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ABSTRACT
Mobile phones do “nothing well" at last. A stock iPhone
6 has essentially no battery drop overnight, while a stock
Nexus 6 running Android 6.0 loses only 6% battery in that
time. However, this is achieved by severely restricting back-
ground operation: iOS has always restricted the set of oper-
ations performed in the background, while Android 6.0 doze
mode forces apps to perform their background operations in
periodically scheduled maintenance windows. In this paper,
we explore a technique for app-OS cooperation to manage
background processing. We use the new geofencing APIs,
which notify the app when the user leaves a defined region,
to turn off location data collection when the user is "loiter-
ing" and restart automatically when she starts moving. With
this change, we are able to drop the power drain for auto-
matic monitoring of location and activity over a day by 35%
to 82% on iOS and up to 100% on Android, depending on
the accuracy and sampling rate. The tradeoff is that the error
at the start of a trip is higher: we get no points until we exit
the geofence, and the first few points after exiting may be
at a lower sample rate. We present a summary of the chal-
lenges encountered in the practical implementation of our
open source library for geofenced duty cycling, particularly
on iOS, and the techniques that we used to overcome them.
This evaluation, discussion and library can provide a prac-
tical design guide for researchers who plan on writing their
own sensing applications.

1. INTRODUCTION
Cell phones are ubiquitous, both in the developing

and developed world. There are claims that more people
have cell phones than toilets. Increasingly, these will be
smart phones.

Ever since the early smart phones were introduced,
researchers have been been interested in the opportuni-
ties for gathering data by using smartphones as sensor
platforms. But cell phones are not just a collection of
sensor in a convenient package. They are also devices
that provide real utility to users - that’s why the adop-
tion rates are so high. This means that users are sen-
sitive to high rates of power drain, so energy e�cient
sensing has been a research focus for almost as long.

Historically, the two main mobile phone platforms -
iOS and Android - have approached the power/utility
tradeo↵ di↵erently. iOS has prioritized user interac-
tion and eschewed background operation, and indeed,
multi-tasking, while Android has provided a more tra-
ditional, multi-threaded, pre-emptive operating system.
However, as the platforms mature, they have realized
(1) background operation is critical to providing a good
user experience; (2) background operation done poorly
is an energy hog; and (3) application developers are
rushed and will rarely take the time to optimize their
background operations. Both platforms have converged
towards a model in which background operations are
permitted, but with OS-imposed restrictions that aim
to manage the associated power drain.
At the same time, much of the prior research work

in this space seems to have made its way into the ship-
ping platforms. For example, the recommended Loca-
tion APIs on Android no longer require you to choose
a provider. The OS will dynamically choose it for you
based on the specified accuracy. Similarly, iOS auto-
matically and continuously tracks user activity, whether
requested or not, and manages the power drain by using
a separate low power co-processor to o✏oad the col-
lection and processing of sensor data from low power
sensors.
All of these changes raise some practical concerns for

the developer or researcher who intends to build a con-
tinuous sensing app today.

Is continuous sensing on mobile phones
a solved problem?

In other words, what are the current OS optimiza-
tions, how well do they work, and can they be im-
proved?
This paper is our attempt to answer the questions

above in the context of tracking mobility patterns - an
application which requires the use of the expensive lo-
cation sensor.

1.1 Contributions
1. We explore the current continuous sensing APIs on

two di↵erent mobile platforms - Android and iOS
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- and document their restriction on background
operation.

2. We design a sensing regime that works with the
restrictions on background operation on both plat-
forms, highlight the design challenges encountered,
and evaluate the selected regime at various accu-
racy/power points.

3. We build a simple, 3-state model for the power
drain at the accuracy points evaluated, and use
data from the American Time Use Survey to gen-
eralize the results to a wide variety of usage pat-
terns.

The paper outline is as follows: sections 2 provides
an overview of the platform APIs, section 3, compares
our solution to the related work, 4 outlines the moti-
vation for our approach, section 5 is a brief evaluation
of the power/accuracy tradeo↵s over a small set of mo-
bility patterns, section 6 covers the construction of a
simple 3-state model and its application to a wide va-
riety of mobility patterns, and section 7 concludes with
a discussion of future work.

2. BACKGROUND
In this section, we briefly summarize the current sup-

port for both background scheduling and location de-
tection on both the Android and iOS platforms, as they
relate to continuous sensing.

2.1 Android

2.1.1 Background scheduler

The Android OS provides a fairly standard pre-emptive
scheduler. In particular, processes can be scheduled to
run at time based intervals (every 30 secs) in the back-
ground. The OS provides specialized frameworks for co-
operative scheduling - the SyncAdapter/JobScheduler
interface for batching network operations is an exam-
ple. The recent 6.0 Marshmallow release has moved
from suggesting to forcing cooperative scheduling using
doze mode. This is a low power mode that is activated
when the phone is not plugged in, and has been inac-
tive for a while (screen o↵, stationary). While in this
mode, the OS suspends the regular scheduler, including
processes scheduled by time, and performs all activities
in regular maintenance windows.

2.1.2 Location APIs

The location interface consists of a ”classic” Loca-

tionManager API which provides a time based access
to a variety of location sensors such as GPS and the
network, and what appears to be a context sensitive,
rate adaptive fused API supplied through Google Play
Services (GMS). For either API, a time filter can be
specified to regulate the sample rate. The time filter
is a hint - updates can be received more or less fre-

quently based on interaction with other apps and the
scheduler. GMS also supports a geofence API that
monitors dwelling within a particular location in very
low power mode.

2.1.3 Activity APIs

GMS supports a native, accelerometer-based[16] API
for activity recognition that can be the basis for duty
cycling based on activity. Applications can register for
periodic activity updates, but there are no guarantees
that the updates will be delivered at the requested rate.

2.2 iOS

2.2.1 Background scheduler

The iOS background scheduler has the philosophy
that power should be conserved for interaction with the
user. This results in very impressive battery life on
a stock phone, but places severe restrictions on back-
ground operation that require creative workarounds.
In general, processes cannot run in the background.

This means that in general, application cannot sched-
ule tasks at specified time intervals unless the app is
in the foreground and the user is actively interacting
with it. A small set of background operations can be
enabled if permitted by the user, including two modes
that can be used to request periodic wake ups. Back-

ground fetch is scheduled locally, but prior testing on
iOS7 and iPhone 4 indicated that it is not reliable since
the OS would duty cycle it based on network signal
strength and user interaction patterns. Remote push

wakes up the app to handle messages pushed from a
server through a messaging service. While it is not
guaranteed to be reliable either, it is fairly reliable in
practice.
As an aside, the restrictions are severe enough that

there is speculation that developers have resorted to
playing blank sounds (playing music is a supported back-
ground operation) to keep their apps active in the back-
ground [14].

2.2.2 Location APIs

Fortunately, location tracking is one of the supported
background operation modes. This means that the ap-
plication can receive location updates even when it is
running in the background.
The standard Location APIs on iOS do not allow

users to specify a provider - instead, similar to the GMS
fused API, users specify an desired accuracy (best,
10m, 100m, 1km, 3km), and the OS automatically picks
a provider or set of providers. The sampling rate is con-
trolled by a distance filter - there is no time filter, maybe
because too many developers were using periodic loca-
tion updates as a background timer.
If an application has requested location updates us-

ing the standard API, they will not be delivered if the
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application has been terminated due to memory pres-
sure. A second significant location changes API
can restart the app to deliver updates, but it is very
coarse and does not support any configuration param-
eters. Updates are received when the OS determines
that there has been a significant change - a term with
no precise definition. This means that the error model
for iOS tracking could include large gaps in tracking for
which there is no workaround. Fortunately, this appears
to be rare in practice.

iOS also supports a geofencing API similar to the
one on Android.

2.2.3 Activity APIs

iOS also supports a native activity recognition API
that can provide periodic updates. However, the up-
dates are NOT delivered when the application is sus-
pended. This means that this API cannot be the basis
for duty cycling based on activity, since we cannot reli-
ably detect when the user is in motion again and turn
on location tracking.

3. RELATED WORK
This work is at the intersection of several themes in

the research literature.

3.1 Academic Literature: Location
The most relevant theme deals with lowering the power

of location tracking.
Paek [8] and Entracked [5] assume that the tracking

will be continuous, and provide strategies to turn o↵
the GPS intermittently for short periods of time during
a trip. Paek [8] uses the requested accuracy and En-
tracked [5] uses the user’s activity. In order to cooper-
ate with the restrictions on background operation in the
OS, we explore the ability to stop tracking for large peri-
ods of time, perhaps for the majority of the day. In this
context, we are closer to the manually launched track-
ing solutions such as CycleTracks [3] or Biketastic [10],
except that in our case, the launching is automated.

The functionality from Bareth [1], which determines
location using sources other than GPS, appears to have
been incorporated into mobile OSes, and provides the
basis for the fused API. In fact, the data collected from
Android using the batterystat API indicate that even
while using high accuracy tracking, the GPS is rarely
turned on. But as we can see from Figure 1, there is
still a tradeo↵ between accuracy and power drain, and
the power drain of the medium accuracy mode on iOS
is still fairly high.

The TAMER project [6] appears to be the academic
precursor to doze mode - it automatically interposes
itself between the applications and the OS in order to
reduce the frequency of background tasks. Our work
is complementary to theirs because they want to tame

the behavior of badly behaving apps, while we want to
make the apps behave well in the first place.

3.2 Academic Literature: Context sensitivity
Chu [2] and ACE [7] explore the use of lower power

sensors and smart inference to return the requested data
using lower power sensors. So this is similar to Bareth
and the existing low power APIs on the phones. We
duty cycle on top of that to reduce the power drain of
even the lower power sensors.

3.3 Academic Literature: Activity Detection
The activity detection literature has papers ([15] and

[13]) on duty cycling for energy e�cient sensing, but
for ongoing activity recognition instead of location de-
tection. They, particularly Srinivasan [13], also point
out that a significant proportion of the power drain in
continuous sensing is not the power drain of the sensor,
but the power consumed by waking up the CPU to deal
with the sensor. These insights provided the motivation
for us to explore the technique in the paper.

3.4 Industry
None of these provide any evaluation or implementa-

tion details, so they are listed here for completeness.
Google location history [4] is turned on by default on

all Android phones. An examination of the data col-
lected in user accounts seems to indicate that it reads
the location every minute using medium accuracy. The
primary application appears to be place, rather than
trip detection, although there are reports that it is com-
bined with activity recognition results to display trips.
Moves [9] is a fitness tracker app for both Android

and iOS. In earlier work, we had integrated with Moves
for data collection instead of writing our own [12]. Our
result was that out of 44 users who installed moves,
only 8 retained it for more than 3 months, and they
were all Android users. All iOS users uninstalled as
soon as the semester was complete. The top three re-
views in the app store complain about battery life being
impacted. The inability to understand their techniques
and to modify them was part of the motivation around
designing our own data collection system.

4. DESIGN CHALLENGES
In this section, we describe the motivation and deci-

sion challenges involved in building a library for duty
cycled data collection on both Android and iOS.

4.1 Motivation
As we can see from Section 5.2.2 and Figure 5, there

is significant power drain on iOS for ongoing tracking,
even with a large distance filter to throttle updates. The
power drain ranges from 1%/hr for the medium accu-
racy 100m filter to almost 4%/hr for a high accuracy
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stat drain reporting service
% /hr launches/hr

High accuracy, no filter 8.42 2722
Medium accuracy, no filter 0.25 4

Table 1: Comparison of Android sensing regimes
when phone is stationary

100m filter (measured separately) even when the phone
was stationary on a desk. This would imply a 24 hour
power drain of 24% for medium accuracy and 79% for
high accuracy even when the location is not changing.
The additional power drain for geofencing over stock
phone operation is essentially zero.

On Android, the situation is more complex, since the
medium accuracy mode uses WiFi, and WiFi scans are
suspended in doze mode except for the maintenance
windows. Table 4.1 shows that ongoing sensing is ef-
fectively duty cycled by default when the phone is in
doze mode. So duty cycling would primarily help when
high accuracy sensing is needed.

We also considered two other duty cycling approaches
from the literature.

1. Leave the accelerometer turned on and duty cycle
other sensors if the user is stationary for a cer-
tain period of time. Unfortunately, this will not
work on iOS. Reading the accelerometer and/or
activity detection results are not supported back-
ground modes. By piggybacking on the location
tracking, we can potentially detect when the user
has stopped moving, but we cannot detect when
the user has started moving again.

2. Change the location filter properties based on user
speed. Again, this is not likely to help in iOS be-
cause changing the distance filter does not appear
to appreciably reduce the power drain. Reducing
the sampling rate also does not appear to appre-
ciably change the power drain on Android while in
medium accuracy, although the power drain is low
to begin with. While this might be an acceptable
strategy for Android, we wanted to explore a con-
sistent strategy across both platforms in which we
just turn everything o↵.

4.2 Our design and some challenges
In our design, we use a simple two state finite state

machine to perform duty cycling.
1. We use location updates to detect when the user

is loitering or dwelling at a location. We will de-
tect loitering even if the user is walking, as long
as all movement is within the location radius. So
even if the user is walking around the o�ce, she is
dwelling in the o�ce.

2. Create a geofence at the current location and turn
o↵ all tracking.

3. When the geofence is exited, resume all tracking.
For details of the implementation, we refer readers

to the library that we have published on github under
a BSD license [11]. Here we will discuss three design
challenges and our solutions for each of them.

4.2.1 Detecting dwelling with a distance filter

Detecting the end of a trip with a time filter is pretty
straightforward. If the user has not moved more than
distance d in the past t minutes, then end the trip. This
has been the approach taken by most prior work, based
on data from GPS devices. But on iOS, the only sup-
ported throttling option is a distance filter. So once a
trip has ended, we will simply stop getting updates. The
next update will occur when the user has travelled more
than d. Depending on the value of d, this could well be
at the start of the next trip, which means that no duty
cycling will occur. If there was support for scheduling
jobs at a future time, we could schedule a job to be run
after t minutes, which would end the trip if there were
no recent updates, but as we have seen, that is not a
supported background mode. So we use remote pushes,
to wake the app up periodically and check to see if the
last received location was t minutes ago. Since remote
pushes are scheduled on the server, and we do not want
to require a network call for each location update, the
remote pushes are scheduled to run every hour, with no
app triggers or communication.

4.2.2 Detecting dwelling in the presence of noise

We originally assumed that the dwell algorithm would
be robust to noise because the noise would die down
eventually and the geofence would be created. This
assumption about the noise model was incorrect, spe-
cially in medium accuracy mode. On Android, the
medium accuracy collection would sometimes repeat the
last known point if it had no new data. This would
cause the algorithm to terminate trips whenever we
were travelling underground, for example. On iOS, with
medium accuracy tracking, spurious, low accuracy points
would be generated outside the distance filter, which
would cause a continuous set of updates between the
current location and the spurious location. Also, we
only check for trip end every hour, noise showing up at
the wrong time can lead to tracking for an additional
hour and wasted power. We address this by filtering
both noisy points and duplicates on the the phone be-
fore checking for the trip end.

4.2.3 Geofence creation quirks

1. iOS will create a geofence but not start monitoring
it in the background. So we need to wait for the
geofence creation to complete before returning.

2. on iOS, if you are already outside geofence by the
time it is created, you won’t get an exit. So after
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creation, we need to check whether we are inside
or outside and transition states accordingly.

3. creating the geofence at the ”current” location has
some drawbacks - if the current location has low
accuracy, we might create the geofence some dis-
tance away, and not trigger it while leaving.

4.2.4 Summary

To summarize, designing a robust, e�cient, cross-
platform pervasive sensing app is a significant challenge,
full of philosophical di↵erences (background process-
ing), subtle quirks (geofences) and undocumented er-
ror models (medium accuracy) that can only be discov-
ered by implementation and testing. We now evaluate
our solution and show that it helps with both high and
medium accuracy data collection regimes on iOS and
with high accuracy data collection on Android.

5. EXPERIMENTAL RESULTS

5.1 Experimental setup
We are exploring techniques to reduce power con-

sumption by duty cycling for long periods of time.
Since the phone OS can dynamically adapt its behav-

ior based on patterns of user activity and interaction,
it is not possible to extrapolate from a short sample to
behavior over a day. If we want to evaluate the behav-
ior of the phone OS over a day, we need to measure the
power drain over the course of a day and ensure that it
enters various operating states during that time. Fur-
ther, since it is not known whether the operating states
are deterministic, a direct comparison between data col-
lected on various days is not known to be accurate.

Therefore, our experiment setup consisted of three
identical phones for each platform - three iPhone6s and
three Nexus 6 phones. We installed the data collection
regimes that we wanted to compare on the three phones
simultaneously, and carried each set of phones from the
same platform in the same pocket.

In order to ensure that the phones had the chance
to move through a variety of states, we divided each
data collection day into ”day”and ”night”cycles, each of
which was roughly 12 hours long. We also took several
short trips throughout the ”day” cycle. The trajectories
for the trips were not identical, although their cumu-
lative duration was roughly identical, and the ”night”
cycle occured at di↵erent o↵sets in the day. This means
that the data collected across days is not comparable.

5.1.1 States

The states that we were trying to exercise as part of
the data collection were:

1. Passive The phone is not being actively used -
it is stationary with the screen o↵. We expect
that the phone will be in this state while the user

is sleeping, for example. This corresponds fairly
closely with the Android Doze mode. We expected
that the phone would be in the passive state for
most of the ”night” cycle.

2. Active The phone is being actively used, but the
user is not traveling. This state is key to our eval-
uation, since we can turn o↵ tracking in this state
and reduce background operation. Note that we
detect that the phone is active even if the user is
walking, as long as she does so within a small ra-
dius, like that of a building. We expect that the
phone will be in this state for most of the ”day”
cycle.

3. Moving The user is taking a trip while carrying
the phone. We expect that the phone will be in
this state when we take trips during the day.

5.1.2 Data collection regimes

We primarily use the following data collection regimes
to explore the range of behavior in each of the states
above. Note that the details of the regimes are slightly
di↵erent on iOS and on Android, since they use di↵erent
filters. Each of the sampling regimes above is evaluated
both with and without geofencing, which gives us six
di↵erent data collection regimes overall.

1. High accuracy, fast sampling (2s on Android,
5m on iOS) (hafs)

2. Medium accuracy, fast sampling (2s on An-
droid, 5m on iOS) (mafs)

3. Medium accuracy, slow sampling (30s on An-
droid, 100m on iOS) (mass)

5.1.3 Metrics

Since our technique trades o↵ power and startup ac-
curacy, we use the following metrics to evaluate the two
aspects of the tradeo↵.

1. Power drain We measure the power drain across
di↵erent regimes running in parallel on the three
phones. We look at both the final battery level at
the end of 24 hours, and the power drain in var-
ious states under the regime. The power drain is
represented using boxplots - the center line is the
median, the box represents the 25th to 75th per-
centile, the whiskers represent the inter-quartile
range (IQR) and outliers are represented by indi-
vidual points lying outside.

2. Accuracy We look at the distance between the
actual start of the trip and the geofence exit lo-
cation. We also inspect the distances between the
geofence exit location and the first few points in
order to estimate the loss in accuracy at the start
of the trip.

Each of the power drain result figures represents data
collected over one day to compare regimes against one
another. The top graph in each figure represents the
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Figure 1: Comparison of three existing data collection regimes with no geofencing. Regimes are
high accuracy fast sampling (hafs), medium accuracy fast sampling (mafs) and medium accuracy slow
sampling (mass). The top graph shows the change in battery level over 24 hours. The middle graph
shows the rate of drain in %/hr in the three states. The bottom map shows the data points collected
by each regime and provides an intuition of what the di↵erent accuracy levels correspond to.
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change in battery level over the course of the day, and
the middle graph contains the boxplots for the power
drain in the various states. These graphs corrrespond
to the power drain metrics above. The third row has a
set of maps which provide a visual representation of the
accuracy of the data collected.

5.1.4 Recording measurements

One of our challenges was to develop a technique for
measuring battery levels that would not perturb the
measurement. For example, it was not clear that we
could use a power meter to measure power drain, since
the OS only puts the phone into Doze mode when it is
unplugged. Automatically polling for the battery life,
in active or passive states, for example, would introduce
new background processing at a time when our goal is to
reduce or eliminate it. And automatic sampling means
that states may overlap with samples, which makes it
harder to calculate drain.

Therefore, we used the following low-tech solution to
record the power drain.

1. moving state: Every 30 minutes, view the battery
level on the phone screen and manually record it
in a csv file. In addition, record entries at the start
and end of every trip so that each time interval has
only one state associated with it.

2. active state: We use the same technique as the
moving state. This has the added advantage that
it simulates the user interacting with her phone
periodically, and ensures that the phone remains
in the active state.

3. passive view and record the battery level at the
beginning and end of the passive period. This en-
sures that there is no additional interaction with
the phone, although it means that it is harder to
isolate outlier points.

[p]

5.2 Answers
In this section, we answer the questions that we asked

in the introduction.

5.2.1 Do phones really do nothing well?

Figures 2, 3 and 4 compare the power drain of con-
tinuous data collection against geofenced data collection
and no data collection. So the“nd” line on the top-most
graph in each figure represents the power drain with no
data collection (stock phone) over 24 hours. We can see
that the values for iOS and Android are 7% and 11%
respectively. This implies a standby time of 12 - 10
days even if the phone is being carried around and is
unlocked every 30 minutes for a few seconds.

5.2.2 Is continuous sensing on mobile phones a solved

problem?

Figure 1 compares the power drain of three di↵erent
continuous sampling regimes over the course of the same
day. Note that moving from high accuracy to medium
accuracy makes a significant di↵erence, with the high
accuracy fast data collection running out of battery on
both platforms, unlike the medium accuracy sampling.
It is also interesting to note that the filter size does not
appear to make any di↵erence on iOS - the lines for the
fast and slow sampling are almost indistinguishable. On
Android, the sampling rate seems to matter primarily
during the moving state. During the passive state, the
slopes of the lines are very close, and the divergence in
the active state is small.
We can also see this from the boxplots of the power

drain rate - in all the Android regimes, the moving rate
is noticeably higher than the active rate, which is in
turn significantly higher than the passive rate. On iOS,
we see a similar pattern for the high accuracy case, but
for medium accuracy, there is not much di↵erence in
the power drain across sampling rates, or across states
within the same medium accuracy regime.
Figure 1 also shows the tradeo↵ in lower accuracy

of the collected data points. The three trajectories
shown were recorded at the same time on three iden-
tical iphones. As expected, the high accuracy data col-
lection is an accurate representation of ground truth -
the duplicated points on Shattuck represents an actual
back and forth section of the trip.
While the high accuracy data collection is clearly su-

perior to both medium accuracy data collection regimes,
the location accuracy required depends on both the al-
gorithms that are used to process it, and the final ap-
plication for which it is used. A determination of the
optimal accuracy and sampling for di↵erent applications
is outside the scope of this paper - we content ourselves
with evaluating the e↵ect of geofenced duty cycling on
each of the three sampling regimes here.

5.2.3 Does geofencing help?

Figures 2 shows the e↵ect of geofencing on the power
drain with high accuracy sampling. With geofencing,
we can obtain high location accuracy during the trip
with a power drain that is close to no data collection.
In fact, high accuracy data collection is not possible
without duty cycling on either platform. The story on
both platforms is remarkably consistent - duty cycling
makes high accuracy data collection possible.
The picture is less clear if we are willing to tolerate

medium accuracy. Figures 3 and 4 illustrate the di↵er-
ing ways in which geofencing a↵ects medium accuracy
sensing on the two platforms. Medium accuracy data
collection is very e�cient on Android - it appears to
be similar to the power drain of geofencing. In fact,
at the end of the day, the non-geofenced solution actu-
ally has a lower power drain than the geofenced solu-
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Figure 2: Evaluation of geofencing while collecting data with high accuracy. Regimes are no data
collection (nd), high accuracy fast sampling (hafs) and geofenced high accuracy fast sampling (geo-
hafs). The top graph shows the change in battery level over 24 hours. The middle graph shows the
rate of drain in %/hr in the active, moving and passive states. The bottom map shows the extent of
the error on each platform at the beginning of the trip.
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Figure 3: Evaluation of geofencing while collecting data with medium accuracy, but a fast sampling
rate. Regimes are no data collection (nd), medium accuracy fast sampling (mafs) and geofenced
medium accuracy fast sampling (geo-mafs). The top graph shows the change in battery level over 24
hours. The middle graph shows the rate of drain in %/hr in the active, moving and passive states.
The bottom map shows the extent of the error on each platform at the beginning of the trip.
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Figure 4: Evaluation of geofencing while collecting data with medium accuracy, and a slow sampling
rate. Regimes are no data collection (nd), medium accuracy fast sampling (mass) and geofenced
medium accuracy fast sampling (geo-mass). The top graph shows the change in battery level over 24
hours. The middle graph shows the rate of drain in %/hr in the active, moving and passive states.
The bottom map shows the extent of the error on each platform at the beginning of the trip.
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tion. From the boxplot, we can see that power drain in
the active state is almost identical for both geofenced
and non-geofenced operation. In the passive state, the
power drain is actually slightly higher with the geofence.
While the passive state has only one data point, the ac-
tive state has several points and the result is consistent
across both sampling rates. It looks like Android has
figured out how to perform continuous, medium accu-
racy data collection very cheaply.

The story is very di↵erent on iOS, where geofencing
is significantly cheaper than continous sensing. Even
with medium accuracy, the di↵erence in battery level
between geofenced and non-geofenced operation at the
end of 24 hours is between 25 and 30%. The boxplot
shows that geofencing is essentially free in the passive
state. The drain appears to be high in the active state,
but at least part of that is because we are unable to
detect the trip end immediately and have to wait un-
til the next hour to stop tracking. A set of short trips
causes us to spend a lot of time in active but tracking
state, which increases the power drain. For example,
note that the big drop in battery level during the mov-
ing state in Fig. 4 continues beyond the end of the trip,
before flattening out as the tracking stops and the ge-
ofence is re-established.

Finally, although geofencing enables high accuracy
data collection during the trip, it loses some accuracy
at the start of the trip. Location tracking is started
only after the geofence boundary has been crossed, so
the points traversed to reach the boundary are lost. An
interesting observation that we can see what looks like
rate adaptive GPS tracking on Android in the hafs

regime - after the geofence is exited, the points are gen-
erated at expontentially shorter distances, until they
settle into the configured frequency. We do not see sim-
ilar behavior in iOS high accuracy mode, and the low
accuracy data on both platforms is so noisy that it is
hard to determine what the correct points are, let alone
their frequency.

6. MODELING
The experimental results above are for a small, re-

stricted set of travel patterns. Since our approach con-
sists of lowering the power drain in the active and pas-
sive states, its performance is heavily dependent on the
time spent in each state - if a user spends the whole day
travelling, there will be no di↵erence in power drain be-
tween our solution and the continuous data collection
solutions.

So in order to complete our evaluation, we need to ex-
tend the results from the four data collection days above
to typical days in the life of the general population.

We do this by building a model of the power drain
in each state for di↵erent regimes and applying it to a
large set of user activity patterns collected as part of

the American Time Use Survey (ATUS).
The ATUS is a publicly available dataset collected by

the Department on Labor that consists of a set of ac-
tivity diaries which include coded activities, their start
and end times and their duration for a randomly se-
lected sample of the population. The 2014 ATUS data
contains data from 11592 individuals, whose activities
are coded into the 17 major codes. The code include
both sleeping (code 1) and all forms of transport (code
18) - there is no category for code 17. For simplicity, we
assume that people are interacting with their phones at
any time that they are sleeping and not travelling, so
we can easily map the major codes to our states.
Next, we combine the data collected above to build a

composite model that has a power drain coe�cient for
each state. We do this by combining the entries from
all time periods when that regime was active and cal-
culating the overall mean. In particular, each of the
continuous sensing regimes is modelled by considering
data from the accuracy versus sampling rate data, the
ongoing regime and the “moving” sections of the ge-
ofenced regime. Note that this results in 5 coe�cients,
since the drain for the geofenced modes is a combina-
tion of geofencing for active and passive, and a selected
sensing mode for moving.
The resulting model is shown in Figure 5. The model

appears to be consistent with our observations in Sec-
tion 5 - the biggest power drain is in the hafs regime,
geofencing is essentially free on iOS, and geofencing
doesn’t buy much on Android.
We can then estimate the power drain over the day for

every user for a particular regime by: (1) mapping the
activity codes to states, (2) summing up the durations
in each state to obtain the percentage of the day spent in
each state, and (3) multiplying by the coe�cients and
summing to obtain the power drain across the entire
day.
Note that for the geofence regimes, we use the ge-

ofence coe�cient for the passive and active states, and
the selected sensing regime for the moving state.
This gives us the distribution of power drains across

the set of users for each regime. A boxplot of these
distributions is shown in Figure 5. Unsurprisingly, the
nohafs regime runs out of battery for almost all users
on both platforms. In order to get more visibility into
the details of the other regimes, we re-plotted the graph
after excluding nohafs. From that graph, we can ob-
serve that:

1. The graphs are actually fairly consistent across
platforms - the median drain for all geofenced regimes
on both platforms is around 20%.

2. The major di↵erence between the geofenced regimes
is in the spread of the data - the medium accuracy
regimes with geofencing have tighter bounds than
the geo-hafs regime, and fewer outliers. Some of
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Figure 5: Results for generalizing the results to a broader variety of activity patterns. Top: a simple
model for estimating the power drain as a factor of the no data collection nd, tracking using high
accuracy fast sampling nohafs, tracking using medium accuracy fast sampling nomafs, tracking using
medium accuracy slow sampling nomass and geofenced geofenced states. Bottom: Distributions of
power drain (%/hr) in each regime generated by applying the top model to the ATUS dataset

the outliers in the geo-hafs case are greater than
100%, indicating that in a few cases, the phone will
run out of battery even with geofencing turned on.

3. The non-geofenced regimes are noticeably di↵erent
- the median on iOS is around 50%, while the me-
dian on Android is at the same (15 - 20%) as the
other data collection methods. This implies that
by using medium accuracy on Android, it might be
possible to get away without duty cycling. But it
is clear that for iOS, any reasonable data collection
solution must use some form of duty cycling.

7. CONCLUSION AND FUTURE WORK
As we have seen in the boxplots in Section 5 the cur-

rent data collection is skewed because we are unable to
detect the end of a trip until the end of the hour when
we receive a remote push. We should investigate other

techniques for detecting a trip end. Some examples are
to use the newly created Visit API, or to perform in-
verse duty collection in which we collect points with
finer granularity as the speed reduces. This will e↵ec-
tively remove the distance filter as we come to a stop,
and allow us to collect enough points to detect the trip
end.
The results also show that medium accuracy data col-

lection on Android has the same power drain as geofenc-
ing. This suggests the exploration of an alternate duty
cycling method in which we switch to low accuracy sens-
ing instead of geofencing in the active state.
In conclusion, the data that we have collected shows

that passive sensing requires duty cycling to be practial.
There are multiple duty cycling methods that can work
on Android but using geofencing as the trigger for a
cascade is the only feasible option in iOS. We have built
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an open source library for both Android and iOS that
implements these techniques, and we are able to share
some of the challenges that we encountered.

8. REFERENCES
[1] U. Bareth and A. Kupper. Energy-E�cient

Position Tracking in Proactive Location-Based
Services for Smartphone Environments. pages
516–521. IEEE, July 2011.

[2] D. Chu, N. D. Lane, T. T.-T. Lai, C. Pang,
X. Meng, Q. Guo, F. Li, and F. Zhao. Balancing
energy, latency and accuracy for mobile sensor
data classification. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor
Systems, pages 54–67. ACM, 2011.

[3] J. Hood, E. Sall, and B. Charlton. A GPS-based
bicycle route choice model for San Francisco,
California. Transportation Letters: The
International Journal of Transportation Research,
3(1):63–75, Jan. 2011.

[4] G. Inc. See and manage your timeline.
https://support.google.com/gmm/answer/

6235133?hl=en, 2015. [Online; accessed
09-Dec-2015].

[5] M. B. Kjærgaard, J. Langdal, T. Godsk, and
T. Toftkjær. Entracked: energy-e�cient robust
position tracking for mobile devices. In
Proceedings of the 7th international conference on
Mobile systems, applications, and services, pages
221–234. ACM, 2009.

[6] M. Martins, J. Cappos, and R. Fonseca.
Selectively taming background android apps to
improve battery lifetime. In Proceedings of the
2015 USENIX Conference on Usenix Annual
Technical Conference, pages 563–575. USENIX
Association, 2015.

[7] S. Nath. ACE: exploiting correlation for
energy-e�cient and continuous context sensing. In
Proceedings of the 10th international conference
on Mobile systems, applications, and services,
pages 29–42. ACM, 2012.

[8] J. Paek, J. Kim, and R. Govindan.
Energy-e�cient rate-adaptive GPS-based
positioning for smartphones. In Proceedings of the
8th international conference on Mobile systems,
applications, and services, pages 299–314. ACM,
2010.

[9] ProtoGeo. Moves on the App Store.
https://itunes.apple.com/us/app/moves/

id509204969?mt=8, 2013. [Online; accessed
09-Dec-2015].

[10] S. Reddy, K. Shilton, G. Denisov, C. Cenizal,
D. Estrin, and M. Srivastava. Biketastic: sensing
and mapping for better biking. In Proceedings of
the SIGCHI Conference on Human Factors in

Computing Systems, pages 1817–1820. ACM,
2010.

[11] K. Shankari. e-mission-data-collection repository.
https://github.com/e-mission/

e-mission-data-collection, 2015. [Online;
accessed 09-Dec-2015].

[12] K. Shankari, M. Yin, D. Culler, and R. H. Katz.
E-Mission: Automated transportation emission
calculation using smartphones. In Pervasive
Computing and Communication Workshops
(PerCom workshops), pages 268–271, Mar. 2015.

[13] V. Srinivasan and T. Phan. An accurate two-tier
classifier for e�cient duty-cycling of smartphone
activity recognition systems. In Proceedings of the
Third International Workshop on Sensing
Applications on Mobile Phones, page 11, 2012.

[14] F. Viticci. The Background Data and Battery
Usage of FacebookâĂŹs iOS App.
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