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Abstract

Scalable Algorithms for Population Genomic Inference

by

Sara Sheehan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

Since the 1920s, researchers in population genetics have developed mathematical models
to explain how a species evolves. With the rise of DNA sequencing over the past decade,
we now have the data to use these models to answer real questions in evolutionary biology.
However, the sheer amount of data and the time complexity of the models makes inference
extremely challenging. Computer science has therefore become an essential tool for bridging
theoretical models and modern sequencing data.

In this thesis we present two novel algorithms that make use of DNA sequencing data in
a principled yet practical way. The first method estimates the history of effective population
sizes of a species using a coalescent hidden Markov model (HMM). Previous coalescent
HMMs could only handle a few sequences, since the set of coalescent trees makes the state-
space prohibitively large. Our algorithm uses a modified state-space to make inference
computationally feasible while still retaining the essential genealogical features of a sample.
We apply this algorithm, called diCal, to human data to learn more about major events in
human history, such as the out-of-Africa migration. We also provide several extensions to
diCal that make the computation faster, more automated, and applicable in a wider variety
of scenarios.

The second method is an algorithm for jointly estimating effective population size changes
and natural selection. These two factors can leave similar traces in genomic data, and
the models that would describe both are computationally intractable. Our method uses
a machine learning technique called deep learning to make the inference procedure robust
and efficient. Deep learning automatically teases out important features of the data, but
previously had not been used in population genetics. We apply this method to African
Drosophila melanogaster data to jointly infer their population size changes and classify each
region of their genome as neutral or under natural selection. We considered three types
of selection: hard sweeps, soft sweeps, and balancing selection. To create a sophisticated
framework for population genomic inference, in the future it would be promising to combine
machine learning algorithms with biologically-inspired coalescent modeling.
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Chapter 1

Introduction

One of the major aims of evolutionary biology is to understand the development of the
diversity of life we see today. We know that much of this phenotypic diversity is caused
by differences at the DNA level, and further, we now have the technology to access this
information and compare different individuals. The field of population genetics seeks to
understand DNA variation at the population level. We aim to build models that will help
us understand the past evolutionary events that gave rise to observed genetic variation. We
can think of the DNA for an diploid individual as a pair of strings built from the characters
A,C,G, T , one string from the mother and one from the father. There are many factors that
affect these strings, including mutation, recombination, migration, population splits, natural
selection, and population size changes. Each factor is important to model so that we obtain
an accurate picture of the forces shaping genetic variation.

In chapter 1, we provide an overview of the two main phenomena investigated in this
thesis: population size changes and natural selection. We also describe previous work that
aims to quantify these forces. In chapter 2 and chapter 3 of this thesis, we will focus on
population size changes. In humans, for example, the population size has varied considerably
due to changes in environment, culture, and technology. As humans migrated out of Africa
and into the rest of the world, it is likely that small “founder” populations re-expanded
into new territories, creating “bottleneck” events. Accurately estimating such population
size changes provides a clearer picture of human history, or the history of any other species.
For endangered species in particular, accurately monitoring their population sizes through
genetics could provide essential information for conservation efforts. In chapter 4, we will
incorporate natural selection as well, which will require a different type of modeling. Natural
selection and population size changes are often confounded, and failure to separate their
effects can lead to misleading results about evolution. In chapter 5, we summarize this
thesis and provide some future research directions.
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1.1 What is effective population size?

The term population size normally refers to the census population size, or the total number
of individuals in a population at a given point in time. But in population genetics, we
instead think about a different quantity called effective population size, usually denoted
Ne. Over the years there have been many different definitions of effective population size,
but the original intuition is that Ne should only include individuals who would contribute
genetic material to the next generation. As first described by Sewall Wright, “Obviously
N applies only to the breeding population and not to the total number of individuals of all
ages” [117]. Based on his work, the working definition of Ne was the size of an idealized
population that would show the same level of x as observed in a natural population, where x
is some population genetic parameter of interest. Often x was genetic drift, which describes
the random changes in allele frequencies that occur in finite populations. An “idealized”
population needs to meet several conditions, including that individuals mate randomly, and
all individuals survive until they have a chance to reproduce in the next generation.

Since natural populations do not meet these conditions, Ne almost always differs from
the census size, often significantly so. In a randomly mating population where the variance
in the number of offspring is high, Ne will usually be less than the census size, since many
individuals will not pass on genetic material to the next generation. Another factor that can
affect Ne is the sex-ratio between males and females in a diploid population. An unequal
ratio will bias Ne towards the size of the less prevalent sex.

1.1.1 Variance effective population size

To quantify how such factors affect Ne, we start by examining a model of evolution called the
Wright-Fisher model, after Sewall Wright and Ronald Fisher. In this model, we begin with
a population of size 2N (the 2 for diploid individuals), and assume generations are discrete.
In the next generation, each “child” chooses a “parent” at random from 2N individuals. Let
us examine the case where we have two alleles, A and B, at a single locus. Let p be the
frequency of allele A in the current generation, and p′ be the frequency of A in the next
generation. The variance of p′ in the Wright-Fisher model, and many similar models, is

Var(p′) =
p(1− p)

2Ne

(1.1)

[30]. This Ne is the variance effective population size. For the Wright-Fisher model in par-
ticular, the number of copies of A in the next generation, X, follows a binomial distribution

P(X = k) =

(
2N

k

)
pk(1− p)2N−k.

If we work out the expectation and variance of p′ using this binomial distribution, we get

E(p′) = p and Var(p′) =
p(1− p)

2N
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[30]. Comparing this variance to Equation 1.1, we can see that in the Wright-Fisher model,
the census population size N is equal to the (variance) effective population size Ne, making
this model one of the few that meets all the idealized population assumptions.

This idea of using the variance of p′ can also help us understand how a variable population
size affects Ne. If Ni is the effective population size in generation i, for i = 1, · · · , G, then
the “average” Ne of the population over these G generations is the harmonic mean

Ne =
G∑G
i=1

1
Ni

. (1.2)

Therefore, if there have been times of very low population sizes, Ne will be dominated by
these sizes. This formula was first provided by Wright [118], and can be understood using
an argument outlined by Gillespie [30]. First consider a Wright-Fisher population that has
census size N1 with probability r and size N2 with probability 1− r. Then the variance is

Var(p′) = r
p(1− p)

2N1

+ (1− r)p(1− p)
2N2

=
p(1− p)

2

(
r

N1

+
1− r
N2

)
.

Comparing this variance to Equation 1.1, we can obtain the variance effective population
size

Ne =
1

r
N1

+ 1−r
N2

,

which is the harmonic mean of N1 and N2. We can extend this idea to multiple population
sizes, each occurring for one generation, to obtain Equation 1.2. Note that so far we have
assumed a model with no mutation, so the harmonic mean should not be thought of as a
perfect formula for “average” Ne, but as a general guideline.

In the case of an imbalanced sex-ratio, let Nf be the number of females and Nm be the
number of males. Then the variance effective population size is

Ne =
4NfNm

Nf +Nm

.

As described in [30], if Nf and Nm are unequal, there will be a reduction in Ne, but typically
not a severe one.

Finally, we can investigate an arbitrary offspring distribution. If σ2 is the variance in the
number of offspring for a single copy of the locus, then

Var(p′) =
σ2p(1− p)

2N
,

so Ne = N/σ2. This formula helps us see that Ne can be either greater or less than the
census population size. In the Wright-Fisher model, σ2 = 1, so Ne = N . If σ2 > 1, then
the effective population size will be less than the census size. And conversely, for a limiting
case, let the number of offspring of each copy be exactly 1, so σ2 = 0. In that case Ne →∞.
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1.1.2 Early estimates of effective population size

The Wright-Fisher model is usually thought of forward in time, but we could consider the
evolutionary process backward in time as well. In this case, we would imagine starting with
an effective population of size 2Ne at the present time, and following the ancestry of these
copies backward through the previous generations. If two copies find a common ancestor at a
given generation, we say that they coalesce. At a single locus, eventually all the lineages will
coalesce to a common ancestor. The time of this event is often called the TMRCA for “time
to most recent common ancestor”. If we rescale time by 2Ne and take the limit as Ne →∞,
we obtain a continuous time process instead of one measured in discrete generations. This
type of modeling is called coalescent theory; see Kingman [59] for an initial description of
the mathematical process, or Wakeley [112] for a more general introduction.

Rescaling by Ne leads many population genetic parameters to depend on the effective
population size. For example, if t is time measured in “coalescent units”, then 2Net is
time in generations. If we further multiply by the generation time g (years/generation), we
can get time in years. In the case of a sample of size n = 2 (i.e. two haplotypes or one
diploid individual), the expected time to coalescence under neutrality is 1 in coalescent units
(exponential waiting time with rate 1), or 2Ne generations.

This observation leads to a simple way to estimate Ne. If the per-generation, per-locus
(a locus could be one base, or a collection of adjacent bases) mutation rate is µ, then the
expected number of pairwise differences between two samples is 4Neµ. This is because muta-
tions occur as a Poisson process on both lineages until the common ancestor event. Averaging
across many pairs of individuals, we can obtain the average pairwise heterozygosity, denoted
π. Early estimates of Ne thus relied on the formula:

π = 4Neµ. (1.3)

In 1974, initial estimates of π (which were denoted M) for different human populations
were calculated in [80] using protein polymorphisms. These estimates were later used in [79]
to estimate Ne for all humans at around 10,000. See chapter 4 of [112] for a more detailed
description of π and other measures of neutral diversity. Subsequent analysis was often
consistent with this estimate of Ne, for example, Table 1 of [106] analyzes three methods,
of which the latter two use variants of Equation 1.3. The ranges for these estimates are
9,000-12,000, 8,000-11,000, and 7,000-9,200 for all humans.

It should be noted that many assumptions go into this simple method for estimating Ne,
most importantly a neutral coalescent (no natural selection) and that Ne has been constant
since the TMRCA of the sample. Population size changes are reduced to a single number
(roughly the harmonic mean, Equation 1.2). Selection can drastically change the shape of
a coalescent topology, creating a potentially significant bias when estimating Ne using this
type of method. In particular, protein-coding regions are likely under purifying selection,
which could bias Ne estimates downward.

In 1995, Hammer [42] also obtained an estimate of (autosomal) Ne = 10, 000 for humans
using data from the Y chromosome. Not all estimates have been consistent though, and
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some debate occurred surrounding an estimate of long-term Ne = 100, 000 in [3], which
was criticized in [24] in favor of 10, 000. This traditional, lower estimate has been used to
argue for the single origin of modern humans in Africa. The reasoning is that if Ne is still
relatively low in non-African populations, they must have undergone a relatively recent bot-
tleneck, presumably the out-of-Africa bottleneck. If Ne is found to be high across all human
populations, that could indicate more long term structure and sub-division among human
populations. This debate might seem outdated now, but shows how interested researchers
were in Ne and how much weight has been given to its estimates. Later estimates of long-
term Ne included 18,000 in [104], and as low as 7,500 for an African population and 3,100
for Asians in [110]. A natural next step toward building a consistent species history is to
model changes in effective population size.

1.1.3 Coalescent effective population size

A more mathematical definition of Ne than the number of breeding individuals is as a scaling
factor in the rate of coalescence. During times of low population size, there are fewer indi-
viduals to coalesce with, so coalesces happens more quickly than expected. Correspondingly,
during times of large population size, coalescence happens more slowly than expected. One
way to relate this coalescent Ne to variance Ne is through the formula Ne = N/σ2 we saw
before. If each lineage produces exactly one offspring and thus σ2 = 0, then going backward
in time, there are never any coalescent events. Since the rate of coalescence scales inversely
with the effective population size, Ne is infinite, as is consistent with the formula.

To make this more precise, we can quantify how this scaling factor affects the coalescent.
First, define a population size change function

N(t) = λ(t)Nref

where Nref is a baseline effective population size, and λ(t) is the function of scaling factors
going back in time (so t = 0 is the present). Nref can be chosen arbitrarily, and it is not
necessary that λ(0) = 1. Let Ti be the time to the next coalescence event when there are
currently i lineages. We can consider the effect of N(t) on the distribution of the coalescence
time for two lineages (T2), which is

fT2(t) =
1

λ(t)
exp

(∫ t

0

1

λ(τ)
dτ

)
. (1.4)

Note that generalizing this coalescent process to n lineages is not straightforward, since when
Ne is not constant, Ti depends on the sum of Tn, · · · , Ti+1.

Coalescent Ne is further confounded by population structure, which can cause lineages
from the same population to coalesce more recently, and lineages from different populations
to coalesce more anciently. Migration and natural selection also affect this scaling factor.
Additionally, for species that undergo genetic recombination, the coalescent history varies
throughout the genome. Modeling this process is the focus of the next section.
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Model

⇒

Sheehan, Harris, Song May 26, 2012 11

Figure 1.1: The topology on the left is an ancestral recombination graph for four haplotypes
at two sites, whose sequences are labeled below each lineage. The red ‘X’ marks a recom-
bination event between these two sites. The trees on the right show the topologies for the
first site and second site, which are different. These are what we refer to as local trees.

1.2 Coalescent hidden Markov models

For many problems in population genetics, knowing the true genealogical history of a sample
would provide access to a direct estimation of many parameters of interest. For a single locus,
the genealogical history is a tree, but for species that undergo recombination, this tree could
be different at different sites along the genome. During recombination, the two copies of
each chromosome from the parents combine to create a hybrid that can be passed on to
the next generation. Recombination “breakpoints” represent switches in the ancestry of the
sequence. Previously, we always considered the number of lineages to be decreasing backward
time time, and lineages coalesced as they found common ancestors. But with recombination,
the number of lineages can increase, as breakpoints cause a single lineage to split in two,
with each part of the sequence following a different lineage backward in time. Thus the
genealogy is no longer a tree, but a graph, which we refer to as the ancestral recombination
graph, or ARG. An example is illustrated in Figure 1.1.

We can model the ARG using the coalescent with recombination, a stochastic process
that encapsulates the history of a collection of DNA sequences [51, 116]. The ancestral
state associated with each genetic locus is marginally a tree with time-weighted edges, and
neighboring trees in the sequence are highly correlated with each other. Sequential changes
in tree structure reflect the process of genetic recombination that slowly breaks up ancestral
haplotypes over time.

This view of genealogical history leads to a natural interpretation of sequence data
through a graphical model, where the observations are the DNA sequences, and the hid-
den state is the genealogy relating them. The correlation of nearby trees further provides
inspiration for using a hidden Markov model (HMM) as the graphical model of choice. The
hidden state is not the entire ARG, but a tree at each locus. In practice we usually assume
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Figure 1.2: Illustration of how the local tree changes along the genome due to recombination.
From the first tree to the second tree, there is a recombination event on the red lineage, and
then it reconnects to a different part of the tree. From the second to the third tree, a more
complicated recombination event occurred, and the tree changed more drastically.
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Figure 1.3: Idealized graphical
model for a coalescent HMM. The
observed data are the alleles at
each locus (shaded circles) and the
hidden state is a complete, edge-
weighted tree (unshaded circles).

that this hidden tree only depends on the tree immediately preceding it (a Markov process
of order 1). See Figure 1.2 for an illustration. In a graphical model framework, this process
would look like Figure 1.3, which can be thought of as a “gold-standard” coalescent HMM.

However, even with the simplification of a tree as our hidden state, the state space grows
super-exponentially in the number of sequences, which is not practical. This can be seen as
follows. For n sequences, there are

(
n
2

)
choices for the first coalescent event,

(
n−1

2

)
for the

second coalescent event, and so on. So there are

n!(n− 1)!

2n−1
∼ O(nn) (1.5)

distinct tree topologies where we consider the order of internal nodes. Even for n = 10,
there would be over 2 billion states. This does not even include edge-weighted trees, which
we need for time information, but would further exacerbate the state space explosion. This
model is not computationally practical, and it is difficult to see how it could be in the future.

As a consequence, much of the modeling work on coalescent HMMs has focused on
reducing this state space. In the next section, we will cover three coalescent HMMs that
have various solutions to the state space problem. We will also cover how these and other
methods have estimated demographic history parameters.
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1.3 Previous methods for demographic inference

Much can be learned about ancient population history from present-day DNA data. This
might seem surprising, but intuitively, each of our genomes is made up of the genomes of
our ancestors. Over many generations, scattered mutation and recombination events make
a modern genome look like an “imperfect mosaic” of the ancestral genomes of the past. De-
mographic history influences the pattern of genetic variation in a population, thus genomic
data from multiple individuals sampled from a present-day population contain valuable in-
formation about the past demographic history of that population. It is worth asking exactly
how changes in Ne can inform us about changes in census population size. For the purposes
of this thesis, we will assume that such changes are correlated, and that relative changes in
Ne are indicative of relative changes in census population size.

Accurately inferring the past demographic changes in humans has several important
applications, including properly accounting for population structure in association studies
and reducing confounding effects in inferences about natural selection. It can also help to
resolve archaeological and historical questions. Scally and Durbin [101] provide a summary
of estimates of the times of migration events out-of-Africa, as well as their relationship to
ancient archaeological sites. The times of such events have been estimated from modern-day
genomic data (as well as ancient DNA and archaeological evidence), but there is less known
about the sizes of the populations that were migrating at these times.

The ancient effective population size estimates we do have vary widely, as do the time
estimates of demographic events. For example, estimates of the population divergence time
between European and African humans range from 50 to 120 thousand years ago (kya); see
[95] for a review of human demographic results. And humans are far from the only species
for which demography raises important questions. The demographic history of Drosophila
has been investigated and debated, and likely has very interesting dynamics [5, 40, 111,
114], including seasonal population size oscillations. Another example is the speciation time
between polar bears and brown bears, where estimates range from 50 kya to 4 million years
ago [9, 41, 69, 76].

1.3.1 PSMC: pairwise sequentially Markovian coalescent

PSMC is a coalescent HMM for a pair of chromosomes (or one diploid individual) [64]. In
this case, the local tree (i.e. hidden state) is completely described by the coalescence time of
the two lineages. To make this one-dimensional state space feasible in an HMM framework,
time is discretized into a finite number of intervals. The PSMC model is used to estimate an
arbitrary piecewise-constant effective population size history. Within each time interval, the
population size is constant, although the population size can be constrained to be the same
for multiple consecutive intervals. Assuming such a piecewise-constant size history makes
the integral in Equation 1.4 much easier to work with.

Like all coalescent HMMs, the emissions for PSMC are the observed data. For two
sequences, this simplifies to whether the observed genotype is homozygous or heterozygous
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(phasing is not necessary). As one moves along the sequence, the distribution of homozygous
and heterozygous sites is informative of the distribution of coalescence times. Intuitively,
during stretches with more heterozygous sites, more mutations have accumulated, so the
coalescent times will generally be higher. PSMC models coalescent times using the sequen-
tially Markov coalescent [72, 74] for a pair of sequences. The HMM decoding produces an
estimate of these coalescent times, which depend on the past population sizes.

While this elegant approach produces reasonably accurate population size estimates over-
all, its accuracy in the very recent past is hampered by the fact that, because of the small
sample size, few coalescence events occur in that period. As a consequence, the information
in the pattern of genetic variation for a pair of sequences is insufficient to resolve very recent
demographic history. However, PSMC has many advantages; it is very fast and easy to
use. Runtime can easily be controlled by choosing fewer discretization intervals or analyzing
subsets of sequences. Multiple diploid individuals can be used pairwise to get a better distri-
bution of coalescent events throughout the mid-ancient past. PSMC has been used to infer
ancestral population sizes in a variety of non-model organisms where the number of genomes
is limited and phasing is often not possible: wild boar [36], polar and brown bear [76], horse
[86], Chinese alligator [113], giant panda [120], as well as Neanderthal and Denisovan archaic
hominid genomes [75].

1.3.2 CoalHMM

For more than two sequences, CoalHMM is the purest implementation of the graphical model
in Figure 1.3. Originally CoalHMM was used for four species: human (H), chimp (C), gorilla
(G), and orangutan [47], as opposed to individuals from the same population or species. With
four sequences, the number of coalescent topologies is 18 (Equation 1.5), but in [47] this is
restricted by assuming orangutan is always an outgroup. Further, there are four total states:
HG coalesce first, CG coalesce first, and HC coalesce first, with separate states for this last
event being before or after the HC/G split. This type of state space is possible because the
phylogenetic tree (species tree) is known. For example, a tree where human and orangutan
coalesce first can be excluded, since this event would very unlikely given the species tree.
We would not typically be able to restrict the state space in this way when using samples
from the same population. Using this coalescent HMM, four parameters are inferred: HC
and HCG ancestral effective population sizes, the HC/G split time, and the H/C split time.

In Dutheil et al. [22], CoalHMM was used for the same data, but was reparametrized to
account for constraints on the parameters due to their relationship with the HMM probabili-
ties (and thus the HMM likelihood). Additionally, they use a model that allows for mutation
rate heterogeneity along the genome. These changes improved the inference results and also
allowed them to estimate lineage-specific recombination rates.

This line of research carried on to create a model for two species (one sequence from each),
with more flexibility in the coalescence times by discretizing time into intervals [71]. In some
ways this model is similar to PSMC, but the state space and transitions are more complex,
and the ultimate goals are different. The parameters inferred are the ancestral population
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size, the divergence time, and the recombination rate. Parameter inference improved when
a larger state space was used (i.e. more time intervals). Unlike PSMC, which analyzed one
diploid individual, this version of CoalHMM analyzes reference sequences from each of two
species. This two-species version was further extended to incorporate migration [70].

1.3.3 MSMC: multiple sequential Markovian coalescent

Building upon PSMC, MSMC uses a coalescent HMM to model the first coalescence event
back in time as it changes along the sequence [102]. The first coalescent event is parame-
terized as a triplet (t, i, j), where i and j are the lineages that first coalesce, and t is their
(discretized) coalescence time. This method often works best for four haplotypes, where the
first coalescent event is quite informative over a large range of times. Adding more lineages
typically makes the first coalescent event happen more recently, thus losing power in the
ancient past. MSMC can be used to estimate a piecewise-constant population size history
like PSMC, and can further be used to estimate split times between populations or species.
These latter estimates can be found by examining the cross coalescence rate between the two
populations over time.

1.3.4 Site frequency spectrum (SFS) methods and ∂a∂i

Moving away from coalescent HMMs, another class of methods that has been used to estimate
demographic parameters are those based on the site frequency spectrum (SFS). For a sample
of size n haplotypes, the SFS counts the number of segregating sites where j samples have
the derived allele, for j = 1, · · · , n. Which allele is derived is often determined by using
an outgroup (for example, chimp is an outgroup for human). If these ancestral alleles are
unknown, the SFS can be folded such that variants with j or n− j copies are combined, for
j = 1, · · · , bn/2c.

Considering the size of genomic data, the SFS is an extremely low-dimensional summary
statistic for the data. However, it is very informative for many population genetic parameters
of interest because it captures information about the genealogical history of a sample. In the
unfolded case, any mutation with j derived alleles occurred on a branch of a local tree that
subtended j leaves. The ratio of the SFS value for j versus the SFS for i gives us information
about the (average) relative lengths of branches subtending j versus i leaves. As an example,
suppose we consider the SFS value for 1. These private mutations must have occurred on
the branches just above each sample. If we see many more such mutations that expected
under neutrality, then the most recent branches will be much longer than expected, possibly
indicating recent population growth. One reason the SFS is convenient to work with is that
the expected SFS under many models is easy to compute or simulate. Likelihood methods
based on the SFS are possible and popular.

One useful method based on the SFS is ∂a∂i [38], which infers demographic parameters
such as effective population sizes and split times. For each putative demographic model,
the expected SFS is computed using a Wright-Fisher model diffusion. This method uses
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a composite likelihood approach for parameter estimation, which finds the best fit to the
observed SFS assuming all sites are independent. This assumption is equivalent to assuming
infinite recombination between any pair of sites. Most SFS methods implicitly make this
assumption - is is difficult to incorporate linkage properly without ending up in a coalescent
HMM situation such as the methods described above.

In Gravel et al. [32], an extension to ∂a∂i was used on low-coverage whole-genome data
and high-coverage exome data to fit a one-bottleneck model followed by exponential growth
in European and Asian populations. They estimated that the timing of the out-of-Africa
migration was about 51 kya, and that the effective population size in the ancient past was
about 7,300, which then increased to about 14,500 around 150 kya.

The SFS is desirable to work with, since it is straightforward to compute and accommo-
dates many individuals easily. Myers, Fefferman, and Patterson [78] investigate the limits of
inferring population size changes from the SFS alone and show that two distinct population
size histories may yield exactly the same expected SFS. However, such population histories
are generally unrealistic, and under mild assumptions, population size change functions are
identifiable by the SFS in the limit of a long genome [6]. Presumably identifiability is also
provably possible using linkage information, although it is an open question of exactly how
this could be shown.

1.3.5 G-PhoCS: generalized phylogenetic coalescent sampler

Another type of demographic inference approach builds upon phylogenetic methods designed
for multiple species. In this realm, G-PhoCS [37] is a Bayesian, coalescent-based method
for individuals from different populations. This approach uses Markov chain Monte Carlo
(MCMC) to integrate over different possible genealogies relating the sampled individuals.
It was inspired by the phylogenetic method MCMCcoal [97], but extensive development
was required to create a method for multiple populations from the same species, including
migration and unphased data.

G-PhoCS is applied to six diploid genomes, each from a different population: Korean,
Han Chinese, European, Yoruban, Bantu, and San, with chimp as an outgroup. They
analyze 37,574 loci, each of length 1 kb. For computational tractability they assume that
loci are independent and that there is no recombination within a locus. They estimate that
Eurasians and Africans diverged around 38 to 64 kya, and that the effective population size
of humans in the ancient past was about 9,000.

1.3.6 Identity by descent (IBD) and state (IBS) methods

If two individuals share the same allele at a given locus, we say they are identical by state
(IBS). If they further share the same alleles over a contiguous stretch of length L, then we say
they share an IBS tract of length L. If two individuals have inherited a genomic region from
the same recent ancestor with no subsequent recombination, they are identical by descent
(IBD), regardless of whether unshared mutations have accumulated on each lineage.
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The distribution of lengths of shared IBS or IBD tracts between pairs of unrelated in-
dividuals is informative of recent demographic history. Expected IBS or IBD tract length
distributions can be computed and fit to empirical distributions. Recently, Palamara et al.
[87] used the empirical distribution of IBD sharing in pairs of 500 Ashkenazi Jewish indi-
viduals to infer two rapid population expansions separated by a severe founder event over
the past 200 generations. This approach first requires the non-trivial step of inferring IBD
tracts from data. The accuracy of existing IBD detection methods has not been fully char-
acterized when the population under consideration has undergone a complex demographic
history, although diCal-IBD [107] provides a significant improvement in this direction. An
IBS tract length distribution is easier to compute from data, but the analytic distribution
is more challenging to compute in a coalescent framework (since lack of mutation must be
taken into account). However, Harris and Nielsen [43] compute the expected distribution
of IBS tract lengths exactly under the SMC. They fit this distribution to the empirical IBS
distribution using a likelihood-based approach, and use it to estimate demographic history
in humans.

1.3.7 Multiple sequences: all pairs versus full coalescent

For many demographic inference methods, the challenge is extending them to many sequences
while still retaining linkage information. It has been suggested that instead of extending a full
coalescent model to multiple sequences, one could instead use all pairs of sequences. However,
the density of coalescent events with two sequences is fundamentally shifted toward the more
ancient past and has a high variance. In Figure 1.4, we compare the theoretical distribution
of coalescent events in time for different sample sizes. To ensure a distribution focused on
the recent past, modeling the coalescent topology for many sequences is necessary.

The methods highlighted in this section were chosen due to their relationship with the
methods described in chapter 2 and chapter 3. There are many other related inference
methods. Although not an explicit parameter inference method yet, one final method worth
mentioning here is ARGweaver [98]. This method iteratively “threads” individuals through
an existing sequence of local trees, thus inferring an approximate ARG. This style of approach
is moving toward fully principled inference, and will hopefully be used for parameter inference
in the future.

1.4 Variable effective population size and natural

selection

Many demographic inference methods assume that natural selection will not significantly bias
the results. For species such as those in the Drosophila genus, where selection is ubiquitous
throughout the genome, ignoring the impact of selection can bias demographic inference. For
humans, it is unknown exactly how much selection is biasing demographic inference. Jointly
estimating population sizes and selection is a very challenging problem, in part because these
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Figure 1.4: The distribution of coalescent events for different sample sizes. We can see that
if we want a strong distribution of events in the recent past, a large sample size is needed.

factors can sometimes leave similar signatures in the genome. An illustration of this problem
in shown in Figure 1.5.

Often a population bottleneck will reduce genetic variation (this can be seen in out-of-
Africa populations, which show reduced diversity compared to African populations). How-
ever, background/purifying selection also removes genetic variation, and positive selection
can do the same thing. In contrast, balancing selection can maintain variation within a
population, and exponential growth increases rare variation within a population. Separating
out all these factors can be extremely difficult. One helpful assumption is that selection acts
locally at a single locus, whereas demographic changes affect the entire genome in a global
fashion. This is not necessarily a perfect assumption. For small genomes, it is possible the
entire genome is under background selection. Additionally, a large effective population size
will make selection more effective, but at the same time, strong selection can reduce the local
effective population size. For example, Gossmann, Woolfit, and Eyre-Walker [31] estimate
the effective population size locally along the genome, and report that it is correlated with
the density of selected sites. See [11] for a review of factors that affect Ne, selection in
particular.

When attempting to infer a variable effective population size history, we advocate for
estimating a global/average effective population size throughout the genome. If we estimated
different population size change histories at different locations throughout the genome, it
might be difficult to unify these histories and use them to understand evolutionary events
such as bottlenecks. Further, a single region of the genome generally will not contain enough
information to infer a multi-parameter effective population size change history.
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Figure 1.5: Illustration of a bottleneck versus a selected site. In both figures, the ancestral
tree at this site is exactly the same. This could be explained by a bottleneck as shown
on the left, where the number of lineages increases during the re-expansion. The mutation
could have occurred on the branch leading to the green individual: G → A. Alternatively,
this tree could be explained by a mutation from A → G that turned out to be selectively
advantageous, as shown on the right. The G allele rose in frequency, which can look like a
population expansion.

There is little previous work addressing both demography and selection. Several machine
learning methods have been developed to classify regions of the genome into neutral versus
selected. The methods in [91], [92], and [100] use support vector machines (SVMs), and
the methods in [67] and [68] use boosting. Often these methods demonstrate robustness
to different demographic scenarios, but do not explicitly jointly infer demography. Galtier,
Depaulis, and Barton [28] develop a likelihood-based method for distinguishing between a
bottleneck and positive selection. They apply this method to Drosophila to conclude that
a series of selective sweeps was more likely than a bottleneck, but do not explicitly infer
parameters for both selection and demography.

For a thorough review of this topic, see [65], entitled “Joint analysis of demography and
selection in population genetics: where do we stand and where could we go?” One of their
conclusions is that a two-step approach is currently the most feasible, where demographic pa-
rameters are estimated first using the whole genome and, given this history, outliers are noted
as selected sites. If the number of outliers is small, one can assume that the demographic
estimates have not been affected too much by selection. If this is not the case, the two-step
approach is not as useful. They highlight several methods with promise, but say that so
far “None of these methods truly constitutes a joint estimation method of demography and
selection.”
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1.5 Conclusions

In the field of population genetics, much progress has been made toward a unified inference
framework, but even separately, effective population size and natural selection inference
remain far from solved. One reason that different demographic methods often infer conflicting
histories is that they make different trade-offs between the mathematical precision of the
model and scalability to larger datasets. This is even true within the class of coalescent
HMMs, which are much more similar to each other than to methods that infer demography
from summary statistics [38, 43, 87] or MCMC [37]. One issue is the choice of a time
discretization, which is often a delicate process. For example, sometimes a shallower, longer
bottleneck will fit the data just as well as a more severe, shorter bottleneck.

In chapter 2 of this thesis, we will present a coalescent HMM method called diCal, that
estimates variable effective population size for a single population, using an arbitrary number
of individuals. The goal of this chapter is to use more individuals to improve inference in the
recent past. In chapter 3, several extensions of diCal will be presented, including efforts to
make this method faster and more automated. Much of this chapter will focus on the time
discretization, both how to incorporate more intervals and how to group intervals effectively.
We will also discuss a method that uses diCal to create local trees along the genome.

One difficulty with using coalescent-based methods for inference is that a likelihood (or
approximate likelihood) must be computed, which is often very computationally expensive.
Approximate Bayesian computation (ABC) is one class of methods that avoids likelihood
computation, which will be discussed more in chapter 4. Another class of methods comes
from machine learning, which attempts to learn interesting features of a dataset, with little
to no prior knowledge of how these features might relate to the components of the original
data. In essence machine learning solves an inverse problem, construction a function from
the data to parameters of interest.

This is appealing for population genetics, where we also do not always know which
features of our data are informative for certain parameters. The SFS has proven to be infor-
mative for many parameters, but it is also a dimensionality reduction technique that loses
a lot of information. At the same time, plugging our data into a machine learning method
in some sense throws away much the coalescent modeling that we know to be biologically
inspired. These trade-offs will be discussed in more detail in chapter 4, with some hope for
a hybrid solution.

In chapter 4 we will present a tailored deep learning method for population genetics. We
will demonstrate that deep learning provides some answers to the problems with ABC, and
can provide an alternative to traditional likelihood-free inference in population genetics. We
apply this method to the problem of jointly inferring a bottleneck and natural selection in
Drosophila and show that the resulting history is more realistic than those proposed before.
Finally, in chapter 5 we will summarize this work and provide some future directions and
open challenges that build upon this thesis.
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Chapter 2

Effective population size inference
from multiple genome sequences

In this chapter, we present a method for estimating an effective population size that varies
over time, using genomic sequence data from multiple individuals. Multiple genomes from
the same population contain more information about the recent past, but are also more
computationally challenging to study jointly in a coalescent framework. Our method can
efficiently make use of the information contained in multiple individuals, while retaining
the key generality of PSMC in incorporating an arbitrary piecewise-constant population size
history. More precisely, the computational complexity of our method depends quadratically
in the number of sequences, and the computation involved is parallelized.

As more sequences are considered, we expect to see a larger number of coalescence events
during the recent past and should be able to estimate recent population sizes at a higher
resolution. With only two sequences, the distribution of coalescence events is shifted toward
the ancient past, relative to the distribution of the time a new lineage joins a coalescent tree
for multiple sequences. Thus, even if all sequences are considered pairwise, the resolution in
the recent past may not be as clear as that achieved by jointly modeling multiple sequences.

The input to our method, which is based on a coalescent HMM, is a collection of haplotype
sequences. At present, our method assumes that mutation and recombination rates are given,
and it employs the expectation-maximization (EM) algorithm to infer a piecewise-constant
history of effective population sizes, with an arbitrary number of change points.

Our work generalizes the recently developed sequentially Markov conditional sampling
distribution (SMCSD) framework [90] to incorporate variable population size. This ap-
proach provides an accurate approximation of the probability of observing a newly sampled
haplotype given a set of previously sampled haplotypes, and it allows one to approximate
the joint probability of an arbitrary number of haplotypes. Through a simulation study,
we demonstrate that we can accurately reconstruct the true population histories, with a
significant improvement over PSMC in the recent past. We also apply our method to
the genomes of multiple human individuals of European and African ancestry to obtain
a detailed population size change history during recent times. Our software, called diCal
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(Demographic Inference using Composite Approximate Likelihood), is publicly available at
http://sourceforge.net/projects/dical/. This chapter follows Sheehan, Harris, and
Song [103].

2.1 Notation and a review of the SMCSD framework

Our work stems from the SMCSD framework [90], which describes the conditional genealog-
ical process of a newly sampled haplotype given a set of previously sampled haplotypes. In
what follows, we briefly review the key concepts underlying the SMCSD model.

We consider haplotypes each of length L from the same genomic region. Suppose we
have already observed n haplotypes On = {h1, . . . , hn} sampled at random from a well-
mixed population. In this chapter, we use the terms “site” and “locus” interchangeably.
Recombination may occur between any pair of consecutive loci, and we denote the set of
potential recombination breakpoints by B = {(1, 2), . . . , (L − 1, L)}. Given a haplotype h,
we denote the allele at locus ` by h[`], and the substring (h[`], . . . , h[`′]) by h[` : `′] (for
` ≤ `′).

As described in Paul and Song [88], given the genealogy AOn for the already observed
sample On, it is possible to sample a conditional genealogy C for the additional haplotype
according to the following description: An ancestral lineage in C undergoes mutation at locus
` at rate θ`/2 according to the stochastic mutation transition matrix P(`). Further, as in the
ordinary coalescent with recombination, an ancestral lineage in C undergoes recombination
at breakpoint b ∈ B at rate ρb/2, giving rise to two lineages. Each pair of lineages within C
coalesce with rate 1, and lineages in C get absorbed into the known genealogy AOn at rate 1
for each pair of lineages. See Figure 2.1(a) for an illustration.

Unfortunately, we do not generally have access to the true genealogy AOn , and marginal-
izing over all possibilities is a challenging problem. However, Paul and Song [88] show that
the diffusion-generator approximation described in [34, 52, 53] implies the following approx-
imation to AOn which simplifies the problem considerably.

2.1.1 Approximation 1: the trunk genealogy

We approximate AOn by the so-called trunk genealogy A∗On
in which lineages do not mutate,

recombine, or coalesce with one another, but instead form a non-random “trunk” extending
infinitely into the past, as illustrated in Figure 2.1(b). Although A∗On

is not a proper geneal-
ogy, it is still possible to sample a well-defined conditional genealogy C for the additional
haplotype given A∗On

in much the same way as described above, except that rates need to be
modified. Specifically, lineages within C evolve backwards in time subject to the following
events:

• Mutation: Each lineage undergoes mutation at locus ` with rate θ` according to P(`).
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• Recombination: Each lineage undergoes recombination at breakpoint b ∈ B with
rate ρb.

• Coalescence: Each pair of lineages coalesce with rate 2.

• Absorption: Each lineage is absorbed into a lineage of A∗On
with rate 1.

The genealogical process described above completely characterizes a conditional sampling
distribution (CSD), which we denote π̂PS [88]. Observe that the rate of absorption is the
same as before, but the rates for mutation, recombination, and coalescence are each a factor
of two larger than that mentioned earlier. Intuitively, this rate adjustment accounts for using
the (inexact) trunk genealogy A∗On

, which remains static. Note that the adjustment follows
as a mathematical consequence of the diffusion-generator approximation [34, 52, 53], and it
is supported by the fact that the CSD π̂PS has been shown to be exact for a one-locus model
with parent-independent mutation [88].

It can be deduced from the diffusion-generator approximation that π̂PS(α | On), the con-
ditional probability of sampling an additional haplotype α given a set of previously sampled
haplotypes On, satisfies a recursion. Unfortunately, this recursion is computationally in-
tractable to solve for even modest-sized datasets. To address this issue, Paul, Steinrücken,
and Song [90] proposed further approximations, described below, to obtain a CSD that
admits efficient implementation, while retaining the accuracy of π̂PS.

2.1.2 Approximation 2: sequentially Markov CSD

A given conditional genealogy C contains a marginal conditional genealogy (MCG) for each
locus, where each MCG comprises a series of mutation events and the eventual absorption
into a lineage of the trunk A∗On

. See Figure 2.1(c) for an illustration. The key insight is that
we can generate the conditional genealogy as a sequence of MCGs across the genome, rather
than backwards in time [116]. Although the sequential process is actually not Markov, it
is well approximated [72, 74, 90] by a Markov process using a two-locus transition density.
Applying this approximation to π̂PS yields the sequentially Markov CSD π̂SMC.

Conditional on the MCG C`−1 at locus `− 1, the MCG C` at locus ` can be sampled by
first placing recombination events onto C`−1 according to a Poisson process with rate ρ(`−1,`).
If no recombination occurs, C` is identical to C`−1. If recombination does occur, C` is identical
to C`−1 up to the time Tr of the most recent recombination event. At this point, the lineage
at locus `, independently of the lineage at locus `−1, proceeds backwards in time until being
absorbed into a lineage of the trunk. This transition mechanism for the Markov process is
illustrated in Figure 2.2. McVean and Cardin [74] use this approximation as well, while the
transition process in Marjoram and Wall [72] allows the lineage to coalesce back into itself.

Given C`, mutations are superimposed onto it according to a Poisson process with rate
θ`. The MCG is absorbed into a trunk lineage corresponding to some haplotype h, which
specifies an “ancestral” allele h[`]. This allele is then propagated to the present according
to the superimposed mutations and the transition matrix P(`), thereby generating an allele
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(a) The true genealogy AOn for the already observed sample On.

(b) Approximation by the trunk genealogy A∗On
; lineages in the trunk do not mutate, recombine,

or coalesce.

(c) Marginal conditional genealogy for each locus.

Figure 2.1: Illustration of a conditional genealogy C for a three-locus model. The three loci of
a haplotype are each represented by a solid circle, with the color indicating the allelic type at
that locus. Mutation events, along with the locus and resulting haplotype, are indicated by
small arrows. Recombination events, and the resulting haplotype, are indicated by branching
events. Absorption events are indicated by dotted horizontal lines.
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Figure 2.2: Illustration of the sequentially Markov approximation in which the absorption
time T` at locus ` is sampled conditionally on the absorption time T`−1 = t`−1 at the previous
locus. In the marginal conditional genealogy C`−1 for locus `− 1, recombination breakpoints
are realized as a Poisson process with rate ρ(`−1,`). If no recombination occurs, C` is identical
to C`−1. If recombination does occur, as in the example here, C` is identical to C`−1 up to
the time Tr of the most recent recombination event. At this point, the lineage at locus `,
independently of the lineage at locus `− 1, proceeds backwards in time until being absorbed
into a lineage of the trunk. The absorption time at locus ` is T` = Tr + Ta, where Ta is the
remaining absorption time after the recombination event.

at locus ` of the additional haplotype α. We refer to the associated distribution of alleles as
the emission distribution.

The generative process described above for the SMCSD π̂SMC can be formulated as an
HMM, in which the hidden state at locus ` corresponds to the MCG C` excluding mutation
events: we denote the hidden state at locus ` in the HMM by S` = (T`, H`), where T` ∈ [0,∞)
is the absorption time and H` ∈ On is the absorption haplotype. The emission at locus `
corresponds to the allele α[`]. See [90] for explicit expressions for the initial, transition, and
emission densities in the case of a constant population size.

2.2 Incorporating variable population size

Here, we extend the SMCSD framework described in the previous section to incorporate
variable population size. A history of relative effective population size is described by the
function

λ(t) =
N(t)

Nref
, (2.1)

where t ∈ [0,∞), with t = 0 corresponding to the present time, Nref is some reference
effective population size, and N(t) is the effective population size at time t in the past.
The population-scaled recombination and mutation rates are defined with respect to Nref.
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Specifically, for b = (`−1, `), we define ρb = 4Nrefrb, where rb denotes the recombination rate
per generation per individual between loci ` − 1 and `; and θ` = 4Nrefµ`, where µ` denotes
the mutation rate per generation per individual at locus `.

2.2.1 Initial density

In the case of a constant population size, the absorption time T` for locus ` follows an expo-
nential distribution, but with a variable population size the absorption time is described by
a non-homogeneous Markov chain. See [35] for a more thorough discussion of the coalescent
with variable population size. As in the constant population size case, however, the prior
distribution of absorption haplotype H` is still uniform over the observed haplotypes On in
the trunk genealogy. In summary, the marginal density of the hidden state s` = (t, h) is
given by

ζ(λ)(t, h) =
nh
λ(t)

exp

(
−n
∫ t

0

1

λ(τ)
dτ

)
, (2.2)

where nh denotes the number of haplotypes in On that are identical to haplotype h (for a
sufficiently large region, usually nh = 1).

2.2.2 Transition density

To obtain the transition density, we need to take into account recombination, which causes
changes in the hidden state of our HMM. If no recombination occurs between loci `−1 and `
(prior to T`−1), then s` = s`−1. If a recombination event occurs between loci `− 1 and `, the
absorption time for locus ` will be T` = Tr+Ta, where Tr is the time of recombination (which
must be less than T`−1 and T`) and Ta is the remaining additional time to absorption, as
illustrated in Figure 2.2. To compute the transition density, we need to convolve the hidden
variables Tr and Ta. Letting b = (` − 1, `) for ease of notation, the transition density from
s`−1 = (t, h) to s` = (t′, h′) is given by

φ(λ)(s`|s`−1) = e−ρbt · δs`−1,s` +

∫ min(t,t′)

0

ρbe
−ρbtr

[
ζ(λ)(t′, h′)∫∞
tr
ζ(λ)(τ) dτ

]
dtr, (2.3)

where ζ(λ)(t′, h′) is defined in Equation 2.2 and ζ(λ)(τ) :=
∑

h∈On
ζ(λ)(τ, h). Note that∫∞

0
ζ(λ)(τ) dτ = 1.

2.2.3 Emission probability

The probability of emitting allele a at locus ` (i.e., α[`] = a) given hidden state s` = (t, h) is

ξ(λ)(a|s`) = e−θ`t
∞∑
m=0

1

m!
(θ`t)

m [(P(`))m]h[`],a. (2.4)

This is the same emission probability as in [90], but when we discretize the state space in
the following section we will have to take into account the effects of variable population size.
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2.2.4 The sequentially Markov conditional sampling probability

Using the initial, transition, and emission densities described above, we can write down an
integral recursion for the forward probability f

(λ)
SMC(α[1 : `], s`) of observing the first ` alleles

α[1], . . . , α[`] and the state at locus ` being s`. For 2 ≤ ` ≤ L,

f
(λ)
SMC(α[1 : `], s`) = ξ(λ)(α[`] | s`) ·

∫
φ(λ)(s`|s`−1)f

(λ)
SMC(α[1 : `− 1], s`−1) ds`−1, (2.5)

with base case
f

(λ)
SMC(α[1], s1) = ξ(λ)(α[1] | s1) · ζ(λ)(s1).

Finally, the conditional probability of sampling an additional haplotype α having previously
observed On = {h1, · · · , hn} is given by

π̂
(λ)
SMC(α | On) =

∫
f

(λ)
SMC(α[1 : L], sL) dsL. (2.6)

As with the constant population size HMM, a backward algorithm can also be devised to
compute π̂

(λ)
SMC(α | On), though we do not present it here.

2.3 Discretizing the state space

To efficiently evaluate the recursion (Equation 2.5) and the marginalization (Equation 2.6),
we discretize the time component of the state space. We partition time (in units of 2Nref

generations) into d intervals, demarcated by

t0 = 0 < t1 < · · · < td =∞,

and assume that λ(t) defined in Equation 2.1 has a constant value λi in each interval Di :=
[ti−1, ti), for i = 1, . . . , d:

λ(t) =
d∑
i=1

1(ti−1 ≤ t < ti)λi, (2.7)

where 1(·) is the indicator function. Using this piecewise-constant λ(t), we can write the
HMM probabilities in a more workable form, as detailed below.

2.3.1 Initial probability

For t ∈ Di, Equation 2.7 implies that the initial density in Equation 2.2 can be written as

ζ(λ)(t, h) =
nh
λi
e−n(t−ti−1)/λi

i−1∏
j=1

e−n(tj−tj−1)/λj . (2.8)
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To obtain the initial probability in the time-discretized model, we integrate over the time
interval Di to obtain

ζ̂(λ)(Di, h) =

∫
Di

ζ(λ)(t, h) dt =
nh
n
w(i), (2.9)

where

w(i) =
[
1− e−n(ti−ti−1)/λi

] i−1∏
m=1

e−n(tm−tm−1)/λm ,

which corresponds to the probability that a lineage in the conditional genealogy gets absorbed
into the trunk genealogy within the interval Di.

2.3.2 Transition probability

For the transition density from state s`−1 = (t, h) to state s` = (t′, h′), we let i denote
the time interval index such that t ∈ Di = [ti−1, ti) and let j denote the index such that
t′ ∈ Dj = [tj−1, tj). After some simplification, the transition density (Equation 2.3) becomes

φ(λ)(s` | s`−1) = e−ρbt · δs`−1,s` +
nh
λj
e−n(t′−tj−1)/λj

[
j−1∏
m=1

e−n(tm−tm−1)/λm

]
R(i, t; j, t′), (2.10)

where R(i, t; j, t′) is defined in Appendix A.
To compute the transition probability in the time-discretized model, we use Bayes’ rule

and integrate the transition density function to obtain

φ̂(λ)(Dj, h
′ | Di, h) =

1

ζ̂(λ)(Di, h)

∫
Dj

∫
Di

φ(λ)(t′, h′ | t, h)ζ(λ)(t, h) dt dt′

=: y(i) · δi,jδh,h′ + z(i,j) · nh′
n
, (2.11)

where ζ̂(λ)(Di, h) is defined in Equation 2.9, and explicit formulas for y(i) and z(i,j) are
provided in Appendix A. The first term arises from the case of no recombination, while the
second term accounts for the case when recombination does occur. Note that y(i) and z(i,j)

depend only on the time interval, not on the absorbing haplotype.

2.3.3 Emission probability

Although thus far the emission density has not been affected by the population size being
variable, discretizing time introduces a dependence on the function λ(t). Let a denote the
emitted allele of the newly sampled haplotype α at locus `. Using Bayes’ rule again and
then integrating over the absorption time interval gives

ξ̂(λ)(a|Di, h) =
1

ζ̂(λ)(Di, h)

∫
Di

ξ(λ)(a|t, h)ζ(λ)(t, h) dt =
∞∑
m=0

v(i)(m) · [(P(`))m]h[`],a, (2.12)

where a formula for v(i)(m) is provided in Appendix A.
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2.3.4 Discretizing time and grouping parameters

To discover periods of population expansion or contraction with the SMCSD, it is necessary
to specify a time discretization that has high resolution during such time periods. This is
challenging in cases where we have little a priori knowledge of the demographic history.
Ideally the (unknown) coalescence events would be distributed uniformly across the time
intervals of our discretization; if very few coalescence events occur in an interval, the corre-
sponding population size will often be overestimated, leading to run-away behavior. In our
implementation, we employ a heuristic method, detailed in Appendix A, for choosing the
discretization time points t1, . . . , td−1 based on the spacing of SNPs in the data, with the aim
for coalescence events to be distributed evenly across the d time intervals. Alternatively, the
user has the option of specifying their own discretization time points to achieve a desired
resolution.

As noted in Li and Durbin [64], allowing separate population size parameters during
time intervals that contain too few expected coalescence events can lead to inaccurate es-
timates. Following their lead, we mitigate this problem by constraining a few consecutive
time intervals to have the same population size.

2.4 Modifying the trunk genealogy

The trunk genealogy approximation in [88] was derived by making an approximation in the
diffusion process dual to the coalescent for a constant population size. It yields an accurate
approximate CSD in the case of a population at equilibrium, and for parent-independent
mutation models, the CSD becomes exact in the limit as the recombination rate approaches
∞. However, in the variable population size setting, we must modify the trunk genealogy
approximation for the following reason: In the formulation described earlier, the trunk ab-
sorbs a lineage in the conditional genealogy C at the rate ndt/λ(t) at time t. Our HMM uses
this inverse dependence and the inferred distribution of absorption times to estimate the
population size scaling function λ(t). In reality, at time t the number of ancestral lineages
is n(t) ≤ n and a lineage in C gets absorbed at rate n(t)dt/λ(t). Hence, assuming that the
trunk genealogy contains n lineages in every time interval causes absorption events to occur
too quickly, leaving the ancient population sizes over-estimated. We later provide empirical
results which support this intuition (see Figure 2.10).

To remedy the problem described above, in our work we use the expected number of
lineages in the trunk to modify the rate of absorption, while still forbidding mutation, re-
combination, and coalescence in the trunk genealogy. Let An(t) denote the number of lineages
at time t ancestral to a sample of size n at time 0. Under the coalescent, the probability
distribution of An(t) is known in closed form [108], but using it directly to compute the
expected number of lineages leads to numerically unstable results, due to alternating signs.
However, one can obtain the following expression for the expectation [108, Equation 5.11]
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Figure 2.3: Wedding cake genealogy intuition. On the left, we show how an example tree
can be thought of as a “trunk” genealogy that has each individual represented for all time.
At each point back in time, we can think of the width of the lines as adding up to the total
number of remaining lineages at that time (widths not to scale). If we averaged over all
possible genealogies and discretized time, we would get the wedding cake genealogy (right).

Figure 2.4: Illustration of the wedding
cake genealogy approximation, in which
the varying thickness of a lineage in A∗On

schematically represents the amount of
contribution to the absorption rate. As
the figure depicts, the wedding cake ge-
nealogy never actually loses any of the n
lineages, and absorption into any of the
n lineages is allowed at all times; we are
only modifying the absorption rate as a
function of time.

which is numerically stable:

n(t) := E[An(t)] =
n∑
i=1

exp

[
−
(
i

2

)∫ t

0

1

λ(τ)
dτ

]
n(n− 1) · · · (n− i+ 1)

n(n+ 1) · · · (n+ i− 1)
(2i− 1). (2.13)

For simplicity, we assume that throughout time interval Di = [ti−1, ti), there are n(ti−1)
lineages, creating what we call a “wedding cake genealogy.” Figure 2.3 illustrates the rela-
tionship of the wedding cake genealogy to an example genealogy, and Figure 2.4 illustrates
how a left-out lineages can join the wedding cake genealogy.

To modify the HMM formulas, we simply replace each n in Equations 2.9, 2.11, and 2.12
with the appropriate n(·) from Equation 2.13, except in the ratio nh/n multiplying w(i) in
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Figure 2.5: An illustration of the diCal HMM. The previously sampled haplotpyes form
a wedding cake genealogy at each locus (yellow, red, blue haplotypes). Each individual
haplotype is left out in turn (represented by the green individual here), and the hidden state
is the time and haplotype that this left-out lineage joins onto.

Equation 2.9 and the ratio nh′/n multiplying z(i,j) in Equation 2.11 (these ratios are kept
intact to preserve the relative contributions of different haplotypes). Note that the trunk
genealogy never actually loses any of the n lineages, and absorption into any of the n lineages
is allowed at all times; we are only modifying the absorption rate as a function of time. In the
case of two sequences (one trunk lineage and one additionally sampled lineage), n(t) = 1 for
all t, so the wedding cake approximation does not change the model. Making the number of
lineages more accurate using this approximation improves our ability to estimate absorption
times and therefore population sizes.

As a final illustration of the method, Figure 2.5 shows how diCal relates to the “gold-
standard” HMM from Figure 1.3.

2.5 Population size inference with

Expectation-Maximization

To utilize all our data in an exchangeable way, we use a “leave-one-out” approach where we
leave each haplotype out in turn and perform the SMCSD computation. More precisely, we
define the leave-one-out composite likelihood (LCL) as

LLCL(λ;h1, . . . , hn) =
n∏
i=1

π̂
(λ)
SMC(hi|h1, . . . , hi−1, hi+1, . . . , hn). (2.14)

Because we compute the conditional sampling probability through dynamic programming
and the probability depends on the effective population sizes in complex ways, we cannot
find the maximum-likelihood estimates analytically. Although direct optimization could be
used, it is computationally expensive. Thus we employ an expectation-maximization (EM)
algorithm to estimate the piecewise-constant function λ(t). Our current implementation
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assumes that the population-scaled recombination rates ρb and mutation rates θ`, as well as
the mutation transition matrices P(`), are given and fixed. For computational simplicity we
currently assume that θ` and P(`) are the same for each site `, and ρb is the same for each
pair of consecutive sites. The time discretization is fixed throughout the EM algorithm. The
output of the algorithm is an estimated population size scaling factor λi for each interval
Di = [ti−1, ti). To convert these scaling factors into diploid effective population sizes, one
would need to multiply by Nref. Similarly, the discretization times can be converted to years
by multiplying them by 2Nrefg, where g is an average number of years per generation.

The standard Baum-Welch algorithm gives an EM procedure for learning the parameters
of an HMM in which the transition probabilities and emission probabilities are treated as
unknown independent parameters. However, our HMM is more constrained than a general
one, with (dn)2+d|Σ|2 (where Σ is the alphabet of alleles) unknown probabilities φ̂(λ)(Dj, h

′ |
Di, h) and ξ̂(λ)(α[`] | Di, h) that are functions of the d parameters λ1, . . . , λd. During the
E-step, we compute the matrix [Aij] of the expected number of Di to Dj transitions. We
also compute the matrix [Ei(b)] of the expected number of times allele b is emitted from time
interval i. Then, during the M-step we maximize the likelihood function

(λ
(k+1)
1 , . . . , λ

(k+1)
d ) = argmax

λ(k)

∏
i,j

[φ̂(λ(k))(Dj|Di)]
A

(k)
ij

∏
i,b

[ξ̂(λ(k))(b|Di)]
E

(k)
i (b), (2.15)

where φ̂(λ)(Dj|Di) and ξ̂(λ)(b|Di) refer to the transition and emission probabilities where we
have marginalized over the absorption haplotype.

We initialize the algorithm with λi = 1 for all i = 1, . . . , d. To compute [Aij] and [Ei(b)],
we use the forward and backward probabilities of our HMM. The exact details of making
this step computationally efficient are provided in Appendix A. After the E-step, we use the
Nelder-Mead optimization routine [81] to update the parameters in the M-step. Because of
local maxima in the likelihood surface, we run this optimization routine several times (≈ 10)
with different starting conditions and then retain the estimates with the largest likelihood.
In the analysis discussed in this paper, we ran the EM procedure for 20 iterations to obtain
convergence. As pointed out in Li and Durbin [64], running the EM procedure for many
iterations often leads to over-fitting.

2.6 Results

We compared the performance of our method, diCal, with that of PSMC [64] on both simu-
lated and real data. We compared diCal using an n-haplotype leave-one-out scheme (Equa-
tion 2.14) with PSMC using the same n haplotypes paired up sequentially (i.e. haplotype 1
paired with haplotype 2, haplotype 3 with haplotype 4, etc).

Unless stated otherwise, we used 16 discretization intervals and inferred 7 free population
size parameters in both PSMC and diCal. In the notation introduced in [64], the pattern
we used is “3+2+2+2+2+2+3,” which means that the first parameter spans the first three
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(a) History S1 containing a bottleneck followed
by a modest recovery.
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(b) History S2 containing a bottleneck followed
by a rapid expansion.

Figure 2.6: Population size histories considered in our simulation study, with time t = 0
corresponding to the present.

discretization intervals, the second parameter spans the next two intervals, and so on. We
found that grouping a few consecutive intervals to share the same parameter significantly
improved the accuracy of estimates. For example, due to an insufficient number of coales-
cence events, the first and last intervals are particularly susceptible to runaway behavior if
they are assigned their own free parameters, but grouping with their neighboring intervals
prevented such pathological behavior. See Appendix A for further details of running PSMC
and our method.

2.6.1 The accuracy of population size inference on simulated
data

We used ms [50] to simulate full ancestral recombination graphs (ARGs) under two different
population histories, and then superimposed a quadra-allelic, finite-sites mutation process
on the ARGs to generate sequence data over {A,C,G, T}. As illustrated in Figure 2.6,
both histories contained bottlenecks in the moderately recent past. History S2 in addition
contained a recent rapid population expansion relative to the ancient population size. For
each history, we simulated 10 independent ARGs for L = 106 sites and n = 10 haplotypes,
with the population-scaled recombination rate set to 0.01 per site in ms. To add mutations,
we set the population-scaled mutation rate to 0.014 per site and used the quadra-allele
mutation matrix described in Appendix A.

As shown in Figures 2.7 and 2.8, our method performed much better in the recent past
than did PSMC. PSMC often had the type of runaway behavior shown in Figure 2.8, where
it overestimated the most recent population size by over three orders of magnitude. We note
that our method began to lose accuracy for more ancient times, most likely because ancient
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Simulated History PSMC error diCal error
S1 0.40328 0.10283
S2 0.71498 0.29992

Table 2.1: Goodness-of-fit for PSMC and diCal, averaged over 10 simulated datasets each
with a sample of n = 10 haplotypes. The underlying population size histories are shown in
Figure 2.6. The error metric used is a normalized integral of the absolute difference between
the true history and the inferred history over time. These results demonstrate that diCal is
substantially more accurate than the PSMC method.

absorption events in a 1 Mb region are few and sparsely distributed in time in the leave-one-
out SMCSD computation. Both methods tend to smooth out sudden changes in population
size, which is why the inferred recovery time from a bottleneck is more recent than it should
be. To quantify the improvement in accuracy of our method over PSMC, we used an error
metric described in [64], which is a normalized integral of the absolute difference between
the true ms history and the inferred history over time. The results, summarized in Table 2.1,
show that our method had a substantially lower overall error than PSMC.

For inference using diCal, we examined the impact of considering more haplotypes on
the accuracy of population size estimation. In this study, we focused on history S1 and
grouped adjacent parameters to fit roughly with population size change points for illustration
purposes. Figure 2.9 shows qualitatively that increasing the sample size n makes our estimate
of the recent population size more accurate. Intermediate sizes changed little with increasing
n, and ancient sizes were somewhat variable depending on the distribution of coalescence
events. Note that for n = 2, our method is very similar to PSMC; we compute the transition
probabilities slightly differently, but the wedding cake approximation does not change the
model in this case. We used the same error metric mentioned above to quantify the advantage
of increasing the sample size. As shown in Table 2.2, the overall error decreased as the sample
size increased, with improvement tapering around 8 to 10 haplotypes for this particular
history.

2.6.2 The impact of the wedding cake genealogy approximation

We examined the advantage of using the wedding cake genealogy approximation in the
SMCSD computation, compared to assuming an unmodified trunk genealogy. Figure 2.10
illustrates that the unmodified trunk genealogy leads to overestimation of population sizes
in the distant past, as discussed in Section 2.4. The wedding cake genealogy approximation,
which adjusts the absorption rate by accounting for the expected number of ancestral lin-
eages of the already observed sample, leads to a significant improvement in the accuracy of
population size inference in the ancient past.
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(a) Results for 10 different datasets.
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(b) Average over the 10 datasets.

Figure 2.7: Results of PSMC and diCal on datasets simulated under history S1 with sample
size n = 10 and four alleles (A,C,G,T). PSMC significantly overestimates the most recent
population size, whereas we obtain good estimates up until the very ancient past.
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Figure 2.8: Results of PSMC and diCal on datasets simulated under history S2 with sample
size n = 10 and four alleles (A,C,G,T). The PSMC shows runaway behavior during the recent
past, overestimating the most recent time by over three orders of magnitude on average.
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Figure 2.9: The effect of considering more haplotypes in diCal using the SMCSD-based leave-
one-out likelihood approach. Data were simulated under population size history S1 with two
alleles. In this study, we grouped adjacent parameters to fit roughly with population size
change points for illustration purposes. This figure shows the increase in the accuracy of
our method with an increasing sample size n. The recent sizes are the most dramatically
affected, while intermediate sizes remain accurate even with few haplotypes.

Sample size n diCal error
2 0.2914
4 0.1901
6 0.1446
8 0.0802
10 0.0899

Table 2.2: Goodness-of-fit for diCal on simulated bottlenecked history S1 for different sample
sizes. We used the same error metric as in Table 2.1. As the sample size n increases, the
error decreases, with global improvement tapering around 8 to 10 haplotypes.
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Figure 2.10: A comparison of the SMCSD-based leave-one-out likelihood approach in diCal
using the wedding cake genealogy (blue line) with that using the unmodified trunk genealogy
(green line). The results shown here are for n = 10 haplotypes simulated under history S1
with two alleles. Without the wedding cake genealogy, absorption of the left-out lineage into
the trunk occurs too quickly, and the lack of absorption events in the mid to ancient past
leads to substantial overestimation of the population sizes. Recent population sizes remain
unaffected since during these times the absorption rates in the wedding cake genealogy and in
the trunk genealogy are roughly the same. In this example, we grouped adjacent parameters
to fit roughly with population size change points for illustration purposes.

2.6.3 The accuracy of estimated coalescence times

To assess the accuracy of estimated coalescence times, we produced the posterior decoding
and the posterior mean of the times that a left-out haplotype got absorbed into a wedding
cake genealogy. The data were simulated under the full coalescent with recombination us-
ing ms assuming a constant population size. The true coalescence time at each site was
taken as the time the left-out lineage joined the rest of the coalescent tree at that site. As
shown in Figure 2.11, we found that our estimated absorption times closely tracked the true
coalescence times.
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Figure 2.11: Estimated absorption times in diCal using the leave-one-out SMCSD method
versus the true coalescence times for a 100 kb region. The data were simulated using ms for
n = 6 haplotypes assuming a constant population size. The true coalescence time at each site,
obtained from ms, was taken as the time the ancestral lineage of a left-out haplotype joined
the rest of the coalescent tree at that site. The figure shows the true coalescence time for the
nth haplotype and our corresponding inferred absorption times, obtained from the posterior
decoding and the posterior mean. Our estimates generally track the true coalescence times
closely.

2.6.4 Results on real data

We applied our method to European (CEU) and African (YRI) subsamples from the 1000
Genomes Project [14]. To minimize potential confounding effects from natural selection,
we chose a 3 Mb region on chromosome 1 with no genes and then used the middle 2 Mb
for analysis. We used the human reference (version 36) to create a full multiple sequence
alignment of 10 haplotypes (5 diploid individuals) for each of the CEU and YRI populations.
Although we filtered out unphased individuals and sites, the final sequences are based on low-
coverage short read data, so phasing and imputation errors could impact the accuracy of our
coalescence time inference. We assumed a per-generation mutation rate of µ = 1.25× 10−8

per site, which is consistent with recent studies of de novo mutation in human trios [2, 60, 99],
and a mutation transition matrix estimated from the human and the chimp reference genomes
(shown in Appendix A). For simplicity, we assumed that the per-generation recombination
rate r between consecutive bases is constant and equal to µ. The generation time was
assumed to be 25 years. For a reference population size, we used Nref = 10, 000.

The results of PSMC and our method are shown in Figure 2.12. PSMC displayed runaway
behavior and produced rather unrealistic results; see Figure 2.12(a), for which we truncated
the y-axis at 40,000 for ease of comparison with Figure 2.12(b). The dataset may be too
small for PSMC to work accurately. We note that PSMC was able to produce more reason-
able results on simulated datasets, probably because they were generated with much higher
mutation and recombination rates, thus representing a larger genomic region for humans.



CHAPTER 2. EFFECTIVE POPULATION SIZE INFERENCE FROM MULTIPLE
GENOME SEQUENCES 35

As shown in Figure 2.12(b), our method inferred that CEU and YRI had very similar
histories in the distant past up until about 117 kya; discrepancies up to this point are most
likely due to few observed ancient coalescence events with the leave-one-out approach. We
inferred that the European population underwent a severe (out-of-Africa) bottleneck starting
about 117 kya, with the effective population size dropping by a factor of about 12 from ≈
28,000 to ≈ 2,250. Furthermore, at the level of resolution provided by our time discretization,
our results suggest that the European population has recovered from the bottleneck to an
average effective size of ≈ 12,500 for the past 16 thousand years.

In contrast to previous findings (e.g., [64]), our method did not infer a significant drop
in the YRI population size during the early out-of-Africa bottleneck phase in Europeans.
Instead, the African effective population size seems to have decreased more gradually over
time (possibly due to changes in structure) to an average effective size of ≈ 10,000 for the
past 16 thousand years. We note that our results for real data are fairly robust to the choice
of discretization, given that a sufficient number of coalescence events occur within each set
of grouped intervals.

2.6.5 Runtime

The runtime of our method is O(Ld(d + n)n), where n is the number of sequences, L is
the number of bases in each sequence, and d is the number of time discretization intervals;
the runtime for each CSD computation is O(Ld(d + n)), and each sequence is left out in
turn (although this step is parallelizable). The runtime for PSMC is O(Ld2P ), where P is
the number of pairs of sequences analyzed. In practice, PSMC can run much faster when
consecutive sites are grouped into bins of size 100; a bin is considered heterozygous if it
contains at least one SNP and homozygous otherwise. Creating a reasonable binning scheme
for multiple sequences is less clear, but would significantly improve our runtime and enable
whole-genome analysis. One possible binning scheme is described in chapter 3.

2.7 Discussion and future work

In this paper, we have generalized the recently developed sequentially Markov conditional
sampling distribution framework [90] to accommodate a variable population size. One im-
portant new idea central to the success and accuracy of our method is the wedding cake
genealogy approximation, which modifies the rate of absorption into the trunk by account-
ing for the varying number of lineages over time. On simulated data, we have shown that
our method produces substantially more accurate estimates of the recent effective population
size than does PSMC [64].

Applying our method to a 2 Mb intergenic region of chromosome 1 from five Europeans
and five Africans, sequenced as part of the 1000 Genomes Project, and using a per-generation
mutation rate of µ = 1.25×10−8 per site, we have inferred a severe (out-of-Africa) bottleneck
in Europeans that began around 117 kya, with a drop in the effective population size by a
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(a) The results of PSMC, which had some runaway behavior and unrealistic results; the dataset is
probably too small for PSMC to work accurately.
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(b) The results of diCal. We inferred that the European population size underwent a severe
bottleneck about 117 kya and recovered in the past 16,000 years to an effective size of ≈ 12,500.
In contrast, our results suggest that the YRI population size did not experience such a significant
drop during the early out-of-Africa bottleneck phase in Europeans.

Figure 2.12: Variable effective population size inferred from real human data for European
(CEU) and African (YRI) populations. For each population, we analyzed a 2 Mb region
on chromosome 1 from 5 diploid individuals (10 haplotypes), assuming a per-generation
mutation rate of µ = 1.25× 10−8 per site.
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factor of 12. In contrast, we have observed a much more mild population size decrease in the
African population. We remark that our estimate of the timing of the bottleneck may not
be very accurate, since we used only 16 discretization intervals and 7 free population size
parameters. Furthermore, all of our inferred times and population sizes would be smaller
by a factor of two if we had used µ = 2.5 × 10−8. See Scally and Durbin [101] for a more
thorough discussion of how new mutation rate estimates are changing the way we view
ancient population history. An earlier initial human dispersal out of Africa would fit with
archaeological evidence of human artifacts dated at 74 kya in India and 64 kya in China
[101].

During the recent past, our results demonstrate that the effective population size of
Europeans has grown in the past 16,000 years, slightly surpassing the effective population size
of Africans, which does not show a growth at this resolution. Recent studies [32, 38] suggest
that the European population size recently grew much faster than the African population
size, although the sample size we considered is not large enough to confirm this.

The main strength of our method is in the recent past. Large-scale sequencing studies
[15, 57, 82] of a subset of genes suggest that humans underwent recent explosive population
growth. Our method should be well equipped to infer such recent demographic histories,
but we would need to consider a very large sample to accurately infer the rate of expansion
and the time of onset. Because of issues of computational speed and memory footprint, our
current implementation of the SMCSD computation can handle up to about 20 haplotypes
and a few megabases, but we are in the process of exploring ways to increase the scalability.
One way in which we should be able to reduce our runtime is by incorporating recently
developed algorithms for blockwise HMM computation [89], which have been shown to result
in a speed-up of several orders of magnitude for large datasets.

All the results in this chapter make use of a leave-one-out approach (Equation 2.14)
instead of the well-used product of approximate conditionals (PAC) method proposed in
[66]. Briefly, the PAC approach utilizes the approximate likelihood π̂(hσ(1))π̂(hσ(2)|hσ(1)) · · ·
π̂(hσ(n)|hσ(1), . . . , hσ(n−1)), where π̂ is an approximate conditional sampling distribution and
σ is some permutation of {1, . . . , n}. A well-known drawback of this approach is that dif-
ferent permutations may produce vastly different likelihoods. Li and Stephens [66] suggests
averaging the PAC likelihood over several random permutations to alleviate this problem
and this strategy seems to work reasonably well in practice. In our work, we have avoided
the problem by adopting the leave-one-out approach, which yields accurate estimates of pop-
ulation sizes for the recent past, but likely impacts accuracy in the ancient past. Employing
the PAC approach may produce accurate estimates for all times, but a challenge that needs
to be addressed in the SMCSD framework is that the wedding cake genealogy, which is based
on the prior expectation of the number of lineages, may not be accurate when there are few
lineages, since coalescence times are more variable when they involve fewer lineages. We
are working on improving the accuracy of the SMCSD computation by using the posterior
absorption time distributions in a recursive fashion so that locus-specific absorption rates
tailored to data can be used. This approach, together with the PAC model, should yield
more accurate estimates of population sizes.
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One factor that we have not investigated is the impact of variable recombination (and/or
mutation) rates, although it is conceptually straightforward for our method to accommodate
them. We have chosen not to incorporate recombination rate variation into our present
implementation as it would make the method even more computationally expensive, since
the transition probabilities would then be potentially different at each site. In addition,
most fine-scale recombination maps [10, 16, 27, 74] are inferred under the assumption of a
constant population size, which is exactly the assumption we are not making. We also note
that [64] found that recombination hotspots did not impact their results significantly and
that the important parameter is the average recombination rate.

A good choice of time discretization is critical to the performance of both diCal and
PSMC. It is better to subdivide time more finely during periods with small population size
than during periods with large population size when few coalescences occur. However, since
the demography is what we are trying to infer, selecting an initial discretization is very
difficult. Creating adaptive discretization schemes for coalescent HMMs is an important
area of future research, which we investigate in chapter 3.

We have shown that posterior decodings of diCal enable accurate inference of coalescence
times. Using this information, we provide an efficient method of sampling marginal coalescent
trees from the posterior distribution in chapter 3. We expect such local tree inference to
have interesting applications, including genome-wide association studies and tests of selective
neutrality.

The SMCSD framework has been recently extended to incorporate structured populations
with migration [105]. We are currently working on combining this extension with the work
presented here to implement an integrated inference tool (to be incorporated into diCal)
for general demographic models. Such a method could provide a detailed picture of the
demographic history that created the diversity we see today in humans and other species.
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Chapter 3

Improvements to coalescent hidden
Markov models

Since its initial release, diCal has been improved in several ways. The most significant
advance was the development of a forward-backward algorithm that runs in linear time in the
number of time discretization intervals. Previously, all coalescent HMMs ran in quadratic
time in the number of time intervals, but this improvement can be implemented for any
coalescent HMM using a modified state space that models recombination more explicitly. The
full details of this algorithm can be found in Harris et al. [44]. My main contributions to this
work were the implementation and analysis. Section 3.1 gives a brief overview of the methods
and then describes the analysis and results. The implementation for the linear-time version
is available in the publicly released code at http://sourceforge.net/projects/dical/.

In Section 3.2, we provide a procedure for grouping adjacent sites into “bins” for faster
computation, and an adaptive discretization algorithm is described in Section 3.3. In Sec-
tion 3.4, we describe how diCal can be used to build local genealogies, which can assist in
population size inference. Finally, minor improvements to the implementation are described
in Section 3.5.

3.1 Decoding coalescent HMMs in linear time

3.1.1 Method overview

Usually when we compute the transition probabilities of an HMM, the runtime is quadratic
in the number of hidden states, since we must compute the transition probability between
each pair of states. The intuition behind bringing this down to a linear operation is that some
of the transitions have equal probability or can be written in terms of previously computed
quantities. To achieve this, we examine the transitions more closely. As in chapter 2, we will
have d time intervals in the discretization and n previously sampled haplotypes. The hidden
state space is the interval and the haplotype that our “left-out” haplotype coalesces with at a
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particular locus. Say we are trying to compute the transition from interval k and haplotype
h′ at locus `, to interval j and haplotype h at locus `+1, which we can denote φ((h, j)|(h′, k)).
Let R̄ denote the event that there is no recombination between these two loci. If there was
a recombination event, it must have occurred in interval i ∈ {1, 2, · · ·min(j, k)}. Denote
this event Ri. If we let T` be the hidden time interval at locus `, then we can write the the
transition probability as

φ((h, j)|(h′, k)) = 1(h,j)=(h′,k) · P(R̄|T` = k) +
1

n

min(j,k)∑
i=1

P(Ri, T`+1 = j|T` = k). (3.1)

The first term (no recombination) can be pre-computed in looked up in constant time as
before, but we need to decompose the second term (recombination) further. If there is a
recombination event in interval i, there are different options of how this could relate to
intervals k and j. Let Ci denote the event that the recombined lineage coalesces at interval
i (as well as having recombined in interval i), and let C>i denote the event that the lineage
recombines at or before interval i, then “floats” off to coalesce during a more ancient interval
than i. Then we can write the second probability from Equation 3.1 in terms of four different
scenarios:

P(Ri, T`+1 = j|T` = k) = 1i=j=k · P(Ri, Ci|T` = i)

+ 1i=j<k · P(Ri, Ci|T` > i)

+ 1i=k<j · P(Ri, C>i|T` = i) ·
j−1∏

m=i+1

P(C>m|C>m−1)

+ 1i<min(j,k) · P(Ri, C>i|T` > i) ·
j−1∏

m=i+1

P(C>m|C>m−1). (3.2)

All of these terms can be precomputed and looked up in constant time, and none of them
depend on T`+1. Therefore the sum from Equation 3.1 can be computed in linear time in
the number of intervals, giving us the desired runtime. There are further details about the
forward and backward algorithms in [44].

Before, multivariate optimization was using during the M-step to find the series of effec-
tive population sizes that maximized the HMM likelihood (using the Nelder-Mead algorithm
[81]). There are O(d) population sizes to estimate, and Nelder-Mead is potentially non-linear
in d. To make sure that this new algorithm is still linear, we optimize each population size
separately, starting from the most recent size. Due to the way we decomposed the transition
(and emission) probabilities in the E-step, the population size estimate for interval i only
depends on the estimates in intervals less than i. In this way the entire estimation procedure
is linear in d.
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(a) Runtime results (in minutes) for the forward
computation. Runtime results (in minutes) for
the forward computation.

(b) Runtime results (in hours) for the entire EM
inference algorithm (20 iterations) extrapolated
from the time for one iteration.

Figure 3.1: Runtime results on simulated data with L = 2 Mb and 2 haplotypes, for varying
number d of discretization intervals.

3.1.2 Results

To confirm the decrease in runtime, we ran the linear-time diCal method on simulated data
with L = 2 Mb of loci and 2 haplotypes (in which case diCal is equivalent to PSMC), using
d = 2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128 discretization intervals. To simulate the data, we
used ms [50] with a population-scaled recombination rate ρ = 0.0005 to generate a genealogy,
and then added mutations using a population-scaled mutation rate of θ = 0.0029 and a
mutation matrix described in [103]. Figure 3.1(a) shows the time to compute the table of
forward probabilities. We also measured the time for one EM iteration and then extrapolated
to 20 iterations to approximate the time required to estimate an effective population size
history (Figure 3.1(b)). In both figures, the linear runtime of our new algorithm is apparent
and significantly improves our ability to increase the number of discretization intervals.

To assess the gain in accuracy of population size estimates that is afforded by more
discretization intervals, we ran both the linear- and quadratic-time methods on simulated
data with 10 haplotypes and L = 2 Mb. We use the conditional sampling distribution in a
leave-one-out composite likelihood approach [103] in this experiment. So that each method
ran for roughly the same amount of time (≈ 40 hours), we used d = 9 for the quadratic
method and d = 21 for the linear method. For both methods, we ran EM for 20 iterations
and estimated d/3 size change parameters. Larger values of d permit the inference of more
accurate histories, as measured by the PSMC error function, which integrates the absolute
value of the difference between the true size function and the estimated size function [64].
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(a) Results on simulated data with L = 2 Mb
and 10 haplotypes. Using the quadratic method
with d = 9, the error was 0.148. Using the linear
method with d = 21, the error dropped to 0.079.

(b) Results on 10 European haplotypes over a
2 Mb region of chromosome 1. The out-of-Africa
bottleneck is very apparent with d = 21, but is
not as well characterized for d = 9.

Figure 3.2: Effective population size change history results. The speedup from the linear
method allows us to use a finer discretization (d = 21) than the quadratic method (d = 9)
for about the same amount of runtime.

We also ran our method on 10 CEU haplotypes (Utah residents of European descent)
sequenced during Phase I of the the 1000 Genomes Project [14] (Figure 3.2(b)). For the
quadratic method with d = 9, we are unable to fully characterize the out-of-Africa bottleneck.
In the same amount of computational time, we can run the linear method with d = 21 and
easily capture this feature. The disagreement in the ancient past between the two methods
is most likely due to diCal’s lack of power in the ancient past when there are not many
coalescence events. Using a leave-one-out approach with 10 haplotypes, the coalescence
events in the ancient past tend to be few and unevenly spaced, resulting in a less confident
inference.

The runtime of the full EM algorithm depends on the convergence of the M-step, which
can be variable. Occasionally we observed convergence issues for the quadratic method,
which requires a multivariate optimization routine. For the linear method, we used the uni-
variate Brent optimization routine from Apache Math Commons (http://commons.apache.
org/proper/commons-math/), which converges quickly and to a large extent avoids local
maxima.

To examine the convergence of the two EM algorithms, we ran the linear and quadratic
methods on the simulated data with 10 haplotypes and the same number of intervals d = 16.
We examine the likelihoods in Figure 3.3(a). The linear method reaches parameter estimates
of higher likelihood, although it is unclear whether the two methods have found different
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(a) The log likelihood of the EM algorithm,
plotted against time, for both the linear and
quadratic methods. for both the linear and
quadratic methods

(b) Population size change history results for the
linear and quadratic methods, run with the same
discretization using d = 16 and estimating 6 pa-
rameters.

Figure 3.3: Results on simulated data, using the same discretization for the linear and
quadratic methods. Each method was run for 20 iterations.

local maxima, or whether the quadratic method is approaching the same maximum more
slowly. Figure 3.3(b) shows the inferred population sizes for each method, which although
similar, are not identical. We sometimes observe that the linear method overestimates the
most recent population size more than the quadratic method. This is perhaps due to the
univariate optimization procedure, which estimates the most recent size first, independently
of the subsequent sizes.

We have also investigated the amount of memory required for each method, and although
the difference is small, the linear method does require more memory to store the augmented
forward and backward tables. In theory, the memory requirement each forward or backward
table should be O(ndL). For the quadratic method, there are two such tables, and for
the linear method there are an additional five tables that require O(dL) memory. A more
thorough investigation of memory requirements will be important as the size of the data
continues to increase.

3.2 Grouping adjacent sites (binning)

In PSMC [64], adjacent sites are grouped into “bins” to speed up computation. With two
sequences, they consider an emission to be ‘0’ if the two sequences are identical with a bin,
and ‘1’ if there is any difference between the two sequences within a bin. With more than
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two sequences, binning becomes more difficult, since there could be multiple SNPs affecting
different subsets of individuals within the same bin. Here we provide a binning framework
for multiple sequences.

Let b be the number of bases in each bin (for humans, a typical bin size is b = 100).
A ‘0’ will still represent a bin in which there are no segregating sites, but now a bin with
segregating sites will contain the bases of the segregating sites, but not their locations within
the bin (although relative ordering will be preserved). Bins will be separated by commas.
For example, input data for 4 individuals using 7 bins might look like:

1 : 0, AC, 0, 0, G, 0, GTA
2 : 0, AG, 0, 0, A, 0, GTC
3 : 0, TG, 0, 0, G, 0, CGC
4 : 0, TC, 0, 0, G, 0, GGC

In this framework, if we see a ‘0’, we assume that no mutation occurred, which is different
from before when we integrated over all possible ways locus/bin α could become locus/bin
β, regardless of whether or not α = β. This means that we can no longer have a mutation
matrix with non-zero diagonals, since if we see non-segregating sites, we have no information
about which bases are actually present. Therefore our mutation matrix P should be of the
form

P =


0 pAC pAG pAT
pCA 0 pCG pCT
pGA pGC 0 pGT
pTA pTC pTG 0

 .
Before discretizing time, let the hidden state at locus ` be (t, h), and the mutation rate

be θ. Then if h[`] = α, the probability of emitting bin β is

ξ(λ)(β|t, h) =



e−θbt if α = β
e−θ(b−1)t(1− e−θt)[P]α1,β1 differ at one base: α1 6= β1

e−θ(b−2)t(1− e−θt)2[P]α1,β1 [P]α2,β2 two bases: α1 6= β1, α2 6= β2

e−θ(b−3)t(1− e−θt)3[P]α1,β1 [P]α2,β2 [P]α3,β3 α1 6= β1, α2 6= β2, and α3 6= β3
...

...
(3.3)

In practice we will assume there is a cut-off for the number of segregating sites in one bin.
To discretize the state space, we again let Di = [ti−1, ti), and integrate to find the discretized
emission probabilities

ξ̂(λ)(β|Di, h) =
1

ζ̂(λ)(Di, h)

∫
Di

ξ(λ)(β|t, h)ζ(λ)(t, h) dt

=
n̄i

λi(1− e−(ti−ti−1)n̄i/λi)

∫ ti

ti−1

ξ(λ)(β|t, h)e−(t−ti−1)n̄i/λi dt
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This approach takes into account the order of the segregating sites within each bin, but
we can also consider an unordered approach. In this case, the bin size is not taken into
account directly as above, but indirectly via multiplying the mutation rate θ by b. Then we
have

ξ(λ)
p (β|t, h) =

(θbt)ke−θbt

k!
[P]α1,β1 · · · [P]αk,βk , (3.4)

where k is the number of differences between α and β. This formulation assumes muta-
tions occur as a Poisson process within each bin. We can integrate as before to obtain the
discretized emission probabilities ξ̂

(λ)
p (β|Di, h).

3.2.1 E-step

In the E-step, we count up the number of times we expect to see allele (not bin) δ ∈
{A,C,G, T} emitted from time state i when the trunk allele is σ 6= δ. Let x be the left-out
haplotype, and L be the number of bins. Let the number of alleles in bin ` be a`. Then our
expected counts are

E(i, σ, δ) =
1

P(x)

L∑
`=1

∑
h

a∑̀
j=1

1 (σ = h[`][j], δ = x[`][j]) · f`(i, h)b`(i, h).

We also have a separate count of the expected number of sites with no mutation, denoted
E(i) for time interval i

E(i) =
1

P(x)

L∑
`=1

∑
h

f`(i, h)b`(i, h) ·
(

(b− a`) +

a∑̀
j=1

1 (h[`][j] == x[`][j])

)
.

The idea here is to include the (b− a`) non-segregating sites in bin `, in addition to the
sites where the trunk allele and the emitted allele are the same.

3.2.2 M-step

In the M-step, we include the expected emissions by adding the following expression onto
the Q function:

d∑
i=1

E(i) · log[ξ̂(λ)(0|Di, 0)] +
∑
σ

∑
δ 6=σ

E(i, σ, δ) · log[ξ̂(λ)(δ|Di, σ)]

where ξ̂(λ)(0|Di, 0) is the single site (i.e. bin size 1) emission probability of no mutation given
time interval i, and ξ̂(λ)(δ|Di, σ) is the single site emission probability of a mutation from σ
to δ given time interval i.
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3.2.3 Variations

If we use Equation 3.3, we denote the scheme “binary” (each site is either the same or
different) or “ordered” (the mutations are ordered within a bin). If we use Equation 3.4, we
denote the scheme “Poisson” or “unordered” (the mutations are unordered within a bin).

A final variation is a “psmc-style” version, where instead of looking at the mutations
within a bin, for each pair of individuals, we just note whether or not they are different at
all within a bin. Then the emission probabilities are the same as in the PSMC [64]. In the
following analysis, we will compare these three binning approaches.

3.2.4 Binning results

To simulate data, we used the commandline from the supplementary material of the PSMC
paper, which is meant to be a good proxy for human history and the human genome. First
we looked at the decoding results using binning, as shown in Figure 3.4, and observed good
performance.

Using the psmc-style binning scheme, we ran a comparison of the results for n = 2 and
n = 10. For n = 10, we paired up consecutive sequences for PSMC, so both methods would
be given the same amount of data. The results are shown in Figure 3.5. For n = 2, the
results are very similar, with too much runaway behavior in the recent past for both methods
to do a meaningful comparison. Unfortunately, for n = 10, diCal’s results were less accurate
than the PSMC, which was not the goal. This may be due to a variety of factors, including
the optimization routine in the M-step.

Figure 3.6(a) shows a comparison using the ordered binning approach for diCal, and is
very similar to Figure 3.5(b). The Poisson scheme performs similarly, as shown in Figure
3.6(b).

Given these results, binning is not currently supported in the released implementation,
but it is still a promising area of future work due to the enormous computational savings.
Currently the main issue is the most recent size - the other sizes are still accurately estimated
using binning. Bins of size 1 are too computationally expensive, and often little is lost by
grouping adjacent sites together, as long as the bin size is chosen such that multiple SNPs
within a bin are rare. Future work on applying coalescent HMMs to many whole-genome
sequences will require binning or a similar approach to be computationally feasible.

3.3 Adaptive discretization

One of the difficulties of coalescent HMMs is choosing a time discretization that that is
appropriate for the species and the number of individuals. Ideally a discretization would be
fine enough to capture detailed size changes, but in both [64] and [103] it was noted that very
fine discretizations lead to runaway behavior. This is due to the lack of coalescent events
that will be observed during a very small time interval, so it looks like the population size
is very large, even infinite. One solution is to group adjacent time intervals together, and
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(a) Binary (ordered): decoding with binning, comparing the true join on time from ms to the
inference using the binary emission scheme.

(b) Poisson (unordered): decoding with binning, comparing the true join on time from ms to the
inference using the Poisson emission scheme.

Figure 3.4: Decoding results using binning. The binary scheme is shown in (a) and the
Poisson scheme in (b). In the mid-ancient past, both binning schemes perform well. In the
recent past, it appears that the Poisson scheme has more resolution than the binary scheme.
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(a) PSMC vs. diCal results for n = 2, using the psmc-style binning scheme for diCal. Both methods
show runaway behavior in the recent past, and are very similar throughout the rest of the history,
with diCal being more accurate in the very ancient past.
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(b) PSMC vs. diCal results for n = 10, using the psmc-style binning scheme for diCal. In this case
PSMC outperforms diCal in the recent past, and diCal shows a modest improvement over PSMC
in the ancient past.

Figure 3.5: PSMC vs. diCal results, using the psmc-style binning scheme for diCal.
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(a) PSMC vs. diCal results, with ordered binning for diCal, for n = 10. Similar to Figure 3.5(b),
the PSMC outperforms diCal in the recent past.
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(b) diCal results for n = 10, comparing the ordered (binary) and unordered (Poisson) emission
schemes. There is very little difference.

Figure 3.6: Binning results for n = 10.
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assign one population size parameter to each group. This solution has proved successful in
some scenarios, but there is still the question of how to do the grouping. In this section, we
will investigate how an optimal grouping can be found.

An ideal interval grouping will yield equal numbers of coalescent events in each group, so
that the inference of each size parameter is supported by an equal number of observations.
In our decodings however, we do not directly observe coalescent events, but we do have a
proxy for when a lineage joins the tree (which represents a coalescent event). We will define
an absorption “segment” as a stretch of loci where a lineage joins the tree at the same time.
Switches in these segments represent recombination events. We use an adaptive procedure
that aims to equalize the number of expected absorption segments within the time intervals
spanned by each parameter.

More formally, first we discretize time into d intervals as we did before:

0 = t0 < t1 < · · · < td =∞,

and we would like to infer p size parameters. Then based on the initial decoding, we compute
the expected number of segments, Ej, for each interval Dj, j = 1, · · · , d. To compute Ej,
we add up all the recombination transitions from any interval Di (i 6= j) to Dj:

Ej =
L∑
`=2

d∑
i=1,i 6=j

pr(i, j, `),

where pr(i, j, `) is the posterior probability of having a recombination transition from interval
Di to Dj, between locus `− 1 and `. If we count up all these recombination transitions, that
will be the expected number of times we enter interval Dj, which is a good approximation
for the number of absorption segments in this interval.

Now we can find the desired number of expected segments per parameter:

E =
1

p

d∑
j=1

Ej.

Our goal is to group the intervals such that each group has roughly E expected segments.
Let qk be the number of intervals spanned by parameter k, for k = 1, · · · , p. So we want

p∑
k=1

qk = d.

To calculate the best set of qk, we begin with the recent time intervals, adding intervals
until

q1+q2+···+qk∑
i=1

Ei ≈ E · k.

In other words, we keep adding on intervals for the kth parameter until running total number
of expected segments is as close as possible to E · k. We also bound qk by a minimum and
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maximum number of intervals, so that each parameter gets a reasonable number of intervals.
We use a minimum of 1 interval and a maximum of 6.

Finally, based on this optimal grouping, we compute the population size parameters
in the M-step, and repeat this procedure for each E-step. The hope is that as the EM
procedure converges, the grouping will converge as well. An example is shown in Figure
3.7 for d = 25 intervals and p = 10 parameters. After the very first E-step, the parameter
grouping is 6+2+3+2+2+3+2+2+2+1, as shown on the x-axis for iteration 1. As the EM
procedure goes on, we can see the expected segments shift and converge, to a final grouping
of 6+1+1+1+1+1+1+3+9+1 at iteration 20. In the final plot, the population size change
history is overlaid, and we can see that that many more coalescent events (represented
by absorption segments) occur during the bottleneck. Thus we can see that the adaptive
procedure is working, so that we will have more intervals grouped together during times
when there are few coalescent events.

This adaptive procedure worked well in some cases, but did not always converge in others.
Sometimes the grouping would alternate between two close groupings, which prevented the
inference of the population sizes from converging. Depending on how we define “optimal”,
finding an optimal discretization is just as challenging as inferring the population sizes to
begin with. Making such an adaptive procedure more robust is a promising area of research.

3.4 Using diCal to build local trees and infer

population sizes

In much of population genetics, if we knew the full ARG, inference of many parameters of
inference would be much easier. Estimating a series of local trees along the genome gets us
most of the way toward full ARG inference. In this section we explore how diCal can be
used to build local trees, and how those local trees can then be used to infer population sizes
in a different way. Work in this section is joint with Jack Kamm.

3.4.1 Building local trees

In the case of n = 2, the posterior decoding of diCal or PSMC gives us a series of local trees
at each locus. These trees are very simple, with two leaves for haplotypes h1 and h2. Given
this series of trees, imagine adding another haplotype, h3. At a given locus `, say h1 and h2

coalesce at time T`. If h3 joins either one of the other haplotypes at a time greater than T`,
then the resulting tree has h1 and h2 coalescing first, then joining h3. If h3 joins either one
of the other haplotypes before T`, then the tree will have that coalescent event first. We can
continue building up the tree in this way, using the conditional sampling distribution to add
each haplotype in turn. Figure 3.8 provides an illustration of this process.

This method works reasonably well when the mutation rate is high relative to the recom-
bination rate. Figure 3.9 shows an example comparison between the true local tree on the left
and the inferred tree on the right. Our method recovered the true topology correctly except
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Figure 3.7: An example of the adaptive discretization procedure for d = 25 intervals and
p = 10 parameters. In each plot, the number of segments for each time interval is plotted on
the y-axis. Each color represents a different parameter, and the height of each shaded color
block is the sum of the expected segments for that parameter. The ultimate goal is for the
heights of all these shaded blocks to be the same.
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Figure 3.8: An illustration of how diCal can be used to build a local tree. First we run diCal
on two lineages (4&5 here). Then we add lineage 3, and see where it joins the tree relative
to 4&5. We continue adding haplotypes, using the posterior decoding from diCal to find
what time and haplotype they join onto. We call this procedure the PAC-tree method, for
Product of Approximate Conditionals, as opposed to the “leave-one-out” approach we used
for parameter inference in chapter 2.

for the final coalescent event. The coalescence times are somewhat downwardly biased. In
this example, we used a mutation rate of θ = 0.008, and a recombination rate of ρ = 0.001.
A more thorough investigation of how well this method works would help us determine areas
for improvement, but is hammered by the difficultly of selecting an appropriate distance
metric on trees.

We also wanted to investigate whether knowing the sequence of local trees would help us
to infer ancestral population sizes. There are many ways the local trees could be used, but
we chose to aggregate their information into the average number of remaining lineages as a
function of time. Then we minimized the difference between this function and the expected
number of remaining lineages under different population size histories, to find the best sizes.
We used the integral of the absolute differences between the two functions as a distance
metric. The results for different mutation rates are shown in Figure 3.10.

What is particularly interesting about Figure 3.10 is that the population size inference is
not really much better when we use the true number of remaining lineages than when we use
the inferred number of remaining lineages. It is possible this represents a limitation of using
the number of remaining lineages for population size inference. In theory, this function should
provide perfect information about the rate of coalescence back in time, which is what we
need for population size inference. But in practice this function deviates from its expectation
quite a bit due to the stochastic nature of the data. It is possible we need to use more data
(either more loci or more lineages) to make this function more useful in practice.

Finally, we show two examples of using posterior mean decoding to smooth the function
of the number of remaining lineages (this gives us a continuous distribution of coalescence
times). These results are shown for a constant size history and a bottleneck in Figure 3.11.
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Figure 3.9: An example of local tree inference. The genealogy on the left is the true tree,
and the genealogy on the right is our inferred tree. Except for the final coalescence event, we
are able to reconstruct the topology correctly, although the coalescence times are generally
somewhat too early.

3.5 Improvements to the diCal software

diCal was actively developed since its initial release, and this section describes some of the
improvements to the software. Full details of how to run diCal can be found in the manual
at http://sourceforge.net/projects/dical/. diCal is distributed open source under the
FreeBSD (Berkeley Software Distribution) license.

• The command line options were changed to be more consistent with PSMC [64]. An
example is shown below.

java -jar diCal.jar -F data.fa -I params.txt -n 4 -p "3+2+2+3" -t 2

Where -F is the path to the input fasta file (must be phased), -I is the path to the
parameter file, -n is the number of haploid sequences, -p is the parameter grouping, -t
is the end time for the discretization in coalescent units. So in this example, there are
d = 10 discretization intervals, grouped into 4 parameters (so 4 sizes will be inferred).

• Missing data (denoted by “N” or “n”) is supported.

• In addition to fasta input files, a simplified version of the VCF file format is supported.
A script is supplied to convert VCF files into this “stripped” VCF (SVCF) format. If
this format is used, a reference fasta file must also be supplied. An example line of an
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(a) θ = 0.0005
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(b) θ = 0.001
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(c) θ = 0.004
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(d) θ = 0.008

Figure 3.10: These figures show the results of using our local tree inference method to infer
ancestral population sizes. The solid lines represent the number of remaining lineages as a
function of time, which starts at n = 10 at time 0, and decreases monotonically to 1 at time
∞. The dashed lines represent the population sizes over time. The solid blue line is the true
average number of lineages, and the dashed red line is the true population size history we
used for simulation (constant in this case). The dashed blue line is the history we infer if
we use the true number of lineages. The solid green line is the number of remaining lineages
we obtain if we use the local trees estimated from diCal as described above. And finally
the dashed green line is the history we infer using these estimates. We can see that as the
mutation rate θ increases, our inference becomes better.
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Figure 3.11: Inference results for a constant history and a bottleneck history, for n = 20
and θ = 0.002 (twice the recombination rate). The theoretical number of remaining lineages
is shown with the solid red line, and the inferred number of remaining lineages is shown
with the solid blue line. Posterior mean decoding was used to smooth this function. For
the bottleneck history on the right, we can see that the inferred number of lineages does
not initially decrease quickly enough, which results in an overestimate of the most recent
population size (dashed blue line). The discretization times were chosen to be the same as
the bottleneck for proof of concept. We can see that even though the number of lineages is
not inferred quite correctly during the bottleneck, the bottleneck size is quite well-estimated.
This is reflective of a pattern of more accurate size inference during times of lower population
size, when there are more coalescent events.

SVCF file is shown below, with one column for the chromosome or scaffold name, one
column for the location of the SNP, and then the phased SNP data for each haplotype.

chrom1 395049 ACAAAACAAA

• Multiple chromosomes/scaffolds are supported.

• The E-step computation is parallelized, so that each haplotype can potentially be “left-
out” at the same time. The number of cores can be specified as anything from 1 to n
depending on memory and speed requirements.

• Five different types of decodings are supported, as described below.

1. posterior decoding: Each line of output contains the locus, the posterior absorption
time, and the posterior absorption haplotype index (with respect to the order the
haplotypes appear in the fasta or VCF file).
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2. Viterbi decoding: Similar format to the posterior decoding, with the best path
absorption time and haplotype printed.

3. posterior mean time: For each time interval, the haplotype is marginalized out,
then the posterior mean time (i.e. time a lineage joins the genealogy) is calculated.

4. posterior decoding time: Marginalize out the haplotypes, then choose the join-on
time with the highest probability.

5. posterior decoding time and probability: Same as 4, but also prints out the highest
probability.

• Users have the option to specify their own time discretization. Users can also specify
a demographic history and simply print a decoding without doing any inference.

• The number of expected segments can be printed, which can help users detect when the
method might be experiencing runaway behavior (very few segments in some intervals).
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Chapter 4

Deep learning for population genetics

The coalescent is an essential tool for developing likelihood-based methods for population
genetic inference. However, in chapter 2 and chapter 3, the runtime of computing even
approximate likelihoods was the main barrier to the wider application of coalescent HMMs.
Further, for many coalescent models, the full likelihood remains unknown, and even in cases
where it is known, sufficient statistics for parameters of interest may not exist.

In this chapter we present an alternative new inference method for population genetics
that leverages the power of a deep learning framework. Deep learning, a powerful modern
technique from the machine learning literature, provides a principled way of learning param-
eters and informative features of data, even when few training datasets are used. Inspired
by neural networks, deep architectures use several layers of hidden nodes to learn a rich class
of functions from the input (summary statistics) to the output (parameters of interest).

Approximate Bayesian Computation (ABC) is an alternative likelihood-free inference
method that has become a very useful for population genetic inference. However, this type
of algorithm has several drawbacks, including poor performance in the presence of correlated
summary statistics. ABC uses many simulated datasets to find those closest to the target
dataset, then retains the corresponding parameters to compute an approximate posterior
distribution for the parameters of interest. In contrast to ABC, deep learning requires no
rejection step, does not rely on a prior for parameter estimation, and is robust to the addition
of uninformative statistics.

Although our deep learning method is very general, here we focus on applying the method
to the challenging problem of explicit joint inference of demography (in the form of a bot-
tleneck) and natural selection. Our method is able to separate the global nature of demo-
graphic factors from the local nature of selection, creating a flexible and robust inference
framework. Studying demography and selection is motivated by Drosophila, where pervasive
selection confounds demographic analysis. Using hundreds of summary statistics, we apply
our method to 22 African Drosophila melanogaster haplotypes from the DPGP [94] to infer
both the overall demography, and regions of the genome under selection. We find that pre-
vious Drosophila demography results were biased by selection, and provide an alternative
history to be used in subsequent analysis.
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Figure 4.1: An example of a classical neural network. The single hidden layer serves to
learn informative combinations of the inputs, remove correlations, and typically reduce the
dimension of the data. After the optimal weight on each connecting arrow is learned through
labeled training data, unlabeled data can be fed through the network to learn the output
parameters.

4.1 Deep learning background

Deep learning has its beginnings in neural networks, which were originally inspired by the
way neurons are connected in the brain [48]. Neural networks have been used to learn
complex functions between input data and output parameters in the absence of a model. A
classical neural network is shown in Figure 4.1.

It has been shown in the universal approximation theorem that a neural network with a
single hidden layer with a finite number of units can approximate any continuous function
under mild assumptions [17, 49]. However, finite can still be very large, and it can be
challenging to learn and interpret the weights of such a network. So as learning problems
became more complex, it became desirable to train networks with more hidden layers. Due
to the non-convex nature of the function to optimize the weights, these “deep” networks
proved difficult to train. Deep learning stagnated until a breakthrough in 2006 [45]. Figure
4.2 shows a plot of the number of papers that mention deep learning over time, highlighting
this breakthrough.

Since then, deep learning has broken many machine learning records for classification
problems, especially in the fields of vision (example: [61]) and speech recognition (example:
[33]). Many variations have been developed, including dropout, which attempts to learn
better and more robust features of the data (see [18, 46]). Deep learning has also been
applied to problems in biology (examples: [63, 119]), but had not been used for population
genetics before.



CHAPTER 4. DEEP LEARNING FOR POPULATION GENETICS 60

2006: Hinton and Salakhutdinov  
make a break-through in 

initializing deep learning networks 

Figure 4.2: Deep learning pa-
pers over time. The first
mention of deep learning was
in 1980, but these deep net-
works proved difficult to train
until 2006, when Hinton and
Salakhutdinov [45] developed a
novel pre-training method.

4.2 ABC background

Rejection-based methods have been used since the late 1990’s (see [96, 109]) to estimate pop-
ulation genetic parameters when the likelihood is difficult to compute. Early improvements
to ABC quickly helped make it a popular method for a variety of scenarios (see [4] for a good
introduction). ABC works by simulating many datasets under a prior for the parameters of
interest. Then these datasets are reduced to a vector of summary statistics that are ideally
informative for the parameters. The summary statistics that are closest to the summary
statistics for the target dataset are retained, and the corresponding parameters used to es-
timate the desired posterior distributions. The definition of “close” is usually determined
by a Euclidean distance metric on the summary statistic vectors, which can create biases if
statistics are not properly normalized or have different variances.

A second problem with ABC is its inability to handle uninformative or weakly informa-
tive summary statistics. Intuitively, this is because these statistics add noise to the distance
metric between two datasets; two datasets simulated under similar parameters may have
some uninformative statistics that are far apart, or two datasets simulated under very differ-
ent parameters may have some uninformative statistics that are close together. The distance
metric can be further biased by differences in the magnitude of the summary statistics. An-
other major problem with ABC is the rejection step, which does not make optimal use of
the datasets which are not retained. The more statistics and parameters used, the more
datasets must be simulated and rejected to properly explore the space, making the inter-
action between these two issues even more problematic. One final issue with ABC is the
black-box nature of the output. Given the distances between the simulated datasets and the
target dataset, and the posterior, there is no clear way to tell which statistics were the most
informative.

To tackle the problem of adding summary statistics, many methods for dimensionality
reduction or selecting summary statistics wisely have been proposed (see [1, 26, 55, 85], and
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[8] for a dimensionality reduction comparison). However, simple reductions cannot always
learn subtle relationships between the data and the parameters. Expert pruning of statistics
helps some methods, but given the lack of sufficient statistics, valuable information can be
eliminated, especially when trying to infer many parameters. In Blum and François [7], a
dimensionality reduction step is performed on the summary statistics via a neural network
similar to Figure 4.1. This reduction is similar in spirit to the work presented here, although
there are many algorithmic and application differences.

To address the problem of rejecting datasets, different weighting approaches have been
proposed (see [7] for a good example of how the estimation error changes as fewer datasets
are rejected). The idea is to keep more datasets, but then weight each retained dataset by
the its distance to the target dataset. However, few approaches utilize all the datasets in
this way, and the most popular implementation of ABC (ABCtoolbox [115]) typically still
rejects most of the simulated datasets by default.

4.3 Deep learning theory

In this section we provide the theory behind training deep networks. The notation in this
section is based off of the notation in [83]. Let x(i) be the vector of summary statistics for
dataset i, and y(i) be the vector of parameters that dataset i was simulated under. If we
have m such datasets, then together {(x(1), y(1)), · · · , (x(m), y(m))} form the training data
that will be used to learn the function from statistics to parameters. Deep neural networks
are a way to express this type of complex, non-linear function. The first layer of the network
is the input data, the next layers are the “hidden layers” of the network, and the final layer
represents the network’s prediction of the parameters of interest.

4.3.1 Cost function for a deep network

Let the weights between layer ` and layer `+ 1 be W (`), where W
(`)
jk is the weight associated

with the connection between node j in layer ` and node k in layer ` + 1. Let the biases for
layer ` be b(`). The total number of layers (including the input and output layers) is L, and
the number of hidden units in layer ` is denoted u`. The main goal is to learn the weights
that best describe the function between the inputs and the outputs.

To learn this function, we first describe how the values of the hidden nodes are computed,
given a trial weight vector. The value of hidden node j in layer ` is denoted a

(`)
j , where

a
(`)
j = f

(
z

(`)
j

)
, where z = W

(`−1)
j · a(`−1) + b

(`−1)
j ,

W
(`−1)
j is the jth column of the weight matrix W (`−1) (i.e. all the weights going into node j

of layer `− 1), a(`−1) are the values of all the (hidden) nodes in the previous layer, and

f(z) =
1

1 + exp(−z)
(4.1)
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Figure 4.3: Example of a neural network with two hidden layers. The first layer is the input
data (each dataset has 5 statistics), and the last layer predicts the 2 parameters of interest.
The last node in each input layer (+1) represents the bias term. Here the number of layers
L = 4, and the number of nodes (units) in each layer is u1 = 5, u2 = 3, u3 = 3, and u4 = 2
(these counts exclude the biases).

is the activation function. Here we use a logistic function, but other functions can be used.
Another common activation function is the hyperbolic tangent function. An example deep
network is shown in Figure 4.3.

Therefore given the input data and a set of weights, we can feed forward to learn the
values of all hidden nodes, and a prediction of the output parameters. These predictions are
usually denoted by hW,b(x

(i)) for our hypothesis for dataset i, based on all the weights W and
biases b. See Section 4.3.3 for different ways to compute the hypothesis function. To find
the best weights, we define a loss function based on the L2 norm between this hypothesis
and the true parameters. This loss function is given by

J(W, b) =
1

m

m∑
i=1

1

2

∣∣∣∣∣∣∣∣hW,b(x(i))− y(i)

∣∣∣∣∣∣∣∣2.
The goal of deep learning is to find the weights (the set of W ’s and b’s) that minimize this
loss function. To efficiently find these optimal weights, we can use backpropagation to find
the gradient. The intuition behind this approach is that once we have found the hypothesis,
we then want to see how much each of the weights contributed to any differences between
the hypothesis and the truth. Therefore we start at the last hidden layer, see how much
each of those weights contributed, then work our way backwards, using the gradient of the
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previous layer to compute the gradient of the next layer. For this we need to compute the
partial derivatives of the cost function with respect to each weight.

Consider a single training example x, with associated parameters y. Let the cost for this
dataset be one term of the sum above

J(W, b, x, y) =
1

2

∣∣∣∣hW,b(x)− y
∣∣∣∣2.

First, we take the derivative of the cost function with respect to z
(L)
j (the input to the

activation function for output node j), which we denote δ
(L)
j . Note that the jth node of

hW,b(x) is f(z
(L)
j ).

δ
(L)
j =

(
hW,b(x)− y

)
· f ′
(
z

(L)
j

)
.

Based on this initialization, we can recursively compute all the δ variables:

δ
(`)
j =

( u`+1∑
k=1

W
(`)
jk δ

(`+1)
k

)
f ′
(
z

(`)
k

)
.

Now we can use the δ variables to recursively compute the partial derivatives for one dataset:

∂J(W, b, x, y)

∂W
(`)
jk

= a
(`)
j · δ(`+1)

k and

∂J(W, b, x, y)

∂b
(`)
k

= δ
(`+1)
k .

Finally, putting all the datasets together we get

∂J(W, b)

∂W
(`)
jk

=
m∑
i=1

∂J(W, b, x(i), y(i))

∂W
(`)
jk

and
∂J(W, b)

∂b
(`)
k

=
m∑
i=1

∂J(W, b, x(i), y(i))

∂b
(`)
k

.

Since we can compute the derivatives using this backpropagation algorithm, we can use the
LBFGS optimization routine (as implemented in [20]) to find the weights that minimize the
cost function.

4.3.2 Unsupervised pre-training using autoencoders

It is possible to train a deep network by attempting to minimize the cost function described
above directly, but in practice, this proved difficult due to the high-dimensionality and non-
convexity of the optimization problem. Initializing the weights randomly before training
resulted in poor local minima. The breakthrough in [45] sought to initialize the weights in
a more informed way, using an unsupervised pre-training routine. Unsupervised training
ignores the output (often called the “labels”) and attempts to learn as much as possible
about the structure of the data on its own. PCA is an example of unsupervised learning. In
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Figure 4.4: An example of an autoencoder. The input data (x) is projected into a (usually)
lower dimension (a), then reconstructed (x̂). The weights of an autoencoder are optimized
such that the difference between the reconstructed data and the original data is minimal.

[45], the unsupervised pre-training step uses an autoencoder to try to learn the best function
from the data to itself, after it has gone through a dimensionality reduction step (which
can be thought of as trying to compress the data, then reconstruct it with minimal loss).
Autoencoding provides a way to initialize the weights of a deep network that will ideally be
be close to optimal for the supervised learning step as well. See Figure 4.4 for a diagram of
an autoencoder.

Training an autoencoder is an optimization procedure in itself. As before, let W (1) be
the vector of weights connecting the input x to the hidden layer a, and W (2) be the vector of
weights connecting a to the output layer x̂, which in this case should be as close as possible
to the original input data. We again typically use the logistic function as our activation
function f as described above, so we can compute the output using:

aj = f(W
(1)
j · x+ b1) and x̂k = f(W

(2)
k · a+ b2).

If a linear activation function is used instead of a logistic function, the hidden layer be-
comes the principle components of the data. This makes dimensionality reduction with an
autoencoder similar in spirit to PCA, which has been used frequently in genetic analysis
(see [84] for an example). However, the non-linear nature of an autoencoder has been shown
to reconstruct complex data more accurately than PCA. Using backpropagation as we did
before, we can minimize the following autoencoder cost function using all m input datasets:

A(W, b) =
1

m

m∑
i=1

1

2

∣∣∣∣∣∣∣∣x̂(i) − x(i)

∣∣∣∣∣∣∣∣2.
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The resulting weights W (1)∗ will then be used to initialize the weights between the first and
second layers of our deep network. The weights W (2)∗ are discarded. To initialize the rest of
the weights, we can repeat the autoencoder procedure, but this time we will use the hidden
layer a∗ as our input data, and feed it through the next hidden layer. In this way we can
use “stacked” autoencoders to initialize all the weights of the deep network. Finally, the
supervised training procedure described in the previous section can be used to fine-tune the
weights to obtain the best function from the inputs to the parameters of interest.

When the number of hidden units is large, we would like to constrain an autoencoder
such that only a fraction of the hidden units are “firing” at any given time. This corresponds
to the idea that only a subset of the neurons in our brains are firing at once, depending on
the input stimulus. To create a similar phenomenon for an autoencoder, we can create a
sparsity constraint that ensure the activation of most of the nodes is close to 0, and the
activation of a small fraction, ρ, of nodes is close to 1. Let ρ̂j be the average activation of
the hidden node j:

ρ̂j =
1

m

m∑
i=1

aj(x
(i)),

where aj(x
(i)) is the value of the jth hidden node when activated with dataset x(i). To ensure

sparsity, we would like ρ̂j to be close to ρ, our desired fraction of active nodes. This can be
accomplished by minimizing the KL divergence:

u2∑
j=1

KL(ρ||ρ̂j) =

u2∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

,

where u is the number of units in the hidden layer. We multiply this term by a sparsity
weight β. In addition, a regularization term is included, which prevents the magnitude of the
weights from becoming too large. To accomplish this, we add a penalty to the cost function
that is the sum of the squares of all weights (excluding the biases), weighted by a well-chosen
constant λ, which is often called the weight decay parameter. Including both sparsity and
regularization, our final autoencoder cost becomes:

Aλ(W, b) =
1

m

m∑
i=1

1

2

∣∣∣∣∣∣∣∣x̂(i) − x(i)

∣∣∣∣∣∣∣∣2 + β

u2∑
j=1

KL(ρ||ρ̂j) +
λ

2

2∑
`=1

u`−1∑
j=1

u∑̀
k=1

(
W

(`−1)
jk

)2
.

We also regularize the weights on the last layer during fine-tuning, so our deep learning
cost function becomes:

Jλ(W, b) =
1

m

m∑
i=1

1

2

∣∣∣∣∣∣∣∣hW,b(x(i))− y(i)

∣∣∣∣∣∣∣∣2 +
λ

2

uL−1∑
j=1

uL∑
k=1

(
W

(L−1)
jk

)2
.
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Type Classifier Error % Year
Linear classifier Pairwise linear classifier 7.6 1998, [62]
Non-Linear classifier 40 PCA + quadratic classifier 3.3 1998, [62]
Boosted stumps Product of stumps on Haar features 0.87 2009, [56]
Support vector machine Virtual SVM, deg-9 poly, 2-pixel jittered 0.56 2002, [19]
K-nearest neighbors K-NN with non-linear deformation 0.52 2007, [58]
Neural network (NN) Layers: 784-2500-2000-1500-1000-500-10 0.35 2010, [13]
Convolutional NN 35 conv. net, 1-20-P-40-P-150-10 0.23 2012, [12]

Table 4.1: Table of classification results on the MNIST hand-written digit database, from
[77]. The neural network (NN) method is a classical example of deep learning, here with
6 layers, whose sizes are shown. The dimension of each image is 784, then the sizes of the
hidden layers decrease from 2500 to 500, and the final layer is of size 10 for each of the classes
for the digits from 0-9.

4.3.3 The final layer: parameter estimation vs. classification

In population genetics, often we want to estimate a continuous parameter. To compute our
hypothesis for a parameter of interest, based on a set of weights, we could use a logistic
activation function like Equation 4.1, as we did for the other layers. However, a logistic
function often implies a binary scenario, which we do not have in the case of a continuous
parameter. Instead, we use a linear activation function, so in the case of a single parameter,
our hypothesis for dataset i becomes

hlinear
W,b (x(i)) = W (L−1) · a(L−1) + b(L−1).

In other words, it is the dot product of the activations of the final hidden layer and the
weights that connect the final hidden layer to the parameters.

However, traditionally deep learning has been used for classification, where the goal is to
assign each dataset to one of a discrete number of classes. For example, hand-written digit
classification (with 10 classes for the digits 0-9) has been a popular machine-learning task
for comparing different algorithms. Table 4.1 shows a comparison of different methods that
were used to classify the MNIST hand-written digit dataset.

For such classification results, if we had two classes, we could use logistic regression to
find the probability a dataset was assigned to each class. With more than two classes, we
can extend this concept ans use softmax regression to assign a probability to each class. If
we have k classes labeled 1, · · · , k, we can define our hypothesis as follows

hsoftmax
W,b (x(i)) =


p(y(i) = 1|x(i);W, b)
p(y(i) = 2|x(i);W, b)

. . .
p(y(i) = k|x(i);W, b)

 =
1

Z


exp{W (L−1)

1 · a(L−1) + b
(L−1)
1 }

exp{W (L−1)
2 · a(L−1) + b

(L−1)
2 }

. . .

exp{W (L−1)
k · a(L−1) + b

(L−1)
k }

 ,
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where Z is the sum of all the entries, so that our probabilities sum to 1. Using this formu-
lation, we can define our classification cost function:

J softmax
λ (W, b) = − 1

m

m∑
i=1

k∑
j=1

1{y(i) = k} log p(y(i) = j|x(i);W, b) +
λ

2

uL−1∑
s=1

uL∑
t=1

(
W

(L−1)
st

)2
.

Intuitively, we can think about this cost function as making the log probability of the correct
class as close to 0 as possible.

4.3.4 Image example

Deep learning has proven extremely successful for images, and this section provides a concrete
example to help illustrate the goals of deep learning. In Figure 4.5, we can see that our data
is a set of images of faces. We want to learn three parameters, corresponding to y1, y2, y3.
The first two are discrete with two classes each: whether or not the person is wearing glasses
and whether or not they are smiling. Eye size, represented by y3, is a continuous parameter.

During each pre-training step, the hidden layers learned features that were easy to in-
terpret. In the first hidden layer, the autoencoder learned “edges”. This is essentially a
basis of features that can be combined to create images. In the second hidden layer, the
next autoencoder learned higher-level features; a mouth, an eye, a nose, and an ear. These
can be thought of as more sophisticated building blocks with which to build images of faces.
Now we can see that the parameters of interest can be easily found from these second-order
features. To see whether the person is wearing glass and to determine their eye size, we can
use they eye feature. To see if a person is smiling, we can use the mouth feature. This is a
toy example, but it illustrates the goals of deep learning: to automatically learn features of
the data that can provide answers to our questions.

4.4 Deep learning for demography and selection

The population genetics problem we wish to solve is jointly estimating demography and
selection (see [65] for a recent review of this topic). One reason this problem is difficult
is that demography (for example, a bottleneck) and selection can leave similar signals in
the genome. Untangling the two factors directly has rarely been attempted - most methods
that estimate selection try to demonstrate robustness to demographic scenarios, rather than
estimating demographic parameters jointly with selection. Our analysis is motivated by
Drosophila, where pervasive selection has confounded demographic inference. There is one
example of a demographic history for Drosophila, shown in Figure 4.6 [21]. Here we focus
on 22 Drosophila melanogaster genomes from Rwanda, Africa [94].
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sometimes comical) but nowhere near 
as good as a smooth human translation. 
“Deep learning will have a chance to do 
something much better than the cur-
rent practice here,” says crowd-sourcing 
expert Luis von Ahn, whose company 
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing 
everyone agrees on is that it’s time to try 
something different.” 

DEEP SCIENCE
In the meantime, deep learning has 
been proving useful for a variety of 
scientific tasks. “Deep nets are really 
good at finding patterns in data sets,” 
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to 
whoever could beat its best programs 
for helping to predict useful drug can-
didates. The task was to trawl through 
database entries on more than 30,000 
small molecules, each of which had 
thousands of numerical chemical-prop-
erty descriptors, and to try to predict 
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues 
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline 
by about 15%,” he says.

Biologists and computational 
researchers including Sebastian Seung 
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep 
learning to help them to analyse three-
dimensional images of brain slices. Such 
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be 
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines, 
but automating the process is the only way to 
deal with the billions of connections that are 
expected to turn up as such projects continue. 
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning 
program to map neurons in a large chunk of the 
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online 
game called EyeWire. 

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle, 
has used deep learning to teach a program to 
look at a string of amino acids and predict the 
structure of the resulting protein — whether 
various portions will form a helix or a loop, for 
example, or how easy it will be for a solvent to 
sneak into gaps in the structure. Noble has so 
far trained his program on one small data set, 
and over the coming months he will move on to 
the Protein Data Bank: a global repository that 
currently contains nearly 100,000 structures.

For computer scientists, deep learning 
could earn big profits: Dahl is thinking about 
start-up opportunities, and LeCun was hired 

last month to head a new AI department at 
Facebook. The technique holds the promise 
of practical success for AI. “Deep learning 
happens to have the property that if you feed it 
more data it gets better and better,” notes Ng. 
“Deep-learning algorithms aren’t the only ones 
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the 
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which 
launched last September with the aim of devel-
oping AI, says he will not be using the brain for 
inspiration. “It’s like when we invented flight,” he 
says; the most successful designs for aeroplanes 

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer 
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up 
eventually to pre-university exams). To 
pass the tests, a computer must be able 
to read and understand diagrams and 
text. How the Allen Institute will make 
that happen is undecided as yet — but for 
Etzioni, neural networks and deep learn-
ing are not at the top of the list. 

One competing idea is to rely on a 
computer that can reason on the basis 
of inputted facts, rather than trying to 
learn its own facts from scratch. So it 
might be programmed with assertions 
such as ‘all girls are people’. Then, when 
it is presented with a text that mentions 
a girl, the computer could deduce that 
the girl in question is a person. Thou-
sands, if not millions, of such facts are 
required to cover even ordinary, com-
mon-sense knowledge about the world. 
But it is roughly what went into IBM’s 
Watson computer, which famously 
won a match of the television game 
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson 
Solutions has an experimental interest 
in deep learning for improving pattern 
recognition, says Rob High, chief tech-
nology officer for the company, which 
is based in Austin, Texas. 

Google, too, is hedging its bets. 
Although its latest advances in picture 
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December 

2012, it hired futurist Ray Kurzweil to pursue 
various ways for computers to learn from 
experience — using techniques including but 
not limited to deep learning. Last May, Google 
acquired a quantum computer made by D-Wave 
in Burnaby, Canada (see Nature 498, 286–288; 
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be 
applied to deep learning.

Despite its successes, deep learning is still in 
its infancy. “It’s part of the future,” says Dahl. 
“In a way it’s amazing we’ve done so much with 
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near 
Vancouver, Canada.
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Deep-learning neural networks use layers of increasingly 
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The 
computer 
identi!es pixels 
of light and dark. 

Layer 2: The 
computer learns to 
identify edges and 
simple shapes.

Layer 3: The computer 
learns to identify more 
complex shapes and 
objects.

Layer 4: The computer 
learns which shapes 
and objects can be used 
to de!ne a human face.

“DEEP LEARNING HAS THE 
PROPERTY THAT IF YOU 

FEED IT MORE DATA, IT GETS 
BETTER AND BETTER.”
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Figure 4.5: An example of the features learned from images of faces. In the first hidden layer,
the autoencoder has learned a basis of “edges”. In the second hidden layer, the autoencoder
has learned higher-order features which can be combined to create faces. These features are
also informative for our parameters of interest in the last layer. Images adapted from [54].

Africa 
	
  

North America 
	
  

Europe 
	
  

pr
es
en
t	


pa
st
	


Figure 4.6: The demographic history for Drosophila inferred by [21], modified from their
paper, but still not to scale (the bottleneck is much more severe than shown).



CHAPTER 4. DEEP LEARNING FOR POPULATION GENETICS 69

Demography  1	


Demography  2	


Demography  3	


De  novo	

mutation	


Balancing	


Standing	

variation	


Figure 4.7: Input data for the demography and selection scenario. For each demographic
history (bottleneck), we simulated many different genomic regions. Each region can either
have no selection, one site with an de novo mutation under positive selection, one site under
balancing selection, or one standing variant under positive selection.

4.4.1 Simulating a realistic dataset

To create a simulated dataset that is appropriate for our scenario of interest, we first de-
fine the parameters we would like to estimate. For simplicity, and to fit with the African
Drosophila history in Figure 4.6, we define a demographic history to be a 3-parameter bot-
tleneck (a recent population size, a bottleneck size, and an ancient size). And we define a
region as belonging to 4 different selection classes: no selection (neutral), positive directional
selection, balancing selection, or selection on standing variation. See [23] for a more complete
analysis of the different types of selection in Drosophila. To make our data fit with the idea
of demography affecting the entire genome and selection affecting a particular region, we
simulate many genomic regions under the same bottleneck, but the selection class for each
one is chosen independently. See Figure 4.7 for an illustration of the data.

To simulate this dataset, we used msms [25]. To make our simulated data as close to
the real data as possible, we simulated n = 22 haplotpyes to match the African Drosophila
dataset. We repeated the following procedure 1000 times. First we selected three population
sizes, then simulated 150 regions with these sizes. Each region was 100kb, with one of three
selection schemes, or neutral. We used a baseline effective population size Nref = 100, 000, a
per base, per generation mutation rate µ = 8.4 × 10−9 [39], and a per base, per generation
recombination rate r = 3.423×10−8 (based off of recombination and mutation rate estimates
in [10]). We used a generation time of 10 generations per year. Based on the history in
[21], we used the time of the bottleneck to be TA = 237, 227 in years, and to last for 1000
generations. Our effective population size parameters of interest and their prior distributions
are below:

1. Recent effective population size scaling factor: λ1 ∼ Unif(1, 10)
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2. Bottleneck effective population size scaling factor: λ2 ∼ Unif(0.05, 0.5)

3. Ancient effective population size scaling factor: λ3 ∼ Unif(1, 10)

For the selection classes, the different types are shown below:

• Class 0: no selection, neutral. However, we did simulated “neutral” datasets that
were somewhat “linked” to a selected site.

• Class 1: positive selection on a de novo mutation (i.e. hard sweep). The selection
coefficient s was chosen uniformly from (0.05, 0.1), and the selection start time was
chosen uniformly from (0.001, 0.01), in coalescent units.

• Class 2: balancing selection. The selection coefficient and selection start time were
chosen in the same fashion as Class 1.

• Class 3: positive selection on standing variation (i.e. soft sweep). The selection
coefficient and selection start time were chosen as before, but now the frequency of the
selected allele was uniformly chosen from (5×10−5, 5×10−4). This follows Garud et al.
[29], who found that there was low power to detect selection from standing variation
with initial frequencies beyond 10−3.

Using this strategy, we simulated 1000 different demographic histories, with 150 regions
for each one, for a total of 150,000 datasets. To build 150 regions for each demography, we
simulated 30 datasets for each of the classes 1-3, and 60 neutral datasets. We masked some
of the bases for the simulated data to make it as similar as possible to the real dataset.

4.4.2 Transforming input data into summary statistics

Unlike the image data example, unfortunately we cannot plug the raw genomic data into a
deep learning method. Like ABC, we need to transform the data into summary statistics
that are potentially informative about the parameters of interest. Unlike ABC however, deep
learning should not be negatively affected by correlated or uninformative summary statistics.
So we sought to include any and all summary statistics of the data. The statistics we used
are shown below, and the regions described afterwards:

1. Unfolded site frequency spectrum (SFS) for the sites where we had ancestral allele
information [10] and known allele information at at least 18/22 individuals (across the
entire region): 17 statistics.

2. Folded SFS for the sites where we did not have ancestral allele information, but still
known allele information at 18/22 individuals (for each of three regions): 9 · 3 = 27
statistics.
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selected site 

region 1: within 10kb 

region 3: 30-50kb 

region 2: 10-30kb 

Figure 4.8: Regions used for computing the statistics, which are based off of [93].

3. Length distribution between segregating sites (for each of three regions): 16 · 3 = 48
statistics.

4. Identity-by-state (IBS) tract length distribution (for each of three regions): 25 · 3 = 75
statistics.

5. Linkage disequilibrium distribution between sites near the selected sites and region
sites (for each of three regions): 16 · 3 = 48 statistics.

6. H1, H12, and H2 statistics, as described in [29]. These statistics help to distinguish
between hard and soft sweeps: 3 statistics.

This gives us a total of 218 statistics. For statistic types 2-5, the regions we used were: close
to the selected site (within 10kb on either side), mid-range from the selected site (within
10kb - 30kb on either side), and far from the selected site (from 30kb to 50kb on either side).
These regions are based off of the simulation scenario in [93], and shown more explicitly in
Figure 4.8.

4.4.3 Deep learning model

To modify our deep learning method to accommodate this type of inference problem, during
training we have an outer-loop that changes the demography as necessary, and an inner
loop that accounts for differences in selection for each region. During testing, we estimate
demography and selection for each region separately, then average the demographies to get
one global estimate for each genome. One final complication is that we estimate continuous
parameters for the population sizes, but consider selection to be a discrete parameter. This
involves a linear activation function for the population sizes and a softmax classifier for the
selection parameter. A diagram of our deep learning method is shown in Figure 4.9.
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Figure 4.9: Our deep learning framework for effective population size changes and selection.

4.5 Results

4.5.1 Results for demography only

One of the first things we tested was the impact of unsupervised pre-training using autoen-
coders. Figure 4.10 shows that the pre-training is very effective. Initializing the weights of
the entire network randomly, then trying to finding a global minimum for the cost function is
ineffective. In this scenario we simulated data with variable demography only, no selection.

We also tested the impact on ABC of adding more summary statistics. For this we used
ABCtoolbox [115], using the same numbers of training and testing datasets as we used for
deep learning. Although ideally adding more summary statistics should reduce the estimation
error, adding summary statistics to ABC often increases the error. This is typically because
uninformative summary statistics can bias the distance metric (i.e. increase the distance)
between two datasets with similar parameters. In Figure 4.11, we can see that the absolute
squared error increases for population sizes 1 and 3 when we add more statistics.

Then we compared deep learning to ABC, using 5,000 datasets, with 90% for training
and 10% for testing. The results are shown in Figure 4.12, and we can see that deep learning
significantly outperforms ABCtoolbox in this scenario.

We also wanted to investigate which statistics were the most informative. There could
be many ways of interpreting informative statistics from the weights learned by the deep
learning training procedure. We first compute the sum of all the weights on all the paths
between the summary statistics and the parameters. Then we select the statistics that
correspond to the paths with the highest weights. In Figure 4.13, we plot the values of the
statistics for a particular dataset, then highlight in green the statistics that were determined
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Figure 4.10: Absolute squared error (y-axis) on the test dataset, for a deep network with 6
hidden layers. The impact of unsupervised pre-training is clear. Initializing all the weights
of the full network randomly produces the dark blue errors, whereas initializing the weights
using an autoencoder produces the light blue errors. This scenario is for demography only.
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This scenario is for demography only.
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Figure 4.12: A comparison between ABCtoolbox and deep learning for a demography only
scenario. With 8 hidden layers and 5,000 simulated datasets (90% training data and 10%
test data), deep learning outperforms ABCtoolbox, as measured by the absolute squared
error (y-axis).

to be most informative using this procedure.
One hyper-parameter that should be investigated more closely is λ, the weight decay

parameter. If λ is set to be too high, large weights will be penalized too much, and interesting
features of the data cannot be learned well. But if λ is set too low, the weights tend to display
runaway behavior. Due to this balance, a validation procedure is typically used to find the
right λ. In our case, the additional runtime of simulating more data and performing more
training would be too computationally expensive, but we do provide a small validation study
in Figure 4.14.

4.5.2 Results for demography and selection

Moving to the demography and selection scenario, we used the dataset and summary statis-
tics described in Sections 4.4.1 and 4.4.2, with 150,000 datasets. We used 700 demographies
for training and 300 for testing. In Figure 4.15, we show the result for a network with 3
hidden layers of sizes 25,25,10. Encouragingly, the best performance was found when we
collected the regions classifies as neutral (not the true neutral regions), and then used these
for demographic inference.

To analyze the selection results, we calculated a confusion matrix in Table 4.2 to show
which datasets of each class were classified correctly, or classified as belonging to a different
class. Our most frequent errors were classifying datasets under selection as neutral (first
column of the matrix). This could be because the selection occurred anciently and quickly,
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Figure 4.13: One of the advantages of deep learning is that the learned weights of the network
can be used to find the most informative summary statistics for the parameters of interest.
Here is a bar chart of the values of the summary statistics for a particular dataset, with the
most informative statistics highlighted in green. The tails of the distributions generally seem
to be the most informative. This scenario is for demography only.
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Figure 4.14: Validation procedure for a network with two hidden layers of size 8 and 4. The
x-axis shows increasing values of λ, and the y-axis shows the error on the validation dataset.
The curve shows a characteristic shape with low and high λ producing poorer results than an
intermediate value. For these hidden layers sizes and this dataset, λ̂ = 0.0001 was optimal.
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Figure 4.15: Here are population size results for the scenario with demography and selection.
We evaluate the results in three ways. First, for each test demography, we average all the
statistics together, and then run these values through the training network. Second, for
each test demography, we run the datasets through the network one by one, then average
the predictions. Finally, we perform the second procedure, but with only the regions we
classified as neutral. This final method achieves the optimal performance. We note that the
most ancient size (N3) is always the most accurately estimated.

so at the present time the selected site looks like any other fixed site in the genome. This
type of false negative error is preferable to finding many regions under selection that are
truly neutral.

We then ran the real Drosophila data through this trained network just like any other
test dataset. For the demography, the bottleneck results are shown in Table 4.3. The last
row (neutral regions) is our best estimate. We can see that using all the regions tends to
downwardly bias the sizes, which makes sense given that selection often reduces diversity.

Finally, our estimates for the number of regions under different types of selection are
shown in Table 4.4.

In terms of runtime, the vast majority is spent simulating the data. During training,
most of the runtime is spend fine-tuning the deep network, which requires computing the
cost function and derivatives many times. To speed up this computation, our deep learning
implementation is parallelized across datasets, since each dataset adds to the cost function
independently. This significantly improved the training time for deep learning, which can be
run overnight on this dataset with a modest number of hidden layers. Once the training is
completed, an arbitrary number of datasets can be tested more or less instantaneously. In
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fraction predicted for each class
neutral 0.9399 0.0122 0.0066 0.0412

hard sweep 0.1863 0.7391 0.0184 0.0561
balancing selection 0.1170 0.0166 0.8268 0.0394

soft sweep 0.1232 0.0926 0.0306 0.7534

Table 4.2: Confusion matrix for the selection predictions, in the demography and selection
scenario. Each row represents the datasets that truly belong to each selection class. Each
column represents the datasets that were actually classified as each selection class. So ideally
we would like all 1’s down the diagonal, and 0’s in the off-diagonal entries. We can see that
neutral datasets are the easiest to classify, and often regions under selection look neutral as
well (first column). The overall percentage of misclassified datasets was 16%.

prediction N1 (recent) N2 (bottleneck) N3 (ancestral)
Duchen et al. [21] 5,224,100 620 4,975,360
Average statistics 524,587 40,616 243,761
Average predictions 803,505 46,795 240,955
Neutral regions 836,781 48,144 261,052

Table 4.3: Population size results for African Drosophila. The last row (predictions based
on the regions we classified as neutral) represents our best estimate of the population sizes.

selection class neutral hard sweep balancing selection soft sweep
number of regions 3236 34 544 603

Table 4.4: Selection results for African Drosophila. We find many regions under balancing
selection and selection from standing variation. We find relatively few hard sweeps.

contrast, each of the “training” datasets for ABC must be examined for each test dataset.
This takes several days for a dataset of this size, although it could be parallelized across the
test datasets.

4.6 Discussion

Using deep learning for population genetics is still in its infancy, and there are many di-
rections of future work. Deep learning provides a way to distinguish informative summary
statistics from informative ones. Exactly how to define informative is an open question, but
learning more about how statistics relate to parameters could be very useful for population
genetics going forward.
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The prospect of using deep learning to classify regions as neutral or selected is very
appealing for subsequent demographic inference. There are other machine learning methods
that perform such classification, but they are generally limited to two classes (selected or
neutral). Such methods are often based on SVMs, which have been shown to be less robust
than deep learning.

We would also like to apply deep learning to a wider variety of scenarios in populations
genetics. Population structure and splits would be an example, although this would most
likely require a different set of summary statistics. We could use statistics based on PSMC,
or rare variant statistics such as f2, as described in [73].

Finally, machine learning methods have been criticized for their “black-box” nature. In
some sense they throw away a lot of the coalescent modeling that we know to be realistic,
although this is included somewhat in the expert summary statistics of the data. It would
be advantageous to somehow combine the strengths of coalescent theory and the strengths
of machine learning to create a robust method for population genetic inference. At the
same time, it is appealing from a computer science perspective to have the method learn
everything by itself. It should be possible to plug raw genetic data into a machine learning
method like is usually done for image data. It would be fascinating to see if a machine
learning method could automatically learn informative summary statistics such as the site
frequency spectrum. These somewhat orthogonal deep learning goals could potentially both
yield interesting theoretical and practical results.
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Chapter 5

Conclusions

In this thesis, we have described two new methods for performing population genetic infer-
ence on modern sequencing data. The first algorithm, diCal, estimates a piecewise-constant
effective population size history for a single population. The main contribution of diCal
over previous methods is its ability to handle an arbitrary number of genomes in a coales-
cent HMM framework. However, even though diCal is theoretically scalable, the original
version is still computationally intensive, both in terms of time and memory. diCal is par-
allelized, which can provide a significant decrease in the runtime, but increases the memory
requirement.

To improve the computational complexity of diCal, we also discuss an algorithm that
decreases the runtime from quadratic to linear in the number of time discretization intervals.
This algorithm is provided in the context of diCal, but is applicable to coalescent HMMs
more generally. It would be interesting to see this runtime improvement implemented in
other methods such as PSMC, CoalHMM, or MSMC. In addition, we provide a binning
algorithm that groups adjacent sites, which also improves diCal’s runtime. Unfortunately
the binning algorithm seems to negatively impact diCal’s performance in the recent past,
but future work on binning with multiple sequences will hopefully solve this issue. Further,
we describe an algorithm for using diCal to estimate local trees along the genome, which
can then be used to estimate the number of remaining lineages as a function of time. This
function can be used as an alternative method for estimating population sizes, or perhaps
other types of demographic events.

The choice of time discretization for diCal (or any other coalescent HMM) is delicate.
In this thesis we discuss an adaptive procedure for choosing the best discretization possible
within some constraints. A good discretization will be fine (as opposed to coarse) during
times of interesting demographic changes, but not so fine that a lack of coalescent events
causes runaway behavior. Improving and automating discretization choice is an interesting
and promising area of future work. Right now it is difficult to see how coalescent HMMs could
move away from a discrete state space (and thus often a piecewise-constant population size
history), but a continuous-time hidden state could potentially alleviate many of the issues
that arise with a discrete-time model. Additionally, as sample sizes increase, discrete-time
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models like the Wright-Fisher model could be used in a more explicit fashion for population
size inference.

The runtime of a coalescent HMM generally depends on three parameters: the sample
size n, the sequence length L, and the number of time discretization intervals d. When many
genomes are available, it requires very little user time to vary these parameters, and often
yields unexpected results. An important avenue of future work will be tuning n, L, and d to
improve inference in humans and other organisms.

The second algorithm presented in this thesis is a tailored deep learning method for
jointly inferring effective population size changes and natural selection. There has been little
previous work in this area, as likelihood-based methods would be extremely computationally
challenging for this problem. Machine learning methods have proven very effective at learning
arbitrary functions from input data to parameters of interest. One challenge when applying
deep learning to genomic data is that the raw data cannot be directly plugged into the
methods. Here we provide one strategy for decomposing raw sequence data into summary
statistics that can then be used for deep learning. A strength of our method is that it can
handle hundreds of summary statistics, even those that are strongly correlated or weakly
informative.

We apply this deep learning method to African Drosophila melanogaster data to infer
a bottleneck history while jointly classifying regions of the genome into different selection
classes. Each region can either be classified as neutral, a hard selective sweep, a soft se-
lective sweep, or balancing selection. Using continuous parameters combined with discrete
parameters is very unusual for either population genetics or deep learning, but provides us
with flexibility in our inference strategy.

Using machine learning for population genetics is a young area, with many directions
to explore. One interesting line of research will hopefully combine the biologically accurate
modeling of coalescent theory with machine learning methods. In a completely different
direction, it would also be interesting to explore using raw sequence data directly for machine
learning methods, bypassing the need for summary statistics. It is unclear which type of
method would achieve superior performance, but both directions will ideally help us better
understand how demographic events shape genetic data.
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Appendix A

diCal formulas and implementation
details

A.1 HMM formulas

The expression R(i, t; j, t′) in Equation 2.10 is defined as

R(i, t; j, t′) =


(
R(i)(t) +

∑i−1
k=0R

(k)
)
, if i < j,(

R(j)(t′) +
∑j−1

k=0R
(k)
)
, if i > j,(

R(i)(t ∧ t′) +
∑i−1

k=0 R
(k)
)
, if i = j,

where ∧ denotes the min operator and, for u ∈ [tk−1, tk),

R(k)(u) :=
ρbλk

n− ρbλk
(
e−ρbu+n(u−tk−1)/λk − e−ρbtk−1

) k−1∏
m=1

en(tm−tm−1)/λm ,

R(k) :=
ρbλk

n− ρbλk
(
e−ρbtk+n(tk−tk−1)/λk − e−ρbtk−1

) k−1∏
m=1

en(tm−tm−1)/λm .

After the state space has been discretized, we compute the transition probabilities using
y(i) (the probability no recombination occurs), and z(i,j) (the probability recombination does
occur):

y(i) =
1

ζ̂(λ)(Di, h)

∫ ti

ti−1

ζ(λ)(t, h)e−ρbtdt

=
1

w(i)

n

n+ ρbλi

i−1∏
k=1

e−n(tk−tk−1)/λk
(
e−ρbti−1 − e−ρbti−n(ti−ti−1)/λi

)
and
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z(i,j) =
n

w(i)nh`−1

∫ tj

tj−1

∫ ti

ti−1

∫ t`−1∧t`

0

ρbe
−ρbtr ζ(λ)(t`, h`)∫∞

tr
ζ(λ)(τ)dτ

ζ(λ)(t`−1, h`−1)dtrdt`−1dt`

:= Z(i,j) + w(j)

i∧j−1∑
k=1

R(k),

where Z(i,j) corresponds to the case when the recombination event occurs during the time
interval Di∧j (i.e. the latest it could) and R(k) corresponds to a recombination event in the
time interval Dk. R

(k) is defined as before, and Z(i,j) is

Z(i,j) =
n

w(i)nh`−1

∫ tj

tj−1

∫ ti

ti−1

∫ t`−1∧t`

t(i∧j)−1

ρbe
−ρbtr ζ(λ)(t`, h`)∫∞

tr
ζ(λ)(τ)dτ

ζ(λ)(t`−1, h`−1)dtrdt`−1dt`.

To evaluate Z(i,j), we must separate the computation into the cases i < j, i > j, and i = j,

Z(i,j) =



w(j)

w(i)
f (i), if i < j

f (j), if i > j

1
w(i)

(
ρbλi

n+ρbλi
e−ρbti−1 − 2e−n(ti−ti−1)/λi−ρbti−1 − ρbλi

n−λiρb
e−ρbti−1−2n(ti−ti−1)/λi

+ 2n2

(n−λiρb)(n+λiρb)
e−ρbti−n(ti−ti−1)/λi)

)∏i−1
m=1 e

−n(tm−tm−1)/λm , if i = j,

where we define

f (i) := e−ρbti−1 +
λiρb

n− λiρb
e−n(ti−ti−1)/λi−ρbti−1 − n

n− λiρb
e−ρbti .

To compute the emission probabilities we define v(i)(k) below:

v(i)(k) :=
n(θ`)

k

λiw(i)k!
enti−1/λi

i−1∏
j=1

e−n(tj−tj−1)/λj

k∑
j=0

c
−(j+1)
i

k!

(k − j)!
[
e−citi−1tk−ji−1 − e−cititk−ji

]
,

where
ci := θ` +

n

λi
.
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A.2 Computing the expected transition counts during

the E-step

Naively, if we compute the expected number of transitions from state s`−1 = (Di, h`−1) to
state s` = (Dj, h`), then marginalize over the haplotypes, we obtain an O(n2) algorithm. To
improve the runtime, we can decompose the probability a transition is used between locus
` − 1 and ` into a part that depends on the absorption haplotype and a part that depends
on the absorption time interval, and thus we can reduce the run time to O(n). First we
compute the posterior probability A(`)(s`−1, s`) that a particular transition is used between
locus ` − 1 to `, in terms of the discretized forward and backward probabilities F`(·) and
B`(·). Let the newly sampled haplotype have allele a at locus `, so α[`] = a. Then

A(`)(s`−1, s`) =
1

π̂(α)
· F`−1(s`−1) · φ̂(λ)(s`|s`−1) · ξ̂(λ)(a|s`) ·B`(s`).

Now we marginalize over the haplotypes, plugging in the transition density formula∑
h`−1

∑
h`

A(`)(s`−1, s`) =
1

π̂(α)

∑
h`−1

∑
h`

F`−1(s`−1) · φ̂(λ)(s`|s`−1) · ξ̂(λ)(a|s`) ·B`(s`)

A(`)(Di, Dj) =
1

π̂(α)

∑
h`−1

∑
h`

F`−1(s`−1) · ξ̂(λ)(a|s`) ·B`(s`)
(
y(i)δs`−1,s` + z(i,j)nh`

n

)
=

1

π̂(α)

[
δi,jy

(i)

(∑
h

F`−1(Di, h)ξ̂(λ)(a|Di, h)B`(Di, h)

)

+z(i,j)

∑
h`−1

F`−1(s`−1)

(∑
h`

nh`
n
ξ̂(λ)(a|s`)B`(s`)

)
which is linear in n since we are only ever summing over one haplotype. To get the expected
transition counts, we then sum over all the breakpoints, so Aij =

∑L
`=2 A

(`)(Di, Dj).

A.3 Discretizing time

With an ideal time discretization, coalescence events would be uniformly distributed across
intervals, but inferring the distribution of coalescence times is equivalent to the problem
of population size estimation. Our heuristic discretization procedure seeks to avoid poor
discretization by using the observed spacing of SNPs in the data. Let T be the empiri-
cal distribution of absorption times for all the contiguous segments inferred by a posterior
decoding of our dataset. Then, for a discretization with d intervals, our goal is to com-
pute t1, · · · , td−1 such that we see the same number (i.e., |T |/d) of absorption times in each
interval.
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We first tackle the problem of breaking up our data into segments with the same pairwise
coalescence time, then compute the expectation of this time. The locations of ancestral
recombination breakpoints divide up a sequence pair into segments that each have a single
coalescence time, but we do not know these breakpoints. However, it will often be the case
that all the base pairs between two adjacent SNPs will coalesce at the same time, or be split
between just two different times on either side of a recombination breakpoint. Moreover,
in many cases, the positional distribution of SNPs and that of recombination breakpoints
will be correlated — in particular, both SNPs and recombination breakpoints will be spaced
farthest apart in regions of recent coalescence time. With this rationale, we take the observed
distances between SNPs as a proxy for the length distribution of nonrecombining segments.
To be more specific, let L be the list of all lengths between adjacent SNPs for all pairs of
haplotypes, and let the d empirical quantiles of L be bounded by L1, · · · , Ld−1.

Now we need the expected coalescence time of an l-base segment with no mutation or re-
combination. Conditional on m mutation events and r recombination events, the coalescence
time for two lineages under a constant population size is distributed as Γ(1+m+r, 1+lθ+lρ)
(see for a derivation with mutation only), so the expected coalescence time for m = r = 0 is

1

1 + l(θ + ρ)
.

In our implementation, we drop the 1 in the denominator since this represents our prior
under constant population sizes of two lineages coalescing at rate 1. We want to minimize
the use of our prior, so we put more weight on the term related to the empirical length
distribution. Putting this all together, we plug in the quantiles of L into this formula to
obtain ti:

ti =
1

Ld−i(θ + ρ)
.

If an approximate time range of interest is known (for example, in humans we might be
interested in the last million years), then the user can specify an end-time Tmax. Then all
times are scaled by Tmax/td−1.

A.4 Simulation details

The following ms commands were used to simulate data under three population size change
histories.

S1: ms 10 1 -T -r 10000 1000000 -eN 0.05 0.1 -eN 0.2 0.5 -eN 0.5 1.25

S2: ms 10 1 -T -r 10000 1000000 -eN 0 10 -eN 0.05 0.1 -eN 0.2 0.5 -eN 0.5 1.25

S3: ms 10 1 -T -r 10000 1000000 -eN 0 0.75

Note that ms times are in units of 4Nref generations, so we multiplied the raw times above by
2 to compare to PSMC and diCal. Mutation rates were not specified above, since the only
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base A C G T
A 0.503 0.082 0.315 0.100
C 0.186 0.002 0.158 0.655
G 0.654 0.158 0 0.189
T 0.097 0.303 0.085 0.515

Table A.1: Mutation matrix for realistic human data. The rows represent the original base,
and the columns represent the mutated base.

ms output used was tree at each base (-T flag). Mutations were then added to the trees using
a finite sites model, the mutation matrix in Table A.1, and a mutation rate θ = 0.01×1.443.
The factor of 1.443 accounts for the fact that this mutation matrix allows mutations that
do not actually change the base (i.e., an A → A transition); see [10] for further explanation.
This mutation matrix was also used for the real data analysis.

The following style of command was used to run PSMC. We used 20 iterations as de-
scribed in the PSMC paper, and the same pattern of parameters we used for our SMCSD.

psmc -p 3+2+2+2+2+2+3 -t 7 -N 20 -r 1 -o output.psmc input.psmcfa

To run our method, the following style of command was used.

java -jar diCal.jar -i input.fasta -p params.txt -n 9 -t 5 -a "3 2 2 2 2 2 3"

The parameter file includes the number of loci in each sequence, the number of alleles (4 in
our case), an estimate of the mutation rate, mutation matrix, and recombination rate, and
the discretization. The -n flag specifies the number of haplotypes to use in the trunk, so there
are n + 1 total. The -t flag specifies the number of threads to use; memory requirements
scale linearly with this parameter. If -t 1 was specified in the case, then -Xmx5G could be
used for the memory requirement. The -a flag specifies the pattern of parameters, in an
analogous fashion to PSMC. Note that these parameters have changed in the latest version
of diCal available online.

A.5 Comparing diCal to PSMC

Although diCal and PSMC are both implementations of the sequentially Markov coalescent
in a discrete-time framework, they have significant differences that must be considered when
comparing results from the two programs. One difference is that PSMC scales all population
sizes with respect to an inferred parameter θpsmc = 4Npsmcµ. In contrast, diCal scales
population sizes with respect to a fixed input θsmcsd = 4Nsmcsdµ. Neither θ is right or wrong,
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they are just scaled with respect to a different Nref. If we arbitrarily set Nsmcsd = 1, then

Npsmc = θpsmc/θsmcsd

Thus when analyzing the results, we multiplied the PSMC sizes and times by Npsmc. We
also multiplied the ms times by 2, since they are in units of 4Nref generations.

To compare the performance of the two programs fairly, we gave both PSMC and diCal
the same amount of data. Specifically, we compared the performance of diCal with a n-
sequence leave-one-out scheme to the performance of PSMC with the same n sequences, but
paired up sequentially (i.e. sequence 1 with 2, sequence 3 with 4, etc).


