
Petabit Switch Fabric Design

Jingxue Zhou
Jen-Hung Lo
Yue Cao

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-105

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-105.html

May 13, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Special thanks to our advisors Vladimir Stojanovic, Elad Alon and our
faculty consult committee John Wawrzynek. Also many thanks to the
graduate students at BWRC who helped us tremendously with the tools
setup for our project: Christopher Yarp, Angie Wang, Taewhan Kim, Paul
Rigge, Ranko Sredojevic. Also, we would also like to thank to LBNL staffs
Farzad Fatollahi-Fard and David Donofrio for letting us use their OpenSoC
as our project baseline and giving us a presentation about their research

Jingxue Zhou

 1

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2016

Electrical Engineering and Computer Science

Physical Electronics and Integrated Circuits

Petabit Switch Fabric Design

Jingxue Zhou

This Masters Project Paper fulfills the Master of Engineering degree requirement.

Approved by:

1. Capstone Project Advisor:

Signature: __________________________ Date ____________

Print Name/Department: Vladimir Stojanovic/EECS

2. Faculty Committee Member #2:

Signature: __________________________ Date ____________

Print Name/Department: John Wawrzynek/EECS

Jingxue Zhou

 2

Table of Contents

Chapter 1 Technical Contribution

1. General Introduction ---3

2. Knowledge Domain --4

3. Methods and Materials -- 8

4. Result and Discussion--12

5. Conclusion and Future Work--20

Chapter 2 Engineering Leadership

1. Introduction ---22

2. Industry Analysis---23

3. Tech Strategy--25

4. Market Analysis---26

Work Cited--28

Appendix A--30

Jingxue Zhou

 3

Chapter 1 Technical Contribution

I. GENERAL INTRODUCTION

RESEARCH BACKGROUND

During the past ten years, commercial needs in data consumption have been greatly increased.

Therefore, in order to support the rapid growth in data consumption, a great number of companies have been

shifting to cloud computing because of its efficient resource allocation and less data cost. In fact, this trend has

already stimulated several big companies such as google and facebook to develop their own data centers

because of a great many advantages cloud computing can offer, such as economies of scale of large-scale

datacenters and “pay-as-you-go” resource usage (Armbrust at el 2009). Thus, in order to ensure that these data

centers can operate more efficiently, a robust and reliable infrastructure is necessary. One possible solution is

to scale up the radix (number of ports) of the infrastructure to make sure more data has been going through.

PROJECT OVERVIEW

The ultimate goal of our project Petabit-Switch Fabric design is to design a router with higher radix to

achieve better performance (more throughputs, low latency). To reach that, we explored several architectures

and different radix numbers of the router and examined the designs on various performance metrics including

area, power consumption, and timing. Our router design was implemented in chisel, which is a scala

embedded hardware language developed recently by UC Berkeley. Our design process included four main

stages (Fig. 1): I. Chisel and Router pre- learning; II. Open SoC code extraction; III. Sub-module and test

harness design; IV. Front end and back end testing flow. Since both the chisel language and the router

architecture were new topics to us, we’ve spent plenty of time doing pre-learning before actual designs during

the first semester. Once we were capable of programming in chisel and understood the fundamentals in router

design, we went through the OpenSoc fabric by LBNL, which is a network-on-chip generator design capable

of creating a synthesizable network to connect processors, memory and I/O devices (OpenSoC, 2014). Our

three main milestones during this period included learning chisel, studying the router infrastructure from

William James Dally’s book Principles and Practices of Interconnection Networks, and understanding the

Jingxue Zhou

 4

OpenSoC code written by Lawrence Berkeley National Lab (LBNL). For the second semester, we designed

the modules for a single router by assigning each router block to a group member. At this stage, we had a clear

work breakdown as shown in Fig. 1: Yue was in charge of arbiter design; Jen-Hung was responsible for the

routing function block which determine the travel route of flits from input to output; I was in charge of

building the test harness around a single router. My work was based upon Yue and Jen-Hung’s block designs

of the router, with the purpose of verifying the functionality of their design. After we finished designing and

testing the router blocks, we cooperated together and started our final front end and back end simulation.

Fig 1. Work breakdown for the design flow

II. KNOWLEDGE DOMAIN

OPENSOC

Our router design is based upon the OpenSoC fabric developed by LBNL. The OpenSoC fabric

design, implemented in chisel, is a parameterized on-chip network generator with high hierarchy tree (see Fig.

2) (OpenSoC, 2014). The design includes the router design, the network at the top level as well as the test

harness for each module and the whole network. It implements the flow control of the message using pipelined

input-queued routers with round and robin arbiters and separable allocators (Fig. 3) (OpenSoC, 2014). Also, in

Jingxue Zhou

 5

order to test how depth and concentration may affect the performance, two main topologies -- flattened

butterfly and mesh are introduced. Fig. 3 introduces how the OpenSoC works: flits generated from some out

sources such as processors first pass through the network interface and enter the injection queue. Depending

on the topology we choose and the routing function we define, the flits will go through multiple nodes across

the topology and arrive at the destinations as defined in the head flit. After the flits leave the router, they go

through the ejection queue followed by the network interface. Since our design focused on a single router, our

first work was to extract the router from the network hierarchy. Second, as one of our purposes was to find the

router architecture with better performance, we modified two classes: arbiters and routing function and

compared the results with those before the modification. For the arbiters (which control the access to the

shared resources), Yue implemented two more types: carry-lookahead arbiter and matrix arbiter besides the

original round and robin arbiter being used in OpenSoc. For the routing function which computes the travel

route of the flits within the router network based on its destination information, Jen-Hung changed the

approach to look-up-table to enable more topologies being instantiated. Lastly, since we modified the

parameters and modules within the original classes in OpenSoc, I was responsible for developing the new test

harness to ensure our single router was working well.

Jingxue Zhou

 6

Fig 2. OpenSoC Fabric Hierarchy(OpenSoC, 2014)

Fig 3. OpenSoC Fabric Block Diagram(OpenSoC, 2014)

DESIGN BLOCKS

Router Overview: Fig. 4 is the block diagram for the router microarchitecture with VC channels. The

main components within the microarchitecture include: Input Buffer, Routing Function, Virtual Channel (VC)

Jingxue Zhou

 7

Allocator, Switch Allocator and Crossbar Switch. The input to the router is the data packet. A data packet can

be divided into strings of flits. There are three main types of flits: head flits, body flits, and tail flits. Head flit

is the most important one, which includes the essential information to define the packet, and declare the final

destination while body flit and tail flit are followed by the head lit which mainly contain payloads and tail

information correspondingly.

Input Buffer: Once the flit flows into the router, it will first be stored into the input buffer. At the

same time, the route computation and allocation starts. After the computation and allocation are done, the flit

will pop up the input buffer and enter the router network. Since it takes certain time to get the route

computation and allocation done, it is important to keep the size (length) of the input buffer long enough to

prevent the delay caused by the overflow at the input port.

Routing Function: As mentioned already, the head flit includes the destination information (output

port) for the entire data packet. The routing function manages how the flits should flow from the input node to

the output port depends on the algorithm being used in the design. The specific travel route being computed

for a head flit correlates with the topology of the network. Unlike the mesh and flattened butterfly topologies

which have already been defined in the OpenSoC, we didn’t want to be restricted by one specific topology. In

our design, we used a lookup table instead to approach more topologies.

Virtual Channel (VC) Allocator: Once the input flit has been stored in the input buffer, with output

port being selected, it is also necessary to make sure that the VC at the output port is free to pass the flits.

Again, as the head flit includes the essential information for the entire packet, body flit and tail flit will follow

their head flit to the corresponding output port after the VC allocation has been completed.

Switch Allocator: After we’ve selected the output port and conduct the VC allocation, it is also

critical to ensure that each output port has granted only one input port at a time. To achieve that, the switch

allocator connects the input port and the output port via a crossbar link. At the same time, it measures the

crossbar connection time for each flit.

Crossbar Switch: After the completion of the switch allocation, a grant signal will be sent to the

crossbar switch. Once the connection between the input port and the output port has been established, the head

Jingxue Zhou

 8

flit will travel from the input port to the selected output port buffer during the next cycle. The body flit and the

tail flit should follow the same connection as the head flit in the next two cycles. The output buffer will release

once the external downstream receiver is ready to receive the packets.

Fig 4. Router Microarchitecture (Becker, 2012)

III. METHODS AND MATERIALS

CHISEL IMPLEMENTATION

 Fig. 8 shows the entire design flow for our project. At the top level, we have the chisel implementation

for the RTL (Register Transfer Language) design. In current VLSI world, the most common language being

used for RTL design is verilog. We chose chisel -- a relatively new hardware language over verilog for two

main reasons. First, since chisel is embedded in scala, it includes a wider range of concepts based upon scalar

library compared with verilog, such as object orientations and parameterized types. Secondly, chisel is able to

generate both C++ based software simulator and verilog designed for VLSI flow (Fig. 7). On chisel side, Yue

worked on the arbiter module: besides the original round and robin arbiter in OpenSoC, two more types of

arbiters (carry-lookahead arbiter and matrix arbiter) were implemented. Jen-Hung extracted a single router

from OpenSoC and implemented lookup table as the routing function for the switch. I was developing test

harness around the extracted single router with lookup table to verify its functionality.

Jingxue Zhou

 9

 The harness module “SimpleVCRouterTester” tested a single router with 8 radix, 4 VC channels and

64 nodes. With the destination of the packet being defined in the testbench, I aimed to verify if the router was

able to transfer the packet to the correct output channel with correct contents. The testbench was connecting to

the I/Os of “SimpleVCRouterTestWrapper” module. Therefore, “SimpleVCRouterTestWrapper” module and

“SimpleVCRouterTester” harness were linked together in the top level “main” module to enable test running.

 Within the test harness module, each packet is instantiated with a head flit and a body flit as Fig. 5

shows. Since Jen-Hung has integrated the lookup table into the single router, the destination of the packet can

be directly declared compared with the original router test with its destination in 3D coordinate system from

LBNL. All the values for each term within the flitmap were chosen randomly. The “packetID” should be

setted the same for headflit and bodyflit of the same packet. The “isTail” is an indication that if the packet has

reached its last flit. After the definition of the input packet, the lookup table is instantiated as Fig 6. shows.

Fig. 5 Packet Definition within the harness

Fig. 6 Lookup table instantiation within the harness

Jingxue Zhou

 10

I wrote two sets of main tests for the single router with lookup table. The detailed chisel code is in

Appendix A. For Test 1, a single packet with 1 headflit and 1 bodyflit was driven to the router. Each output

channel is checked during the test to guarantee the packet has been delivered to the expected output port with

the right content without mismatching the rest of the output ports. Test 1.5 is an extension of Test 1. It drove a

single packet with 1 headflit and multiple bodyflits. The purpose of this test is to ensure that the router is able

to deliver the longer packet with the right order of its flits to the expected output port. In Test 2, multiple

packets, each with 1 headflit and 1 bodyflit were pushed into the router one by one. I did two sub-tests in this

set (refer to Test 2 and Test 2.5 in Appendix A): one with 2 packets and one with 8 packets. The goal of this

test is to see as the pushing pressure goes up if the router is still able to function correctly without messing up

the destination, the order and the contents of different packets. After verifying the function of the single router,

we were able to move to the “CMesh_CombinedTester_VarInjRate_lut” harness around the whole switch

design. After all the software simulation was done, we transferred our router design to verilog through sbt tool.

ASIC DESIGN FLOW

 Overview: After we successfully obtained the verilog code generated and verified from chisel, we

followed the standard ASIC (Application Specification Integrated Circuit) design flow as shown in Fig 8. At

the front end, we had RTL design in verilog based on the function specification we want (which has already

been generated from chisel), logic synthesis with gate level netlists was generated after dc synthesis. At the

back end, we had floor planning and place-and-route.

RTL Design: As already been discussed in the previous paragraph, the verilog code was generated

from the chisel code we’ve written.

Logic Synthesis: At this stage, the verilog generated from chisel was transferred to gate level netlists.

More specifically, standard logic gates including INV, AND, OR, XOR etc are used to construct the actual

circuits to realize the implementation described in our RTL code. The logic synthesis process was performed

on dc compiler tool from Synopsys. During the dc synthesis, we got reports and results corresponding to

timing, power, and area cost. We used these reports in our result discussion later because they were good

Jingxue Zhou

 11

indications on the performance of the design. Yet they were not the final results as we still missed the place-

and-route information.

Floor-planning and Place and Rout: This is the back end simulation we will do during the asic

design flow. At this stage, the gate level netlists will be mapped into the layout plan. The design tool being

used at this stage is ic compiler from Synopsys. By editing the scripts within the tcl files, a wide range of

optimizations will be implemented, such as clock gating and clock tree synthesis with the ultimate goal to

achieve better performance and less power consumption. The timing report and power report generated at this

stage are more reliable and are accounted as our final results. This is part of the future work we will work on.

Fig 7. Chisel Design Flow(OpenSoC, 2014)

Jingxue Zhou

 12

Fig 8. ASIC Design Flow

IV. Result and Discussion

As we discussed in the previous sections, our goal is to find the radix of the router with better

performance, less area cost, and less power consumption. Since we were only able to push our router design

up to 64 radix through software simulation, we did the extrapolation for the router with radix higher than 64

based on current results we obtained from software simulation and dc synthesis. All the results we obtained are

all based on the following assumptions: 1. the number of nodes is held constant at 256; 2. the flit size is fixed

at 55; 3. the number of the Virtual Channels is 2; 4. the injection rate is 10%. The variables during the test are

types of arbiters and the number of radix.

In order to measure the performance, we defined the following four critical parameters and compared

them across the routers having different combinations of arbiters choices and radix selection:

Jingxue Zhou

 13

Latency (cycle)=𝑨𝒗𝒈(𝑺𝑾𝒄𝒚𝒄𝒍𝒆!𝟔𝟒𝒑𝒂𝒄𝒌𝒆𝒕𝒔)

This parameter indicates the average amount of time one packet takes to travel from the starting point to the

destination. During Latency measurement, we injected 64 packets to each port and recorded the software

cycles of each packet. The latency is calculated by taking the average of the software cycles of these packets.

Throughput (bits/s)=
!".!"#$%∗!"#$!"#$ ∗!!!""#$!"#$#!"#$%&

!"#$% !"#$%&

This parameter specifies the data bit transferring rate per second of our router. The channel utilization is

included in the computation for a more real throughput value.

Throughput/Latency (bits/(s*cycle)) =
!".!"#!"∗!"#$!"#$∗!!!""#$!"#$#%&"#'(
!"#$% !"#$%&∗!"#(!!!"!#$!!"!"#$%&')

This is the key parameter we used to measure the router performance because we would like to achieve better

throughputs while less latency for an ideal choice.

Arbiter Choice

In our testing, three types of arbiters were implemented: round and robin arbiter, carry-lookahead

arbiter, and matrix arbiter. We pushed the routers of different arbiters through dc compiler and examined their

performance under three design metrics: power consumption, area cost, and throughput/latency rate.

We collected results of three arbiters by pushing the router up to 8 radix. Table 1, 2, and 3 summarizes

the area cost, power consumption and Throughput/Latency rate of the three arbiters. We can clearly see that

carry-lookahead arbiter stands out among the three: although the power consumption from carry-lookahead

arbiter is comparable to the other two, it has the highest Throughput/Latency rate while taking the least area

cost.

Jingxue Zhou

 14

Area(um^2) 2 4 8

RR Arbiter 104491.3082 223193.841 486472.7992

Matrix Arbiter 105031.8725 229982.0274 548598.3014

CL Arbiter 104736.5572 221551.0542 476628.531

Table 1. Area cost when using different arbiters with the increase in radix up to 8

Power(uW) 2 4 8

RR Arbiter 24800 48400 95600

Matrix Arbiter 24800 50700 123000

CL Arbiter 26500 50700 101000

Table 2. Power consumption when using different arbiters with the increase in radix up to 8

Throughput/latency(Gb/
(s*cycle))

2 4 8

RR Arbiter 1.526 2.300 3.485

Matrix Arbiter 1.400 2.240 3.948

CL Arbiter 1.633 2.641 4.282

Table 3. Performance measurement (Throughput/Latency) when using different arbiters with the increase in
radix up to 8

Besides performance metrics, it is also important to consider fairness of the three arbiters by

examining the data distribution pattern. Fig. 9, Fig. 10 and Fig. 11 represent the latency histogram of the three

arbiters when injecting 1024 packets at 10% rate. By comparing these three figures, we can see that round and

robin arbiter and matrix arbiter both have a relatively fair data distribution, while carry-lookahead arbiter has a

higher peak on the left and a longer tail on the right of its data distribution. It indicates that carry-lookahead

arbiter transfers most of packets with a short delay but leaves a few to be waiting for a long time. The reason is

that those channels with the lowest priorities in carry-lookahead arbiter may encounter the problem of

starvation of some packets because carry-lookahead arbiter has fixed priority (Yue 2016). On the other hand,

round and robin arbiter and matrix arbiter don’t have this problem because they rotate the priority around all

the channels. Despite this disadvantage in the arbitration fairness, carry-lookahead arbiter still wins because of

Jingxue Zhou

 15

its outstanding performance in throughput/latency, less area cost, and fair power consumption. Therefore we

choose carry-lookahead arbiter in the rest of our analysis when we scale up our radix.

Fig 9. Packet latency histogram for Matrix Arbiter

Fig 10. Packet latency histogram for RR Arbiter

Jingxue Zhou

 16

Fig 11. Packet latency histogram for Carry-lookahead Arbiter

Radix Choice

As we determined our arbiter choice as carry-lookahead, we again pushed our router with various

radix numbers from 2 to 64 through dc compiler, and extrapolated the results for radix higher than 64 (up to

128). We chose the best radix based on the same performance metrics -- Throughput/Latency rate, power

consumption and area cost we’ve been using in the arbiter choice section.

 Fig. 12, Fig. 13 and Fig. 14 show the average packet latency, throughput, and Throughput/Latency

results as we scaled up the radix. We didn’t include the radix 2 result for extrapolation as it deviated too much

from the result trend of other radix number. A potential cause may be that the sample size is so small which

causes big variations. From Fig. 14, we can see that radix 64 yields the best performance on

Throughput/Latency rate.

Jingxue Zhou

 17

Fig 12. Average packet latency vs Number of radix plot

Fig 13. Throughput vs Number of radix plot

Jingxue Zhou

 18

Fig 14. Throughput/Latency vs Number of radix plot

Besides Throughput/Latency rate, we are also interested in examining if the power consumption and

the area cost of a radix 64 router are fair. From the post-synthesis report, total area cost is 7736093.7304 um^2

and the total power consumption is 1.32W. Fig. 15 and Fig. 16 show the area and power distribution of the

router of radix 64. From the figure we can see that buffer takes the largest portion of the area as well as the

greatest power among all the main components because the whole buffer portion includes both the injection

and ejection queues and VC buffers, which grow linearly with the radix number. It is noticeable that switch

takes the second largest area cost. Since its inner complexity grows quadratically with the radix number, we

predicted that switch may overtake buffer and become the largest component as we keep scaling up the radix.

In short, 64 is an optimum radix choice for its highest Throughput/Latency over other radix choices on

the performance perspective. For power consumption and area cost, although the results are large, it is

reasonable and affordable under this radix number.

Jingxue Zhou

 19

Fig 15. Power distribution of post-synthesis router with radix 64

Fig 16. Area cost distribution of post-synthesis router with radix 64

Post place-and-route result

Because of the hardware limitation, we’ve only pushed our router design up to radix 16 to ic compiler

for place-and-route results. Fig. 17 shows the layout for our router design of radix 16. The green portion

represents the lookup table; the red portion represents the switch; the yellow portion represents switch

allocator; the orange portion represents VC allocator; the blue portion represents buffers. From the icc report,

Jingxue Zhou

 20

the clock period for post place-and-route router design of radix 16 is 2.91ns; the total power consumption is

0.275W; the total area cost is 868896.994713um^2.

Fig 17. Post place-and-route layout for router of radix 16

V. Conclusion and Future Work

Throughout the project, we explored various router architectures as well as number of radix to reach

better performance metrics. In order to approach the design, we extracted single router from the network of

OpenSoC fabric and integrated lookup table into the design. We also implemented two more arbiters -- carry-

lookahead arbiter and matrix arbiter besides round and robin arbiter and compared their performance in dc

synthesis. We analyzed performance based upon three metrics: Throughput/Latency rate, power consumption,

and area cost. During dc synthesis, carry-lookahead arbiter has been proven to have the best performance

among the three. We also reached the optimal radix of 64 in dc synthesis using the above three performance

metrics. Since the results we obtained in this report, including Throughput/Latency, area cost, and power

consumption correspond to post synthesis results, one of the main future work is to push the router with radix

Jingxue Zhou

 21

64 through ic compiler tools to reach final results. (So far, we only pushed router through ic compiler up to

radix 16.) To achieve that, a potential solution/ future work is to use hierarchical synthesis where modules can

be synthesized individually and then be combined on the top level and be synthesized together again.

Jingxue Zhou

 22

Chapter 2 Engineering Leadership

Introduction

 Driven by the growing demand for faster processing speed in recent years, chip companies such as

Intel and AMD have turned to multi-core CPUs as the solution to scaling system performance (Wolfe, 2009).

Unlike single-core processors, multi-core processors integrate hundreds or thousands of processing elements

together on small chips. Given the physical proximity of myriads of processors on a single die, significant

boost in performance can be achieved while maintaining minimal communication latency. As the number of

architectural elements integrated on a single die continues to grow, the network-on-chip (NoC)

implementation becomes the major bottleneck in how fast the multicore chip can operate (Becker, 2012).

Network-on-chip is essentially the communication system integrated directly on the chip that ties all the

processors, memories and external devices together. Figure 1 illustrates a multi-core NoC platform that

features multiple cores, memories and other devices linked together by a central NoC switch fabric.

Figure 1. Multi-core Network-on-Chip Layout (Benini, 2007)

 The switch fabric itself consists of several network nodes, or routers, that are interweaved together in

certain geometrical topology to make up the entire NoC system. Hence, the times it takes to communicate

between two network endpoints ultimately depends on the number of router hops along the path of data

Jingxue Zhou

 23

traversal (Dally, 2004). The numbers of router hops are directly related to the number of ports –or radix – of a

router, and by scaling up the radix of a router we can connect additional endpoint devices and communicate

with fewer router hops, thus achieving the level of efficiency required by a multicore system. However, there

exist design tradeoffs within router microarchitecture that limit the scope of radix’s scalability, hence marking

a point of diminishing return in network quality.

 Our project, Petabit Switch Fabric Design, thus is to experiment and analyze the design tradeoffs in

question and observe how they may help or hinder the performance of a router as it scales up its radix. Using

the router design prototype based on the open source code developed by Lawrence Berkeley National Lab as a

baseline, we will be investigating the ways in which different parameters may impact the performance of the

router design. Ultimately, our end goal is to find the most efficient configuration for high radix router.

Industry Analysis

 One of the biggest current technology trends is the shift towards cloud computing. Major companies

like Dell, Microsoft, and Amazon have started to provide cloud computing services. For example, Dell

announced the Dell Private Cloud Solution, which is powered by Intel architecture, and provides infrastructure

that helps to reduce ownership cost by having superior automatic allocation of computing resources (2016).

Instead of managing their own localized hardware, enterprises can rent data computing resources from these

big companies to obtain more flexible resources and to reduce overall cost (Hassan, 2011).

 Such trends lead to the collection of data computing resources towards the few big companies

mentioned above. To provide the storage for such a large amount of resources, these companies need to

construct data centers with warehouse-scale computers (WSC), that is, warehouses full of supercomputers

interconnected together. In order for all the computers within such a warehouse to communicate to each other

and to the outside world while maintaining high performance, having powerful interconnection infrastructure

is extremely critical. Hence, these data center giants become obvious target customers for our high-speed

router.

Jingxue Zhou

 24

 To assess the profitability of this product, we will use the Porter’s five forces model: new entrants,

substitutes, buyers, suppliers, and existing rivals (2008). Firstly, consider the force of the new entrants.

Routers are highly specialized pieces of hardware that are sold in the form of chips. The biggest part of the

chip cost is the non-recurring engineering cost, which is the one-time cost for a chip design, so the overall cost

of the chips will decrease drastically when increasing the sale amount. However, it is hard for new entrants to

sell as many chips as the existing companies. Therefore, the new entrants have a critical cost disadvantage and

thus the effect should be weak. Secondly, the substitute of a router chip is its software counterpart. Nowadays

routers are a combination of software and hardware so as to fill in the shortcomings of each other. For

example, Broadcom’s Trident II ASIC switch is currently being used as top-of-rack switch configuration in

Facebook’s Wedge and FBOSS. Wedge is the physical hardware of the top-of-rack switch and FBOSS is the

software agent that controls the ASIC (Simpkins, 2014). Therefore, the effect of the substitute software should

be weak. Thirdly, the bargaining power of suppliers (the chip manufacturing companies) and the customers

(warehouse-scale data centers) are quite strong since they don’t come in high volume.

Finally, the rivals of our products are the products from existing network companies such as Cisco,

Juniper and Broadcom. Since these companies are already firmly established in the networking landscape, the

force of rivalry is strong. Fortunately, these companies are providing products with strong features instead of

strong cost advantage, which may not have a great impact on the market price. For example, Broadcom

announced the StrataXGS Tomahawk™ Series in September of 2014. This chip is used for Ethernet switch for

cloud-scale network and the promised bandwidth is 3.2 terabits per second (Broadcom, 2014). This product

can support from 32 to 128 ports based on the speed of Ethernet, and the data transfer rate of the data center

network can be largely improved while keeping the same cabling complexity and equipment footprint

(Broadcom, 2014). This is a good example of competitors with powerful features.

 After considering these five forces, we can see that except the rivalry force, we have two strong and

two weak forces. As for rivalry, the strong force towards feature usually improves the profitability of the

industry. However, our product will be a new entrant, which is determined as a disadvantage previously. In

general, the profitability of our product should be on average level since the five forces are almost balanced.

Jingxue Zhou

 25

Based on the profit trend convention of rivalry above, we should focus on developing strong features to further

improve the overall profit. Meanwhile, since it will be hard for us to compete with the existing strong rivals on

all kinds of features, we should first concentrate on a niche market and design our product with few special

features.

Tech Strategy

As mentioned previously, there is a clear indication in the current trend that enterprises and consumers

alike are moving towards cloud services and solutions. A little more than a decade ago however, this trend was

less obvious and most companies were still using localized servers with switches and routers they are managed

individually (Morgan, 2015). Google, a pioneer in distributed computing and data processing, was the only

company that foresaw the need of transformative networking technology required by the increasingly powerful

computing infrastructure. Indeed, for the past decade or so, Google has been developing and deploying its own

networking infrastructures to complement the computing power required from Google’s large-scale cluster

architecture starting from Google File System in 2002 to Spanner in 2012.

Armin Vahdat, the technical lead for networking at Google, succinctly described this mutual

dependency between network and computing in his keynote in ONS 2015: “Networking is an inflection point

and what computing means is going to be largely determined by our ability to build great networks over the

coming years (2015)”. By discovering before everybody else that traditional network was not able to scale up

to meet the computing requirements in the near future and proactively improving and transforming their

network infrastructure in response to the growing bandwidth demands from their servers, Google was able to

become one of the biggest players in the computing industry today.

With the advancement of memory technology – for example, the 3D XPoint nonvolatile memory that

offers up to 1,000 times the speed and up to 10 times the storage (Intel, 2015) – playing a major role in the

future scene of datacenters, it is imperative for the networking technology to evolve even further than before.

Vahdat has predicted in his keynote that a 5 Petabit per second network, in comparison to the Gigabit per

second network commercially available today, may be needed in the near future (2015). Currently, Google’s

Jingxue Zhou

 26

latest-generation network Jupiter employs high-radix switch with 128 ports and 40 Gigabytes per port,

allowing it to deliver 1.3 Petabit per second (Singh et al, 2015). In light of the successful deployment of high-

radix switch from Google and Vahdat’s foresight on networking trend, our team pursues to find the optimal

high-radix router architecture that enables data to be communicated at the Petabit level and beyond.

Marketing

Fast router technology has ample opportunities in the tech market because it addresses the need for

fast and efficient network infrastructure. This section assesses the success of our router technology in the

market by applying the 4P marketing analysis which considers four main aspects of go-to-market elements:

price, product, promotion and place.

One can find routers being used in almost all digital systems where there are at least two endpoints

that can communicate with each other. However, as a new entrant, it is important to find a specific niche

market in which our product best fits. According to Andre Barroso, the manufacturing cost is directly

proportional to the number of radix (Andre Barroso, 2013). The increased cost means that our product will be

an enterprise, business-to-business product rather than a commodity sold directly to consumers. Moreover,

companies such as Broadcom, Cisco and Juniper are already dominant in the networking world, thus making it

a difficult process for us as new entrant to compete. As previously mentioned, our router technology is

designed to enable fast and efficient communication between large collections of machines in computing

centers. Therefore, it may be in our best interest to zoom in our market focus to companies such as Google and

Facebook that house homegrown warehouse-scale datacenters. Moreover, in recent years many major players

on par with Google and Facebook have starting to develop their own data servers, thus forming a growing pool

of demand for robustness and efficiency in the underlying networking infrastructures.

 Since our market segment is quite narrow and our product fits business-to-business commerce the

most, our distribution channel should just be a team of professional salespeople that are highly familiar and

experienced in this market. Therefore, the appropriate promotion strategy is definitely not huge-scale

advertisement; rather, if our technology is exactly what Google or Facebook is looking for, their adoption of

Jingxue Zhou

 27

our product will publicize it to other potential customers. Another common way for new techs to raise

awareness is by showcasing them at technology trade shows such as Consumer Electronic Show. Linksys and

Netgear – companies that sells data networking hardware products – for example have seen huge success in

CES with announcements of new generation of routers.

 In general, as we determined our product as a business-to-business one, we will first focus our market

on big companies such as Google and Facebook who need router technology for their datacenters. As a new

entrant, we will keep track on what our competitors are doing, and specialize in our feature – using high radix

to achieve high speed. Once we succeed in our first target market, we plan to promote our product to a broader

potential market to gain more recognition by publicizing the product through existing consumers and

showcasing the product in Electronic Show.

Jingxue Zhou

 28

Work Cited

1. D. Becker and William J. Dally.“Allocator Implementations for Network-on-Chip Routers”. Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis, 2009: 1-12. Portland,
OR. 14-20 Nov. 2009

2. Armbrust, Michael, Armando Fox, Rean Griffith, Above the Clouds: A Berkeley View of Cloud
Computing. Feb 2009. Accessed March 21.2016

3. Dally, William, and Towles, Brian. Principles and Practices of Interconnection Networks. San Francisco:
Morgan Kaufmann Publishers, 2004.

4. Berkeley Lawrence Lab. OpenSoC Fabric. 2014. https://github.com/LBL-CoDEx/OpenSoCFabric/wiki,
Accessed March 21, 2016.

5. Lo, Jen-Hung. “Technical Contribution – Petabit Switch Fabric Design” Capstone Project Report. Berkeley,
CA. 2016

6. Cao, Yue. “Technical Contribution – Petabit Switch Fabric Design” Capstone Project Report. Berkeley, CA.
2016

7. Andre Barroso, Luiz, Jimmy Calidaras, Urs Holzle. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines.” Morgan & Claypool Publishers, 2013.

8. Becker, Daniel. “Efficient microarchitecture for network-on-chip routers”. Doctoral
dissertation submitted to Stanford University. August 2012.
http://purl.stanford.edu/wr368td5072

9. Benini, Luca and Giovanni De Micheli. “The Challenges of Next-gen Multicore Networks-on-Chip
Systems.” n.p. 26 Feb. 2007
<http://www.embedded.com/design/mcus-processors-and-socs/4006822/The-challenges-of-next-gen-
multicore-networks-on-chip-systems-Part-4>

10. Broadcom. Broadcom Delivers Industry's First High-Density 25/100 Gigabit Ethernet
Switch for Cloud-Scale Networks. Press Release. n.p., 24 Sept. 2014. Web. 1 Mar. 2015.
<http://www.broadcom.com/press/release.php?id=s872349>.

11. Dell. “Dell Private Cloud Solutions”. www.dell.com. n.d. Accessed 4 March 2016

12. Hassan, Qusay. "Demystifying Cloud Computing". The Journal of Defense Software Engineering
(CrossTalk) (2011 Jan/Feb): 16–21. Retrieved 4 March 2016

13. Porter. “The Five Competitive Forces That Shape Strategy”. hbr.org. January 2008. Accessed 4 March
2016

14. Simpkins, Adam. “Facebook Open Switching System (“FBOSS”) and Wedge in the Open.” n.p. 10 Mar.
2014.
<https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-
the-open/>

Jingxue Zhou

 29

15. Singh, Arjun, et al. “Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s
Datacenter Network”. In SIGCOMM (2015)

16. Vahdat, Amin. “A Look Inside Google’s Data Center Network.” Open Networking Summits 2015. Santa
Clara Convention Center, Santa Clara. 17 Jun. 2015. Keynote.

Jingxue Zhou

 30

Appendix A: Single Router Test Harness

SimpleVCRouterTester Module

 1 package OpenSoC
 2
 3 import Chisel._
 4 import scala.collection.mutable.HashMap
 5 import scala.collection.mutable.LinkedHashMap
 6 import scala.util.Random
 7 import Array._
 8
 9
 10 class SimpleVCRouterTester(c: SimpleVCRouterTestWrapper) extends Tester(c) {
 11 implicit def bool2BigInt(b:Boolean) : BigInt = if (b) 1 else 0
 12
 13 val routerLatencyInClks = 6
 14 var headFlitMap_1 = LinkedHashMap [String, BigInt] ()
 15 var bodyFlitMap_1 = LinkedHashMap [String, BigInt] ()
 16 var headFlitMap_2 = LinkedHashMap [String, BigInt] ()
 17 var bodyFlitMap_2 = LinkedHashMap [String, BigInt] ()
 18 var headFlitMap_3 = LinkedHashMap [String, BigInt] ()
 19 var headFlitMap_4 = LinkedHashMap [String, BigInt] ()
 20 var headFlitMap_5 = LinkedHashMap [String, BigInt] ()
 21 var headFlitMap_6 = LinkedHashMap [String, BigInt] ()
 22 var headFlitMap_7 = LinkedHashMap [String, BigInt] ()
 23 var headFlitMap_8 = LinkedHashMap [String, BigInt] ()
 24 var bodyFlitMap_3 = LinkedHashMap [String, BigInt] ()
 25 var bodyFlitMap_4 = LinkedHashMap [String, BigInt] ()
 26 var bodyFlitMap_5 = LinkedHashMap [String, BigInt] ()
 27 var bodyFlitMap_6 = LinkedHashMap [String, BigInt] ()
 28 var bodyFlitMap_7 = LinkedHashMap [String, BigInt] ()
 29 var bodyFlitMap_8 = LinkedHashMap [String, BigInt] ()
 30
 31 // ---- First Packet Definition ----
 32 headFlitMap_1 = LinkedHashMap(
 33 ("Dest" -> 0), //destination coordinates
 34 ("packtType" -> 3),
 35 ("vcPort" -> 0), //vc channel#
 36 ("isTail" -> 0),
 37 ("packetID" -> 0)
 38)
 39
 40 bodyFlitMap_1 = LinkedHashMap(
 41 ("payload" -> 0xBEEF),
 42 ("flitID" -> 0xC),
 43 ("vcPort" -> 0),
 44 ("isTail" -> 0),
 45 ("packetID" -> 0)
 46)
 47
 48 // ---- Second Packet Definition ----
 49 headFlitMap_2 = LinkedHashMap(
 50 ("Dest" -> 0), //destination coordinates
 51 ("packtType" -> 2),
 52 ("vcPort" -> 0), //vc channel#

Jingxue Zhou

 31

 53 ("isTail" -> 0),
 54 ("packetID" -> 1)
 55)
 56
 57 bodyFlitMap_2 = LinkedHashMap(
 58 ("payload" -> 0xDEAD),
 59 ("flitID" -> 0xF),
 60 ("vcPort" -> 0),
 61 ("isTail" -> 0),
 62 ("packetID" -> 1)
 63)
 64
 65 // ---- Third Packet Definition ----
 66 headFlitMap_3 = LinkedHashMap(
 67 ("Dest" -> 0), //destination coordinates
 68 ("packtType" -> 1),
 69 ("vcPort" -> 0), //vc channel#
 70 ("isTail" -> 0),
 71 ("packetID" -> 2)
 72)
 73
 74 bodyFlitMap_3 = LinkedHashMap(
 75 ("payload" -> 0xABCD),
 ("flitID" -> 0xA),
 77 ("vcPort" -> 0),
 78 ("isTail" -> 0),
 79 ("packetID" -> 2)
 80)
 81
 82 // ---- 4th Packet Definition ----
 83 headFlitMap_4 = LinkedHashMap(
 84 ("Dest" -> 0), //destination coordinates
 85 ("packtType" -> 4),
 86 ("vcPort" -> 0), //vc channel#
 87 ("isTail" -> 0),
 88 ("packetID" -> 3)
 89)
 90
 91 bodyFlitMap_4 = LinkedHashMap(
 92 ("payload" -> 0xBACA),
 93 ("flitID" -> 0xD),
 94 ("vcPort" -> 0),
 95 ("isTail" -> 0),
 96 ("packetID" -> 3)
 97)
 98
 99
 100 // ---- 5th Packet Definition ----
 101 headFlitMap_1 = LinkedHashMap(
 102 ("Dest" -> 0), //destination coordinates
 103 ("packtType" -> 3),
 104 ("vcPort" -> 0), //vc channel#
 105 ("isTail" -> 0),
 106 ("packetID" -> 4)
 107)
 108
 109 bodyFlitMap_1 = LinkedHashMap(

Jingxue Zhou

 32

 110 ("payload" -> 0xBCCA),
 111 ("flitID" -> 0xD),
 112 ("vcPort" -> 0),
 113 ("isTail" -> 0),
 114 ("packetID" -> 4)
 115)
 116
 117
 118
 119 // ---- 6th Packet Definition ----
 120 headFlitMap_1 = LinkedHashMap(
 121 ("Dest" -> 0), //destination coordinates
 122 ("packtType" -> 2),
 123 ("vcPort" -> 0), //vc channel#
 124 ("isTail" -> 0),
 125 ("packetID" -> 5)
 126)
 127
 128 bodyFlitMap_1 = LinkedHashMap(
 129 ("payload" -> 0xFFFF),
 130 ("flitID" -> 0xB),
 131 ("vcPort" -> 0),
 132 ("isTail" -> 0),
 133 ("packetID" -> 5)
 134)
 135
 136
 137 // ---- 7th Packet Definition ----
 138 headFlitMap_1 = LinkedHashMap(
 139 ("Dest" -> 0), //destination coordinates
 140 ("packtType" -> 1),
 141 ("vcPort" -> 0), //vc channel#
 142 ("isTail" -> 0),
 143 ("packetID" -> 6)
 144)
 145
 146 bodyFlitMap_1 = LinkedHashMap(
 147 ("payload" -> 0xDDDD),
 148 ("flitID" -> 0xD),
 149 ("vcPort" -> 0),
 ("isTail" -> 0),
 151 ("packetID" -> 6)
 152)
 153
 154
 155 // ---- 8th Packet Definition ----
 156 headFlitMap_1 = LinkedHashMap(
 157 ("Dest" -> 0), //destination coordinates
 158 ("packtType" -> 1),
 159 ("vcPort" -> 0), //vc channel#
 160 ("isTail" -> 0),
 161 ("packetID" -> 7)
 162)
 163
 164 bodyFlitMap_1 = LinkedHashMap(
 165 ("payload" -> 0xEEEE),
 166 ("flitID" -> 0xE),

Jingxue Zhou

 33

 167 ("vcPort" -> 0),
 168 ("isTail" -> 0),
 169 ("packetID" -> 7)
 170)
 171
 172
 173 poke(c.io.headFlitIn, headFlitMap_1.values.toArray)
 174 poke(c.io.bodyFlitIn, bodyFlitMap_1.values.toArray) //poke variables into module n
 175 step (1)
 176 var zeroFlit = peek(c.io.bodyFlitOut) // peek the varible from the module needs to
 177
 178 for (i <- 0 until c.numInChannels) {
 179 poke(c.io.inChannels(i).flitValid, 0)
 180 poke(c.io.inChannels(i).credit.grant, 0)
 181 }
 182
 183 step(1)
 184
 185 //Instatntiate look up table
 186 //val nums = (0 until c.numNodes).map(x => BigInt((x + 1) % c.numRadix))
 187 val nums = (0 until c.numNodes).map(x => BigInt((x + 3) % c.numRadix))
 188
 189 for (i <- 0 until c.numNodes) {
 190 poke(c.io.lutWriteEnable, true)
 191 poke(c.io.lutWriteAddress, i)
 192 poke(c.io.lutWriteData, nums(i))
 193 step(1)
 194 }
 195 poke(c.io.lutWriteEnable, false)
 196
 197 step(1)
 198 printf("-------------------- Test 1 ----------------------\n")
 199 printf("Drive single 2-flit packet\n")
 200 // ---- Packet 1 ----
 201 headFlitMap_1("Dest") = 5
 202 headFlitMap_1("isTail") = 0
 203 headFlitMap_1("packetID") = 0
 204 bodyFlitMap_1("packetID") = 0
 205 bodyFlitMap_1("isTail") = 1
 206
 207 poke(c.io.headFlitIn, headFlitMap_1.values.toArray)
 208 poke(c.io.bodyFlitIn, bodyFlitMap_1.values.toArray)
 209
 210 step(1)
 211 var myHeadFlit_1 = peek(c.io.headFlitOut)
 212 var myBodyFlit_1 = peek(c.io.bodyFlitOut)
 213
 214 step(1)
 215 for (i <- 0 until c.numInChannels) {
 216 poke(c.io.inChannels(i).flitValid, 0)
 217 poke(c.io.outChannels(i).credit.grant, 0)
 218 }
 219
 220 poke(c.io.inChannels(4).flitValid, 1)
 221 poke(c.io.inChannels(4).flit, myHeadFlit_1)
 222 peek(c.io.lutReadData)
 223 peek(c.io.lutReadAddress)

Jingxue Zhou

 34

 224
 225 step(1)
 226 poke(c.io.inChannels(4).flitValid, 1)
 227 poke(c.io.inChannels(4).flit, myBodyFlit_1)
 228 peek(c.io.lutReadData)
 229 peek(c.io.lutReadAddress)
 230
 231 step(1)
 232 poke(c.io.inChannels(4).flit, zeroFlit)
 233 poke(c.io.inChannels(4).flitValid, 0)
 234 peek(c.io.lutReadData)
 235 peek(c.io.lutReadAddress)
 236
 237 step(routerLatencyInClks-5)
 238 expect(c.io.outChannels(7).flit, myHeadFlit_1)
 239 expect(c.io.outChannels(6).flit, myHeadFlit_1)
 240 expect(c.io.outChannels(5).flit, myHeadFlit_1)
 241 expect(c.io.outChannels(4).flit, myHeadFlit_1)
 242 expect(c.io.outChannels(3).flit, myHeadFlit_1)
 243 expect(c.io.outChannels(2).flit, myHeadFlit_1)
 244 expect(c.io.outChannels(1).flit, myHeadFlit_1)
 245 expect(c.io.outChannels(0).flit, myHeadFlit_1)
 246
 247 step(1)
 248 expect(c.io.outChannels(7).flit, myBodyFlit_1)
 249 expect(c.io.outChannels(6).flit, myBodyFlit_1)
 250 expect(c.io.outChannels(5).flit, myBodyFlit_1)
 251 expect(c.io.outChannels(4).flit, myBodyFlit_1)
 252 expect(c.io.outChannels(3).flit, myBodyFlit_1)
 253 expect(c.io.outChannels(2).flit, myBodyFlit_1)
 254 expect(c.io.outChannels(1).flit, myBodyFlit_1)
 255 expect(c.io.outChannels(0).flit, myBodyFlit_1)
 256
 257 printf ("------------------End Test 1 --------------------\n\n")
 258
 259
 260 printf("-------------------- Test 1.5 ----------------------\n")
 261 printf("Drive single packet with longer flits\n")
 262 // ---- Packet 1 ----
 263 headFlitMap_1("Dest") = 5
 264 headFlitMap_1("isTail") = 0
 265 headFlitMap_1("packetID") = 0
 266 bodyFlitMap_1("packetID") = 0
 267 bodyFlitMap_1("isTail") = 0
 268
 269 poke(c.io.headFlitIn, headFlitMap_1.values.toArray)
 270 poke(c.io.bodyFlitIn, bodyFlitMap_1.values.toArray)
 271
 272 step(1)
 273 myHeadFlit_1 = peek(c.io.headFlitOut)
 274 myBodyFlit_1 = peek(c.io.bodyFlitOut)
 275
 276 step(1)
 277 bodyFlitMap_1("isTail") = 1
 278 poke(c.io.bodyFlitIn, bodyFlitMap_1.values.toArray)
 279
 280 step(1)

Jingxue Zhou

 35

 281 var my2ndBodyFlit_1 = peek(c.io.bodyFlitOut)
 282
 283 step(1)
 284 for (i <- 0 until c.numInChannels) {
 285 poke(c.io.inChannels(i).flitValid, 0)
 286 poke(c.io.outChannels(i).credit.grant, 0)
 287 }
 288
 289 poke(c.io.inChannels(4).flitValid, 1)
 290 poke(c.io.inChannels(4).flit, myHeadFlit_1)
 291 peek(c.io.lutReadData)
 292 peek(c.io.lutReadAddress)
 293
 294 step(1)
 295 poke(c.io.inChannels(4).flitValid, 1)
 296 poke(c.io.inChannels(4).flit, myBodyFlit_1)
 297 peek(c.io.lutReadData)
 298 peek(c.io.lutReadAddress)
 299
 300 step(1)
 301 poke(c.io.inChannels(4).flitValid, 1)
 302 poke(c.io.inChannels(4).flit, my2ndBodyFlit_1)
 303 peek(c.io.lutReadData)
 304 peek(c.io.lutReadAddress)
 305
 306 step(1)
 307 poke(c.io.inChannels(4).flit, zeroFlit)
 308 poke(c.io.inChannels(4).flitValid, 0)
 309 peek(c.io.lutReadData)
 310 peek(c.io.lutReadAddress)
 311
 312 step(routerLatencyInClks-5)
 313 expect(c.io.outChannels(7).flit, myHeadFlit_1)
 314 expect(c.io.outChannels(6).flit, myHeadFlit_1)
 315 expect(c.io.outChannels(5).flit, myHeadFlit_1)
 316 expect(c.io.outChannels(4).flit, myHeadFlit_1)
 317 expect(c.io.outChannels(3).flit, myHeadFlit_1)
 318 expect(c.io.outChannels(2).flit, myHeadFlit_1)
 319 expect(c.io.outChannels(1).flit, myHeadFlit_1)
 320 expect(c.io.outChannels(0).flit, myHeadFlit_1)
 321
 322 step(1)
 323 expect(c.io.outChannels(7).flit, myBodyFlit_1)
 324 expect(c.io.outChannels(6).flit, myBodyFlit_1)
 325 expect(c.io.outChannels(5).flit, myBodyFlit_1)
 326 expect(c.io.outChannels(4).flit, myBodyFlit_1)
 327 expect(c.io.outChannels(3).flit, myBodyFlit_1)
328 expect(c.io.outChannels(2).flit, myBodyFlit_1)
 329 expect(c.io.outChannels(1).flit, myBodyFlit_1)
 330 expect(c.io.outChannels(0).flit, myBodyFlit_1)
 331
 332 step(1)
 333 expect(c.io.outChannels(7).flit, my2ndBodyFlit_1)
 334 expect(c.io.outChannels(6).flit, my2ndBodyFlit_1)
 335 expect(c.io.outChannels(5).flit, my2ndBodyFlit_1)
 336 expect(c.io.outChannels(4).flit, my2ndBodyFlit_1)
 337 expect(c.io.outChannels(3).flit, my2ndBodyFlit_1)

Jingxue Zhou

 36

 338 expect(c.io.outChannels(2).flit, my2ndBodyFlit_1)
 339 expect(c.io.outChannels(1).flit, my2ndBodyFlit_1)
 340 expect(c.io.outChannels(0).flit, my2ndBodyFlit_1)
 341 printf ("------------------End Test 1.5 --------------------\n\n")
 342
 343 step(5)
 344 printf("-------------------- Test 2 ----------------------\n")
 345 printf("Drive 2 packets of two flits each\n")
 346 // ---- Packet 1 ----
 347 headFlitMap_1("Dest") = 4
 348 headFlitMap_1("isTail") = 0
 349 headFlitMap_1("packetID") = 5
 350 bodyFlitMap_1("packetID") = 5
 351 bodyFlitMap_1("isTail") = 1
 352 // ---- Packet 2 ----
 353 headFlitMap_2("Dest") = 1
 354 headFlitMap_2("isTail") = 0
 355 headFlitMap_2("packetID") = 3
 356 bodyFlitMap_2("packetID") = 3
 357 bodyFlitMap_2("isTail") = 1
 358
 359 poke(c.io.headFlitIn, headFlitMap_1.values.toArray)
 360 poke(c.io.bodyFlitIn, bodyFlitMap_1.values.toArray)
 361 //peek(c.io.headFlitIn)
 362 //peek(c.io.bodyFlitIn)
 363 step(1)
 364 myHeadFlit_1 = peek(c.io.headFlitOut)
 365 myBodyFlit_1 = peek(c.io.bodyFlitOut)
366
 367 poke(c.io.headFlitIn, headFlitMap_2.values.toArray)
 368 poke(c.io.bodyFlitIn, bodyFlitMap_2.values.toArray)
 369 //peek(c.io.headFlitIn)
 370 //peek(c.io.bodyFlitIn)
 371 step(1)
 372 var myHeadFlit_2 = peek(c.io.headFlitOut)
 373 var myBodyFlit_2 = peek(c.io.bodyFlitOut)
 374
 375 headFlitMap_2("vcPort") = 0
 376 bodyFlitMap_2("vcPort") = 0
 377 poke(c.io.headFlitIn, headFlitMap_2.values.toArray)
 378 poke(c.io.bodyFlitIn, bodyFlitMap_2.values.toArray)
 379
 380 step(1)
 381 var myHeadFlit_2_vcmod = peek(c.io.headFlitOut)
 382 var myBodyFlit_2_vcmod = peek(c.io.bodyFlitOut)
 383
 384 step(1)
 385 for (i <- 0 until c.numInChannels) {
 386 poke(c.io.inChannels(i).flitValid, 0)
 387 poke(c.io.outChannels(i).credit.grant, 0)
 388 }
 389
 390 poke(c.io.inChannels(4).flitValid, 1)
 391 poke(c.io.inChannels(4).flit, myHeadFlit_1)
 392
 393 peek(c.io.lutReadData)
 394 peek(c.io.lutReadAddress)

Jingxue Zhou

 37

 395
 396 step(1)
 397 poke(c.io.inChannels(4).flitValid, 1)
 398 poke(c.io.inChannels(4).flit, myBodyFlit_1)
 399
 400 peek(c.io.lutReadData)
 401 peek(c.io.lutReadAddress)
 402
 403 step(1)
404 poke(c.io.inChannels(4).flit, zeroFlit)
 405 poke(c.io.inChannels(4).flitValid, 0)
 406
 407 peek(c.io.lutReadData)
 408 peek(c.io.lutReadAddress)
 409
 410 step(1)
 411 poke(c.io.inChannels(4).flitValid, 1)
 412 poke(c.io.inChannels(4).flit, myHeadFlit_2)
 413
 414 peek(c.io.lutReadData)
 415 peek(c.io.lutReadAddress)
 416
 417 step(1)
 418 poke(c.io.inChannels(4).flitValid, 1)
 419 poke(c.io.inChannels(4).flit, myBodyFlit_2)
 420
 421 peek(c.io.lutReadData)
 422 peek(c.io.lutReadAddress)
 423
 424 step(1)
 425 poke(c.io.inChannels(4).flit, zeroFlit)
 426 poke(c.io.inChannels(4).flitValid, 0)
 427
 428 peek(c.io.lutReadData)
 429 peek(c.io.lutReadAddress)
 430
 431 step(routerLatencyInClks-5)
 432 expect(c.io.outChannels(7).flit, myHeadFlit_1)
 433 expect(c.io.outChannels(6).flit, myHeadFlit_1)
 434 expect(c.io.outChannels(5).flit, myHeadFlit_1)
 435 expect(c.io.outChannels(4).flit, myHeadFlit_1)
 436 expect(c.io.outChannels(3).flit, myHeadFlit_1)
 437 expect(c.io.outChannels(2).flit, myHeadFlit_1)
 438 expect(c.io.outChannels(1).flit, myHeadFlit_1)
 439 expect(c.io.outChannels(0).flit, myHeadFlit_1)
 440
 441 step(1)
442 expect(c.io.outChannels(7).flit, myBodyFlit_1)
 443 expect(c.io.outChannels(6).flit, myBodyFlit_1)
 444 expect(c.io.outChannels(5).flit, myBodyFlit_1)
 445 expect(c.io.outChannels(4).flit, myBodyFlit_1)
 446 expect(c.io.outChannels(3).flit, myBodyFlit_1)
 447 expect(c.io.outChannels(2).flit, myBodyFlit_1)
 448 expect(c.io.outChannels(1).flit, myBodyFlit_1)
 449 expect(c.io.outChannels(0).flit, myBodyFlit_1)
 450
 451 step(2)

Jingxue Zhou

 38

 452 expect(c.io.outChannels(7).flit, myHeadFlit_2_vcmod)
 453 expect(c.io.outChannels(6).flit, myHeadFlit_2_vcmod)
 454 expect(c.io.outChannels(5).flit, myHeadFlit_2_vcmod)
 455 expect(c.io.outChannels(4).flit, myHeadFlit_2_vcmod)
 456 expect(c.io.outChannels(3).flit, myHeadFlit_2_vcmod)
 457 expect(c.io.outChannels(2).flit, myHeadFlit_2_vcmod)
 458 expect(c.io.outChannels(1).flit, myHeadFlit_2_vcmod)
 459 expect(c.io.outChannels(0).flit, myHeadFlit_2_vcmod)
 460
 461 step(1)
 462 expect(c.io.outChannels(7).flit, myBodyFlit_2_vcmod)
 463 expect(c.io.outChannels(6).flit, myBodyFlit_2_vcmod)
 464 expect(c.io.outChannels(5).flit, myBodyFlit_2_vcmod)
 465 expect(c.io.outChannels(4).flit, myBodyFlit_2_vcmod)
 466 expect(c.io.outChannels(3).flit, myBodyFlit_2_vcmod)
 467 expect(c.io.outChannels(2).flit, myBodyFlit_2_vcmod)
 468 expect(c.io.outChannels(1).flit, myBodyFlit_2_vcmod)
 469 expect(c.io.outChannels(0).flit, myBodyFlit_2_vcmod)
 470
 471 printf ("------------------End Test 2 --------------------\n\n")
 472
473
 474 step(5)
 475 printf("-------------------- Test 2.5 ----------------------\n")
 476 printf("Drive 8 packets of two flits each\n")
 477 // ---- Packet 1 ----
 478 headFlitMap_1("Dest") = 5
 479 headFlitMap_1("isTail") = 0
 480 headFlitMap_1("packetID") = 1
 481 bodyFlitMap_1("packetID") = 1
 482 bodyFlitMap_1("isTail") = 1
 483
 484 // ---- Packet 2 ----
 485 headFlitMap_2("Dest") = 4
 486 headFlitMap_2("isTail") = 0
 487 headFlitMap_2("packetID") = 2
 488 bodyFlitMap_2("packetID") = 2
 489 bodyFlitMap_2("isTail") = 1
 490
 491 // ---- Packet 3 ----
 492 headFlitMap_1("Dest") = 3
 493 headFlitMap_1("isTail") = 0
 494 headFlitMap_1("packetID") = 3
 495 bodyFlitMap_1("packetID") = 3
 496 bodyFlitMap_1("isTail") = 1
 497 // ---- Packet 4 ----
 498 headFlitMap_2("Dest") = 3
 499 headFlitMap_2("isTail") = 0
 500 headFlitMap_2("packetID") = 4
 501 bodyFlitMap_2("packetID") = 4
 502 bodyFlitMap_2("isTail") = 1
 503
 504 // ---- Packet 5 ----
 505 headFlitMap_1("Dest") = 4
 506 headFlitMap_1("isTail") = 0
 507 headFlitMap_1("packetID") = 5
 508 bodyFlitMap_1("packetID") = 5

Jingxue Zhou

 39

 509 bodyFlitMap_1("isTail") = 1
 510 // ---- Packet 6 ----
511 headFlitMap_2("Dest") = 2
 512 headFlitMap_2("isTail") = 0
 513 headFlitMap_2("packetID") = 6
 514 bodyFlitMap_2("packetID") = 6
 515 bodyFlitMap_2("isTail") = 1
 516
 517 // ---- Packet 7 ----
 518 headFlitMap_1("Dest") = 4
 519 headFlitMap_1("isTail") = 0
 520 headFlitMap_1("packetID") = 7
 521 bodyFlitMap_1("packetID") = 7
 522 bodyFlitMap_1("isTail") = 1
 523 // ---- Packet 8 ----
 524 headFlitMap_2("Dest") = 1
 525 headFlitMap_2("isTail") = 0
 526 headFlitMap_2("packetID") = 8
 527 bodyFlitMap_2("packetID") = 8
 528 bodyFlitMap_2("isTail") = 1
 529
 530 poke(c.io.headFlitIn, headFlitMap_1.values.toArray)
 531 poke(c.io.bodyFlitIn, bodyFlitMap_1.values.toArray)
 532 step(1)
 533 myHeadFlit_1 = peek(c.io.headFlitOut)
 534 myBodyFlit_1 = peek(c.io.bodyFlitOut)
 535
 536 poke(c.io.headFlitIn, headFlitMap_2.values.toArray)
 537 poke(c.io.bodyFlitIn, bodyFlitMap_2.values.toArray)
 538
 539 step(1)
 540 myHeadFlit_2 = peek(c.io.headFlitOut)
 541 myBodyFlit_2 = peek(c.io.bodyFlitOut)
 542
 543 headFlitMap_2("vcPort") = 1
 544 bodyFlitMap_2("vcPort") = 1
 545 poke(c.io.headFlitIn, headFlitMap_2.values.toArray)
 546 poke(c.io.bodyFlitIn, bodyFlitMap_2.values.toArray)
 547
 548 step(1)
549 myHeadFlit_2_vcmod = peek(c.io.headFlitOut)
 550 myBodyFlit_2_vcmod = peek(c.io.bodyFlitOut)
 551
 552 poke(c.io.headFlitIn, headFlitMap_3.values.toArray)
 553 poke(c.io.bodyFlitIn, bodyFlitMap_3.values.toArray)
 554
 555 step(1)
 556 var myHeadFlit_3 = peek(c.io.headFlitOut)
 557 var myBodyFlit_3 = peek(c.io.bodyFlitOut)
 558
 559 headFlitMap_3("vcPort") = 2
 560 bodyFlitMap_3("vcPort") = 2
 561 poke(c.io.headFlitIn, headFlitMap_3.values.toArray)
 562 poke(c.io.bodyFlitIn, bodyFlitMap_3.values.toArray)
 563
 564 step(1)
 565 var myHeadFlit_3_vcmod = peek(c.io.headFlitOut)

Jingxue Zhou

 40

 566 var myBodyFlit_3_vcmod = peek(c.io.bodyFlitOut)
 567
 568 poke(c.io.headFlitIn, headFlitMap_4.values.toArray)
 569 poke(c.io.bodyFlitIn, bodyFlitMap_4.values.toArray)
 570
 571 step(1)
 572 var myHeadFlit_4 = peek(c.io.headFlitOut)
 573 var myBodyFlit_4 = peek(c.io.bodyFlitOut)
 574
 575 headFlitMap_4("vcPort") = 3
 576 bodyFlitMap_4("vcPort") = 3
 577 poke(c.io.headFlitIn, headFlitMap_4.values.toArray)
 578 poke(c.io.bodyFlitIn, bodyFlitMap_4.values.toArray)
 579
 580 step(1)
 581 var myHeadFlit_4_vcmod = peek(c.io.headFlitOut)
 582 var myBodyFlit_4_vcmod = peek(c.io.bodyFlitOut)
 583
 584
 585 poke(c.io.headFlitIn, headFlitMap_5.values.toArray)
 586 poke(c.io.bodyFlitIn, bodyFlitMap_5.values.toArray)
587
 588 step(1)
 589 var myHeadFlit_5 = peek(c.io.headFlitOut)
 590 var myBodyFlit_5 = peek(c.io.bodyFlitOut)
 591 headFlitMap_5("vcPort") = 4
 592 bodyFlitMap_5("vcPort") = 4
 593 poke(c.io.headFlitIn, headFlitMap_5.values.toArray)
 594 poke(c.io.bodyFlitIn, bodyFlitMap_5.values.toArray)
 595
 596
 597 step(1)
 598 var myHeadFlit_5_vcmod = peek(c.io.headFlitOut)
 599 var myBodyFlit_5_vcmod = peek(c.io.bodyFlitOut)
 600
 601 poke(c.io.headFlitIn, headFlitMap_6.values.toArray)
 602 poke(c.io.bodyFlitIn, bodyFlitMap_6.values.toArray)
 603
 604 step(1)
 605 var myHeadFlit_6 = peek(c.io.headFlitOut)
 606 var myBodyFlit_6 = peek(c.io.bodyFlitOut)
 607 headFlitMap_6("vcPort") = 5
 608 bodyFlitMap_6("vcPort") = 5
 609 poke(c.io.headFlitIn, headFlitMap_6.values.toArray)
 610 poke(c.io.bodyFlitIn, bodyFlitMap_6.values.toArray)
 611
 612
 613 step(1)
 614 var myHeadFlit_6_vcmod = peek(c.io.headFlitOut)
 615 var myBodyFlit_6_vcmod = peek(c.io.bodyFlitOut)
 616
 617 poke(c.io.headFlitIn, headFlitMap_7.values.toArray)
 618 poke(c.io.bodyFlitIn, bodyFlitMap_7.values.toArray)
 619
 620 step(1)
 621 var myHeadFlit_7 = peek(c.io.headFlitOut)
 622 var myBodyFlit_7 = peek(c.io.bodyFlitOut)

Jingxue Zhou

 41

 623 headFlitMap_7("vcPort") = 6
 624 bodyFlitMap_7("vcPort") = 6
625 poke(c.io.headFlitIn, headFlitMap_7.values.toArray)
 626 poke(c.io.bodyFlitIn, bodyFlitMap_7.values.toArray)
 627
 628
 629 step(1)
 630 var myHeadFlit_7_vcmod = peek(c.io.headFlitOut)
 631 var myBodyFlit_7_vcmod = peek(c.io.bodyFlitOut)
 632
 633 poke(c.io.headFlitIn, headFlitMap_8.values.toArray)
 634 poke(c.io.bodyFlitIn, bodyFlitMap_8.values.toArray)
 635
 636 step(1)
 637 var myHeadFlit_8 = peek(c.io.headFlitOut)
 638 var myBodyFlit_8 = peek(c.io.bodyFlitOut)
 639 headFlitMap_8("vcPort") = 7
 640 bodyFlitMap_8("vcPort") = 7
 641 poke(c.io.headFlitIn, headFlitMap_8.values.toArray)
 642 poke(c.io.bodyFlitIn, bodyFlitMap_8.values.toArray)
 643
 644 step(1)
 645 var myHeadFlit_8_vcmod = peek (c.io.headFlitOut)
 646 var myBodyFlit_8_vcmod = peek (c.io.bodyFlitOut)
 647
 648 step(1)
 649 for (i <- 0 until c.numInChannels) {
 650 poke(c.io.inChannels(i).flitValid, 0)
 651 poke(c.io.outChannels(i).credit.grant, 0)
 652 }
 653
 654 poke(c.io.inChannels(0).flitValid, 1)
 655 poke(c.io.inChannels(0).flit, myHeadFlit_1)
 656
 657 peek(c.io.lutReadData)
 658 peek(c.io.lutReadAddress)
 659
 660 step(1)
 661 poke(c.io.inChannels(0).flitValid, 1)
662 poke(c.io.inChannels(0).flit, myBodyFlit_1)
 663
 664 peek(c.io.lutReadData)
 665 peek(c.io.lutReadAddress)
 666
 667 step(1)
 668 poke(c.io.inChannels(0).flit, zeroFlit)
 669 poke(c.io.inChannels(0).flitValid, 0)
 670
 671 peek(c.io.lutReadData)
 672 peek(c.io.lutReadAddress)
 673
 674 step(1)
 675 poke(c.io.inChannels(0).flitValid, 1)
 676 poke(c.io.inChannels(0).flit, myHeadFlit_2)
 677
 678 peek(c.io.lutReadData)
 679 peek(c.io.lutReadAddress)

Jingxue Zhou

 42

 680
 681 step(1)
 682 poke(c.io.inChannels(0).flitValid, 1)
 683 poke(c.io.inChannels(0).flit, myBodyFlit_2)
 684
 685 peek(c.io.lutReadData)
 686 peek(c.io.lutReadAddress)
 687
 688 step(1)
 689 poke(c.io.inChannels(0).flit, zeroFlit)
 690 poke(c.io.inChannels(0).flitValid, 0)
 691
 692 peek(c.io.lutReadData)
 693 peek(c.io.lutReadAddress)
 694
 695 step(1)
 696 poke(c.io.inChannels(0).flitValid, 1)
 697 poke(c.io.inChannels(0).flit, myHeadFlit_3)
 698
 699 peek(c.io.lutReadData)
700 peek(c.io.lutReadAddress)
 701
 702 step(1)
 703 poke(c.io.inChannels(0).flitValid, 1)
 704 poke(c.io.inChannels(0).flit, myBodyFlit_3)
 705
 706 peek(c.io.lutReadData)
 707 peek(c.io.lutReadAddress)
 708
 709 step(1)
 710 poke(c.io.inChannels(0).flit, zeroFlit)
 711 poke(c.io.inChannels(0).flitValid, 0)
 712
 713 peek(c.io.lutReadData)
 714 peek(c.io.lutReadAddress)
 715
 716 step(1)
 717 poke(c.io.inChannels(0).flitValid, 1)
 718 poke(c.io.inChannels(0).flit, myHeadFlit_4)
 719
 720 peek(c.io.lutReadData)
 721 peek(c.io.lutReadAddress)
 722
 723 step(1)
 724 poke(c.io.inChannels(0).flitValid, 1)
 725 poke(c.io.inChannels(0).flit, myBodyFlit_4)
 726
 727 peek(c.io.lutReadData)
 728 peek(c.io.lutReadAddress)
 729
 730 step(1)
 731 poke(c.io.inChannels(0).flit, zeroFlit)
 732 poke(c.io.inChannels(0).flitValid, 0)
 733
 734 peek(c.io.lutReadData)
 735 peek(c.io.lutReadAddress)
 736

Jingxue Zhou

 43

 737 step(1)
738 poke(c.io.inChannels(0).flitValid, 1)
 739 poke(c.io.inChannels(0).flit, myHeadFlit_5)
 740
 741 peek(c.io.lutReadData)
 742 peek(c.io.lutReadAddress)
 743
 744 step(1)
 745 poke(c.io.inChannels(0).flitValid, 1)
 746 poke(c.io.inChannels(0).flit, myBodyFlit_5)
 747
 748 peek(c.io.lutReadData)
 749 peek(c.io.lutReadAddress)
 750
 751 step(1)
 752 poke(c.io.inChannels(0).flit, zeroFlit)
 753 poke(c.io.inChannels(0).flitValid, 0)
 754
 755 peek(c.io.lutReadData)
 756 peek(c.io.lutReadAddress)
 757
 758 step(1)
 759 poke(c.io.inChannels(0).flitValid, 1)
 760 poke(c.io.inChannels(0).flit, myHeadFlit_6)
 761
 762 peek(c.io.lutReadData)
 763 peek(c.io.lutReadAddress)
 764
 765 step(1)
 766 poke(c.io.inChannels(0).flitValid, 1)
 767 poke(c.io.inChannels(0).flit, myBodyFlit_6)
 768
 769 peek(c.io.lutReadData)
 770 peek(c.io.lutReadAddress)
 771
 772 step(1)
 773 poke(c.io.inChannels(0).flit, zeroFlit)
 774 poke(c.io.inChannels(0).flitValid, 0)
 775
776 peek(c.io.lutReadData)
 777 peek(c.io.lutReadAddress)
 778
 779
 780 step(1)
 781 poke(c.io.inChannels(0).flitValid, 1)
 782 poke(c.io.inChannels(0).flit, myHeadFlit_7)
 783
 784 peek(c.io.lutReadData)
 785 peek(c.io.lutReadAddress)
 786
 787 step(1)
 788 poke(c.io.inChannels(0).flitValid, 1)
 789 poke(c.io.inChannels(0).flit, myBodyFlit_7)
 790
 791 peek(c.io.lutReadData)
 792 peek(c.io.lutReadAddress)
 793

Jingxue Zhou

 44

 794 step(1)
 795 poke(c.io.inChannels(0).flit, zeroFlit)
 796 poke(c.io.inChannels(0).flitValid, 0)
 797
 798 peek(c.io.lutReadData)
 799 peek(c.io.lutReadAddress)
 800
 801
 802 step(1)
 803 poke(c.io.inChannels(0).flitValid, 1)
 804 poke(c.io.inChannels(0).flit, myHeadFlit_8)
 805
 806 peek(c.io.lutReadData)
 807 peek(c.io.lutReadAddress)
 808
 809 step(1)
 810 poke(c.io.inChannels(0).flitValid, 1)
 811 poke(c.io.inChannels(0).flit, myBodyFlit_8)
 812
 813 peek(c.io.lutReadData)
814 peek(c.io.lutReadAddress)
 815
 816 step(1)
 817 poke(c.io.inChannels(0).flit, zeroFlit)
 818 poke(c.io.inChannels(0).flitValid, 0)
 819
 820 peek(c.io.lutReadData)
 821 peek(c.io.lutReadAddress)
 822
 823 step(routerLatencyInClks-5)
 824 expect(c.io.outChannels(7).flit, myHeadFlit_1)
 825 expect(c.io.outChannels(6).flit, myHeadFlit_1)
 826 expect(c.io.outChannels(5).flit, myHeadFlit_1)
 827 expect(c.io.outChannels(4).flit, myHeadFlit_1)
 828 expect(c.io.outChannels(3).flit, myHeadFlit_1)
 829 expect(c.io.outChannels(2).flit, myHeadFlit_1)
 830 expect(c.io.outChannels(1).flit, myHeadFlit_1)
 831 expect(c.io.outChannels(0).flit, myHeadFlit_1)
 832
 833 step(1)
 834 expect(c.io.outChannels(7).flit, myBodyFlit_1)
 835 expect(c.io.outChannels(6).flit, myBodyFlit_1)
 836 expect(c.io.outChannels(5).flit, myBodyFlit_1)
 837 expect(c.io.outChannels(4).flit, myBodyFlit_1)
 838 expect(c.io.outChannels(3).flit, myBodyFlit_1)
 839 expect(c.io.outChannels(2).flit, myBodyFlit_1)
 840 expect(c.io.outChannels(1).flit, myBodyFlit_1)
 841 expect(c.io.outChannels(0).flit, myBodyFlit_1)
 842
 843 step(2)
 844 expect(c.io.outChannels(7).flit, myHeadFlit_2_vcmod)
 845 expect(c.io.outChannels(6).flit, myHeadFlit_2_vcmod)
 846 expect(c.io.outChannels(5).flit, myHeadFlit_2_vcmod)
 847 expect(c.io.outChannels(4).flit, myHeadFlit_2_vcmod)
 848 expect(c.io.outChannels(3).flit, myHeadFlit_2_vcmod)
 849 expect(c.io.outChannels(2).flit, myHeadFlit_2_vcmod)
 850 expect(c.io.outChannels(1).flit, myHeadFlit_2_vcmod)

Jingxue Zhou

 45

 851 expect(c.io.outChannels(0).flit, myHeadFlit_2_vcmod)
step(1)
 854 expect(c.io.outChannels(7).flit, myBodyFlit_2_vcmod)
 855 expect(c.io.outChannels(6).flit, myBodyFlit_2_vcmod)
 856 expect(c.io.outChannels(5).flit, myBodyFlit_2_vcmod)
 857 expect(c.io.outChannels(4).flit, myBodyFlit_2_vcmod)
 858 expect(c.io.outChannels(3).flit, myBodyFlit_2_vcmod)
 859 expect(c.io.outChannels(2).flit, myBodyFlit_2_vcmod)
 860 expect(c.io.outChannels(1).flit, myBodyFlit_2_vcmod)
 861 expect(c.io.outChannels(0).flit, myBodyFlit_2_vcmod)
 862
 863
 864 step(2)
 865 expect(c.io.outChannels(7).flit, myHeadFlit_3_vcmod)
 866 expect(c.io.outChannels(6).flit, myHeadFlit_3_vcmod)
 867 expect(c.io.outChannels(5).flit, myHeadFlit_3_vcmod)
 868 expect(c.io.outChannels(4).flit, myHeadFlit_3_vcmod)
 869 expect(c.io.outChannels(3).flit, myHeadFlit_3_vcmod)
 870 expect(c.io.outChannels(2).flit, myHeadFlit_3_vcmod)
 871 expect(c.io.outChannels(1).flit, myHeadFlit_3_vcmod)
 872 expect(c.io.outChannels(0).flit, myHeadFlit_3_vcmod)
 873
 874 step(1)
 875 expect(c.io.outChannels(7).flit, myBodyFlit_3_vcmod)
 876 expect(c.io.outChannels(6).flit, myBodyFlit_3_vcmod)
 877 expect(c.io.outChannels(5).flit, myBodyFlit_3_vcmod)
 878 expect(c.io.outChannels(4).flit, myBodyFlit_3_vcmod)
 879 expect(c.io.outChannels(3).flit, myBodyFlit_3_vcmod)
 880 expect(c.io.outChannels(2).flit, myBodyFlit_3_vcmod)
 881 expect(c.io.outChannels(1).flit, myBodyFlit_3_vcmod)
 882 expect(c.io.outChannels(0).flit, myBodyFlit_3_vcmod)
 883
 884
 885 step(2)
 886 expect(c.io.outChannels(7).flit, myHeadFlit_4_vcmod)
 887 expect(c.io.outChannels(6).flit, myHeadFlit_4_vcmod)
 888 expect(c.io.outChannels(5).flit, myHeadFlit_4_vcmod)
 889 expect(c.io.outChannels(4).flit, myHeadFlit_4_vcmod)
890 expect(c.io.outChannels(3).flit, myHeadFlit_4_vcmod)
 891 expect(c.io.outChannels(2).flit, myHeadFlit_4_vcmod)
 892 expect(c.io.outChannels(1).flit, myHeadFlit_4_vcmod)
 893 expect(c.io.outChannels(0).flit, myHeadFlit_4_vcmod)
 894
 895 step(1)
 896 expect(c.io.outChannels(7).flit, myBodyFlit_4_vcmod)
 897 expect(c.io.outChannels(6).flit, myBodyFlit_4_vcmod)
 898 expect(c.io.outChannels(5).flit, myBodyFlit_4_vcmod)
 899 expect(c.io.outChannels(4).flit, myBodyFlit_4_vcmod)
 900 expect(c.io.outChannels(3).flit, myBodyFlit_4_vcmod)
 901 expect(c.io.outChannels(2).flit, myBodyFlit_4_vcmod)
 902 expect(c.io.outChannels(1).flit, myBodyFlit_4_vcmod)
 903 expect(c.io.outChannels(0).flit, myBodyFlit_4_vcmod)
 904
 905 step(2)
 906 expect(c.io.outChannels(7).flit, myHeadFlit_5_vcmod)
 907 expect(c.io.outChannels(6).flit, myHeadFlit_5_vcmod)
 908 expect(c.io.outChannels(5).flit, myHeadFlit_5_vcmod)

Jingxue Zhou

 46

 909 expect(c.io.outChannels(4).flit, myHeadFlit_5_vcmod)
 910 expect(c.io.outChannels(3).flit, myHeadFlit_5_vcmod)
 911 expect(c.io.outChannels(2).flit, myHeadFlit_5_vcmod)
 912 expect(c.io.outChannels(1).flit, myHeadFlit_5_vcmod)
 913 expect(c.io.outChannels(0).flit, myHeadFlit_5_vcmod)
 914
 915 step(1)
 916 expect(c.io.outChannels(7).flit, myBodyFlit_5_vcmod)
 917 expect(c.io.outChannels(6).flit, myBodyFlit_5_vcmod)
 918 expect(c.io.outChannels(5).flit, myBodyFlit_5_vcmod)
 919 expect(c.io.outChannels(4).flit, myBodyFlit_5_vcmod)
 920 expect(c.io.outChannels(3).flit, myBodyFlit_5_vcmod)
 921 expect(c.io.outChannels(2).flit, myBodyFlit_5_vcmod)
 922 expect(c.io.outChannels(1).flit, myBodyFlit_5_vcmod)
 923 expect(c.io.outChannels(0).flit, myBodyFlit_5_vcmod)
 924
 925 step(2)
 926 expect(c.io.outChannels(7).flit, myHeadFlit_6_vcmod)
927 expect(c.io.outChannels(6).flit, myHeadFlit_6_vcmod)
 928 expect(c.io.outChannels(5).flit, myHeadFlit_6_vcmod)
 929 expect(c.io.outChannels(4).flit, myHeadFlit_6_vcmod)
 930 expect(c.io.outChannels(3).flit, myHeadFlit_6_vcmod)
 931 expect(c.io.outChannels(2).flit, myHeadFlit_6_vcmod)
 932 expect(c.io.outChannels(1).flit, myHeadFlit_6_vcmod)
 933 expect(c.io.outChannels(0).flit, myHeadFlit_6_vcmod)
 934
 935 step(1)
 936 expect(c.io.outChannels(7).flit, myBodyFlit_6_vcmod)
 937 expect(c.io.outChannels(6).flit, myBodyFlit_6_vcmod)
 938 expect(c.io.outChannels(5).flit, myBodyFlit_6_vcmod)
 939 expect(c.io.outChannels(4).flit, myBodyFlit_6_vcmod)
 940 expect(c.io.outChannels(3).flit, myBodyFlit_6_vcmod)
 941 expect(c.io.outChannels(2).flit, myBodyFlit_6_vcmod)
 942 expect(c.io.outChannels(1).flit, myBodyFlit_6_vcmod)
 943 expect(c.io.outChannels(0).flit, myBodyFlit_6_vcmod)
 944
 945 step(2)
 946 expect(c.io.outChannels(7).flit, myHeadFlit_7_vcmod)
 947 expect(c.io.outChannels(6).flit, myHeadFlit_7_vcmod)
 948 expect(c.io.outChannels(5).flit, myHeadFlit_7_vcmod)
 949 expect(c.io.outChannels(4).flit, myHeadFlit_7_vcmod)
 950 expect(c.io.outChannels(3).flit, myHeadFlit_7_vcmod)
 951 expect(c.io.outChannels(2).flit, myHeadFlit_7_vcmod)
 952 expect(c.io.outChannels(1).flit, myHeadFlit_7_vcmod)
 953 expect(c.io.outChannels(0).flit, myHeadFlit_7_vcmod)
 954
 955 step(1)
 956 expect(c.io.outChannels(7).flit, myBodyFlit_7_vcmod)
 957 expect(c.io.outChannels(6).flit, myBodyFlit_7_vcmod)
 958 expect(c.io.outChannels(5).flit, myBodyFlit_7_vcmod)
 959 expect(c.io.outChannels(4).flit, myBodyFlit_7_vcmod)
 960 expect(c.io.outChannels(3).flit, myBodyFlit_7_vcmod)
 961 expect(c.io.outChannels(2).flit, myBodyFlit_7_vcmod)
 962 expect(c.io.outChannels(1).flit, myBodyFlit_7_vcmod)
 963 expect(c.io.outChannels(0).flit, myBodyFlit_7_vcmod)
 964
 965

Jingxue Zhou

 47

 966
 967 step(2)
 968 expect(c.io.outChannels(7).flit, myHeadFlit_8_vcmod)
 969 expect(c.io.outChannels(6).flit, myHeadFlit_8_vcmod)
 970 expect(c.io.outChannels(5).flit, myHeadFlit_8_vcmod)
 971 expect(c.io.outChannels(4).flit, myHeadFlit_8_vcmod)
 972 expect(c.io.outChannels(3).flit, myHeadFlit_8_vcmod)
 973 expect(c.io.outChannels(2).flit, myHeadFlit_8_vcmod)
 974 expect(c.io.outChannels(1).flit, myHeadFlit_8_vcmod)
 975 expect(c.io.outChannels(0).flit, myHeadFlit_8_vcmod)
 976
 977 step(1)
 978 expect(c.io.outChannels(7).flit, myBodyFlit_8_vcmod)
 979 expect(c.io.outChannels(6).flit, myBodyFlit_8_vcmod)
 980 expect(c.io.outChannels(5).flit, myBodyFlit_8_vcmod)
 981 expect(c.io.outChannels(4).flit, myBodyFlit_8_vcmod)
 982 expect(c.io.outChannels(3).flit, myBodyFlit_8_vcmod)
 983 expect(c.io.outChannels(2).flit, myBodyFlit_8_vcmod)
 984 expect(c.io.outChannels(1).flit, myBodyFlit_8_vcmod)
 985 expect(c.io.outChannels(0).flit, myBodyFlit_8_vcmod)
 986
987 printf ("------------------End Test 2.5 --------------------\n\n")

Modification in main.scala:

case "SimpleVCRouterTester" => (chiselMainTest(myargs, moduleToTest) { c => new
SimpleVCRouterTester(c.asInstanceOf[SimpleVCRouterTestWrapper]) }

