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Abstract

Collaboration between humans and autonomous agents requires the ability to in-
fer and adapt to other agents’ plans while effectively conveying one’s own intent.
In some cases, our teammates’ actions early on can give us a clear idea of what
the remainder of their plan is, that is, what action sequence we should expect; in
others, they might leave us less confident, confused or even lead us to the wrong
conclusion.

In this work, we use a Bayesian model of how people make such predictions in
order to facilitate the interpretation of robot plans by human collaborators. We sub-
sequently propose the concept of t-predictability to quantitatively describe an ac-
tion sequence in terms of its easiness for expressing the entire plan. A t-predictable
planner is then developed to generate action sequences that purposefully maximize
the expected accuracy and confidence with which human observers can predict the
overall plan from only the initial few actions. Through an online experiment and
an in-person user study with physical robots, we find that t-predictable planner
outperforms a traditional optimal planner in objective and subjective collaboration
metrics. We believe that t-predictability will play a significant role for improving
human-robot collaboration.
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Chapter 1

Introduction

1.1 Motivation

With robots becoming more capable and versatile, they are now stepping into mixed
workspaces shared with human beings. For example, in manufacturing, human
workers and industrial robots work side-by-side to collaboratively assemble prod-
ucts. The popularity of robots has led to increasing interests in human-robot collab-
oration [1, 2, 3].

Achieving seamless team collaboration requires team members to understand the
intent and anticipate needs of other teammates [4]. For a team composed of only
robots, this is often achieved by constantly exchanging information among team
members through, for example, wireless communication networks. For human-
robot collaboration, however, frequent and effective communication is more diffi-
cult. Reflecting upon the history of human-automation systems, there have been
some serious records of failures due to ineffective interaction between machines
and their operators [5, 6, 7]. The most common causes for this are mode confusion
and “automation surprises”, i.e. misalignments between what the automated agent
is planning to do and what the human believes it is planning to do.

Our aim in this work is to eliminate such misalignments and facilitate human-robot
collaboration: we want humans to be able to infer what a robot is planning to do
during a collaborative task by observing robot’s actions. We choose motion as the
communication channel for conveying a robot’s plan. This is an important topic
since motion is a natural way of expressing intent and plan in reality. However, it
is less investigated in robotics; most of works on motion planning in robotics focus
on the functional aspects of motion, such as moving along the minimum-energy
trajectory or a collision-free path.Researchers have also studied speech for effec-
tive communication. However, language has its own ambiguities and can lead to
miscommunication. In addition, people often make inferences based on actions be-
sides the language, whether intended or not. The discrepancy between the intent
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expressed by language and by actions can cause confusion and impair collabora-
tion. Moreover, incessant explanations can be aggravating. Therefore, investigating
the intent conveyance via actions is a natural and important topic for human-robot
collaboration.

Conveying intent via motion enables the human to understand her partner’s in-
tent through natural interaction, adapt her own actions to be compatible with the
robot’s, and more effectively achieve common goals[8, 9, 10]. Traditionally, works
on human-robot collaboration have focused on inferring either human’s next action
or human’s overall plans, and adapting the robot’s plan in response [11, 12]. Ef-
fectively communicating a robot’s next goal based on its ongoing motion has also
been explored in robotics recently [13], which proposed algorithms for computing
legible and predictable robot actions. However there has been little investigation
into effectively conveying robots’ high-level plans (action sequences) to humans in
order to facilitate collaboration in mixed human-robot teams.

In this work, we introduce a framework that explicitly predicts the inferences that
human observers are likely to make for the robot’s plan based on its initial actions,
and incorporates them into the planning process in order to generate plans that
are more easily and unambiguously interpretable by human collaborators. Such
framework relies on the connection between models of human planning and that of
human inference that was proposed in cognitive science [14]. It models the human
as a noisy observer who will infer an agent’s plan with exponentially decaying
probability as its cost increases, which we expect that a similar mechanism will
also apply to many peer-to-peer collaboration scenarios.

We focus on communicating the sequences of future actions from the initial actions
and a known goal. Such situations usually appear in task planning, where the overall
goal of the task is clear (completing all subgoals), but the sequence of actions the
robot will take to achieve the goal is not. The key difference between our work and
previous works is the richness of information that needs to be conveyed. Prior works
have developed algorithms for generating trajectories that communicate the robot’s
overall goal from the ongoing motion [15, 13, 16, 17] while our work conveys the
sequences of remaining actions.

1.2 Literature Review

1.2.1 Intent Recognition

In human-robot collaboration, the ability to infer an agent’s intent composes a sig-
nificant element of understanding its needs and generating collaborative actions
accordingly. The Bayesian approach for intent recognition, which relates the ob-
servation of an agent’s behavior with its unobservable intent, has been adopted in
plan recognition [18], cognitive science [14] and the perception of human action
[19]. Some typical formalisms based on Bayesian approach include Hidden Markov
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Models [20, 21], Dynamic Bayesian Networks (DBNs) [22] and Markov Decision
Processes (MDPs) [23].

The key component in Bayesian approach is the relation describing an agent’s ac-
tion generation given its intent. The Boltzmann policy [14], or the Luce-Shepard
choice rule [24], is one of the most basic models for such choice behavior. It asserts
that an agent is noisily optimal in behavior selection: the closer an action is to the
optimal one in some metric (e.g. reward), the higher probability such action will be
taken by the agent.

1.2.2 Intent Expression

Researchers have long studied how people use nonverbal communications in their
interactions with one another [25, 26]. By making the robots’ intended actions
more readily apparent to their partners, we can improve people’s abilities to coor-
dinate their actions with that of robots. This line of research has led to works on
anticipatory motion [35] and readable behavior [34].

Recent works have investigated different techniques for effectively expressing robots’
intents, including motion trajectory planning [27], designing gesture [28], gaze
[29, 30] and orientation [31]. Especially, people have incorporated animation prin-
ciples [32, 33] to produce intentional motion, which focused on pre- and post- ac-
tion expressions of forethought and reaction to show robots’ “thinking of action”
[34], and attracting observer attention via exaggerated motion synthesis [35].

1.2.3 Observer-Aware Motion Planning

The motion planning problem focuses on generating a sequence of actions or trajec-
tories that achieves some objectives while satisfying certain constraints. Traditional
works on robotic motion planning focused on functional motion such as achieving
the minimum travel distance from an initial configuration to the final one while
obeying the kinodynamic constraints of a robot.

Recent progress in human-robot interaction community has given rise to producing
motion that is mindful of observer inferences. Such motion planners reason about
the inferences that humans will make when observing the robot’s behavior. The un-
derstanding of a robot’s intent is important for seamless human-robot collaboration.

There exist two types of complementary inference that humans can make to relate
an agent’s actions and goals: action-to-goal and goal-to-action [36]. The “action-
to-goal” inference refers to the observer’s ability to infer an agent’s goal state based
on the understanding of the function of an action; the “goal-to-action” inference,
on the contrary, refers to an observer’s ability to predict the actions that an agent
will take given the knowledge of its goal. These two types of inference leads to the
ideas of predictability and legibility of motion [37].
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Predictability usually refers to the property of motion that matches an observer’s
expectation when the goal of the motion is known to the observer. Some related
works include [38, 39]. Legibility implies that an observer can understand or rec-
ognize the intent of the robot by the knowledge of its action, when the observer does
not know the robot’s intent a priori. Some recent works on legible motion planning
include [28, 40, 27]. Previous works usually focus on the motion-level planning for
intent conveyance about a single goal. Here, we study the predictability of a plan
on task level, which consists of multiple subgoals.

1.2.4 Task Planning in Human-Robot Collaboration

Task planning in human-robot collaboration depends on the relation between the
human and the robot during the interaction. Assistant robots are focused on the
current task the human is conducting. When a need for assistance is detected, the
robot plans for the best action to assist the human, given the current situation and
human’s intended task [41, 23]. Multi-modal communication is usually used for
establishing and improving the understanding of human’s needs [42].

For a human-robot team sharing a task, the planning usually involves each agent
to decide and adapt their own collaborative actions based on other agents’ behavior
[43]. Tasks involving multiple subgoals, such as fetching objects from different po-
sitions and delivering them to specified location, usually requires effective assign-
ment and scheduling of subgoals. Approaches have been developed for efficient
online computation and adjustment of sequence of subgoals [44].

Robot’s reasoning about human’s intent also plays a significant role in task plan-
ning. Besides the intent recognition approaches described in Section 1.2.1, re-
searchers have also investigated reasoning approached based on logic [45] and
learned human models [46]. Such approaches have shown to be effective in en-
hancing task planning for human-robot collaboration.

1.3 Goals and Contributions of the Report

This report makes an initial effort in defining a framework that explicitly accounts
for human’s inference of robot’s plan, and generating robot plans that are unambigu-
ously intelligible by human partners. The report makes the following contributions:

• Defining t-predictability. In this work, we define a property of a robot plan
that we refer to as t-predictability: a plan is t-predictable if a human can
infer the robot’s future actions in a task from having observed only the first t
actions.

• An algorithm for generating t-predictable plans. Building on Bayesian in-
ference models that have been used for action interpretation and plan recog-
nition [47, 14], we propose a model for human’s inference of robot’s future
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plans. We then propose a planning algorithm that generates t-predictable
plans, that is, the plans that a human can easily infer the rest of actions from
the initial ones.

• Extensive user studies. We test the effects of t-predictable plans on human’s
inference via an extensive online user study and investigate the implications
on human-robot collaboration via an in-person study.

In the online user study, participants first observe a robot’s partial plan, and
then predict the order of its remaining actions. It was found that participants
performed significantly better at anticipating the correct order when the robot
is planning for t-predictability. A very high correlation (0.88) was spotted
between our model’s prediction of the probability of success and the partici-
pants’ actual success rate.

The in-person experiment involved human participants in a collaborative task
with the robot. We analyzed the advantages of t-predictabilityon both ob-
jective and subjective collaboration metrics. Experiment results indicate that
participants were more effective at completing tasks and preferred to work
with a t-predictablerobot than with an optimal robot.

1.4 Outline

Chapter 2 introduces the concept of t-predictability and formulates the t-predictable
planner. Chapter 3 presents the experimental design and results for the online study
and Chapter 4 is for the in-person user study. Chapter 5 concludes the report with
some ideas of our future work.
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Chapter 2

Conveying Intent via Planning of
Action Sequences

In this chapter, we consider the conveyance of robot intent to a human observer via
planning of action sequences. Different from traditional works that unambiguously
express an agent’s goal via the design of motion trajectory, our work focuses on
that, when the goal is given, the whole action sequence is clearly conveyed when
only the partial sequence is shown. Image watching a robot starting to execute a
task. Our goal is to make the robot do so in a way that makes it clear how the robot
will finish the task, i.e., what is the remaining sequence of actions. We propose the
concept of t-predictability and formulate the planning of t-predictable sequences as
an optimization problem over the space of all possible plans.

2.1 Definition of t-predictability

We consider a multi-step task with an overall goal G (such as visiting all targets
in an area) that can be achieved through a finite-horizon sequence of T actions.
To quantitatively describe the property of a sequence in terms of the easiness of
inferring an agent’s plan, we define the concept of t-predictability . Let A denote
the space of all possible action sequences of length T that achieve the goal.

Definition (t-predictability) A sequence of actions a “ ra1, a2, ..., aT s P A that
achieves an overall goalG is t-predictable if an observer can accurately infer rat`1, ..., aT s
after observing ra1, ..., ats, and knowing the overall goal G.

Definition (t-predictable planner) A t-predictable planner generates the plan that
will maximize the probability that a human observer with knowledge of the goal G
will correctly predict all subsequent actions after observing the first t actions.

Note that for t “ 0, the t-predictability of a plan simply becomes its predictability,
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that is, the ease with which the entire sequence of actions can be inferred with
knowledge of the overall goal G [48].

A t-predictable planner thus returns the optimal action sequence a˚ P A that maxi-
mizes the conditional probability that a human observer makes correct prediction:

a˚ “ argmax
aPA

P pat`1, .., aT |S,G, a1, .., atq (2.1)

with S being the starting state. This is equivalent to:

a˚ “ argmax
aPA

P pa1, ..., aT |S,Gq
ř

rãt`1,...,ãT s
P pa1, ..., at, ãt`1, ..., ãT |S,Gq

. (2.2)

To compute this, we need a model of P pa|S,Gq, which we discuss in the next
section.

Remark t-predictability is a measure of the degree of confidence with which an
observer will accurately infer a plan, which means we can quantitatively computes
the t-predictability score of any sequence. The t-predictable planner returns the ac-
tion sequence with highest t-predictability score among all possible sequences. It
is possible that highly t-predictable sequence may not exist in some cases, which
means there exist at least two sequences with close t-predictability score. How-
ever, in many other cases, highly t-predictable sequence exists and optimizing for
t-predictability is highly useful, as evidenced by our experiment results.

2.2 Boltzmann Noisy Rationality

In psychology and cognitive science, Boltzmann probabilistic models of human
noisy optimality have been used in the context of goal inference through inverse
action planning [14]. It assumes that the human observer expects the other agent
to be noisily optimal in taking actions to achieving a goal. We adopt an analogous
model for modeling the inference of action sequences: the human is now modeled
as expecting the robot to be noisily optimal, taking approximately the optimal se-
quence of actions to achieve G. This is actually consistent with recent cognitive
research on human understanding of complex plans [49], although our approach
takes a higher-level perspective and considers each step in the overall plan as the
basic action.

We consider the open Traveling Salesman Problem, in which there is no restriction
on the final location after visiting all targets. Each action consists of reaching a
target i P t1, .., T u with location xi in a metric space pχ, dq. For the purpose of no-
tational simplicity, we let A “ t1, . . . , T u and applying ai at location xai´1

triggers
the transition to location xai . The cost of an action sequence a P A is the cumula-
tive distance traveled to visit all target locations in the sequence from a fixed initial
state S with location xS to complete the goal G from the space of goals G.
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We define optimality via some cost function c : A ˆ S ˆ G Ñ R`, mapping each
action sequence for a particular goal and from a starting state to a scalar cost. In
this work, we use path length (travel distance) for c:

cpa, S,Gq “ dpxa1 , xSq `
T
ÿ

j“2

dpxaj , xaj´1
q, (2.3)

where xl, l P tS, a1, . . . , aT u denotes the state of the robot; d : χ ˆ χ Ñ R` is the
cost function for state transition. The overall goal for the robot is to sequentially
reach all targets T in the scene.

Applying the Bolzmann policy [14] based on c, we get:

P pa|S,Gq “
e´βcpa,S,Gq

ÿ

ãPA
e´βcpã,S,Gq

. (2.4)

Here β ą 0 is termed the rationality coefficient. As β Ñ 8 the probability distribu-
tion converges to one for the optimal sequence and zero elsewhere, corresponding
to the case of a rational agent. As β Ñ 0, the probability distribution becomes
uniform over all possible sequences a and the agent is indifferent; in such case, no
intent information can be obtained by merely observing the agent’s actions.

Remark The method proposed in this chapter is a general framework for generat-
ing predictable paths. We choose the TSP scenario since it is a classical problem
that people are familiar with. In fact, humans are known to perform remarkably
well at the TSP for as many as 20 targets [50]. Therefore we expect that humans
can nicely infer the robot’s plan by conducting mental simulation. Using TSP also
allows us to isolate and measure the effects of t-predictability without confounding
factors arising from structural complexity.

2.3 t-Predictability Optimization

The solution to Equation (2.2) can be computed by enumeration in problems with
small T . For larger problems, approximation methods may be used. Incorporating
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Equation (2.4) into Equation (2.2), it follows that

a˚ “ argmax
aPA

exp
`

´ βcprat`1, ..., aT s, at, Gq
˘

ÿ

rãt`1,...,ãT sPAt
a

exp
`

´ βcprãt`1, ..., ãT s, at, Gq
˘

“ argmax
aPA

T
ź

j“t`1

exp
`

´ βdpxaj , xaj´1
q
˘

ÿ

rãt`1,...,ãT sPAt
a

T
ź

j“t`1

exp
`

´ βdpxãj , xãj´1
q
˘

, (2.5)

with Ata denoting the set of all permutations of the T ´ t targets remaining after
eliminating the first t targets in a from the original set t1, ..., T u.

Our insight is that initial actions can be used to clarify what future actions will be.
We find that in many situations, the robot can select initial actions that might seem
somewhat surprising at first, but that make the remaining sequence of actions trivial
to anticipate (or “auto-complete”).
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Chapter 3

Evaluation via Online Experiment

We have set up an online experiment to test the effectiveness of our t-predictable
planner in expressing the robot’s plan. To be specific, we designed a web-based
virtual human-robot collaboration experiment where the human had to predict the
behavior of three different robot avatars that uses different planners. Participants
first watched the robots move to a number of targets (either zero, one, or two) and
then had to predict the sequence of remaining targets the robot would complete.
The experiment was conducted via the Amazon Mechanical Turk using the psiTurk
experimental framework [51]. We describe the setup of the experiment and analyze
the results in the following sections.

3.1 Experiment Setup

3.1.1 Independent Variables

We manipulated two variables: the t-predictable planner with t={0,1,2}, and the
number of observed targets k, with k “ t0, 1, 2u.

Planner. There were three different planners that differed in their optimization
criteria, which was the number t of targets assumed known to the observer. A
participant interacted with three robot avatars, each using one of the following three
planners:

Optimal (0-predictable): This robot chooses the minimum-cost action sequence,
starting from the initial location and visiting all target locations once; that is, the
“traditional” solution to the open TSP. This robot can be equivalently thought of as
solving Equation (2.5) for t “ 0.

1-predictable: This robot chooses the action sequence that solves Equation (2.5)
for t “ 1; the sequence might make an inefficient choice for the first target in order
to make the sequence of remaining targets very clear.
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Figure 3.1: Average theoretical predictability. Top: a typical task layout where
the t-predictable planners generate three different sequences for different t’s. Bot-
tom: the average theoretical predictability of task layouts used in the online ex-
periment under different numbers of observed targets (k) of sequences generated
by different t-predictable planners. In this plot, the lowest error rates occur when
k “ t.

2-predictable: This robot chooses the strategy solving Equation (2.5) for t “ 2; the
sequence might make an inefficient choice for the first two targets in order to make
the sequence of remaining targets very clear.

Number of observed targets. Each subject was shown the first k P t0, 1, 2u targets
of the robot’s chosen sequence in each trial and were asked to predict the remainder
of the sequence. This variable was manipulated between participants (a between-
subject variable); thus, a given participant always saw the same number of targets
(k) on all trials.

Example. Figure 3.1 plots the average k-predictability score, which corresponds
to the conditional probability in Equation (2.2), for each planner and the num-
ber of shown targets across different stimuli. The upper plot shows an exam-
ple of 0, 1 and 2-predictable action sequences for the given target layout. The 0-
predictable planner is best in the k “ 0 case, the 1-predictable is best for k “ 1,
and 2-predictableis (marginally) best (almost perfect) for k “ 2 in terms of the
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Figure 3.2: Examples of training and experimental phase. The left subplot shows
the participant can click on a target and the human avatar will move to it. The right
subplot shows that the participant first predicts action sequence (numbers indicating
the order), then the robot avatar moves to these targets showing its actual sequence.

predictability score. We hypothesize that our results with real users will show the
similar trends. Note that the 2-predictable robot might choose a really inefficient
sequence for the first 2 targets in order to make the rest maximally clear.

3.1.2 Procedure

The experiment was divided into two phases: a training phase to familiarize partici-
pants with TSPs and how to solve them, and an experimental phase. We additionally
asked participants to fill out a survey at the end of the experiment.

In the training phase, subjects controlled a human avatar (Figure 3.2). They were
instructed to click on targets in the order that they believed would result in the
quickest path for the human avatar to visit all of them. The human avatar would
start moving to a target in the straight line after each click and “capture” the se-
lected target upon its arrival. The target would be considered as “completed” and
be removed from the display.

For the second phase of the experiment, participants first saw a robot avatar move
to either k “ 0, k “ 1, or k “ 2 targets using one of the t-predictable plan (t “
0, 1 or 2). After moving to these targets, the robot paused so that participants could
predict the remaining sequence of targets by clicking on the targets in the order in
which they believed the robot would complete them. Afterwards, participants were
presented with an animation showing the correct sequence that the robot followed
to move to the rest of the targets, determined by the corresponding planner.

Layout Generation. We chose β “ 1 and randomly generated 270 layouts, each
layout displaying a square domain with five or six targets in the form of orange
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circles with a black dot at the center (Figure 3.2). We selected 176 layouts for
which the optimal sequence was different between all three planners so that the
stimuli would be distinguishable. Further, valid layouts were sorted by the theo-
retical predictability score in 1-predictability to 2-predictability, to avoid scenarios
where the information gain was marginal. Some scenarios were also discarded
when the trajectory of the robot closely approached a target without capturing it, to
avoid confounds. We finally selected 15 trials based on the aforementioned criteria.

Stimuli. There were a total of 60 trials, consisting of four repetitions of 15 unique
target layouts. The first 15 trials were used in the training phase for the participant
to become acquainted with the game setup. The following 45 trials were repetitions
of the original 15, presented in a random order, with each of the three robots. The
trials were grouped so that each participant observed the same robot for three trials
in a row before switching to a different robot. In the training trials, the avatar was a
gender-neutral cartoon of a person on a scooter, and the robot avatars were images
of the same robot in different poses and colors (either red, blue, or yellow) which
were counterbalanced across participants.

Controlling for Confounds. We take the following ways to control for confounds:

• counterbalance the colors of the robots for each planner;

• use a human avatar in the practice trials;

• randomize the trial order;

• include the attention checks (described below).

Attention Checks. After reading the instructions, participants were given an atten-
tion check in the form of two questions asking them the color of the targets and the
color of the robot that they would not be evaluating. At the end of the experiment,
we also asked them whether they had been paying attention to the difference in
helpfulness between the three robots. Data associated with participants who failed
the attention checks were not used for analysis.

3.1.3 Dependent Measures

Objective measures. We recorded the proportion of correct predictions of the
robot’s sequence of targets out of all 15 trials for each planner, resulting in a mea-
sure of error rate. We additionally computed the Levenshtein distance between
predicted and actual sequences of targets. This is a more precise measure of how
similar participants’ predictions were to the actual sequences produced by the plan-
ner.

Subjective measures. After every ninth trial of the experiment, we asked par-
ticipants to indicate which robot they preferred working with. At the end of the
experiment, each participant was also asked to complete a questionnaire (adapted
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Table 3.1: Subjective Measures

t-predictability
1.0 The (color) robot’s sequence of tasks is easy to predict.
1.1 The (color) robot’s sequence of tasks is easy to predict after seeing the first task.
1.2 The (color) robot’s sequence of tasks is easy to predict after seeing the first two
tasks.
2.0 I find it hard to anticipate the order in which the (color) robot will complete the
tasks.
2.1 I find it hard to guess the rest of the (color) robot’s sequence after seeing it do
the first task.
2.2 I find it hard to guess the rest of the (color) robot’s sequence after seeing it do
the first two tasks.

Consistency
1.1 The (color) robot behaves in a coherent way for the first task.
1.2 The robot behaves in a coherent way for the first two tasks.
2. The start of the (color) robot’s sequence (before my prediction) does not make
any sense.

Capability
1. The (color) robot seems to know what it’s doing.
2. The (color) robot chose its actions poorly.

Helpfulness
1. Overall, I feel that the robot’s choice of sequence made my prediction job easier.
2. The robot’s choices were confusing and made my prediction job less straightfor-
ward.

from [40]) to evaluate their perceived performance of three robots. The question-
naire, as shown in Table 3.1, consists of questions evaluating human’s perception of
the robots in terms of t-predictability, consistency, capability and helpfulness. A 7-
level Likert scale was used to represent degrees from “Strongly agree” to “Strongly
disagree”. There was an open question (optional) at the end for participants to leave
comments about their feelings of the robot.

Since each participant only experience a fixed k, the number of observed targets,
in all trials, different questions were designed for k and presented to corresponding
people. These is shown in questions numbered 1.x and 2.x in“t-predictability” and
“Consistency” categories in Table 3.1. In addition, “Consistency” questions were
only asked to participants who saw either one or two targets (k “ 1 or 2). The
“(color)” was replaced by the corresponding robot’s color in the actual question-
naire given to participants.
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3.1.4 Hypotheses

H1 - Comparison with Optimal. When showing 1 target, the 1-predictable robot
will result in lower error than the optimal baseline. When showing 2 targets, the
2-predictable robot will result in lower error than the optimal baseline.

H2 - Generalization. The error rate will be lowest when t “ k: the number
of targets shown, k, equals the number of targets assumed by the t-predictable
planner, t.

H3 - Preference. The perceived performance of the robots is highest when t “ k.

3.1.5 Participants

We recruited a total of 242 participants from Amazon’s Mechanical Turk, among
which 42 participants were excluded from analysis due to failing the attention
checks, leaving a total of N “ 200 participants whose data we used. All partic-
ipants were treated in accordance with local IRB standards and were paid $1.80
for an average of 22 minutes of work, plus an average bonus of $0.47. Bonuses
could range from $0.00 to $1.35 depending on performance. In the training trials,
participants could get a $0.03 bonus on each trial if they chose the shortest possi-
ble sequence; a $0.02 bonus if they chose a sequence within the top 5% shortest
sequences; or a $0.01 bonus if they chose a sequence within the top 10% shortest
sequences (relative to all possible sequences). They received no bonus if they chose
a sequence that was longer than the top 10% shortest sequences. In the experimental
trials, participants could get a $0.02 bonus on each trial if they correctly predicted
the robot’s sequence of targets on that trial.

3.2 Results

Model validity

We first looked at the validity of our model of t-predictability with respect to peo-
ple’s performance in the experiment. We computed the k-predictability scores for
each task layout under each planner and number of targets the users observed. We
also computed people’s actual prediction accuracy on each of these layouts under
each condition, averaged across participants.

We computed the Pearson correlation between k-predictability scores and partici-
pant accuracy, finding a correlation of ρ “ 0.88 95% CI r0.81, 0.91s; the confidence
interval around the median was computed using 10,000 bootstrap samples (with re-
placement). This surprisingly high correlation strongly suggests that our model of
how people predict action sequences of other agents correlates with their actual
predictions.
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Figure 3.3: Error rate and edit distance. The left subplot shows the average pro-
portion of incorrect predictions for different numbers of observed targets (k) of se-
quences generated by different t-predictable planners. The right subplot shows the
average Levenshtein distance between predicted sequences and actual sequences.
In both plots, the lowest error rates occur when k “ t.

Accuracy

To determine how similar people’s predictions of the robots’ sequences were to the
actual sequences, we used two objective measures of accuracy: first, overall error
rate (whether they predicted the correct sequence or not), as well as the Levenshtein
distance between the predicted and correct sequences. These measures are shown
in Figure 3.3.

As the two measures have qualitatively similar patterns of result, and the Leven-
shtein distance is a more fine-grained measure of accuracy, we performed quanti-
tative analysis only on the Levenshtein distance. We constructed a linear mixed-
effects model with the number of observed targets k (k from 0 to 2) and the planner
for t-predictability (t from 0 to 2) as fixed effects, and trial layout as random effects.

This model revealed significant main effects of the number of observed targets
(F p3, 10299q “ 1894.75, p ă 0.001) and planner (F p2, 42q “ 6.59, p ă 0.01) as
well as an interaction between the two (F p4, 10299q“554.00, p ă 0.001). We ran
post-hoc comparisons using the multivariate t adjustment.

Comparing the planners across the same number of targets, we found that in the 0-
targets condition the optimal (or 0-predictable) robot was better than the other two
robots; in the 1-target conditon, the 1-predictable robot was better than the other
two; in the 2-target prediction, the 2-predictable robot was better than the optimal
robot, but only slightly better than the 1-predictable robot. All differences expect
the last are with p ă .001.
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Figure 3.4: Preferences over time. Participants prefer the 0-predictable (optimal)
robot for k “ 0 and the 1-predictable robot for k “ 1, as well as k “ 2: despite
performing slightly better with it, they are frustrated by how inefficient its first 2
actions are.

Comparing the performance of a planner across the number of targets, we found
significant differences in all contrasts, with one exception: the accuracy when using
the optimal planner was not significantly different when seeing 1 target vs 2 targets
(tp10299q“2.647, .1149).

Overall, these results support our hypotheses H1 and H2, that accuracy is highest
when t used in the planner equals k, the number of observed targets.

Preferences over time

Figure 3.4 shows the proportion of participants choosing each robot planner as a
function of trial. We constructed a logistic mixed-effects model for binary prefer-
ences (where 1 meant the robot was chosen, and 0 meant it was not) with planner,
number of observed targets, and trial as fixed effects and participants as random
effects.

Using Wald’s tests, we found a significant main effect of planner (χ2p13.66q “ 2,
p ă 0.01) and trial (χ2p24.68q“2, p ă 0.001). We detected only a marginal effect
of number of targets (χ2p4.67q “ 2, p “ 0.097). However, there was a significant
interaction between planner and number of targets (χ2p20.26q “ 4, p ă 0.001).
We also found interactions between planner and trial (χ2p24.68q “ 2, p ă 0.001)
and between number of targets and trial (χ2p16.07q “ 2, p ă 0.001), as well as a
three-way interaction (χ2p39.43q“4, p ă 0.001).

Post-hoc comparisons with the multivariate t adjustment for p-values indicated that
for the 0-targets condition, the optimal robot was preferred over the 1-predictable
robot (z“13.22, p ă 0.001) and the 2-predictable robot (z“14.56, p ă 0.001). For
the 1-target condition, the 1-predictable robot was preferred over the optimal robot
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Figure 3.5: Final rankings. Participants ranked the planners differently depending
on how many targets were observed. For k “ 0, people preferred the optimal
planner; for k “ 1 and k “ 2, they preferred the 1-predictable planner.

(z “ 12.97, p ă 0.001) and the 2-predictable robot (z “ 14.00, 0 ă 0.001). In the
two-task condition, we did not detect a difference between the two 1-predictable
and 2-predictablerobots (z “ 2.26, p “ 0.29), though both were preferred over
the optimal robot (z “ 7.44, p ă 0.001 for the 1-predictable robot and z “ 5.40,
p ă 0.001 for the 2-predictable robot).

Overall, these results are in line with our hypothesis H3 that the perceived per-
formance is highest when t used in the planner equals k, the number of observed
targets. This is the case for k “ 0 and k “ 1, but not k “ 2: even though users
tended to perform better with the 2-predictable robot, its suboptimal actions in the
beginning frustrated the users, e.g. “This robot mostly starts out in the worst way
and then goes in weird directions but eventually starts to make sense.1”.

Final rankings

The final rankings of “best robot” and “worst robot” are shown in Figure 3.5. We
used the following procedure to analyze these rankings. For each participant, we
assigned each robot a score based on their final rankings. The best robot received a
score of 1; the worst robot received a score of 2; and the remaining robot received
a score of 1.5. We constructed a logistic mixed-effects model for these scores, with
planner and number of observed targets as fixed effects, and participants as random
effects; we then used Walds tests to check for effects.

We found significant main effects of planner (χ2p41.38q“ 2, p ă 0.001) and num-
ber of targets (χ2p12.97q “ 2, p ă 0.01), as well as an interaction between them
(χ2p88.52q “ 4, p ă 0.001). We again performed post-hoc comparisons using the
multivariate t adjustment. These comparisons indicated that in the 0-target con-

1This excerpt comes from a comment in the questionnaire.
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dition, people preferred the optimal robot over the 1-predictable robot (z “ 3.46,
p ă 0.01) and the 2-predictable robot (z “ 5.60, p ă 0.001). In the 1-target con-
dition, there was a preference for the 1-predictable robot over the optimal robot,
however this difference was not significant (z“2.18, p “ 0.27). The 1-predictable
robot was preferred to the 2-predictable robot (z“6.54, p ă 0.001). In the 2-target
condition, both the 1-predictable and 2-predictable robots were preferred over the
optimal robot (z “ 4.85, p ă 0.001 for the 1-predictable robot, and z “ 3.85,
p ă 0.01 for the 2-predictable robot), though we did not detect a difference be-
tween the the 1-predictable and 2-predictable robots robots themselves (z“´1.33,
p “ 0.84). Overall, these rankings are in line with the preferences over time.

An informal analysis of the questionnaire suggests similar results as those obtained
from the aforementioned measures. Thus we have omitted the analysis of the survey
results in this report.

Participant comments

Some participants left interesting comments that reflected their feelings about each
robot. These comments are consistent with the subjective metrics and gives us more
details about how perceived the robot’s actions.

For example, for k “ 0 (optimal) and t “ 0, some comments include “I felt like it
had a clear way of doing things.” and “Generally logical with a few blips here and
there”; when t “ 1, people said that “I saw the pattern was there, but I couldn’t find
it. Makes me want to keep trying”; however, for t “ 2, some people obviously got
irritated, saying that “Confusing and frustrating trying to predict this guy” and “I
hate that stupid robot”.

For k “ 1 and t “ 0, some participant complained that “Thinks like a dysfunctional
computer”; when t “ 1, people had good impression for the robot as expected,
saying that “Logical, similar to me, easy to understand”; when t “ 2, robot’s per-
formance disappointed participants, who said “I want to beat this robot against a
wall”.

For k “ 2 and t “ 0, some participants felt bad about the robot, saying that “I
feel like maybe I’m a dumb human and the red robot might be the most efficient,
because I have no idea. It frustrated me”; when t “ 1, people seemed to like the
robot, saying that “I like the little guy, he thinks like me”; for t “ 2, participants
liked this robot who said “It was real easy to predict”.

Summary

Experimental results show that our t-predictable planner worked as expected, with
the t-predictable robots leading to the highest user prediction accuracy given the
first t targets. However, focusing on just 2-predictable sometimes frustrated our
users due to the the unexpected choice of the first two targets. Overall, we believe
t-predictability will be important in a task for all ts, and hypothesize that optimizing
for a weighted combination between optimality and t-predictability would perform
best in practice.
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Chapter 4

Evaluation via In-Person Study

Online experiments have shown strong support for the proposed method’s ability
to produce t-predictable sequences that clearly convey robot’s future plan. We next
ran an in-person study to further test the implications of t-predictability. Partic-
ipants used a smartphone to operate a remote-controlled Sphero BB-8 robot, and
had to predict and adapt to the actions of an autonomous Pioneer P3-DX robot in
a collaboration scenario (Figure 4.1). A projector was used to display scenarios on
the ground. Both robots were tracked using 12 infrared VICON cameras.

Figure 4.1: The experiment setup. Left: a participant is remotely controlling
the Sphero BB-8 to clear the target that he believes will be third in the P3-DX’s
sequence. Right: the VICON system (infrared cameras) and the projector.
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4.1 Experiment Setup

4.1.1 Independent Variables

We manipulated one single variable, predictability, as a within-subjects factor. Hav-
ing confirmed the expected effects of 1-predictable and 2-predictable planners, and
given the good overall performance of the 1-predictable planner across different
conditions, we decided to omit the 2-predictable agent and focus on testing the
implications of 1-predictable with respect to optimal in a more immersive collabo-
ration context.

4.1.2 Procedure

At the beginning of the experiment, participants were told that they and their two
robot friends were on a secret mission to deactivate an artifact. In each trial, the
autonomous P3-DX would navigate sequentially to each of 5 power sources and
deactivate it; however, security sensors would activate at each power source after
3 or more had been powered down. The subject’s mission was to use BB-8 to jam
the sensors at the third, fourth and fifth power sources before the P3-DX arrived
at them, by steering BB-8 into the corresponding sensor for a short period of time.
If the P3-DX arrived at a jammed sensor in a different order than expected, all
other previously jammed sensors would be reactivated, which made anticipating
the correct sequence important to ensure success.

In the initial practice phase, participants had a chance to familiarize themselves
with the objective and rules of the task, as well as the BB-8 teleoperation interface.
Afterwards, there were two blocks of 4 trials. In each block, the subject would col-
laborate with the P3-DX under a different task planner; participants were told that
two different robot “personalities” would be loaded onto the P3-DX. We counter-
balanced the order of the conditions.

Stimuli. Each of the 5 power sources (targets) in each trial was projected onto
the floor as a yellow circle, using an overhead projector. Each circle was initially
surrounded by a projected blue ring representing a dormant sensor. Both the circle
and the ring were eliminated when reached by the P3-DX. When the P3-DX reached
the third target, the blue circles turned red symbolizing their switch into active state.
Whenever BB-8 entered a ring, the ring would turn green for 2 seconds and then
disappear indicating successful jamming. If the P3-DX was ever on a red ring, a
large red rectangle would be projected symbolizing capture and the trial would end
in failure. Conversely, if the P3-DX completed all 5 targets without entering a red
ring, a green rectangle would indicate successful completion of the trial. Projections
and P3-DX motion were automatically controlled using ROS [52].

Layout Generation. The 4 layouts used were taken from the larger pool of 15
layouts in the online experiment. There was a balance between layouts where online
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participants had been more accurate with the optimal planner, with the 1-predictable
planner, or similarly.

Controlling for Confounds. We take the following methods to control for con-
founds:

• counterbalance the order of the two planners;

• use a practice layout where both robots showed equivalent action sequence;

• randomize the trial order.

4.1.3 Dependent Measures

Objective measures. We recorded the number of successful trials for each subject
and robot planner, as well as the number of trials where participants jammed targets
in the correct sequence.

Subjective measures. After every block of the experiment, each participant was
also asked to complete a questionnaire, as shown in Table 4.1, to evaluate their
perceived performance of the P3-DX robot. At the end of the experiment, we asked
participants to indicate which robot (planner) they preferred working with.

4.1.4 Hypotheses

H4 - Comparison with Optimal. The 1-predictable robot will result in more suc-
cessful trials than the optimal baseline.

H5 - Preference Users will prefer working with the 1-predictable robot.

4.1.5 Participants

We recruited a total of 14 participants from the University of California, Berkeley,
with various backgrounds. Participants were treated in accordance with local IRB
standards and were paid $10 for participation. The study took about 30 minutes on
average.

4.2 Results

Successful completions. We first looked at how often participants were able to
complete the task with each robot. We constructed a logistic mixed-effects model
for completion success with predictability as a fixed effect and participant and task
layout as random effects. We found a significant effect of predictability (χ2p11.17q“
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Table 4.1: Subjective Measures

Legibility
1. The robot was moving in a way that helped me figure out what order it was planning to
do the targets in.
2. The robot’s initial actions made it clear what the rest of the plan was.
3. I found it hard to predict the last three targets in the right order.
4. Overall, I felt that the robot’s choice of sequence made my prediction job easier.

Capability
1. The robot seemed to know what it was doing.
2. The robot chose its actions poorly.

Fluency
1. The robot and I worked fluently together.
2. I found it difficult to collaborate with the robot in a fluent way.

Trust
1. The robot was trustworthy.
2. I trusted the robot to do the right thing at the right time.

Predictability
1. I often found the robots overall sequence of targets confusing.
2. I found the robot’s first target choice confusing.
3. The robot chose a reasonable sequence of targets.

1, p ă 0.001), with the 1-predictable robot yielding more successful completions
than the optimal robot (z“3.34, p ă 0.001). This supports H4.

Prediction accuracy. We also looked at how accurate participants were at predict-
ing the robots’ sequence of tasks, based on the order in which participants jammed
tasks. We constructed a logistic mixed-effects model for prediction accuracy with
predictability as a fixed effect and participant and task layout as random effects.
We found a significant effect of predictability (χ2p9.49q “ 1, p ă 0.01), with
the 1-predictable robot being more predictable than the optimal robot (z “ 3.08,
p ă 0.01).

Robot preferences. We asked participants to pick the robot they preferred to col-
laborate with. We found that 86% (N “ 12) of participants preferred the predictable
robot, while the rest (N “ 2) preferred the optimal robot. This result is significantly
different from chance (χ2p1q“7.14, p ă 0.01). This supports H5.

Perceptions of the collaboration. Participants’ perceptions of the robots’ behavior
are shown in Figure 4.2. As in the survey results from the online experiment, we an-
alyzed these perceptions by averaging each participant’s responses to the individual
questions for each robot and measure, resulting in a single score per participant, per
measure, per robot. We constructed a linear mixed-effects model for the survey re-
sponses with predictability and measure type as fixed effects, and with participants
as random effects. We found a main effect of predictability (F p2, 117q “ 16.417,
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Figure 4.2: Perceptions of the collaboration. Over all measures, participants
ranked the 1-predictable planner as being preferable to the optimal planner.

p ă 0.001) and measure (F p4, 117q “ 5.4456, p ă 0.001). Post-hoc comparisons
using the multivariate t method for p-value adjustment indicated that participants
preferred the predictable robot over the optimal robot (tp117q “ 4.052, p ă 0.001)
by an average of 0.87˘ 0.21 SE points on the Likert scale.

Participant comments. Based on participants’ feedback, the BB-8 robot takes
some efforts to control, which negatively affected their interaction with the P-3DX
robot. However, they still noticed the difference between the two “personalities”
of P-3DX. Some said when working with the optimal robot, “bb8 is a little hard
to control within the time constraint” while in the legible robot, he/she commented
that “I feel easier in the second set of trials”. One participant also said that “the
second robot seemed clever than the first one. Again, it was hard for me to direct
the same robot. I was kind of more focused on the small robot than the big robot
to get it go where I wanted”. The comments support our hypothesis that the legible
robot is easier and desirable to collaborate with. In our future in-person study, we
will eliminate the negative effects introduced by the control of a robot to get a more
“clean” experiment results.

Summary.

We conducted an in-person user study and the results show that our t-predictability
planner worked as expected, with 1-predictable robots leading to the highest user
prediction accuracy and the perceived collaboration. The comments from partici-
pants also shows people’s preference over the 1-predictable robot. The user study
further confirms our belief in the importance of t-predictability in human-robot col-
laboration.
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Chapter 5

Conclusions and Future Work

The popularity of robots has led to increasing interest in research on human-robot
collaboration. The misalignments between human’s belief and the automation’s
actual plan have unfortunately caused serious issues. In this work, we proposed
the concept of t-predictability that quantitatively describes a plan in terms of the
easiness that a human observer can accurately predict it after seeing only part of
the plan. We then developed the theoretical formulation for computing action se-
quences, called the t-predictable planner, based on a Boltzmann model of human
inference. The t-predictable planner enables a robot to generate a t-predictable
plan that a human can confidently infer the rest of the plan after observing the first
t actions. We tested the ability to make plans t-predictable in a large-scale online
experiment in the setting of an open Traveling Salesman Problem, in which sub-
jects’ predictions of the robot’s action sequence significantly improved, as well as
the perceived robot’s performance. The experiment results also show high correla-
tion between the theoretical and the empirical error rates in plan prediction. In an
in-person study, we investigated the effects of the t-predictability on human-robot
collaboration, indicating that t-predictable can lead to significant objective and per-
ceived improvements compared to traditional optimal planning.

Works in this report have opened several directions for further investigation. First,
this work focuses on the plan expression on the task planning level (i.e. action
sequences). However, intent conveyance on motion level, such as the “legible”
trajectory of a mobile robot, can contain valuable information related to the robot’s
plan. A combination of task-level and motion-level planning to express a robot’s
intent deserves further study. Second, in this work, we compare the effects of t “
0, 1, 2. However, the choice of t highly depends on the total number of actions to
conduct. Finding the optimal t is also an interesting topic to investigate. Third, in
our experiment, we choose β “ 1 for generating t-predictable action sequences.
In the future work, fitting β using actual human data will be valuable. Lastly, we
should note that a human’s understanding of robot’s plan does not necessarily lead
to her adaptation to it. The conditions under which a human decides to adapt is
worth investigating. Moreover, the robot can incorporate such knowledge into its
planning of actions to further improve human-robot collaboration.
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