
Combining Requirement Mining, Software Model

Checking, and Simulation-Based Verification for

Industrial Automotive Systems

Tomoya Yamaguchi
Tomoyuki Kaga
Alexandre Donze
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-124

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-124.html

June 30, 2016



Copyright © 2016, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Combining Requirement Mining, Software Model
Checking and Simulation-Based Verification for

Industrial Automotive Systems
Tomoya Yamaguchi and Tomoyuki Kaga

TOYOTA MOTOR CORPORATION
{tomoya yamaguchi,tomoyuki kaga}@mail.toyota.co.jp

Alexandre Donzé and Sanjit A. Seshia
University of California, Berkeley
{donze,sseshia}@berkeley.edu

Abstract—The verification and validation of industrial closed-
loop automotive systems still remains a major challenge. The
overall goal is to verify properties of the closed-loop combi-
nation of control software and physical plant. While current
software model-checking techniques can be applied on a software
component of the system, the end result is not very useful
unless the interactions with the physical plant and other software
components are captured. To this end, we present an industrial
case study in which we combine requirement mining, software
model-checking, and simulation-based verification to find issues
in industrial automotive systems. Our methodology combines the
the scalability of simulation-based verification of hybrid systems
with the effectiveness of software model-checking at the unit level.
We present two case studies: one on a publicly available Abstract
Fuel Control System benchmark and another on an actual
production SiLS (Software in the Loop Simulator) benchmark.
Together these case studies demonstrate the practicality of the
proposed methodology.

I. INTRODUCTION

In recent years, functional requirements for automotive
control systems have become far more sophisticated, leading to
the development of more complex and larger scale control soft-
ware. This in turn has increased the importance of verification
and validation (V&V) processes in the automotive industry
since software can affect the integrity of the automotive system
as a whole.

The industry authors of this paper have been part of a
team which, for more than a decade, has attempted to use
verification techniques such as a model checking [1]–[3]
on production automotive systems. Unfortunately, even with
impressive tools, these attempts have proved to be time-
consuming, generally requiring considerable person-hours and
expertise to be applied, with little or no conclusive results
and many false alarms. A major factor is that most tools can
handle only small, unit-level components, whereas to be truly
useful, one needs to map an issue found at the unit level to a
system-level problem that an engineer can confirm.

In order to apply model-checking at the software
component-level and deduce results at the system-level, one
has to make the right assumptions on the interfaces of modules
(pre- and post-conditions). To this end, this paper proposes
to leverage recently-developed simulation-based verification
techniques for cyber-physical systems (e.g. [4], [5]) that can be
used for falsifying temporal logic properties as well as to mine

specifications from simulation traces [6]. Such methods have
proven to scale well and able to provide useful information
about cyber-physical systems of industrial size and complexity.
We show how requirement mining, simulation-based verifica-
tion, and software model checking can be combined to (1)
obtain more precise pre-conditions for software modules in
order to reduce the number of false-positives from model
checkers, and (2) to guide the search for concretizing probable
issues at the system levels when they do exist. We present
results on a case study of an Abstract Fuel Control System
benchmark [7] as well as on an actual production powertrain
design in a SiLS (Software in the Loop Simulator) setting. We
show that the resulting V&V methodology is more scalable
than software verification and provides better guarantees than
simulation-based verification.

II. BACKGROUND

A vehicle integrates multiple systems (See Fig. 3) including,
e.g., the engine, transmission, steering and brakes. These sys-
tems comprise a controller and a physical plant (i.e., a physical
component to be controlled). The controller is composed of
software components typically implemented in Simulink [8]
or C.

In this section we give more background on the software
development process for automotive control systems, and the
previous experience of the industry authors with verification
and validation for such systems.

A. Automotive Control Software Development

Automotive control software development follows the usual
V-model development process (see Fig. 1). However, since
the software is written to control actual physical phenomena,
the traditional method of verifying the software is to validate
in actual usage environments, i.e., using physical prototypes.
Consequently, “spiral-up” type processes are also incorporated
into the system development process.

The main characteristics of the development process are as
follows.

• System design: Iterative development of the software
design, while testing operation of the control system in



Fig. 1. Development process of a system controller

real environments. In particular, complex physical phe-
nomenon involved in the engine system are considered
and various tests are already applied;

• On the right side of V-model, various tests of the software
on actual vehicles, engine test beds, HILS(Hardware-
in-the-Loop-Simulation), and SILS (Simulation-in-the-
Loop-Simulation) are applied hierarchically. Those are
stronger and more exhaustive than at the system design
phase.

This extensive testing, involving significant person-hours,
is employed to achieve and maintain quality up to the final
product test phase. The main cause of inefficiency is the
need to return to an earlier phase of the development process
to rework some aspect of the design. Additionally, software
development tends to be incremental, focused on components,
and re-using and extending legacy systems. When a new
software component is designed or an existing one modified, it
is critical that it be verified as extensively as possible to avoid
undesirable interactions with other software components and
with the physical world. Accordingly, the industry authors of
this paper are part of a group that has been working for over
a decade to investigate how software verification tools can be
applied to production software.

B. Experience applying Software Model Checking

One approach to achieve exhaustive verification is to apply
model checking at the unit level. Model checking is a method
of formal verification based on an exhaustive exploration
of the state space of a system [1]–[3]. Over a period of
several years, various software model checking tools have been
tried. However, this approach yielded little value while using
considerable person-hours per experiment. In our experience,
the biggest drawback of using model checkers was that,
even after the steep learning curve for using these tools,
they could only handle small unit level verification tasks,
and when applied, would generate a very large number of
false alarms. In Fig.2, we provide an example workflow, with
corresponding work-hours. The most time-consuming task

Fig. 2. Work-hours spent in each tasks while applying model checking.

consists in mapping counterexamples found at the unit-level to
counter-examples at the system-level. Therefore, limiting the
number of false positive by using more accurate pre-conditions
and speeding-up the search for system-level counterexamples
using simulation-based approaches, as suggested in this paper,
can both contribute to significantly reduce the total time spent
for verification.

Thus, in our experience, the effectiveness of software model
checking is limited by false alarms arising because interac-
tions with other components, in particular physical plants [9],
are not captured in an open-loop setting. Moreover, model-
checking the closed-loop system (software controller and
plant) is impractical because of difficulties to model the plant
and scalability issues.

III. OVERVIEW OF OUR APPROACH

In order to address the problem identified in the preceding
section, we identified two tasks which can help:

• Finding good pre-conditions for unit level software compo-
nents, which characterize the states they can reach in the
closed-loop system.
• Mapping counterexamples found at the unit level to

“system-level” counterexamples, i.e., concretizing the unit-
level counterexample on the closed-loop system.

Right now, the first item is performed manually. The second
item is also performed manually, but only incompletely —
the unit level counterexample is validated but typically not
extended to a system level counterexample. In our experience,
finding good pre-conditions takes up to 20% of total model
checking person-hours and validating a unit-level counterex-
ample takes 50% of total person-hours [9].

We therefore propose a methodology that combines
simulation-based verification of the closed-loop system with
software model checking at the unit level. Software model
checking is exhaustive, and simulation-based verification is
scalable to the system level: therefore, their combination
allows us to find corner-case issues in the code that generate
counterexamples at the system level.

More specifically, this methodology combines requirement
mining, software model checking and simulation-based ver-
ification in a complementary fashion. The key steps in this
methodology are as follows (see flowchart in Fig. 3):

2



Fig. 3. Composition of vehicle system & proposed method

1. Pre-condition (range) mining: Using a system for mining
requirements of closed-loop cyber-physical systems [6], we
generate pre-conditions for a software component in terms
of ranges of values that selected interface variables must
always lie in.
In general, the requirements are specified in signal temporal
logic [10] (see Sec. III-A for background information about
STL). For the purpose of this step, the STL specification is
parametrized, and has the syntactic form below:

x = (x1, . . . ,xn)

πmin = (πmin 1, . . . , πmin n)

πmax = (πmax 1, . . . , πmax n)

�

(
n
∧
i=1

((πmin i ≤ xi) ∧ (xi ≤ πmax i))

) (1)

where x are input variables of the target software compo-
nent, and πmin and πmax are parameters to be mined. (See
Fig. 5 in the section below showing how the tool operates.)

2. Software model-checking: Given the generated pre-
conditions, we run a software model checker to check
assertions or post-conditions for a unit-level software com-
ponent. If any unit-level counterexamples are found, then
we go to the next step. Otherwise, we can mark this
component as verified.
We use off-the-shelf software verifiers. For the case
studies in this paper, we used Simulink Design Veri-
fier (SLDV, [11]) and the C Bounded Model Checker
(CBMC, [12]). We provide additional information on
these tools below. If the software verifier generates a
counterexample, then we map this counterexample back
to an assignment to the input variables, and denote this
assignment by the vector x̂.

3. Simulation-based Falsification: Given a counterexample for
a unit-level software component, we try to extend it to a
system-level counterexample by the use of simulation-based
verification [4], [5]. The use of these tools requires the unit-
level counterexample to be encoded into a suitable property
expressed in signal temporal logic [10]. If the tool succeeds
in finding a system-level counterexample, then this is passed
on to engineers who then cross-check whether this problem
can indeed occur. Otherwise, we go back to the previous
step and try to find more unit-level counterexamples.
We describe the working of the falsifier (Breach, [4]) later

in this section. Briefly, we formulate an STL property that
states that the value of the input variables of the software
component x always remain at least an ε > 0 distance away
from the counterexample assignment x̂, as shown below:

ϕ(x) = �

√√√√ n∑
i=1

(xi(t)− x̂i)2 ≥ ε

 (2)

We refer to this property as Property Eq. 2. Breach uses
numerical optimization to search for a counterexample. If
it finds one, this is a system-level counterexample showing
how x̂ can be extended to the entire closed-loop system.

A. Background on Methods and Tools Used

The approach used in this paper was implemented using
Breach [4] a Matlab/Simulink toolbox, and SLDV [11] or
CBMC [12], both model-checking engines for Simulink mod-
els or C programs, respectively. In the following, we briefly
describe the techniques implemented by these tools.

1) Signal Temporal Logic (STL): A signal x of dimension
n is a function mapping any time value t ∈ R+ to a vector
x(t) = (x1(t), x2(t), . . .) ∈ Rn. In our context, signals are
obtained from simulation of the closed-system combining a
plant and a controller. Signal Temporal Logic (STL) is a
language to specify constraints on signals. Atomic predicates
are inequalities over the values of a signal, e.g.,x1(t) > 3,
x2(t) < −2, etc. Arbitrary functions of x(t) are possible,
e.g.,

√
(x1(t)− 2)2 + (x2(t) + 1)2 > 0.1.

STL Formulas can be combined using Boolean operators,
e.g., ¬(x1(t) > 3), x2(t) < −2 ∧ x4(t) > 4, etc, or temporal
operators. In this paper, we only use one: �, aka “always”.
�ϕ means that the formula ϕ is true at all times t. Other STL
temporal operators include ♦, aka “eventually”, and U , aka
“until”. Temporal operators can also be annotated with a time
interval. E.g., �[2,4](ϕ) means that ϕ is true for all t ∈ [2, 4].

STL admits a “quantitative” semantics ρ which maps a
signal x and a formula ϕ to a value ρ(ϕ,x) [6]. If this value
is positive, then x satisfies ϕ, if it is negative, then x falsify ϕ.
Its computation is based on the residual of atomic predicates,
and on min (for conjunction and �) and max (for disjunction
and ♦) operators. E.g.,
• ρ(x1(t) > 2,x) = x1(t)− 2,
• ρ(x1(t)<1 ∧ x2(t)>−2),x) = min(1− x1(t), x2(t) + 2)
• ρ(�[0,3](x1(t) > 2,x) = mint∈[0,3](x1(t)− 2),

3



Fig. 4. Flowchart of simulation-based falsification. The optimizer minimizes
ρ over possible control points which are converted into input signals u(t)
using interpolation.

• etc.
Breach supports STL and the efficient computation of quanti-
tative semantics for simulations obtained with Simulink.

2) Simulation-based Falsification: A system can be seen as
a function taking an input signal u(t) and returning an output
signal x(t). The falsification problem refers to the problem of
finding an input signal u such that the corresponding output x
falsifies a property ϕ. The tool Breach [4] solves this problem
by parameterizing the input signals using control points (CP)
and a choice of interpolation methods, and then formulating
the problem as a minimization of the quantitative function
ρ over the domain of values of the control points. If the
minimization returns a negative objective function, then by
definition of ρ, the corresponding signal x falsifies ϕ. The
process is illustrated on Fig. 4. Different black-box optimizers
can be used to solve the minimization problem, e.g., genetic
algorithm (GA), simulated annealing (SA) or other commercial
optimizers.

3) Requirement Mining: Requirement mining [6] is the
problem of finding formulas that a system satisfies for all
possible inputs. Breach solves a simplified version of this
problem based on a parametric variant of STL, PSTL, and
simulation-based falsification. Starting from a PSTL formula,
i.e., an STL formula with unknown parameters, e.g., �(x(t) <
p1 ∧ x(t) > p2), Breach first performs one simulation of
the system, and find values for the parameters to satisfy
the formula. Then, it solves a falsification problem for the
instantiated STL formula. If falsification succeeds, the method
is iterated until no counterexample can be found. The process
is illustrated in Fig. 5.

4) Software Model Checking: The software verification
problems considered in this study involve proving, for a given
program written in C or Simulink, that a pre-condition of the
program implies a specified post-condition. We use software
model checking tools CBMC and SLDV for this purpose. A
description of the techniques used in CBMC or SLDV is out
of scope for this paper; however, the main point for our use

Fig. 5. Flowchart of counterexample guided requirement synthesis

Fig. 6. Abstract Fuel Control System [7]

case is that for both these tools, either the property can be
proven, or a falsifying input (counterexample) is found. Both
tools have been found to be quite efficient at the unit level.

IV. CASE STUDY 1: ABSTRACT FUEL CONTROL SYSTEM

In this section, we present an evaluation of our methodology
on an Abstract Fuel Control System (AFC) model [7]. This
model was proposed by Toyota researchers [7] as a synthetic
challenge problem representative of some of the key verifica-
tion challenges faced (see Fig. 6).
Description. This fuel control model is a subsystem of gasoline
engine and implemented in Simulink. The purpose of this
model is to control the engine air-fuel ratio so as to meet emis-
sions targets — an important control functionality in a gasoline
engine. The model contains the air-fuel controller and a mean
value model of the engine dynamics, such as the throttle and
intake manifold air dynamics. Inputs of this system model are
throttleAngle, engineSpeed and waterTemp. Outputs are
airFuelRatio, airFuelRatioTarget and controllerMode.

Here, we applied simulated annealing as a black-box op-
timizer and SLDV as BMC engine. In Table I, we give the
control point (CP) settings for each input of the AFC model:

4



Algorithm 1 AF target decision
1: if 60.0 ≤ throttleAngle ≤ 62.0 and −2.0 ≤ waterTemp ≤ 2.0
2: and ((airF low[g/s]< 0.0) or (10.0 ≤ airF low ≤ 11.0)) then
3: airFuelRatioTarget← 12.5 . injected fault
4: else
5: airFuelRatioTarget← 14.7 . original code
6: end if

number of CPs, range setting for each CP and interpolation
methods. These settings are the same in both falsification and
range mining phases.
Injected fault: We revised this model to inject a rare case
malfunction into one of the software components. This soft-
ware component has 3 inputs: airF low, throttleAngle and
waterTemp and one output:airFuelRatioTarget. The in-
jected malfunction sets airFuelRatioTarget to 12.5 under a
rare condition (see Alg. 1). The post-condition for this model
is that airFuelRatioTarget ≥ 13.0.

This model is a functional approximation of a more com-
plex A/F reference decision unit that would include a latent
malfunction. It is desirable to find such issues early in the
development cycle. However, such a rare case malfunction
is difficult to find using random testing or simulation-based
methods in general.
Experimental Results: The input variables x are airF low,
throttleAngle, and waterTemp. The result of range min-
ing provides airF low[g/s]= [2.6, 34.0], throttleAngle[deg]=
[0.0, 90.0] and waterTemp[°C]= [−30.0, 100.0]. Note that
airF low is the only intermediate variable whose range was
unknown before range mining; the ranges of the other two
inputs are equal to the input ranges defined in Table I. We
applied SLDV with and without the mined input ranges as a
pre-condition. In both cases, SLDV finds counterexamples that
violate the post-condition described above, but they are differ-
ent. We show the counterexamples in Table II. We indicate
the pre-condition ranges in the absence of range mining as
the interval [-∞, ∞], indicating that there is no constraint on
the value of that input variable. The counterexample obtained
without range mining turns out to not be feasible due to
the negative value for airF low which is not possible when
accounting for the physical plant dynamics.

TABLE I
SETTING OF INPUT GENERATOR ON AF TARGET DECISION SOFTWARE

COMPONENT

variable #CP range of CP interpolation
throttleAngle[deg] 5 [0.0, 90.0] Spline
engineSpeed[rpm] 5 [800.0, 3800.0] Spline
waterTemp[°C] 1 [-30.0, 100.0] Spline

TABLE II
COUNTEREXAMPLES FROM SLDV WITH AND WITHOUT RANGE MINING.

“CE” INDICATES THE COUNTEREXAMPLE VALUES.
input with mining no mining

variable range ce range ce
airF low[g/s] [2.6, 34.0] 10.0 [-∞, ∞] -0.5

throttleAngle[deg] [0.0, 90.0] 60.0 [-∞, ∞] 60.0
waterTemp[°C] [-30.0, 100.0] -2.0 [-∞, ∞] -2.0

Fig. 7. System-level counterexample (false case) on Abstract Fuel Control
System

In our methodology, we take the counterexample obtained
with range mining, namely, x̂ = [10.0, 60.0,−2.0] and run
Breach to falsify Property Eq. 2. Breach finds a system-level
counterexample that violates the post-condition. This system-
level counterexample is visualized in Fig. 7.

The red triangle shows how the signals airF low,
throttleAngle, and waterTemp evolve until the post-
condition property violation happens at nearly 5.5 sec. where
the counterexample values x̂ = [10.0, 60.0,−2.0] are obtained
for those signals.

V. CASE STUDY 2: PRODUCTION POWERTRAIN SYSTEM

Our second case study is a production powertrain system
which is one of the production models under development.
It is based on SMiL [13], [14] which is an in-house SILS
(Simulation-in-the-Loop-Simulation) environment developed
at Toyota (see Fig. 8).
Description: This power train model comprises engine and
transmission sub-systems as well as the entire controller
code in C. The model has 5 external inputs: pedalAngle,
brakeAngle, shift, waterTemp and airTemp. shift po-
sition is always fixed as ”D” (drive) in this evaluation.

For the more complex model, a commercial optimizer was
used instead of standard simulated annealing. Also CBMC
demonstrated better performance than SLDV. The control point
settings for each input of the power train system model are

5



Fig. 8. Simulink model of a power train system model.

shown on Tab. III and are the same in both falsification and
range mining phases. As simulation time was relatively long
(about 36s. per simulation), we modified Breach native falsifier
to support parallel computation, making it possible to compute
multiple simulations simultaneously. Falsifying was stopped
after 100 simulations. The software component in which we
injected the malfunction has 8 inputs and one output. Range
mining was run for 444 simulations with result shown on
Tab. IV. The proposed combined methodology was able to
find a falsifying case depicted in Fig. 9.
Injected Fault: Motivated by an actual issue that occurred
during development, dealing with a malfunction triggered
under a very specific combination of conditions in the C code,
we injected a fault into this model. Alg. 2 shows the injected
fault in code that decides a control target in a closed loop and
has 8 input variables:

• waterTemp[°C]: Temperature of engine coolant.
• atmosphericPressure[hPa]: Atmospheric pressure.
• gear: Current gear position in transmission.
• gearHoldF lag: Status of lock-up.
• idlF lag: Status of engine idling.
• catalystTempHIGHflag: Turned ON when catalyst tem-

perature becomes high.
• fuelCutF lag: Status of fuel cut, triggered when negative

torque is required e.g. braking.
• engRpm[rpm]: Rotational speed of engine.

The post-condition of this code is target < 150.0. We now
discuss how we attempt to find a system-level counterexample
that violates this post-condition.
Experimental Results: We applied the methodology of Sec. III
to this case study. Once again, Breach was used for the range
mining and falsification steps, while, in this case, CBMC [12]
was used as the software verification tool. As a reference, we

TABLE III
SETTING FOR INPUT GENERATOR ON THE POWER TRAIN MODEL

variable #CP range of CP interpolation
pedalAngle[%] 30 [0.0, 100.0] linear
brakeAngle[%] 30 [0.0, 100.0] linear
waterTemp[°C] 1 [-30.0, 100.0] previous
airTemp[°C] 1 [-30.0, 40.0] previous

shift position is fixed as ”D” range.

Algorithm 2 Injected issue on power train model
1: if waterTemp > WARMINGUP
2: and atmosphericPressure > THRESHOLD
3: and ((4th ≤ Gear ≤ 6th) or (gearHoldF lag = OFF ))
4: and idlF lag = OFF and fuelCutF lag = OFF
5: and catalystTempHIGHflag = ON then
6: if 2600.0 ≤ engRpm ≤ 2610.0
7: and 89.0 ≤ waterTemp ≤ 91.0 then
8: target← 150.0 . injected fault
9: else

10: target← orignalTarget . original code
11: end if
12: end if

also applied software model checking without range mining.
Table IV shows the counterexamples obtained at the unit level
with and without range mining.

The counterexample obtained without range mining is not
a true system-level counterexample, because, e.g., it assigns
atmosphericPressure to be greater than 2.0 hPa.

However, when combined with range mining using Breach,
our methodology can be used to lift CBMC’s counterexample
to the system level. For this, we once again use Breach’s
falsification feature to find a violation of Property Eq. 2 where
x̂ = [90.0, 1.0, 6, 0, 0, 1, 2605.0].

The system-level counterexample is visualized in Fig. 9.
The triangles show that the post-condition is violated at around
21.0 sec. This violation occurs through a sequence of events
involving both continuous signals in the physical plant and
changes in discrete variables. We trace the sequence of events
backwards (see Fig. 9). For the post-condition to be violated,
engRpm must reach 2605.0 and catalystTempHIGHflag
must be set to True. The latter condition occurs when high
temperature of exhaust gas are present, which occurs in turn
when a high value of pedalAngle and heavy engine load
(engRpm) are kept on for a certain amount of time. Further,
to reach engRpm[rpm] = 2605.0, the system must start from
low rotation such as idle mode and start mode. In addition,
the gear must change in a specified pattern based on the
current gear, engRpm and the vehicle speed. Finding such a
complex sequence of events involving physical plant signals
and software variables requires an approach such as ours that
analyzes the closed-loop system.

To summarize, our methodology combines the unit-level ex-
haustiveness of software model checking with the system-level
scalability of simulation-driven requirement mining and falsi-

TABLE IV
COUNTEREXAMPLES FROM CBMC WITH AND WITHOUT RANGE MINING.

“CE” INDICATES THE COUNTEREXAMPLE VALUES.
input with mining no mining
variable range ce ce
waterTemp[°C] [-30.0, 100.0] 90.0 89.4
atmosphericPressure[hPa] [0.0, 1.0] 1.0 3.5
gear [0,6] 6 5
gearHoldF lag 0 0 0
idlF lag [0,1] 0 0
catalystTempHIGHflag [0,1] 1 1
fuelCutF lag [0,1] 0 0
engRpm[rpm] [0.0, 5310.9] 2605.0 2600.0

6



Fig. 10. Comparison between direct falsification of post-condition (left plot)
and falsification guided using a counterexample and mined pre-conditions
(right) for the AFC model. Each circle is an input found during falsification.

fication. The system-level counterexamples obtained greatly
enhance the productivity with which issues arising the devel-
opment process can be debugged and fixed. In our experience,
this approach significantly eliminates the manual effort in
finding good preconditions (20% of total person hours) and
validating a counterexample (50% of total person hours).

VI. DISCUSSION

We conducted another set of experiments to check whether
using simulation-driven falsification directly to violate the
unit level post-condition, without the use of software model
checking, can be as effective as using software model checking
first and then simulation to falsify Property Eq. 2. Specifically,
we re-ran just the falsification step for 100 different trials on
the AFC model with different initial input values, varying
the property between one that tries to directly violate the
post-condition and Property Eq. 2. Note that simulation-based
falsification can be sensitive to the choice of initial input
values, since it performs numerical optimization from this
initial valuation.

We found that the combined approach could find the fault
(and a system-level counterexample) 59.0% of the time, while
a pure simulation-based approach could only find the fault
17.0% of the time. Further, as seen in Fig. 10, we see the
visualization of one pair of trials for the different properties.
The red star denotes the initial input valuation and the green
box indicates the unit level counterexample to be hit. We can
see that if we directly try to violate the post-condition, the
optimizer gets stuck in a local minimum in the parameter space
away from the fault region; whereas Property Eq. 2 is effective
at guiding the search towards the unit level counterexample
(malfunction).

We compared execution times of the proposed combined
methodology vs post-condition only falsification. The results
on AFC is shown in Tab. V and in Tab. VI and Tab. VII. All
experiments were run on a desktop PC with i7-3770, 3.4GHz.
with 4 cores.

The results show that on average, the total time of combined
methodology is smaller than post-condition only falsification.
Also, from Tab. VI, we see than in most cases and in average,
the falsifying case is found using fewer (often many fewer)
simulations than with the combined methodology.

In conclusion, in this paper we have shown that a com-
bination of simulation-driven requirement mining, software

model checking, and simulation-based falsification can be
significantly more effective than using just software model
checking or just simulation-based verification.

Going forward, we plan to expand the adoption of this
methodology and also consider more complex requirements
to be mined at the interface between the software components
and the physical plant.

ACKNOWLEDGMENTS

We are grateful to Jyotirmoy Deshmukh, Xiaoqing Jin,
James Kapinski, Hisahiro Ito, Arthur Wu and Ken Butts from
Toyota Motor Engineering & Manufacturing North America,
Inc. (TEMA) for their insightful comments and suggestions.
We thank James Kapinski for providing the Abstract Fuel
Control Model. We acknowledge the support on CBMC from
Daniel Kroening, Martin Brain and Peter Schrammel. The UC
Berkeley authors were supported in part by Toyota through the
CHESS center.

REFERENCES

[1] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 2000.

[2] Biere, Armin; Heule, Marijn; Van Maaren, Hans (ed.). Handbook of
satisfiability. IOS press, 2009.

[3] Holzmann, Gerard J. The model checker SPIN. IEEE Transactions on
software engineering, 1997, 23.5: 279.

[4] Donzé, A. Breach, A Toolbox for Verification and Parameter Synthesis
of Hybrid Systems. CAV 2010: 167-170.

[5] Annpureddy, Yashwanth, et al. S-TaLiro: A tool for temporal logic
falsification for hybrid systems. Springer Berlin Heidelberg, 2011.

TABLE V
COMPARISON OF EXECUTION TIME ON AFC

Pre-con
mining

Software
MC

Sim-based
falsification total

Combined
methodology 5[min] few seconds 5[min] 10[min]

Post-condition
only falsification - - >

15[min]
(timeout) >

15[min]
(timeout)

TABLE VI
COMPARISON OF NUMBER OF SIMULATION ON POWER TRAIN MODEL FOR

10 TRIALS

trial 1 2 3 4 5
Combined methodology 205 161 80 12 80

Post-condition only falsification 325 8 1409 4 877

6 7 8 9 10 ave
48 80 72 89 85 91.2
56 2805 80 24 1145 673.3

TABLE VII
COMPARISON OF EXECUTION TIME ON POWER TRAIN MODEL

Pre-con
mining

Software
MC

Sim-based
falsification total

Combined
methodology 66.6[min] few seconds

14.3[min]
(average) 80.9[min]

Post-condition
only falsification - -

105.9[min]
(average) 105.9[min]

7



[6] Jin, X., Donzé, A., Deshmukh, J. V., & Seshia, S. A. Mining requirements
from closed-loop control models. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 2015, 34.11: 1704-1717.

[7] JIN, Xiaoqing, et al. Powertrain control verification benchmark. In:
Proceedings of the 17th international conference on Hybrid systems:
computation and control. ACM, 2014. p. 253-262.

[8] http://www.mathworks.com/products/simulink
[9] Tomoya Yamaguchi, et al. A model checking application to software de-

velopment of automobile control systems. Embedded System Symposium
2012, 2012. p. 188-196. (Japanese)

[10] Maler, Oded; Nickovic, Dejan; Pnueli, Amir. Checking temporal prop-
erties of discrete, timed and continuous behaviors. In: Pillars of computer
science. Springer Berlin Heidelberg, 2008. p. 475-505.

[11] http://www.mathworks.com/products/sldesignverifier
[12] Kroening, Daniel; Tautschnig, Michael. CBMC bounded model checker.

In: Tools and Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, 2014. p. 389-391.

[13] Yasutaka Fujiwara, Hisahiro Ito, Harunaga Uozumi, and Koji Fukuoka.
Development of Next Generation SILS. In: Proceeding No.122-12, pub-
lished by Society of Automotive Engineers of Japan (JSAE), 2012. p.
1-4.

[14] Fukuoka Koji, et al. Development of CRAMAS-VF. In: Fujitsu Ten
technical report, 2014, 31.1: 15-20.

8



Fig. 9. System-level counterexample (“false case”) on production power train system model

9


