
Smart Locks: Lessons for Securing Commodity

Internet of Things Devices

Grant Ho
Derek Leung
Pratyush Mishra
Ashkan Hosseini
Dawn Song
David Wagner

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-11

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-11.html

March 12, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We thank Linda Lee and Peter Bailis for assisting us with two of our smart
lock case studies, and Kurt Thomas, Michael McCoyd, Frank Li, and John
Chuang for insightful discussions and feedback. This work was supported
by the Intel Science and Technology Center for Secure Computing (ISTC-
SC), AFOSR under MURI award FA9550-12-1-0040, FORCES
(Foundations Of Resilient CybEr-Physical Systems) under NSF award
numbers CNS-1238959, CNS-1238962, CNS-1239054, CNS-1239166),
and generous support from Cisco Systems.

Smart Locks: Lessons for Securing Commodity Internet of

Things Devices

Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, David Wagner

UC Berkeley

ABSTRACT
We examine the security of home smart locks: cyber-
physical devices that replace traditional door locks with
deadbolts that can be electronically controlled by mobile de-
vices or the lock manufacturer’s remote servers. We present
three categories of attacks against smart locks and analyze
the security of five commercially-available locks with respect
to these attacks. Our security analysis reveals that flaws
in the design, implementation, and interaction models of
existing locks can be exploited by several classes of adver-
saries, granting them capabilities that range from unautho-
rized home access to irrevocable control of the lock. To
guide future development of smart locks and similar Inter-
net of Things devices, we propose several defenses that mit-
igate the attacks we present. One of these defenses is a
novel approach to securely and usably communicate a user’s
intended actions to smart locks, which we prototype and
evaluate. Ultimately, our work takes a first step towards
illuminating security challenges in the system design and
novel functionality introduced by emerging IoT systems.

1. INTRODUCTION
Growing interest in the Internet of Things has spurred

the commoditization of many cyber-physical devices for per-
sonal use, such as smart home appliances [29], wearables de-
vices [39], and new car models [27]. These emerging “smart
devices”extend their mechanical counterparts by integrating
them with electronic components that allow external com-
puter systems to control them. Although this integration
enables new functionality, it greatly increases the system’s
attack surface.

While prior work on the Internet of Things (IoT) has
focused on the cryptographic protocols used by these sys-
tems, limited work has studied the security implications of
common network architectures used by these smart devices
and the new modes of user interaction these devices en-
able [15, 33]. As a first step towards exploring these new
security challenges, this paper studies one important class
of smart devices: home smart lock systems. These locks re-
place traditional deadbolts with electronically controllable
ones that communicate with a user’s smart phone or the lock
manufacturer’s servers. Not only do these locks use network
architectures prevalent in other IoT systems, but like other
smart devices, they also o↵er a host of new features that
facilitate new methods of interacting with the device. For
example, smart locks have followed a trend seen in newer
car models where the device will automatically unlock the
door if it infers that a legitimate user intends to enter [27].

To help us understand the security problems posed by
these new aspects of IoT systems, we propose a security
model for smart locks and analyze five popular commercial
systems. We present three categories of attacks on smart
locks and show that all existing devices we studied are vul-
nerable to at least one of these attacks. Our analysis reveals
that these attacks are possible primarily because of weak-
nesses in their system design, rather than implementation
bugs specific to any particular smart lock.

Examining the network architectures and access control
policies used by smart lock systems, we show that an at-
tacker can evade the revocation mechanisms and access log-
ging procedures used by most devices; this enables an ad-
versary to maintain unauthorized, surreptitious access to a
user’s home. Next, we assess the security of the automatic
unlocking protocols provided by several smart locks. We find
that existing protocols can often undesirably unlock the door
by accident or in the presence of an adversary. Fundamen-
tally, these vulnerabilities arise because all current systems
use insecure mechanisms to capture a user’s intended ac-
tions.

To guide future development of smart locks and similar
IoT devices, we propose several practical defenses against
these attacks. We find that using an “eventual consistency”
design provides robust revocation and access logging mech-
anisms, while minimizing the system’s dependency on ex-
ternal entities (such as the lock’s remote servers); this dis-
tributed systems design not only enables the lock to main-
tain a high level of availability, but it also helps reduce the
system’s vulnerability to remote compromise by allowing
smart locks to forgo direct connection to the Internet. Fi-
nally, to eliminate weaknesses in existing automatic unlock-
ing mechanisms, we explore three defenses that maintain the
usability benefits of automatic unlocking while o↵ering bet-
ter security than existing smart locks. While two of these
defenses draw on prior work, we propose one novel defense
that leverages body area networks. We develop a physical
prototype of this defense and present evaluation results that
suggest this defense achieves our desired security and usabil-
ity goals.

Ultimately, our work takes a first step towards illumi-
nating security challenges in the system design and novel
functionality introduced by emerging IoT systems, such as
smart lock devices. We find that existing smart locks fall
short of providing adequate security because of tensions be-
tween availability and security that emerge in common IoT
network architectures; the new modes of interaction o↵ered
by smart devices; and the collection of data on users’ daily

1

Architecture Interaction model Devices Admin interfaces

Kevo DGC touch-to-unlock smartphone, keyfob mobile app, website
August DGC press button in mobile app; automatic unlocking smartphone mobile app
Dana DGC press button in mobile app; automatic unlocking smartphone mobile app, website
Okidokeys DGC press button in mobile app smartphone mobile app, website
Lockitron direct Internet connection press button in mobile app or web interface smartphone, website mobile app, website

Table 1: Summary of the system design and properties for each smart lock. DGC stands for a Device-Gateway-Cloud architecture. The
Interaction model column corresponds to the user process for unlocking/locking the door; automatic unlocking works via proximity. The
Devices column specifies which kinds of electronic devices can be used to lock/unlock the smart lock. The Admin interfaces column
indicates how homeowners can administer their lock.

lives to provide new functionality. Nonetheless, our work
presents several practical defenses that enable these new de-
vices to provide not only greater convenience, but also better
security than their traditional counterparts.

2. BACKGROUND: SMART LOCK SYS-
TEMS

To ground our exploration of smart lock systems, we
searched on Amazon, Google, eBay, and KickStarter for dig-
ital home door locks. We then eliminated all locks which
were not shipping, not available for purchase, or did not
have the ability to connect with mobile devices or the Inter-
net. We deliberately excluded several digital locks that just
replace a traditional deadbolt with a numerical PIN pad;
because they lack integration with other computer systems,
the security and system design of these PIN code locks dif-
fer distinctly from the IoT systems we seek to study. This
search process yielded five locks: August [2], Danalock [10],
Kevo [20], Okidokeys [30], and Lockitron [25].

2.1 Common Smart Lock Properties
Home smart locks consist of three components: an

electronically-augmented deadbolt installed onto an exterior
door (Figure 1), a mobile device that can electronically con-
trol the lock, and a remote web server. Users can use their
mobile devices to control the lock by installing the lock’s mo-
bile app, creating an account on the manufacturer’s servers,
and then pairing their mobile device with the lock using a lo-
cal wireless channel, such as Bluetooth Low Energy (BLE).
Table 1 lists the common properties for each lock we studied.

Architecturally, we found that smart locks use one of two
network designs. In the first architecture, shown in Figure 2,
smart locks themselves do not have a direct connection to the
Internet. Instead, these locks rely on users’ mobile phones
to act as an Internet “gateway” that relays information to
and from the manufacturer’s servers whenever the phone
enters BLE range of the lock. We call this architecture the
Device-Gateway-Cloud (DGC) model.

The second architecture, used only by Lockitron, has a
direct Internet connection between the smart lock and the
remote server. The lock contains a built-in Wifi modem,
which allows homeowners to connect it to their home’s Wifi
network. In this architecture, users can still operate the
smart lock with a mobile device; however, all of the smart
lock’s communications with the server occur through the
lock’s Wifi connection, and state updates (such as an up-
dated user permission list) are transmitted through this In-
ternet connection, rather than a local wireless channel, such
as BLE.1

1We were unable to successfully use the BLE functional-

2.2 Digital Keys
Smart locks allow home owners to grant other users ac-

cess by issuing them a “digital key”, providing greater con-
venience and fine-grained access control per user. The locks
we studied allow home owners to issue digital keys that be-
long to one of four abstract access levels: owner, resident,
recurring guest, or temporary guest. An “owner” key can
lock and unlock the smart lock at any time, grant or revoke
keys of any access level, and use any other administrative
feature the lock provides (such as viewing the lock’s access
logs). “Resident”keys allow a user to access the home at any
time, but these users do not have access to any administra-
tive abilities. “Recurring guest” keys can only be used at
fixed time windows set by an owner (e.g., only on weekdays
from 3-6pm for a baby sitter). Finally, temporary guest keys
provide short-term access (e.g., a 24-hour access window).

When the lock is initially installed, the first user who pairs
her mobile device with the lock using BLE automatically re-
ceives “owner”-level access to the device. Because Lockitron
uses Wifi instead of BLE, after the lock has been installed
and connected to a user’s home Wifi network, Lockitron al-
lows a user to acquire ownership of the lock by pairing with
the lock over this Wifi network. For all the locks we stud-
ied, once the lock has locally paired with a smart device, no
other device can manually pair with the lock in this manner
unless the lock is reset. Instead, the owner can grant access
to other users’ accounts by looking up their email address
or phone number.

2.3 Administrative Interfaces
With the exception of August, the other four smart locks

provide a standalone website interface that allow users with
an owner key to perform key management operations, such
as granting and revoking access to other users. Additionally,
three of these locks allow owners to view the lock’s access
logs remotely through this web interface, as discussed below
in Section 2.4.

2.4 Access Logging
All of the locks we studied contain a built-in access log-

ging feature, which can be viewed by users with owner keys.
Each time a user interacts with the lock or an owner dis-
tributes or revokes a key, the lock generates a record of the
action, the user who performed it, and the time. None of

ity on the currently-available “Beta” version of Lockitron.
Searching their online forums, we found that other users
have encountered this same problem; when we emailed Lock-
itron’s support address and asked about this, we did not
receive a response. As a result, we were only able to use
Lockitron’s Internet-based communication during our anal-
ysis.

2

Figure 1: View of one smart lock (Oki-
dokeys) from the interior of the home.
All locks augment or replace the inte-
rior deadbolt’s turn knob with the smart
lock’s electronically controllable compo-
nent; however, all locks can be manually
operated from the inside and they main-
tain a traditional keyhole on the exterior
of the door.

Figure 2: Internet connectivity model for August, Danalock, Kevo, and Okidokeys. The
smart locks themselves do not connect to the Internet. Rather, they connect to a user’s
phone via BLE and expect the smart phone to be connected to the Internet, where it
will be able to push and receive relevant information and updates (such as updates to
the lock’s software or a new digital key). We call this the DGC model.

the locks provide users with a way to configure which actions
get logged.

2.5 Locking and Unlocking Process
In all but the Kevo system, users can unlock their door

by pressing a button in the lock’s mobile app.
Additionally, several of the locks we studied provide auto-

matic unlocking features for greater user convenience. Both
August and Danalock will automatically unlock the door
whenever an authorized user gets near the door, sparing
the user the need to take out their phone or interact with
the mobile app. Kevo has a similar feature, but it works
slightly di↵erently: to unlock, the user touches the exterior
deadbolt face (which contains a built-in touch sensor); the
lock unlocks if an authorized device is in BLE range. Un-
like the other four locks, Kevo’s mobile app does not have
a button to explicitly unlock or lock the door; users must
use the touch-to-unlock process. These automatic unlock-
ing schemes raise some of the most interesting security chal-
lenges; we discuss them further in Section 3.4.1.

3. SECURITY ANALYSIS
In this section, we propose a security model for smart

locks, present our analysis of five popular smart locks under
this security model, and systematize the vulnerabilities we
discovered by introducing three categories of attacks. Each
category corresponds to a fundamental challenge in design-
ing a secure smart lock system. Table 2 summarizes our
findings. We have reached out to the vendors of all the sys-
tems we studied and are working with them to address the
vulnerabilities we discovered.

3.1 Threat Models
In addition to canonical attackers such as network attack-

ers, malware on client devices, and server-side adversaries,
we articulate four additional threat models that smart locks
might want to protect against. We refer to the legitimate
owner as Alice and the attacker as Mallory.

1. A physically-present attacker can observe Alice’s
physical interactions with the smart lock (including ac-
cidental ones, such as Alice inadvertently leaving her
door unlocked) and can also physically interact with
the smart lock at any time. However, this type of at-
tacker does not possess an authorized device and can-
not physically alter the lock.

2. A revoked attacker possesses legitimate access that
Alice gave her, which will be revoked in the near future.
For example, consider an apartment or AirBnB tenant
whose lease is expiring, or a household worker such as
a baby sitter who is being relieved of duty.

3. Thief: Mallory steals Alice’s authorized device.

4. In a relay attacker threat model, Mallory has an
accomplice, Michael, one of whom is near Alice and
the other is near the smart lock. They both possess
a Bluetooth device that can communicate with other
Bluetooth-enabled devices, as well as transmit data
between the two of them over long distances. Neither
of them are authorized to open Alice’s lock.

Our security analysis primarily focuses on these four non-
traditional adversaries; to a limited extent, we also explore
privacy risks posed by server compromise. Because these
locks augment conventional deadbolts, we do not analyze
purely physical attacks, such as lock picking.

3.2 Security Goals
The primary security goal of smart lock systems is to

prevent unauthorized access. Specifically, smart locks
should only lock or unlock when an authorized user intends
for the action to occur. In our analysis of existing systems,
we also consider two additional goals: access log integrity (an
adversary should not be able to tamper with the access logs
or prevent his/her use of the lock from being recorded) and
privacy from the lock manufacturer (the lock manufacturer
should not learn anything about the lock’s usage history).

3.3 State Consistency Attacks
Four out of the five locks we studied use a DGC architec-

ture, where smart locks lack a direct Internet connection to
the manufacturer’s servers. As a result, these smart locks
rely on the user’s mobile device for connectivity to the In-
ternet: the only way they can receive state updates from
the server is through messages relayed by the user’s mobile
device.

State consistency attacks exploit this trust model and net-
work design, allowing an attacker to evade revocation and
access logging. While it is tempting to trust the user’s de-
vice to faithfully relay messages between the lock and remote
server, we can see that this trust is inappropriate when Alice

3

State consistency (§ 3.3) Unwanted unlocking (§ 3.4) Privacy leakage (§ 3.5)

August thief physically-present attacker, relay attacker server compromise
Danalock thief, revoked attacker physically-present attacker, relay attacker server compromise
Kevo thief, revoked attacker physically-present attacker, relay attacker server compromise
Lockitron N/A (no auto-unlock feature) server compromise
Okidokeys thief*, revoked attacker* N/A (no auto-unlock feature)

Table 2: Summary of vulnerabilities discovered. The three columns correspond to our three classes of attacks. Non-empty cells correspond
to an attack we discovered, and list the kinds of attackers that can successfully execute the attack. For state consistency attacks against
Okidokeys, in some cases, the adversary only has a short time frame to execute the attack (see Appendix A for more details). Subsequent
to our analysis, Okidokeys released a geo-fencing auto-unlock feature like the one used in August and Danalock.

revokes someone’s digital key, as this corresponds to mark-
ing their device as untrusted. We show how an attacker,
Mallory, can prevent Alice from revoking Mallory’s access
(revocation evasion). We also show how Mallory can pre-
vent logging of her interactions with the lock (access log

evasion) by blocking all packets to the remote server. In
practice, these attacks are as simple as switching Mallory’s
phone into o✏ine mode.

We focus on two types of attackers: a thief who steals Al-
ice’s phone2 and a revoked attacker (e.g., a misbehaving ten-
ant whom Alice evicts from an apartment or an ex-spouse).

3.3.1 Revocation Evasion

All smart locks we studied allow owners to revoke other
users’ access via the lock’s mobile or website interface. To re-
voke a lost or stolen owner’s device, they either enable own-
ers to revoke other owners or they provide a “Lost Phone”
feature that forcibly logs a particular user’s account out on
all associated devices. We found that these revocation mech-
anisms can be evaded by an attacker for every lock that uses
a DGC architecture.

3.3.2 Access Log Evasion

As discussed in Section 2.1, the smart locks we studied
have a built-in access logging feature. In theory, this allows
vigilant owners to detect unauthorized access to their home.
However, we found that in most instances where Mallory
could evade revocation, she could also ensure that her in-
teractions with the lock were never recorded. This evasion
undermines the primary purpose of these logs and may in-
still a false sense of security in some users.

3.3.3 Case Studies: Danalock and Lockitron

Danalock: We use Danalock as a representative example
of state consistency attacks against locks that have a DGC
architecture; for details of these attacks against the other
DGC architecture locks, see Appendix A.

Danalock allows users of any access level to freely interact
with the lock, even when not Internet-connected; this en-
sures that users will be able to use the device if Danalock’s
servers are unreachable (e.g., Internet or cellular outage).
However, this also means that both a thief and a revoked at-

2Transportation and navigation apps may store Alice’s home
address, social media apps may contain Alice’s address in
her user profile, messaging/email services may contain invi-
tations or directions to Alice’s home, and finally, some smart
lock apps display the location of the user’s home within the
app. Any of this information can be used by a thief to iden-
tify the location of Alice’s home.

tacker (e.g., Airbnb tenant or ex-spouse who previously had
legitimate access) can evade revocation by simply switch-
ing the malicious phone to airplane mode. In Danalock
and other locks that use a DGC architecture, key revoca-
tion works by having the remote server push a revocation
message to the revoked user’s phone; however, if the phone
is o✏ine, then the server cannot push this information to
phone and the lock remains unaware of the revocation. Fur-
thermore, we also discovered that even if a legitimate user in-
teracts with the lock with a di↵erent device after issuing the
revocation, the o✏ine phone maintains access to the smart
lock: the server will not push revocation updates to the lock
via other devices. Finally, we found that both the mobile
app and website interface for Danalock display a confirma-
tion message that indicated a successful revocation, even
when a revoked phone maintained access via a state consis-
tency attack. This insecure UI design might lead users to
believe that the revocation succeeded, when in fact the thief
or revoked attacker still has access.

Similarly for access log evasion, because Danalock relies on
users’ devices to faithfully communicate their actions to the
remote server, an attacker who blocks the app’s packets from
reaching the server (e.g., by taking the phone o✏ine) can
prevent her interactions with the lock from being recorded.
Additionally, we found that even if other users subsequently
use the lock, the attacker’s interactions will not be updated
in any log viewable by a legitimate user because the lock
itself does not store and push log entries.

Lockitron: Lockitron devices use an embedded Wifi mo-
dem to connect directly to Lockitron’s servers. Each time
a user interacts with the lock, the user’s mobile app con-
tacts Lockitron’s servers, which check whether the user is
authorized to perform the request. If the user is authorized,
Lockitron’s servers push the request directly to the lock via
a long-lived TCP connection that the lock established dur-
ing its initial installation and setup. This design means that
legitimate users might be locked out if the Lockitron servers
are unavailable or unreachable. However, it has the advan-
tage that neither a revoked attacker nor a thief can evade
revocation since the server (which contains the authoritative
access control list) will process all interaction requests before
the smart lock receives them. Additionally, this direct con-
nectivity architecture enables Lockitron to prevent access
log evasion because the lock can independently transmit all
interactions to Lockitron’s servers. We discuss several of the
trade-o↵s between using a DGC architecture versus direct
connectivity in Section 4.1.

4

3.4 Unwanted Unlocking
August, Danalock, and Kevo provide some form of auto-

matic door unlocking. In these interaction models, whenever
a device with the correct access permissions enters BLE com-
munication range of the smart lock, the door will unlock au-
tomatically. While this interaction model greatly improves
the usability of lock systems, we found that all existing
locks that provide this functionality can undesirably unlock
the door by accident, allowing a physically-present attacker
to gain unauthorized access.3 Furthermore, prior work has
shown that relay attackers can exploit similar auto-unlock
mechanisms in car systems to gain unauthorized access [16].

3.4.1 Unintentional Unlocking

August and Danalock: August and Danalock both use lo-
cation services on the user’s phone to determine when to
auto-unlock the door. For this feature, the homeowner en-
ters the location of her home/smart lock in the lock’s mobile
app; the app then uses geo-fencing to establish a 50 meter
radius around the smart lock. If Alice exits and then subse-
quently re-enters this boundary, the lock will automatically
unlock her door once she gets close enough to establish BLE
communication with the lock. Once the door has been au-
tomatically unlocked in this way, the auto-unlock feature
remains dormant until Alice exits this radius again.

This geo-fencing design implicitly assumes that when Al-
ice leaves and returns home, she will re-enter her home
through her smart lock door; however, this will not always
be the case, as many homes have multiple entrances. Sup-
pose Alice installs a smart lock on her front door, but she
also enters and exits her home from the garage where her
car is parked. If Alice leaves through the garage and drives
to work in the morning, she will exit the geo-fence bound-
ary. When Alice returns home from work and parks in the
garage, her front door will automatically unlock when she
enters BLE range (up to 10 meters away) because she has re-
entered the geo-fence boundary. Searching online, we found
several reviews and user complaints that reported instances
of this vulnerability and expressed a desire for manufactur-
ers to securely provide this auto-unlocking functionality [26].
Likewise, if Alice lives in a large home with many roommates
and several entrances with smart locks, entering through one
entrance will automatically unlock all the other doors as Al-
ice moves around her house (causing her smart phone to
enter BLE range of the other locks). This leaves Alice’s
home open to theft and unwanted intrusion.

We verified the practicality of these attacks by installing
August on a door in the back of one author’s apartment.
The author exited the geo-fence boundary and re-entered
the apartment through the front door. We repeated this
procedure for ten trials and August automatically unlocked
the back door each time.

Kevo: Kevo uses a touch-to-unlock model for its auto-
matic unlocking mechanism. To unlock her lock, Alice taps
the deadbolt face when she wants to open her door from
the outside. The Kevo deadbolt face is augmented with a
capacitive touch sensor. If the lock registers a touch and

3This attack does not apply to Lockitron and Okidokeys
because they did not have an auto-unlock feature at the
time of our analysis. Subsequent to our analysis, Okidokeys
released a geo-fencing auto-unlock feature like the one used
in August and Danalock.

detects that an authorized device is within BLE range, it
toggles the lock from locked to unlocked or vice versa.

Since Bluetooth has a communication range of 10 meters,
this interaction model might leave Kevo locks vulnerable
to “side-of-the-door attacks”, where a physically-present at-
tacker attempts to gain unauthorized access by touching the
lock while an authorized device is located inside the home.
For instance, consider a neighborhood burglar who gains
access because Alice or a housemate left her smart phone
or key fob at home. Or, Mallory might be a disgruntled
acquaintance or unwelcome visitor who gains access while
Alice is at home. In order to prevent this kind of attack,
Kevo uses a proprietary algorithm based on Bluetooth di-
rectional sensing to detect if the authorized device is inside
or outside of the home and will only unlock if an authorized
device is detected to be outside the house. We found that
Kevo’s side-of-the-door detection algorithm seems to work
well in practice for most home layouts. For our experiment,
we installed Kevo on a standard (steel) apartment door. We
then placed an authorized device at six di↵erent locations
inside the apartment: five feet and ten feet directly behind
the lock, and five feet and ten feet behind the lock at forty-
five degree angles to the left and right. For each location,
we tried ten times to unlock the door from outside; across
all sixty trials, Kevo correctly rejected access.

However, we found that Kevo did not e↵ectively prevent
side-of-the-door attacks in homes with a “concave” door lay-
out, where part of the home extends past the Kevo-protected
door; see Figure 3 for an illustration. We tested this layout
by placing an authorized device in a room that was approxi-
mately fifteen feet to the side of the door and ten feet in front
of it. The attack succeeded in all ten of our trials. Thus,
if a home has a concave layout and an authorized user has
left her smartphone or keyfob in the room that Kevo thinks
is “outside” the house, a burglar would be able to enter the
house simply by tapping on the lock’s exterior to unlock the
door. This kind of attack requires no sophistication, and it
would be easy for burglars or intruders to recognize houses
that might be vulnerable (given Kevo’s distinctive exterior)
and try to gain access.

Discussion: For all three locks, these vulnerabilities rep-
resent important violations of home security. Each might
enable theft, physical intrusion, or dangerous physical con-
frontations with an intruder. Even if the worst never hap-
pens, door locks serve not only as a physical protection
mechanism but also help users feel comfortable and safe:
the presence of a locked door provides an emotional sense
of security. Thus, even if a homeowner discovers an unin-
tentionally unlocked door before an attacker can physically
capitalize on it, many homeowners might feel a violation
of their sense of security. Because the unwanted unlocking
arises due to shortcomings of the technology rather than
user mistakes (such as forgetting to lock the door), these
vulnerabilities could lead to loss of confidence and trust in
the system. Therefore, in addition to enabling physically-
present attackers to gain unauthorized access, unintended
unlocking vulnerabilities are significant because they violate
users’ trust in the system and their sense of physical safety.

3.4.2 Relay Attacks

Relay attacks also pose a risk to these auto-unlock mech-
anisms. While we did not acquire attack hardware to phys-
ically test whether these smart locks are vulnerable to these

5

Figure 3: A concave home layout, where Kevo’s side-of-the-door
defense does not work as desired. The arrows emanating from
the door represent regions that Kevo believes to be “outside of
the home”.

attacks, numerous prior papers have demonstrated the prac-
ticality of relay attacks against analogous auto-unlock pro-
tocols in cars [12, 16, 17, 21] and Bluetooth authentication
protocols [24]. However, as we discuss later in Section 5.3,
known defenses against relay attacks require new hardware,
which existing smart phones do not possess [7]. Thus, un-
like all the other attacks we discuss in this paper, we did
not physically verify the relay attacks discussed below, but
rather rely on prior work that demonstrates their feasibility
and the lack of defensive hardware in current mobile devices.
We discuss relay attacks because like the Unintentional Un-
locking vulnerabilities discussed above, the root cause of re-
lay attacks is the lack of a robust and secure mechanism
for capturing a user’s intended actions; we discuss ways of
addressing this underlying problem in Section 5.

Based on prior work, we believe a relay attacker could gain
unauthorized access against a Kevo lock as follows: When
Alice is away from her home, Mallory could follow Alice from
a distance of several meters while her accomplice, Michael,
taps Kevo’s deadbolt face to begin the touch-to-unlock pro-
cedure. Using his Bluetooth relay device, Michael captures
the lock’s Bluetooth authentication challenge message and
relays it to Mallory (e.g., over Wifi). Upon receiving the
relayed challenge from Michael, Mallory’s device broadcasts
it, captures the response from Alice’s device, and relays the
response back to Michael’s device, which broadcasts this re-
sponse to the smart lock. As with standard relay attacks,
because the lock communicates with a truly authorized de-
vice, Michael can gain unauthorized access to Alice’s home.

The geo-fencing design used by Danalock and August
makes relay attacks more di�cult, but does not entirely pre-
vent them. In particular, Mallory and Michael will need to
both conduct a Bluetooth relay attack against Alice and the
smart lock, and spoof a false geo-location onto Alice’s phone.
Based on Android source code analysis of the Danalock and
August apps, we found that these apps query passive geo-
location (such as WLAN-based positioning, based on nearby
Wifi network id’s) once every few minutes and occasionally
use GPS to confirm this location if passive geo-location is
unreliable. Unfortunately, several prior papers have shown
that a relay attacker (with no software on Alice’s phone)
can successfully spoof the location on Alice’s phone, regard-
less of either of these two geo-location methods [28, 35, 36].
Thus, a relay attacker can still gain unauthorized access by
first conducting a location spoofing attack on Alice’s phone
and then proceeding with a regular relay attack on Alice’s
phone and the smart lock.

3.5 Privacy Leakage
Although access logs help owners identify if unauthorized

access has occurred, they raise a number of privacy and
social relationship questions. While recent work by Ur et
al. [38] explores complex privacy and trust issues in teen-
parent relationships that result from home surveillance sys-
tems, our analysis of smart lock access logs specifically con-
siders privacy against the lock manufacturer’s servers. In
particular, we consider a smart lock to provide privacy from
the server if the servers cannot view a home’s access logs
without shipping updates to users’ mobile apps that exfil-
trate the logs and without compromising a homeowner’s lo-
gin credentials. This threat model corresponds to a number
of practical scenarios: first, this notion of privacy prevents
an insider (e.g., employee of the lock company) from abusing
her access to the servers to learn private information about
other users (e.g., to stalk an ex-partner). Second, this level
of privacy helps insulate the lock vendor from supplying the
access logs of all its users in response to government issued
requests; for example, recently the New York Attorney Gen-
eral’s o�ce issued a subpoena for all of AirBnB’s hosts in
New York [19]. Finally, defending against this threat model
provides some protection against an attacker who has com-
promised the remote server. If the attacker remains in the
system for a limited amount of time and does not push ma-
licious code to the clients (a more overt and risky action
that can later be reversed with a benign patch), then the
attacker will not be able to arbitrarily view the access logs
for all users who have purchased the lock.

To understand what information lock servers see, we in-
spected data sent from their apps to the server by conducting
active man-in-the-middle (MITM) attacks on interactions
with our own locks. No lock’s app, except for August, pins
their server’s certificate or public key. Because we could not
view August’s network tra�c, we also decompiled the An-
droid APKs for all five locks and inspected the access logging
source code of these apps.

We found that only Okidokeys provides privacy against
the server. The servers for all other locks receive access
logs in plaintext form. Although these systems use TLS to
encrypt access logs while in transit to the server, the server
receives the access logs in unencrypted form.

The Okidokeys lock provides privacy against the server be-
cause it only stores access logs locally on the lock. To view
the logs, users must be within BLE range of the lock; there
is no way to remotely view the logs through the mobile app
or website. However, this has a cost: for instance, parents
cannot check the audit logs from work to see whether their
child has returned home.4 In Section 4.2 we show how to
resolve this tension by providing privacy against the server
while allowing users to remotely view their home’s access
logs. Overall, our analysis shows that like many IoT de-
vices, most smart locks have followed the trend of accruing
formerly private information about users’ physical behaviors
and social dynamics. This underscores the need for a dis-

4Subsequent to our analysis, Okidokeys released a Push no-
tification feature that allows owners to receive a real-time
notification whenever a user interacts with her lock. This
mechanism could be securely implemented to maintain pri-
vacy if the lock and owner’s phone share a symmetric key
during their initial pairing (the server must not know this
key); push notifications could then be encrypted using this
symmetric key.

6

cussion on the nature of privacy in an Internet of Things
world and the development of techniques to meet both the
privacy and functionality demands of users.

4. DEFENSES
In this section we propose defenses against two of the three

attack categories listed earlier. We defer discussion of the
remaining category, Unwanted Unlocking, to Section 5.

4.1 Mitigating State Consistency Attacks
Comparing the security of smart locks against traditional

mechanical locks, it might seem like even when smart locks
are vulnerable to state consistency attacks, they o↵er secu-
rity on par with their traditional counterparts. For most
homes, keys do not have variable access levels, so the only
way to revoke a malicious key is to re-key or replace the
lock. Additionally, traditional door locks do not have any
access logging at all. However, because smart locks provide
features like access logs and digital revocation of users, the
average user might have di↵erent expectations for her lock’s
security and functionality. For example, when a user revokes
an attacker’s access and the lock displays a confirmation
to the user, an average person would expect that the lock
successfully revoked the attacker. Similarly, when a smart
lock’s access logs do not show any signs that an unautho-
rized user has interacted with the smart lock, a homeowner
might rationally believe that a revoked or unauthorized de-
vice hasn’t been used to access the user’s home, providing a
false sense of security and potentially incorrect belief of who
has accessed the user’s home.

State consistency attacks allow attackers to violate these
(rational) expectations of security that users have, based
on the functionality and confirmation messages provided by
smart locks. Should such an attack happen, even though an
analogous physical attack might have occurred with a tra-
ditional lock, these expectations may cause users to feel as
if their trust and expectations in the system have been vi-
olated and that the smart lock ultimately failed to provide
adequate security. As such, it is important that smart locks
provide robust defenses to these kinds of attacks, particu-
larly since several of the defenses we discuss do not require
any hardware changes to the lock and do not require direct
Internet connectivity on the lock.

For smart locks that follow a DGC architecture, state con-
sistency attacks fundamentally arise because they are dis-
tributed systems, and their design does not provide consis-
tency in the face of network partitions. Recall the CAP
Theorem for distributed systems: it states that if network
partitions can occur, it is impossible to provide full avail-
ability for the system’s service, while simultaneously main-
taining the latest, consistent state across all nodes in the
system [8]. Thus, no distributed system can provide perfect
consistency and availability in the face of partitions.

In the context of smart lock systems, we can consider the
smart lock, the lock server, and each user’s mobile device
to constitute the nodes of a distributed system; the lock’s
access control list and access logs constitute the important,
security-related state that the system seeks to keep consis-
tent. For most normal smart lock usage in a DGC archi-
tecture, the user’s mobile device will establish an ephemeral
edge in the network that connects the lock and server; in
this case no partitioning happens and the lock and server
can synchronize state (consistency) and allow all authorized

lock actions (availability). However, when a user’s device
does not connect to the lock’s servers and tries to interact
with the smart lock, the system su↵ers from a partition-
ing between the lock and server, and the smart lock must
choose between allowing interactions (availability) and re-
jecting requests from the user until the phone can connect to
the server and receive updates (consistency). Because parti-
tioning can happen for a number of benign reasons (cellular
outage, lock server outage, etc.), the correct choice between
availability and consistency is not always clear.

Eventual Consistency: To mitigate state consistency at-
tacks, we advocate for an eventual consistency model for
updating security-critical state, such as access control lists,
and for deciding when to allow access to users in the presence
of server unavailability.

The DGC architecture can support eventual consistency.
We assume that the lock and server share a long-term sym-
metric key, set up when the lock is initially installed, which
can be used to provide end-to-end secure communication be-
tween the two. The server stores the authoritative copy of
the access control state. Each time a user interacts with the
lock, the user’s mobile app fetches a signed, updated access
list from the server and sends it the lock; to prevent replay of
old access lists, the signed update message should include an
incrementing version number or timestamp. Upon verifying
that the updated list came from the server and is fresh, the
lock updates its access list accordingly. If the lock does not
receive a valid update from the server, it does not modify its
current access control list; however, it does allow the current
user to perform smart lock actions consistent with the user’s
permissions on the lock’s current access control list.

Against revocation evasion attacks, we see that once an
owner revokes an attacker’s access, this design only allows
a thief or revoked attacker to maintain unauthorized access
so long as no legitimate user uses the lock. As soon as any
honest user (not just the owner) interacts with the lock, the
server will be able to update the lock with the new access
control list that revokes the attacker’s access. Thus, Alice or
a housemate can immediately return home to ensure timely
revocation (giving the attacker a very small window to phys-
ically beat Alice to her home); or, if she does nothing, the
thief will lose access once Alice or any other housemate uses
the lock again in their normal routine (in most cases, giv-
ing the attacker only a few hours until end of day to gain
unauthorized access).

Okidokeys follows some elements of this model, but falls
short in key respects. Crucially, Okidokeys updates the
lock’s state only if an owner requests a manual sync. In con-
trast, our design automatically updates the lock’s state dur-
ing each interaction with any Internet-connected user (re-
gardless of the user’s access level), which we expect will be
more e↵ective.

Eventual consistency can also mitigate access log evasion.
The lock will have the authoritative copy of the latest log
entries, and it will eagerly push them to the server whenever
possible. Every time the lock executes an action, it incre-
ments a monotonically increasing sequence number, appends
the action and sequence number to its local queue of unac-
knowledged entries, and attempts to push a signed copy of
all entries in its queue to the server via the mobile device
currently interacting with it. The server responds with a
signed acknowledgment of the highest sequence number it
has received. When the lock receives a valid acknowledg-

7

ment, it clears all entries up to the last acknowledged entry,
retaining all unacknowledged entries. In this scheme, every
user that interacts with the lock will attempt to push new
events to the lock’s global access logs on the server. As soon
as any honest user interacts with the lock, all access events
will reach the server and be available for the lock’s owners to
view. Thus, an attacker can only hide her lock interactions
for a limited amount of time. Furthermore, the amount of
state the lock needs to store and transmit per usage will be
very small since the lock only needs to queue events when
a malicious access event occurs, or when a legitimate user
does not have Internet connectivity.

In conclusion, eventual consistency provides a good bal-
ance between robust availability and quickly ensuring the
smart lock upholds an average user’s security expectations.
In this model, the lock and server are guaranteed to re-
ceive new security-relevant state as soon as any Internet-
connected, honest user interacts with the lock—allowing
smart locks to o↵er more convenient and more secure key
management and intrusion detection than traditional locks.

Direct Connectivity: An alternative approach is to ensure
that the smart lock is directly connected to the Internet,
as Lockitron does. The server can then hold the authori-
tative copy of the state and communicate it directly to the
lock. However, this approach has a number of trade-o↵s
that have led many locks and other IoT devices to adopt
a DGC architecture. Economically, the direct connectivity
model requires adding additional hardware, which increases
the integration and manufacturing costs of the device. Fur-
thermore, directly connecting these devices to the Internet
increases their vulnerability to large-scale remote compro-
mise. Whereas a direct connectivity architecture could allow
remote adversaries to directly access and exploit vulnerabili-
ties in IoT devices, a DGC architecture requires an attacker
to compromise and control a user’s gateway device before
being able to infect IoT devices like smart locks. Addition-
ally, incorporating and using an embedded Wifi modem con-
sumes more power from IoT devices. Lockitron attempts to
address this problem by switching the lock into hibernation
after it has been idle for a short time. When a user wants
to subsequently use Lockitron, she must knock on the door
to active a sensor in the lock that will wake the device from
hibernation. While this conserves battery, it leads to longer
wait times for the smart lock to unlock the door and there-
fore worse usability. Finally, even for locks that use a direct
connectivity model, we recommend that they adopt an even-
tual consistency policy: whenever a user interacts with the
lock, the lock should poll the server for updates; but if the
lock cannot establish a connection, it should use its current
access control list to make decisions about whether to grant
the user’s request or not. This will ensure that users will
not get locked out of their home in the event of a variety of
common, but benign instances where the lock cannot contact
the server: the user’s home Internet connection fails (e.g., a
power or Internet outage) or if the smart lock’s servers are
temporarily unavailable (e.g., server crash) or permanently
down (e.g., the manufacturer goes out of business).

4.2 Limiting Privacy Leakage
As Section 3.5 explains, Okidokeys provides access log pri-

vacy against the lock’s servers but provides limited capabil-
ities to remotely view the lock’s access logs; the other locks
allow remote viewing but do not provide privacy against

their servers. We show how to provide privacy against the
lock’s servers while allowing remote access log viewing.

Our threat model considers an adversary at the remote
server who has occasional access to content seen by the
server, but cannot push updates or modify application code
sent to the user’s mobile app or web browser. This corre-
sponds to several practical, server-side adversaries discussed
earlier (§ 3.5).

To provide both this level of security and our desired func-
tionality, we propose the following design:

1. During installation/reset, the lock generates a long-
lived symmetric encryption key, which we call the “pri-
vacy key.”

2. Every time the lock records a log entry, it encrypts
the entry with its privacy key using a standard au-
thenticated encryption scheme; thus, the server only
sees encrypted log entries but not the decryption key.

3. When the lock interacts with an owner’s mobile de-
vice, the lock checks to see if the app has a copy of the
privacy key; if not, the lock transmits the privacy key
to the mobile device, which the app then stores, en-
crypted using a fresh key derived from the user’s pass-
word (using a suitable slow hash). Note that since this
interaction occurs over a local, secure wireless chan-
nel such as BLE, the server never sees the privacy key
when it’s transferred from the lock to an owner’s mo-
bile device.

4. Finally, to support access log viewing from the lock’s
website interface, the mobile app uploads the en-
crypted privacy key to the server, which stores it with
the other account information for that user.

5. Whenever Alice wants to view her lock’s access logs
from her mobile app, the app can decrypt using her
account’s password to recover the privacy key and then
decrypt each log entry. The web interface can similarly
use client-side Javascript to perform the same opera-
tions locally on Alice’s machine, letting Alice view the
access logs in her browser.

This simple scheme provides privacy against the server
because the server only sees encrypted log entries and never
learns the decryption key. While a server compromise could
enable the adversary to brute-force Alice’s account password
and subsequently obtain her lock’s privacy key, any adver-
sary who learns Alice’s password can simply login to her
account and view the access logs anyways. Thus, this de-
sign provides full functionality while still providing relatively
strong privacy against the server.

5. SECURE AND USABLE INTENT COM-
MUNICATION

So far, we have proposed defenses against two of the
three attack categories. Defending against Unwanted Un-
locking is more challenging. The Unwanted Unlocking at-
tacks we found result from a tension between usability and
security. Automatic unlocking seeks to make user interac-
tions as fast and e↵ortless as possible. Unfortunately, as
both our work studying smart locks and prior work study-
ing auto-unlocking in cars shows [18], existing auto-unlock

8

mechanisms can often be exploited by an attacker to obtain
unauthorized access; in our study, all existing smart locks
that provide auto-unlocking functionality are vulnerable to
at least one form of Unwanted Unlocking attacks.

Fundamentally, the vulnerabilities in existing auto-unlock
mechanisms arise because they try to measure the user’s
proximity but they do not try to verify the user’s intentions:
just because a user is near the lock does not imply the user
intends to unlock the door. This section explores three ap-
proaches for securely and usably conveying a user’s intention
to a smart lock system.

5.1 Goals and Threat Models
We focus on defending against physically-present attack-

ers and relay attacks. We consider an unlocking intent pro-
tocol to be secure if it prevents these two classes of attackers
from successfully unlocking the door.

The primary benefit of an auto-unlock feature is a fast,
simple interaction model that only requires a user to ap-
proach or touch her door to unlock it. Thus, ideally a good
mechanism should provide a fast unlock time (small amount
of idle time spent waiting for a door to unlock) and a natural
interaction model (the process for unlocking the smart lock
should not require additional steps beyond approaching and
touching the door, which the user needs to do anyway).

5.2 Combining Geo-fencing and Touch-to-
unlock

Geo-fencing treats the process of a user leaving and re-
turning home as an indication that the user intends to un-
lock her door. Unfortunately, as discussed earlier (§ 3.4),
this approach can unintentionally unlock the owner’s door
without her realizing it or intending to.

To make this process more robust, one could combine
geo-fencing with Kevo’s touch-to-unlock model: the door
should unlock only if the user not only exits and re-enters
the geo-fence boundary, but also touches the exterior lock
face within a set time period after re-entering the boundary.

This protocol has some limitations. It still grants unau-
thorized access to a physically-present attacker who touches
the lock as Alice returns home. If an adversary touches
the front door lock as Alice enters through the garage, this
protocol will allow the attacker to unlock the door because
it does not have a mechanism for verifying whether it was
actually Alice that touched the door. Additionally, as dis-
cussed in Section 3.4, even though geo-location raises the
bar against relay attacks, prior work has shown that an at-
tacker can use location spoofing to trick Alice’s phone into
believing it has re-entered her home’s geo-fence boundary
and then conduct a standard relay attack on the door’s
auto-unlock protocol. Fundamentally, the combination of
geo-fencing and touch-to-unlock does not protect against re-
lay attackers because the mechanisms it uses to compute the
location of a user/distance from her lock are not designed
to be secure against adversarial spoofing.

5.3 Location-Limiting Defenses
Another possibility is to use protocols specifically designed

to verify the location of the user more accurately. Securely
verifying that a user is only a short distance away from the
exterior of her door would stop many attacks. We consider
two possible instantiations of this approach.

NFC: One natural approach for verifying that the smart

lock and key are within a small distance of each other is
to use NFC as the wireless communication channel between
the lock and key. NFC is specifically designed for very short-
range communication, typically no more than 10 cm [14].

This approach mitigates threats posed by a physically-
present attacker, such as unintentionally unlocking the
wrong door and side-of-the-door attacks. However, prior
literature has shown that NFC is vulnerable to relay at-
tacks [17, 21]. In particular, the small communication dis-
tance imposed by NFC results from the short-range sig-
nal/field strength generated by NFC devices; however, be-
yond this practical limitation, NFC protocols do not perform
any computation to securely verify that the two devices are
actually bounded by a short distance. As a result, prior work
has built several prototypes that conduct successful relay at-
tacks against NFC (including some where one attacker can
remain several meters away from the victim by using a sim-
ple antenna to boost the signal between the attacker’s device
and the victim’s device) [17,21].

Distance-Bounding Protocols: A more secure approach is
to use distance-bounding protocols to verify that the user
is very near the lock. In these protocols, the two communi-
cating devices engage in a series of challenge-response steps
designed to upper-bound the distance between them. The
protocols compute this bound by calculating the round-trip
time (RTT) of each challenge-response step [7]. The speed
of light makes implementing distance bounding extremely
challenging, but existing work has demonstrated the ability
to verify distance to within 12cm accuracy using specialized
hardware and custom protocols [32].

A lock could use these distance-bounding primitives for
secure auto-unlocking. Concretely, a user’s device would
authenticate to the lock over BLE as normal when it
comes within BLE range, then repeatedly run the distance-
bounding protocol. Once the lock can verify that the user
is within a short distance (e.g., one foot of the door), it
runs the side-of-the-door detection algorithm to check that
the user is on the outside; if all these checks pass, it auto-
matically unlocks. Unfortunately, BLE currently does not
support distance bounding and mobile devices do not cur-
rently have the special hardware needed to support distance
bounding, but if this support became available in the future,
this could be an appealing solution to the attacks we found.

This protocol is secure against relay attacks because its
distance-bounding computation will prevent a remote at-
tacker from spoofing the location of an authorized key. It
also prevents unintentional unlocking. The short distance
bound requires Alice to be very close to her door before
it unlocks, and the side-of-the-door detection ensures that
the door will only unlock if Alice is on the outside, pre-
venting a scenario where an adversary convinces Alice to
come near the inside of her door (e.g., to look out of the
peephole to see who’s knocking on her door). The proto-
col provides a natural and convenient interaction model, as
the door automatically unlocks as soon as Alice comes close
enough. We found that Kevo’s side-of-the-door detection
algorithm completed instantly in 50 of 50 trials, so this pro-
tocol should have extremely fast response times. However,
despite achieving all of our security and usability goals, this
scheme requires hardware additions to the lock and users’
mobile devices to enable distance-bounding, so it cannot be
deployed today.

9

Figure 4: The Touch-Based Intent Communication (TBIC) protocol. Solid lines represent
communications sent over a secure wireless channel, such as TLS or BLE’s secure pairing
channel. Dashed lines represent communications sent over a body/touch-limited channel
such as bone conduction or capacitive coupling. By withholding the unlock request until
the wearable device receives a signal over the touch-limited channel, we require that an
attacker engage in physical contact with the user in order to successfully execute an
attack.

Figure 5: The setup and placement of
our bone conduction microphone on a re-
searcher’s wrist and the hand-held vibra-
tor we used to transmit the intent signal.

5.4 Touch-Based Intent Communication
A third approach is to use touch to convey intent. When

an authorized user touches the exterior deadbolt or grabs
the doorknob, this provides a robust indication that the user
intends for the door to unlock. We implement this idea by
transferring an“intent signal” between the lock and key over
a physically-limited data channel, using body-area network-
ing (BAN) [34]. BAN enables multiple devices to transfer
data using the human body as the wireless communication
medium, creating a touch-limited channel where data only
propagates to devices touching the user’s body. In partic-
ular, we propose the Touch-Based Intent Communication
(TBIC) protocol, shown in Figure 4. The core idea is that
an authorized device will issue a request to unlock the door
if and only if it receives an intent signal from the smart lock
over the touch-limited channel.

Our scheme assumes that the user wears a wearable de-
vice such as a smart watch, bracelet, or ring. The wearable
device needs a wireless radio (e.g., BLE or Wifi) so it can
communicate securely with the lock. Additionally, we as-
sume that the wearable device and lock contain hardware
that allows the lock to send a message to the wearable de-
vice via a physical BAN channel. The TBIC protocol works
as follows:

1. When Alice enters wireless communication range with
the lock (e.g., BLE communication range), her wear-
able device and the smart lock establish a secure chan-
nel over the wireless link using a long-term key that
was exchanged during the initial smart lock installa-
tion. For instance, they might use BLE’s pairing-based
channel or DTLS for the secure channel.

2. To lock or unlock her door, Alice touches the exterior
face of the lock.

3. When the lock’s capacitive sensor registers a touch,
the smart lock will transmit a one-bit intent signal
to Alice’s wearable device over the physical body-area
channel.

4. Upon receiving a valid intent signal over the physical
channel, the wearable device will send a timestamped
“Unlock” message over the secure wireless channel.

5. When the smart lock receives an “Unlock” message,
it checks whether it has recently sent an intent sig-
nal (e.g., within the past 5 seconds) and whether the
timestamp also falls within that short time window. If
all these conditions are met, the smart lock will unlock
the door.

The TBIC protocol could be instantiated in a number of
di↵erent ways, depending upon the body-area network tech-
nology used. We are aware of three possible technologies:
capacitive coupling, galvanic coupling, and bone conduction.
Capacitive and galvanic coupling have been explored exten-
sively in the electrical engineering literature [9, 23, 34] and
appear to be plausible candidates for deployment; for in-
stance, they have been standardized in the IEEE 802.15.6
WBAN standards [1]. These two techniques allow data to
be transmitted through the human body using electric sig-
nals sent between two electrodes on a user’s body: capac-
itive coupling induces di↵erences in electric potential be-
tween the two electrodes to transmit data, while galvanic
coupling varies the electric current through the body [34].
While work in the early 2000’s showed that capacitive and
galvanic coupling can achieve data transfer rates of 5–10
Kb/second, more recent work suggests that capacitive cou-
pling can reach speeds of up to 10 Mb/second [34]. Several
companies have even presented new devices that use capaci-
tive coupling: for instance, Ericsson’s “Connected Me”demo
at CES 2012 showed a smartphone playing music to a set of
speakers in real time through the human body [13].

In contrast to the established body of literature exploring
capacitive and galvanic coupling, there has been little re-
search on bone conduction for BAN [40]. Bone conduction is
widely used in hearing aids and specialized headsets to trans-
mit audio to the wearer (as an earphone) and record audio
from the wearer (as a microphone) in real time [3], but not
for body-area networking. We show below that bone con-
duction could provide a viable alternative to capacitive and
galvanic coupling and present Vibrato, a concrete instantia-
tion of TBIC using bone conduction. This lends additional
reason to believe that TBIC could be feasible to deploy for
securing smart locks and other Internet of Thing devices.

5.4.1 Vibrato: Touch-Based Intent Communication

via Bone Conduction

10

Scenario µ � Unlock Percent

Benign user 498 123 100%
Silence 5.97 4.91 0%
Talking 4.03 2.85 0%
Walking 16.47 13.91 0%
Typing 28.18 13.92 0%
Computer tone 6.39 2.56 0%
Vibrator tone 5.19 2.98 0%
Phone vibration 6.42 0.97 0%
Table surface 83.93 74.47 6%

Table 3: Summary of signal energies at 80 Hz for each of our
experiments. The first five scenarios corresponds to normal us-
age. The last four rows corresponds to several attack scenarios
discussed in Section 5.4.1. Signal energies have been scaled down
by a factor of 108. The last column shows the fraction of trials
where Vibrato would have unlocked the door, using an energy
threshold of 200⇥ 108.

The Vibrato protocol is an instantiation of TBIC: the lock
transmits an intent signal by vibrating the door handle or
lock face, and the user’s wearable device uses a bone con-
duction microphone (touching the user’s skin) as a vibration
sensor. When the user touches the door handle or lock face,
her wearable device will detect the vibration and send an
unlock command.

We developed a physical prototype to evaluate Vibrato
using a $40 earbone conduction microphone and a hand-
held, battery-powered massage vibrator. Current wearable
devices do not contain a bone conduction microphone, so we
modeled the wearable device by taping the bone conduction
microphone to one of the researcher’s wrists at the location
where a watch or bracelet would be positioned; we then used
the low-powered vibrator to model the door knob of a smart
lock implementing Vibrato (see Figure 5). The wearable
device would use its bone conduction microphone to record
audio and analyze it in real time to detect the intent signal.

In our prototype, the hand-held massager vibrates at 80
Hz. To recognize the intent signal, we bandpass-filtered the
audio signal; for each 100 millisecond window, we computed
the total signal energy in the range [70 Hz, 90 Hz] by sum-
ming the squared amplitudes of the filtered signal. We then
compared the window’s total energy to a fixed threshold to
detect whether an intent signal is present.

Empirical Assessment: We conducted a series of nine ex-
periments to assess the feasibility, usability, and security of
our prototype of Vibrato. Table 3 summarizes the results of
our experiments.

Because Vibrato only uses a single bit to indicate a user’s
intent to unlock (whether the energy exceeds the threshold
or not), we need to ensure that everyday activities within
BLE range of the lock do not cause Vibrato to unintention-
ally unlock the door. To measure the total energy when an
authorized user unlocks the door, we ran 100 trials where a
researcher held the vibrator in his hand for three seconds.
Then, we ran 20 trials (each three seconds in duration) to
measure the total energy for four scenarios corresponding to
everyday, non-unlocking usage: standing in silence, talking,
walking and waving one’s arm, and typing on a keyboard.
As Table 3 shows, there is more than an order-of-magnitude
di↵erence between the signal strength when touching the
vibrator than when not (row 1 vs. rows 2–5); setting the de-

Figure 6: CDF of total signal energy, from our experimental eval-
uation of Vibrato; the x-axis is log-scaled. Green dots (right
curve) denote trials for benign usage (the first row of Table 3).
Orange dots (left curve) are a composite of the next seven rows
of Table 3 (trials for benign non-use and all attacks other than
the table surface attack). Red dots (middle curve) denote trials
for an attacker who places the vibrator on a table surface that
the user is touching. The vertical black line denotes our empiri-
cal threshold at 2 ⇥ 1010. Only three of the table-surface attack
attempts succeeded; all other attack attempts failed. Vibrato

correctly unlocked for a benign user in all 100 attempts.

tection threshold at 2⇥1010, we found that Vibrato correctly
unlocks the door in 100% of trials where the user touched
the mock-lock and correctly does nothing in 100% of the
remaining trials.

We also conducted experiments to understand how much
security Vibrato provides against motivated relay attackers
who might try to spoof the intent signal. For instance, dur-
ing a relay attack, the attacker might try playing a loud
tone near Alice, turning on a vibrator near Alice, calling
Alice on her phone (causing her phone to vibrate in her
hand), or tricking Alice into touching an object or surface
that the attacker is vibrating. We conducted four experi-
ments to simulate these attacks: an author stood one foot
away from a laptop playing an 80 Hz audio tone at max
volume; an author stood one foot away from the hand-held
massager turned on (creating a vibrating noise at the tar-
get frequency), without touching it; an author held a phone
that vibrated at the phone’s default vibration speed; and
an author touched a table one foot away from the vibrating
massager on top of it. We ran 20 trials for the first three
scenario and 50 trials for the last scenario since we expected
it might be the most powerful attack.

As Table 3 indicates, none of these attacks is e↵ective.
There is an order-of-magnitude di↵erence in received total
energy between the first three attack scenarios and benign
unlocking, and these attacks failed in every case (none of
the 60 attack trials exceeded the 2 ⇥ 1010 threshold). The
table-surface attack was slightly more successful, success-
fully spoofing the intent signal in 6% of trials. We consider
this low success rate acceptable, as this attack can only be
executed by an attacker who successfully convinces the user
to touch an object vibrating at a specifically targeted fre-
quency while simultaneously conducting a relay attack with
a confederate present at the user’s home.

Thus, we believe that in addition to capacitive and gal-
vanic coupling techniques, bone conduction can serve as
a secure implementation for a TBIC protocol. To attack
Vibrato, a relay attacker must convince Alice to touch a

11

malicious object that transmits a physical signal identical
to her lock, while simultaneously conducting the relay at-
tack. Our experiments suggest that even if an attacker can
do this, the success rate will be low: 6%. Furthermore,
physically-present attackers cannot gain unauthorized ac-
cess because Alice’s wearable device must receive a physical,
touch-limited signal (while in BLE range of the lock) before
it unlocks the door.

Our experiments also suggest that Vibrato meets our two
usability goals for auto-unlock protocols: a natural interac-
tion model and a fast unlock time. Users only need to grab
the doorknob or touch the lock face and wait a few hundred
milliseconds for the door to unlock. As users already need
to touch the doorknob to open the door, this seems like a
natural and intuitive procedure. Additionally, the latency is
modest: about 100ms for the signal recording, plus 10ms for
computation (in our experiments) and a few milliseconds for
the final wireless transmission. Finally, the scheme achieved
100% accuracy for benign usage in our experiments.

Limitations: Vibrato and touch-based intent protocols
in general do have a few limitations. First, like distance-
bounding protocols, Vibrato requires the use of new hard-
ware in both the user’s device and the smart lock—though
this hardware is already mature and available on the mar-
ket. Vibration generators are commonplace in phones and
could be incorporated into locks, and existing bone con-
duction microphones could be added to wearable devices.
Second, because Vibrato relies on sensing vibrations in the
human body, the bone conduction sensor must be touching
the user’s body, which might not happen with a loose watch
or wristband/bracelet. Finally, users will need to touch the
door with the hand they wear their wearable device on. For
smart watches, this means touching the door with the watch-
wearing hand, which is not the dominant hand for most
users.

While these limitations restrict the near-term deployment
of TBIC protocols, our experiments show they can success-
fully achieve all of our security and usability goals. More
broadly, we suggest that using touch as an indicator of a
user’s intent (rather than inferred proximity) might be a
powerful primitive for securing users’ interactions with In-
ternet of Things devices.

6. RELATED WORK
Digital Locks: Previously, the Grey project at CMU built
and deployed a digital lock system for o�ce doors in their
department [5]. They considered a challenging setting where
access credentials are scattered across di↵erent administra-
tive entities in a non-trivial distributed system, and they
designed several ways that a device can prove to a lock that
it is authorized. Additionally, they presented a technique
for automatically inferring and resolving misconfigurations
in the system’s access control policy that can correctly pre-
dict the intended access policy 58% of the time [6]. Finally,
their work identified several lessons about usability of smart
lock systems. Of particular note, they found that a major
factor in the appeal and usability of a smart lock system
is the reduction in the time spent idly waiting for a door
to unlock; delays of just a few seconds lead to significant
user dissatisfaction and complaints [4]. While their findings
shaped the two usability goals in our exploration of secure
intent communication protocols, Grey was built before the

emergence of modern smart phones and designed for o�ce
doors. As such, their system design, security goals, usage
models, and attack vectors di↵er significantly from modern
consumer-oriented smart locks and other smart home de-
vices in the Internet of Things.

Security and Privacy in Smart Homes: Apart from this
early work on door locks, several researchers have studied
the security and privacy of emerging smart home technol-
ogy. Kim et al. conducted a user study to identify intu-
itive access control policies for future smart homes; based on
their user study, they proposed four access control groups:
full control, restricted control, partial control, and minimal
control [22]. These levels largely resemble the four access
levels provided by modern smart locks. Ur et al. examine
three home-automation devices and find that all of them
have di↵erent access control policies and mechanisms, and
none of them provide access control functionality that fully
maps to intuitive user expectations and desires in the con-
text of their home [37]. More broadly, Denning et al. [11]
present a general taxonomy of attacks and security goals
for protecting a user’s privacy and physical assets in smart
homes. They find that smart homes have a larger and more
complex attack surface than existing systems because of
the broad range of heterogeneous home devices, the lack of
a professional administrator to oversee and maintain these
devices, a diverse set of variable and personalized security
goals that each home resident might want, and potentially
new attack scenarios enabled by cyber-physical, sensor-rich
devices. Recently, Oren et al. have explored new attacks
enabled by smart TVs; rather than demonstrating attacks
on the TV itself, they show that communication protocols
used by smart TVs allow attackers to launch attacks through
smart TVs against traditional computer networks and sys-
tems [31]. Finally, Ur et al. examined di↵erences between
teen and parent privacy and security perspectives on home
surveillance systems and smart lock access logs [38]. Their
study illustrates how emerging smart devices create compli-
cated and conflicting notions of privacy and security within
households. In contrast, our work studies the security and
privacy risks posed by external adversaries.

7. CONCLUSION
In this paper we studied the security of commodity home

smart locks with the goal of informing the design of future
Internet of Things devices. We presented three classes of
attacks and showed that existing smart locks are vulnerable
to many of these attacks, enabling adversaries to gain unau-
thorized home access and learn private information about
the user’s household.

For two of these attack categories, we present defenses
that can be implemented today without any hardware
changes to existing devices. The third class of attacks is
more challenging to stop without sacrificing usability, and
no existing system provides an adequate defense. We ex-
plore three approaches to defend against this final class of
attacks. One of these builds upon a novel mechanism we
introduce, a bone conduction channel, which we implement
and evaluate, demonstrating its ability to achieve our secu-
rity and usability goals. Ultimately, we believe that if smart
locks were to adopt the defenses we suggest, they could pro-
vide both better convenience and better security than their
mechanical counterparts. More broadly, the design vulnera-

12

bilities we discovered and the defenses we proposed can help
enhance the security of similar Internet of Things devices,
while maintaining the new functionality they provide.

8. ACKNOWLEDGEMENTS
We thank Linda Lee and Peter Bailis for assisting us

with two of our smart lock case studies, and Kurt Thomas,
Michael McCoyd, Frank Li, and John Chuang for insightful
discussions and feedback. This work was supported by the
Intel Science and Technology Center for Secure Comput-
ing (ISTC-SC), AFOSR under MURI award FA9550-12-1-
0040, FORCES (Foundations Of Resilient CybEr-Physical
Systems) under NSF award numbers CNS-1238959, CNS-
1238962, CNS-1239054, CNS-1239166), and generous sup-
port from Cisco Systems.

9. REFERENCES
[1] IEEE Standard for Local and metropolitan area

networks - Part 15.6: Wireless Body Area Networks,
2012. http://standards.ieee.org/findstds/standard/
802.15.6-2012.html.

[2] August. http://august.com/.
[3] Lindsey Banks. Best bone conduction headphones of

2015. http:
//www.everydayhearing.com/hearing-technology/
articles/bone-conduction-headphones/, July 2015.

[4] Lujo Bauer, Lorrie Faith Cranor, Michael K Reiter,
and Kami Vaniea. Lessons learned from the
deployment of a smartphone-based access-control
system. In Symposium on Usable Privacy and Security
(SOUPS), 2007.

[5] Lujo Bauer, Scott Garriss, Jonathan M McCune,
Michael K Reiter, Jason Rouse, and Peter Rutenbar.
Device-enabled authorization in the grey system. In
International Conference on Information Security,
2005.

[6] Lujo Bauer, Scott Garriss, and Michael K Reiter.
Detecting and resolving policy misconfigurations in
access-control systems. ACM Transactions on
Information and System Security (TISSEC), 2011.

[7] Ioana Boureanu and Serge Vaudenay. Challenges in
distance bounding. Security & Privacy, IEEE, 2015.

[8] Eric Brewer. CAP twelve years later: How the “rules”
have changed. Computer, 2012.

[9] Min Chen, Sergio Gonzalez, Athanasios Vasilakos,
Huasong Cao, and Victor C Leung. Body area
networks: A survey. Mobile networks and applications,
2011.

[10] Danalock. http://www.danalock.com/.
[11] Tamara Denning and Tadayoshi Kohno. Empowering

consumer electronic security and privacy choices:
Navigating the modern home. In Symposium on
Usable Privacy and Security (SOUPS), 2013.

[12] Saar Drimer and Steven J Murdoch. Keep your
enemies close: Distance bounding against smartcard
relay attacks. In USENIX Security, 2007.

[13] CES 2012: Ericsson.
https://www.youtube.com/watch?v=pJ5fSWspBpo.

[14] NFC Forum. http:
//nfc-forum.org/what-is-nfc/about-the-technology/.

[15] Behrang Fouladi and Sahand Ghanoun. Security
evaluation of the Z-Wave wireless protocol. Black Hat
USA, 2013.

[16] Aurélien Francillon, Boris Danev, Srdjan Capkun,
Srdjan Capkun, and Srdjan Capkun. Relay attacks on
passive keyless entry and start systems in modern
cars. In NDSS, 2011.

[17] Lishoy Francis, Gerhard Hancke, Keith Mayes, and
Konstantinos Markantonakis. Practical NFC
peer-to-peer relay attack using mobile phones. In
Radio Frequency Identification: Security and Privacy
Issues. 2010.

[18] Lishoy Francis, Gerhard P Hancke, Keith Mayes, and
Konstantinos Markantonakis. Practical relay attack on
contactless transactions by using NFC mobile phones.
In Radio Frequency Identification: Security and
Privacy Issues, 2010.

[19] David Hantman. Fighting for you in New York.
http://publicpolicy.airbnb.com/fighting-for-you/,
October 2013.

[20] Kevo. http://www.kwikset.com/kevo/default.aspx.
[21] Ziv Kfir and Avishai Wool. Picking virtual pockets

using relay attacks on contactless smartcard. In
Security and Privacy for Emerging Areas in
Communications Networks (SecureComm), 2005.

[22] Ti↵any Hyun-Jin Kim, Lujo Bauer, James Newsome,
Adrian Perrig, and Jesse Walker. Challenges in access
right assignment for secure home networks. In HotSec,
2010.

[23] Benôıt Latré, Bart Braem, Ingrid Moerman, Chris
Blondia, and Piet Demeester. A survey on wireless
body area networks. Wireless Networks, 2011.

[24] Albert Levi, Erhan Çetintaş, Murat Aydos,
Cetin Kaya Koç, and M Ufuk Çağlayan. Relay attacks
on Bluetooth authentication and solutions. In
Computer and Information Sciences (ISCIS). 2004.

[25] Lockitron. https://lockitron.com/.
[26] Farhad Manjoo. The August Smart Lock Shows Why

You Should Stick with Dumb Keys.
http://bits.blogs.nytimes.com/2014/10/14/
the-august-smartlock-shows-why-you-should-stick-with-dumb-keys/,
Oct 2014.

[27] Mercedes-Benz. http://techcenter.mercedes-benz.com/
en/keylessgo/detail.html.

[28] Elinor Mills. Drones can be hijacked via GPS spoofing
attack. http://www.cnet.com/news/
drones-can-be-hijacked-via-gps-spoofing-attack/, June
2012.

[29] Nest. https://nest.com/.
[30] Okidokeys. https://www.okidokeys.com/.
[31] Yossef Oren and Angelos D Keromytis. From the

aether to the ethernet–attacking the internet using
broadcast digital television. In USENIX Security,
2014.

[32] Kasper Bonne Rasmussen and Srdjan Capkun.
Realization of RF distance bounding. In USENIX
Security, 2010.

[33] Mike Ryan. Bluetooth: With low energy comes low
security. In WOOT, 2013.

[34] M Seyedi, Behailu Kibret, Daniel TH Lai, and Michael
Faulkner. A survey on intrabody communications for

13

body area network applications. IEEE Transactions
on Biomedical Engineering, 2013.

[35] Nils Ole Tippenhauer, Christina Pöpper,
Kasper Bonne Rasmussen, and Srdjan Capkun. On
the requirements for successful GPS spoofing attacks.
In ACM Conference on Computer & Communications
Security (CCS), 2011.

[36] Nils Ole Tippenhauer, Kasper Bonne Rasmussen,
Christina Pöpper, and Srdjan Čapkun. Attacks on
public WLAN-based positioning systems. In
Proceedings of the 7th International Conference on
Mobile systems, applications, and services, 2009.

[37] Blase Ur, Jaeyeon Jung, and Stuart Schechter. The
current state of access control for smart devices in
homes. In Workshop on Home Usable Privacy and
Security (HUPS), 2013.

[38] Blase Ur, Jaeyeon Jung, and Stuart Schechter.
Intruders versus intrusiveness: teens’ and parents’
perspectives on home-entryway surveillance. In ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, 2014.

[39] Android Wear. https://www.android.com/wear/.
[40] Lin Zhong, Dania El-Daye, Brett Kaufman, Nick

Tobaoda, Tamer Mohamed, and Michael Liebschner.
Osteoconduct: Wireless body-area communication
based on bone conduction. In Proceedings of the ICST
2nd International Conference on Body Area Networks,
2007.

APPENDIX
A. STATE CONSISTENCY ATTACKS: RE-

VOCATION EVASION
Kevo: We found that the same attacks that work against
Danalock also work against Kevo. By conducting attacks
analogous to the ones against Danalock, we found that a
thief can successfully evade all of Kevo’s revocation mecha-
nisms (including revocation through its website) by blocking
all packets from the lock’s servers from reaching the stolen
mobile device (e.g., by switching it to o✏ine mode). Like
Danalock, Kevo allows any user with a resident key or an
owner key to use the lock without Internet connectivity.
Thus, both thieves and revoked attackers (e.g., an ex-spouse
or apartment tenant) can also evade all revocation mech-
anisms, despite misleading messages from Kevo indicating
the revocation succeeded. Additionally, Kevo’s servers will
not push revocation updates via other devices, so the o✏ine
phone can maintain indefinite access.

August:
August allows an owner to revoke another user’s access

through its mobile app. The August website also provides a
“Lost Phone” feature on its website, which logs the user out
on all her devices.

While August requires users with resident, recurring
guest, and temporary guests keys to have their phone
connected to the Internet, phones that have owner keys
can freely interact with the lock even when not Internet-
connected. As a result, we found that if Mallory steals an
owner’s phone, she can simply switch the phone to airplane
mode, and she will retain access to the lock. As with Kevo
and Danalock, key revocation in August works by having the
remote server push a revocation message to the lock when
the user’s phone unlocks the door; however, if the phone is
o✏ine, the server cannot push this information to the lock
and the lock remains unaware of the revocation. Similarly,
the “Lost Phone” feature on August’s website has no e↵ect if
Alice’s stolen phone has been put into airplane mode, as the
server cannot push a message to the mobile app instructing
it to log Alice out. Like Danalock and Kevo, we found the
August’s revocation mechanism is not designed to allow the
server to push revocation messages to the lock via other de-
vices; thus, even if Alice logs in to a new device and interacts
with the lock, her (o✏ine) stolen phone will maintain access
to the smart lock.

Like Danalock and Kevo, these revocation evasion attacks
are exacerbated by insecure UI design. We found that for
both the revocation and“Lost Phone”mechanisms, August’s
mobile interface displays a confirmation message that in-
dicated successful revocation, even when the stolen phone
maintained access via a state consistency attack.

Okidokeys: Although Okidokeys follows a DGC architec-
ture, we found that it is somewhat more resilient to revoca-
tion evasion than August, Danalock, and Kevo. First, while
any user can interact with the lock even if their phone is
o✏ine, the Okidokeys app requires the user to enter in a
four digit PIN before enabling any of the app’s functional-
ity; users set this PIN during account creation. Unfortu-
nately, a large body of existing work has shown that users
often choose weak, predictable PIN codes, which means a
thief might be able to bypass this mechanism. Furthermore,
against a revoked attacker, this PIN code mechanism of-

14

fers no security because Mallory is using her own account to
evade revocation.

Second, Okidokeys provides a “sync” operation that own-
ers can invoke if their device is in BLE range of the lock.
The sync operation causes the owner’s device to push an
update from the Okidokeys servers to the lock (such as an
updated access control list). As a result, Alice can ensure
her lock receives new revocation information by explicitly
performing this manual sync operation. Okidokeys displays
a “Sync needed” message after the owner revokes a user’s
access. However, we found that it simultaneously displays a
confirmation message stating “Access successfully removed
from this user”, and it immediately removes the revoked
user from the list of users who are shown as having access
to the lock. Thus, the Okidokeys UI implies revocation was
successful even if the revocation failed because of an o✏ine
phone. Because Okidokeys requires users to manually per-
form a sync and displays potentially misleading success mes-
sages following revocation, its design may leave users vulner-
able to revocation evasion attacks.

B. STATE CONSISTENCY ATTACKS: AC-
CESS LOG EVASION

August and Kevo:
Like Danalock, August and Kevo rely on users’ devices to

faithfully communicate their actions to the remote server;
thus, an attacker who blocks the app’s packets from reach-
ing the remote server (e.g., by taking the phone o✏ine) can
prevent her interactions with the lock from being recorded.
Additionally, for these two locks, even if other users subse-
quently use the lock, the attacker’s interactions will not be
updated in any log viewable by a legitimate user because
the lock itself does not store and push log entries.

Okidokeys: In contrast, Okidokeys stores its access log on
the lock itself and will only allow an owner to view the logs
if her device is within BLE range of the lock or via a push
notification. While Mallory can bypass push notifications
by blocking packets on her phone from reaching the remote
server, if Alice stands within BLE range of the lock and
views the locally stored activity logs, she will be able to see
Mallory’s actions.

15

