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Abstract

With the popularity of MOOCs and other online learning platforms such
as Khan Academy, the role of online education has continued to increase
in relation to that of traditional on-campus instruction. At the same time,
the need for analytical methods suited for the uniquely large and diverse
populations that they serve has grown apace. In particular, as instructors and
creators of online educational content grapple with these complex issues, the
imperfect transfer of traditional informal, frequently affect-oriented methods
of content iteration becomes clear. The need for additional quantitative tools
for evaluating course content, taken alongside the opportunity presented by
the scope and size of the data associated with such large enrollment courses,
poses an interesting problem for analysis.

Rather than tackle the problem of evaluating large educational units such
as entire online courses, our work approaches a smaller problem: exploring a
framework for evaluating more granular educational units, in this case, short
educational videos. We have chosen to leverage an adaptation of traditional
Bayesian Knowledge Tracing (BKT), intended to evaluate the usage of video
content in addition to assessment activity. By exploring the change in per-
formance when alternately including or omitting video activity, we suggest a
metric for determining the relevance of videos to associated assessments.

This sort of evaluation is important for many reasons: struggling students
can be pointed toward maximally efficacious resources, instructors can iden-
tify materials which may need adjustment, and courses as a whole can be
better tuned to producing successful student outcomes. In order to provide
an intuitive grounding for the validity of our results, we examine in detail the
properties of videos that perform particularly well and those that do poorly,
offering several case studies of the various data-sets included in this analysis.
By proposing and demonstrating a new analytical approach to evaluating
course content, we aim to move the promises offered by educational big data
one step closer to practicable reality.
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1 Introduction

Along with the advent of MOOCs and other online learning platforms such as
Khan Academy, the role of online education has continued to grow in relation
to that of traditional on-campus learning [2]. As the number of online learn-
ers increases, so too does the importance of verifiably sound online pedagogy
increase apace. Many of the lessons learned through a long history of re-
search on the traditional classroom are applicable to the online environment;
however, many of the indicators available to an instructor teaching classes to
co-located students are not present for an instructor or a designer of online
material. Teachers and designers are often unable to directly consult with
students on what works and what does not, and lack, among other things, the
affective in-class feedback that can often make such things apparent. This
can be both a help and a hindrance; while the lack of affective feedback does
hinder traditional techniques, research has shown that qualitative feedback
collected from students doesn’t always correlate well with learning outcomes
[17].

Nonetheless, one part of the process of educational design that has been
made particularly difficult by the move to a massive online format is the
creation and curation of useful course resources. The design of curricular
materials has been described as a process of iterative refinement [15] and, as
with any design process, in order to refine curricular materials there must be
metrics by which to evaluate them. Unfortunately, many of the strategies
which have long been effective in the refinement of on-campus and in-person
courses are less tractable in online environments. Because of a lack of af-
fective information and severely differentiated levels of student knowledge
and participation, many challenges which are less pronounced in traditional
settings come to the fore when courses move to a massive, online format.

Research on how best to evaluate and improve online education is not
new [1, 28] but there remain many distinct approaches to accomplishing this
goal [18]. While the problems facing designers of instructional material in-
tended for massive audiences are multifarious, the quantitative evaluation of
course materials remains a particularly difficult, and as yet unsolved, prob-
lem. Though many data-driven metrics for examining assessments are avail-
able, there has been relatively little focus placed on assessing the course ma-
terials which aim to help students complete those assessments. This sort of
evaluation is important for many reasons; struggling students can be pointed
toward maximally efficacious resources, instructors can identify materials
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which may need adjustment or removal, and courses as a whole can be bet-
ter tuned to producing successful student outcomes.

Compounding the problem, simple analysis can often yield discouraging
results. In many instances, usage of course resources can negatively correlate
with assessment performance. It may be that this is reflective of reality;
perhaps it is the case that particular course materials contribute to incorrect
mental models, perhaps due to poor scaffolding, instructor error, or some
other cause. But discounting this rather grim possibility, it seems more likely
that there are a number of confounds which serve to obstruct simple analysis.
Whether due to a diversity in student backgrounds, differentiated patterns
of interaction with instructional materials, use of external resources, or some
combination of these and other causes, it seems intuitive that accounting for
such differences may improve our grasp of resource quality. Our proposed
method accounts both for student growth over time, and the possibility of
interventionary effects for students who first struggle, then succeed at certain
problems. In so doing, We hypothesize that we might both be better able
to predict future student performance, and as a result, measure resource
efficacy.

In order to model student interactions with educational material and
improvement over time, we have chosen to use an adaptation of Bayesian
Knowledge Tracing (BKT), a technique developed and used in conjunction
with Intelligent Tutoring Systems (ITS) but which has been applied outside of
that domain as well (e.g. [19]). Here we seek to incorporate video observation,
which lies outside of the sort of student behavior, namely assessment activity,
that is typically considered in BKT models. We contrast this extended model
with a simpler one excluding resource usage in order to discover whether
videos contribute to model accuracy, and if some models benefit more than
others.

Our ultimate goal in so doing is not to achieve high accuracy for the pur-
poses of ITS-like prediction of students’ latent knowledge. Rather, we intend
to provide a quantitative framework to aid instructors in the evaluation of
video resources.

We set out first to prove that there is a statistically significant improve-
ment in performance when incorporating video resources into BKT analysis,
in order to validate the inclusion of such observations. This step is a nec-
essary one to validate any conclusions drawn from our analysis, in order to
demonstrate that we are doing more than observing random noise. Second,
we discuss a metric based on both the delta in predictive error when using
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and eschewing video data, as well as the rate of learning associated with a
particular video. To this end, we examine the application of our method
across three sets of data, taken from Khan academy and edX, looking closer
at models which perform particularly well and those which do poorly. By
so doing, we hope to understand what qualities lend themselves to high per-
formance, and reason about why certain videos are poorly associated with
later assessments. Finally, we suggest a number of potential applications
of such a metric, from student-facing recommender systems to instructor-
oriented tools for improving course content, along with several algorithmic
refinements that might further increase the power of our analytic approach.

2 Related Work

We are, of course, building upon a large quantity of work which has already
been done, in the study of both Bayesian Knowledge Tracing and Com-
puter Assisted Instruction, as well as in general instructional design. By
understanding the theory and practice which underlie both of these larger
concepts, we can better situate our work in the larger scheme of research.

2.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) is used extensively in computer-assisted
instruction environments, intended to approximate the effects of one-on-one
mastery learning in environments where such instruction is not economically
feasible [7]. Originally designed for use with the ACT Programming Tutor, it
has since emerged as a popular tool in the research and practice of intelligent
tutoring system design.

2.1.1 Theoretical Foundation

The model’s theoretical underpinnings are borrowed from the conceptual
framework provided by cognitive theorists for understanding the way students
learn. According to basic cognitive theory, introduced by Jean Piaget in the
early twentieth century, and studied actively over the decades which followed,
a child is born with a basic mental structure, the basic components of which
are used to construct iteratively more complex models as the child learns[5].

Under the tenets of this theory of learning, all concepts mastered by a
learner are assembled, or constructed, out of components already mastered
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by the student. Implicitly, this gives knowledge a hierarchical structure; all
knowledge is built from a series of prerequisite components which must be
mastered before the learner can understand more advanced concepts. For
instance, a cognitive theorist might hold that a student must master and un-
derstand addition before meaningful mastery of multiplication can be made
possible. Each newly acquired concept is integrated, or assimilated, into a
learner’s mental framework, and can be used as a component in formulating
an understanding of more complex topics.

The idea of mastery learning was essential in the work of Bloom et. al
[4], who hypothesized that significant improvements in student performance
could be observed if students could be brought to mastery of each concept
they encountered before they moved onto the next. In a landmark study
published in 1984, Bloom observed that the average student who was indi-
vidually tutored to mastery in a number of successive concepts saw a perfor-
mance increase of two standard deviations compared to peers who covered
the material in the traditional fashion. This effect manifested not only in
academic performance, but also in students’ academic confidence and self-
concept. Bloom claimed that the success of the intervention was due to two
related factors: first, the students were treated individually in one-on-one
environments with tutors; second, the students were brought to mastery (as
determined by the tutor) of each subject before moving on to the next.

The so-called “Two Sigma Problem” posed by Bloom and researched ac-
tively in the decades following the publication of the study, is the search
for methods of group instruction as effective as one-on-one mastery learn-
ing. Though subsequent studies on mastery learning have shown effect sizes
smaller than those demonstrated by Bloom, the results have nonetheless over-
whelmingly shown associated increases in academic performance. Bayesian
Knowledge tracing, and the ACT-R tutor for which it was proposed as a
component, are part of one attempt at replicating the two sigma effect. By
leveraging the scalability of automatic tools for student instruction, Corbett
and Anderson hoped to be able to provide a feasible mechanism for individ-
ualizing and automating mastery learning.

The essential pieces of the cognitive understanding of knowledge acquisi-
tion for the purposes of BKT are the existence of discrete knowledge compo-
nents (KCs), as well as the concept of subject ’mastery’. More specifically,
BKT is a means of predicting when a student has acquired a knowledge com-
ponent associated with a set of assessment items, typically to ensure that a
student has attained mastery before moving on to the next subject. Several

6



simplifying assumptions are usually made in order to facilitate the formula-
tion of this model. First, subject mastery is modeled as a binary state: a
student has either mastered a KC or has yet to grasp it. Second, this mastery,
being itself unobservable, is assumed to be reflected in observed responses to
assessment items concerning that KC. In order to account for the presence
of lucky guesses or silly mistakes, the model conditions the probability of a
correct response on the possibility of observing such ’noise.’

2.1.2 Knowledge Components

Though BKT provides a convenient framework for modeling the acquisition
of skills over time, it does not provide a means of discovering exactly what
knowledge components comprise a subject or set of subjects. Instead, it
requires a manually-defined set of knowledge components to have been pre-
determined for use with the model.

The problem of defining knowledge components is more general than its
application within Bayesian Knowledge Tracing. Sometimes referred to as
‘Knowledge Structures,’ or ‘Knowledge, Skills, and Attitudes’ [12] the con-
cept of a set of discrete components which comprise a more complex subject
or field has been a subject of active research for a number of years. Though
there is not yet consensus on best practices for defining knowledge spaces,
several approaches to discovering these structures have been described.

One relatively straightforward approach, and perhaps the most often uti-
lized, is to defer the task of building a knowledge structure to domain experts.
Typically drawing on a small pool of experts in order to establish consis-
tency and ensure validity, such expert-defined structures are often used as
first-pass attempts upon which further research can iterate. Additionally,
there are a number of heuristic approaches to transforming expert input into
well-defined knowledge structures. For example, Koppen and Doignon [11]
describe a method for building ’quasi orders,’ allowing a pool of experts to
define structures implicitly by asserting dependencies between assessment
items, rather than through explicit definition. Some critics of this process
have noted that incorrect assertions by experts about such dependencies, not
unlikely given the number of assertions that knowledge space construction
can involve, can drastically change inferred knowledge structures [26], with
deleterious implications for systems which utilize them.

Others approaches have considered the possibility of discovering knowl-
edge structures by analyzing large quantities of data. Van Leeuwe [31] devel-
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oped an algorithm referred to as classical Item Tree Analysis (ITA) in 1974,
used to assemble test items into a hierarchical structure based on student
response patterns. Schrepp [25] developed a similar method, inductive ITA,
for performing the same function, though through a different process. Both
methods, similarly to the methods of Koppen and Doignon describe above,
construct a quasi-order of test items, which is used to define a knowledge
structure underlying an assessment. Though not entirely robust to the ef-
fect of item difficulty, the concept that some assessments are more difficult
than others while testing the same material, such automated assessment can
give a reasonable, if not always intuitively interpretable, decomposition of
knowledge components.

Because the discovery and interpretation of knowledge structures is an
active subject of debate, some approaches to KC definition have been more
restricted in their scope. Though the hierarchical structure of knowledge
components is an essential part of the cognitive theory which underpins
Bayesian Knowledge Tracing, the prerequisite relationships between KCs are
not (necessarily) themselves part of the model. For the purposes of predictive
analysis across large data-sets with many student participants, it has been
shown to be sufficient to consider individual assessment items or groups of
the same as knowledge components, while remaining agnostic to the rela-
tionships between them. Pardos et al. [19] have explored the quantitative
differences in predictive accuracy and error when using different levels of
problem granularity as KCs for the purposes of applying BKT. Though such
approximations do not speak to an underlying structure in the content, it has
been shown to be a reasonable approximation for the purposes of predicting
student response patterns.

2.1.3 The Bayesian Knowledge Tracing Model

Ultimately, the BKT model can be represented as a Bayesian network, with
observed nodes representing responses to assessment items, and unobserved
nodes representing the student’s internal mastery of that concept at a given
time.

The model in its most basic form is defined by four parameters: P (L0), the
prior probability that a student has mastered a KC; P (S), the probability
a student who knows a concept will get an associated question wrong, or
’slip’; P (G), the probability that a student who does not know a concept will
correctly ’guess’ the correct answer; and P (T ) the probability that a student
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Figure 1: Bayesian Knowledge Tracing Model

who does not know a particular KC will learn it after a given observation.
The chance of a correct answer at a given point in time can be described

simply as

P (correct) = P (Ln) ⇤ (1� P (S)) + (1� P (Ln)) ⇤ P (G))

where n represents the nth observation related to a particular knowledge
component. Put simply, this equation represents the chance that the student
either knew the answer and did not make a mistake (slip), or that they did
not know the answer, but happened to guess correctly.

The process of inferring KC mastery based on observation is simply an
application of the more general Bayes’ theorem, which holds that, for some
event A and some event B,

P (A|B) =
P (B|A)P (A)

P (B)

In our case, we are measuring the probability of KC mastery, given the
observed correctness of a student response. That is, P (Ln) is calculated in an
iterative process using Bayes’ theorem, as follows. First, a Posterior(Ln�1)
is calculated as the result of

P (Ln�1) ⇤ (1� P (S))

P (Ln�1) ⇤ (1� P (S)) + (1� P (Ln�1)) ⇤ P (G)

if the observation was a correct problem attempt, or

P (Ln�1) ⇤ P (S)

P (Ln�1) ⇤ P (S) + (1� P (Ln�1)) ⇤ (1� P (G))
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if the observation was incorrect. Finally, after each observation, the prob-
ability of having learned the KC after a particular observation, P (T ), is
incorporated into the model as

P (Ln) = Posterior(Ln�1) + (1� Posterior(Ln�1)) ⇤ P (T )

We chose to use BKT as a modeling framework as it is well-studied and
has relatively well-understood properties, in addition to possessing parame-
ters (guess, slip) which are intuitively interpretable and therefore potentially
actionable. Additional work has been done to extend this basic model of BKT
to incorporate individualized parameters, based on factors depending both
upon individual student properties [20, 8], as well as properties of particular
assessment items within a knowledge component [21].

Most typically, BKT is used in intelligent tutoring systems designed to
track students as they work through a series of questions, which explains the
reliance of the model on assessment-response observations. Much effort has
been made to improve the performance of these systems, as well as to test the
reliability of its application outside of traditional environments, but most fo-
cus remains on tracking students as they complete assessments. By using the
predictions of student knowledge obtained through the BKT model, tutoring
systems are able to optimize student activities to ensure an approximation
of mastery learning, while not wasting time on redundant problem-solving.

2.2 Instructional Design in Online Education

An essential part of developing curricular materials for use in any educational
context is a framework for reasoning about and judging the efficacy of cur-
ricular components. While broad pedagogical techniques are often developed
and used based on a theoretical understanding of the process of learning or
the nature of knowledge, the practical reality of employing these strategies
often involves multiple iterations of curricular content. While the thrust of a
pedagogical strategy may or may not differ between each iteration, the indi-
vidual components of these curricula are frequently subject to change based
on a number of different strategies, some formal and some informal.

2.2.1 Curriculum Evaluation

Though it is subject to a number of different constraints than courses de-
veloped and offered online, it will be useful to first understand the process
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by which course materials are iterated upon in the traditional classroom. As
Linn notes in [15], studies of learning in laboratory settings in the tradition of
cognitive psychology can only be taken as partially informative as to the use
of curricular interventions in real world classrooms. Quite a bit of recent re-
search on curricular improvement has turned toward the use of design-based
studies, employing and detailing a process of progressive refinement [6] as
researchers encounter and account for emergent or unanticipated features
of real-world usage. Several other researchers, toward the goal of effective
course iteration, have described a number of different features which can be
used to evaluate curricular components [23, 24, 27, 3, 6].

Common to many of these studies is a particular focus on adapting cur-
ricular intervention to the practiced reality of students in the classroom.
Though specific methods differ, by observing students’ interactions with one
another and with educational materials, researchers are able to qualitatively
identify and rectify problems with course content. In particular, researchers
often watch students for affective details which might indicate a lack of en-
gagement with material, as well as employ think aloud processes that allow
insight into the ways in which students are forming mental models about
relevant subject matter. Further, efforts are made to ground curricular ma-
terial in the cultural realities of the communities in which they are employed,
embracing the heterogeneity of the student population.

Of course, in both design-based research and more traditional laboratory-
based studies, quantitative statistics reflecting student performance are used
in roles of greater or lesser importance. However, these results are some-
times reflective of the purported effects of interventions as a whole unit,
rather than of the utility of individual curricular components. While nomo-
thetic considerations are important, particularly when trying to argue for the
generalizability of results, it is very often the idiographic components of the
classroom that are considered while iterating on curricular materials.

2.2.2 Developing Online Curriculum

This process of iteration can be challenging when grappling with the different
sources of information available in online environments. Unlike traditional
classrooms, where affective observation and culturally-relevant adaptation
are a regular part of teaching practice, the anonymity and scale of online
education can make such considerations difficult or impossible.

There has been a fair amount of research devoted to studying, both
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qualitatively and quantitatively, the efficacy of videos, forums, and other
study aids offered in online educational contexts. Past work has typically
focused on issues such as student attrition, student interaction, and building
student-facing recommender systems to foreground relevant course content
to students enrolled in the course. For example, Yang et al. described a
framework for helping students sift through the the large volume of forum
discussion posts in order to find content relevant to them [33]. Similar efforts
have been made to provide student-facing recommendations for more gen-
eral content, using methods such as social media analysis and reinforcement
learning [13, 22]. While useful, such efforts tend to focus on students as both
consumers and curators of information available in the courses, agnostic to
the quality of the content itself.

Relative to the research on student perception and experience in the
MOOC context, somewhat less has been paid to instructor experience in
constructing and maintaining online courses. That is not to say that such
work has been absent. Guo et al. [9] and Kim et al. [10] offer guidance for
the construction of videos used in MOOCs. Explorations of the application
of Item Response theory in a MOOC environment [16] similarly offer instruc-
tors guidance in evaluating the efficacy of their assessments using traditional
methods. Yousef et al. construct an inventory of features, pedagogical and
technological, which contribute to a sense of course quality [34], while others
have delved into sentiment analysis in MOOC forums [32]. There is, how-
ever, a relative paucity of research on the quantitative assessment of content
outside of the scope of assessment items. In the absence of such quantitative
information, instructors tend to look for traditional, affective feedback; prior
work, such as that by Stephens-Martinez [29] has suggested that instructors
frequently resort to observations of student forums and student surveys in
order to draw conclusions about the quality and efficacy of course content.

Arguably, given the fundamentally different constraints placed upon the
online and traditional environments, design considerations when develop-
ing online curricula should accordingly differ. While, for example, studies
of student affect in forum populations may be useful, differential levels of
participation in these social functions can make generalization difficult. Sim-
ilarly, students in the same massive courses may have vastly different levels
of ability or knowledge; making the process of designing appropriate assess-
ments very difficult. Indeed, it is unclear that it is even possible to support
all of these diverse students all of the time. Nonetheless, the development of
a framework for making quantitatively driven decisions about the efficacy of
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educational content used by many students, as reflected in student perfor-
mance, may be an essential step in developing a design process which takes
into account the affordances of online education.

3 Methods

In order to achieve our goal of incorporating video resources into traditional
BKT analysis, we must first accomplish several goals. Below, we describe
the processes we have designed for incorporating videos into the general BKT
model, discovering knowledge components in data not structured for use with
BKT, and constructing an evaluative metric to determing the relevance of
video content.

3.1 Incorporating Course Resources

Our interest in leveraging BKT to incorporate course resources stems from
two separate, though related, concerns. First, while BKT has traditionally
served as a strong predictive model when considered within the framework
of Intelligent Tutoring Systems (ITS), where student interaction is largely
limited to responding to assessment items, interactions with MOOCs can be
significantly more heterogeneous. Though strong predictions can nonetheless
be made by only considering student response information, such analysis ig-
nores a wealth of contextual information about student activity, from time
spent, to interactions with other students, to the consumption of course re-
sources. Though ideally, the BKT model might be adapted to consider much
of this information, we have chosen first to investigate the interaction of
course resources, in this case videos, with students’ knowledge states. We
hypothesize that the inclusion of such extra information in the BKT model
can be used to reduce its predictive error, resulting in a more broadly in-
formed and therefore more useful model. Further, by examining the proper-
ties of these more effective models, we will be able to discover the efficacy
of the videos used to inform them, allowing us a broader view than that of
traditional assessment-based BKT.

Second, one concern when reviewing and iterating upon course materi-
als is the evaluation of the utility of course resources. Though one concern
among many, it can be useful to understand how useful or unhelpful a partic-
ular piece of course content for students completing associated assessments.
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However, an interesting and somewhat paradoxical trend has emerged in
many sets of data obtained from massive offerings of online courses. That
is, when considering the relationship of the consumption of course resources
to success on subsequent assessments, a markedly negative trend is often
observed.

A naive reading of this trend might explain this relationship as a process
of negative learning; students come in with some notional understanding of
a given concept, and as though subject to some sort of phantasmagorical,
knowledge-sapping force, they leave less knowledgeable than they arrived.
Or perhaps, less supernaturally, they are subject to some new set of mis-
conceptions imparted by poorly designed course resources, hindering their
progress toward true mastery. Either way the frequency with which this
negative relationship is observed suggests that, excepting the possibility of
uniformly bad design on the part of course curators, there is an alternate
explanation. To this end, we hypothesize that this inverse relationship is re-
flective not of actively harmful learning effects imparted by course resources,
but of modally different student interactions with massive online courses and
their materials.

To motivate the hypothesis and give an intuitive example, imagine that
two different students approach the same online course. The first student,
Sage, is an expert in the domain that the course covers; she has approached
the course with the intention of shoring up and self-assessing her own skills.
The second, Joy, is entirely new to the domain, and excited to begin her
studies; she is so excited, in fact, that she has neglected to study some of the
pre-requisites listed on the course page.

As the two proceed through the course, they interact with the materials
very differently. Since Sage has a background in the domain, she tends to
skip the lecture videos and proceed directly to assessment. Joy, on the other
hand, voraciously consumes course material, hoping to get an additional leg
up on some of the more complex concepts being covered. As Sage moves
on to assessment, she finds her faith in her own abilities borne out; after
some effort, she succeeds with flying colors, typically needing no more than a
single attempt to solve a given problem. Joy struggles at first, getting several
problems wrong. Eventually, however, after returning to an earlier video, she
returns to the problems that gave her trouble and manages to work out the
correct answers.

Given context, the source of Joy’s struggles is not the videos she is watch-
ing; in fact, she leverages them to improve her performance. Yet a naive
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interpretation of the data would tell us that video consumption is associ-
ated with a lower rate of success. This is, of course, technically correct.
However, to conclude from such an analysis that resource usage is harmful
would be specious; while the correlation may be strong, the two variables are
clearly dependent on a third, latent variable: the student’s prior knowledge.
Of course, this is a conveniently-constructed thought experiment. But if it
were indeed the case that there are significant variations in student-resource
interaction, and that these differences were informed by categorically dis-
tinct types of students, then such a distinction could be leveraged to better
understand how the usage of course materials would affect a given student.

To this end, Bayesian Knowledge Tracing offers a useful frame for rea-
soning about such distinct student effects. Since BKT is designed with the
concept of active student learning in mind, it is particularly adept at captur-
ing and modeling interventionary effects. For example, Joy in our experiment
above first struggles with a problem, references a resource, then returns and
succeeds at the same problem. Modeled using Bayesian Knowledge Trac-
ing, Joy’s latent knowledge state would be, after the first mistake, computed
lower than first assumed, incorporating her failed attempt. The utility of
the resource she then consults is incorporated into the calculation of that
latent value, raising the probability that she has attained concept mastery.
Finally, our updated estimate indicates that she probably understands the
concept, and, indeed, she succeeds on her next assessment attempt. In this
way, since BKT is built to consider a temporally ordered series of events,
with an updated tally of student knowledge, it is particularly well suited to
modeling this sort of interaction with resources.

As a relatively simple graphical model, BKT is also easily modified to
incorporate per-student parameters. By partitioning students into distinct
groups based on some set of contextual features, it is relatively easy to con-
dition both student priors and, potentially, other model parameters, on a
student’s membership to a certain group. By so doing, one might more accu-
rately capture the utility of individual course materials, laying the ground-
work for the construction of a quantitative measure of the same.

3.2 Generating and Associating Knowledge Components

Of course, in order for us to perform any analysis at all using the Knowledge
Tracing Model, it is a necessity to identify both what knowledge components
a course comprises and which videos and assessments are related to those

15



components. As discussed in the Related Work section above, the process of
identifying KCs is onerous as well as controversial; the definition of a knowl-
edge space is domain specific and can involve many iterations. Drawing upon
previous work in the domain of MOOCs and KT, and in the interest of prov-
ing a generalizable framework for evaluation, we have chosen to identify KCs
at the problem level, setting aside the issue of knowledge space construction
in favor of relative simplicity.

While this handily avoids the issue of assessment-KC association, relat-
ing videos to related KCs remains problematic. Ideally, as with knowledge
components, these associations would come provided, generated by course
instructors or domain experts. Alternately, one simple solution would be to
consider all videos that are a part of a particular section in an educational
unit or course as related to assessments within that section.

A look at the data used for this report, however, reveals several issues with
that approach when considering a generalizable framework. Besides issues
of data-completeness, the variance in course format means that the meaning
of a "unit" can vary broadly between courses, making the presumption of
association more or less meaningful depending on the way the course was
constructed. With a goal of preserving the generality of our approach and
avoiding the ambiguity of instructor-defined units, we chose instead to design
an algorithm for automatically tagging problem-video associations ourselves.

By scanning the logs of learner activity and using a metric combining
chronological proximity of use as well as frequency of associated observa-
tion, we produced a mapping between videos and their related KCs. More
specifically, we observed the KCs which appeared most frequently in student
logs following the use of course resources, allowing for some limited distance
between video and attempt, but excluding those activities which occurred
more than an hour apart. Because our goal was not to produce a generative
procedure for semantically associating log events, we chose our method to be
sufficiently successful without introducing unnecessary complexity. Restric-
tions placed on these associations were strict enough that, upon sampling
and manually checking a number of generated associations, they appeared
sound. Nonetheless, this does introduce possible sources of error in terms of
both overlooked and spuriously constructed mappings.

An illustrative example of the association process can be seen in Figure 2.
In this example, a short segment of 5 users’ event logs is visible. Because quiz
B occurs frequently after users view video A, and quiz N frequently appears
after video L, A-B and L-N are suggested as candidate pairings for analysis.
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Figure 2: Candidate KC-video pairs are suggested by analyzing user event
logs

Note that the video and quiz need not be consecutive, but rather need only
to appear within the neighborhood of the exercise to be considered. For the
purposes of this analysis, we chose to consider videos which appeared within
10 log events of a subsequent quiz, and which were observed in the hour prior
to an attempt. Also worth noting is that for each video at most one exercise
(or KC) is taken to be related, chosen based on which exercise appeared most
frequently in relation.

In order to facilitate generalized analysis, all data was parsed and re-
formatted into an intermediate format, leaving the analysis agnostic to the
source of the data analyzed. It is worth noting as a caveat, here as below,
that only the Khan logs had information about the multiple templates used
for each exercise. That is, rather than a single, identical problem, many
Khan problems were composed of randomly generated numbers applied to a
general problem template, generating different but structurally similar prob-
lems. Thus, though the data is ultimately in the same format for all three
sources considered, there is some information available for the Khan data
that is not present for either of the edX courses. This does not significantly
affect the thrust of the analysis, but should be noted when considering the
four models proposed below.
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Figure 3: Standard Bayesian Knowledge Tracing Model

3.3 Extending the Bayesian Knowledge Tracing Model

In order to examine the effect of course resources on the learning process,
we employ several extensions to the traditional Bayesian Knowledge Tracing
model. First, and for each model we use in the evaluation, we condition
P (G) and P (S) for each observation on which specific exercise within a KC
is being observed. That is, given a number of KCs k, containing a number of
sub-problems n, we generate 2nk total guess and slip parameters, a technique
which has been shown in previous research on applying BKT to MOOC envi-
ronments [19] to produce significantly better predictive accuracy. Intuitively,
this extension allows the model to account for variations in problem difficulty
among sets of problems related to the same knowledge component, allowing
guess and slip to vary with the individual properties of an exercise. Here-
after we will refer to the traditional BKT with this extension as ‘Standard
BKT’ (see figure 3), and it serves as the baseline to which other models are
compared.

Our second extension mirrors our first, conditioning the transition proba-
bility P (T ) on the specific exercise within a KC that is observed. As before,
this multiplies the space of transition parameters trained by the average num-
ber of problems that fall within each KC, accounting for differential learning
effects which might be seen between different exercises. We include this
model for the Khan data for the sake of completeness, to account for any
change that might result specifically from conditioning P (T ) on individual
exercises without including resource data. As we treated each individual
problem within the ‘Statistics for Medicine’ and ‘Principles of Economics’
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Figure 4: Template Model, conditioning P (T ) on which template is observed

Figure 5: Template-Videos Model, including video observations

courses as separate KCs, this model is omitted for the edX courses. In our
analysis, we refer to this extension as the ‘Template’ model (see figure 4).

Pursuant to our interest in incorporating course resources into our inves-
tigation, our third extension, and the first which considers resource-related
data, adds video activity as additional observations to the BKT model. As
these observations are not associated with notions of correctness, and there is
consequentially no notion of ‘guess’ or ‘slip’, there is no inference performed
as a result, unlike the incorporation of response data. Instead, video ob-
servations are associated only with a transition probably P (T ), taken to be
unique to each video.

Conceptually, this third model includes the probability that a given course
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Figure 6: Template 1 Video model, not conditioning P (T ) on resource or
exercises identity

resource will impart mastery upon a student, updating their calculated P (L)
accordingly. The mathematical implications of this inclusion are straight-
forward. Recall from the previous description of BKT that the calculated
posterior probability of mastery is inferred from the observation of a correct
or incorrect student response to an assessment item. This step is entirely
omitted in the case of educational videos, as no such correctness information
is associated with their use. Instead, we simply take the prior as the ‘poste-
rior’ and use the same equation to update P (L) by using the P (T ) associated
with a particular video.

P (L(n+ 1)) = P (Ln) + (1� P (Ln)) ⇤ P (T ))

While this is a simplifying assumption when considering student-resource
iterations, it nonetheless fits well into the Bayesian Knowledge Tracing frame-
work, allowing for the same simple calculations used to incorporate exercise
data to be applied to the use of resources. We refer to this model as the
‘Template Videos’ model (see figure 5).

Finally, we simplify the ‘Template Videos’ into a ‘Template 1 Video’
model (see figure 6), conditioning P (T ) only on the presence of either a video
or a question, but not the specific identity of the resource observed. This
reduces the number of parameters trained by the model, potentially allowing
for better results when data is relatively sparse. We summarize each of the
three models in Table 1 below.
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Model Properties
Standard BKT Unique guess and slip trained for each assessment
Template Unique P (T ) trained for each assessment
Template-Video Videos included, each with a unique P (T )
Template-1-Video Videos included, one P (T ) for each class of observation

Table 1: Properties of each BKT model

3.4 Constructing an Evaluative Metric

Constructing and testing the predictive validity of our extension to BKT is
only a means to end. Ideally, we would like to use our model as a tool to
help instructors reason about one dimension of the efficacy of their course
resources. Toward that end, it is useful to understand what, exactly, our
analytic methods produce.

There are two essential dimensions to the output of our framework. The
first is simply the delta in model error when considering the use of course
resources. That is, when we employ our extension to BKT, and compare its
predictive error with that of a model disregarding resource usage, to what
degree and with what significance does our error change. This is a funda-
mental consideration, particularly because not all models will necessarily be
well informed by their associated videos. Indeed, in many cases, the addi-
tion of course resources may simply add noise, not affecting or possibly even
increasing predictive error. This is not to say that such noise is entirely
meaningless, but simply that in order to establish a notion of positive video
efficacy, it is first important to establish the validity of the extended model.
Put simply, a model which better fits the data will have relatively lower pre-
dictive error, and as such the delta in RMSE should increase positively as
model fit improves compared to standard BKT.

Second, assuming that the model is validated by lower predictive error,
the actual properties of that model can be examined. Since video observa-
tions are associated only with a P (T ), the transition probability that as-
sociates a resource with a chance of mastering material, this is a relatively
straightforward process. Videos which have a high transition probability can
be considered as tightly coupled with their related assessments, while low
transition probabilities may be indicative of only loose relation. This mea-
sure is, of course, not a value judgment on the quality of the resource per
se. For example, there may be a case where a conspicuously high observed
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transition probability is undesirable, indicative that a video may be doing no
more than simply ’teaching to the test’.

The specific aim of our proposed framework is to help instructors under-
stand both which videos are associated most strongly with student success
and also those which introduce the most noise. By using the delta in predic-
tive error and the properties of the trained models, we are able to establish
the validity of an established relationship and give a measure of the strength
of that relationship. Were we only to use the notion of statistical significance,
we run the risk of ignoring differential levels of benefit, while using only the
properties of trained models risks using specious or unreliable information.
Further, we hypothesize that particularly noisy models may be the result of
particularly inapt resource-assessment pairings, an observation which may
be of particular interest to instructors looking to improve or adjust course
materials.

It is tempting to attempt to combine both of these measures into a single,
easily-digestible summary statistic. Unfortunately, this reduction in dimen-
sionality would come with a significant loss of information: one would not
want to equate a statistically powerful model with a relatively low P (T ) with
a statistically weak model trained with a spuriously high P (T ). For this rea-
son, we consider and discuss these measures as two fundamentally different,
but related metrics, both of which are useful for determining the properties of
particular educational resources. After finding the models which seem most
strongly correlated with their associated assessments as well those that were
most deleteriously affected by including resource information, we can proceed
to use the specific parameters of these models to draw conclusions about the
resources themselves. By leveraging this information, we we hope to offer
instructors an additional tool for understanding and improving subsequent
iterations of educational material.

4 Analysis

We applied our methods, described above, to three different sets of data. One
set comes from the Khan Academy platform, and consists of students work-
ing through a variety of problems, without the notion of an overall ’course’
guiding their work. The second and third sets come from the Principles of
Economics and Statistics in Medicine edX courses offered by Stanford during
the summer of 2014. Below, we seek to verify the efficacy of our method,
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and then proceed to a qualitative analysis of high and low performing models
from each data-set.

4.1 Data

The data we obtained from Khan Academy contains 1,044,930 problem
attempts and 3,797,676 video observation events collected over about two
years, from June 2012 to February 2014. Assessment items are categorized
hierarchically as part of a larger ’exercise’ representing a particular skill, and
further as a member of a ’problem type,’ describing the template used to
generate a specific problem. Though more complex approaches to discovering
the concepts which underlie educational content have been described [14], for
the sake of simplicity we have chosen to consider each exercise as a separate
knowledge component (KC) for the purposes of training BKT models. After
filtering out unassociated videos and exercises that were associated with fewer
than 500 events, 353,202 events remained, representing work within 187
distinct exercises and 353,202 distinct student-exercise pairings. Of the 187
exercises, 176 (91%) were associated with video observations, with around
10% of all events being video viewings. Each exercise was associated on
average with 1,803 events.

In order to demonstrate the generalizability of our results, we also lever-
aged event log data taken from two Stanford Online courses run using the
edX platform: ’Statistics and Medicine’ and ’Principles of Economics.’ Both
were offered from June to September of 2014. After filtering the data pro-
vided down to problem and associated video activity, we were left with,
respectively, 215,716 and 122,077 problem attempts as well as 473,993 and
215,351 video viewings. Based on past research [19], we chose to consider
each individual problem as a knowledge component, leaving us with obser-
vations spread among a set of 95 and 71 KCs. Each individual KC was
associated, on average, with 6,250 events. Unlike the Khan data-set, the
preponderance of observations were video events, comprising around 67% of
all recorded events.

All models used in our analysis were trained and evaluated using 5-fold
cross validation. For each model above, one BKT model was trained for each
of the knowledge components identified in each of the data-sets. For each
model, for each fold, each of the KC models was randomly initialized and
trained using Expectation Maximization (EM) algorithm to minimize the log
likelihood of the observed events 25 times, with the maximally likely resulting
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model chosen for that model-fold-model tuple. The metric used to compare
the four models is the root mean squared error (RMSE) taken across all five
folds. The error used to compute the RMSE was calculated by predicting the
probability of correctness at each problem attempt, the finding the difference
between the computed probability of success [0, 1] and the observed result
{0, 1}.

4.2 Results

Tables 2, 3, and 4 describe the results of running the data through the three
analytical models. Figure 7 shows the performance of each model in each
data-set, under both the ‘Template Videos’ and ‘Template 1 Video’ condi-
tions, with each KC represented by one bar in the graph, and the y-axis
showing the delta in performance (higher is better). In order to make the
distribution more visible, the KCs are ordered by the delta in performance
observed when employing video data.

In each case, the ‘Template Videos’ and ‘Template 1 Video’ models tended
to perform best, while the ‘Template’ model, using the Khan Academy data,
showed no significant difference from the baseline distribution. The signifi-
cance test is performed across the distribution of RMSE across each of the
KC models in each data-set. The mean RMSE across all KC models is pro-
vided only as a guide for understanding how each analytical model performed
compared very generally to the others, and is not the focus of the analysis.

Model Mean RMSE p
Pct. Correct .4924 .00
Standard BKT .3837 —
Template .3837 .94
Template Videos .3825 .02
Template 1 Video .3826 .01

Table 2: Khan Academy

Though the tables reflect changes in RMSE aggregated over all KC mod-
els, not all models in each data-set benefited evenly from the inclusion of
video resources. Among the Khan data 72 of 187 KCs saw more then a triv-
ial amount of reduction in error between the ‘Standard BKT’ and ‘Template
Videos’ conditions. In the case of the Statistics and Medicine class, the bulk
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Figure 7: Delta RMSE by KC (Higher is better)
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Model Mean RMSE p
Pct. Correct .6229 .00
Standard BKT .3824 —
Template Videos .3715 <.001
Template 1 Video .3718 <.001

Table 3: Principles of Economics

Model Mean RMSE p
Pct. Correct .5144 .00
Standard BKT .3711 —
Template Videos .3638 <.001
Template 1 Video .3646 <.001

Table 4: Statistics and Medicine

of the improvement could be seen in 73 of the 95 models, with the remaining
models performing the same or slightly worse than before. For Principles
of Economics, the numbers were similar, with 51 out of 71 models showing
more than very minor improvements.

This asymmetry of improvement is an expected behavior of the system.
Intuitively, in the case that a particular video resource is either not helpful
or actively harmful to a student in solving a particular problem or set of
problems, this would be reflected in the trained model as additional noise,
leaving the overall RMSE unaffected at best and possibly even worse. Rather,
the presence of a statistically significant, though perhaps small, decrease in
predictive error in some models is indicative of the soundness of the hy-
pothesis that considering video usage can offer useful information. Further,
by examining those videos which offered the best improvements and those
that affected their associated model most deleteriously, it may be possible to
discover and highlight both the most and least useful.

4.3 Analysis Properties

Before moving on to qualitative analysis, however, other properties of the
data are worthy of consideration. Tables 5 and 6 give some general proper-
ties of each data-set included in the analysis. The differences between the
distributions of resource usage and assessment attempts are notable, with
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Data set Average Attempt Count Standard Deviation
Khan Academy 6.21 2.29
Principles of Economics 1.19 0.37
Statistics in Medicine 1.23 0.35

Table 5: Average and standard deviation for number of attempts made by
each student on each exercise for each data set

Data set Average Resource Count Standard Deviation
Khan Academy 0.64 0.45
Principles of Economics 1.87 0.64
Statistics in Medicine 2.45 1.23

Table 6: Average and standard deviation for number of resources viewed by
each student on each exercise for each data set

individuals in the Khan data generally registering more assessment attempts
but fewer video observations than the data drawn from edX. This is consis-
tent with the features of each platform, but is important to consider as we
move on to examine some of the other properties of the analysis.

Figure 10 shows the measured delta in RMSE when considering student
traces involving different numbers of question attempts. Interestingly, though
the details differ for each data-set, several properties are shared. First, pre-
dictive error across students who made only a single attempt improved for
all three data sets. This seems to follow relatively logically, as we typically
have more information before making our first prediction, if that student has
used a resource one or more times. Second, though the delta is not generally
positive for students who make 3 attempts on exercises in Khan Academy,
there is a general trend of improvement as student traces grow to 4 attempts
in length.

Oddly, in the cases of both Statistics in Medicine and Principles of Eco-
nomics, student traces which had five or more attempts showed the worst
performance, while Khan Academy saw relatively poor performance with
three. It appears that incorporating resources helps us do particularly well
when predicting single-response sequences, but seems to generate some con-
fusion with moderate-length sequences. It may be that the resource-inclusive
model deals relatively poorly with sequences involving an initial slip or two
and then a subsequent correct response, as the P(T) for attempt-related ob-
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Figure 8: Delta RMSE by total number of attempts in student trace

servations tended to be lower than in resource-exclusive models. Regardless,
while the reasons for this relationship are not immediately clear, it may be
worthy of further investigation.

Looking at the performance across models on the Nth student attempt,
some interesting model properties emerge (see Figure 9). While these rela-
tionships are not as strong as those seen with number of resources viewed,
particularly in the case of the Khan Academy data, we can still make some
observations. As matches the relatively poor performance on longer student
traces detailed above, our predictions of students’ fifth attempt and beyond
is somewhat shaky: this is commensurate with the relatively few attempts
seen in the edX data, but somewhat more troubling for Khan Academy,
where longer attempt traces were more common. This steady decrease in
predictive delta as a student proceeds with the exercise seem to indicate
that our method is best when considering short student traces, which may
explain the relatively stronger results when considering edX data. This is
not entirely unexpected, as learning effects from resources might intuitively
be ultimately outweighed by practical experience or influence from external
stimuli as a student continues to struggle with a particular exercise.
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Figure 9: Delta RMSE by Nth individual student attempt

Somewhat unsurprisingly, our analysis showed relatively poor predictive
performance in the cases of students who used no or very few course resources.
This is likely due to several causes, but one major factor may simply be
that, because most students tended to use course resources, the expectation
maximization process tended to bias the model toward better fitting the bulk
of students. Whatever the reason for the relative dearth of improvement for
students that used no resources, the addition of more resources to the trace
seems to steadily improve our predictive capacity in the cases of both edX
courses (see Figure 10). This is a heartening result, as it does seem to indicate
that the presence of resources gave us meaningful information about student
behavior.

More inscrutably, students registering the use of precisely one course re-
source saw the most improvement among models predicting Khan exercises.
The reasons for this are not entirely clear; it may be that most of the con-
cepts in Khan academy were simple enough that a single resource access was
typically sufficient to grasp the necessary information. Alternatively, it may
be the result of a difference in the structure of each set of data: As can be
seen in Table 6, users of Khan academy used far fewer resources on average
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Figure 10: Delta RMSE by number of resources

( 0.64 ) than either of the edX courses, and so the models may have been
optimized for students who used fewer resources. The variation in error seen
in the edX courses as number of resources observed change is nearly an order
of magnitude higher than that seen in the Khan Academy data-set, in either
direction, as can be seen in Figure 10.

4.4 Case Studies

In order to gain an intuition why some models were better described by the
inclusion of resources and others by excluding resources altogether, we chose
to consider the three models in each data-set that performed best under the
’Template-Videos’ condition as compared to the baseline, and the three that
performed worst. By examining what properties might qualitatively explain
the performance of each model, we additionally seek insight into what sorts
of videos appear to offer the greatest benefits to student performance.
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4.4.1 Khan Academy

Unlike the other two data sets involved in this investigation, the scope of
Khan videos is relatively broad. Rather than being a corpus representative
of study in a single subject, the Khan data used for this analysis represents
work on subjects ranging from basic subtraction to art history to galactic
collision. Though work in many subjects was ultimately dropped due to
insufficient data, the analysis of the remaining portions of the data covered
a broad array of often unrelated subjects. While this scope would pose a
problem for a model dependent on accurate knowledge map construction
and manual tagging, our reliance on automatic association of videos and
assessments meant that our analysis functioned without serious alteration
for both the edX and Khan data.

Khan Academy’s videos tend to be characteristic of its relatively unique
approach to educational video design. Typically the videos affect a relatively
informal attitude, with an unseen narrator talking through the theory behind
or application of one concept, while illustrating their thought process. Unlike
more lecture-oriented videos, Khan’s videos tend to be more akin to screen-
casts, particularly for mathematically oriented concepts, stepping through a
problem-solving process while paying relatively less attention to context or
historical information.

One feature in particular which sets the Khan data-set apart from the
other data included here is the relative abundance of video content. Likely
due to the fact that Khan academy is intended as a broad learning resource
rather than a single coherent course, relatively little focus is placed on as-
sessment, though quizzes are far from absent. But particularly as concerns
subjects which do not lend themselves to the composition of multiple choice
questions, there is not a guarantee that any given video or set of videos exists
alongside a complementary assessment. Because of this asymmetry, there are
typically many candidate pairings between video and assessment; in fact, in
many cases an assessment directly references information not found in one,
but two or more preceding videos (an example is show in Figure 11).

On the other hand, because the automatic association algorithm used in
this analysis uses only notions of log and chronological distance, and does not
employ any sort of semantic analysis, the possibility of making spurious as-
sociations between content that is used in sequence but ultimately unrelated
grows accordingly larger. Though, as can be seen in Table 2, the delta in
performance seen across the KCs in the Khan Academy dataset is somewhat
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Figure 11: Khan Academy: Some assessments were accompanied by several
videos

weaker and more variable than that seen in the edX data, our analysis still
yielded usable results.

In fact, despite the possibility of spurious associations, the incidence of
such appears to be relatively low. During a manual verification of a random
sampling of 100 of the 1096 generated associations, only two spurious asso-
ciations were found. One related a video on Communism to an assessment
testing elementary division, while another related a video about the Bay of
Pigs invasion to an assessment testing elementary subtraction. It is not en-
tirely clear why these two associations were formed, other than that users
were seen moving from those videos to the corresponding assessments in rela-
tively short order. Possibly this is the result of some educational activity that
utilized the Khan platform, but it is unclear; any attempt to explain the as-
sociation would be speculative. Regardless, the ‘KC’s generated using these
spurious associations did not create significant problems for the analysis.
Unsurprisingly, neither the Bay of Pigs-subtraction or Communism-division
associations showed any statistically significant change in predictive accuracy
when considering or ignoring video observations, indicating a verifiable lack
of relationship between video and assessment.

Among those associations which did appear reasonable, there was a wide
variation in model performance. In order to better understand this rela-
tionship, we chose to manually examine the videos and assessments which
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KC Name Delta
RMSE Resources P(T|Q) P(T|V)

Measuring Segments .024 1 .35 1.00
One Step Equation
Intuition .025 2 .85 0.21

Fundamental Theorem of
Arithmetic .025 2 .74 0.66

Table 7: Khan Academy: Best-performing models

performed best as well as those for which the addition of video observation
was actively deleterious.

For all three of the highest performing models in the Khan data, seen
in Table 7, the videos showed a striking resemblance to those videos with
which they were associated. One particularly compelling example, a video
concerning the fundamental theorem of arithmetic, can be seen in Figure
12. Immediately obvious is an aesthetic similarity between the video and the
subsequent assessment. In fact, the video explicitly details the manipulation
of a bespoke tool designed by Khan academy for that particular exercise, with
a narrator stepping through the completion of an example problem nearly
identical to the one actually presented to the student. The video does not
actually tackle the explanation of the fundamental theorem of arithmetic,
merely demonstrates solving a problem posed and resolved by use of a tool
exhaustively detailed in the video.

In almost the same fashion, the ‘One Step Equation Intuition’ exercise
involves the use of a unique tool designed for the users of Khan Academy. In
this case, users manipulate an animated set of scales, adding and subtracting
blocks until the scales balance, with an animation visually indicating the
point at which a solution is found. While both videos associated with this
exercise (‘One Step Equation Intuition’ and ‘One Step Equation Intuition
Introduction’) deal directly with the matter at hand, the second of the two,
‘Introduction’, once more involves the narrator explicitly manipulating the
exercise tool which appears in the subsequent exercise.

Likewise the ‘Measuring Segments’ video, associated with the exercise of
the same name, very closely visually mirrors the assessment with which it
is associated. Though not detailing the use of a particular tool, the video
details the process of solving the following problem, in an environment almost
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Figure 12: Khan Academy: Above, the ‘Fundamental Theorem of Arith-
metic’ video. Below, the subsequent assessment.
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KC Name Delta
RMSE Resources P(T|Q) P(T|V)

Scalar Matrix
Multiplication -.014 2 .62 .17

Direct and Inverse
Variation -.021 5 .02 .10

Balancing Chemical
Equations -.023 2 .20 .17

Table 8: Khan Academy: Worst performing models

identical to the one presented to the student. Perhaps most interestingly, the
video is associated with a P(T) of literally 1, which means that the model
expects a student who watches the video to solve the next problem with near
certainty. While this is a very strong assumption on the part of the model,
given the content of the exercise and the associated video, it is not entirely
unbelievable.

The commonalities among best performers are relatively obvious. In
particular, there is often a strong aesthetic similarity between videos and
strongly related assessments. Further, the videos not only convey a con-
cept which students are expected to apply themselves, but walk students
through a visually similar process to the one that they will soon be asked
to complete. This is actually good evidence that strong associations can be
a double-edged sword. That is, though student success is a desirable out-
come, knowledge transferable to another domain is ideal. The more directly
an assessment mirrors the instructional vehicle, the less demonstrative of
transferable knowledge an assessment can be. That said, such obvious links
between video and assessment do seem to support the tractability of our
hypothesis.

For two of the three lowest performers, the possible sources of model er-
ror somewhat mirror the characteristics seen in the highest performing cases.
In the case of ‘Scalar Matrix Multiplication’, for example, the assessment is
presented aesthetically differently than the associated video (see Figure 13).
In particular, the assessment makes use of custom input fields, which may in-
troduce an additional obstacle to performance to students already struggling
to grasp the concept of scalar matrix multiplication itself. Similarly, in the
case of ‘Balancing Chemical Equations,’ (Figure 14) while the most strongly
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Figure 13: Khan Academy: Above, the ‘Scalar Matrix Multiplication’ video.
Below, the subsequent assessment.
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Figure 14: Khan Academy: Above, the ‘Balancing Chemical Equations’
video. Below, the subsequent assessment.
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associated video does walk through the process of balancing chemical equa-
tions, the quiz environment may appear somewhat unfamiliar to students,
making solving the problems harder than might otherwise have been the case.
But more importantly, perhaps, the video details the solution to a relatively
simple problem, the combination of single element molecules into a molecule
consisting of both elements. While this process should readily be transferable
to more complex balancing equations, the process of decomposition and com-
bination of more complex molecules may throw students who have watched
a simpler solution for something of a loop. There are actually several videos
which each describe an essential part of this process, and the failure of any
one particular video to capture the entire learning process may have hindered
the model somewhat.

The relationship between the video concerning ‘Direct and Inverse Varia-
tion’ is somewhat less clear, though several potentially complicating observa-
tions can be made. First, the problem seems to be a difficult one for students
to solve. Not only are the P(T) values associated with both question tem-
plates and videos very low (see Table 8), but the prior is also a mere .0719.
Typically students only answered the question correctly 53.5% of the time,
registering an average of 9.075 attempts, which is on the high end for even the
Khan data. Further complicating matters may be that Khan switches freely
between inverse and direct variation and inverse and direct proportionality,
which may confuse some students who seize on one or the other.

Ultimately, in a way complementary to the most related example seen
above, significant dissimilarities between videos and their accompanying as-
sessments seems to contribute to poor model fit. It could be the case that
these videos need additional work, or it could simply be that it is difficult to
convey such concepts through merely didactic methods. Either way, it does
appear that the poor model fit may indeed be indicative of a relatively weak
relationship between a video and subsequent content.

4.4.2 edX - Principles of Economics

Both edX courses, Principles of Economics and Statistics in Medicine, differ
from the Khan Academy corpus in several key ways. First, the scope of the
content included in each course is much more limited: as the edX courses
are intended as consistent educational units, their materials and assessments
concern student performance in a much more constrained domain. Though
the material is still divided into distinct units and subsections, the content is
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generally related in some way, either in the sense of pre-requisite and post-
requisite relationships, or simply by being under the umbrella of a particular
domain.

Second, the format of edX is significantly different from Khan Academy.
Since the course, as with most on edX, is intended for consumption as a
unit, the quizzes are tracked and aggregated into a grade which accompa-
nies the student. If a student hopes to achieve certification in the course,
they must complete a certain number of the quizzes offered, with a passing
grade. Further, the two courses were run on a schedule. Students who took
each course were required to complete each piece of content by a particular
deadline, rather than proceeding at an individual pace.

Finally, unlike Khan academy, which allows for unlimited attempts on
questions that are typically templated to allow for repeatability, most edX
assessments limit the number of student attempts. This limitation has impli-
cations not only for our analysis, but for the application of Bayesian Knowl-
edge Tracing to MOOC data in general; the restricted number of allowed
attempts can introduce difficulties when attempting to reason about student
growth over time, particularly when identifying KCs at a problem, rather
than section or unit level. Despite these differences, our analysis, as well as
BKT in general, is still applicable to edX data; it is merely important to
note as a caveat that while our analysis remains the same, the characteris-
tics of the two sets of edX data are significantly different than their Khan
counterpart.

The Principles of Economics course, true to its name, covers some of the
most basic principles of Macroeconomics. The topics covered range from the
basic competitive equilibrium model to macro policy issues and international
trade, but all concern understanding and applying basic economic theory.
Unlike the videos in the Khan data, the Principles of Economics videos much
more closely reflect the atmosphere of a traditional undergraduate classroom.
Each video is relatively long, with each ‘lecture’ typically running around
twenty minutes, often accompanied by supplemental video material. Visually,
the lectures consist of a set of lecture slides, often with Professor Taylor, the
course instructor, superimposed in front of them, lecturing.

Course content is generally arranged into sections, each featuring a collec-
tion of video, text, and assessment content. Typically composed with a less
skewed ratio than comparable topics in Khan Academy, videos available for
the class outnumber related assessments by a relatively small margin, making
the process of video-assessment association easier and less error prone than
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Figure 15: Principles of Economics: An example of the edX interface.

with the Khan data. Usually one or two videos are followed by a text-based
summary covering key concepts, which is itself followed by a small quiz to
test student comprehension. Assessments consist of multi-part quizzes, con-
sidered as knowledge components for the purpose of this analysis, each quiz
composed of a number of sub-parts. Individual sub-parts are either multi-
ple choice or value-based free answer. Worth noting here is that we did not
consider student use of text-based content. Though there is no obstacle to
including such observations, for the sake of simplicity we have chosen to re-
strict our analysis to video-based content. Future work might explore further
the differential quality and usefulness of text-based resources.

As can be seen in Table 3, our analysis of the Principles of Economics
data generated stronger results than the data gathered from Khan Academy
(p <.0001). There are many reasons that might explain why this is the case:
it could be that the restricted number of attempts meant that the relative
effect was larger, or it could be that the domain lent itself better to video-
based resources. Regardless, as with the Khan data, we look to the best and
worst performing models to gain an intuition as to what distinguishes them.

Though the Principles of Economics edX course is formatted very differ-
ently than the lessons of Khan academy, the distinctions between the best
and worst models are similar. The three best performing models (see Table
9) from the Principles of Economics course all concerned KCs drawn from
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KC Name Delta
RMSE Resources P(T|Q) P(T|V)

Change in Monetary Policy .048 2 .35 .17
Monetary Policy .044 2 .30 .65
Monetary Policy Analysis .053 2 .03 .50

Table 9: Principles of Economics: Best-performing models

KC Name Delta
RMSE Resources P(T|Q) P(T|V)

Production Possibilities -.0003 2 .42 .40
Oligopoly -.0007 1 .49 .05
Productivity and Growth -.0004 2 .43 .00

Table 10: Principles of Economics: Worst-performing models

one unit of the course, on Macro Economic Policy. All three of these best
models are, while less compellingly visually similar than the Khan examples,
pointedly related to the subsequent assessments.

Two of the lowest performers (Table 10) told very similar stories. The
videos concerning ‘Oligopoly’, and ‘Productivity and Economic Growth’ are
relatively long, with the video on each topic totaling over fifteen minutes.
Despite their length, each video dwells only briefly on the subject concerned
in the assessment, spending most of their running time on other topics, with
the pertinent sections easy to skip or miss. The other worst performer,
‘Production Possibilities and Economic Growth’, is one of the first videos in
the course, associated with a quiz with nearly a 90% correctness rate. It may
be the case that the video offered little additional help, not as a function of
video quality, but rather as a result of low assessment difficulty.

4.4.3 edX - Statistics and Medicine

The Statistics in Medicine edX course shares many characteristics with Prin-
ciples of Economics. Among other similarities, the statistics course features
more formal videos, tending to longer durations and featuring undergraduate-
style lectures. Further, the course contents were organized such that there
were typically one or two videos for each assessment, rendering the associa-
tion process relatively simple.
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KC Name Delta
RMSE Resources P(T|Q) P(T|V)

P-value Pitfalls .047 2 .59 .54
Comparing Means .035 3 .64 .36
Exam Question 9 .030 1 .82 .64

Table 11: Statistics in Medicine: Best-performing models

There was, however one significant difference between the two courses.
Unlike the Principles of Economics course, students taking Statistics in Medicine
were required to complete a final exam, if they hoped to achieve certifica-
tion in the course. While there were still quizzes associated with videos
throughout the course, this capstone assessment stood alone, and included
information drawn from most of the previous units in the course. While this
did not offer any particular trouble to the association algorithm or the analy-
sis, it did offer an example of one useful feature of the automated algorithm:
not just as a tool for judging the relationship between quizzes and videos
which are obviously related to them, but also for discovering what resources
students sought and found most useful. In fact, as discussed below, one each
of the best and worst performing models were videos actually found to be
associated with the final exam.

The most effective videos in the Statistics and Medicine course, seen in
Table 11, once again nearly directly concern the associated assessment item,
though in a way somewhat less visually compelling than their counterparts in
the Khan Academy data. Most interesting is that one of the best predicted
models is the ninth question on the final exam of the course. The content
of this question is nearly identical to content of the video from a couple
of weeks previous, ‘Practice Interpreting Linear Regression Results.’ It is
therefore perhaps unsurprising to find that the video is associated with a
very strong learn parameter; students who sought out the video tended to
do significantly better on the assessment. It is not entirely surprising to see
improvement on the final exam: since only one attempt is allowed on each
question, one would expect that students who have taken the time to study
related material would have a better shot at succeeding on each problem.

The worst models in the Statistics course (Table 12) suffer from problems
similar to those seen in the Economics course. The first deals with the second
quiz in the course, which involves reading a value from a table. While the
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KC Name Delta
RMSE Resources P(T|Q) P(T|V)

Intro to Datasets -.0005 2 .350 .17
Liner Regression -.0044 3 .004 .10
Exam Question 21 -.0001 3 .482 .15

Table 12: Statistics in Medicine: Worst-performing models

video does depict that table, it is questionable how well that particular skill
might be taught by a video at all. The second model, concerning a quiz
on simple linear regression, offered insight into the interpretation and use of
simple linear regression, and walked through the interpretation of a certain
set of computer-generated regressions results. The associated assessment did
indeed concern the interpretation of such a table, but may have confused some
students who misunderstood the difference between the table rows. While
the video dwells on the interpretation of the intercept of linear regression, all
of the distractors ask about the slope: a concept which is not overly difficult,
but to which the video may have contributed little understanding.

The last model in the group was the twenty-first question of the final
exam. As with the other exam-related model, the data was presented in a way
very similar to the most strongly associated video, ‘Comparing Proportions
Between Two Groups,’ but with one key difference. This time, while the data
superficially resembled the first example in the video, it actually required a
strategy from the second half. Further, the instructor reveals very late in
the video the calculation for a two-sided p-value; students who watched only
the beginnings of the derivation and went back to the test may have only
calculated a one-sided p-value and fallen for a distractor.

Intuitively, an unhelpful video does not contribute to a predictive model,
simply adding additional complexity and noise. By measuring which videos
do and do not contribute constructively to predictive accuracy, it may be
possible to detect which videos might be most appropriately indicated to an
instructor as in need of further attention, and which might be highlighted to
students as particularly useful. Though such a metric is by no means a silver
bullet solution for managing course content, it does provide a potentially
useful and currently lacking metric for understanding the import of various
videos on student performance later in the course. It is ultimately up to the
instructor how to best use this information, but the more information that
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is at their disposal, the more informed the decisions they can make.

5 Future Work

Though we have demonstrated the applicability of video data to BKT anal-
ysis, and suggested the utility of examining the model properties of videos
thus applied, much work remains to be done. In order to move forward from
a proof-of-concept, there are several avenues of development which might be
pursued.

5.1 Applications

Essential to any analytical method is moving from theory to actual practice.
In particular, there are two applications to which our method might be most
appropriate.

5.1.1 Content Recommendation

One opportunity afforded to producers of online educational content, but ab-
sent in a traditional context, is the possibility of a dynamically-curated set of
recommended materials. That is, by leveraging the massive amount of infor-
mation available in the context of MOOCs or websites like Khan Academy, it
is possible to provide students who are struggling with or simply approaching
an assessment for the first time, a data-driven suggestion of content in which
to seek additional aid. This would closely mirror the behavior of Bloom’s
ideal one-on-one tutor, pointing troubled students to materials most appro-
priate for helping them master material. Data-driven recommendation is
hardly a new idea, and present in a number of domains, from online videos,
to advertisements, to suggested social contacts and beyond. Even in the
field of MOOCs, the idea of a recommender system is not new; however most
work has dealt with recommending particularly useful forums posts or entire
courses, based on a students’ past behavior. Recommendations at the gran-
ularity of resources relevant to a particular assessment has been the focus of
relatively little research.

The need for such a recommender is not immediately obvious. Most
MOOC assessments immediately follow ostensibly related videos, and typi-
cally involve applications of very recently learned materials. But this is not
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always the case; As we observed in the case of the final exam questions in the
Medical Statistics data-set or the asymmetry of assessments and videos in the
Khan data-set, finding useful references is not always so direct. Often, there
are multiple recent candidate videos or other resources which may be related
to a given assessment. Similarly, in the case of capstone assessments, it may
not be obvious which portion or portions of a course an assessment is in-
tended to test. To that end, a metric for understanding which resources have
been demonstrably the most useful in the completion of a given assessment
would provide exactly such a link to students who might need it.

5.1.2 Instructional Design

Another affordance unique to online educational material is the potential
for statistically significant evaluation of course materials, even as a course is
in progress. While a traditional classroom instructor typically must rely on
affective feedback and intuition to iterate on course materials, the breadth
of data available to designers of online content offers opportunity to make
well-informed decisions about content quality.

As previously discussed, much of the process of iteration for many modern
MOOC instructors depends on comparable but potentially misleading input
from course forums and student surveys. Ideally, rather than resorting only to
sources of affective feedback, instructors would also be privy to some notion
of the effect that their course material has had. While it should by no means
serve as a replacement for the judgment of the instructors or even for the
consideration of affective feedback, a quantitative measure of resource efficacy
would be useful in supporting instructors as they support their students.

Of course, one obvious first step to providing instructors this feedback is
bundling our analysis in such a way as to render it usable without detailed
knowledge of the scripts and platforms on which it depends. Whether this
tool be provided to instructors offline, for their own use with data procured
on their own machines, or offered directly on the relevant platforms, a us-
able solution for understanding student use of resources is a sorely-needed
feature.

5.2 Extensions to BKT

Though we have taken preliminary steps toward including video information
in Bayesian Knowledge Tracing based analysis, there are a number of possible
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extensions to work in this domain.

5.2.1 Broadening Scope

An obvious and relatively easy extension to work we have done so far would
be to consider resources beyond educational videos. Though we have con-
strained ourselves to videos for the purposes of keeping our analysis tractable
across both the Khan Academy and edX data-sets, the inclusion of other
types of resources, like text and interactive content, is a relatively low hurdle.
Such an extended analysis would be useful not only as a tool for extending
analysis to those resources, but also as a lens through which to compare dif-
ferential educational impacts of content in different forms. One could imagine
comparing the measured relevance of a textual resource to a particular assign-
ment to that of a related video, for example. Such an approach to analysis
would not substitute for instructor discretion, but it would ideally be an aid
to instructors seeking more information about the success of different types
of content, and the value of investing in producing one sort of content over
another.

Another extension which would be useful would be to increase the gran-
ularity of the analysis of videos. That is, rather than considering video
resources on the video level, use overlapping or consecutive segments of the
video in the analysis, when data about video usage of that granularity is in-
cluded. By so doing, one would be able to judge not just which videos were
particularly constructive to student success, but which segments of which
videos are particularly useful. While most instructors would likely prefer
their students to consume course material wholesale, it would be a useful
tool to students who are studying for a test, or struggling with a particular
question, to have more information about which parts of a video are the
most helpful. Further, by highlighting those portions of video that particu-
larly contribute to success, instructors may be able to get a better idea of
what kind of content is most useful for their students in their courses. Such
an analysis would also account for the amount of time a student has spent on
a particular resource, allowing for differentiated learning effects when watch-
ing a video in its entirety or just watching a portion. The main hurdle to
such an extension would be the granularity and reliability of the log data
which informs the analysis, since discrete video interaction events are not
always made available by different platforms.
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5.2.2 Resource Ordering

One interesting result in recent work by Tang et. al is the effect of item
ordering on traditional BKT analysis [30]. It is possible that, in the com-
mon case where several resources exist to support student work in a single
knowledge component, consuming resources in one particular order may be
more useful than another. While this is by no means necessarily the case,
and such effects may vary from student to student, it is certainly worth in-
vestigating whether our analytic approach might be useful for discovering an
optimal path through course material. Dealing more intelligently with repet-
itive viewings of the same materials may also be a useful refinement. As
our analysis stands, we treat each subsequent viewing of the same resource
the same way in our model, simply adding an additional observed node to
the trace of student activity. It is hardly outside the realm of possibility,
however, that there would be differential learning effects related to viewing a
video the first time and watching it again. Such an extension would be rela-
tively easy to incorporate into the model, but may suffer from a proliferation
of parameters necessary to be trained.

5.2.3 Incorporating Knowledge Structures

As we discussed previously, the theoretical foundations of Bayesian Knowl-
edge Tracing involve a hierarchy of concepts, with previously learned concepts
being leveraged to construct understandings of new ones. Though our analy-
sis disregards relationships between knowledge components, both for the sake
of simplicity and due to a lack of a canonical knowledge structure underly-
ing each course, it may be useful to incorporate such a structure into future
analysis. Either by incorporating performance on prerequisite KCs into the
generation of a prior for a post-requisite, or by designing a more complex
Bayesian network to account for inter-KC relationships, it may be that con-
sidering underlying knowledge structures may improve the performance of
our methods.

5.2.4 Incorporating Student Characteristics

Finally, it may be useful to better incorporate individual student characteris-
tics into the analysis. We have done some preliminary testing of conditioning
student priors based on student characteristics, but we have, for the sake of
simplicity, avoided including such distinctions in our analysis. Intuitively,
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if we see that a student has in the past consumed few resources and done
well on most exercises, or that a student has voraciously consumed resources
and typically still struggles, we would adapt our analytic model to account
for those differences. This sort of per-student across-exercise conditioning of
student priors could be useful in a real-time application of our methods, but
would be particularly appropriate in a post-facto analysis, when clairvoy-
ance about student properties discovered in the running of the course might
be useful for better understanding their interactions with materials early on.
Such an approach might also involve linking student performance across KCs,
rather than treating each student-KC pair as entirely independent.

6 Conclusion

In this paper, we have demonstrated the effect of including video observations
in a traditional KT model when applied to large-scale educational data. In
so doing we have found our model to give improved results over models that
do not include resource information, and helped ameliorate the sometimes
negatively correlated effects of resource usage on student performance. Qual-
itatively, we have found that our results correlate with intuitive expectations
of resource performance, giving some evidence that our results are not just
statistically meaningful, but may indicate properties of educational content
that are interpretable and useful to the humans who design and refine it.

Though the effect size is small, the statistically significant decrease in
error under the âĂŹTemplate-1-VideoâĂŹ and Template-Videos conditions
is an encouraging sign. It is indicative that, though relatively few resource
observations were recorded and many potential video-problem associations
were missed or incorrectly made, there is information to be gleaned from
a learnerâĂŹs use of educational resources. Further, as suggested by our
qualitative investigation of the best and worst performing âĂŹTemplate-1-
VideoâĂŹ models when compared to the baseline, it is possible that the delta
in accuracy, coupled with the associated P(T) when including resource ob-
servations could itself be an interesting metric for evaluating video relevance.

Much work remains to be done to make our methods applicable to ed-
ucational practice, however. As we have discussed, a number of theoretical
extensions to our work may increase the power of our analysis. But regard-
less of what future analytical work is performed, bridging the gap between a
post-facto analysis of large data-sets to a tool useful to instructors currently
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designing educational content will require significant engineering. As plat-
forms for the analysis of MOOC data proliferate in the wake of their surging
popularity, the design and hosting of such an analytical tool has become sig-
nificantly less difficult, but as with any research, bridging the gap between
theory and practice is an essential step toward the relevance of our analytic
approach.

Our methods are not intended to be a substitute for individual instruc-
tors’ judgment, or for more traditional affective methods of determining the
efficacy of course content. Rather, we hope to supplement the information
available to instructors struggling with the creation of courses or content in-
tended for an audience whose diversity and scale can make the application
of such methods difficult to pursue. The relevance of a particular piece of
content to an assessment may or may not be an indication of the quality of
that content, often depending on the requirements of the particular course,
students, and material. The design of educational content is ultimately a
human endeavor and involves decisions best left to the discretion of the in-
structors themselves. To this end, we hope primarily to support the decisions
of such instructors by providing them with more complete information about
the performance of their students and the properties of their educational
content.

References

[1] S. D. Achtemeier, L. V. Morris, and C. L. Finnegan. Considerations
for developing evaluations of online courses. Journal of Asynchronous
Learning Networks, 7(1):1–13, 2003.

[2] I. E. Allen and J. Seaman. Changing Course: Ten Years of Tracking
Online Education in the United States. ERIC, 2013.

[3] P. Bell. On the theoretical breadth of design-based research in education.
Educational Psychologist, 39(4):243–253, 2004.

[4] B. S. Bloom. The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educational researcher,
pages 4–16, 1984.

49



[5] A. Collins, J. Greeno, L. Resnick, B. Berliner, and R. Calfee. Cogni-
tion and learning. B. Berliner & R. Calfee, Handbook of Educational
Psychology, New York: Simon & Shuster MacMillan, 1992.

[6] A. Collins, D. Joseph, and K. Bielaczyc. Design research: Theoreti-
cal and methodological issues. The Journal of the learning sciences,
13(1):15–42, 2004.

[7] A. T. Corbett and J. R. Anderson. Knowledge tracing: Modeling the
acquisition of procedural knowledge. User Modeling and User-Adapted
Interaction, 4(4):253–278, Dec. 1994.

[8] R. S. d Baker, A. T. Corbett, and V. Aleven. More accurate student
modeling through contextual estimation of slip and guess probabilities
in bayesian knowledge tracing. In Intelligent Tutoring Systems, pages
406–415. Springer, 2008.

[9] P. J. Guo, J. Kim, and R. Rubin. How Video Production Affects Student
Engagement: An Empirical Study of MOOC Videos. In Proceedings of
the First ACM Conference on Learning @ Scale Conference, L@S ’14,
pages 41–50, New York, NY, USA, 2014. ACM.

[10] J. Kim, P. J. Guo, D. T. Seaton, P. Mitros, K. Z. Gajos, and R. C.
Miller. Understanding In-video Dropouts and Interaction Peaks Inonline
Lecture Videos. In Proceedings of the First ACM Conference on Learning
@ Scale Conference, L@S ’14, pages 31–40, New York, NY, USA, 2014.
ACM.

[11] M. Koppen and J.-P. Doignon. How to build a knowledge space by
querying an expert. Journal of Mathematical Psychology, 34(3):311–
331, 1990.

[12] K. Kraiger, J. K. Ford, and E. Salas. Application of cognitive, skill-
based, and affective theories of learning outcomes to new methods of
training evaluation. Journal of applied psychology, 78(2):311, 1993.

[13] D. Kravvaris, G. Ntanis, and K. L. Kermanidis. Studying massive open
online courses: recommendation in social media. In Proceedings of the
17th Panhellenic Conference on Informatics, pages 272–278. ACM, 2013.

50



[14] R. V. Lindsey, M. Khajah, and M. C. Mozer. Automatic Discovery of
Cognitive Skills to Improve the Prediction of Student Learning.

[15] M. C. Linn, E. A. Davis, P. Bell, and A. P. D. o. M. C. P. Bell. Internet
Environments for Science Education. Routledge, July 2013.

[16] J. P. Meyer and S. Zhu. Fair and equitable measurement of student
learning in moocs: An introduction to item response theory, scale link-
ing, and score equating. Research & Practice in Assessment, 8(1):26–39,
2013.

[17] D. A. Muller, J. Bewes, M. D. Sharma, and P. Reimann. Saying the
wrong thing: Improving learning with multimedia by including miscon-
ceptions. Journal of Computer Assisted Learning, 24(2):144–155, 2008.

[18] S. Oncu and H. Cakir. Research in online learning environments: Pri-
orities and methodologies. Computers & Education, 57(1):1098–1108,
Aug. 2011.

[19] Z. A. Pardos, Y. Bergner, D. T. Seaton, and D. E. Pritchard. Adapting
Bayesian Knowledge Tracing to a Massive Open Online Course in edX.

[20] Z. A. Pardos and N. T. Heffernan. Modeling individualization in a
bayesian networks implementation of knowledge tracing. In User Mod-
eling, Adaptation, and Personalization, pages 255–266. Springer, 2010.

[21] Z. A. Pardos and N. T. Heffernan. Kt-idem: Introducing item diffi-
culty to the knowledge tracing model. In User Modeling, Adaption and
Personalization, pages 243–254. Springer, 2011.

[22] V. Raghuveer, B. Tripathy, T. Singh, and S. Khanna. Reinforcement
learning approach towards effective content recommendation in mooc
environments. In MOOC, Innovation and Technology in Education
(MITE), 2014 IEEE International Conference on, pages 285–289. IEEE,
2014.

[23] A. S. Rosebery, M. Ogonowski, M. DiSchino, and B. Warren. âĂĲThe
Coat Traps All Your Body HeatâĂİ: Heterogeneity as Fundamental to
Learning. Journal of the Learning Sciences, 19(3):322–357, July 2010.

51



[24] R. S. Russ, V. R. Lee, and B. L. Sherin. Framing in cognitive clinical
interviews about intuitive science knowledge: Dynamic student under-
standings of the discourse interaction. Science Education, 96(4):573–599,
2012.

[25] M. Schrepp. A method for the analysis of hierarchical dependencies
between items of a questionnaire. Methods of Psychological Research
Online, 19:43–79, 2003.

[26] M. Schrepp and T. Held. A simulation study concerning the effect of
errors on the establishment of knowledge spaces by querying experts.
Journal of Mathematical Psychology, 39(4):376–382, 1995.

[27] R. J. Shavelson, D. C. Phillips, L. Towne, and M. J. Feuer. On the
science of education design studies. Educational researcher, 32(1):25–
28, 2003.

[28] L. Song, E. S. Singleton, J. R. Hill, and M. H. Koh. Improving online
learning: Student perceptions of useful and challenging characteristics.
The internet and higher education, 7(1):59–70, 2004.

[29] K. Stephens-Martinez, M. A. Hearst, and A. Fox. Monitoring moocs:
which information sources do instructors value? In Proceedings of the
first ACM conference on Learning@ scale conference, pages 79–88. ACM,
2014.

[30] S. Tang, E. McBride, H. Gogel, and Z. A. Pardos. Item ordering effects
with qualitative explanations using online adaptive tutoring data. In
Proceedings of the Second (2015) ACM Conference on Learning@ Scale,
pages 313–316. ACM, 2015.

[31] J. F. Van Leeuwe. Item tree analysis. Nederlands Tijdschrift voor de
Psychologie en haar Grensgebieden, 1974.

[32] M. Wen, D. Yang, and C. P. Rosé. Sentiment analysis in mooc discussion
forums: What does it tell us. Proceedings of Educational Data Mining,
2014.

[33] D. Yang, M. Piergallini, I. Howley, and C. Rose. Forum thread rec-
ommendation for massive open online courses. In Proceedings of 7th
International Conference on Educational Data Mining, 2014.

52



[34] A. M. F. Yousef, M. A. Chatti, U. Schroeder, and M. Wosnitza. What
drives a successful mooc? an empirical examination of criteria to assure
design quality of moocs. In Advanced Learning Technologies (ICALT),
2014 IEEE 14th International Conference On, pages 44–48. IEEE, 2014.

53


