jose M Carmena.
Subject-specific modulation of local field potential spectral power during brain-machine
interface control in primates. Journal of Neural Engineering, 2014.

[49] Eberhard E Fetz. Volitional control of neural activity: implications for brain-computer
interfaces. Journal of Physiology, 579(3):571–579, March 2007. PMID: 17234689.

[50] Jörn Rickert, Simone Cardoso de Oliveira, Eilon Vaadia, Ad Aertsen, Stefan Rotter,
and Carsten Mehring. Encoding of movement direction in different frequency ranges of
motor cortical local field potentials. The Journal of Neuroscience, 25(39):8815 –8824,
2005.

[51] J N Sanes and J P Donoghue. Oscillations in local field potentials of the primate motor
cortex during voluntary movement. Proceedings of the National Academy of Sciences of
the United States of America, 90(10):4470–4474, May 1993. PMID: 8506287 PMCID:
PMC46533.

111

[52] Arjun K Bansal, Carlos E Vargas-Irwin, Wilson Truccolo, and John P Donoghue.
Relationships among low-frequency local field potentials, spiking activity, and three-
dimensional reach and grasp kinematics in primary motor and ventral premotor cortices.
Journal of Neurophysiology, 105(4):1603–1619, April 2011. PMID: 21273313.

[53] David A. Markowitz, Yan T. Wong, Charles M. Gray, and Bijan Pesaran. Optimizing
the decoding of movement goals from local field potentials in macaque cortex. Journal
of Neuroscience, 31(50):18412–18422, December 2011.

[54] Robert D Flint, Christian Ethier, Emily R Oby, Lee E Miller, and MarcW Slutzky. Local
field potentials allow accurate decoding of muscle activity. Journal of Neurophysiology,
108(1):18–24, July 2012. PMID: 22496527.

[55] Robert D Flint, Eric W Lindberg, Luke R Jordan, Lee E Miller, and Marc W Slutzky.
Accurate decoding of reaching movements from field potentials in the absence of spikes.
Journal of Neural Engineering, 9(4):046006, August 2012. PMID: 22733013.

[56] Eun Jung Hwang and Richard A. Andersen. Brain control of movement execution
onset using local field potentials in posterior parietal cortex. Journal of Neuroscience,
29(45):14363 –14370, November 2009.

[57] Ben Engelhard, Nofar Ozeri, Zvi Israel, Hagai Bergman, and Eilon Vaadia. Induc-
ing gamma oscillations and precise spike synchrony by operant conditioning via brain-
machine interface. Neuron, 77(2):361–375, January 2013.

[58] Robert D. Flint, Zachary A. Wright, Michael R. Scheid, and Marc W. Slutzky. Long
term, stable brain machine interface performance using local field potentials and mul-
tiunit spikes. Journal of Neural Engineering, 10(5):056005, October 2013.

[59] G. Schalk, J. Kubánek, K. J. Miller, N. R. Anderson, E. C. Leuthardt, J. G. Ojemann,
D. Limbrick, D. Moran, L. A. Gerhardt, and J. R. Wolpaw. Decoding two-dimensional
movement trajectories using electrocorticographic signals in humans. Journal of Neural
Engineering, 4(3):264, September 2007.

[60] R.D. Flint, Z.A. Wright, and M.W. Slutzky. Control of a biomimetic brain machine
interface with local field potentials: Performance and stability of a static decoder over
200 days. In Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 6719 –6722, September 2012.

[61] Simon S Haykin. Adaptive filter theory. Prentice Hall, 4th edition, 2002.

[62] Wei Wang, Jennifer L Collinger, Alan D Degenhart, Elizabeth C Tyler-Kabara, An-
drew B Schwartz, Daniel W Moran, Douglas J Weber, Brian Wodlinger, Ramana K
Vinjamuri, Robin C Ashmore, John W Kelly, and Michael L Boninger. An electro-
corticographic brain interface in an individual with tetraplegia. PloS one, 8(2):e55344,
2013. PMID: 23405137 PMCID: PMC3566209.

112

[63] J. P. Donoghue, J. D. Simeral, S.-P. Kim, G. M. Friehs, L. R. Hochberg, and M. J.
Black. Toward standardized assessment of pointing devices for brain-computer inter-
faces. Society for Neuroscience (SfN 2007), 2007.

[64] Adam G. Rouse, Jordan J. Williams, Jesse J. Wheeler, and Daniel W. Moran. Cortical
adaptation to a chronic micro-electrocorticographic brain computer interface. Journal
of Neuroscience, 33(4):1326–1330, January 2013.

[65] Jeremiah D Wander, Timothy Blakely, Kai J Miller, Kurt E Weaver, Lise A Johnson,
Jared D Olson, Eberhard E Fetz, Rajesh P N Rao, and Jeffrey G Ojemann. Distributed
cortical adaptation during learning of a brain-computer interface task. Proceedings of the
National Academy of Sciences of the United States of America, 110(26):10818–10823,
June 2013. PMID: 23754426.

[66] Yoshinao Kajikawa and Charles E. Schroeder. How local is the local field potential?
Neuron, 72(5):847–858, December 2011. PMID: 22153379 PMCID: PMC3240862.

[67] N. E. Crone, D. L. Miglioretti, B. Gordon, J. M. Sieracki, M. T. Wilson, S. Uematsu,
and R. P. Lesser. Functional mapping of human sensorimotor cortex with electrocor-
ticographic spectral analysis. i. alpha and beta event-related desynchronization. Brain,
121(12):2271–2299, December 1998.

[68] Paul M. Fitts. The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology, 47(6):381–391, 1954.

[69] I S MacKenzie. A note on the information-theoretic basis of fitts’ law. Journal of Motor
Behavior, 21(3):323–330, September 1989.

[70] G Schalk, K J Miller, N R Anderson, J A Wilson, M D Smyth, J G Ojemann, D W
Moran, J R Wolpaw, and E C Leuthardt. Two-dimensional movement control using
electrocorticographic signals in humans. Journal of Neural Engineering, 5(1):75–84,
March 2008.

[71] Jonathan R. Wolpaw and Dennis J. McFarland. Control of a two-dimensional movement
signal by a noninvasive brain-computer interface in humans. Proceedings of the National
Academy of Sciences of the United States of America, 101(51):17849–17854, December
2004. PMID: 15585584.

[72] Siddharth Dangi, Suraj Gowda, Helene G Moorman, Amy L Orsborn, Kelvin So,
Maryam Shanechi, and Jose M Carmena. Continuous closed-loop decoder adaptation
with a recursive maximum likelihood algorithm allows for rapid performance acquisition
in brain-machine interfaces. Neural computation, 26(9):1811–1839, August 2014.

[73] Cynthia A. Chestek, Vikash Gilja, Paul Nuyujukian, Justin D. Foster, Joline M. Fan,
Matthew T. Kaufman, Mark M. Churchland, Zuley Rivera-Alvidrez, John P. Cunning-
ham, Stephen I. Ryu, and Krishna V. Shenoy. Long-term stability of neural prosthetic

113

control signals from silicon cortical arrays in rhesus macaque motor cortex. Journal of
Neural Engineering, 8(4):045005, August 2011.

[74] Maryam Shanechi and Jose M Carmena. Optimal feedback-controlled point process
decoder for adaptation and assisted training in brain-machine interfaces. 2013 6th
International IEEE/EMBS Conference on Neural Engineering (NER), 2013, 2013.

[75] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Second Edition. 1992.

[76] S-P Kim, J C Sanchez, Y N Rao, D Erdogmus, J M Carmena, M A Lebedev, M A L
Nicolelis, and J C Principe. A comparison of optimal MIMO linear and nonlinear models
for brain-machine interfaces. Journal of neural engineering, 3(2):145–161, June 2006.
PMID: 16705271.

[77] Zachary Danziger, Alon Fishbach, and Ferdinando A Mussa-Ivaldi. Learning algo-
rithms for human-machine interfaces. IEEE transactions on bio-medical engineering,
56(5):1502–1511, May 2009. PMID: 19203886 PMCID: PMC3286659.

[78] Uri T. Eden, Loren M. Frank, Riccardo Barbieri, Victor Solo, and Emery N. Brown.
Dynamic analysis of neural encoding by point process adaptive filtering. Neural Com-
putation, 16(5):971–998, May 2004.

[79] Yiwen Wang and Jose C Principe. Tracking the non-stationary neuron tuning by dual
kalman filter for brain machine interfaces decoding. Conference proceedings: ... Annual
International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Conference, 2008:1720–1723, 2008.
PMID: 19163011.

[80] Siddharth Dangi, Kelvin So, Amy L Orsborn, Michael C Gastpar, and Jose M Car-
mena. Brain-machine interface control using broadband spectral power from local field
potentials. Proceedings of the Engineering in Medicine and Biology Society Annual
International Conference of the IEEE, 2013, 2013.

