
Adaptive Learning Algorithms for Transferable Visual
Recognition

Judy Hoffman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-139
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-139.html

August 8, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Adaptive Learning Algorithms for Transferable Visual Recognition

by

Judith Ho↵man

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Alexei Efros

Professor Jitendra Malik
Professor Bruno Olshausen

Summer 2016

Adaptive Learning Algorithms for Transferable Visual Recognition

Copyright 2016
by

Judith Ho↵man

1

Abstract

Adaptive Learning Algorithms for Transferable Visual Recognition

by

Judith Ho↵man

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Trevor Darrell, Chair

Understanding visual scenes is a crucial piece in many artificial intelligence applications
ranging from autonomous vehicles and household robotic navigation to automatic image
captioning for the blind. Reliably extracting high-level semantic information from the visual
world in real-time is key to solving these critical tasks safely and correctly. Existing ap-
proaches based on specialized recognition models are prohibitively expensive or intractable
due to limitations in dataset collection and annotation. By facilitating learned information
sharing between recognition models these applications can be solved; multiple tasks can reg-
ularize one another, redundant information can be reused, and the learning of novel tasks is
both faster and easier.

In this thesis, I present algorithms for transferring learned information between visual
data sources and across visual tasks - all with limited human supervision. I will both formally
and empirically analyze the adaptation of visual models within the classical domain adap-
tation setting and extend the use of adaptive algorithms to facilitate information transfer
between visual tasks and across image modalities.

Most visual recognition systems learn concepts directly from a large collection of manually
annotated images/videos. A model which detects pedestrians requires a human to manually
go through thousands or millions of images and indicate all instances of pedestrians. How-
ever, this model is susceptible to biases in the labeled data and often fails to generalize to
new scenarios a detector trained in Palo Alto may have degraded performance in Rome,
or a detector trained in sunny weather may fail in the snow. Rather than require human
supervision for each new task or scenario, this work draws on deep learning, transformation
learning, and convex-concave optimization to produce novel optimization frameworks which
transfer information from the large curated databases to real world scenarios.

i

To Paul

ii

Contents

Contents ii

I Introduction and background 1

1 Introduction 2
1.1 Thesis goals and contributions . 2
1.2 Organization and previously published work 3

2 Visual Recognition 4
2.1 Classic Problem Statements and Datasets 4
2.2 Visual Representations and Recognition Models 6

3 Domain Adaptation 7
3.1 Problem Definition . 7
3.2 Domain Adaptation for NLP and ASR . 8
3.3 Visual Domain Adaptation . 8

II Adaptating Across Domains with Fixed Representations 10

4 Introduction and Background 11
4.1 Problem Setup . 11
4.2 Prior Work . 13

5 Category Invariant Feature Transformations 15
5.1 Framework Introduction . 15
5.2 Category Invariant Feature Transformations through Similarity Constraints . 16
5.3 Category Invariant Feature Transformations through Optimizing Classifica-

tion Objective . 19
5.4 Jointly Optimizing Classifier and Transformation 21
5.5 Analysis . 22
5.6 Datasets . 23

iii

5.7 Evaluation . 25

6 Extending to Deep Features 30
6.1 Deep Domain Adaptation . 30
6.2 Background: Deep Domain Adaptation Approaches 31
6.3 Adapting Deep CNNs with Few Labeled Target Examples 32
6.4 Evaluation with Deep Features . 34

7 Summary 42

III Domain Invariant Representation Learning with Deep
Models 44

8 Deep Models for Visual Recognition 45

9 Optimize for Domain Invariance 46
9.1 Introduction . 46
9.2 Related work . 48
9.3 Joint CNN architecture for domain and task transfer 49
9.4 Evaluation . 54
9.5 Analysis . 59
9.6 Conclusion . 60

IV Defining Visual Domains 62

10 Visual Domains 63

11 Discovering Latent Domains 64
11.1 Introduction . 64
11.2 Related Work . 65
11.3 Single Transform Domain Adaptation . 66
11.4 Multiple Transform Domain Adaptation . 67
11.5 Domain Clustering . 68
11.6 Experiments . 72

12 Multiple Source Domain Adaptation 77
12.1 Introduction . 77
12.2 Problem set-up . 78
12.3 Theoretical analysis . 79

13 Continuous Adaptation 86

iv

13.1 Introduction . 86
13.2 Related Work . 88
13.3 Continuous Adaptation Approach . 89
13.4 Experiments and Results . 93
13.5 Conclusion . 99

V Adapting Across Tasks 101

14 Introduction and Background 102
14.1 Problem Setup . 102
14.2 Related Work . 104

15 Detection Adaptation 108
15.1 Large Scale Detection through Adaptation 108
15.2 Initializing representation and detection parameters 110
15.3 Net Surgery to Change Classifiers into Detectors 111
15.4 Adapting category specific representation and detection parameters 111
15.5 Detection with LSDA models . 114
15.6 Recognition Beyond Detection . 115

16 Experiments 117
16.1 Experiment Setup & Implementation Details 117
16.2 Quantitative Analysis of Adapted Representation 118
16.3 Large Scale Detection . 126
16.4 Fully Convolutional LSDA for Semantic Segmentation 127

17 Summary 131

VI Adapting Across Visual Modalities 133

18 Depth Modality 134
18.1 Introduction . 134
18.2 Prior Work . 135

19 Limited Depth Training Data 138
19.1 Introduction . 138
19.2 Multimodal Architecture with Generic Depth Information 139
19.3 Experiments . 142

20 Limited Depth Test Data 150
20.1 Introduction . 150

v

20.2 Modality Hallucination Model . 151
20.3 Architecture Optimization . 152
20.4 Experiments . 155

21 Summary 162

Bibliography 163

vi

Acknowledgments

First and foremost, I want to thank my wonderful PhD advisors, Trevor Darrell and Kate
Saenko. You have provided countless hours discussing research, career decisions, and life
for which I am truly grateful. Kate, you have been a role model for me, demonstrating a
lifestyle I can emulate and a level of career excellence I can aspire to. Trevor, you’re support
and encouragement has never wavered, giving me an environment to do research which was
productive, fun, and allowed continued growth. Thank you both.

I have been extremely fortunate to work with many amazing people during my PhD.
Thank you first to the numerous post-docs who have been in our lab and provided advice
and interesting research discussions. I specifically want to mention those who I was able
to co-author with: Brian Kulis, Erik Rodner, Sergio Guadarrama, Marcus Rohrbach, Ross
Girshick and Oscar Beijbom. I would also like to thank Professor Mehryar Mohri for his time
and insights working together over the last year on bridging theoretical domain adaptation
with practical visual adaptation.

Thank you to my PhD committee members, Trevor Darrell, Alyosha Efros, Jitendra
Malik, and Bruno Olshausen for taking the time to provide guidance to me on my dissertation
and career choices. I want to o↵er a special thank you to Jitendra for his encouragement
early on in my PhD.

Aside from the many post-docs and professors, I’ve been surrounded by and worked with
so many amazing fellow PhD students. Berkeley computer vision boasts a fantastic group of
funny, intelligent, and caring people who have made my PhD experience so memorable, at
times entertaining, and always enjoyable. I will miss you all! A special thank you to those
who I’ve worked with closely: Eric Tzeng, Je↵ Donahue, Deepak Pathak, Saurabh Gupta,
Evan Shelhamer, Ronghang Hu, Jon Long, Ning Zhang, Jian Leong, Yangqing Jia, Kate
Rakelly, and Damian Mworca. Thank you also to Georgia Gkioxari, Allie Janoch, and Ning
Zhang for your support both early on and throughout this process.

I want to thank my family. To my parents, your support, encouragement, and belief in
my success has been a persistent and reliable comfort during the most stressful times. To my
brothers, David, Jacob and Ben, thank you for consistently providing levity and perspective
for me as I’ve gone through the whirlwind which is grad school.

Last but not least, to my husband, Paul. You have been my rock and my biggest
cheerleader. Your passion for life and intellectual curiosity has inspired me to expand my
goals and your endless support has encouraged me to persevere until I achieve them. I can’t
imagine these last six years without you. My success is our success, thank you for all that
you do.

1

Part I

Introduction and background

2

Chapter 1

Introduction

1.1 Thesis goals and contributions

The goal of this thesis is to explore the problem of visual domain adaptation. Huge progress
has been made in recent years towards solving classic visual recognition problems such as
image classification, object detection, and semantic segmentation, however most if not all
state-of-the-art solutions require a large number of annotated images and are trained using
fully supervised learning techniques. Unfortunately, supervised learning produces a recogni-
tion model which is designed to perform well on the exact data it was given at training time,
or at least data which is drawn from the same distribution. Often the images or videos that
an algorithm will receive at test time di↵ers significantly from the available training data.
This means that a recently purchased robot placed into a novel environment won’t be able
to recognize objects as well as the developers believe based on the robot’s performance in it’s
training environment. Instead of requiring more annotated data from each new environment,
the focus of the following research is to propose algorithms for adapting an initial source
model for use in a novel target domain, while requiring few or no new annotations.

The thesis proposes solutions for domain adaptation and expands the scope of problem
statements for which adaptation solutions may be applied in the following ways:

• Algorithms for adaptation across di↵erent visual datasets. We present both a solu-
tion for adaption across domains under a fixed representation and when considering
adapting both the representation and model space.

• Expanding the notion and understanding of visual domains. We bring to light the het-
erogenous nature of many visual datasets and propose a solution for discovering latent
domains within an unstructured data collection and a separate adaptation solution for
data which is temporally structured.

• Combining weak learning and domain adaptation to introduce the concept and algo-
rithms for adaptation across visual recognition tasks. We specifically propose algo-
rithms to adapt a classification model into a detection model.

CHAPTER 1. INTRODUCTION 3

• Introduce the concept of visual modalities as distinct domains and propose algorithms
for e↵ectively transferring information between recognition models for the two visual
inputs.

1.2 Organization and previously published work

This thesis is organized as follows. We first briefly review the classical visual recognition
problem statements as well as the high level solution methodology of feature computation
and/or learning and the most common approaches for recognition models in Chapter 2. Next,
we introduce the subject of domain adaptation, describing both the problem statement and
the relevant related research in non-visual domain adaptation (Chapter 3).

All previously published algorithms presented in this thesis are work for which I am either
lead or co-lead author. I outline the specific algorithms which were previously published
below.

Part II focuses on learning transformations across domains using a fixed representation
and well as an analysis of adaptation techniques using both shallow and deep representations.
This is based on work done with Erik Rodner, Je↵ Donahue, Eric Tzeng, Kate Saenko and
Trevor Darrell [83, 79, 76].

Part III discusses adaptation simultaneous adaptation of representation and classification
models through learning domain invariant image representations. This part builds on work
done along with Eric Tzeng, Trevor Darrell, and Kate Saenko [177].

Part IV challenges the notion of a single visual dataset comprising a single visual domain.
We present approaches for discovering latent domains, theoretical analysis of multi-source
domain adaptation solutions, and describe a continous adaptation approach for use with
temporally variable data. This is based on work done with Brian Kulis, Kate Saenko, and
Trevor Darrell [82, 77], as well as ongoing work with Mehryar Mohri.

Part V presents two variants on an algorithm for adapting an image classifier into an
object detector. This builds on work done in collaboration with Eric Tzeng, Je↵ Donahue,
Sergio Guadarrama, Trevor Darrell, Kate Saenko, Deepak Pathak, and Ronghang Hu [84,
81] and ongoing work with these collaborators as well as Jonathan Long.

Finally, Part VI of this thesis studies adaptation and transfer of information across visual
imaging modalities. Specifically between RGB and depth image representations. We discuss
both cross-modal adaptation with limited depth training data and learning to hallucinate
depth mid-level information for improving test time RGB detection performance. This con-
tains work done with Saurabh Gupta, Trevor Darrell, Jitendra Malik, Sergio Guadarrama,
and Jian Leong [80, 78].

4

Chapter 2

Visual Recognition

2.1 Classic Problem Statements and Datasets

There are three main visual recognition tasks that we focus on in this thesis: classification,
detection, and semantic segmentation. All three tasks operate with a fixed label space, being
a set of objects that should be recognized within an image. The di↵erence between the task
has to do with the amount of spatial feedback an algorithm is expected to produce.

In image classification, the learned model is required to indicate all objects which appear
somewhere in a given test image, from the set of known object categories (see Figure 2.1a).
Image classification is an integral component of textual/visual search algorithms and auto-
matic photo-organization. Since no spatial information is needed, classification algorithms
are most often trained using a collection of training images with corresponding image-level
labels indicating the objects which are present in each image. Throughout this document
image classification is evaluated in the setting of exactly one known object per evaluation
image. We therefore evaluate our approaches using a simple accuracy metric.

Object detection goes one step further than image classification and attempts to roughly
localize each recognized object, in the form of a bounding box surrounding the object (see
Figure 2.1b). Similarly, the standard supervised data used to train an object detector is
bounding box annotations for each known object present in a given image. Since a large
component of object detection includes location of objects, most object detection datasets

person

Classification

motorcycle

sheep

table

(a) Classification

Detection

person

motorcycle

(b) Detection

person

motorcycle

Semantic Segmentation

(c) Semantic Segmentation

Figure 2.1: Illustration of the three types of visual recognition discussed in this thesis.

CHAPTER 2. VISUAL RECOGNITION 5

include more scene-like images each of which contains more than one known object. The extra
localization information makes object detection more suited for applications like surveillance
and self-driving cars, where it is important to understand the support of a given object.
Evaluation of object detection models is done using the mean average precision (mAP)
metric. For all experiments, a bounding box proposed by a given algorithm is considered a
true positive if it overlaps with the ground truth bounding box annotation by more than 0.5
and no other bounding box proposed by the algorithm with a higher score has already been
labeled as a true positive for the overlap object. Average precision is then computed per
object category as the area under the precision recall curve as we sweep the score threshold
used to produce a predicted bounding box. Finally, the mean average precision is the mean
across all object classes of the respective average precisions.

The last classic recognition problem which will be discussed in the text is that of semantic
segmentation. In this task the goal is to indicate for each pixel in an image which known
object category (or categories) it belongs to (see Figure 2.1c). Usually for these kinds of
problems an explicit“background” label is introduced. Note, this task is not the same as
instance segmentation where for each pixel both the object class and the particular instance
that the pixel belongs to are indicated. Nevertheless, this more spatially specific task proves
to be a useful visual model for applications such as robot manipulation where it is important
to recognize the surface of any shaped object.

A few of the datasets which will be extensively referred to throughout this document are:

ImageNet A collection of millions of images with tens of thousand object categories. The
dataset is a manually curated collection of internet images [35]. The dataset contains
classification labels for all images and detection bounding box annotations for around
1000 images per 200 basic level categories.

O�ce A dataset collected for studying the problem of visual domain adaptation for clas-
sification. There are three sub-datasets (domains) each containing objects commonly
seen in an o�ce environment [151].

NYUDv2 A dataset of indoor scenes including living rooms, dining rooms and bathrooms.
This dataset contains detection and semantic segmentation annotations and each image
has both RGB and depth sensory information. [158]

We will discuss each of these datasets as well as all other datasets in more detail in the
respective evaluation sections.

The standard approach for producing a recognition model for any one of these tasks is to
use a dataset, which contains all the necessary annotations that correspond to the eventual
capability of the model, to train parameters of a representation and/or model. In the next
section we will briefly cover the representations and models which are referred to through
the text.

CHAPTER 2. VISUAL RECOGNITION 6

Representation
Module

Recognition
Model

person

motorbike

Figure 2.2: Illustration of the classic visual classification architecture using independent
feature computation and recognition models.

2.2 Visual Representations and Recognition Models

Most visual recognition systems consist of two components, visual representations and recog-
nition models. The visual representations take as input an image or part of an image and
produce a d-dimensional vector which encapsulates the information in the image. The recog-
nition model takes as input the representation vector and indicates which of the known
categories are present in the image.

In classic approaches these two components are considered independent modules and
are learned or computed separately (see Figure 2.2). Often, the representations, sometimes
referred to as features, are hand-designed functions which capture the notion of edge pat-
terns [125, 31, 157]. In this staged approach, the features computed on training images are
then used along with known training annotations in order to either learn the parameters of a
recognition model in the case of algorithms like support vector machines (SVM) or distances
are directly computed in the visual representation space in order to classify an image as in
nearest neighbors (kNN).

In recent years, a dominant approach using convolutional neural networks (CNNs) has
emerged which combines the representation and model learning into a single objective which
is jointly optimized. These architectures take as input all or part of an image and are trained
to produce labels for anywhere from the whole image to as specific as every pixel of the image.
These methods will be discussed in more detail in Chapter 8.

7

Chapter 3

Domain Adaptation

3.1 Problem Definition

Standard supervised learning considers being given data, x, and labels, y, drawn from some
distribution, D, at training time and fits model parameters so as to minimize some loss
between prediction labels, p, and the true known labels, y. A crucial assumption in the
supervised learning setup is that new test time data, x

te

, will be drawn from the same
distribution, D, that was seen at training time. Most guarantees about the performance of
a model trained in a supervised way are predicated on this assumption.

Domain adaptation instead operates under the explicit assumption of distribution shift
between the training and test domain. In particular there is assumed to be a large labeled
source domain dataset, {x, y}, drawn from the distribution X . However, at test time we
assume we will receive data from a distinct target domain with data points, v, drawn from a
target distribution, V . The goal of domain adaptation is to learn to adapt the source model
for improved performance in the target domain.

This can be accomplished by assuming a small number of labeled examples from all known
categories in the target domain, not enough to fully train a robust model in the target domain
alone, but enough to learn an adapted source model or a target model regularized by the
source data or model. Such approaches are called supervised domain adaptation.

In contrast, unsupervised domain adaptation, is the task of learning the same adaptation
parameters, but without access to any labels from the target domain. Generally, approaches
in unsupervised adaptation focus on aligning the marginal empirical distributions through
sample re-weighting or non-linear transformations which align the distributions.

For many practical applications, it is unreasonable to assume that the data seen at test
time will be drawn from the same distribution as the data collected and annotated for
training models. Therefore, adaptation has been explored throughout many areas which
use machine learning. In the next section, we’ll briefly cover some related work in natural
language processing and automatic speech recognition and then in Section 3.3 we will discuss
some related work in visual domain adaptation. These sections are meant to introduce the

CHAPTER 3. DOMAIN ADAPTATION 8

basic problem statements and general approach paradigms used in all fields. More specific
references will be mentioned in the context of each algorithm which is introduced.

3.2 Domain Adaptation for NLP and ASR

Domain adaptation is a critical component of automatic speech recognition (ASR) systems.
Here, each new human speaker is considered a distinct domain, where the collection of human
speeches which are annotated and used for training a recognition model are considered the
multiple source domains while the the particular person who uses the speech recognition
system is considered the target domain.

Adaptation has also been extensively studied in the natural language processing commu-
nity (NLP). Usually, the tasks focus on training on a large language corpora to determine
sentiment analysis or document summarization and then the goal is to apply the learned
algorithm on related, though distinct, domains. In this case a domain may be reviews of
kitchen equipment as a source domain and reviews of books as a target domain. The overall
goal of determining sentiment remains fixed, though the language used to describe a kitchen
appliance favorably will di↵er subtly from the language used to describe a book one is happy
with.

Some of the earliest adaptation algorithms draw from the economic theory of correction
for selection bias [73]. For example, consider a speaker from California who uses the word
“like” significantly more frequently than a di↵erent English speaker from northern Montana.
Thus, a bias will exist in the samples collected in the source domain and will influence
the learned model. This type of approach continues to be used for both supervised and
unsupervised adaptation in speech recognition and natural language processing [22, 87].

Several methods for adaptation have been developed in the NLP community, e.g., struc-
tural correspondence learning was proposed for NLP tasks such as sentiment classification
[18]. Daumé III [32] introduced a feature replication method for domain adaptation, which
has been applied to both NLP and vision tasks. The basic idea is: given a feature vec-
tor x, define the augmented feature vector x̃ = (x;x;0) for data points in the source and
ṽ = (v;0;v) for data points in the target. In the linear case, feature replication [32] can be
shown to decompose the learned hyperplane parameter into ✓ = ✓̂ + ✓

0, where ✓̂ is shared
by all domains [95].

3.3 Visual Domain Adaptation

The focus of this thesis is on visual domain adaptation. Contrary to domain adaptation
in ASR and NLP, visual data su↵ers the problem of having ill-defined domains. The most
standard practice is to assume that each visual dataset collected is considered a single domain
and adaptation algorithms are evaluated across datasets. We will present results in this
standard setting in Parts II and III. However some of the main contributions of this work

CHAPTER 3. DOMAIN ADAPTATION 9

is in expanding the reach of visual adaptation problem statements, both in terms of having
a broader definition of visual domains and in terms of recognizing the heterogenous nature
of any given dataset and the overlap between multiple datasets when considering the best
adaptation algorithms.

Most prior work focuses on the setting of adaptating one visual classifier between two
di↵erent visual datasets. Many of the first approaches were based on using hand-designed
representations with SVM classifiers which would be adapted. For example, [16] proposed a
weighted combination of source, target, and transductive SVMs. This is similar to Adaptive
SVMs [189, 116], where the target classifier fT (x) is adapted from the existing, auxiliary
classifier fA(x) via the equation fT (x) = fA(x) + �f(x), where �f(x) is the perturbation
function. The PMT-SVMmethod of [7] is related but uses a di↵erent regularization term that
does not indirectly penalize the margin. Domain transfer SVM [46] attempts to reduce the
mismatch in the domain distributions, measured by the maximum mean discrepancy, while
also learning a target decision function. A related method [47] utilizes adaptive multiple
kernel learning to learn a kernel function based on multiple base kernels.

The disadvantage of methods that only adapt the classifier is their inability to transfer
the learned domain shift to novel categories, which is limiting in object recognition scenarios,
where the set of available category labels varies among datasets.

So, many approaches were introduced which adapted in a category agnostic way, either
by minimizing the distance between the source and target distributions [64, 63, 58], or by
learning a category invariant transformation [151, 104, 83, 44].

The most recent approach to visual adaptation involves modifying both the represen-
tation and model parameter space of a deep convolutional neural network (CNN). This
is commonly done through directly learning a feature space which minimizes the distance
between the source and target distributions while simultaneously continuing to correctly
classify all available labeled examples [57, 124, 177].

For a more thorough discussion of prior work as it relates to the specific algorithms we
present in this thesis, see the relevant chapters surrounding the algorithm introduction.

10

Part II

Adaptating Across Domains with
Fixed Representations

11

Chapter 4

Introduction and Background

4.1 Problem Setup

In many real-world applications of object recognition, the image distribution used for training
(source dataset, or domain) is di↵erent from the image distribution used for testing (target
domain). This distribution shift is typically caused by data collection bias (see Figure 4.1 for
three example domains collected for the same set of object categories.) In general, visual do-
mains can di↵er in a combination of (often unknown) factors, including scene, intra-category
variation, object location and pose, viewing angle, resolution, motion blur, scene illumina-
tion, background clutter, camera characteristics, etc. Recent studies have demonstrated a
significant degradation in the performance of state-of-the-art image classifiers due to domain
shift from pose changes [50], a shift from commercial to consumer video [46, 47], and, more
generally, training datasets biased by the way in which they were collected [175].

Methods for adapting to a target distribution have been proposed, both in and outside
of the vision community. Some have focused on learning adapted classifier parameters,
typically by minimizing classification error using a small number of (category) labels in
the target domain [16, 95, 189]. Others use existing classifiers but learn a transformation
between the features in the various domains, either by utilizing unlabeled but corresponding
points across domains, such as a scene captured simultaneously from multiple views [50], or
by somehow aligning the domain distributions [64, 63].

In this paper, we introduce a novel domain adaptation technique that improves on and
combines the above approaches. We first propose a novel method of learning a domain-
invariant feature space, and later extend this formulation to simultaneously adjust the deci-
sion boundary in the new space, using all available labeled data.

The key idea behind our feature adaptation method is to learn a regularized transforma-
tion that maps feature points from one domain to another using cross-domain constraints.
The constraints are formed by requiring that the transformation maps points from the same
category (but di↵erent domain) near each other. Its advantages over previous feature adap-
tation methods are that 1) it can learn from category labels, and not just from instance-level

CHAPTER 4. INTRODUCTION AND BACKGROUND 12

(b) amazon.com

(a) digital SLR camera

(c) robot-mounted
webcam

Figure 4.1: We address the problem of transferring object category models between visual
domains, such as (a) high-resolution DSLR photographs of objects taken by a human, (b)
images downloaded from amazon.com, and (c) images captured by a robot-mounted webcam.
Each domain is characterized by a distinct feature distribution caused by, e.g., background
clutter in (a,c) vs. uniform backgrounds in (b), or fine-grained detail in (a,b) vs. lack thereof
in (c) (as on the laptop keyboard).

constraints, 2) it can adapt models between heterogeneous spaces, including those with
di↵erent dimensions, via an asymmetric transform, and 3) the learned transformation is cat-
egory independent and thus transferrable to unlabeled categories. This method, which we
call the Asymmetric Regularized Cross-domain Transform (arc-t), is independent
of the classifier and allows us to encode domain invariance into the feature representation of
a broad range of classification methods, from k-NN to SVM, as well as clustering methods.

Forcing all intra-class points to be similar can be ine�cient when the end goal is to learn
a decision boundary. We extend the above to simultaneously learn the transformation of
features and the classifier parameters themselves, using the same classification loss to jointly
optimize both. This method, referred to as Maximum Margin Domain Transform
(mmdt), provides a way to adapt max-margin classifiers in a multi-class manner, by learning
a shared component of the domain shift as captured by the feature transformation.

Because it operates over the input features, mmdt can generalize the learned shift in a
way that parameter-based methods cannot. On the other hand, it overcomes the limitations
of the arc-t method as applied to classification: by optimizing the classification loss directly
in the transform learning framework, it can achieve higher accuracy; furthermore, its use
of e�cient hyperplane constraints significantly reduces the training time of the algorithm,
and learning a transformation directly from target to source allows e�cient optimization in
linear space.

The article builds on several conference publications. The transform learning methods for
domain adaptation have been presented in [151] (for symmetric metrics) and in [104] (asym-

CHAPTER 4. INTRODUCTION AND BACKGROUND 13

metric arc-t). The max-margin formulation was introduced in [83]. This work presents a
unified framework for all three methods, and further insights into their underlying connec-
tions. In addition, we present a comprehensive comparison of the methods to each other, as
well as to recent visual domain adaptation approaches.

4.2 Prior Work

Domain adaptation is a fundamental problem in machine learning and in related fields. It
has attracted a lot of attention in the natural language community [18, 32, 11, 94] and in
computer vision [16, 115, 91, 63].

The problem statement of domain adaptation is related to multi-task learning, but di↵ers
from it in the following way: in domain adaptation problems, the distribution p(x) over
the features varies across tasks (domains), while the output labels y remain the same; in
multi-task learning or knowledge transfer, p(x) stays the same across tasks (single domain),
while the output labels vary (see [93] for more details). In this article, we address multi-
task learning across domains ; i.e., both p(x) and the output labels y can change between
domains.

In the following, we briefly review domain adaptation methods that either focus on com-
puter vision applications or that are related to our approach. We present a detailed com-
parison to several of these methods in Section 5.5. A comprehensive overview of multi-task
learning and domain adaptation is given in [93].

Classifier adaptation Several classifier-centric approaches have been presented for do-
main adaptation, most based on the SVM. For example, [16] propose a weighted combina-
tion of source, target, and transductive SVMs. One of the prominent approaches is given
by Daumé III [32], who introduces a feature replication method for domain adaptation (as
described in Section 3.3). Daumé III also gives an overview of the relevant baselines, which
we employ in this work. This is similar to Adaptive SVMs [189, 116], where the target
classifier fT (x) is adapted from the existing, auxiliary classifier fA(x) via the equation
fT (x) = fA(x) + �f(x), where �f(x) is the perturbation function. The PMT-SVM method
of [7] is related but uses a di↵erent regularization term that does not indirectly penalize the
margin. Domain transfer SVM [46] attempts to reduce the mismatch in the domain distri-
butions, measured by the maximum mean discrepancy, while also learning a target decision
function. A related method [47] utilizes adaptive multiple kernel learning to learn a kernel
function based on multiple base kernels.

The disadvantage of methods that only adapt the classifier is their inability to transfer
the learned domain shift to novel categories, which is limiting in object recognition scenarios,
where the set of available category labels varies among datasets.

Multi-view learning Multi-view learning [154, 143, 51, 37] addresses the scenario where
multiple sets of observations are available per labeled example, resulting in multiple views

CHAPTER 4. INTRODUCTION AND BACKGROUND 14

of the data. The views could come from di↵erent modalities or, in vision, di↵erent 3D pose
of the same object instance. For visual domain adaptation, such methods have been applied
in cases where multiple observations of the same instance are available [50, 30, 115]. For
example, [97] use multi-view learning on multiple views of the same face to perform face
recognition across pose variation. In contrast to classifier adaptation described above, such
methods attempt to learn a perturbation over the feature space, rather than a class-specific
perturbation of the model parameters, typically in the form of a transformation matrix or
modified kernel. In particular, [50] as well as [115] translate features between camera views
to transfer activity models, while [30] translated between text and image domains.

Our method can handle multiple views, i.e. data with instance constraints, when avail-
able; however, unlike multi-view learning, it can also handle the case of multiple object
category datasets that have no instances in common, and only share the same category
labels.

Hybrid supervised methods Instead of choosing either feature transformation or clas-
sifier adaptation, it is possible to combine the two approaches, as we do in this paper with
mmdt. The approach most closely related to ours is the recent Heterogeneous Feature Aug-
mentation (HFA) method [44], which learns a feature transformation into a common latent
space, as well as the classifier parameters. However, in contrast to mmdt, hfa is formulated
to solve a binary problem, so a new feature transformation must be learned for each category.
Therefore, unlike mmdt, hfa cannot learn a representation that generalizes to novel target
categories. Furthermore, our method has better computational complexity.

Semi- and Un-supervised methods While we do not discuss in detail it here, in [41] we
presented a semi-supervised extension of our model, adding constraints between unlabeled
target points to the labeled constraints. For example, we placed smoothness constraints
on examples that lay on a consistent motion path and could thus be hypothesized to have
the same, albeit unknown, label. Domain adaptation in a purely unsupervised setting (no
labeled target domain examples) has been considered by [64] and [63]. The main idea of
both works is to build subspaces for the source as well as the target domain and to consider
the path between them on the corresponding manifold. A new feature representation is
calculated by concatenating intermediate subspaces on the path. Whereas, [64] samples a
finite set of intermediate subspaces, the Geodesic Flow Kernel (gfk) of [63] shows how to use
all subspaces on the geodesic path by using a kernel trick. This yields a symmetric kernel
for source and target points that can be used for example for nearest neighbor classification.
More recently, [25] extended this framework to handle image features learned using deep
convolutional neural networks.

15

Chapter 5

Category Invariant Feature
Transformations

5.1 Framework Introduction

In this chapter we present a cohesive framework for learning a single transformation matrix
W which maps examples between the source and target domains. The objective for the
transformation is to diminish domain-induced di↵erences so that examples can be compared
directly. This mapping step can then be followed by standard distance-based learning.

We denote the source domain as X and the target domain as V . Similarly, we denote
the source data points as X = [x

1

, . . . ,x
nX] 2 RdX⇥nX with labels y = [y

1

, . . . , y
nX] and the

target data points asV = [v
1

, . . . ,v
nV] 2 RdV⇥nV with corresponding labels g = [g

1

, . . . , g
nV].

The target domain is assumed to have significantly fewer labeled examples than the source,
i.e. nV ⌧ nX , and there may even be some categories for which the target domain has
no labeled examples. We use whichever categories have labeled target examples to learn a
transformation that is generalizable across categories and so can be applied to all categories
at test time. Note that our algorithm allows the source and target feature spaces to have
di↵erent dimensions (dX 6= dV).

To learn such a transformation we will define a matrix regularizer, r(W) and a loss,
L(W ,X,V,y, g), which are computed as some function of the category labeled source and
target data1. With these two terms defined we solve the following general optimization
problem:

Ŵ = argmin
W

r(W) + � · L(W ,X,V,y, g) (5.1)

1Note that in general we could equally optimize a second loss function between the source and target data
which considers instance level constraints. However, to distinguish ourselves from prior work which focused
on learning a metric requiring instance constraints, we present our algorithms assuming only category level
information to demonstrate the e↵ectiveness of using only this coarser level of supervision.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 16

5.2 Category Invariant Feature Transformations
through Similarity Constraints

Learning a transformation can be also viewed as learning a similarity function between
source and target points, sim(W ,x,v) = xT

Wv. This perspective was used by arc-t [151,
104], which extended metric learning techniques [33] towards a domain adaptation scenario.
Intuitively, a desirable property of this similarity function is that it should have a high value
when the source and target points are of the same category and a low value when the source
and target points are of di↵erent categories.

This intuitive goal can be formulated by constructing a constraint for each pair ({x, y}, {v, g})
of labeled source and target points:

c(W ,x,v, y, g) :=

⇢
sim(W ,x,v) > u y = g
sim(W ,x,v) < l y 6= g

, (5.2)

for some constants, u, l 2 R.
If optimized, the constraints specified in Equation (5.2) guarantee that source and target

points with the same label have high similarity and that source and target points with
di↵erent labels have low similarity.

In general, we do not need each pairwise constraint to be satisfied to learn a good sim-
ilarity function, therefore, we optimize soft constraints in the form of the following loss
function:

`(W ,x,v, y, g) =

8
>><

>>:

max(0, sim(W ,x,v) � u)
if y = g

max(0, l � sim(W ,x,v))
if y 6= g

(5.3)

Finally, we define a loss for all labeled data points as the squared sum over each pairwise
loss:

L(W ,X,V,y, g) =
X

i,j

[`(W ,x
i

,v
j

, y
i

, g
j

)]2 . (5.4)

Using this loss function in the general framework of Equation (5.1), we seek to solve the
following optimization problem:

Ŵ = argmin
W

r(W) +
X

i,j

[`(W ,x
i

,v
j

, y
i

, g
j

)]2 . (5.5)

Constraints thus far have been defined for category level correspondences, however, if addi-
tional paired instance correspondence is available for some data, this auxiliary information
could be incorporated using the same similarity constraint technique. In [41], we also showed
that constraints between labeled and unlabeled target points can help learning in a semi-
supervised fashion.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 17

An important second part of the objective function as defined in Section 5.1 is the reg-
ularizer of the transformation matrix. This term contains our prior knowledge about the
transformation and has to be chosen carefully. We present two types of very flexible regu-
larization terms in the following sections.

LogDet Regularizer for Symmetric Transforms

We will begin by considering the log determinant (LogDet) regularizer:

r(W) = tr(W) � log det(W) (5.6)

for positive definite matrices W .
Using the LogDet regularizer causes the formulation in Equation (5.5) to become equiv-

alent to that of Information-theoretic Metric Learning (ITML), which indirectly learns a
transformation matrix W corresponding to a linear transformation between X and V by
optimizing the pairwise loss functions given in Equation (5.5).

With this regularization term, the optimization function is kernelizable and a final non-
linear transformation can be learned to map between the source and target points.

While this model is intuitively appealing for domain adaptation, it requires a key sim-
plifying assumption that the source and target data have the same dimension; i.e., dX = dV .
This follows from the fact that the matrix trace and determinant are only defined for square
matrices W . An even stronger restriction on W made by the LogDet regularizer is that it
is only defined over symmetric positive definite matrices. Implicitly, if W is positive defi-
nite then W can be decomposed into the product of two identical matrices - W = R

T

R.
Therefore, the similarity function learned can be decomposed into:

sim(W ,x,v) = xT

Wv = (Rx)T (Rv) (5.7)

The observation here is that a symmetric positive definite matrix corresponds to applying
the same transformation to the source and target domains.

Using the LogDet regularizer limits the applicability of domain adaptation due to the
restricted class of possible transformation matrices W . Consider the scenario in Figure 5.1,
where there is no symmetric transformation that can transform between the source and
target domains. In the next section, we will mitigate this limitation.

Frobenius Regularizer for Asymmetric Transforms

In order to avoid the restrictions of the symmetric transformation model for adaptation, we
seek an alternative regularizer that allows the model to be applied to domains of di↵ering
dimensionalities but that still retains the benefits of kernelization. We choose the Frobenius
norm regularizer, which is defined for general matrices W in asymmetric transformations
(Figure 5.1). We call this problem the Asymmetric Regularized Cross-domain trans-
formation problem with similarity and dissimilarity constraints, or arc-t for short, in the
rest of the paper.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 18

(a) A symmetric transformation – the same rotation and
scaling applied to both domains (green and blue) – cannot

separate classes (circles and squares)

(b) An asymmetric transformation – a rotation applied
only to blue domain – successfully compensates for

domain shift

Figure 5.1: A conceptual illustration of how an asymmetric domain transformation matrix corre-
sponding to a linear transformation can be more flexible than a symmetric one.

Using the loss function defined in Equation (5.5), our new optimization objective is given
as follows:

min
W

1

2
kW k2

F

+ �
X

i,j

[`(W ,x
i

,v
j

, y
i

, g
j

)]2 (5.8)

There are two main limitations of the transformation learning problem (5.8) presented above.
First, it is limited to linear transformation matrices, which may not be su�cient for some
adaptation tasks. Second, the size of W grows as dX ·dV , which may be prohibitively large for
some problems. To overcome both these shortcomings, a kernelization result was presented
by Kulis et al. [104].

Whether using the linear or kernelized version of the algorithm, the general idea of using
pairwise constraints to learn W limits the ability of this learning algorithm to scale with the
number of labeled points in the source and target, since the number of constraints generated
is nX ·nV . Additionally, W is learned so as to place source and target points close if they are
of the same category and far if they are from di↵erent categories. While this is an intuitive
notion, it fails to directly optimize the overall objective of correctly classifying target points.
In the next section, we describe an alternate approach which overcomes these limitation by
jointly learning W and classifier parameters.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 19

(a) SOURCE (b) TARGET, no adaptation (c) TARGET, existing methods (d) TARGET, our method

unlabeled

labeled

Figure 5.2: (a) Linear classifiers (shown as decision boundaries) learned for a four-class
problem on a fully labeled source domain. (b) Problem: classifiers learned on the source
domain do not fit the target domain points shown here due to a change in feature distribution.
(c) Existing SVM-based methods only adapt the features of classes with labels (crosses and
triangles). (d) Our method adapts all points, including those from classes without labels, by
transforming all target features to a new domain-invariant representation.

Optimization

In this section, we briefly describe optimization techniques that can be used to solve the
objectives described.

When optimizing the objective with a LogDet norm regularizer, we use the standard
ITML method as mentioned in Section 5.2. To optimize the objective with the Frobenius
norm regularizer, we use one of two methods. First, note that the problem can actually
be reformulated as a quadratic programming (QP) problem, after which any standard QP
solver can be used to optimize our objective. However, if the size of W is too large, this
is impractical. A separate approach is to use the Bregman divergence method [33]. Both
techniques yield similar performance, but have varying convergence rates.

5.3 Category Invariant Feature Transformations
through Optimizing Classification Objective

In this section, we present a di↵erent loss function that can be used within the transform-
based domain adaptation framework defined in Equation (5.1). The goal now is to directly
optimize a classification objective for the target points, while simultaneously presenting a
learning algorithm that is more scalable with the number of labeled source and target points
(Figure 5.2).

For our algorithm, we consider linear hyperplane classifiers. For example, assume that a
one-versus-all linear SVM classifier has been trained on the labeled source data over all K
categories. Let ✓

k

denote the normal to the hyperplane associated with the k’th binary SVM
problem. Similarly, let b

k

be the o↵set to the hyperplane associated with the k’th binary
SVM problem. Finally, let ✓̃

T

k

=
⇥
✓

T

k

b
k

⇤
be the full a�ne hyperplane representation.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 20

Intuitively, we seek to learn a transformation matrix W such that once W is applied
to the target points, they will be classified accurately by the source SVM. We consider
learning an a�ne linear transformation matrix, which can be easily done using homogeneous
coordinates for our data points: ṽT =

⇥
vT 1

⇤
.

The key idea is now to use constraints based on linear classifiers instead of single instances.
In particular, we require that transformed target points are correctly classified in the source
domain:

c(W , ✓̃
k

, ṽ, g) := I(g = k)
⇣
✓̃

T

k

W ṽ
⌘

� 1 , (5.9)

where I is the signed indicator function, with I(z) = 1 when z is true and I(z) = �1 in the
other case. If Equation (5.9) is fulfilled, all transformed target points would be correctly
classified by the source linear classifier. However, this is only possible for separable cases, so
instead we optimize the soft constraints in form of the hinge loss:

`(W , ✓̃
k

,v
i

, g
i

) = max(0, 1 � I(g
i

= k) · ✓̃

T

k

W ṽ
i

) (5.10)

Similarly, if we use⇥ =
⇥
✓̃

1

. . . ✓̃

K

⇤
to denote all hyperplane parameters of the one-versus-

all classifier, the loss over all target points and all categories is given as:

L(W ,⇥,V, g) =
X

k,i

`(W , ✓̃
k

,v
i

, g
i

) (5.11)

Because the target points are transformed into the source domain space with W , we simply
define the source data term in our loss function as standard SVM hinge loss summed over
all categories:

L(⇥,X,y) =
X

k,i

max(0, 1 � I(y
i

= k) · ✓̃

T

k

x
i

) (5.12)

Once the transformation matrix W has been learned, we can also use it to transform linear
classifiers ✓̃

k

to the target domain that had been learned with source data only. This is a
huge advantage of modelling the domain shift as being category-invariant, because we only
need a few categories present in both target and source training data and are able to transfer
all available category models in the source domain to the target domain. For regularization
of W , we use the Frobenius norm regularizer for this optimization problem. Optimizing this
objective in Equation (5.1) using the loss in Equation (5.10) and the Frobenius norm regu-
larizer leads to a category invariant and asymmetric transformation matrix, which considers
classifier constraints in the source domain. Additionally, the learning algorithm no longer
has a linear dependency on the number of source training examples and instead scales with
the number of categories and the number of labeled target points, K · nV .

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 21

5.4 Jointly Optimizing Classifier and Transformation

Our goal in this section is to jointly learn 1) a�ne hyperplanes that separate the categories in
the common domain consisting of the source domain and target points projected to the source
and 2) the new feature representation of the target domain determined by the transformation
matrix W mapping points from the target domain into the source domain.

The algorithm and the change of constraints presented in the previous section is especially
useful when linear classifiers are already learned in the source domain. However, we can
also formulate a joint learning problem for the transformation matrix and the classifier
parameters; i.e., the hyperplane parameters and thus the decision boundary are also a↵ected
by the additional training data provided from the target domain.

The transformation matrix should have the property that it projects the target points
onto the correct side of each source hyperplane and the joint optimization also maximizes
the margin between two classes. Therefore, we refer to this method as Maximum Margin
Domain Transform, or mmdt.

The joint optimization problem can be formulated by adding a regularizer on ⇥.

min
W ,⇥

1

2
kW k2

F

+
1

2
k⇥k2

F

+ �L(W ,⇥,V, g) (5.13)

+�X L(⇥,X,y)

In contrast to the previous optimization problems, the problem in Equation (5.13) is no longer
convex. For this reason, we perform coordinate gradient descent by alternating between
optimizing with respect to W and ⇥:

1. Initialize ⇥0 using a 1-vs-all SVM trained on the source data only.

2. Learn W

t assuming fixed ⇥t.

3. Learn ⇥t+1 assuming fixed W

t.

4. Iterate between (2)-(3), until convergence.

Note that step (2) is equivalent to solving the optimization problem presented in Section 5.3.
Additionally, note that step (3) is equivalent to solving a multi-category SVM problem
defined over source and transformed target data points. This can again be solved using K
1-vs-all binary SVM classifiers.

An important property of the alternating optimization is that we can indeed prove con-
vergence by exploiting the convexity of both sub-problems.

Lemma 1. Steps (2) and (3) will never increase the complete joint objective function.

Proof. Let J(W ,⇥) denote the value of the joint objective function.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 22

Claim 1: J(W t,⇥t) � J(W t+1,⇥t)

J(W t+1,⇥t) = min
W

J(W ,⇥t) J(W t,⇥t)

Claim 2: J(W t+1,⇥t) � J(W t+1,⇥t+1)

J(W t+1,⇥t+1) = min
⇥

J(W t+1,⇥) J(W t+1,⇥t)

The key here is that steps (2) and (3) of our algorithm are convex optimization problems and
so we know that each objective will never increase as the new variable values are learned.

Theorem 2. The joint objective function for Eq. (5.13) will converge.

Proof. Using Lemma (1), we can directly show that the joint objective function will not
increase from one iteration to the next:

J(W t,⇥t) � J(W t+1,⇥t) � J(W t+1,⇥t+1)

Additionally, since the joint objective is lower bounded by zero, this proves that the joint ob-
jective will converge for a su�ciently small step size if optimizing using gradient descent.

It is important to note that since both steps of our iterative algorithm can be solved
using standard QP solvers, the algorithm can be easily implemented. Furthermore, we also
developed a fast optimization technique based on dual coordinate descent and exploiting an
implicit rank contraint of W in [148]. The method allows using the MMDT algorithm even
in large-scale scenarios with tens of thousands of examples and high-dimensional features,
because not all of the entries of W have to be optimized.

5.5 Analysis

We now analyze and compare the proposed algorithms against each other and the previous
feature transform methods hfa [44] and gfk [63]. Comparisons are summarized in Table 5.1.

The arc-t formulation, of Section 5.2, has two distinct limitations. First, it must solve
nX ·nV constraints, whereas mmdt, of Section 5.4, only needs to solve K ·nV constraints, for
a K category problem. In general, mmdt scales to much larger source domains than arc-t.
The second benefit of themmdt learning approach is that the transformation matrix learned
using the max-margin constraints is learned jointly with the classifier, and explicitly seeks to
optimize the final SVM classifier objective. While arc-t’s similarity-based constraints seek
to map points of the same category arbitrarily close to one another, followed by a separate
classifier learning step, mmdt seeks simply to project the target points onto the correct side
of the learned hyperplane, leading to better classification performance.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 23

hfa [44] gfk [63] symm [151] arc-t [104] mmdt [83]

multi-class X X X X
large datasets X X
heterogeneous features X X X
optimize max-margin objective X X

Table 5.1: Unlike previous methods (hfa by [44] and gfk by [63]), our final approach using
max-margin constraints and Frobenius norm regularizer is able to simultaneously learn multi-
category representations that can transfer to novel classes, scale to large training datasets,
and handle di↵erent feature dimensionalities.

The hfa formulation [44] also takes advantage of the max-margin framework to directly
optimize the classification objective while learning transformation matrices. hfa learns the
classifier and transformations to a common latent feature representation between the source
and target. However, hfa is formulated to solve a binary problem so a new feature trans-
formation must be learned for each category. Therefore, unlike mmdt, hfa cannot learn a
representation that generalizes to novel target categories. Additionally, due to the di�culty
of defining the dimension of the latent feature representation directly, the authors optimize
with respect to a larger combined transformation matrix and a relaxed constraint. This
transformation matrix becomes too large when the feature dimensions in source and target
are large, so the hfa problem must usually be solved in kernel space. This can make the
method slow and cause it to scale poorly with the number of training examples. In contrast,
mmdt can be e�ciently solved in linear feature space which makes it fast and potentially
more scalable.

Finally, gfk [63] formulates a kernelized representation of the data that is equivalent to
computing the dot product in infinitely many subspaces along the geodesic flow between the
source and target domain subspaces. The kernel is defined to be symmetric, so it cannot
handle source and target domains of di↵erent initial dimension. Additionally, gfk does not
directly optimize a classification objective. In contrast, mmdt can handle source and target
domains of di↵erent feature dimensions via an asymmetric W , as well as directly optimizing
the classification objective.

5.6 Datasets

We begin by introducing the data on which we will evaluate our algorithms.

O�ce database

In most of our experiments, we consider the O�ce database first introduced by [151], which
has become the de facto standard for benchmarking visual domain adaptation methods.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 24

This database allows researchers to study, evaluate and compare solutions to the domain shift
problem by establishing a multiple-domain labeled dataset and benchmark. In addition to the
domain shift aspects, this database also proposes a challenging o�ce environment category
learning task which reflects the di�culty of real-world indoor robotic object recognition. It
contains images originating from the following three domains:

Images from the web: The first domain, amazon, consists of images downloaded
from online merchants (www.amazon.com). These images are of products shot at medium
resolution typically taken in an environment with studio lighting conditions. The amazon
domain contains 31 categories with an average of 90 images each. The images capture the
large intra-class variation of these categories, but typically show the objects only from a
canonical viewpoint.

Images from a digital SLR camera: The second domain, dslr, consists of images
that are captured with a digital SLR camera in realistic environments with natural lighting
conditions. The images have high resolution (4288 ⇥ 2848) and low noise. dslr has images
of the 31 object categories, with 5 di↵erent objects for each, in an o�ce environment. Each
object was captured with on average 3 images taken from di↵erent viewpoints, for a total of
423 images.

Images from a webcam: The third domain, webcam, consists of images of the 31
categories recorded with a simple webcam. The images are of low resolution (640⇥480) and
show significant noise and color as well as white balance artifacts. Many current imagers
on robotic platforms share a similarly-sized sensor, and therefore also possess these sensing
characteristics. The resulting webcam dataset contains the same 5 objects per category as
in dslr, for a total of 795 images.

The database represents several interesting visual domain shifts. It allows us to inves-
tigate the adaptation of category models learned on the web to SLR and webcam images,
which can be thought of as in situ observations on a robotic platform in a realistic o�ce or
home environment. Furthermore, domain transfer between the high-quality DSLR images to
low-resolution webcam images allows for a very controlled investigation of category model
adaptation, as the same objects were recorded in both domains.

The O�ce dataset images are available together with SURF BoW features that are vector
quantized to 800 dimensions. We use these features in all experiments except where explicitly
indicated otherwise.

We also use a version of the O�ce dataset, available from [63], which consists of the 10
categories from the O�ce dataset that also appear in Caltech256. The same SURF BoW
800-dimensional features are available for the Caltech256 images.

Large-scale database

We also demonstrate the e�ciency of our domain adaptation methods in a large-scale setting
(Section 5.7). For this purpose, we consider two domains. The source domain, the Bing
dataset [16], consists of images obtained using the Bing search engine. In our experiments,
we train on 50 source domain examples per category. The target domain is a subset of

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 25

the images in the Caltech-256 benchmark dataset. We vary the number of target domain
examples from 5 to 20.

Note that we use the original features (Classeme 2625 dimensional) and train/test splits
introduced by [16].

5.7 Evaluation

In the following, we evaluate our methods on the datasets described in the previous section
and compare the results to state-of-the-art supervised domain adaptation methods in di↵er-
ent domain adaptation scenarios. In particular, we compare against the following methods
in the experiments where applicable:

svm
s

A support vector machine using source training data.

svm
t

A support vector machine using target training data.

hfa A max-margin transform approach that learns a latent common space between source
and target as well as a classifier that can be applied to points in that common space [44].

gfk The geodesic flow kernel proposed by [63] applied to all source and target data (including
test data). Following [63], we use a 1-nearest neighbor classifier with the geodesic flow
kernel.

Standard supervised domain adaptation

In our first set of experiments, we use the 10 category subset of the O�ce database, together
with the same 10 categories available from the Caltech dataset, to evaluate multi-class accu-
racy in the standard domain adaptation setting where a few labeled examples are available
for all categories in the target domain. We follow the setup of [151] and [63]: 20 training
examples for amazon source (8 for other source domains) and 3 labeled examples per cate-
gory for the target domain. We created 20 random train/test splits and averaged the results
across them.

The multi-class accuracy for each domain pair is shown in Table 5.2. Our mmdt method
is the top performing overall, achieving 52.5% accuracy averaged over the 12 domain shifts we
explored. This result may be somewhat surprising, because mmdt encodes no knowledge of
the feature representation, but on shifts where features are homogeneous, still outperforms
methods like gfk and symm which assume feature homogeneity. This demonstrates the
strength of mmdt as a generic domain adaptation approach.

Looking at individual domain shifts, we see that mmdt outperforms all other methods
in 6 out of the 12 domain shifts. Of the results on the O�ce dataset only (the first 6 rows
of Table 5.2), mmdt performs the best when either the source or target domain is amazon.
Because the shift between amazon and either of the other two O�ce domains (dslr and
webcam) is much more significant than the shift between dslr and webcam, as indicated by

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 26

Baselines Our Methods
svm

s

svm
t

hfa gfk symm arc-t mmdt
a ! w 33.9 ± 0.7 62.4 ± 0.9 61.8 ± 1.1 58.6 ± 1.0 51.0 ± 1.4 55.7 ± 0.9 64.6 ± 1.2
a ! d 35.0 ± 0.8 55.9 ± 0.8 52.7 ± 0.9 50.7 ± 0.8 47.9 ± 1.4 50.2 ± 0.7 56.7 ± 1.3
w ! a 35.7 ± 0.4 45.6 ± 0.7 45.9 ± 0.7 44.1 ± 0.4 43.7 ± 0.7 43.4 ± 0.5 47.7 ± 0.9
w ! d 66.6 ± 0.7 55.1 ± 0.8 51.7 ± 1.0 70.5 ± 0.7 69.8 ± 1.0 71.3 ± 0.8 67.0 ± 1.1
d ! a 34.0 ± 0.3 45.7 ± 0.9 45.8 ± 0.9 45.7 ± 0.6 42.7 ± 0.5 42.5 ± 0.5 46.9 ± 1.0
d ! w 74.3 ± 0.5 62.1 ± 0.8 62.1 ± 0.7 76.5 ± 0.5 78.4 ± 0.9 78.3 ± 0.5 74.1 ± 0.8
a ! c 35.1 ± 0.3 32.0 ± 0.8 31.1 ± 0.6 36.0 ± 0.5 39.1 ± 0.5 37.0 ± 0.4 36.4 ± 0.8
w ! c 31.3 ± 0.4 30.4 ± 0.7 29.4 ± 0.6 31.1 ± 0.6 34.0 ± 0.5 31.9 ± 0.5 32.2 ± 0.8
d ! c 31.4 ± 0.3 31.7 ± 0.6 31.0 ± 0.5 32.9 ± 0.5 34.9 ± 0.4 33.5 ± 0.4 34.1 ± 0.8
c ! a 35.9 ± 0.4 45.3 ± 0.9 45.5 ± 0.9 44.7 ± 0.8 43.8 ± 0.6 44.1 ± 0.6 49.4 ± 0.8
c ! w 30.8 ± 1.1 60.3 ± 1.0 60.5 ± 0.9 63.7 ± 0.8 50.5 ± 1.6 55.9 ± 1.0 63.8 ± 1.1
c ! d 35.6 ± 0.7 55.8 ± 0.9 51.9 ± 1.1 57.7 ± 1.1 48.6 ± 1.1 50.6 ± 0.8 56.5 ± 0.9

mean 40.0 ± 0.6 48.5 ± 0.8 47.4 ± 0.8 51.0 ± 0.7 48.7 ± 0.9 49.5 ± 0.6 52.5 ± 1.0

Table 5.2: Multi-class accuracy for the standard supervised domain adaptation setting. All
results are from our implementation. When averaged across all domain shifts the reported
average value for gfk was 51.65 while our implementation had an average of 51.0 ± 0.7.
Therefore, the result di↵erence is well within the standard deviation over data splits. Red
indicates the best result for each domain split. Blue indicates the group of results that are
close to the best-performing result. The domain names are shortened for space: a: amazon,
w: webcam, d: dslr, c: caltech.

the large performance discrepancy between amazon and non-amazon shifts with the svm
S

method, this result indicates thatmmdt is particularly well-suited to handling larger domain
shifts.

Our other methods, symm and arc-t, have better performance than mmdt (and all
baselines) on the webcam and dslr shifts. This demonstrates the utility of these methods in
learning smaller domain shifts. Their higher relative performance on such tasks might be
due to their cross-domain pairwise constraints on individual examples, which may be less
meaningful in cases when the domain shift is larger and individual pairs of examples from
a particular category are unlikely to correspond. The gfk baseline also performs well on
the webcam and dslr shifts. This fits with our intuition since gfk is a 1-nearest neighbor
approach and, as such, is more suitable when the domains are initially similar.

In the caltech results (the last 6 rows of Table 5.2), we see that the task overall is much
easier when caltech is the source domain than when it is the target domain, indicating that
the caltech data is more valuable for recognition in the O�ce domains than the O�ce data is
for recognition of the caltech categories. When caltech is the target domain, the more di�cult
of the two situations, our symm method outperforms all others. On the other hand, when
caltech is the source domain, we see the best performance from our mmdt method and the

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 27

source target svm
t

hfa arc-t mmdt

amazon dslr-600 52.9 ± 0.7 57.8 ± 0.6 58.2 ± 0.6 62.3 ± 0.8
webcam dslr-600 51.8 ± 0.6 60.0 ± 0.6 58.2 ± 0.7 63.3 ± 0.5

Table 5.3: Multi-class accuracy results on the standard supervised domain adaptation task
with di↵erent feature dimensions in the source and target. The target domain is dslr for
both cases.

source svm
s

gfk arc-t mmdt

amazon 10.3 ± 0.6 38.9 ± 0.4 41.4 ± 0.3 44.6 ± 0.3
webcam 51.6 ± 0.5 62.9 ± 0.5 59.4 ± 0.4 58.3 ± 0.5

Table 5.4: Multi-class accuracy results on the O�ce dataset for the domain shift of webcam
! dslr for target test categories not seen at training time.

gfk baseline, with our arc-t method performing somewhere in between in most cases. This
seems to indicate that mmdt is the best of the methods explored when working with a very
rich source domain (at least relative to the target domains) like caltech, whereas symm is
superior when the source domain is more homogeneous like the O�ce domains.

Asymmetric features

Next, we analyze the e↵ectiveness of our asymmetric transform learning methods by exper-
imenting with the setting when source and target have di↵erent feature dimensions. We
use the same experimental setup as previously, but use the full 31 category O�ce dataset
and an alternate representation for the dslr domain, which is SURF BoW quantized to 600
dimensions (denoted as dslr-600). We compare our mmdt and arc-t methods against svm

t

and hfa. Note that our symm method and some baseline methods (svm
s

, gfk) are not
suited for the asymmetric feature case, as they assume a consistent feature representation
across domains. The results are shown in Table 5.3. Again, we find that our mmdt method
can e↵ectively learn a feature representation for the target domain that optimizes a clas-
sification objective. Our arc-t method has lower accuracy on this task than mmdt, but
these results show that it still e↵ectively leverages the source domain data by achieving much
higher accuracy than the svm

t

baseline which ignores the source domain.

Novel categories

We next consider the setting of practical importance where labeled target examples are not
available for all objects. Recall that this is a setting that many category specific adaptation
methods cannot generalize to, including hfa [44] and our symm method. Therefore, we

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 28

5 10 15 2030

40

50

60

70

Number of Labeled Target Examples

M
ul

tic
la

ss
 a

cc
ur

ac
y

(%
)

Multiclass Accuracy vs #Target Example

5 10 15 200

20

40

60

Number of Labeled Target Examples

Ti
m

e
(m

in
)

Time vs #Target Examples

5 10 15 2030

35

40

45

50

55

60

65

Number of Labeled Target Examples

M
ul

tic
la

ss
 a

cc
ur

ac
y

(%
)

svms svmt arct hfa gfk mmdt (ours)

Figure 5.3: Left: multi-class accuracy on the Bing dataset using 50 training examples in the
source and varying the number of available labeled examples in the target. Right: training
time comparison.

compare results from our mmdt and arc-t methods, which learn category independent
feature transforms, to the gfk method of [63], which learns a category independent kernel
to compare the domains. We use the full O�ce dataset and allow 20 labeled examples per
category in the source for amazon and 10 labeled examples for the first 15 object categories
in the target (dslr). For the webcam ! dslr shift, we use 8 labeled examples per category in
the source for webcam and 4 labeled examples for the first 15 object categories in the target
dslr.

The experimental results for the domain shift of webcam ! dslr are evaluated and shown
in Table 5.4. mmdt outperforms the baselines for the amazon ! dslr shift and o↵ers adap-
tive benefit over svm

s

for the shift from webcam ! dslr. As in the first set of experiments,
both arc-t and gfk use nearest neighbor classifiers on a learned kernel which are more
suitable to the webcam ! dslr shift, as these two domains are initially very similar.

Large-scale data

With our last experiment, we show that our method not only o↵ers high accuracy per-
formance; it also scales well with an increasing dataset size. Specifically, the number of
constraints our algorithm optimizes scales linearly with the number of training points. Con-
versely, the number of constraints that need to be optimized for the arc-t baseline is quadratic
in the number of training points.

To demonstrate the e↵ect that constraint set size has on run-time performance, we per-
form experiments on the Bing (source) and Caltech256 domains described in Section 5.6.
The left-hand plot in Figure 11.6 presents multi-class accuracy for this setup. Additionally,
the training time of our method and that of the baselines is shown on the right-hand plot.

CHAPTER 5. CATEGORY INVARIANT FEATURE TRANSFORMATIONS 29

Ourmmdt method provides a considerable improvement over arc-t and all the baselines in
terms of multi-class accuracy. It is also considerably faster than all but the gfk method. Note
that hfa and gfk do not vary significantly as the number of target training points increases.
However, for hfa the main bottleneck time is consumed by a distance computation between
each pair of training points. Therefore, since there are many more source training points
than target, adding a few more target points does not significantly increase the overall time
spent for this experiment, but would present a problem as the size of the dataset grew in
general.

30

Chapter 6

Extending to Deep Features

6.1 Deep Domain Adaptation

Supervised deep convolutional neural networks (CNNs) trained on large-scale classification
tasks have been shown to learn impressive mid-level structures and obtain high levels of
performance on contemporary classification challenges [15, 194]. These models generally
assume extensive training using labeled data, and testing is limited to data from the same
domain. In practice, however, the images we would like to classify are often produced under
di↵erent imaging conditions or drawn from a di↵erent distribution, leading to a domain shift.
Scaling such models to new domains remains an open challenge.

Deep CNNs require large amounts of training data to learn good mid-level convolutional
models and final fully-connected classifier stages. While the continuing expansion of web-
based datasets like ImageNet [15] promises to produce labeled data for almost any desired
category, such large-scale supervised datasets may not include images of the category across
all domains of practical interest. Earlier deep learning e↵orts addressed this challenge by
learning layers in an unsupervised fashion using unlabeled data to discover salient mid-level
structures [29, 34]. While such approaches are appealing, they have heretofore been unable to
match the level of performance of supervised models, and unsupervised training of networks
with the same level of depth as [103] remains a challenge.

Unfortunately, image datasets are inherently biased [175]. Theoretical [11, 19] and prac-
tical results from [151, 175] have shown that supervised methods’ test error increases in
proportion to the di↵erence between the test and training input distribution. Many visual
domain adaptation methods have been put forth to compensate for dataset bias [32, 188,
7, 151, 104, 99, 64, 63, 82, 83], but are limited to shallow models. Evaluation for image
category classification across visually distinct domains has focused on the O�ce dataset,
which contains 31 image categories and 3 domains [151]. Recently, [40] showed that using
the deep mid-level features learned on ImageNet, instead of the more conventional bag-of-
words features, e↵ectively removed the bias in some of the domain adaptation settings in the
O�ce dataset [151]. However, [40] limited their experiments to small-scale source domains

CHAPTER 6. EXTENDING TO DEEP FEATURES 31

found only in O�ce, and evaluated on only a subset of relevant layers.
Most prior domain adaptation studies did not use ImageNet as the source domain, nor

utilize the full set of parameters of a deep CNN trained on source data. Recent work by
Rodner et al. [148] attempted to adapt from ImageNet to the SUN dataset, but did not take
advantage of deep convolutional features.

We ask the question: will deep models still su↵er from dataset bias when trained with all
layers of the CNN and a truly large scale source dataset? Here, we provide the first evaluation
of domain adaptation with deep learned representations in its most natural setting, in which
all of ImageNet is used as source data for a target category. We use the 1.2 million labeled
images available in the 2012 ImageNet 1000-way classification dataset [15] to train the model
in [103] and evaluate its generalization to the O�ce dataset. This constitutes a three orders
of magnitude increase in source data compared to the several thousand images available for
the largest domain in O�ce.

We find that it is easier to adapt from ImageNet than from previous smaller source do-
mains, but that dataset bias remains a major issue. Fine-tuning the parameters on the small
amount of labeled target data (we consider one-shot adaptation) turns out to be unsurpris-
ingly problematic. Instead, we propose a simple yet intuitive adaptation method: train a
final domain-adapted classification “layer” using various layers of the pre-trained network
as features, without any fine-tuning its parameters. We provide a comprehensive evaluation
of existing methods for classifier adaptation as applied to each of the fully connected layers
of the network, including the last, task-specific classification layer. When adapting from
ImageNet to O�ce, it turns out to be possible to achieve target domain performance on par
with source domain performance using only a single labeled example per target category.

We examine both the setting where there are a few labeled examples from the target
domain (supervised adaptation) and the setting where there are no labeled target examples
(unsupervised adaptation). We also describe practical solutions for choosing between the
various adaptation methods based on experimental constraints such as limited computation
time.

6.2 Background: Deep Domain Adaptation
Approaches

For our task we consider adapting between a large source domain and a target domain
with few or or no labeled examples. A typical approach to domain adaptation or transfer
learning with deep architectures is to take the representation learned via back-propagation
on a large dataset, and then transfer the representation to a smaller dataset by fine-tuning,
i.e. backpropagation at a lower learning rate [59, 194]. However, fine-tuning requires an
ample amount of labeled target data and so should not be expected to work well when we
consider the very sparse label condition, such as the one-shot learning scenario we evaluate
below, where we have just one labeled example per category in the target domain.

CHAPTER 6. EXTENDING TO DEEP FEATURES 32

In fact, in our experiments under this setting, fine-tuning actually reduces performance.
Specifically, on the ImageNet!Webcam task reported in Section 9.4, using the final output
layer as a predictor in the target domain received 66% accuracy, while using the final output
layer after fine tuning produced a degraded accuracy of 61%.

A separate method that was recently proposed for deep adaptation is called Deep Learn-
ing for domain adaptation by Interpolating between Domains (DLID) [25]. This method
learns multiple unsupervised deep models directly on the source, target, and combined
datasets and uses a representation which is the concatenation of the outputs of each model
as its adaptation approach. While this was shown to be an interesting approach, it is limited
by its use of unsupervised deep structures.

In general, unsupervised deep convolutional models have been unable to achieve the
performance of supervised deep CNNs. However, training a supervised deep model requires
su�cient labeled data. Our insight is that the extensive labeled data available in the source
domain can be exploited using a supervised model without requiring a significant amount of
labeled target data.

Therefore, we propose using a supervised deep source model with supervised or unsuper-
vised adaptation algorithms that are applied to models learned on the target data directly.
This hybrid approach will utilize the strong representation available from the supervised
deep model trained on a large source dataset while requiring only enough target labeled
data to train a shallow model with far fewer parameters. Specifically, we consider training a
convolutional neural network (CNN) on the source domain and using that network to extract
features on the target data that can then be used to train an auxiliary shallow learner. For
extracting features from the deep source model, we follow the setup of Donahue et al. [40],
which extracts a visual feature DeCAF from the ImageNet-trained architecture of [103].

6.3 Adapting Deep CNNs with Few Labeled Target
Examples

We propose a general framework for selectively adapting the parameters of a convolutional
neural network (CNN) whose representation and classifier weights are trained on a large-scale
source domain, such as ImageNet. Our framework adds a final domain-adaptive classification
“layer” that takes the activations of one of the existing network’s layers as input features.
Note that the network cannot be e↵ectively fine-tuned without access to more labeled target
data. This adapted layer is a linear classifier that combines source and target training data
using an adaptation method. To demonstrate the generality of our framework, we select a
representative set of popular linear classifier adaptation approaches that we empirically eval-
uate in Section 9.4. We separate our discussion into the set of supervised and unsupervised
adaptation settings.

Below we denote the features extracted over the source domain as X and the features
extracted over the target domain as X̃. Similarly, we denote the source domain image

CHAPTER 6. EXTENDING TO DEEP FEATURES 33

classifier as ✓ and the target domain image classifier as ✓̃.

Unsupervised Adaptation

Many unsupervised adaptation techniques seek to minimize the distance between subspaces
that represent the source and target domains. We denote these subspaces as U and Ũ ,
respectively.

GFK [63] The Geodesic Flow Kernel (GFK) method [63] is an unsupervised domain
adaptation approach which seeks embeddings for the source and target points that mini-
mize domain shift. Inputs to the method are U and Ũ , lower-dimensional embeddings of the
source and target domains (e.g. from principal component analysis). The method constructs
the geodesic flow �(t) along the manifold of subspaces such that U = �(0) and Ũ = �(1).
Finally, a transformation G is constructed by computing G =

R
1

0

�(t)�(t)|dt using a closed-
form solution, and classification is performed by training an SVM on the source data X and
transformed target data GX̃.

SA [53] The Subspace Alignment (SA) method [53] also begins with low-dimensional em-
beddings of the source and target domains U and Ũ , respectively. It seeks to minimize in M ,
a transformation matrix, the objective kUM�Ũk2

F

. The analytical solution to this objective
is M⇤ = U|Ũ . Given M⇤, an SVM is trained on source data X and transformed target data
UM⇤Ũ|X̃.

Supervised Adaptation

Late Fusion Perhaps the simplest supervised adaptation method is to independently train
a source and target classifier and combine the scores of the two to create a final scoring
function. We call this approach Late Fusion. It has been explored by many for a simple
adaptation approach. Let us denote the score from the source classifier as ✓

s

and the score
from the target classifier as ✓

t

. For our experiments we explore two methods of combining
these scores, which are described below:

• Max: Produce the scores of both the source and target classifier and simply choose the
max of the two as the final score for each example. Therefore, ✓

adapt

= max(✓
s

,✓
t

).

• Linear Interpolation: Set the score for a particular example to equal the convex combi-
nation of the source and target classifier scores, ✓

adapt

= (1�↵)✓
s

+↵✓

t

. This method
requires setting a hyperparameter, ↵, which determines the weights of the source and
target classifiers.

Late Fusion has two major advantages: it is easy to implement, and the source classifier
it uses may be precomputed to make adaptation very fast. In the case of the linear interpo-
lation combination rule, however, this method can potentially su↵er from having a sensitive
hyperparameter. We show a hyperparameter analysis in Section 9.4.

CHAPTER 6. EXTENDING TO DEEP FEATURES 34

Daumé III [32] This simple feature replication method was proposed for domain adap-
tation by [32]. The method augments feature vectors with a source component, a target com-
ponent, and a shared component. Each source data point x is augmented to x0 = (x;x;0),
and each target data point v is augmented to v0 = (v;0;v). Finally, an SVM is trained on
the augmented source and target data—a relatively expensive procedure given the potentially
large size of the source domain and the tripled augmented feature dimensionality.

PMT [7] This classifier adaptation method, Projective Model Transfer (PMT), proposed
by [7], is a variant of adaptive SVM. It takes as input a classifier ✓ pre-trained on the source
domain. PMT-SVM learns a target domain classifier ✓̃ by adding an extra term to the usual

SVM objective which regularizes the angle ↵(✓̃,✓) = cos�1

⇣
✓

|
˜

✓

k✓kk˜

✓k

⌘
between the target and

source hyperplanes. This results in the following loss function:

L
PMT

(✓̃) =
1

2
k✓̃k2

2

+
�

2
k✓̃k2

2

sin2 ↵(✓̃,✓) + `
hinge

(X̃, ỹ; ✓̃) , (6.1)

where `
hinge

(X,Y ;✓) denotes the SVM hinge loss of a data matrix X, label vector Y , and
classifier hyperplane ✓, and � is a hyperparameter which, as it increases, enforces more
transfer from the source classifier.

MMDT [83] The Max-margin Domain Transforms (MMDT) method from [83] jointly
optimizes an SVM-like objective over a feature transformation matrix

⇥
A
⇤
mapping target

points to the source feature space and classifier parameters ✓ in the source feature space.
In particular, MMDT minimizes the following loss function (assuming a binary classification
task to simplify notation, and with `

hinge

defined as in PMT):

L
MMDT

(✓,
⇥
A
⇤
) =

1

2
k✓k2

2

+
1

2
k
⇥
A
⇤
�
⇥
I
⇤
k2

F

+ C
s

`
hinge

(X,Y ;✓) + C
t

`
hinge

(
⇥
A
⇤
X̃, Ỹ ;✓) ,

(6.2)

where C
s

and C
t

are hyperparameters controlling the importance of correctly classifying the
source and target points (respectively).

6.4 Evaluation with Deep Features

Datasets

The O�ce [151] dataset is a collection of images from three distinct domains: Amazon,
DSLR, and Webcam. The 31 categories in the dataset consist of objects commonly encoun-
tered in o�ce settings, such as keyboards, file cabinets, and laptops. Of these 31 categories,
16 overlap with the categories present in the 1000-category ImageNet classification task1.
Thus, for our experiments, we limit ourselves to these 16 classes. In our experiments using

1 The 16 overlapping categories are backpack, bike helmet, bottle, desk lamp, desktop computer, file cabinet,
keyboard, laptop computer, mobile phone, mouse, printer, projector, ring binder, ruler, speaker, and trash can.

CHAPTER 6. EXTENDING TO DEEP FEATURES 35

Amazon as a source domain, we follow the standard training protocol for this dataset of
using 20 source examples per category [151, 63], for a total of 320 images.

ImageNet [15] is the largest available dataset of image category labels. We use 1000
categories’ worth of data (1.2M images) to train the network, and use the 16 categories that
overlap with O�ce (approximately 1200 examples per category or ⇡20K images total) as
labeled source classifier data.

Experimental Setup & Baselines

For our experiments, we use the fully trained deep CNN model described in Section 6.2,
extracting feature representations from three di↵erent layers of the CNN. We then train a
source classifier using these features on one of two source domains, and adapt to the target
domain.

The source domains we consider are either the Amazon domain, or the corresponding 16-
category ImageNet subset where each category has many more examples. We focus on the
Webcam domain as our target (test) domain, as Amazon-to-Webcam was shown to be the
only challenging shift in [40] (the DSLR domain is much more similar to Webcam and did not
require adaptation when using deep mid-level features). This combination exemplifies the
shift from online web images to real-world images taken in typical o�ce/home environments.
Note that, regardless of the source domain chosen to learn the classifier, ImageNet data from
all 1000 categories was used to train the network.

In addition, for the supervised adaptation setting we assume access to only a single
example per category from the target domain (Webcam).

Each method is then evaluated across 20 random train/test splits, and we report averages
and standard errors for each setting. For each random train/test split we choose one example
for training and 10 other examples for testing (so there is a balanced test set across cate-
gories). Therefore, each test split has 160 examples. The unsupervised adaptation methods
operate in a transductive setting, so the target subspaces are learned from the unlabeled test
data.

Non-adaptive Baselines In addition to the adaptation methods outlined in Section 6.3,
we also evaluate using the following non-adaptive baselines.

• SVM (source only): A support vector machine trained only on source data.

• SVM (target only): A support vector machine trained only on target data.

• SVM (source and target): A support vector machine trained on both source and
target data. To account for the large discrepancy between the number of training data
points in the source and target domains, we weighted the data points such that the
constraints from the source and target domains e↵ectively contribute equally to the
optimization problem. Specifically, each source data point receives a weight of nt

ns+nt
,

CHAPTER 6. EXTENDING TO DEEP FEATURES 36

and each target data point receives a weight of ns
ns+nt

, where n
s

, n
t

denote the number
of data points in the source and target, respectively.

Many of the adaptation methods we evaluate have hyperparameters that must be cross-
validated for use in practice, so we set the parameters of the adaptation techniques as follows.

First, the C value used for C-SVM in the classifier for all methods is set to C = 1. Without
any validation data we are not able to tune this parameter properly, so we choose to leave it
as the default value. Since all methods we report require setting of this parameter, we feel
that the relative comparisons between methods is sound even if the absolute numbers could
be improved with a new setting for C. For Daumé III and MMDT, which look at the source
and target data simultaneously, we use the same weighting scheme as we did for the source
and target SVM. Late Fusion with the linear interpolation combination rule is reported
across hyperparameter settings in Figure 6.1a to help understand how performance varies as
we trade o↵ emphasis between the learned classifiers from the source and target domains.
Again, we do not have the validation data to tune this parameter so we report in the tables
the performance averaged across parameter settings. The plot vs ↵ indicates that there is
usually a best parameter setting that could be learned with more available data. For PMT,
we choose � = 1000, which corresponds to allowing a large amount of transfer from the source
classifier to the target classifier. We do this because the source-only classifier is stronger than
the target-only classifier (with ImageNet source). For the unsupervised methods GFK and
SA, again we evaluated a variety of subspace dimensionalities and Figure 6.1b shows that
the overall method performance does not vary significantly with the dimensionality choice.

E↵ect of Source Domain Size

Previous studies considered source domains from the O�ce dataset. In this section, we ask
what happens when an orders-of-magnitude larger source dataset is used.

For completeness we begin by evaluating Amazon as a source domain. Preliminary results
on this setting are reported in [40], here we extend the comparison here by presenting the
results with more adaptation algorithms and more complete evaluation of hyperparameter
settings. Table 6.1 presents multiclass accuracies for each algorithm using either layer 6 or
7 from the deep network, which corresponds to the output from each of the fully connected
layers.

An SVM trained using only Amazon data achieves 78.6% in-domain accuracy (tested
on the same domain) when using the DeCAF

6

feature and 80.2% in-domain accuracy when
using the DeCAF

7

feature. These numbers are significantly higher than the performance
of the same classifier on Webcam test data, indicating that even with the DeCAF features,
there is a still a domain shift between the Amazon and Webcam datasets.

Next, we consider an unsupervised adaptation setting where no labeled examples are
available from the target dataset. In this scenario, we apply two state-of-the-art unsupervised
adaptation methods, GFK [63] and SA [53]. Both of these methods make use of a subspace
dimensionality hyperparameter. We show the results using a 100-dimensional subspace and

CHAPTER 6. EXTENDING TO DEEP FEATURES 37

Adaptation Method Training Data DeCAF
6

DeCAF
7

SVM (source only) Amazon 50.28 ± 1.8 54.08± 1.7
SVM (target only) Webcam 62.28 ± 1.8 64.97 ± 1.8

GFK [63] Amazon 53.13± 1.1 53.39± 1.1
SA [53] Amazon 51.74 ± 1.2 53.86± 1.0

SVM (source and target) Amazon+Webcam 62.91 ± 1.8 65.82 ± 1.4
Late Fusion (Max) Amazon+Webcam 65.35 ± 1.7 58.42 ± 1.1
Late Fusion (Lin. Int. Avg) Amazon+Webcam 63.23 ± 1.4 64.29 ± 1.3
Daumé III [32] Amazon+Webcam 68.89 ± 1.9 72.09± 1.4
PMT [7] Amazon+Webcam 64.84 ± 1.5 65.63 ± 1.8
MMDT [83] Amazon+Webcam 65.47 ± 1.8 68.10 ± 1.5

Late Fusion (Lin. Int. Oracle) Amazon+Webcam 71.1 ± 1.7 72.82± 1.4

Table 6.1: Amazon!Webcam adaptation experiment. We show here multiclass accuracy
on the target domain test set for both supervised and unsupervised adaptation experiments
across the two fully connected layer features (similar to [40], but with one labeled target
example). The best performing unsupervised adaptation algorithms are shown in blue and
the best performing supervised adaptation algorithms are shown in red.

leave the discussion of setting this parameter until Section 6.4. For this shift the adaptation
algorithms increase performance when using the layer 6 feature, but o↵er no additional
improvement when using the layer 7 feature.

We finally assume that a single example per category is available in the target domain.
As the bottom rows of Table 6.1 show, supervised adaptation algorithms are able to provide
significant improvement regardless of the feature space chosen, even in the one-shot scenario.
For this experiment we noticed that using the second fully connected layer (DeCAF

7

) was a
stronger overall feature in general.

Adapting with a Large Scale Source Domain

We next address one of the main questions of this paper: Is there still a domain shift when
using a large source dataset such as ImageNet? To begin to answer this question we follow
the same experimental paradigm as the previous experiment, but use ImageNet as our source
dataset. The results are shown in Table 6.2.

Again, we first verify that the source only SVM achieves higher performance when tested
on in-domain data than on Webcam data. Indeed, for the 16 overlapping labels, the source
SVM produces 62.50% accuracy on ImageNet data using DeCAF

6

features and 74.50% accu-
racy when using DeCAF

7

features. Compare this to the 54% and 59% for Webcam evaluation
and a dataset bias is still clearly evident.

CHAPTER 6. EXTENDING TO DEEP FEATURES 38

Adaptation Method Training Data DeCAF
6

DeCAF
7

SVM (source only) ImageNet 53.51 ± 1.1 59.15 ± 1.1
SVM (target only) Webcam 62.28 ± 1.8 64.97 ± 1.8

GFK [63] ImageNet 65.16 ± 1.1 67.97± 1.4
SA [53] ImageNet 59.30 ± 1.4 66.08 ± 1.4

SVM (source and target) ImageNet+Webcam 56.68 ± 1.2 66.93 ± 1.3
Late Fusion (Max) ImageNet+Webcam 59.59 ± 1.3 68.86 ± 1.2
Late Fusion (Lin. Int. Avg) ImageNet+Webcam 60.64 ± 1.3 66.45 ± 1.1
Daumé III [32] ImageNet+Webcam 59.21 ± 1.7 71.39± 1.5
PMT [7] ImageNet+Webcam 66.30 ± 2.1 69.81 ± 1.8
MMDT [83] ImageNet+Webcam 59.21 ± 1.3 67.75 ± 1.4

Late Fusion (Lin. Int. Oracle) ImageNet+Webcam 71.65 ± 2.0 76.76± 1.3

Table 6.2: ImageNet!Webcam adaptation experiment. Comparison of unsupervised and
supervised adaptation algorithms on the ImageNet to Webcam domain shift. Results are
computed using the outputs of each of the fully connected layers as features. The best
supervised adaptation performance is indicated in red and the best unsupervised adaptation
performance is highlighted in blue.

Note that when using ImageNet as a source domain, overall performance of all algorithms
improves. In addition, unsupervised adaptation approaches are more e↵ective than for the
smaller source domain experiment.

Adapting a Pre-trained Classifier to a New Label Set

DeCAF
8

di↵ers from the other DeCAF features in that it constitutes the 1000 activations
corresponding to the 1000 labels in the ImageNet classification task. In the CNN proposed
by [103], these activations are fed into a softmax unit to compute the label probabilities. We
instead experiment with using the DeCAF

8

activations directly as a feature representation,
which is akin to training another classifier using the output of the 1000-way CNN classifier.

Table 6.3 shows results for various adaptation techniques using both ImageNet and Ama-
zon as source domains. We use the same setup as before, but instead use DeCAF

8

as the
feature representation. The ImageNet results are uniformly better with DeCAF

8

than with
DeCAF

6

or DeCAF
7

, likely due to the fact that DeCAF
8

was explicitly trained on ImageNet
data to e↵ectively discriminate between ImageNet categories. Because it can more e↵ectively
classify images from the source domain, it is able to better adapt from the source domain to
the target domain.

However, we see a negligible di↵erence in performance for Amazon, with performance
actually decreasing with respect to DeCAF

7

for certain adaptation methods. We believe

CHAPTER 6. EXTENDING TO DEEP FEATURES 39

Adaptation Method Training Data Source=ImageNet Source=Amazon

SVM (source only) Source 66.23 ± 0.8 53.23 ± 1.6
SVM (target only) Webcam 63.13 ± 1.9 63.13 ± 1.9

GFK [63] Source 68.73± 1.1 54.56 ± 1.2
SA [53] Source 66.08 ± 1.1 55.98 ± 1.0

SVM (source and target) Source+Webcam 75.13 ± 1.1 63.20 ± 1.7
Late Fusion (Max) Source+Webcam 71.77 ± 1.4 62.25 ± 0.8
Late Fusion (LinInt Avg) Source+Webcam 70.56 ± 1.2 64.56 ± 1.3
Daumé III [32] Source+Webcam 77.15± 1.1 70.51 ± 1.7
PMT [7] Source+Webcam 70.28 ± 1.8 66.77 ± 2.1
MMDT [83] Source+Webcam 73.96 ± 1.2 66.23 ± 1.4

Late Fusion (Lin. Int. Oracle) Source+Webcam 76.61± 1.5 71.49 ± 1.3

Table 6.3: ImageNet!Webcam and Amazon!Webcam adaptation experiments using
DeCAF

8

, the label activations of the CNN trained on the full ImageNet data. Again, we com-
pare multiclass accuracy of various unsupervised and supervised adaptation methods. The
best performing unsupervised adaptation algorithm is shown in blue and the best performing
supervised adaptation algorithms are shown in red.

this is because the final activation vector is too specific to the 1000-way ImageNet task, and
that DeCAF

7

provides a more general representation that is better suited to the Amazon
domain. This, in turn, results in improved adaptation. In general, however, the di↵erence
between the various DeCAF representations with Amazon as a source are small enough to
be insignificant.

Analysis and Practical Considerations

Our adaptation experiments show that, despite its large size, even ImageNet is not large
enough to cover all domains, and that traditional domain adaptation methods go a long
way in increasing performance and mitigating the e↵ects of this shift. Depending on the
characteristics of the problem at hand, our results suggest di↵erent methods may be most
suitable.

If no labels exist in the target domain, then there are unsupervised adaptation algorithms
that are easy to use and fast to compute at adaptation time, yet still achieve increased per-
formance over source-only methods. For this scenario, we experimented with two subspace
alignment based methods that both require setting a parameter that indicates the dimen-
sionality of the input subspaces. Figure 6.1b shows the e↵ect that changing the subspace
dimensionality has on the overall method performance. In general, we noticed that these
methods were not particularly sensitive to this parameter so long as the dimensionality

CHAPTER 6. EXTENDING TO DEEP FEATURES 40

remains larger than the number of categories in our label set. Below this threshold, the
subspace is less likely to capture all important discriminative information needed for classi-
fication.

In the case where we have a large source dataset and a limited number of labeled target
examples, it may be preferable to compute source classifier parameters in advance, then
examine only the source parameters and the target data at adaptation time. Examples of
these kinds of methods are Late Fusion and PMT. These methods are una↵ected by the
number of data points in the source domain at adaptation time, and can thus be applied
quickly. In our experiments, we found that a properly tuned Late Fusion classifier with
linear interpolation was the fastest and most e↵ective approach. Figure 6.1a shows the
performance of linear interpolation Late Fusion as we vary the hyperparameter ↵. Although
the method is sensitive to ↵, we found that for both source domains, the basic strategy of
setting ↵ around 0.8 provides a close approximation to optimal performance. This setting
can be interpreted as trusting the target classifier more than the source, but not so much as
to completely discount the information available from the source classifier. In each table we
report both the performance of linear interpolation both averaged across hyper parameter
settings ↵ 2 [0, 1] as well as the performance of linear interpolation with the best possible
setting of ↵ per experiment – this is denoted as “Oracle” performance.

If there are no computational constraints and there are very few labels in the target
domain, the best-performing method seems to be the “frustratingly easy” approach originally
proposed by Daumé III [32] and applied again for deep models in [25].

Finally, we found that feature representation can have a significant impact on adaptation
performance. Our results show that ImageNet as source performs best with the DeCAF

8

representation, whereas Amazon as source performs best with the DeCAF
7

representation.
This, combined with our intuition, seems to indicate that for adaptation from source domains
other than ImageNet, an intermediate representation other than DeCAF

8

is more powerful
for adaptation, whereas ImageNet classification works best with the full representation that
was trained on it.

CHAPTER 6. EXTENDING TO DEEP FEATURES 41

0 0.2 0.4 0.6 0.8 150

55

60

65

70

75

80

α

M
ul

tic
la

ss
 A

cc
ur

ac
y

LinInt: α svmwebcam + (1−α)svmImageNet
LinInt: α svmwebcam + (1−α) svmamazon
svmImageNet
svmamazon
svmwebcam

(a) Late Fusion with Linear Interpolation

10 20 30 40 50 60 70 80 90 10035

40

45

50

55

60

65

70

75

Subspace Dimensionality

M
ul

tic
la

ss
 A

cc
ur

ac
y

ImageNet Source: SA
ImageNet Source: GFK
Amazon Source: SA
Amazon Source: GFK

(b) Unsupervised Methods

Figure 6.1: Evaluation of hyperparameters for domain adaptation methods. (a) Analysis of
the combination hyperparameter ↵ for Late Fusion with linear interpolation. (b) Analysis
of the subspace dimensionality for the unsupervised adaptation algorithms

42

Chapter 7

Summary

We have presented a unified framework for learning a category invariant transformation that
has been proven e↵ective for visual domain adaptation. In particular, we derive two specific
formulations from the general framework, one which is most useful for learning a similarity
function between a source and target domain independent of the classifier, and another which
focuses on learning linear classifiers in a max-margin framework.

We demonstrated the importance of using a domain adaptation method to boost overall
performance for visual recognition tasks, and analyze the scenarios in which a max-margin
objective and a transformation-based approach are most beneficial. In our experiments, we
provided an in-depth analysis and comparison of the di↵erent algorithms we presented and
their connection to other state-of-the-art methods.

In the future, we would like to extend further to a multi-domain scenario, where lots
of labeled and heterogenous source data can be exploited to help classification in a target
domain.

Further, we presented the first evaluation of domain adaptation from a large-scale source
dataset with deep features. We demonstrated that, although using ImageNet as a source
domain generalizes better than other smaller source domains, there is still a domain shift
when adapting to other visual domains.

Our experimental results show that deep adaptation methods can go a long way in miti-
gating the e↵ects of this domain shift. Based on our results, we also provided a set of practical
recommendations for choosing a feature representation and adaptation method accounting
for constraints on runtime and accuracy.

There are a number of interesting directions to take given our results. First we notice
that though DeCAF

8

is the strongest feature to use for learning a classifier on ImageNet
data, DeCAF

7

is actually a better feature to use with the Amazon source domain and the
Webcam target domain. This could lead to a hybrid approach where one uses di↵erent feature
representations for the various domains and produces a combined adapted model. Another
interesting direction that should be explored is to integrate the adaption algorithms into the
deep models explicitly and even allow for feedback between the two stages. Current deep
models although allow information flow between the final classifier and the representation

CHAPTER 7. SUMMARY 43

learning architecture. We feel that the next step is to have a separate task specific adaptable
layer that does not simply learn a new final layer, but instead learns a separate, but equivalent
final layer, that is regularized by the final layer learned on the source dataset.

This future work is a natural extension of the result we have shown in this paper: that
pre-trained deep representations with large source domains can be e↵ectively adapted to new
target domains using only shallow, linear adaptation methods, and that in cases where the
target data is limited, this approach is the best way to mitigate dataset bias.

44

Part III

Domain Invariant Representation
Learning with Deep Models

45

Chapter 8

Deep Models for Visual Recognition

In recent years, convolutional neural networks have emerged as the dominant paradigm for
visual recognition. The high capacity models along with large amounts of annotated images
for supervised training on modern GPU hardware has facilitated the rapid resurgence in the
use of these networks. However, it is important to state that convolutional networks and
more generally neural networks are not a newly developed technology.

The earliest approaches using a neural network architecture are often attributed to the
infamous neurological experiment studying the visual cortex of cats by Hubel and Wiesel [88]
and the simultaneous invention of the perceptron [149, 131]. Following, these works, con-
volutional neural networks were first introduced in the neocognitron by Fukushima [55] for
hand-writing digit recognition and later popularized with the e�cient training procedure of
back-propagation by Lecun et al. [111, 129].

While these approaches provided the basic research behind neural networks and convolu-
tional networks for visual representations, it was the work of Krizhevsky et al. [103], which
provided the engineered deep architecture along with a training procedure on the large scale
ImageNet [35] dataset, which first introduced a competitive model for object classification.

Since that time, a large body of research has been devoted to extending the use of
convolutional networks for other recognition tasks such as detection [152, 59] and semantic
segmentation [123, 192, 122].

In this part, we consider an adaptation approach for object classification with deep
models. In particular, we take advantage of the seamless nature of the image representation
and object classification model within a convolutional network and in the next chapter
introduce the notion of optimizing for domain invariance (or minimizing the distance between
the source and target representations), while simultaneously maintaining a strong object
recognition model.

46

Chapter 9

Optimize for Domain Invariance

9.1 Introduction

Consider a group of robots trained by the manufacturer to recognize thousands of common
objects using standard image databases, then shipped to households around the country. As
each robot starts to operate in its own unique environment, it is likely to have degraded
performance due to the shift in domain. It is clear that, given enough extra supervised data
from the new environment, the original performance could be recovered. However, state-
of-the-art recognition algorithms rely on high capacity convolutional neural network (CNN)
models that require millions of supervised images for initial training. Even the traditional
approach for adapting deep models, fine-tuning [59, 152], may require hundreds or thousands
of labeled examples for each object category that needs to be adapted.

It is reasonable to assume that the robot’s new owner will label a handful of examples
for a few types of objects, but completely unrealistic to presume full supervision in the
new environment. Therefore, we propose an algorithm that e↵ectively adapts between the
training (source) and test (target) environments by utilizing both generic statistics from
unlabeled data collected in the new environment as well as a few human labeled examples
from a subset of the categories of interest. Our approach performs transfer learning both
across domains and across tasks (see Figure 9.1). Intuitively, domain transfer is accomplished
by making the marginal feature distributions of source and target as similar to each other as
possible. Task transfer is enabled by transferring empirical category correlations learned on
the source to the target domain. This helps to preserve relationships between categories, e.g.,
bottle is similar to mug but di↵erent from keyboard. Previous work proposed techniques for
domain transfer with CNN models [57, 124] but did not utilize the learned source semantic
structure for task transfer.

To enable domain transfer, we use the unlabeled target data to compute an estimated
marginal distribution over the new environment and explicitly optimize a feature repre-
sentation that minimizes the distance between the source and target domain distributions.
Dataset bias was classically illustrated in computer vision by the “name the dataset” game

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 47

!
!

Bottle Mug Chai
r
Lapto

p
Keyb

oard

Bottle Mug Chai
r
Lapto

p
Keyb

oardBottle Mug Chai
r
Lapto

p
Keyb

oard

Bottle Mug Chai
r
Lapto

p
Keyb

oard

!
!

Source domain! Target domain!

!
! !

!

!
 !
!
 !
!
 !
!
 !

1. Maximize domain confusion!

2. Transfer task correlation!

!
!

Figure 9.1: We transfer discriminative category information from a source domain to a target
domain via two methods. First, we maximize domain confusion by making the marginal
distributions of the two domains as similar as possible. Second, we transfer correlations
between classes learned on the source examples directly to the target examples, thereby
preserving the relationships between classes.

of Torralba and Efros [175], which trained a classifier to predict which dataset an image
originates from, thereby showing that visual datasets are biased samples of the visual world.
Indeed, this turns out to be formally connected to measures of domain discrepancy [100,
20]. Optimizing for domain invariance, therefore, can be considered equivalent to the task of
learning to predict the class labels while simultaneously finding a representation that makes
the domains appear as similar as possible. This principle forms the domain transfer com-
ponent of our proposed approach. We learn deep representations by optimizing over a loss
which includes both classification error on the labeled data as well as a domain confusion
loss which seeks to make the domains indistinguishable.

However, while maximizing domain confusion pulls the marginal distributions of the
domains together, it does not necessarily align the classes in the target with those in the
source. Thus, we also explicitly transfer the similarity structure amongst categories from the
source to the target and further optimize our representation to produce the same structure
in the target domain using the few target labeled examples as reference points. We are
inspired by prior work on distilling deep models [8, 74] and extend the ideas presented in
these works to a domain adaptation setting. We first compute the average output probability

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 48

distribution, or “soft label,” over the source training examples in each category. Then, for
each target labeled example, we directly optimize our model to match the distribution over
classes to the soft label. In this way we are able to perform task adaptation by transferring
information to categories with no explicit labels in the target domain.

We solve the two problems jointly using a new CNN architecture, outlined in Figure 19.2.
We combine a domain confusion and softmax cross-entropy losses to train the network with
the target data. Our architecture can be used to solve supervised adaptation, when a small
amount of target labeled data is available from each category, and semi-supervised adaptation,
when a small amount of target labeled data is available from a subset of the categories. We
provide a comprehensive evaluation on the popular O�ce benchmark [151] and the recently
introduced cross-dataset collection [174] for classification across visually distinct domains.
We demonstrate that by jointly optimizing for domain confusion and matching soft labels,
we are able to outperform the current state-of-the-art visual domain adaptation results.

9.2 Related work

There have been many approaches proposed in recent years to solve the visual domain adap-
tation problem, which is also commonly framed as the visual dataset bias problem [175]. All
recognize that there is a shift in the distribution of the source and target data representa-
tions. In fact, the size of a domain shift is often measured by the distance between the source
and target subspace representations [20, 53, 100, 126, 138]. A large number of methods have
sought to overcome this di↵erence by learning a feature space transformation to align the
source and target representations [151, 104, 53, 63]. For the supervised adaptation scenario,
when a limited amount of labeled data is available in the target domain, some approaches
have been proposed to learn a target classifier regularized against the source classifier [188,
7, 16]. Others have sought to both learn a feature transformation and regularize a target
classifier simultaneously [83, 40].

Recently, supervised CNN based feature representations have been shown to be extremely
e↵ective for a variety of visual recognition tasks [103, 40, 59, 152]. In particular, using deep
representations dramatically reduces the e↵ect of resolution and lighting on domain shifts [40,
76]. Parallel CNN architectures such as Siamese networks have been shown to be e↵ective for
learning invariant representations [23, 26]. However, training these networks requires labels
for each training instance, so it is unclear how to extend these methods to unsupervised or
semi-supervised settings. Multimodal deep learning architectures have also been explored
to learn representations that are invariant to di↵erent input modalities [134]. However, this
method operated primarily in a generative context and therefore did not leverage the full
representational power of supervised CNN representations.

Training a joint source and target CNN architecture was proposed by [25], but was
limited to two layers and so was significantly outperformed by the methods which used a
deeper architecture [103], pre-trained on a large auxiliary data source (ex: ImageNet [15]).
[58] proposed pre-training with a denoising auto-encoder, then training a two-layer network

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 49

Source Data

backpack chair bike

Target Databackpack

?

fc8conv1 conv5 fc6 fc7

Source softlabels

all
 ta

rg
et

 d
at

a

source data

labeled target data

fc8conv1 conv5
source data

softmax
high temp

softlabel
loss

fcD

fc6 fc7

classification
loss

domain
confusion

loss

domain
classifier

loss
sh

ar
ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

Figure 9.2: Our overall CNN architecture for domain and task transfer. We use a domain
confusion loss over all source and target (both labeled and unlabeled) data to learn a domain
invariant representation. We simultaneously transfer the learned source semantic structure
to the target domain by optimizing the network to produce activation distributions that
match those learned for source data in the source only CNN. Best viewed in color.

simultaneously with the MMD domain confusion loss. This e↵ectively learns a domain
invariant representation, but again, because the learned network is relatively shallow, it
lacks the strong semantic representation that is learned by directly optimizing a classification
objective with a supervised deep CNN.

Using classifier output distributions instead of category labels during training has been
explored in the context of model compression or distillation [8, 74]. However, we are the first
to apply this technique in a domain adaptation setting in order to transfer class correlations
between domains.

Other works have contemporaneously explored the idea of directly optimizing a represen-
tation for domain invariance [57, 124]. However, they either use weaker measures of domain
invariance or make use of optimization methods that are less robust than our proposed
method, and they do not attempt to solve the task transfer problem in the semi-supervised
setting.

9.3 Joint CNN architecture for domain and task
transfer

We first give an overview of our convolutional network (CNN) architecture, depicted in
Figure 19.2, that learns a representation which both aligns visual domains and transfers the
semantic structure from a well labeled source domain to the sparsely labeled target domain.

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 50

We assume access to a limited amount of labeled target data, potentially from only a subset
of the categories of interest. With limited labels on a subset of the categories, the traditional
domain transfer approach of fine-tuning on the available target data [59, 152, 85] is not
e↵ective. Instead, since the source labeled data shares the label space of our target domain,
we use the source data to guide training of the corresponding classifiers.

Our method takes as input the labeled source data {x, y} (blue box Figure 19.2) and
the target data {v, g} (green box Figure 19.2), where the labels g are only provided for a
subset of the target examples. Our goal is to produce a category classifier ✓

C

that operates
on an image feature representation f(x; ✓

repr

) parameterized by representation parameters
✓
repr

and can correctly classify target examples at test time.
For a setting with K categories, let our desired classification objective be defined as the

standard softmax loss

L
C

(x, y; ✓
repr

, ✓
C

) = �
X

k

[y = k] log p
k

(9.1)

where p is the softmax of the classifier activations, p = softmax(✓T

C

f(x; ✓
repr

)).
We could use the available source labeled data to train our representation and classifier

parameters according to Equation (9.1), but this often leads to overfitting to the source dis-
tribution, causing reduced performance at test time when recognizing in the target domain.
However, we note that if the source and target domains are very similar then the classifier
trained on the source will perform well on the target. In fact, it is su�cient for the source
and target data to be similar under the learned representation, ✓

repr

.
Inspired by the “name the dataset” game of Torralba and Efros [175], we can directly

train a domain classifier ✓
D

to identify whether a training example originates from the source
or target domain given its feature representation. Intuitively, if our choice of representation
su↵ers from domain shift, then they will lie in distinct parts of the feature space, and a
classifier will be able to easily separate the domains. We use this notion to add a new domain
confusion loss L

conf

(x,v, ✓
D

; ✓
repr

) to our objective and directly optimize our representation
so as to minimize the discrepancy between the source and target distributions. This loss is
described in more detail in Section 9.3.

Domain confusion can be applied to learn a representation that aligns source and target
data without any target labeled data. However, we also presume a handful of sparse labels in
the target domain, g. In this setting, a simple approach is to incorporate the target labeled
data along with the source labeled data into the classification objective of Equation (9.1)1.
However, fine-tuning with hard category labels limits the impact of a single training exam-
ple, making it hard for the network to learn to generalize from the limited labeled data.
Additionally, fine-tuning with hard labels is ine↵ective when labeled data is available for
only a subset of the categories.

For our approach, we draw inspiration from recent network distillation works [8, 74],
which demonstrate that a large network can be “distilled” into a simpler model by replacing

1We present this approach as one of our baselines.

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 51

the hard labels with the softmax activations from the original large model. This modifica-
tion proves to be critical, as the distribution holds key information about the relationships
between categories and imposes additional structure during the training process. In essence,
because each training example is paired with an output distribution, it provides valuable
information about not only the category it belongs to, but also each other category the
classifier is trained to recognize.

Thus, we propose using the labeled target data to optimize the network parameters
through a soft label loss, L

soft

(v, g; ✓
repr

, ✓
C

). This loss will train the network parameters
to produce a “soft label” activation that matches the average output distribution of source
examples on a network trained to classify source data. This loss is described in more detail
in Section 9.3. By training the network to match the expected source output distributions
on target data, we transfer the learned inter-class correlations from the source domain to
examples in the target domain. This directly transfers useful information from source to
target, such as the fact that bookshelves appear more similar to filing cabinets than to
bicycles.

Our full method then minimizes the joint loss function

L(x, y,v, g, ✓
D

;✓
repr

, ✓
C

) =

L
C

(x, y,v, g; ✓
repr

, ✓
C

)

+ �L
conf

(x,v, ✓
D

; ✓
repr

)

+ ⌫L
soft

(v, g; ✓
repr

, ✓
C

).

(9.2)

where the hyperparameters � and ⌫ determine how strongly domain confusion and soft labels
influence the optimization.

Our ideas of domain confusion and soft label loss for task transfer are generic and can
be applied to any CNN classification architecture. For our experiments and for the detailed
discussion in this paper we modify the standard Krizhevsky architecture [103], which has
five convolutional layers (conv1–conv5) and three fully connected layers (fc6–fc8). The rep-
resentation parameter ✓

repr

corresponds to layers 1–7 of the network, and the classification
parameter ✓

C

corresponds to layer 8. For the remainder of this section, we provide further
details on our novel loss definitions and the implementation of our model.

Aligning domains via domain confusion

In this section we describe in detail our proposed domain confusion loss objective. Recall
that we introduce the domain confusion loss as a means to learn a representation that is
domain invariant, and thus will allow us to better utilize a classifier trained using the labeled
source data. We consider a representation to be domain invariant if a classifier trained using
that representation can not distinguish examples from the two domains.

To this end, we add an additional domain classification layer, denoted as fcD in Fig-
ure 19.2, with parameters ✓

D

. This layer simply performs binary classification using the
domain corresponding to an image as its label. For a particular feature representation, ✓

repr

,

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 52

we evaluate its domain invariance by learning the best domain classifier on the represen-
tation. This can be learned by optimizing the following objective, where y

D

denotes the
domain that the example is drawn from:

L
D

(x,v, ✓
repr

; ✓
D

) = �
X

d

[y
D

= d] log q
d

(9.3)

with q corresponding to the softmax of the domain classifier activation: q = softmax(✓T

D

f(x; ✓
repr

)).
For a particular domain classifier, ✓

D

, we can now introduce our loss which seeks to
“maximally confuse” the two domains by computing the cross entropy between the output
predicted domain labels and a uniform distribution over domain labels:

L
conf

(x,v, ✓
D

; ✓
repr

) = �
X

d

1

D
log q

d

. (9.4)

This domain confusion loss seeks to learn domain invariance by finding a representation in
which the best domain classifier performs poorly.

Ideally, we want to simultaneously minimize Equations (9.3) and (9.4) for the representa-
tion and the domain classifier parameters. However, the two losses stand in direct opposition
to one another: learning a fully domain invariant representation means the domain classifier
must do poorly, and learning an e↵ective domain classifier means that the representation is
not domain invariant. Rather than globally optimizing ✓

D

and ✓
repr

, we instead perform iter-
ative updates for the following two objectives given the fixed parameters from the previous
iteration:

min
✓D

L
D

(x,v, ✓
repr

; ✓
D

) (9.5)

min
✓repr

L
conf

(x,v, ✓
D

; ✓
repr

). (9.6)

These losses are readily implemented in standard deep learning frameworks, and after
setting learning rates properly so that Equation (9.5) only updates ✓

D

and Equation (9.6)
only updates ✓

repr

, the updates can be performed via standard backpropagation. Together,
these updates ensure that we learn a representation that is domain invariant.

Aligning source and target classes via soft labels

While training the network to confuse the domains acts to align their marginal distributions,
there are no guarantees about the alignment of classes between each domain. To ensure that
the relationships between classes are preserved across source and target, we fine-tune the
network against “soft labels” rather than the image category hard label.

We define a soft label for category k as the average over the softmax of all activations of
source examples in category k, depicted graphically in Figure 9.3, and denote this average
as l(k). Note that, since the source network was trained purely to optimize a classification

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 53

Source
CNN

Source
CNN

Source
CNN

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

+

softmax
high
temp

softmax
high
temp

softmax
high
temp

Figure 9.3: Soft label distributions are learned by averaging the per-category activations
of source training examples using the source model. An example, with 5 categories, de-
picted here to demonstrate the final soft activation for the bottle category will be primarily
dominated by bottle and mug with very little mass on chair, laptop, and keyboard.

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

Adapt CNN

“Bottle”

Source Activations
Per Class

backprop

Cross Entropy Loss

softmax
high
temp

Figure 9.4: Depiction of the use of source per-category soft activations with the cross entropy
loss function over the current target activations.

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 54

objective, a simple softmax over each zi

S

will hide much of the useful information by producing
a very peaked distribution. Instead, we use a softmax with a high temperature ⌧ so that the
related classes have enough probability mass to have an e↵ect during fine-tuning. With our
computed per-category soft labels we can now define our soft label loss:

L
soft

(v, g; ✓
repr

, ✓
C

) = �
X

i

l
(g)

i

log p
i

(9.7)

where p denotes the soft activation of the target image, p = softmax(✓T

C

f(v; ✓
repr

)/⌧). The
loss above corresponds to the cross-entropy loss between the soft activation of a particular
target image and the soft label corresponding to the category of that image, as shown in
Figure 9.4.

To see why this will help, consider the soft label for a particular category, such as bottle.
The soft label l(bottle) is aK-dimensional vector, where each dimension indicates the similarity
of bottles to each of the K categories. In this example, the bottle soft label will have a higher
weight on mug than on keyboard, since bottles and mugs are more visually similar. Thus, soft
label training with this particular soft label directly enforces the relationship that bottles
and mugs should be closer in feature space than bottles and keyboards.

One important benefit of using this soft label loss is that we ensure that the parameters for
categories without any labeled target data are still updated to output non-zero probabilities.
We explore this benefit in Section 9.4, where we train a network using labels from a subset
of the target categories and find significant performance improvement even when evaluating
only on the unlabeled categories.

9.4 Evaluation

To analyze the e↵ectiveness of our method, we evaluate it on the O�ce dataset, a standard
benchmark dataset for visual domain adaptation, and on a new large-scale cross-dataset
domain adaptation challenge.

Adaptation on the O�ce dataset

The O�ce dataset is a collection of images from three distinct domains, Amazon, DSLR,
and Webcam, the largest of which has 2817 labeled images [151]. The 31 categories in the
dataset consist of objects commonly encountered in o�ce settings, such as keyboards, file
cabinets, and laptops.

We evaluate our method in two di↵erent settings:

• Supervised adaptation Labeled training data for all categories is available in source
and sparsely in target.

• Semi-supervised adaptation (task adaptation) Labeled training data is available
in source and sparsely for a subset of the target categories.

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 55

A ! W A ! D W ! A W ! D D ! A D ! W Average

DLID [25] 51.9 – – 89.9 – 78.2 –
DeCAF

6

S+T [40] 80.7 ± 2.3 – – – – 94.8 ± 1.2 –
DaNN [58] 53.6 ± 0.2 – – 83.5 ± 0.0 – 71.2 ± 0.0 –
Source CNN 56.5 ± 0.3 64.6 ± 0.4 42.7 ± 0.1 93.6 ± 0.2 47.6 ± 0.1 92.4 ± 0.3 66.22
Target CNN 80.5 ± 0.5 81.8 ± 1.0 59.9 ± 0.3 81.8 ± 1.0 59.9 ± 0.3 80.5 ± 0.5 74.05
Source+Target CNN 82.5 ± 0.9 85.2 ± 1.1 65.2 ± 0.7 96.3 ± 0.5 65.8 ± 0.5 93.9 ± 0.5 81.50

Ours: dom confusion only 82.8 ± 0.9 85.9 ± 1.1 64.9 ± 0.5 97.5 ± 0.2 66.2 ± 0.4 95.6 ± 0.4 82.13
Ours: soft labels only 82.7 ± 0.7 84.9 ± 1.2 65.2 ± 0.6 98.3 ± 0.3 66.0 ± 0.5 95.9 ± 0.6 82.17
Ours: dom confusion+soft labels 82.7 ± 0.8 86.1 ± 1.2 65.0 ± 0.5 97.6 ± 0.2 66.2 ± 0.3 95.7 ± 0.5 82.22

Table 9.1: Multi-class accuracy evaluation on the standard supervised adaptation setting
with the O�ce dataset. We evaluate on all 31 categories using the standard experimental
protocol from [151]. Here, we compare against three state-of-the-art domain adaptation
methods as well as a CNN trained using only source data, only target data, or both source
and target data together.

A ! W A ! D W ! A W ! D D ! A D ! W Average

MMDT [83] – 44.6 ± 0.3 – 58.3 ± 0.5 – – –
Source CNN 54.2 ± 0.6 63.2 ± 0.4 34.7 ± 0.1 94.5 ± 0.2 36.4 ± 0.1 89.3 ± 0.5 62.0

Ours: dom confusion only 55.2 ± 0.6 63.7 ± 0.9 41.1 ± 0.0 96.5 ± 0.1 41.2 ± 0.1 91.3 ± 0.4 64.8
Ours: soft labels only 56.8 ± 0.4 65.2 ± 0.9 38.8 ± 0.4 96.5 ± 0.2 41.7 ± 0.3 89.6 ± 0.1 64.8
Ours: dom confusion+soft labels 59.3 ± 0.6 68.0 ± 0.5 40.5 ± 0.2 97.5 ± 0.1 43.1 ± 0.2 90.0 ± 0.2 66.4

Table 9.2: Multi-class accuracy evaluation on the standard semi-supervised adaptation set-
ting with the O�ce dataset. We evaluate on 16 held-out categories for which we have no
access to target labeled data. We show results on these unsupervised categories for the
source only model, our model trained using only soft labels for the 15 auxiliary categories,
and finally using domain confusion together with soft labels on the 15 auxiliary categories.

For all experiments we initialize the parameters of conv1–fc7 using the released Caf-
feNet [92] weights. We then further fine-tune the network using the source labeled data in
order to produce the soft label distributions and use the learned source CNN weights as
the initial parameters for training our method. All implementations are produced using the
open source Ca↵e [92] framework, and the network definition files and cross entropy loss
layer needed for training will be released upon acceptance. We optimize the network using
a learning rate of 0.001 and set the hyper-parameters to � = 0.01 (confusion) and ⌫ = 0.1
(soft).

For each of the six domain shifts, we evaluate across five train/test splits, which are
generated by sampling examples from the full set of images per domain. In the source
domain, we follow the standard protocol for this dataset and generate splits by sampling 20
examples per category for the Amazon domain, and 8 examples per category for the DSLR
and Webcam domains.

We first present results for the supervised setting, where 3 labeled examples are provided

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 56

for each category in the target domain. We report accuracies on the remaining unlabeled
images, following the standard protocol introduced with the dataset [151]. In addition to a
variety of baselines, we report numbers for both soft label fine-tuning alone as well as soft la-
bels with domain confusion in Table 9.1. Because the O�ce dataset is imbalanced, we report
multi-class accuracies, which are obtained by computing per-class accuracies independently,
then averaging over all 31 categories.

We see that fine-tuning with soft labels or domain confusion provides a consistent im-
provement over hard label training in 5 of 6 shifts. Combining soft labels with domain
confusion produces marginally higher performance on average. This result follows the intu-
itive notion that when enough target labeled examples are present, directly optimizing for
the joint source and target classification objective (Source+Target CNN) is a strong baseline
and so using either of our new losses adds enough regularization to improve performance.

Next, we experiment with the semi-supervised adaptation setting. We consider the case
in which training data and labels are available for some, but not all of the categories in the
target domain. We are interested in seeing whether we can transfer information learned from
the labeled classes to the unlabeled classes.

To do this, we consider having 10 target labeled examples per category from only 15 of the
31 total categories, following the standard protocol introduced with the O�ce dataset [151].
We then evaluate our classification performance on the remaining 16 categories for which no
data was available at training time.

In Table 9.2 we present multi-class accuracies over the 16 held-out categories and compare
our method to a previous domain adaptation method [83] as well as a source-only trained
CNN. Note that, since the performance here is computed over only a subset of the categories
in the dataset, the numbers in this table should not be directly compared to the supervised
setting in Table 9.1.

We find that all variations of our method (only soft label loss, only domain confusion, and
both together) outperform the baselines. Contrary to the fully supervised case, here we note
that both domain confusion and soft labels contribute significantly to the overall performance
improvement of our method. This stems from the fact that we are now evaluating on
categories which lack labeled target data, and thus the network can not implicitly enforce
domain invariance through the classification objective alone. Separately, the fact that we
get improvement from the soft label training on related tasks indicates that information is
being e↵ectively transferred between tasks.

In Figure 9.5, we show examples for the Amazon!Webcam shift where our method
correctly classifies images from held out object categories and the baseline does not. We find
that our method is able to consistently overcome error cases, such as the notebooks that
were previously confused with letter trays, or the black mugs that were confused with black
computer mice.

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 57

ring binder
monitor

laptop computer
monitor

speaker
monitor

scissors
mug

mouse
mug

mouse
mug

laptop computer
paper notebook

letter tray
paper notebook

letter tray
paper notebook

letter tray
paper notebook

letter tray
paper notebook

laptop computer
paper notebook

calculator
phone

calculator
phone

file cabinet
printer

file cabinet
printer

file cabinet
printer

laptop computer
projector

laptop computer
projector

file cabinet
projector

phone
projector

keyboard
projector

tape dispenser
punchers

laptop computer
ring binder

keyboard
ring binder

keyboard
ring binder

letter tray
ring binder

laptop computer
ring binder

Figure 9.5: Examples from the Amazon!Webcam shift in the semi-supervised adaptation
setting, where our method (the bottom turquoise label) correctly classifies images while the
baseline (the top purple label) does not.

Adaptation between diverse domains

For an evaluation with larger, more distinct domains, we test on the recent testbed for cross-
dataset analysis [174], which collects images from classes shared in common among computer
vision datasets. We use the dense version of this testbed, which consists of 40 categories
shared between the ImageNet, Caltech-256, SUN, and Bing datasets, and evaluate specifically
with ImageNet as source and Caltech-256 as target.

We follow the protocol outlined in [174] and generate 5 splits by selecting 5534 images
from ImageNet and 4366 images from Caltech-256 across the 40 shared categories. Each split
is then equally divided into a train and test set. However, since we are most interested in
evaluating in the setting with limited target data, we further subsample the target training
set into smaller sets with only 1, 3, and 5 labeled examples per category.

Results from this evaluation are shown in Figure 9.6. We compare our method to both

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 58

Number Labeled Target Examples per Category
0 1 3 5

M
ul

ti-
cla

ss
 A

cc
ur

ac
y

72

73

74

75

76

77

78

Source CNN
Source+Target CNN
Ours: softlabels only
Ours: dom confusion+softlabels

Figure 9.6: ImageNet!Caltech supervised adaptation from the Cross-dataset [174] testbed
with varying numbers of labeled target examples per category. We find that our method using
soft label loss (with and without domain confusion) outperforms the baselines of training
on source data alone or using a standard fine-tuning strategy to train with the source and
target data. Best viewed in color.

CNNs fine-tuned using only source data using source and target labeled data. Contrary to
the previous supervised adaptation experiment, our method significantly outperforms both
baselines. We see that our full architecture, combining domain confusion with the soft label
loss, performs the best overall and is able to operate in the regime of no labeled examples
in the target (corresponding to the red line at point 0 on the x-axis). We find that the most
benefit of our method arises when there are few labeled training examples per category in the
target domain. As we increase the number of labeled examples in the target, the standard
fine-tuning strategy begins to approach the performance of the adaptation approach. This
indicates that direct joint source and target fine-tuning is a viable adaptation approach when
you have a reasonable number of training examples per category. In comparison, fine-tuning
on the target examples alone yields accuracies of 36.6 ± 0.6, 60.9 ± 0.5, and 67.7 ± 0.5 for
the cases of 1, 3, and 5 labeled examples per category, respectively. All of these numbers
underperform the source only model, indicating that adaptation is crucial in the setting of
limited training data.

Finally, we note that our results are significantly higher than the 24.8% result reported

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 59

Figure 9.7: We compare the baseline Ca↵eNet representation to our representation learned
with domain confusion by training a support vector machine to predict the domains of
Amazon and Webcam images. For each representation, we plot a histogram of the classifier
decision scores of the test images. In the baseline representation, the classifier is able to
separate the two domains with 99% accuracy. In contrast, the representation learned with
domain confusion is domain invariant, and the classifier can do no better than 56%.

in [174], despite the use of much less training data. This di↵erence is explained by their use
of SURF BoW features, indicating that CNN features are a much stronger feature for use in
adaptation tasks.

9.5 Analysis

Our experimental results demonstrate that our method improves classification performance
in a variety of domain adaptation settings. We now perform additional analysis on our
method by confirming our claims that it exhibits domain invariance and transfers information
across tasks.

Domain confusion enforces domain invariance

We begin by evaluating the e↵ectiveness of domain confusion at learning a domain invariant
representation. As previously explained, we consider a representation to be domain invariant
if an optimal classifier has di�culty predicting which domain an image originates from. Thus,
for our representation learned with a domain confusion loss, we expect a trained domain
classifier to perform poorly.

We train two support vector machines (SVMs) to classify images into domains: one using
the baseline Ca↵eNet fc7 representation, and the other using our fc7 learned with domain

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 60

confusion. These SVMs are trained using 160 images, 80 from Amazon and 80 from Webcam,
then tested on the remaining images from those domains. We plot the classifier scores for
each test image in Figure 9.7. It is obvious that the domain confusion representation is
domain invariant, making it much harder to separate the two domains—the test accuracy on
the domain confusion representation is only 56%, not much better than random. In contrast,
on the baseline Ca↵eNet representation, the domain classifier achieves 99% test accuracy.

Soft labels for task transfer

We now examine the e↵ect of soft labels in transferring information between categories. We
consider the Amazon!Webcam shift from the semi-supervised adaptation experiment in the
previous section. Recall that in this setting, we have access to target labeled data for only
half of our categories. We use soft label information from the source domain to provide
information about the held-out categories which lack labeled target examples. Figure 9.8
examines one target example from the held-out categorymonitor. No labeled target monitors
were available during training; however, as shown in the upper right corner of Figure 9.8,
the soft labels for laptop computer was present during training and assigns a relatively high
weight to the monitor class. Soft label fine-tuning thus allows us to exploit the fact that
these categories are similar. We see that the baseline model misclassifies this image as a ring
binder, while our soft label model correctly assigns the monitor label.

9.6 Conclusion

We have presented a CNN architecture that e↵ectively adapts to a new domain with limited
or no labeled data per target category. We accomplish this through a novel CNN architecture
which simultaneously optimizes for domain invariance, to facilitate domain transfer, while
transferring task information between domains in the form of a cross entropy soft label
loss. We demonstrate the ability of our architecture to improve adaptation performance
in the supervised and semi-supervised settings by experimenting with two standard domain
adaptation benchmark datasets. In the semi-supervised adaptation setting, we see an average
relative improvement of 13% over the baselines on the four most challenging shifts in the
O�ce dataset. Overall, our method can be easily implemented as an alternative fine-tuning
strategy when limited or no labeled data is available per category in the target domain.

CHAPTER 9. OPTIMIZE FOR DOMAIN INVARIANCE 61

back
packbike

bike
 helmet

bookca
se
bottle

calcu
lator

desk
chair

desk
lamp

deskt
op co

mputer

file
 ca

binet

headphones

keyboard

laptop co
mputer

letter tra
y

mobile phone
monitor

mousemug

paper notebookpen
phone

printer

projecto
r

punchers

ring binder
ruler

scis
sors
speaker

sta
pler

tape disp
enser

trash ca
n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Ours soft label

back
packbike

bike
 helmet

bookca
se
bottle

calcu
lator

desk
chair

desk
lamp

deskt
op co

mputer

file
 ca

binet

headphones

keyboard

laptop co
mputer

letter tra
y

mobile phone
monitor

mousemug

paper notebookpen
phone

printer

projecto
r

punchers

ring binder
ruler

scis
sors
speaker

sta
pler

tape disp
enser

trash ca
n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Baseline soft label

back pack bike bike helmet

bookcase bottle calculator

desk chair desk lamp desktop computer

file cabinet headphones keyboard

laptop computer letter tray mobile phone

ring binder
monitor

Baseline soft activation Our soft activation

Source soft labelsTarget test image

Figure 9.8: Our method (bottom turquoise label) correctly predicts the category of this
image, whereas the baseline (top purple label) does not. The source per-category soft labels
for the 15 categories with labeled target data are shown in the upper right corner, where
the x-axis of the plot represents the 31 categories and the y-axis is the output probability.
We highlight the index corresponding to the monitor category in red. As no labeled target
data is available for the correct category, monitor, we find that in our method the related
category of laptop computer (outlined with yellow box) transfers information to the monitor
category. As a result, after training, our method places the highest weight on the correct
category. Probability score per category for the baseline and our method are shown in the
bottom left and right, respectively, training categories are opaque and correct test category
is shown in red.

62

Part IV

Defining Visual Domains

63

Chapter 10

Visual Domains

Standard visual domain adaptation assumes a single source and target domain, where each
domain is defined as a single dataset or image collection. Often this designation is useful
since each dataset is collected within the vision community for the purpose of solving a single
task and therefore the images of a single dataset often contain a similar bias.

The classic machine learning definition of domain adaptation says that a domain is de-
fined as a distribution from which the sample data is drawn and a shift between domains
corresponds to a di↵erence, or distance, between the source and target distribution. In this
part of the thesis we challenge the notion of a visual dataset comprising a single domain
arguing instead that many datasets may be composed of multiple domains. We demonstrate
two scenarios where this is particularly true.

In Chapter 11, we consider a collection of internet images and demonstrate that through
a hierarchical clustering approach we are able to distinguish multiple latent domains within
the single dataset. Furthermore, we present a multiple-source domain adaptation approach
to utilize all source domain information to produce a stronger adaptation model for the
target classification. We additionally present a novel theoretical analysis of multiple-source
domain adaptation in Chapter 12.

Finally, in Chapter 13, we study the problem of a continuously evolving target domain.
For many applications, a recognition model is deployed at some fixed time and then continues
to be used over time. However, for many situations, such as the outdoor surveillance setup we
study, the data varies significantly over time. We present a continuous manifold adaptation
algorithm which can be used for unsupervised adaptation to allow our initial source model
to be modified as the target domain evolves.

64

Chapter 11

Discovering Latent Domains

11.1 Introduction

Despite e↵orts to the contrary, most image datasets exhibit a clear dataset bias : supervised
learning on a particular dataset nearly always leads to a significant loss in accuracy when
the models are tested in a new domain [151, 175]. Domain Adaptation methods have been
proposed as a solution to dataset bias and are becoming increasingly popular in computer
vision. Especially attractive are recent weakly-supervised methods that learn to transform
features between domains based on partially labeled data [151, 104, 64].

A major limitation of these methods is the assumption that the domain/dataset label is
provided for each training image. However, in practice, one often has access to large amounts
of object labeled data composed of multiple unknown domains. For example, images found
on the web can be thought of as a collection of many hidden domains. As shown in Figure
11.1, image search results for “person” and “bicycle” consist of several types, such as close-up
photos of a face, photos of an entire human figure, group shots, line drawings of a person,
etc. Existing methods have not addressed the problem of separating such data into latent
domains for the purpose of domain adaptation.

Even when the separation into source domains is known, the above methods are limited
to a single adaptive transform between source and target data, computed by either simply
pooling [151, 104] or averaging [64] multiple sources into one source domain. Learning a
single transform may be sub-optimal in approximating multiple domain shifts. Consider a
simple example: two source image datasets, one with low-resolution, color images and one
with high-resolution, grayscale images. When mapping images from a novel high-resolution,
color domain to each of these source domains, we would like a transform that either discounts
the high-resolution details or the color, but not both. Rather than force a single transform
to perform both mappings, a richer model with multiple separate transforms is desirable.

The contribution of this paper is two-fold: First, we propose a method that discovers
latent domain labels in data which has heterogeneous but unknown domain structure. We
use a probabilistic framework to derive a hierarchical constrained assignment algorithm that

CHAPTER 11. DISCOVERING LATENT DOMAINS 65

Figure 11.1: Training images for object recognition may contain several unknown domains,
such as the line drawings, close-up photos and far-away shots returned by web image search
for person and bicycle.

separates heterogeneous training data into latent clusters, or domains. Our second contri-
bution is an extension of the feature-transform method in [104] to multi-domain adaptation
that uses source domain labels to define a mixture-transform model. Tests on standard
datasets with known domain labels confirm that our method is more accurate at discovering
domain structure than baseline clustering methods, and that our transform mixture model
outperforms a single transform approach. When domain labels are unknown, we evaluate
the end-to-end recognition performance with no adaptation baseline, baseline adaptation,
and transform-mixture adaptation with discovered domain labels (our method). Our exper-
iments on category data from the Bing image search dataset confirm improved classification
performance using the inferred domains.

11.2 Related Work

Domain adaptation aims to compensate for covariate shift, i.e. a change in the feature
distribution from training to test time, which is a version of the more general dataset shift
problem [144].

Recently, several authors have developed approaches for vision tasks, and the field is
becoming increasingly aware of existing dataset bias [175]. These methods can be roughly
categorized as classifier adaptation approaches and feature-transform approaches. The for-
mer approach adapts the parameters of each per-category binary classifier, typically a sup-
port vector machine, and includes methods like a weighted combination of source and target
SVMs; transductive SVMs applied to adaptation in [16]; Adaptive SVM [189], where the pa-
rameters are adapted by adding a perturbation function; Domain Transfer SVM [46], which
learns a target decision function while reducing the mismatch in the domain distributions;
and a related method [47] which utilizes adaptive multiple kernel learning to learn a ker-
nel function based on multiple base kernels. Classifier adaptation approaches are typically
supervised, requiring labeled examples for each category in both source and target.

On the other hand, feature transform approaches map or translate the input features
directly between domains, and then apply a classifier [151, 104, 64, 50, 30]. The advantage

CHAPTER 11. DISCOVERING LATENT DOMAINS 66

of these approaches over the classifier-based ones above is that they are able to transfer
the adaptive transformation to novel problems, and even deal with new feature types and
dimensionalities. For example, the asymmetric nonlinear transform method [104] learns a
domain-independent similarity function between arbitrary feature sets based on class con-
straints. In this paper we focus on transform learning, as it can be scaled up to many novel
object categories and heterogeneous features. Other work on feature-translation has included
translating features between camera views to transfer activity models [50], and translating
user preferences between text and image domains [30].

Some of the existing methods can accommodate multiple source domains, if they are
known. The feature replication method [32] can be easily extended to multiple sources. In
methods based on combinations of SVM classifiers, this is done primarily by weighting the
classifiers learned on each source domain, either equally, or as in [45], using the maximum
mean discrepancy (MMD) criterion, which measures the distance between distributions. The
A-MKL [47] learns an optimal weighted combination of the pre-learned classifiers, however, in
the evaluation the classifiers came from the same source domain. The unsupervised approach
based on Grassman manifolds presented by Gopalan et al. [64] supports multiple sources by
first computing the Karcher mean of the sources and then running the single source version
of their algorithm.

None of the existing methods address the case of domain adaptation with unknown
domain labels, the main focus of our paper. We also present the first multi-domain version
of the asymmetric nonlinear transform [104], which so far has been limited to the single
domain case.

Our domain discovery method is based on a constrained clustering method, a topic of
active research for several years. The most related work to our approach is based on con-
strained k-means. The method of Wagsta↵ et al. [181] is the earliest constrained clustering
method based on k-means; their algorithm greedily assigns points to the closest cluster which
does not violate any constraints. Improvements to this basic algorithm were considered in [9,
105]. A variant of constrained k-means was also used recently with soft constraints to learn
more discriminative codebooks [173]. In general, the constraints in these approaches are
incorporated as additional penalty terms to the k-means objective function (and therefore
are not guaranteed to be satisfied), and algorithms are developed to minimize the penalized
k-means objective. In contrast to existing work on constrained k-means, our algorithm is
guaranteed to find a clustering that satisfies the constraints and provably converges locally
under certain assumptions. An overview of recent semi-supervised clustering techniques,
including techniques not based on k-means, can be found in [10].

11.3 Single Transform Domain Adaptation

We review the single-transform method of Kulis et al. [104]. Suppose we have a source
domain X containing observations x

1

, ...,x
nX . Similarly, let V be the target domain, con-

taining observations v
1

, ...,v
nV . Suppose we are also given a set of labels y

1

, ..., y
mX for the

CHAPTER 11. DISCOVERING LATENT DOMAINS 67

source observations and a partial set of labels g
1

, ..., g
mV for the target observations, with

mV < mX and l 2 {1, ..., K}, where K is the number of categories. The goal of domain
transform learning is to estimate a semantic similarity function sim(x,v) which outputs
high similarity values for pairs of source examples x and novel target examples v if they
have the same label, and low similarity values if they have di↵erent labels.

Following [104], consider a similarity function between source and target data parametrized
by a matrix W , i.e., sim

W

(x,v) = �X (x)T W�V(v), where �X and �V map examples from
the source and target, respectively, into kernel space. In general, mapping to kernel space
makes it possible to learn non-linear similarity mappings in the input space.

The transform W can be learned via a regularized optimization problem with loss func-
tions that depend on sim

W

; that is, by optimizing for a matrix W which minimizes
r(W) + �

P
C

i=1

c
i

(�X (X)T W�V(V)), where r is a matrix regularizer, C is the number
of constraints, �X (X) is the matrix of source data mapped to kernel space, �V(V) is the
matrix of target data mapped to kernel space, and c

i

are loss functions over the matrix
�X (X)T W�V(V). Though the model can incorporate various constraints/losses, it is cus-
tomary to focus on constraints that penalize small values of sim

W

(x,v) when x and v share
a class label, and penalize large values of sim

W

(x,v) when they have di↵erent labels. For a
particular class of regularizers r, this problem may be e�ciently optimized in kernel space;
see [104].

11.4 Multiple Transform Domain Adaptation

We first extend the single source feature transform method [104] to a multi-source algorithm,
considering the case of known domain labels, and then in Section 11.5 we present our main
contribution: a method for discovering unknown domain labels.

Transform-based domain adaptation captures category-independent domain shift infor-
mation, which can be generalized to a held-out category for which no labels are available in
a new domain. The single-transform method described in Section 11.3 is sub-optimal when
multiple domain shifts are present. We remedy this by constructing a domain transform
mixture model as follows.

Suppose we have a set of domains X
1

, ...,X
S

containing observations x
1

, ...,x
n

and labels
y

1

, ..., y
n

}. Let a = {a
1

, ..., a
n

} specify the domain of each observation, such that a
i

2
{1, ..., S}.

We start by using the single source feature transform method to learn a transformation
W

k

for each source k 2 {1, . . . , S}. Each of the S di↵erent object category classifiers outputs
a multi-class probability for a given test point, v. We denote the output probability over
classes, c, of the classifier learned for the kth domain as, p(c|d = k,v).

We classify a novel test point from a target domain by considering the domain as a latent

CHAPTER 11. DISCOVERING LATENT DOMAINS 68

variable that is marginalized out as follows:

label(v) = arg max
c2{1:K}

p(c|v) (11.1)

= arg max
c2{1:K}

SX

k=1

p(d = k|v)p(c|d = k,v) (11.2)

Where p(d|v) is the output of a domain label classifier and p(c|d,v) is the output of a domain
specific object model based on the learned transforms. For example, if the domain specific
classifier is (kernelized) nearest neighbors, as in our experiments, and we let x⇤

k

(v) be the
most similar point in domain k to test point v, then our domain specific object category
probability can be expressed as:

p(c|d = k,v) =
�X (x⇤

k

(v))T W

j

�V(v)P
S

k

0
=1

�X (x⇤
k

0(v))T W

j

�V(v)
(11.3)

Finally, to obtain p(d = k|v) we train an SVM classifier with probabilistic outputs, using
known domain labels and source training data. In summary, category classification of a test
point v amounts to a weighted sum of the probability of a particular category given that the
point is from a particular domain, where the weights are the probability that the test point
belongs to each domain.

11.5 Domain Clustering

For datasets which do not have domain labels, we must infer domain assignments â that
best approximate the true assignments, a. This task is di�cult because, in many cases, the
data is naturally separated according to semantic categories. That is, a standard clustering
method such as k-means or EM for mixtures of Gaussians would tend to return clusters
based on the semantic category labels, which is clearly undesirable.

High-level Description: We propose a two-stage approach for domain discovery (See
Figure 11.2 for illustration of algorithm). The idea is as follows: if there are K semantic
categories and S domains in the data, we will group the data points x

1

, ...,x
n

into J = K ·S
local clusters—intuitively, each local cluster will contain data points from one domain and
one semantic category (step B-C in Figure 11.2). In the second stage of clustering (domain
clustering), we will cluster the means of the local clusters, in order to find domains (step
C-D in Figure 11.2). The two stages are iterated to convergence. To make this approach
consistent with our goals, we add two crucial constraints to the clustering procedure: a) we
require that each local cluster only contains data points from a single category, and b) we
constrain each domain cluster to contain only one local cluster from each object category.

Formal Definition: Let us now specify this model more formally. Define a local latent

CHAPTER 11. DISCOVERING LATENT DOMAINS 69

!"#$%&'(#)*+!,-$%)&(#.+/(%0+1,'$$+1"#$%&'(#%$+

2+

3+

!+

4+

Figure 11.2: An illustration of our approach for discovering latent domains: Given input
images with unknown domains types (A), we separate examples according to their semantic
category labels (B). Then, we cluster the data from each semantic category group to produce
local clusters (C), and, finally, use do-not-link constraints between clusters of same category
to produce the domain specific clusters (D). This example shows separation of person and
bicycle search results into two domains of line drawing and natural images. Our algorithm
iterates between steps (B-D) until convergence.

variable zL

ij

2 {0, 1} to indicate whether observation x
i

should be assigned to local cluster
j. Let the domain latent variable zG

jk

2 {0, 1} indicate whether local cluster j is assigned to
domain k. Further, let µ

j

be the mean of the observations in local cluster j and m

k

be the
mean of domain cluster k. Finally, let the mixing weights for the global clusters be given
by ⇡G

k

, for k = 1, ..., S, and let the mixing weights for the local clusters be given by ⇡L

j

for
j = 1, ..., J . See Figure 11.3 for a graphical depiction of our model. Note that, unlike a stan-
dard Gaussian mixture model, each cluster mean µ

j

is itself a data point within a mixture
model. For simplicity, we are assuming that all clusters have a global covariance of �I—one
could easily extend the model to learn the covariances. The conditional probabilities in our

CHAPTER 11. DISCOVERING LATENT DOMAINS 70

j = 1, . . . , J

µj

Z

G
j⇡

G

m

i = 1, . . . , n

xi

Z

L
i ⇡

L

Figure 1: Graphical model for domain discovery.

p(zG
j | ⇡

G) =
SY

k=1

(�G
j)zG

jk

p(µj | z

G
j , m) =

SY

k=1

N (µj | mk, �I)zG
jk

p(xi | z

L
i , µ) =

JY

j=1

N (xi | µj , �I)zL
ij .

The joint probability is a product of the conditional probabilities in the model.
Let Z

L = {z

L
i }, Z

G = {z

G
j }, and X = [x1, ...,xn]. Then p(ZG, ZL, X | m, µ, ⇡G, ⇡L) =

nY

i=1

JY

j=1

SY

k=1

(�G
j)zG

jk(�L
k)zL

ij N (µj | mk, �I)zG
jkN (xi | µj , �I)zL

ij .

We may think of this model in a generative manner as follows: for all local
clusters j = 1, ..., J = S · K, we determine its underlying domain via the ⇡

G

mixing weights. Given this domain, we generate µj , the mean for the local
cluster. Then, to generate the data points xi, we first determine which local
cluster j the data point belongs to using ⇡

L, and then we generate the point
from the corresponding µj .

At this point, we still need to add the constraints discussed above, namely
that the local clusters only contain data points from a single category and
that domain clusters contain only a single local cluster from each category.
Such constraints can be di�cult to enforce in a probabilistic model, but are
considerably simpler in a hard clustering model. For instance, in semi-supervised
clustering there is considerable literature on adding constraints to the k-means
objective via constraints or penalties (cite papers by Sugato Basu). Thus, we
will utilize a standard asymptotic argument on our probabilistic model to create
a corresponding hard clustering model. In particular, if one takes a mixture of
Gaussian model with fixed �I covariances across clusters, and lets � ! 0, the
expected log joint likelihood approaches the k-means objective, and the EM

2

Figure 11.3: Graphical model for domain discovery. The data points x
i

are generated from
category specific local mixtures, whose means are assumed to be drawn from a latent global
(domain) mixture.

graphical model are defined as:

p(zL

i

| ⇡

L) =
JY

j=1

(⇡L

j

)z
L
ij p(zG

j

| ⇡

G) =
SY

k=1

(⇡G

k

)z
G
jk (11.4)

p(x
i

| z

L

i

,µ) =
JY

j=1

N (x
i

| µ

j

, �I)z
L
ij (11.5)

p(µ
j

| z

G

j

,m) =
SY

k=1

N (µ
j

| m

k

, �I)z
G
jk (11.6)

We may think of this model in a generative manner as follows: for each local cluster j =
1, ..., J = S · K, we determine its underlying domain via the ⇡

G mixing weights. Given this
domain, we generate µ

j

, the mean for the local cluster. Then, to generate the data points
x

i

, we first determine which local cluster j the data point belongs to using ⇡

L, and then we
generate the point from the corresponding µ

j

.
At this point, we still need to add the constraints discussed above, namely that the local

clusters only contain data points from a single category and that domain clusters contain
only a single local cluster from each category. Such constraints can be di�cult to enforce in
a probabilistic model, but are considerably simpler in a hard clustering model. For instance,
in semi-supervised clustering there is ample literature on adding constraints to the k-means
objective via constraints or penalties [181, 105]. Thus, we will utilize a standard asymptotic
argument on our probabilistic model to create a corresponding hard clustering model. In
particular, if one takes a mixture of Gaussian model with fixed �I covariances across clusters,
and lets � ! 0, the expected log likelihood approaches the k-means objective, and the EM

CHAPTER 11. DISCOVERING LATENT DOMAINS 71

algorithm approaches the k-means algorithm. In an analogous manner, we will consider the
log-likelihood of our model. Let Z

L = {z

L

i

}, Z

G = {z

G

j

}, and X = [x
1

, ...,x
n

].

ln
⇥
p(ZG,ZL, X | m,µ)

⇤
= (11.7)

nX

i=1

JX

j=1

SX

k=1

✓
zG

jk

(ln ⇡G

k

+ lnN (µ
j

| m

k

, �I)) + zL

ij

(ln ⇡L

j

+ lnN (x
i

| µ

j

, �I))

◆

If we have no prior knowledge about the domains, then we assume the mixing weights ⇡G

and ⇡L to be uniform. Then to create a hard clustering problem we let � tend to 0 and
taking expectations with respect to Z

G and Z

L, we obtain the following hard clustering
objective:

min
Z

G
,Z

L
,µ,m

nX

i=1

JX

j=1

Z

L

ij

(x
i

� µ
j

)2 +
JX

j=1

SX

k=1

Z

G

jk

(µ
j

� m

k

)2 (11.8)

subject to: 8j, k : Z

G

jk

2 {0, 1}, 8i, j : Z

L

ij

2 {0, 1} (11.9)

8j :
SX

k=1

Z

G

jk

= 1, 8i :
JX

j=1

Z

L

ij

= 1 (11.10)

(11.11)

The constraints above are standard hard assignment constraints, saying that every obser-
vation must be assigned to one local cluster and every local cluster must be assigned to
only one global cluster. Now that we have transformed the clustering problem into a hard
clustering model, we can easily add constraints on the Z

G and Z

L assignments, leading to
our final model.

min
Z

G
,Z

L
,µ,m

nX

i=1

JX

j=1

Z

L

ij

(x
i

� µ
j

)2 +
JX

j=1

SX

k=1

Z

G

jk

(µ
j

� m

k

)2 (11.12)

subject to: 8j, k : Z

G

jk

2 {0, 1}, 8i, j : Z

L

ij

2 {0, 1} (11.13)

8j :
SX

k=1

Z

G

jk

= 1, 8i :
JX

j=1

Z

L

ij

= 1 (11.14)

8j :
nX

i=1

�(l
i

6= l
j

)ZL

ij

= 0 (11.15)

8k :
KX

c=1

JX

j=1

�(label(j) = c)ZG

jk

= 1 (11.16)

Equation (11.15) says that all observations assigned to a single local cluster j must contain
the same object category label. Finally, we add the constraint in Equation (11.16), which

CHAPTER 11. DISCOVERING LATENT DOMAINS 72

says that each global cluster should only contain one local cluster from each object category.
Here, we define label(j) to mean the object category label of the observations assigned to
the local cluster j. Together the last two constraints restrict the feasible global clustering
solutions to be the solutions that contain observations from every object category while
placing observations together that are close according to a Euclidean distance.

To solve this optimization problem we formulate an EM style iteration algorithm. We
first initialize Z

G, µ,m and then perform the following updates until convergence (or until
the objective doesn’t change more than some threshold between iterations):

Z

L

ij

: For each observation x

i

, set Z

L

ij

= 1 for the particular j that minimizes (x
i

� µ
j

)2.

µ
j

: For each local cluster j, set µ
j

=
P

i Z
L
ijxi+

P
k Z

G
jkmkP

i Z
L
ij+

P
k Z

G
jk

Z

G

jk

: For each local cluster j, set Z

G

jk

= 1 for the particular global cluster that minimizes
Z

G

jk

(µ
j

� m

k

)2 while satisfying Equation (11.16). For the case where the number of
latent domains is assumed small, we can try all possible assignments of local to global
clusters at this stage.

m

k

: For each global cluster k, set m

k

=
P

j Z
G
jkµjP

j Z
G
jk

Note, these updates correspond to constrained versions of the EM updates from the
probabilistic model as � ! 0. In general adding constraints to EM updates can cause the
objective to diverge. However, for our problem, when the number of domains, S, is small
(which is a practical assumption for many domain adaptation tasks) these updates can be
shown to provably converge locally (see supplemental material). In Section 11.6 we show
experimentally that even for large heterogeneous data sources learning to separate into a
small number of latent domains is su�cient in practice.

We evaluate absolute domain discovery performance compared against a constrained
hard HDP method [106] and a standard unconstrained k-means. The hard HDP seeks to
minimize the distance between data points and their local mean plus data points to their
assigned global mean, whereas we introduce an intermediate latent variable for the local
cluster means. That, combined with the fact that constrained hard HDP can create new
global clusters, causes the constrained hard HDP to degenerate to the case where each
global cluster contains only one local cluster. In Section 11.6 we present clustering accuracy
experiments that show our method does in fact provide significant benefit over the hard
HDP method and a standard k-means baseline.

11.6 Experiments

We present the following three experiments. First, we evaluate our multi-domain mixture
model extension of [104] described in Section 11.4 for the case where the domain labels are
known. We compare this to using the single-transform method in [104]. Next, we evaluate

CHAPTER 11. DISCOVERING LATENT DOMAINS 73

the ability of our constrained clustering method to recover domains by mixing datasets and
omitting the dataset labels, and compare to two baseline clustering methods. Finally, we
evaluate the end-to-end recognition performance on a dataset with unknown domains, com-
pared against methods with no adaptation, baseline adaptation, and our multiple transform
adaptation with discovered domain labels.

Datasets: For our experiments we used two di↵erent data sets. First we used the O�ce
data set created by [151] specifically for object domain adaptation, which we modified to
artificially introduce more domains. We use the code provided by the authors to extract
features and to implement the single-domain asymmetric transform method. Second, we
evaluate on a subset of the Bing-Caltech256 data set created by [16], using the authors’
original image features. The Bing dataset is comprised of search results from object label
keywords and therefore has many sub-domains without any explicit labels.

The O�ce dataset contains three domains with 31 object categories: Amazon (a), which
contains images from amazon.com; Digital SLR (d), and Webcam (w). Webcam and Digital
SLR contain images of the same 5 instances for each object category, but vary in pose,
lighting, and camera. In addition to these three domains, we also created two more domains
which are artificially modified versions of two the the original domains: Webcam-blur (Wb),
which contains the blurred version of all webcam data images (using a Gaussian filter of
width 5), and Amazon-rotflip (Ar), which contains the result of rotating all amazon images
by 10-20 degrees and then creating their mirror image.

Object Classification using O�ce: For our first object classification experiment,
we follow the experimental procedure for semi-supervised learning described in [151, 64]:
we train the transforms on categories 1-15, with 10 instances per category in each source
domain and 5 instances per category in the target domain, and test them using the classifier
described in Section 11.4 on the rest of the categories.

The experiment measures the accuracy of predicting the labels of target data points
with no examples of the correct label within the target domain, representing the transform’s
ability to capture general shifts rather than simply the source shift’s e↵ect on a particular
object category.

We compared our method to the single-transform method of [104] and the semi-supervised
multi-domain version of [64]. The � parameter of ours and [104] was optimized for the single
transform baseline in all experiments. We ran code provided by the authors of [64]; we
experimented with over 1000 combinations of the four parameter settings within the ranges
specified in the code from the author’s website and the paper, but were unable to produce
resulting accuracies above the standard KNN with no adaptation baseline for any of the
domain shifts presented, and so we omit these results from the following figure.

Figure 11.4 shows the absolute improvement in accuracy of the supervised multiple-
domain method and a single transform method over the KNN classifier using Euclidean
distance (i.e., no adaptation) for various domain shifts, averaged over 10 train/test splits for
each shift. Overall, the average accuracy gained over KNN was 3.27 for the single source
baseline [104] and 5.45 for our domain-supervised method. The average KNN classification
accuracy was 28.9, which means these absolute improvements correspond to an 11.3% and

CHAPTER 11. DISCOVERING LATENT DOMAINS 74

(a,d−w) (ar,wb−d)(ar,wb−w) (ar,w−w) (a,wb−w) (d,ar−a) (w,ar−a) (w,a−d) (wb,d−w) (w,wb−a) (w,wb−d)

0

5

10

15

Domains
(source) −> (target)

A
cc

ur
ac

y
D

iff
er

en
ce

fr
om

 K
N

N
 (

%
)

ARC−t: Single Transform
Ours: Supervised
Multisource

Figure 11.4: Classification Accuracy experiment on O�ce dataset with known domain labels.
The plot shows the average accuracy improvement of each method over a baseline KNN. Each
cluster of bars is the results for a di↵erent domain shift, where the domains are indicated on
the x-axis. For each of these cases the parameter, � was set to be the value that maximized
the single transform method baseline. The average accuracy gained over KNN across all
datasets was 3.27 for the single source baseline [104] and 5.45 for our multisource domain-
supervised method. For some datasets our method outperforms [104] significantly, achieving
up to a 18.9% relative improvement over KNN.

18.9% relative improvement over KNN for each method respectively.
We notice that shifts where the supervised method achieves the most gains (up to 48%

relative gain in accuracy) have higher separability of the source domains via clustering re-
ported below (in Figure 11.6.)

Clustering: We begin with an analysis of our clustering algorithm on all pairs of the
5 domains in the O�ce dataset, for which we know the ground truth source labels. Figure
11.6 plots the accuracy improvement over chance between the ground truth domain labels
and the cluster labels learned using our constrained clustering algorithm. The results are
averaged over 10 runs with di↵erent data splits for each run. As baselines, we implemented
standard, unconstrained, k-means, as well as, a hard HDP [106] with the same do-not-link
class based constraints presented in Section 11.5.

Our clustering method outperforms these baselines and in general has high accuracy when
compared with the ground truth domain labels. The one exception is when clustering the
pair (Amazon-rotflip, Amazon). In this case, the domains represented in our feature space
are very similar and so there is no adequate separation for the clustering algorithm to find.
The last bar in Figure 11.6 shows the mean clustering accuracy across all domain shifts and
shows the significant improvement of using our method to cluster into domains.

CHAPTER 11. DISCOVERING LATENT DOMAINS 75

(a,w) (a,d) (a,wB) (a,aR) (w,d) (w,wB) (w,aR) (d,wB) (d,aR) (wB,aR) Mean0.5

0.6

0.7

0.8

0.9

1

Domains

C
lu

st
er

in
g

Ac
cu

ra
cy

 (%
)

K−means
Constrained Hard HDP
Our Method

Figure 11.5: Clustering quality, measured in terms of accuracy of cluster labels. Each cluster
of bars represents a mixed pair of domains from the O�ce dataset, see text. The results are
averaged over multiple data splits. Our method significantly outperforms the baselines in 7
out of the 10 datasets.

Object Classification using Bing-Caltech256 : We show the results of running our
end-to-end algorithm on the Bing web search and Caltech256 dataset created by [16]. Here
we assume the Bing images contain sub-domains. We use the first 30 categories from each
of Bing and Caltech, and assume that all points in Bing have strict class labels (in real-
ity, the results of web search are only weakly labeled.) There are no domain labels for the
Bing source dataset so we present qualitative clustering results in Figures 11.6(a-c). The
clusters shown represent intuitive domain distinctions, justifying out method: 11.6a car-
toon/drawing/synthetic images with limited illumination, 11.6b product images with simple
backgrounds and some illumination, 11.6c natural or cluttered scenes.

After clustering, we train the transforms on the first 15 categories in the Caltech256
domain and use categories 16 to 30 for testing, again testing the prediction accuracy of
transformed data points into new object categories. We set S = 2 and use the SVM-based
domain classifier described in Section 11.4 for the mixture model.

Figure 11.6 plots the results of running our algorithm with 20 instances per category in the
source domain and 10 instances per category in the target domain. Ideally we would cross-
validate the learning parameter �, but due to lack of time we report results over varying � on
the test set. Our method obtains better results for a larger range of �. The best performance
obtained by the baseline is around 40% accuracy, while our method obtains 44% accuracy.
This shows the advantage of using our method instead of pooling the data to learn a single
transform, and that it is possible to learn domain clusters and to use them to e↵ectively
produce a better-adapted object classifier.

We presented a novel constrained clustering algorithm to distinguish unique domains from
a large heterogeneous domain. Additionally, we proposed a simple multisource extension to
the nonlinear transform-based ARC-t method of [151, 104]. Our algorithm provides the

CHAPTER 11. DISCOVERING LATENT DOMAINS 76

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.50.2

0.25

0.3

0.35

0.4

0.45

0.5
Bing Web Search � Caltech256

log(�)

O
bj

ec
t C

la
ss

ific
at

io
n

Ac
cu

ra
cy

KNN − no Domain Adaptation
ARC−t (Single Source)
Our Method: Multi−source with Latent Domains

(d) Classification Result

Figure 11.6: Results on the Bing-Caltech256 dataset. (a-c) show example images from clus-
tering the Bing dataset into three clusters. For each domain cluster the the three images
closest to the domain cluster mean are shown from the categories baseball bat, basketball
hoop, beer mug, bowling pin, and boxing glove are shown. The clusters represent intuitive
domain definitions: (a) cartoon/drawings/synthetic images with limited illumination, (b)
product images with simple backgrounds and some illumination, (c) natural or cluttered
scenes. (d) Shows average accuracy versus the log of the learning parameter �. Our un-
supervised multi-domain method outperforms the use of a single learned transform, which
falls below the KNN baseline as more weight is put on the constraints in the optimization
problem.

ability to separate heterogeneous source data and learn multiple transforms, which creates
a more accurate mapping of the source data onto the target domain than a single transform
map. Our experiments illustrate that the multiple transformations can be e↵ectively applied
to new object categories at test time.

Thus far our experiments have focused on the case of multiple domains in the source and
only one domain in the target. In future work, we plan to test our algorithm with multiple
target domains. This should be a direct extension by clustering the target domain using the
method described in Section 11.5.

77

Chapter 12

Multiple Source Domain Adaptation

12.1 Introduction

In many modern applications, often the learner has access to information about several source
domains, including accurate predictors possibly trained and made available by others, but no
direct information about a target domain for which one wishes to achieve a good performance.
The target domain can typically be viewed as a combination of the source domains, that is
a mixture of their joint distributions, or it may be close to such mixtures.

Such problems arise commonly in speech recognition where a di↵erent acoustic model
is available for di↵erent domains, groups of speakers in this case, and where the problem
consists of deriving an accurate acoustic model for a broader population that may be viewed
as a mixture of the source groups [118]. Similar problems appear broadly in visual recognition
where multiple image databases exist each with its own bias and labeled categories [175], but
the target application may contain some combination of image types and any category may
need to be recognized. For example, there are often multiple classifiers available, each trained
using di↵erent source product images and large manually curated datasets, i.e. ImageNet [35],
but the target domain may contain a di↵erent image population. Many have considered
the case of transferring between a single source and known target domain either through
unsupervised adaptation (no labels in the target) techniques [63, 124, 57, 177] or supervised
(some labels in the target) [151, 189, 83, 59]. These problems also arise in sentiment analysis
where accurate predictors may be available for sub-domains such as TVs, laptops and CD
players for which labeled training data was at the learner’s disposal, but not for the more
general category of electronics, which can be modeled as a mixture of the sub-domains [18,
43].

How can the learner combine relatively accurate predictors available for source domains
to derive an accurate predictor for a target domain? This is known as the multiple-source
adaption problem first formalized and analyzed theoretically by [127, 128]. Note that, in
the most general setting, even unlabeled information may not be available about the target
domain, though one can expect it to be a mixture of the source distributions. Thus, the

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 78

problem is also closely related to domain generalization [137, 133, 187], where knowledge
from an arbitrary number of related domains is combined to perform well on a previously
unseen domain.

The main objective of this work is to design an e�cient algorithm for combining multiple
source models to derive an accurate model for any target domain that is a mixture of the
source domains. Note that no algorithm was previously given by [127] for this problem.
The algorithmic problem was in fact left as a di�cult question since it required finding the
solution of a Brouwer fixed-point problem.

Here, we build on the previous work by [127] but extend it to develop a general theoretical
analysis of multiple-source adaptation for the stochastic scenario, that is the scenario where
there is a distribution over the joint feature and label space, X ⇥Y , as opposed to one where
a unique target labeling function is assumed. This generalization is needed to cover the
realistic cases in applications. In particular, we apply our analysis to the standard loss used
for training convolutional neural networks (CNNs), cross-entropy.

Our analysis shows, as in the special case analyzed by [127, 128], that there exists a
remarkable predictor that admits a small expected loss with respect to any mixture distri-
bution. We further extend this result to an arbitrary distribution with small Rényi divergence
with respect to the family of mixtures. We also extend it to the case where, instead of hav-
ing access to the ideal distributions, only estimate distributions are used for deriving that
hypothesis.

Next, we give a new formulation of the problem of finding that robust predictor. We
show that, in the important case of the cross-entropy loss, the problem can be cast as a DC-
programming problem and we present an e�cient and practical optimization solution for it.
We have fully implemented our algorithm and report the results of experiments with both
an artificial task and the standard visual adaptation benchmark for object classification, the
O�ce dataset. We find that our algorithm outperforms competing approaches by producing
a single robust model that performs well on any target mixture distribution.

12.2 Problem set-up

We consider a multiple-source domain adaptation problem in the general stochastic scenario
where there is no unique target function is assumed for any of the domains considered and
where instead there is a distribution over the joint input-output space.

Let X denote the input space and Y the output space. We will identify a domain with a
distribution over X ⇥Y and consider the scenario where the learner has access to a predictor
h

k

: X ⇥ Y ! [0, 1], for each domain D
k

, k = 1, . . . , p. The learner’s objective is to combine
these predictors to come up with an accurate predictor for a target domain that may be
mixture of the source domains, or close to such mixtures.

Much of our theory applies to an arbitrary loss function L : [0, 1] ! R
+

that is convex
and continuous. We will denote by L(D, h) the expected loss of a predictor h with respect

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 79

to the distribution D:

L(D, h) = E
(x,y)⇠D

L
�
h(x, y)

�

=
X

(x,y)2X⇥Y

D(x, y)L
�
h(x, y)

�
. (12.1)

But, we will be particularly interested in the case where L coincides with the log-loss, that
is L = � log. Indeed, in many applications, the predictor h

k

is obtained by training (often
a neural network) over a large sample drawn from a distribution D

k

using as loss function
the cross-entropy. The cross-entropy of D and a predictor h is the expected log-loss of h:

L(D, h) = � E
(x,y)⇠D

⇥
log h(x, y)

⇤

= �
X

(x,y)2X⇥Y

D(x, y) log h(x, y). (12.2)

Observe that L(D, h) � 0 for any D and h, and that h 7! L(D, h) is convex by convexity of
� log.

We will assume that each h
k

is a relatively accurate predictor for the distribution D
k

and
that there exists ✏ > 0 such that L(D

k

, h
k

) ✏ for all k 2 [1, p]. We will also assume that
the average loss of the source predictors under the uniform distribution U is bounded, that
is, there exists M � 0 such that

1

p

pX

k=1

L(U, h
k

) M.

This is a mild assumption that is satisfied in particular when there exists µ > 0 such that
h

k

(x, y) � µ for all k 2 [1, p] and (x, y) 2 X ⇥ Y .

12.3 Theoretical analysis

In this section, we present a theoretical analysis of the general multiple-source adaptation
setting (stochastic scenario) where there is a distribution over X⇥Y , as opposed to the special
case where a target function mapping from X to Y is assumed (deterministic scenario) [127].
This extension is needed for the analysis of the common learning set-up where the cross-
entropy loss is used and it is also more realistic for other problems.

We show that in that general setting, there exists a single weighted combination rule h⌘

z

that admits a small loss with respect to any target mixture distribution D
�

, that is any �
(Section 12.3). We further give guarantees for the loss of that hypothesis with respect to an
arbitrary distribution D

T

(Section 12.3). Next, we extend our guarantees to the case where
the source distributions D

k

are not directly accessible and where the weighted combination
rule is derived using estimates of the distributions D

k

(Section 12.3).

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 80

Mixture target distribution

Here we consider the case of a target distribution that is a mixture distribution D
�

=P
p

k=1

�
k

D
k

, for some � = (�
1

, . . . ,�
p

) in the simplex � = {� 2 Rp : 8k 2 [p],�
k

�
0,
P

p

k=1

�
k

= 1}. The mixture weight � 2 � defining D is not known to us. Thus, our
objective will be to find a hypothesis with small loss with respect to any mixture distribu-
tion D

�

, using a combination of trained domain-specific hypotheses h
k

s.
Following [127], we define the distribution-weighted combination of the models h

k

, k 2
[1, p] as follows. For any z 2 �, ⌘ > 0, and (x, y) 2 X ⇥ Y ,

h⌘

z

(x, y) =
pX

k=1

z
k

D
k

(x, y) + ⌘ U(x,y)

pP
p

j=1

z
j

D
j

(x, y) + ⌘U(x, y)
h

k

(x, y), (12.3)

where U is the uniform distribution over X ⇥ Y .
Observe that for any (x, y) 2 X ⇥ Y , h⌘

z

(x, y) is continuous in z since the denominator
in (12.3) is positive (⌘ > 0). By the continuity of L, this implies that, for any distribution
D, L(D, h⌘

z

) is continuous in z.
Our proof makes use of the following Fixed Point Theorem of Brouwer.

Theorem 3. For any compact and convex non-empty set C ⇢ Rp and any continuous
function f : C ! C, there is a point x 2 C such that f(x) = x.

Lemma 4. For any ⌘, ⌘0 > 0, there exists z 2 �, with z
k

6= 0 for all k 2 [1, p], such that the
following holds for the distribution weighted combining rule h⌘

z

:

8k 2 [p], L(D
k

, h⌘

z

)
pX

j=1

z
j

L(D
j

, h⌘

z

) + ⌘0. (12.4)

Proof. Consider the mapping � : � ! � defined for all z 2 � by

[�(z)]
k

=
z

k

L(D
k

, h⌘

z

) + ⌘

0

pP
p

j=1

z
j

L(D
j

, h⌘

z

) + ⌘0
.

� is continuous since L(D
k

, h⌘

z

) is a continuous function of z and since the denominator is
positive (⌘0 > 0). Thus, by Brouwer’s Fixed Point Theorem, there exists z 2 � such that
�(z) = z. For that z, we can write

z
k

=
z

k

L(D
k

, h⌘

z

) + ⌘

0

pP
p

j=1

z
j

L(D
j

, h⌘

z

) + ⌘0
,

for all k 2 [1, p]. Since ⌘0 is positive, we must have z
k

6= 0 for all k. Dividing both sides by
z

k

gives L(D
k

, h⌘

z

) =
P

p

j=1

z
j

L(D
j

, h⌘

z

) + ⌘0 � ⌘

0

pzk

P

p

j=1

z
j

L(D
j

, h⌘

z

) + ⌘0, which completes
the proof.

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 81

Theorem 5. For any � > 0, there exists ⌘ > 0 and z 2 �, such that L(D
�

, h⌘

z

) ✏+ � for
any mixture parameter � 2 �.

Proof. We first upper bound, for an arbitrary z 2 �, the expected loss of h
z

with respect to
the mixture distribution D

z

defined using the same z, that is L(D
z

, h⌘

z

) =
P

p

k=1

z
k

L(D
k

, h⌘

z

).
By definition of h⌘

z

and D
z

, we can write

L(D
z

, h⌘

z

)

=
X

(x,y)2X⇥Y

D
z

(x, y)L(h⌘

z

(x, y))

=
X

(x,y)

D
z

(x, y)L

pX

k=1

z
k

D
k

(x, y) + ⌘U(x,y)

p

D
z

(x, y) + ⌘U(x, y)
h

k

(x, y)

!
.

By convexity of � log, this implies that

L(D
z

, h⌘

z

)

X

(x,y)

D
z

(x, y)
pX

k=1

z
k

D
k

(x, y) + ⌘U(x,y)

p

D
z

(x, y) + ⌘U(x, y)
L
�
h

k

(x, y)
�
.

Next, since Dz(x,y)

Dz(x,y)+⌘U(x,y)

 1, the following holds:

L(D
z

, h⌘

z

)

X

(x,y)

⇣ pX

k=1

�
z

k

D
k

(x, y) + ⌘U(x,y)

p

�
L(h

k

(x, y))
⌘

=
pX

k=1

z
k

L(D
k

, h
k

) +
⌘

p

pX

k=1

L(U, h
k

)

pX

k=1

z
k

✏+ ⌘M = ✏+ ⌘M.

Now choose z 2 � as in the statement of Lemma 4. Then, the following holds for any
mixture distribution D

�

:

L(D
�

, h⌘

z

) =
pX

k=1

�
k

L(D
k

, h⌘

z

)

pX

k=1

�
k

(L(D
z

, h⌘

z

) + ⌘0)

= L(D
z

, h⌘

z

) + ⌘0 ✏+ ⌘M + ⌘0.

Setting ⌘ = �

2M

and ⌘0 = �

2

concludes the proof.

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 82

The theorem shows the existence of a mixture weight z 2 � and ⌘ > 0 with a remarkable
property: for any � > 0, regardless of which mixture weight � 2 � defining the target
distribution, the loss of h⌘

z

is at most ✏ + �, that is arbitrarily close to ✏. h⌘

z

is therefore a
robust hypothesis with favorable property for any mixture target distribution.

More precisely, by the proof of the theorem, for any z 2 � verifying (12.4), h⌘

z

admits
this property. We exploit this in the next section to devise an algorithm for finding such a
z 2 �.

Arbitrary target distribution

Here, we extend the results of the previous section to the case of an arbitrary target distri-
bution D

T

that may not be a mixture of the source distributions by extending the results of
[128].

We will assume that the loss of the source hypotheses h
k

is bounded, that is L(h
k

(x, y))
M for all (x, y) 2 X ⇥ Y . By convexity, this immediately implies that for any distribution
combination hypothesis h⌘

z

,

L(h⌘

z

(x, y))
pX

k=1

z
k

D
k

(x, y) + ⌘U(x,y)

p

D
z

(x, y) + ⌘U(x, y)
L
�
h

k

(x, y)
�

pX

k=1

z
k

D
k

(x, y) + ⌘U(x,y)

p

D
z

(x, y) + ⌘U(x, y)
M = M.

Our extension to an arbitrary target distribution D
T

is based on the divergence of D
T

from the family of all mixtures of the source distributions D
k

, k 2 [p]. Di↵erent divergence
measures could be used in this context. The one that naturally comes up in our analysis is
the Rényi Divergence [147]. The Rényi Divergence is parameterized by ↵ and denote by D

↵

.
The ↵-Rényi Divergence of two distributions D and D0 is defined by

D
↵

(D k D0) =
1

↵� 1
log
X

(x,y)2X⇥Y

D(x, y)

D(x, y)

D0(x, y)

�
↵�1

. (12.5)

It can be shown that the Rényi Divergence is always non-negative and that for any ↵ > 0,
D

↵

(D k D0) = 0 i↵ D = D0, (see [5]). The Rényi divergence coincides with the following
known measure for some specific values of ↵:

• ↵ = 1: D
1

(D k D0) coincides with the standard relative entropy or KL-divergence.

• ↵ = 2: D
2

(D k D0) = logE
(x,y)⇠D

⇥
D(x,y)

D0
(x,y)

⇤
is the logarithm of the expected probabilities

ratio.

• ↵ = +1: D1(D k D0) = log sup
(x,y)2X⇥Y

⇥
D(x,y)

D0
(x,y)

⇤
, which bounds the maximum ratio

between two probability distributions.

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 83

We will denote by d
↵

(D k D0) the exponential:

d(D k D0) = eD↵(DkD0
) =

2

4
X

(x,y)2X⇥Y

D↵(x, y)

D0↵�1(x, y)

3

5

1
↵�1

. (12.6)

Given a class of distributions D, we denote by D
↵

(D k D) the infimum infD02D D
↵

(D k D0).
We will concentrate on the case where D is the class of all mixture distributions over a set
of k source distributions, i.e., D = {D

�

: D
�

=
P

p

k=1

�
k

D
k

,� 2 �}.

Theorem 6. Let D
T

be an arbitrary target distribution. For any � > 0, there exists ⌘ > 0
and z 2 �, such that the following inequality holds for any ↵ > 1:

L(D
T

, h⌘

z

)
h
(✏+ �) d

↵

(D
T

k D)
i↵�1

↵
M

1
↵�1 .

Proof. For any hypothesis h : X ⇥Y ! [0, 1] and any distribution D, by Hölder’s inequality,
the following holds:

L(D
T

, h) =
X

(x,y)2X⇥Y

D
T

(x, y)L(h(x, y))

=
X

(x,y)2X⇥Y

"
D

T

(x, y)

D(x, y)
↵�1
↵

h
D(x, y)

↵�1
↵ L(h(x, y))

i

2

4
X

(x,y)

D
T

(x, y)↵

D(x, y)↵�1

3

5

1
↵
2

4
X

(x,y)

D(x, y)L(h(x, y))
↵

↵�1

3

5

↵�1
↵

.

Thus, by definition of d
↵

, for any h such that L(h(x, y)) M for all (x, y), we can write

L(D
T

, h)

 d
↵

(D
T

k D)
↵�1
↵

2

4
X

(x,y)

D(x, y)L(h(x, y))
↵

↵�1

3

5

↵�1
↵

= d
↵

(D
T

k D)
↵�1
↵

2

4
X

(x,y)

D(x, y)L(h(x, y))L(h(x, y))
1

↵�1

3

5

↵�1
↵

 d
↵

(D
T

k D)
↵�1
↵

2

4
X

(x,y)

D(x, y)L(h(x, y))M
1

↵�1

3

5

↵�1
↵

h
d

↵

(D
T

k D)L(D, h)
i↵�1

↵
M

1
↵�1 .

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 84

Now, by Theorem 5, there exists z 2 � and ⌘ > 0 such that L(D, h⌘

z

) ✏+� for any mixture
distribution D 2 D. Thus, in view of the previous inequality, we can write, for any D 2 D,

L(D
T

, h⌘

z

)
h
(✏+ �) d

↵

(D
T

k D)
i↵�1

↵
M

1
↵�1 .

Taking the infimum of the right-hand side over all D 2 D completes the proof.

Note that in the particular case whereD
T

is in D, we have d
↵

(D
T

k D) = 1. For ↵ ! +1
we then retrieve the result of Theorem 5.

Arbitrary target distribution and estimate distributions

We now further extend our analysis to the case where the distributions D
k

are not directly
available to the learner and where instead estimates bD

k

have been derived from data.
For k 2 [p], let bD

k

be an estimate of D
k

and define b✏ by

b✏ = max
k2[p]

h
✏ d

↵

(bD
k

k D
k

)
i↵�1

↵
M

1
↵�1 . (12.7)

Note that when for all k 2 [p], bD
k

is a good estimate of D
k

, then d
↵

(bD
k

k D
k

) is close to
one and, for ↵ ! +1, b✏ is very close to ✏. We will denote by bD the family of mixtures of
the estimates D

k

:

bD =

(
pX

k=1

�
k

bD
k

: k 2 �

)
. (12.8)

We will denote by bh⌘

z

distribution weighted combination hypotheses based on the estimate
distributions bD

k

:

bh⌘

z

(x, y) =
pX

k=1

z
k

bD
k

(x, y) + ⌘ U(x,y)

pP
p

j=1

z
j

bD
j

(x, y) + ⌘U(x, y)
h

k

(x, y), (12.9)

Theorem 7. Let D
T

be an arbitrary target distribution. Then, for any � > 0, there exists
⌘ > 0 and z 2 �, such that the following inequality holds for any ↵ > 1:

L(D
T

,bh⌘

z

)
h
(b✏+ �) d

↵

(D
T

k bD)
i↵�1

↵
M

1
↵�1 .

Proof. By the first part of the proof of Theorem 6, for any k 2 [p] and ↵ > 1, the following
inequality holds:

L(bD
k

, h
k

)
h
d

↵

(D
k

k bD
k

)L(D
k

, h
k

)
i↵�1

↵
M

1
↵�1

h
✏ d

↵

(D
k

k bD
k

)
i↵�1

↵
M

1
↵�1 b✏.

CHAPTER 12. MULTIPLE SOURCE DOMAIN ADAPTATION 85

We can now apply the result of Theorem 6 (with b✏ instead of ✏ and bD
k

instead of D
k

). In
view that, there exists ⌘ > 0 and z 2 � such that

L(D
T

, h⌘

z

)
h
(b✏+ �) d

↵

(D
T

k bD)
i↵�1

↵
M

1
↵�1 ,

for any distribution bD in the family bD. Taking the infimum over all bD in bD completes the
proof.

This is the most general form of our theoretical results. It shows that there exists a
predictor bh⌘

z

based on the estimate distributions bD
k

that is b✏-accurate with respect to any
target distribution D

T

whose Rényi divergence with respect to the family bD is not too large
(d

↵

(D
T

k bD) close to 1). Furthermore, b✏ is close to ✏, provided that D
k

s are good estimates
of D

k

s (d
↵

(bD
k

k D
k

) close to 1).

86

Chapter 13

Continuous Adaptation

13.1 Introduction

It has become increasingly clear that there is a significant bias between available labeled
visual training data and the data encountered in the real world [175, 99]. Unfortunately,
supervised classifiers trained on one distribution often fail when faced with a di↵erent dis-
tribution at test time. Domain adaptation techniques o↵er a way to transfer information
learned from source (training) data to the eventual target (test) domain, so as to diminish
the performance degradation and “learn from the past.” Supervised adaptation methods
assume a few labeled target examples are available [104, 44, 83]. However, obtaining these
is often expensive or impossible, so unsupervised adaptation is of particular importance [64,
63, 53].

In this paper, we address the problem of unsupervised adaptation to a continuously
evolving target distribution. Specifically, we assume that

1. ample labeled data is available in the source domain,
2. the target domain examples are unlabeled and arrive sequentially,
3. the target distribution evolves over time.

One scenario where this problem occurs is object or scene classification in video streams.
For example, classifying scene types in a video feed from a tra�c camera is challenging. The
appearance of the same scene type (class) in the target domain is constantly changing due
to sunlight/shadows, time of day, sensor change to IR at nighttime, and unexpected weather
patterns. Another example is classifying objects or scenes as their appearance evolves over
time. These two problems are illustrated in Figure 13.1. Also, while we focus on visual
tasks in this paper, the problem also occurs in spam filtering, where spammers constantly
change their tactics to deceive email users, and sentiment analysis in social media. Current
unsupervised domain adaptation methods cannot naturally handle such problems. They
assume that the target distribution is stationary, and that a large amount of unlabeled data
is available in batch for modeling this fixed target distribution.

CHAPTER 13. CONTINUOUS ADAPTATION 87

Day 1
9:00

Day 1
15:00

Day 1
21:00

Day 2
3:00

Day 2
9:00

Labeled Unlabeled

1950 1960 1970 1980 1990

+
-

Figure 13.1: Problem setup: We want to classify test data drawn from an evolving distri-
bution (target domain), using labeled data from a distribution collected in the past (source
domain). We show two example scenarios. ABOVE: classifying tra�c scenes streaming from
a tra�c camera as busy (blue border) or empty (red border). BELOW: classifying sedans
(blue border) vs trucks (red border) across many decades as the design and shapes of the
two evolve.

We stress that traditional online learning methods are not suitable for our problem.
Online learning methods for classification use sequentially arriving data, but require that
data to be labeled. In contrast, online distribution learning can be used for estimating an
evolving domain [114, 150] , but provides no means for adapting a classifier between domains
which makes it insu�cient for our task. We found that learning an evolving distribution
without adaptation had worse performance than classifying in the original feature space.
Finally, online adaptation methods do learn from streaming observations without labels [42,
61], but expect to learn a single, stationary target distribution.

We propose a novel adaptation method which models continuously changing domain
distributions by forming incremental, sample-dependent adaptive kernels. Our approach
is inspired by recent methods that learn a transformation in feature space to minimize
domain-induced dissimilarity [151, 104, 44, 83]. In unsupervised adaptation, this can be
accomplished by projecting all source and target data points to their respective lower di-

CHAPTER 13. CONTINUOUS ADAPTATION 88

mensional subspaces, and then minimizing the distance between the subspaces to compute
a domain-invariant kernel [64, 63, 53].

However, a major limitation of these methods is that all target points are assumed to
belong to a single target domain, or split into several domains with known boundaries. To
apply them in our scenario, we must discretize the evolving target domain into a set of fixed
domains. For the tra�c camera example in Figure 13.1, this would treat all of the changes
within a certain time window as a single target domain. This is problematic, as it may apply
the same adaptation to, say, sunny conditions, snow storm, and night time images. A second
major limitation with these methods is that data is expected in batch.

We argue that it is more natural to model the domain shift in a continuously adaptive
fashion. Our technique works by learning the optimal lower dimension subspace for a specific
test sample, rather than embedding it in a single monolithic subspace encompassing all of
the unlabeled target data. A key advantage of our method is that there is no need to segment
the test samples into a discrete set of domains, either manually or automatically, and thus
no need to model the number or size of such domains. Another important advantage of our
approach is the ability to more precisely adapt to each test example in an online fashion. This
is helpful in situations when test samples are not available in batch but arrive sequentially.
While we present an unsupervised approach, the ideas can be applied to supervised scenarios
as well.

13.2 Related Work

Domain adaptation has been extensively studied in speech recognition, natural language
processing and machine learning. More recently, domain adaptation techniques have been
applied to visual datasets. Several supervised parameter-based adaptation methods have
been proposed to learn a target classifier with a small amount of labeled training data, by
regularizing the learning of a new parameter against an already learned source classifier
[188, 7]. Other supervised methods learn feature transformations between source and target
distributions, so classifiers may be trained directly in the source and applied to transformed
target points, or trained on transformed source and transformed target data jointly [151,
104]. Some methods seek to benefit from both the discriminative power of parameter-based
approaches and the flexibility of the feature-transformation approaches through unified op-
timization frameworks [44, 83].

A recent class of unsupervised domain adaptation techniques attempts to align the un-
labeled target data with the source using manifold learning. Domains are represented as
subspaces embedded in a Grassman manifold, and adaptation is carried out through geodesic
flow computations on this manifold [64, 63, 53]. However, none of these methods has con-
sidered our setting of non-discrete, continuously evolving domains. They also require all
unlabeled target data to be available in batch and are not designed for online adaptation.
[82] argued that datasets are composed of multiple hidden domains, which they estimate via

CHAPTER 13. CONTINUOUS ADAPTATION 89

constrained clustering, however, the number of domains is discrete and no online solution is
proposed.

Supervised online learning allows a classifier to be trained with sequentially arriving data.
At each round the learner receives a data point, and predicts its label. The correct answer
is then revealed and the learner su↵ers a loss [153]. Such methods can be used to “adapt”
to the incoming data stream by controlling the learning rate. In our setting, however, labels
exist only in the source domain, and supervised online learning cannot be carried out.

In vision, a classic online adaptive approach is background subtraction (see [12] for a re-
view), where the distribution of pixels belonging to the background is continuously updated.
However, in classification, we are interested in categorizing the entire scene (or object), not
distinguishing between foreground and background (although we can do that as a prepro-
cessing step). In detection, a method for online adaptation was proposed that bootstraps
o✏ine classifiers to obtain new labels and uses them to continually update car detectors in a
tra�c scene [98, 89]. However detection fails on our tra�c camera task due to the extremely
low resolution of individual objects.

The natural language processing and speech recognition communities have developed al-
gorithms to tackle the task of online adaptation. In speech recognition, the recognition of a
new speaker’s speech can and should be adapted and improved over time. Online incremen-
tal unsupervised fMLLR [61] dynamically collects acoustic statistics from the speaker and
updates the acoustic models. [42] combines parameters of multiple classifiers to do online
adaptation of spam classifiers for individual users, as well as sentiment prediction for books,
movies and appliances. However, the domain change due to a new speaker or a new email
user is discrete. While examples may arrive sequentially, they all arise from the same distri-
bution (the same speaker, or the same user). On the other hand, our approach “tracks” the
evolving distribution, and in that way it is somewhat akin to distribution tracking methods
common in the signal processing literature, e.g., Kalman filtering [96], [117].

13.3 Continuous Adaptation Approach

Background: Unsupervised Adaptation Using the Data Manifold

We build on a class of methods recently proposed for unsupervised adaptation [64, 63, 53],
which are based on modeling the data manifold. Their key insight is that visual data have
an inherent low dimensional structure, and can thus be embedded in lower dimensional sub-
spaces. Furthermore, these subspaces lie on a Grassman manifold of the same dimension. By
exploiting the properties of the manifold, such as smoothness, we can find a novel embedding
that compensates for the di↵erences between domains.

Suppose we have a set of labeled examples drawn from a source domain, x
1

, . . . ,x
nX 2

RD, with labels y
1

, . . . , y
nX . At test time, we receive unlabeled examples drawn from the

target domain, v
1

, . . . ,v
nV 2 RD, which are distributed di↵erently from the source examples.

CHAPTER 13. CONTINUOUS ADAPTATION 90

G(d,D)U P
W

1950 1960 1970 1980 1990

Figure 13.2: Conventional adaptation techniques separate samples into a discrete set of
domains, seen here as points on a domain manifold (a single source domain S and target
domain T).

For now we assume that the target examples come from a single, stationary distribution; we
will relax this assumption shortly.

To account for discrepancies between the training (source) and test (target) distributions,
we seek to learn a linear transformation W that maps source points in a way that makes their
distribution more similar to that of the target points. Such a transformation can then be
applied to compute a kernel xT

Wv, which can be used in any inner-product based classifier.
An alternative is to factor the transformation into two transformations W = ABT , where
A and B embed source and target points, respectively, in a new subspace.

To find W , we assume the source and target domains lie on lower dimensional orthonor-
mal subspaces, U ,P 2 RD⇥d, which are points on the Grassman manifold, G(d,D) (See
Fig. 13.2), where d ⌧ D. Several techniques exist for finding such low dimensional embed-
dings, including Principal Component Analysis. We then reformulate our goal as finding
embeddings Ã and B̃ that map the low dimensional subspaces in such a way as to make
them better aligned. This objective can be formalized as minimizing the distance between
the two projected subspaces, U Ã and P B̃.

min
˜

A,

˜

B

 (U Ã,P B̃) (13.1)

One recent approach, called the Subspace Alignment (SA) method [53], solves the un-
constrained optimization problem in Equation (13.1) directly, setting the subspace distance
metric to be the Frobenius norm di↵erence: (U Ã,P B̃) = kU Ã � P B̃k2

F

. Since both U

and P are orthonormal matrices, the global minimizer for this subspace distance metric is
reached when Ã = U

T

P and B̃ = I. This leads to the following transformation between
points in the original spaces: W

SA

= UU

T

PP

T .
Another recent method that seeks to find embeddings for the source and target points,

so as to minimize the distance between their distributions, is the Geodesic Flow Kernel

CHAPTER 13. CONTINUOUS ADAPTATION 91

1950 1960 1970 1980 1990

G(d,D)

W t

t

U Pt

Figure 13.3: Our approach (CMA) treats each target sample as arising from a di↵erent
point (ex: indexed by time) along the continuous domain manifold, resulting in more precise
adaptation.

(GFK) [63]. This method learns a symmetric embedding (A = B) by computing the geodesic
flow along the manifold, �(·). The flow is constructed in such a way that it starts at the source
subspace at time 0, U = �(0), then reaches the target subspace in unit time: P = �(1).
The intuition is to project all source and target points into all intermediate subspaces along
the flow between the source and target subspace. The final transformation is then computed
by integrating over the infinite set of all such intermediate subspaces between the source and
target W

GFK

=
R

1

0

�(`)�(`)Td`, which has a closed form solution presented in [146, 63].

Adapting to Continuously Evolving Domains

We seek to adapt to and classify streaming target data that is drawn from a continuously
evolving distribution. The drawback of the above methods is that they require discrete known
domains, where the data from each domain is available in batch (see Figure 13.2). To adapt
to each instance the above methods would need to artificially discretize the target by using
a fixed windowed history and would still fail to adapt until enough data had arrived to begin
learning subspaces. This is not what the method was originally designed for, would be very
computationally expensive and would require cross-validating or tuning a hyper-parameter
to choose the appropriate window size. Next, we present our approach, Continuous Manifold
Adaptation (CMA), which does not require knowledge of discrete domains (see Figure 13.3).

Suppose that at test time, we receive a stream of observations v
1

, . . . ,v
nT

2 RD, which
arrive one at a time, and are drawn from a continuously changing domain.1 We assume
the distribution of possible points arriving at t can be represented by a lower dimensional
subspace P

t

.

1Our formulation can also be extended to the case of streaming source observations.

CHAPTER 13. CONTINUOUS ADAPTATION 92

To align the training and test data, we seek to learn a time-varying transformation,
W

t

, between source and target points, where t indexes the order in which the examples
are received. As presented in Section 13.3, this transformation can equivalently be writ-
ten as learning two time-varying embeddings that map between points of the two lower
dimensional subspaces, Ã

t

and B̃
t

, with the mapping in the original space being defined as
W

t

= ÃT

U

T

P

t

B̃
t

. This computes a time varying kernel between the source data and the
evolving target data xT

W

t

v
t

which can be used with any inner product based classifier.
Since we no longer have a fixed target distribution with all examples delivered in batch, we

must simultaneously learn the lower dimensional subspace, P

t

, representing the distribution
from which the data was drawn at each time t. We will search for a subspace that minimizes
the re-projection error of the data:

R
err

(v
t

,P
t

) = kv
t

� P

t

(P T

t

v
t

)k2

F

(13.2)

In general, we may receive as few as one data point at each time step so we will regularize
our subspace learning by a smoothness assumption that the target subspace does not change
quickly.2

Therefore, at each time step, our goals can be summarized by optimizing the following
problem:

min
P

T
t Pt=I,

˜

At, ˜

Bt

r(P
t�1

,P
t

) +R
err

(v
t

,P
t

) + (U Ã
t

,P
t

B̃
t

) (13.3)

where r(·) is a regularizer that encourages the new subspace learned at time t to be close to
the previous subspace of time t � 1.

Equation (13.3) is a non-convex problem and we choose to solve it by alternating between
the three steps below:

1. Receive data v
t

2. Given Ã
t�1

and B̃
t�1

compute P

t

3. Given P

t

compute Ã
t

and B̃
t

To optimize step 2, we begin by fixing Ã
t�1

and B̃
t�1

and then we examine the third
term of the optimization function. Note that it would be minimized if P

t

= P

t�1

. Therefore,
with a fixed Ã

t�1

B̃
t�1

, the term (U Ã
t�1

,P
t

B̃
t�1

) is acting as a regularizer that penalizes
when P

t

deviates from P

t�1

. We therefore can equivalently solve this problem by grouping
the first and third term into a single regularizer of P

t

that enforces a smoothness between
the subsequent learned subspaces. Finally, we can express this subproblem as follows:

min
Pt

r(P
t�1

,P
t

) +R
err

(v
t

,P
t

) (13.4)

s.t P

T

t

P

t

= I

2Our model can be extended to allow for discontinuities, but we leave this as future work.

CHAPTER 13. CONTINUOUS ADAPTATION 93

We first observe that solving Equation (13.4) for the trivial regularizer r(·, ·) = constant
would result in P

t

which is equal to the d largest singular vectors of the data v
t

, which
can be obtained via SVD. Obviously, we prefer to use a non-trivial regularizer, as we don’t
have enough data at time t to compute a robust SVD, and also want to make sure that the
subspaces vary smoothly over time. Thus we solve this optimization problem with a variant
of sequential Karhunen-Loeve [114], which adapts a subspace incrementally and trades-o↵
changing the subspace with minimizing re-projection error of v. For optimization details see
[150].

When optimizing step 3, we note that the first two terms of the objective function are
not active for this sub-problem, and we are left with the task of minimizing Equation (13.1).

This is just the task of aligning two known subspaces. We experiment with solving this
optimization using either of the two methods described in Section 13.3.

13.4 Experiments and Results

We present performance on both a scene classification experiment and an object classifica-
tion experiment. For both experiments we compare our Continuous Manifold Adaptation
(CMA) approach using two di↵erent unsupervised adaptation techniques (Geodesic flow ker-
nel (GFK)[63] and Subspace Alignment method (SA)[53]) for solving Step 3 in our algorithm
and two di↵erent inner product based classifiers: k-nearest neighbors (KNN with k = 1) and
support vector machines (SVM) – trained with source data only. We demonstrate perfor-
mance increase using our CMA method across a variety of feature spaces for these tasks.
The unsupervised adaptation methods can not be directly applied to our problem with
the streaming test domain. However, for completeness we tried learning subspaces from
a fixed windowed history and then used the unsupervised adaptation approaches. We ran
experiments evaluating the performance of various window sizes (including using all history
available, which is computationally infeasible in practice), but were unable to find a result
that was competitive with our method.

Scene Classification Over Time

Dataset Our first experiment evaluates our algorithm on scene classification over time
using a real-world surveillance dataset. The images were captured from a fixed tra�c camera
observing an intersection. Frames were updated at 3 minute intervals each with a resolution
of 320x2403. Our dataset includes images captured over a 2 week period. This data o↵ers a
challenging domain shift problem as changes include illumination, shadows, fog, snow, light
saturation from oncoming sedans, change to night time IR mode, etc.

Experiment Setup We define an intersection tra�c classification task, which is to deter-
mine whether one or more cars are present in, or approaching, the intersection. We obtain

3Available at the California Department of Transportation website, http://quickmap.dot.ca.gov/

CHAPTER 13. CONTINUOUS ADAPTATION 94

Figure 13.4: Sample human labeled images used for intersection tra�c classification. Positive
examples are shown in the top row (blue) and negative examples are shown in the bottom
row (red).

labels for this task using human annotators (for example labels see Figure 13.4). We assume
to be given 50 labeled consecutive images (2.5 hours) and then evaluate each algorithm on
the immediately following 24 hours (480 images) and 5 days (2400 images). We evaluate
the classifiers in the online setting, where classification must occur just after receiving a test
point and may only be informed by previously received test data with no knowledge of future
test data.

This task is challenging and cannot be adequately solved with approaches such as scanning-
window car detection, as the images (and especially the cars within) are too low-resolution
to be detected by conventional methods. A deformable parts model (DPM) detector [52]
failed to detect any sedans in the first 50 images. Instead we compute features over the
whole image and produce a scene label.

We consider two features that are known to perform well on scene classification tasks:
GIST [157] (512 dimension) and SIFT-SPM [110] using a 200 dimension codebook and
3 pyramid layers (4200 dimension). Finally, since the images are all of a fixed scene we
use a standard mixture of gaussians background subtraction algorithm [168] to extract a
foreground mask and compute the same GIST and SIFT-SPM on the foreground. We found
that sequential images were far too noisy to provide useful foreground masks; we present all

CHAPTER 13. CONTINUOUS ADAPTATION 95

Adaptation Method Classifier GIST[157] SIFT-SPM[110] GIST[157] + BSub[168] SIFT-SPM[110]+BSub[168]

- KNN 76.30± 3.0 47.51±5.1 52.27±3.4 39.91±3.0

- SVM 74.42± 3.0 68.69±3.6 50.98±3.6 48.91±3.0

CMA+GFK KNN 78.07±1.8 49.84±5.5 52.97±2.7 39.08±2.6

CMA+GFK SVM 78.38± 3.1 74.98±2.7 59.55±2.9 47.59±2.8

CMA+SA KNN 78.71±1.7 54.08±6.2 51.33±4.2 38.21±2.6

CMA+SA SVM 78.49±3.1 75.66±2.9 59.68±2.9 49.05±2.8

Table 13.1: Our method, CMA, improves performance independent of the feature choice for
the scene classification task. Results here are shown with optimizing the unsupervised adap-
tation problem using either the geodesic flow kernel (GFK)[63] or the subspace alignment
(SA) method [53]. Average precision (%) is recorded when training with 50 labeled images
and testing on the immediately following 24 hours (480 images).

Adaptation Classifier GIST[157]

- KNN 71.24±5.7

- SVM 80.40±0.6

CMA+GFK KNN 77.21± 3.8

CMA+GFK SVM 84.17±1.5

CMA+SA KNN 78.61±3.3

CMA+SA SVM 84.32±1.4

Table 13.2: Our method, CMA, continues to provide improvement for the scene classification
task even when testing over the 5 days following the labeled training data. We show here
average precision (%) for the 2400 test images following the 50 available labeled training
images.

results here for completeness.

Results & Analysis Table 13.1 presents the average precision (%) when testing on the 24
hours immediately following the labeled data. CMA is shown to provide improvement over
no-adaptation regardless of feature choice. The strongest algorithm and feature combination
for this setup was to use CMA with GIST features and either type of subspace alignment
algorithm and either classifier.

We next demonstrate that the algorithm does not diverge and in fact continues to provide
improvement by testing over the a 5 day period (see Table 13.2). Here we show results using
the GIST feature with each type of classifier and adaptation optimization algorithm. We
found that SVM generalized better over time.

To understand the performance of the adaptive method, we examine qualitative classifi-

CHAPTER 13. CONTINUOUS ADAPTATION 96

Figure 13.5: Qualitative results from the intersection tra�c classification task. Training
on day-time images with no snow only. Images labeled correctly by our method (CMA)
and incorrectly labeled by all other methods. We show here the 6 examples for which the
baseline had highest (incorrect) confidence, indicating that these examples were particularly
challenging for the baseline and then fixed with our method. We improve in the cases of
nighttime, snow, and fog, not seen during training.

cation examples. Figure 13.5 shows images that were misclassified by all algorithms except
our CMA approach. The sedans parked in the parking lot on the left side of the image
as well as the protrusion from the snow mound between the road and turn-out were likely
confusions for the non-adaptive baselines. Figure 13.6 shows images incorrectly classified by
all algorithms. Here are negative examples that may have sedans present, but too far away
to be considered tra�c at the intersection by our task definition.

For reference, if one had access to all of the test data in batch one could directly apply
an adaptation methods or even pre-cluster the test data and learn multiple transformations.
The performance for batch test data using GIST features with SA and SVM is 76.44 AP for
the single cluster case and 77.57 AP for the multiple cluster case. These are both for the 1
day test set. We see here that actually our algorithm is performing even better than using
the algorithms in batch with pre-clustering of the data.

CHAPTER 13. CONTINUOUS ADAPTATION 97

Figure 13.6: Qualitative results from the intersection tra�c classification task. Example
images where all methods classified incorrectly – snow, sedans too far away, and bright
lights in the distance make these images di�cult.

Object Classification Over Time

Dataset Next, we evaluate on the task of distinguishing sedans and trucks over time. We
collected a new automobile dataset that contains images of automobiles manufactured be-
tween the years of 1950-2000. The data was acquired from a freely available online database4

that has object centric images of automobiles, each user labeled with a manufactured year
and a model label. This database was recently proposed for detecting connections in space
and time [112]. The images vary in size but are usually around 400x600. We collected 30-40
images (depending on availability) from each year of the images that were tagged as either
a sedan or a truck. We directly used those tag labels as our ground truth for the car and
truck classes. See Figure 13.1 (bottom row) for example images.

Experiment Setup Our task is to classify each test image as either a car or a truck. We
use the first 5 years of data (1950-1954) as our labeled source examples. We then consider
receiving all subsequent test data sequentially in time. As in the previous experiment we
use both GIST [157] (512 dimension) and SIFT-SPM [110] using a 200 dimension codebook
and 3 pyramid layers (4200 dimension) representations for this data. Additionally, as this
is an object classification task, we also experiment with a recently proposed feature based

4
http://www.cardatabase.net

CHAPTER 13. CONTINUOUS ADAPTATION 98

Adaptation Classifier SIFT-SPM [110] GIST [157] DeCAF [40]

- KNN 66.31± 0.6 72.77± 0.8 84.60± 0.7

- SVM 79.26± 0.6 76.40± 0.7 85.92± 0.4

CMA+GFK KNN 66.32± 0.2 72.60± 0.9 82.65± 0.5

CMA+GFK SVM 80.24± 0.7 78.32± 0.6 89.68± 0.1

CMA+SA KNN 65.06± 1.1 71.44± 1.3 81.97± 0.6

CMA+SA SVM 79.79± 0.6 78.31± 0.7 89.71± 0.1

Table 13.3: Our algorithm improves performance on category recognition task. We evaluate
our continuous manifold adaptation approach (CMA) on the task of labeling images of
automobiles as either cars or trucks. We show results using two solutions to the unsupervised
adaptation problem (GFK[63] and SA[53]) and two inner product based source classifiers
(KNN and SVM). We compare across three types of features and demonstrate the benefit
of using our algorithm for each feature choice, including a deep learning based feature that
was tuned for object classification on all of ImageNet[40].

on vectorizing a layer of a deep learning architecture trained on all of ImageNet, called
DeCAF [40].5

Results & Analysis We present classification accuracy results on the automobile dataset
in Table 13.3. All results represent an average across 10 random train/test splits. Our
algorithm, CMA, provides a significant accuracy improvement over the non-adaptive base-
lines for the GIST and DeCAF features. The best overall results, with 90% accuracy, were
achieved using the DeCAF features and our CMA approach followed by an SVM classifier.

To get a sense for which examples CMA provides improvement, we looked at the set of
images that were incorrectly classified by a non-adaptive source SVM and then were correctly
classified by CMA. We then displayed the 5 car and 5 truck examples for which the SVM has
the highest (incorrect) confidence – indicating these were di�cult examples (see Figure 13.7).
In particular, they include sedans on top of trucks and trucks with ramps o↵ the back.

There were also examples for which all methods misclassified the results (see Figure 13.8).
All algorithms were consistently confused by vans and pickup trucks with covered beds,
labeling them as sedans (though it’s debatable which category the vans should fall into
anyway). Additionally, sedans with distinctive front grates or high profiles sedans were
sometimes confused with trucks. There were in general more mislabeled trucks than sedans.

5For our experiments we use the vectorized output of layer 6 of the network.

CHAPTER 13. CONTINUOUS ADAPTATION 99

Figure 13.7: Our method clearly adapts to vehicle appearance as it evolves to look di↵erent
from that in the labeled 50’s training data. We show example images misclassified by non-
adaptive SVM (DeCAF features) and correctly classified by CMA followed by the same SVM
classifier. The 5 sedans and 5 trucks for which the SVM had the highest confidence (though
incorrect) are displayed here.

13.5 Conclusion

We have presented a novel problem statement of performing a visual classification task under
dynamic distribution shift. Our solution method dynamically learns data specific subspaces
through time in order to compute an adaptive transformation at each time step. We exper-
imentally validate that our algorithm outperforms non-adaptive baselines, independent of
feature representation, and across two real world visual adaptation tasks where the target is
dynamically distributed over time.

We focused on the unsupervised learning task because of its practical importance, but in
the future we would like to examine the performance benefit of adding a few labeled target
examples in an active learning framework. We suspect that especially in the setting where
there are sudden dramatic shifts in the data, the discrepancy is perceptible by the algorithm
and some supervision could focus the subspace learning and boost performance.

CHAPTER 13. CONTINUOUS ADAPTATION 100

Figure 13.8: Example images misclassified by all methods (sedans top and trucks bottom).
Vans and trucks with covered beds were consistently labeled as sedans by all algorithms. Ad-
ditionally, sedans with distinctive front grates and/or high profiles were sometimes confused
with trucks.

101

Part V

Adapting Across Tasks

102

Chapter 14

Introduction and Background

14.1 Problem Setup

It is well known that contemporary visual models thrive on large amounts of training data,
especially those that directly include labels for the desired tasks. Many real world set-
tings contain labels with varying specificity, e.g., “strong” bounding box detection labels,
and “weak” labels indicating presence somewhere in the image. We tackle the problem of
joint detector and representation learning, and develop models which cooperatively exploit
heterogeneous sources of training data, where some classes have no “strong” annotations.
Our model optimizes a latent variable multiple instance learning model over image regions
while simultaneously transferring a shared representation from detection-domain models to
classification-domain models. The latter provides a key source of automatic and accurate
initialization for latent variable optimization, which has heretofore been unavailable in such
methods.

Both classification and detection are key visual recognition challenges, though historically
very di↵erent architectures have been deployed for each. Recently, the R-CNN model [59]
showed how to adapt an ImageNet classifier into a detector, but required bounding box data
for all categories. We ask, is there something generic in the transformation from classification
to detection that can be learned on a subset of categories and then transferred to other
classifiers?

One of the fundamental challenges in training object detection systems is the need to
collect a large of amount of images with bounding box annotations. The introduction of
detection challenge datasets, such as PASCAL VOC [49], has propelled progress by providing
the research community a dataset with enough fully annotated images to train competitive
models although only for 20 classes. Even though the more recent ILSVRC13 detection
dataset [35] has extended the set of annotated images, it only contains data for 200 categories.
The larger ImageNet dataset contains some localization information for around 3000 object
categories, though these are not exhaustively labeled. As we look forward towards the goal
of scaling our systems to human-level category detection, it becomes impractical to collect

CHAPTER 14. INTRODUCTION AND BACKGROUND 103

person'

bike'

?"

person'

bike'

person'

bike'

?"?"

Ca
te

go
rie

s w
ith

 W
ea

k
an

d
St

ro
ng

 L
ab

el
s

Ca
te

go
rie

s w
ith

on

ly
 W

ea
k

la
be

ls

dog dog

person bike

Category invariant
representation adaptation

Category specific
representation and
model adaptation

Object-centric images
(trains classifiers)

Objects in scenes
(trains classification+localization)

Figure 14.1: We learn detectors (models which classify and localize) for categories with only
weak labels (bottom row). We use auxiliary categories with available paired strong and weak
annotations (top row) to learn to adapt a visual representation from whole image classifica-
tion to localized region detection. We then use the adapted representation to transform the
classifiers trained for the categories with only weak labels and jointly solve an MIL problem
to mine localized training data from the weakly labeled scene-centric training data (green –
bottom right).

a large quantity of bounding box labels for tens or hundreds of thousands of categories.
In contrast, image-level annotation is comparatively easy to acquire. The prevalence

of image tags allows search engines to quickly produce a set of images that have some
correspondence to any particular category. ImageNet [15], for example, has made use of these
search results in combination with manual outlier detection to produce a large classification
dataset comprised of over 20,000 categories. While this data can be e↵ectively used to train
object classifier models, it lacks the supervised annotations needed to train state-of-the-art
detectors.

Previous methods employ varying combinations of weak and strong labels of the same
object category to learn a detector. Such methods seldom exploit available strong-labeled
data of di↵erent, auxiliary categories, despite the fact that such data is very often available
in many practical scenarios. [36] uses auxiliary data to learn generic objectness information
just as an initial step, but doesn’t optimize jointly for weakly labeled data.

We introduce a new model for large-scale learning of detectors that can jointly exploit
weak and strong labels, perform inference over latent regions in weakly labeled training
examples, and can transfer representations learned from related tasks (see Figure 14.1).
In practical settings, such as learning visual detector models for all available ImageNet
categories, or for learning detector versions of other defined categories such as Sentibank’s

CHAPTER 14. INTRODUCTION AND BACKGROUND 104

adjective-noun-phrase models [21], our model makes greater use of available data and labels
than previous approaches. Our method takes advantage of such data by using the auxiliary
strong labels to improve the feature representation for detection tasks, and uses the improved
representation to learn a stronger detector from weak labels in a deep architecture.

We cast the task as a domain adaptation problem, considering the data used to train
classifiers (images with category labels) as our source domain, and the data used to train
detectors (images with bounding boxes and category labels) as our target domain. We then
seek to find a general transformation from the source domain to the target domain, that
can be applied to any image classifier to adapt it into a object detector (see Figure 14.1).
R-CNN [59] demonstrated that adaptation, in the form of fine-tuning, is very important for
transferring deep features from classification to detection and partially inspired our approach.
However, the R-CNN algorithm uses classification data only to pre-train a deep network and
then requires a large number of bounding boxes to train each detection category.

To learn detectors, we exploit weakly labeled data for a concept, including both object-
centric images (e.g., from ImageNet classification training data), and weakly labeled scene-
centric imagery (e.g., from PASCAL or ImageNet detection training data with bounding
box metadata removed). We define a novel multiple instance learning (MIL) framework that
includes bags defined on both types of data, and also jointly optimizes an underlying percep-
tual representation using strong detection labels from related categories. We demonstrate
that a good perceptual representation for detection tasks can be learned from a set of paired
weak and strong labeled examples and the resulting adaptation can be transferred to new
categories, even those for which no strong labels were available.

We additionally show that our large-scale detection models can be directly converted
into models which produce pixel-level localization for each category. Following the recent
result of [123], we run our models fully-convolutionally and directly use the learned detection
weights to predict per-pixel labels.

We evaluate our detection model empirically on the largest set of available ground-truth
visual data labeled with bounding box annotations, the ILSVRC13 detection dataset. Our
method outperforms the previous best MIL-based approaches for weakly labeled detector
learning [183] on ILSVRC13 [35] by 200%. Our model is directly applicable to learning
improved “detectors in the wild”, including categories in ImageNet but not in the ILSVRC13
detection dataset, or categories defined ad-hoc for a particular user or task with just a few
training examples to fine-tune a new classification model. Such models can be promoted to
detectors with no (or few) labeled bounding boxes.

14.2 Related Work

Since its inception, the multiple instance learning (MIL) problem [38], or learning from a
set of labels that specify at least one instance in a bag of instances, has been attempted in
several frameworks, including Noisy-OR and boosting [2, 195]. However, most commonly, it

CHAPTER 14. INTRODUCTION AND BACKGROUND 105

has been framed as a max-margin classification problem [3], with latent parameters optimized
using alternating optimization [52, 191].

Recently, MIL has also been used in computer vision to train detectors using weak labels,
i.e. images with category labels but without bounding box labels. The MIL paradigm
estimates latent labels of examples in positive training bags, where each positive bag is
known to contain at least one positive example. For example, [56] and [2] construct positive
bags from all object proposal regions in a weakly labeled image that is known to contain
the object and use a version of MIL to learn an object detector. Overall, MIL is tackled
in two stages: first, finding a good initialization, and second, using good heuristics for
optimization. A number of methods have been proposed for initialization which include
using a large image region excluding boundary [139], using a candidate set which covers
the training data space [163, 164], using unsupervised patch discovery [162, 160], learning
generic objectness knowledge from auxiliary categories [1, 36], learning latent categories
from background to suppress it [183], or using class-specific similarity [161]. Approaches
to better optimize the non-convex problem involve using multi-fold learning as a measure
of regularizing overfitting [28], optimizing Latent SVM for the area under the ROC curve
(AUC) [17], and training with easy examples initially to avoid bad local optima [14, 107,
66].

While these approaches are promising, they often underperform on the full detection
task in more challenging settings such as the PASCAL VOC dataset [49], where objects
only cover small portions of images, and many candidate bounding boxes contain no objects
whatsoever. The major challenges faced by solutions to the MIL problem are the limitations
of fixed feature representations and poor initializations, particularly in non-object centric
images. Our algorithm provides solutions to both of these issues. We also provide an
evaluation on the large-scale ILSVRC13 detection dataset, which many previous methods
have not been evaluated on.

Deep convolutional neural networks (CNNs) have emerged as state of the art on popular
object classification benchmarks such as ILSVRC [103] and MNIST. In fact, “deep features”
extracted from CNNs trained on the object classification task are also state of the art on other
tasks such as subcategory classification, scene classification, domain adaptation [40], and even
image matching [54]. Unlike the previously dominant features (SIFT [125], HOG [31]), deep
CNN features can be learned for each specific task, but only if su�cient labeled training data
is available. R-CNN [59] showed that fine-tuning deep features, pre-trained for classification,
on a large amount of bounding box labeled data significantly improves detection performance.

Domain adaptation methods aim to reduce dataset bias caused by a di↵erence in the
statistical distributions between training and test domains. In this paper, we treat the
transformation of classifiers into detectors as a domain adaptation task. Many approaches
have been proposed for classifier adaptation, such as feature space transformations [151, 104,
63, 53], model adaptation approaches [188, 7], and joint feature and model adaptation [83,
40]. However, even the joint learning models are not able to modify the feature extraction
process and so are limited to shallow adaptation techniques. Additionally, these methods
only adapt between visual domains, keeping the task fixed, while we adapt both from a large

CHAPTER 14. INTRODUCTION AND BACKGROUND 106

visual domain to a smaller visual domain and from a classification task to a detection task.
However, domain adaptation techniques have seen recent success through the merger with

deep CNNs. [76] showed that, when training data in the target domain is severely limited or
unavailable, domain adaptation techniques as applied to CNNs can be more e↵ective than
the standard practice of fine-tuning. More recent works have seen success in augmenting deep
architectures with additional regularization layers that are robust to the negative e↵ects of
domain shift [58, 176, 124, 57]. However, all of these methods focus on the standard visual
domain adaptation problem, where one adapts between two versions of the same task with
di↵erent statistics, and do not investigate the task adaptation setting.

Several supervised domain adaptation models have been proposed for object detection.
Given a detector trained on a source domain, they adjust its parameters on labeled target
domain data. These include variants for linear support vector machines [189, 7, 41], as well
as adaptive latent SVMs [186] and adaptive exemplar SVM [6]. A related recent method [62]
proposes a fast adaptation technique based on Linear Discriminant Analysis. These methods
require strongly labeled data with bounding box annotations for all object categories, both
in the source and target domains, which is absent in our scenario.

Other methods have been proposed that use the underlying semantic hierarchy of Ima-
geNet to transfer localization information to classes for strong labels are available [65, 180].
However, this necessarily limits their approaches to settings in which additional semantic
information is available.

Background: MIL

We begin by briefly reviewing a standard solution to the multiple instance learning problem,
Multiple Instance SVMs (MI-SVMs) [3] or Latent SVMs [52, 191]. In this setting, each
weakly labeled image is considered a collection of bounding boxes which form a positive
‘bag’. For a binary classification problem, the task is to maximize the bag margin which
is defined by the instance with highest confidence. For each weakly labeled image I 2 W ,
we collect a set of bounding boxes and define the index set of those boxes as R

I

. We next
define a bag as B

I

= {x

i

|i 2 R
I

}, with label Y
I

, and let the ith instance in the bag be
(x

i

, y
i

) 2 Rp ⇥ {�1,+1}.
For an image with a negative image-level label, Y

I

= �1, we label all bounding boxes in
the image as negative. For an image with a positive image-level label, Y

I

= 1, we create a
constraint that at least one positive instance occurs in the image bag.

In a typical detection scenario, R
I

corresponds to the set of possible bounding boxes
inside the image, and maximizing over R

I

is equivalent to discovering the bounding box that
contains the positive object. We define a representation �(x

i

) 2 Rd for each instance, which
is the feature descriptor for the corresponding bounding box, and formulate the MI-SVM
objective as follows:

min
w2Rd

1

2
kwk2

2

+ ↵
X

I

`
⇣
Y

I

,max
i2RI

w

T�(x
i

)
⌘

(14.1)

CHAPTER 14. INTRODUCTION AND BACKGROUND 107

where ↵ is a hyper-parameter and `(y, ŷ) is the hinge loss. Interestingly, for negative bags
i.e. Y

I

= �1, the knowledge that all instances are negative allows us to unfold the max
operation into a sum over each instance. Thus, Equation (14.1) reduces to a standard QP
with respect to w. For the case of positive bags, this formulation reduces to a standard SVM
if the maximum scoring instance is known.

Based on this idea, Equation (14.1) is optimized using a classic concave-convex proce-
dure [193], which decreases the objective value monotonically with a guarantee to converge to
a local minima or saddle point. Due to this reason, weakly trained MIL detectors are sensi-
tive to the feature representation and initial detector weights (i.e. initialization in MIL) [28,
163]. With our algorithm we mitigate these sensitivities by learning a representation that
works well for detection and by proposing an initialization technique for the weakly trained
detectors which proves to avoid many of the pitfalls of prior MIL techniques (see Fig 16.4).

108

Chapter 15

Detection Adaptation

15.1 Large Scale Detection through Adaptation

We propose a learning algorithm that uses a heterogeneous data source, containing only weak
labels for some tasks, to produce strong visual recognition models for all. Our approach is
to cast the shift from tasks that require weak labels to tasks that require strong labels as
a domain adaptation problem. We then consider transforming the models for the weakly
labeled task into the models for the strongly labeled task. For concreteness, we will present
our algorithm applied to the specific task shift of classification to detection, called Large
Scale Detection through Adaptation (LSDA). In the following section, we will explain how
to shift to a di↵erent strongly labeled task of semantic segmentation.

Let the set of images with only weak labels be denoted as W and the set of images with
strong labels (bounding box annotations) from auxiliary tasks be denoted as S. We assume
that the set of object categories that appear in the weakly labeled set, CW , do not overlap
with the set of object categories that appear in the strongly labeled set, CS . For each image
in the weakly labeled set, I 2 W , we have an image-level label per category, k: Y k

I

2 {1,�1}.
For each image in the strongly labeled set, I 2 S, we have a label per category, k, per region
in the image, i 2 R

I

: yk

i

2 {1,�1}. We seek to learn a representation, �(·) that can be used
to train detectors for all object categories, C = {CW [CS}. For a category k 2 C, we denote
the category specific detection parameter as w

k

and compute our final detection scores per
region, x, as score

k

(x) = w

T

k

�(x).
We propose a joint optimization algorithm which learns a feature representation, �(·),

and detection model parameters, w
k

, using the combination of strongly labeled scene-centric
data, S, with weakly labeled object and scene-centric data, W . For a fixed representation,
one can directly train detectors for all categories represented in the strongly labeled set,
k 2 CS . Additionally, for the same fixed representation, we reviewed in the previous section
techniques to train detectors for the categories in the weakly labeled data set, k 2 CW .
Our insight is that the knowledge from the strong label set can be used to help guide the
optimization for the weak labeled set, and we can explicitly adapt our representation for the

CHAPTER 15. DETECTION ADAPTATION 109

categories of interest and for the generic detection task.
Below, we state our overall objective:

min
wk,�

k2C

X

k

�(w
k

) + ↵
1

X

I2W

X

p2CW

F(Y p

I

,w
p

) + ↵
2

X

I2S

X

i2RI

X

q2CS

`(yq

i

,wT

q

�(x
i

)) (15.1)

where `(.) is the cross-entropy loss function, F is the region-based loss function over weak
categories, ↵

1

,↵
2

are scalar hyper-parameters and �(.) is a regularization over the detector
weights. We use convolutional neural networks (CNNs) to define our representation � and
thus the last layer weights serve as detection weights w. We adopt the CNN architecture of
[103] (referred to as AlexNet).

This formulation is di�cult to optimize directly, so we propose to solve this objective by
sequentially optimizing easier sub-problems which are less likely to diverge (see Figure 15.1).

Figure 15.1: Our method (LSDA) jointly optimizes a representation and category specific
detection parameters for categories with only weakly labeled data. We first learn a feature
representation conducive to adaptation by initializing all parameters with weakly labeled
data. We then collectively refine the feature space with strongly labeled data from auxiliary
tasks to adapt the category invariant representation from classification to detection (red
boxes). Finally, we perform category specific adaptation (green boxes) either without re-
training or by solving MIL in our detection feature space and using the discovered bounding
boxes to further refine the representation and detection weights.

Lets describe the sub-problems for our overall approach. We begin by initializing a
feature representation � and the detection weights w using auxiliary weakly labeled data
(Figure 15.1: blue boxes). These weights can be used to compute scores per region pro-
posal to produce initial detection scores. We next use available strongly labeled data from
auxiliary tasks to transfer category invariant information about the detection problem. We
accomplish this through further optimizing our feature representation and learning generic

CHAPTER 15. DETECTION ADAPTATION 110

background detection weights, w,�, (Figure 15.1: red boxes). We then use the well tuned
detection feature space to perform MIL on our weakly labeled data to find positive instances
(Figure 15.1: yellow boxes). Finally, we use our discovered positive instances together with
the strongly labeled data from auxiliary tasks to jointly optimize all parameters correspond-
ing to feature representation and detection weights. We now describe each of these steps in
detail in the follow subsections.

15.2 Initializing representation and detection
parameters

As mentioned earlier, we use the AlexNet architecture to describe representation � and de-
tection weights w. Since this network requires a large amount of data and time to train its
approximately 60 million parameters, we start by pre-training on the ILSVRC2012 classifi-
cation dataset, which we refer to as auxiliary weakly labeled data. It contains 1.2 million
weakly labeled images of 1000 categories. Pre-training on this dataset has been shown to be
a very e↵ective technique [40, 152, 59], both in terms of performance and in terms of lim-
iting the amount of in-domain labeled data needed to successfully tune the network. This
data is usually object centric and is therefore e↵ective for training a network that is able to
discriminate between di↵erent categories. Next, we replace the last weight layer (1000 linear
classifiers) with K = |C| randomly initialized linear classifiers, one for each category in our
task.

We next learn initial values for all of the detection parameters for our particular categories
of interest, w

k

, 8k 2 C. We obtain such initialization by solving the simplified learning
problem of image-level classification. The image, I 2 S, is labeled as positive for a category
k if any of the regions in the image are labeled as positive for k and is labeled as negative
otherwise, we denote the image level label as in the weakly labeled case: Y k

I

. Now, we can
optimize over all images to refine the representation and learn category specific parameters
that can be used per region proposal to produce detection scores:

min
wk,�

k2C

X

k

2

4�(w
k

) + ↵
X

I2{W[S}

`(Y k

I

,wT

k

�(I))

3

5 (15.2)

We optimize Equation (15.2) through fine-tuning our CNN architecture with a new K-way
last fully connected layer, where K = |C|. This serves as our initialization for solving
sequential sub-problems to optimize overall objective (15.1). We find that even using the
net trained on weakly labeled data in this way produces a strong baseline. We will refer this
baseline as ‘Classification Network ’ in the experiments; see Table 16.2.

CHAPTER 15. DETECTION ADAPTATION 111

15.3 Net Surgery to Change Classifiers into Detectors

We next transform our classification network into a detection network and learn a represen-
tation which makes it possible to separate objects of interest from background and makes it
easy to distinguish di↵erent object categories. We proceed by modifying the representation
(layers 1-7), �(·), through finetuning, using the available strongly labeled data for categories
in set CS . Following the Regions-based CNN (R-CNN) [59] algorithm, we collect positive
bounding boxes for each category in set CS as well as a set of background boxes using a
region proposal algorithm, such as selective search [178]. We use each labeled region as a
fine-tuning input to the CNN after padding and warping it to the CNN’s input size. Note
that the R-CNN fine-tuning algorithm requires bounding box annotated data for all cate-
gories and so can not directly be applied to train all K detectors. Fine-tuning transforms all
network weights (except for the linear classifiers for categories in CW) and produces a softmax
detector for categories in set CS , which includes a weight vector for the new background class.
We find empirically that fine-tuning induces a generic, category invariant transformation of
the classification network into a detection network. That is, even though fine-tuning sees no
strongly labeled data for categories in set CW , the network transforms in a way that auto-
matically makes the original set CW image classifiers much more e↵ective at detection (see
Figure 16.6). Fine-tuning for detection also learns a background weight vector that encodes
a generic “background” category, w

b

. This background model is important for modeling
the task shift from image classification, which does not include background distractors, to
detection, which is dominated by background patches. This detector explicitly attempts to
recognize all data labeled as negative in our bags. Since we initialize this detector with the
strongly labeled data, we know precisely which regions correspond to background.

This can be summarized as the following intermediate sub-problem for objective (15.1):

min
wq ,�

q2{CS ,b}

X

q

"
�(w

q

) + ↵
X

I2S

X

i2RI

`(yq

i

,wT

q

�(x
i

))

#
(15.3)

This is accomplished by fine-tuning our CNN architecture with the strongly labeled data,
while keeping the detection weights for the categories with only weakly labeled data fixed.
We will call this method as ‘LSDA rep only ’ in our experiments.

15.4 Adapting category specific representation and
detection parameters

Finally, we seek to adapt the category dependent representation and model parameters for
the categories in our weakly labeled set, CW . We will present two approaches to this problem
of learning detection weights for weak categories. Specifically, we aim to update the weakly
labeled category specific parameters. Section 15.4 presents a heuristic adaptation approach
that requires no further CNN training with gradient descent and updates only the weakly

CHAPTER 15. DETECTION ADAPTATION 112

labeled classification parameters. Section 15.4 describes a separate adaptation approach that
directly optimizes a subproblem of our overall objective (15.1). It uses multiple instance
learning to discover localized labeled regions in the weakly labeled training data and uses
the discovered labels to adapt both the representation and the classification parameters for
categories in the weakly labeled set.

K-nearest neighbors based adaptation

In this section, we describe a technique for adapting the category specific parameters of the
classifier model into the detector model parameters that are better suited for use with the
detection feature representation based on a k-NN heuristic. We will determine a similarity
metric between each category in the weakly labeled set, CW , to the strongly labeled categories,
CS .

For simplicity, we separate the category specific output layer (8th layer of the network -
fc8) of the classification model into two components fcS and fcW , corresponding to model
parameters for the categories in the strongly labeled set CS and the weakly labeled set CW ,
respectively. During our generic category adaptation of Section 15.2, we trained a new
background prediction layer, fc

b

.
For categories in set CS , adaptation to detectors can be learned directly through fine-

tuning the category specific model parameters fcS . This is equivalent to fixing fcS and
learning a new layer, zero initialized, �S, with equivalent loss to fcS , and adding together
the outputs of �S and fcS .

Let us define the weights of the output layer of the original classification network as W c,
and the weights of the output layer of the adapted detection network as W d. We know that
for a category i 2 CS , the final detection weights should be computed as W d

i

= W c

i

+ �S
i

.
However, since there is no strongly labeled data for categories in CW , we cannot directly learn
a corresponding �W layer during fine-tuning. Instead, we can approximate the fine-tuning
that would have occurred to fcW had strongly labeled data been available. We do this by
finding the nearest neighbors categories in set CS for each category in set CW and applying
the average change. We assume that there are categories in set CS that are similar to those
in set CW and therefore have similar weights and similar gradient descent updates.

Here we define nearest neighbors as those categories with the nearest (minimal Euclidean
distance) `

2

-normalized fc
8

parameters in the classification network. This corresponds to the
classification model being most similar and hence, we assume, the detection model should be
most similar. We denote the kth nearest neighbor in set CS of category j 2 CW as NS(j, k),
then we compute the final output detection weights for categories in set CW as:

8j 2 CW : W d

j

= W c

j

+
1

k

kX

i=1

�S
NS(j,i)

(15.4)

Thus, we adapt the category specific parameters even without bounding boxes for categories
in set CW . In section 20.4 we experiment with various values of k, including taking the full
average: k = |CS |. We will now refer to this method as ‘LSDA rep+kNN ’ in our experiments.

CHAPTER 15. DETECTION ADAPTATION 113

MIL training based adaptation

The previous section provides a technique for adapting the category specific model parame-
ters for the weakly labeled categories without any further CNN training. However, we may
want to modify our representation and model parameters by explicitly retraining with the
weakly labeled data. To do this, we need to discover localization information from the image-
level labels. Therefore, we will begin by solving a multiple instance learning (MIL) problem
to discover the portion of each image most likely corresponding to the weak image-level label.

With the representation, �, that has now been directly tuned for detection, we fix the
parameter weights, �(·) and solve for the regions of interest in each weak labeled image. This
corresponds to solving the following objective:

min
wp

p2{CW ,b}

X

p

"
�(w

p

) + ↵
X

I2W

F(Y p

I

,w
p

)

#
(15.5)

F = max
i2RI

w

T

p

�(x
i

) (15.6)

Note, we can decouple this optimization problem and independently solve for each category
in our weakly labeled data set, p 2 CW . Let’s consider a single category p. Our goal is to
minimize the loss for category p over images I 2 W . We will do this by considering two
cases. First, if p is not in the weak label set of an image (Y p

I

= �1), then all regions in that
image should be considered negative for category p. Second, if Y p

I

= 1, then we positively
label a region x

i

if it has the highest confidence of containing object and negatively label
all other regions. We perform the discovery of this top region in two steps. At first, we
narrow down the set of candidate bounding boxes using the score, w

T

p

�(x
i

), from our fixed
representation and detectors from the previous optimization step. This set is then refined to
estimate the most likely region to contain a positive instance in a Latent SVM formulation.
The implementation details are discussed section 16.2.

Our final optimization step is to use the discovered bounding boxes from our weak dataset
to refine our detectors and feature representation from the previous optimization step. This
amounts to the subsequent step for minimization of the joint objective described in Equa-
tion (15.1). We collectively utilize the strong labels of images in S and estimated bounding
boxes for the weakly labeled set, W , to optimize for detector weights and feature represen-
tation, as follows:

min
wk,�

k2{C,b}

X

k

"
�(w

k

) + ↵
X

I2{W[S}

X

i2RI

`(yk

i

,wT

k

�(x
i

))

#
(15.7)

This is achieved by re-finetuning the CNN architecture. This final method is referred to as
‘LSDA rep+joint ft ’ in our experiments.

Thus, the overall non-convex objective (15.1) is first approximated through initialization
in (15.2). This initialization is then used to solve the sequential optimization problems

CHAPTER 15. DETECTION ADAPTATION 114

defined in (15.3) and (15.5). Further, we present two ways to solve (15.5): k-NN based
heuristic approach in (15.4) and MIL-based re-training approach in (15.6).

The sub-problem defined in (15.3) decreases the loss for strongly labeled categories and
(15.7) decreases the loss for both weak-strong categories. Thus, this ensures that the overall
objective (15.1) decreases. The refined detector weights and representation can be used
to discover the bounding box annotations for weakly labeled data again, and this process
can be iterated over (see Figure 15.1). We discuss re-training strategies and evaluate the
contribution of this final optimization step in Section 16.2.

15.5 Detection with LSDA models

We now describe how our adapted network is used for detection at test time (depicted in
Figure 15.2). For each test image we extract region proposals and generate K +1 scores per
region (similar to the R-CNN [59] pipeline), one score for each category and an additional
score for the background category. The score is generated by passing the properly warped
image patch through our adapted representation layers and then through one of our proposed
category specific adapted layers (described in the previous sections). Finally, for a given
region, the score for category i is computed by linearly combining the per category score
with the background score: score

i

� score
bg

.

input image region
proposals

warped
region

LSDA rep
(Section 3.1)

fcb

fcW

knn
adapt

fcS

�S

cat: 0.90

dog: 0.45

+

bg: 0.25

fcb

fcW

fcS

bg: 0.16

cat: 0.93

dog: 0.32

Network 1
LSDA kNN

(Section 3.2.1)

Network 2
LSDA joint ft
(Section 3.2.2)

…
…

…
…

produce
predictions

cat

produce
predictions

cat

Figure 15.2: Detection with the LSDA network (test time). Given an image, extract region
proposals, reshape the regions to fit into the network size and pass through our adapted
network. Use the adapted representation and the category specific adaptation either through
the no retraining nearest neighbor method or by retraining with our MIL based method.
Finally produce detection scores per category for the region by considering background and
category scores.

In contrast to the R-CNN [59] model which trains SVMs on the extracted features from
layer 7 and bounding box regression on the extracted features from layer 5, we directly use
the final score vector to produce the prediction scores without either of the retraining steps.
This choice results in a small performance loss, but o↵ers the flexibility of being able to

CHAPTER 15. DETECTION ADAPTATION 115

directly combine the classification portion of the network that has no detection labeled data,
and reduces the training time from 3 days to roughly 5.5 hours.

15.6 Recognition Beyond Detection

In the previous section we outline an algorithm for producing weakly supervised detection
models which label and coarsely localize objects in scene-centric images. While a bounding
box around an object o↵ers significantly more information than an image-level label, it is not
su�ciently localized for tasks such as robotic manipulation and full scene parsing. Instead,
we would like to produce semantic segmentation models which are capable of labeling each
pixel in an image with the object category or background label.

Prior work has shown that convolutional networks can also be applied to arbitrary-sized
inputs to allow for per-pixel spatial output. For example, [130] augmented the LeNet digit
classification model [111], enabling recognition of strings of digits, and [185] use networks
to output 2-dimensional maps in order to identify the locations of postal address blocks.
This technique has been used to produce semantic segmentation outputs of C. elegans [135]
and more recently for generic object categories [123]. These “fully convolutional” networks
can also be finetuned end-to-end on segmentation ground truth to produce fully supervised
segmentation models [123].

As we would like to produce pixel level labels from our LSDA model, we will build o↵ of
our recent work for object category semantic segmentation [123]. However, [123] requires full
semantic segmentation (pixel-level) annotations to train the corresponding fully connected
network. This form of supervision is particularly expensive to collect and in general very
few data sources exist with these annotations.

Instead, we argue that much of the knowledge gained through training with pixel-level
annotations can be transferred from the much weaker bounding box annotations. Therefore,
we demonstrate that a reasonable semantic segmentation is possible by directly using detec-
tion parameters in a fully convolutional framework. Further, we show that even our weakly
supervised detection models presented in the previous section are able to localize objects
more precisely than a bounding box, despite never receiving pixel-level annotations and for
many categories never even receiving bounding box annotations.

To produce such a network we take our final adapted LSDA model, which for the purpose
of our experiments was trained using an AlexNet basic architecture [103], and we convert
the model into the corresponding fully convolutional 32 stride network (FCN-32s) presented
by [123]. This amounts to relatively few changes to the network architecture. First, each
input image is padded with 100 pixels before features are extracted. Next each of the
three fully connected layers are converted into convolutional layers, where layer 6 has 4096
convolutions with 6⇥ 6 sized kernels, layer 7 has 4096 convolutions with 1⇥ 1 sized kernels,
and the final score layer hasK+1 convolutions with 1⇥1 sized kernels (whereK is the number
of categories, plus one for background). Finally, additional deconvolution and crop layers
are added which up-sample the score map produced by the 8th layer (bilinear interpolation)

CHAPTER 15. DETECTION ADAPTATION 116

and crops the pixel level score map to be the size of the input image. This means the final
output of the network is a score per category per pixel, which allows us to perform semantic
segmentation.

117

Chapter 16

Experiments

To demonstrate the e↵ectiveness of our approach we present quantitative results on the
ILSVRC2013 detection dataset. The dataset o↵ers images exhaustively labeled with bound-
ing box annotations for 200 relevant object categories. The training set has ⇠400K labeled
images and on average 1.534 object classes per image. The validation set has 20K labeled
images with ⇠50K labeled objects. We simulate having access to weak labels for all 200
categories and having strong labels for only the first 100 categories (alphabetically sorted).

16.1 Experiment Setup & Implementation Details

We start by separating our data into classification and detection sets for training and a
validation set for testing. Since the ILSVRC2013 training set has on average fewer objects
per image than the validation set, we use this data as our classification data. To balance the
categories we use ⇡1000 images per class (200,000 total images). Note: for classification
data we only have access to a single image-level annotation that gives a category label.
In e↵ect, since the training set may contain multiple objects, this single full-image label
is a weak label, even compared to other classification training data sets. Next, we split
the ILSVRC2013 validation set in half as [59] did, producing two sets: val1 and val2. To
construct our detection training set, we take the images with bounding box labels from val1
for only the first 100 categories (⇡ 5000 images). Since the validation set is relatively small,
we augment our detection set with 1000 bounding box labeled images per category from the
ILSVRC2013 training set (following the protocol of [59]). Finally we use the second half of
the ILSVRC2013 validation set (val2) for our evaluation.

We implemented our CNN architectures and execute all fine-tuning using the open source
software package Ca↵e [92] and have made our model definitions weights publicly available.

We use the ILSVRC13 detection dataset [35] for our experiments. This dataset provides
bounding box annotations for 200 categories. The dataset is separated into three pieces:
train, val, test (see Table 16.1). The training images have fewer objects per image on an
average than validation set images, so they constitute classification style data [85]. Following

CHAPTER 16. EXPERIMENTS 118

Train
Num images 395905
Num objects 345854

Val
Num images 20121
Num objects 55502

Table 16.1: Statistics of the ILSVRC13 detection dataset. Training set has fewer objects per
image than validation set.

Layers Adapted using Strongly mAP (%) mAP (%)
Labeled Data Weak Categories All Categories

No Adapt (Classification Network) 10.31 11.90
fc

bgrnd

12.22 13.60
fc

bgrnd

, fc
6

13.72 19.20
fc

bgrnd

, fc
7

14.57 19.00
fc

bgrnd

, fcS 11.74 14.90
fc

bgrnd

, fc
6

, fc
7

14.20 20.00
fc

bgrnd

, fc
6

, fc
7

, fcS 14.42 20.40
fc

bgrnd

, layers 1-7, fcS 15.85 21.83

Table 16.2: Ablation study for di↵erent techniques for category independent adaptation
of our model (LSDA rep only). We consider training with the first 100 (alphabetically)
categories of the ILSVRC2013 detection validation set (on val1) and report mean average
precision (mAP) over the 100 weakly labeled categories (on val2). We find the best improve-
ment is from fine-tuning all layers.

prior work [59], we use the further separation of the validation set into val1 and val2. Overall,
we use the train and val1 set for our training data source and evaluate our performance of
the data in val2.

16.2 Quantitative Analysis of Adapted
Representation

We evaluate the importance of each component of our algorithm through an ablation study.
As a baseline, we consider training the network with only the weakly labeled data (no
adaptation) and applying the network to the region proposals.

In Table 16.2, we present a detailed analysis of the di↵erent category independent adap-
tation techniques we could use to train the network. We call this method LSDA rep only.
We find that the best category invariant adaptation approach is to learn the background

CHAPTER 16. EXPERIMENTS 119

Figure 16.1: We show example detections on weakly labeled categories, for which we have
no detection training data, where LSDA (shown with green box) correctly localizes
and labels the object of interest, while the classification network baseline (shown in red)
incorrectly localizes the object. This demonstrates that our algorithm learns to adapt the
classifier into a detector which is sensitive to localization and background rejection.

category layer and adapt all convolutional and fully connected layers, bringing mAP on the
weakly labeled categories from 10.31% up to 15.85% i.e. this achieves a 54% relative mAP
boost over the classification only network. We later observe that the most important step
of our algorithm proved to be adapting the feature representation, while the least important
was adapting the category specific parameter. This fits with our intuition that the main
benefit of our approach is to transfer category invariant information from categories with
known bounding box annotation to those without the bounding box annotations.

We find that one of the biggest reasons our algorithm improves is from reducing local-
ization error. For example, in Figure 16.1, we show that while the classification only trained
net tends to focus on the most discriminative part of an object (ex: face of an animal) after
our adaptation, we learn to localize the whole object (ex: entire body of the animal).

Error Analysis on Weakly Labeled Categories

We next present an analysis of the types of errors that our system (LSDA) makes on the
weakly labeled object categories. First, in Figure 19.3, we consider three types of false posi-
tive errors: Loc (localization errors), BG (confusion with background), and Oth (other error
types, which is essentially correctly localizing an object, but misclassifying it). After sepa-
rating all false positives into one of these three error types we visually show the percentage
of errors found in each type as you look at the top scoring 25-3200 false positives.1 We
consider the baseline of starting with the classification only network and show the false posi-
tive breakdown in Figure 16.2a. Note that the majority of false positive errors are confusion
with background and localization errors. In contrast, after adapting the network using LSDA

1We modified the analysis software made available by [75] to work on ILSVRC-2013 detection

CHAPTER 16. EXPERIMENTS 120

we find that the errors found in the top false positives are far less due to localization and
background confusion (see Figure 16.2b). Arguably one of the biggest di↵erences between
classification and detection is the ability to accurately localize objects and reject background.
Therefore, we show that our method successfully adapts the classification parameters to be
more suitable for detection.

total false positives

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

Held−out Categories

25 50 100 200 400 800 1600 32000

20

40

60

80

100
Loc
Oth
BG

(a) Classifier Network

total false positives

pe
rc

en
ta

ge
 o

f e
ac

h
ty

pe

Held−out Categories

25 50 100 200 400 800 1600 32000

20

40

60

80

100
Loc
Oth
BG

(b) LSDA rep+knn

Figure 16.2: Comparison of error type breakdown on the categories which have no training
bounding boxes available (weakly labeled data). After adapting all the layers in the network
(LSDA), the percentage of false positive errors due to localization and background confusion
is reduced (b) as compared to directly using the classification network for detection (a).

In Figure 16.3, we show examples of the top scoring Oth error types for LSDA on the
weakly labeled data. This means the detector localizes an incorrect object type. For example,
the motorcycle detector localized and mislabeled bicycle and the lemon detector localized
and mislabeled an orange. In general, we noticed that many of the top false positives from
the Oth error type were confusion with very similar categories. This is discussed in detail in
next subsection.

microphone (sim): ov=0.00 1−r=−3.00

microphone

miniskirt (sim): ov=0.00 1−r=−1.00
miniskirt

motorcycle (sim): ov=0.00 1−r=−6.00

motorcycle

mushroom (sim): ov=0.00 1−r=−8.00

mushroom

nail (sim): ov=0.00 1−r=−4.00
nail

laptop (sim): ov=0.00 1−r=−3.00
laptop

lemon (sim): ov=0.00 1−r=−5.00

lemon

Figure 16.3: Examples of the top scoring false positives from our LSDA rep+knn network.
Many of our top scoring false positives come from confusion with other categories.

CHAPTER 16. EXPERIMENTS 121

Analysis of Discovered Boxes

We now analyze the quality of boxes discovered using adaptation of all layers including the
background class. One of the key components of our system is using strong labels from
auxiliary tasks to learn a representation where it’s possible to discover bounding boxes that
correspond to the objects of interest in our weakly labeled data source. We begin our anal-
ysis by studying the bounding box discovery that our feature space enables, using selective
search [178] to produce candidate regions. We optimize the bounding box discovery (Equa-
tions (15.5),(15.6)) using a one vs all Latent SVM formulation and optimize the formulation
for AUC criterion [17]. This ensures that the top candidate regions chosen for joint fine-
tuning have high precision. The feature descriptor used is the output of the fully connected
layer, fc

7

, of the CNN which is produced after fine-tuning the feature representation with
strongly labeled data from auxiliary tasks. Following our alternating minimization approach,
these discovered top boxes are then used to re-estimate the weights and feature representa-
tions of our CNN architecture.

CorLoc over full dataset Localization mAP (%)
ov=0.3 ov=0.5 ov=0.7 ov=0.9 ov=0.5

Classification Network 29.63 26.10 24.28 23.43 13.13
LSDA rep only 32.69 28.81 26.27 24.78 22.81

Table 16.3: CorLoc over dataset and localization mAP (i.e. given the labels) performance of
discovered bounding boxes in our weakly labeled training set (val1) of ILSVRC13 detection
dataset. Comparison with varying amount of overlap with ground truth box. About 25%
of our discovered boxes have an overlap of at least 0.9. Our method is able to significantly
improve the quality of discovered boxes after incorporating strong labels from auxiliary tasks.

To evaluate the quality of discovered boxes, we do ablation study analyzing their overlap
with ground truth which is measured using the standard intersection over union (IOU)
metric. Table 16.3 reports the CorLoc for varying overlapping thresholds. CorLoc across
full dataset is defined as the accuracy of discovered boxes i.e. the accuracy that the box is
correctly localized per image at di↵erent thresholds. Our optimization approach produces
one positive bounding box per image with a weak label, and a discovered box is considered
a true positive if it overlaps su�ciently with the ground truth box that corresponds to
that label. Since each bounding box, once discovered, is considered an equivalent positive
(regardless of score) for the purpose of retraining the ‘LSDA rep only ’ model, this simple
CorLoc metric is a good indication of the usefulness of our discovered bounding boxes. We
note here that after re-training with our mined boxes the CorLoc will further improved,
as indicated in the detection mAP reported in the next section.[I]t is interesting that a
significant fraction of discovered boxes have high overlap with the ground truth regions. For
reference, we also computed the standard mean average precision over the discovered boxes
for localization task i.e. when label is known. It is important to note that the improvement

CHAPTER 16. EXPERIMENTS 122

in localization mAP is much more significant than the CorLoc. This is because mAP is
obtained by averaging over recall values, and the ‘LSDA rep only ’ model achieves better
overall recall than the ‘Classification Network ’ model.

It is important to understand not only that our new feature space improves the quality
of the resulting bounding boxes, but also what type of errors our method reduces. In
Figure 16.4, we show the top 5 scoring discovered bounding boxes before and after modifying
the feature space with strong labels from auxiliary tasks. We find that in many cases the
improvement comes from better localization. For example without auxiliary strong labels we
mostly discover the face of a lion rather than the body that we discover after our algorithm.
Interestingly, there is also an issue with co-occurring classes. We are better able to localize
“lion” body rather than the face. Most amazing results are for the “ping-pong” and “rugby”
(second and third row) category where we are actually able to mine boxes for the racket and
ball, while the classification net could only get the person boxes which is incorrect. Once we
incorporate strong labels from auxiliary tasks we begin to be able to distinguish the person
playing from the racket/ball itself. In the bottom row of Figure 16.4, we show the top 5
discovered bounding boxes for “tennis racket” where we are partially able to correct the
images. Finally, there are some example discovered bounding boxes where we reduce quality
after incorporating the strong labels from auxiliary tasks. For example, one of our strongly
labeled categories is “computer keyboard”. Due to the strong training with keyboard images,
some of our discovered boxes for “laptop” start to have higher scores on the keyboard rather
than the whole laptop (see Figure 16.5). Also for the “water-craft” category, our adapted
network ignores the mast but better localizes the boat itself. which slightly decreases the
IOU of obtained box.

Detection Performance on ILSVRC13

Now that we have analyzed the intermediate result of our algorithm, we next study the full
performance of our system. Figure 16.6 shows the mean average precision (mAP) percentage
computed over the categories in val2 of ILSVRC13 for which we only have weakly labeled
training data (categories 101-200). Previous method, LCL [183], detects in the standard
weakly supervised setting – having no bounding box annotations for any of the 200 categories.
This method also only reports results across all 200 categories on the full validation set. Our
experiments indicate that the first 100 categories are easier on average then the second 100
categories, therefore the 6.0% mAP may actually be an upper bound of the performance of
this approach. We also compare our algorithm against the scenario when the class-specific
layer is adapted using nearest neighbors across all categories (LSDA rep+knn). The joint
representation and multiple instance learning approach achieves the highest results (LSDA
rep+joint ft).

We next consider di↵erent re-training strategies for learning new features and detection
weights after discovering the bounding boxes in the weakly labeled data. Table 16.4 re-
ports the mean average precision (mAP) percentage for no re-training (directly using the
feature space learned after incorporating the strong labels), LSDA rep only, no retraining

CHAPTER 16. EXPERIMENTS 123

Figure 16.4: Example discovered bounding boxes learned using our method. Left side shows
the discovered boxes after fine-tuning with images in classification settings only, and right
side shows the discovered boxes after fine-tuning with auxiliary strongly labeled dataset.
We show top 5 discovered boxes across the dataset for corresponding category. Examples
with a green outline are categories for which our algorithm was able to correctly discover
bounding boxes of the object, while the feature space with only weak label training was not
able to produce correct boxes. After incorporating the strong labels from auxiliary tasks, our
method starts discovering “ping-pong” racket/ball and “rugby” ball, though still has some
confusion with the person playing tennis. None of the discovered boxes from the original
feature space correctly located racket/ball and instead included the person as well. In yellow
we highlight the specific example of “tennis racket”, where some of the boxes get corrected
not all top boxes.

CHAPTER 16. EXPERIMENTS 124

Figure 16.5: Example discovered boxes of the category “laptop” where using auxiliary
strongly labeled data causes bounding box discovery to diverge. Left : The discovered boxes
obtained after fine-tuning with images in classification settings only. Right : The discovered
boxes obtained after fine-tuning with the auxiliary strongly labeled dataset that contains the
category “computer keyboard”. These boxes were low scoring examples, but we show them
here to demonstrate a potential failure case – specifically, when one of the strongly labeled
classes is a part of one of the weakly labeled classes. In the second example, adapted network
better localizes the “water-craft” but misses the mast which decreases the IOU slightly.

LCL* Classification
 Net

 LSDA
 rep only

 LSDA
 rep+kNN

 LSDA
 rep+joint ft
 (all layers)

m
AP

 (%
)

0

2

4

6

8

10

12

14

16

18

20

6.00

10.31

15.85 16.15

18.08

*

Figure 16.6: Comparison of mAP (%) for categories without any bounding box annotations
(101-200 of val2) of ILSVRC13. The Joint representation and category-specific learning
using MIL outperforms all other approaches. *As a reference we report the performance of
LCL [183] which was computed across all 200 categories of the full validation set (val1+val2).

CHAPTER 16. EXPERIMENTS 125

Category Specific mAP (%) mAP (%)
Adaptation Strategy Weak Categories All Categories

LSDA rep only 15.85 21.83
LSDA rep+kNN (k=5) 15.97 22.05
LSDA rep+kNN (k=10) 16.15 22.05
LSDA rep+kNN (k=100=|fcS |) 15.96 21.94
LSDA rep+joint ft (fcW) 17.01 22.43
LSDA rep+joint ft (all layers) 18.08 22.74

Baseline: Classification Network 10.31 11.90
Oracle: RCNN Full Detection Network 26.25 28.00

Table 16.4: Comparison of di↵erent ways to re-train after discovery of bounding boxes. We
show mAP on val2 set from ILSVRC13. We find that the most e↵ective way to re-train with
discovered boxes is to modify the detectors and the feature representation.

but last layer weights of weak categories adapted using nearest neighbors, LSDA rep+knn,
re-training only the category-specific detection parameters, LSDA rep+joint ft (fcW), and
retraining feature representations jointly with category-specific weights, LSDA rep+joint ft
(all layers). In our experiments the improved performance is due to the first iteration of
the overall algorithm. We find that the best approach is to jointly learn to refine the fea-
ture representation and the category-specific detection weights. More specifically, we learn a
new feature representation by fine-tuning all fully connected layers in the CNN architecture.
The last row shows the performance achievable by our detection network if it had access
to bounding box annotated data for all 200 categories, and serves as a performance upper
bound.2 Our method achieves 18.08% mAP on weakly labeled categories as compared to
10.31% of baseline, but it is still significantly lower than fully-supervised oracle which gives
26.25%.

We finally analyze examples where our full algorithm which jointly learns representa-
tion and class-specific layer using MIL (LSDA rep+joint ft) outperforms the previous ap-
proach where only representation is adapted without joint learning over weak labels (LSDA
rep+knn). Figure 16.7 shows a sample of the types of errors our algorithm improves on.
These include localization errors, confusion with other categories, and interestingly, confu-
sion with co-occurring categories. In particular, our algorithm provides improvement when
searching for a small object (ball or helmet) in a sports scene. Training only with weak
labels causes the previous state-of-the-art to confuse the player and the object, resulting in
a detection that includes both. Our algorithm is able to localize only the small object and

2To achieve R-CNN performance requires additionally learning SVMs on the activations of layer 7 and
bounding box regression on the activations of layer 5. Each of these steps adds between 1-2mAP at high
computation cost and using the SVMs removes the adaptation capacity of the system.

CHAPTER 16. EXPERIMENTS 126

miniskirt rabbit

volleyball

watercraft soccerball

swine

monkey

lion

mallot

rabbit

swine

volleyball

watercraft

monkey

volleyball

Figure 16.7: Examples where our algorithm after joint MIL adaptation (LSDA rep+joint ft)
outperforms the representation only adaptation (LSDA rep only). We show the top scoring
detection from LSDA rep only with a Red box and label, and the top scoring detection from
LSDA rep+joint ft, as a Green box and label. Our algorithm improves localization (ex:
rabbit, lion etc), confusion with other categories (ex: miniskirt vs maillot), and confusion
with co-occurring classes (ex: volleyball vs volleyball player)

recognize that the player is a separate object of interest.

16.3 Large Scale Detection

To showcase the capabilities of our technique we produced a 7604 category detector. The
first categories correspond to the 200 categories from the ILSVRC2013 challenge dataset
which have bounding box labeled data available. The other 7404 categories correspond to
leaf nodes in the ImageNet database and are trained using the available full image weakly
labeled classification data. We trained a full detection network using the 200 strongly labeled
categories and trained the other 7404 last layer nodes using only the weak labels. Note, the
ImageNet dataset does contain other non-exhausitvely labeled images for around 3000 object
categories, 1825 of which overlap with the 7404 leaf node categories in our model. We do
not use these labels during training of our large scale model. Quantitative evaluation for
these categories is di�cult to compute since they are not exhaustively labeled, however a
followup work by [132] evaluated F1 score of our model for the few object instances labeled
per image to be 9.59%. Also note that while we have no bounding box annotations for the
7404 fine-grained categories, some may be related to the 200 basic level categories for which
we use bounding box data to train – for example a particular breed of dog from 7404 weakly
labeled data while ‘dog’ appears in the 200 strongly labeled categories.

CHAPTER 16. EXPERIMENTS 127

American bison: 7.0
taillight: 0.9

wheel and axle: 1.0car: 6.0

whippet: 2.0
dog: 4.1

sofa: 8.0

Figure 16.8: Example top detections from our 7604 category detector. Detections from the
200 categories that have bounding box training data available are shown in blue. Detections
from the remaining 7404 categories for which only weakly labeled data is available are shown
in red.

We show qualitative results of our large scale detector by displaying the top detections
per image in Figure 16.8. The results are filtered using non-max suppression across categories
to only show the highest scoring categories.

The main contribution of our algorithm is the joint representation and multiple instance
learning approach for modifying a convolutional neural network for detection. However,
the choice of network and how the net is used at test time both e↵ect the detection time
computation. We have therefore also implemented and released a version of our algorithm
running with fast region proposals [102] on a spatial pyramid pooling network [72], reducing
our detection time down to half a second per image (from 4s per image) with nearly the
same performance. We hope that this will allow the use of our 7.6K model on large data
sources such as videos. We have released the 7.6K model and code to run detection (both
the way presented in this paper and our faster version) at lsda.berkeleyvision.org.

16.4 Fully Convolutional LSDA for Semantic
Segmentation

Bounding boxes localize objects to an inherently limited degree. While the system presented
so far produces remarkably accurate bounding boxes from weak training labels, it does not
address the ultimate goal of knowing exactly which pixels correspond to which objects.

Segmentation ground truth is unavailable for all but a few of the 7604 categories in our
large scale detector, and segmentations are even more costly to annotate than bounding
boxes. Nevertheless, as described in Section 16.4, we can convert our detection-adapted
network into a fully-convolutional model following [123] and produce dense outputs for each
of the 7604 categories plus 1 for background. We call this model LSDA7k FCN-32s since
we use the 32 stride version of the fully convolutional networks proposed in [123]. We next
evaluate our semantic segmentation model using the PASCAL dataset [49] and the following

CHAPTER 16. EXPERIMENTS 128

metrics.

Metrics We compute both the commonly used mean intersection over union (mean IU)
metric for semantic segmentation as well as three other metrics used by [123]. The metrics
are defined below, where n

ij

denotes the number of pixels from class i predicted to belong
to class j so that the number of pixels belonging to class i are m

i

=
P

j

n
ij

, and K denotes
the number of classes.

• pixel accuracy:
P

i

n
ii

/
P

i

m
i

• mean accuracy: 1/K
P

i

n
ii

/t
i

• mean IU: 1/K
P

i

n
ii

/(m
i

+
P

j

n
ji

� n
ii

)

• frequency weighted IU: (
P

l

m
l

)�1

P
i

m
i

n
ii

/(m
i

+
P

j

n
ji

� n
ii

)

We would like to understand how well our model can localize weakly trained objects so for
each of the PASCAL 20 object categories we manually find the set of fine-grained categories
from the 7404 weakly labeled leaf nodes in ImageNet that correspond to that category. Since
layer 8 of our LSDA7k FCN-32s network produces 7605 outputs per region of the image, we
insert an additional mapping layer which for each category c is the maximum score across all
weakly labeled categories which correspond to that PASCAL category. Next, this reduced
score map where each image region now has 21 scores is run through the deconvolution layer
to produce the corresponding PASCAL per pixel scores. Finally, for each pixel we choose a
label based on which of the categories or background has the highest pixel score.

We report results on both the PASCAL 2011 and 2012 validation sets. Note, our method
was not trained on any PASCAL images and in general was trained for classification of 7404
fine-grained categories and then adapted using our algorithm for detection. Additionally,
our model is trained using the AlexNet architecture while most state-of-the-art semantic
segmentation models are trained using the larger VGG network [159].

For the PASCAL 2011 validation set, shown in Table 16.5, we first compare against
the classification model trained for the 7404 category full image labels. We run this model
fully convolutionally using the FCN-32s approach (AlexNet) and report the segmentation
performance in the first row as Classification 7K FCN-32s (AlexNet). This method gives
a baseline for our LSDA approach which uses this model as the initialization prior to our
adaptation approach. Next, we compare against the reported performance of the weakly
trained models of [142] and for reference, the fully supervised AlexNet and VGG FCN-
32s presented by [123]. We report all four metrics for our work and report all available
metrics for competing works. We see that our weakly trained model outperforms the baseline
classification model run fully convolutionally and almost reaches the performance of the
MIL-FCN method which uses the higher capacity VGG model and trains specifically for the
segmentation task.

CHAPTER 16. EXPERIMENTS 129

Method pixel acc mean acc mean IU f.w. IU

Classification 7k FCN-32s (AlexNet) 13.3 43.2 11.6 6.7

MIL-FCN (VGG) [142] - - 25.0 -

LSDA7k FCN-32s (AlexNet) 70.6 35.5 21.3 59.2

FCN-32s (supervised AlexNet)[123] 85.8 61.7 48.0 76.5

FCN-32s (supervised VGG)[123] 89.1 73.3 59.4 81.4

Table 16.5: Semantic Segmentation Results for PASCAL 2011 validation set.

Method b
gr

n
d

ae
ro

b
ik

e

b
ir

d

b
oa

t

b
ot

tl
e

b
u
s

ca
r

ca
t

ch
ai

r

co
w

ta
b
le

d
og

h
or

se

m
b
ik

e

p
er

so
n

p
la

nt

sh
ee

p

so
fa

tr
ai

n

tv m
ea

n

EM Adapt (VGG) [140] 65.0 27.9 17.0 26.5 21.2 29.2 48.0 44.8 43.8 15.0 33.8 25.0 39.9 34.0 41.3 31.8 22.9 35.2 23.2 39.3 30.4 33.1

CCNN (VGG) [141] 65.9 23.8 17.6 22.8 19.4 36.2 47.3 46.9 47.0 16.3 36.1 22.2 43.2 33.7 44.9 39.8 29.9 33.4 22.2 38.8 36.3 34.5

LSDA7k FCN-32s (AlexNet) 74.6 17.1 16.1 9.6 7.7 18.5 10.4 27.3 20.8 7.3 9.9 5.5 19.0 12.7 8.5 19.3 14.8 15.2 12.7 20.5 15.2 17.3

Table 16.6: Semantic Segmentation Results (mean IU%) for PASCAL 2012 validation

set.

The per-category results of our method on the PASCAL 2012 validation set as compared
to two state-of-the-art weakly trained semantic segmentation models is shown in Table 16.6.
Not surprisingly, our LSDA7k FCN-32s underperforms these methods. No doubt adding the
multiple instance loss of [142] or the object constraints of [141], while training directly on
the PASCAL dataset would further improve our method. The purpose of these experiments
is to give the reader an accurate picture of how well our large scale model performs at pixel
level annotation without any tuning to the new situation.

We next show qualitative segmentation segmentation results across the fine-grained 7404
categories of our LSDA7k FCN-32s network in Figure 16.93 and compare against the base-
line Classification 7K FCN-32s network. We find that often the segmentation masks from
our LSDA network are more precise (see “American egret” example) and the top scoring
predicted class is often more accurately labeled. For example, the bottom image is labeled
as “air conditioner” by the classification network and correctly as “venetian blind” by our
network. These category models were trained without ever seeing any associated pixel-level
annotations and only potentially see bounding box annotations for related classes (ex: a
“dog” bounding box may be used in training but not a “dalmation”). We expect that
further adaptation with a multiple instance loss or given a small amount of pixel-level se-
mantic segmentation training data would further refine our models producing tigher object
localization.

3The full network without the mapping layer to pascal 20 categories.

CHAPTER 16. EXPERIMENTS 130

Figure 16.9: We show here qualitative semantic segmenation results comparing our LSDA7k
FCN-32s network with the baseline Classification 7k FCN-32s network. Each row shows
(from left to right) a test image, predicted heatmap of top scoring class from the classification
network, rough segmentation from the classification network, predicted heatmap of the top
scoring class from our LSDA network, and the corresponding rough segmentation from the
LSDA network. Each segment mask is obtained using a single fixed threshold across all
classes (e5/6) and for both methods. These examples are selected to illustrate segment quality
when the predicted label is reasonable. Although segment quality is far from perfect, it is
impressive given that only full-image ground truth labels were available for these categories.

131

Chapter 17

Summary

We have presented an algorithm that is capable of transforming a classifier into a detector.
Our multi-stage algorithm uses corresponding weakly labeled (image-level annotated) and
strongly labeled (bounding box annotated) data to learn the change from a classification CNN
network to a detection CNN network, and applies that di↵erence to future classifiers for which
there is no available strongly labeled data. We then further demonstrate that our adapted
detection models can be run fully convolutionally to produce a semantic segmentation model.

Our method jointly trains a feature representation and detectors for categories with only
weakly labeled data. We use the insight that strongly labeled data from auxiliary tasks can
be used to train a feature representation that is conducive to discovering bounding boxes
in weakly labeled data. We demonstrate using a standard detection dataset (ILSVRC13
detection) that our method of incorporating the strongly labeled data from auxiliary tasks
is very e↵ective at improving the quality of the discovered bounding boxes. We then use
all strong labels along with our discovered bounding boxes to further refine our feature
representation and produce our final detectors. We show that our full detection algorithm
significantly outperforms both the previous state-of-the-art methods which uses only weakly
labeled data, as well as the algorithm which uses strongly labeled data from auxiliary tasks,
but does not incorporate any MIL for the weak tasks.

We show quantitatively that without seeing any bounding box annotated data, we can
increase performance of a classification network by 50% relative improvement using our
adaptation algorithm. Given the significant improvement on the weakly labeled categories,
our algorithm enables detection of tens of thousands of categories. We produce a 7.6K
category detector and have released both code and models at lsda.berkeleyvision.org.

Our approach significantly reduces the overhead of producing a high quality detector.
We hope that in doing so we will be able to minimize the gap between having strong large-
scale classifiers and strong large-scale detectors. Further we show that large-scale detectors
can be used to produce large-scale semantic segmenters. We present semantic segmentation
performance for the large scale model on PASCAL VOC with a manual mapping from the
7404 weakly labeled object categories to the 20 categories in the PASCAL dataset. For
future work we would like to experiment with incorporating some pixel-level annotations for

CHAPTER 17. SUMMARY 132

a few object categories. Our intuition is that by doing so we will be able to further improve
our large-scale models with minimal extra supervision.

133

Part VI

Adapting Across Visual Modalities

134

Chapter 18

Depth Modality

18.1 Introduction

RGB and depth images o↵er di↵erent and often complementary information. In fact, recent
work has shown that the two image modalities can be used simultaneously to produce better
recognition models than either modality alone [71, 183, 182].

Accurate object detection is an essential component for many robotic tasks like mapping,
motion planning, grasping and object manipulation. This has motivated the use of depth
information from commodity RGB-D sensors to improve object recognition performance [70,
109, 108, 171]. Similarly, object detection is crucial for other commercial applications like
surveillance and self-driving cars for which a depth sensor may not always be available.
When depth sensory information is available at both training and test time, we refer the
reader to previously proposed fully supervised algorithms.

In this part, we focus our study on adaptation across the RGB and depth modality
representations. In particular, we consider two di↵erent and relevant problem statements.
In Chapter 19 we consider the scenario where annotated depth information is missing for
the categories we would like to detect at test time and so we present an algorithm to learn a
generic, category agnostic depth representation which may be used together with a category
specific RGB representation at test time. This problem statement is particularly useful
to produce a large scale object detector which may utilize depth information at test time
without requiring fully supervised training.

In Chapter 20, we consider the scenario where we use available annotated depth training
images as side information by which we may improve a test time RGB detector. We learn an
additional RGB representation which hallucinates mid-level depth representations, thereby
encoding some of the complementary information that would be extracted from the depth
image. This approach can be immediately applied to any RGB model to improve the test
time performance when an RGB only camera is available during deployment.

CHAPTER 18. DEPTH MODALITY 135

18.2 Prior Work

We review three major bodies of research relevant to our work here, multi-modal and multi-
domain adaptation techniques, techniques for generating region proposals and object detec-
tion with RGB-D images.

Region Proposals We note that many top-performing supervised object detection meth-
ods [59] and weakly supervised methods [163, 85] rely on a good set of bottom-up bounding
box object candidates. Object proposal generation has been an active area of research in
computer vision in recent years [4, 102, 197, 178]. Given the importance of good region
proposals [86], naturally people have studied the problem of using depth images to improve
the quality of object proposals [119, 71]. Gupta et al.[71] use depth information to obtain
improved contours from RGB-D images, and use this in a multi-scale combinatorial grouping
framework [4] to report great improvements over RGB only methods, obtaining the same
recall with an order of magnitude fewer regions as compared to RGB only methods.

RGB-D Detection Depth and RGB modalities often o↵er complementary information.
Prior work has made use of this fact by producing detectors which take as input paired RGB
and depth modalities to improve detection performance over the RGB only model [109, 165,
108]. Many of these methods do so by introducing new depth representations [90, 101,
172, 190, 183], most recently by adding an additional depth network representation into a
convolutional network architecture [71, 70, 182].

[90, 101, 172, 190] propose extensions to deformable part based models [52] to compute
additional features from the depth image, and report performance improvements over just
using the RGB image. Song and Xiao [165] design rich features on the depth images while
Gupta et al.[71] proposed a novel geocentric embedding for learning features from depth
images, and both these methods report great improvements over previous works. While all
of these methods report significant improvements over RGB-only methods, they all require
bounding box annotations to train their models.

In Chapter 19, we will build o↵ the ideas of LSDA (Part V) to allow us to adapt a CNN
model trained for one task, which has plentiful training data, to perform a di↵erent test time
task which has limited training data. Our work presented in Chapter 20 is inspired by RGB-D
detection approaches, which successfully learn complementary depth feature representations.
Therefore, we learn such representations at training time and learn to transfer information
from the depth representation to an RGB only model through modality hallucination. We use
depth side information at training time to transfer information through a new representation
to our test time RGB model.

Transfer Learning. Our work is related to transfer learning and domain adaptation which
learns to share information from one task to another. Classical approaches consider learning
to adapt across distributions, through some combination of parameter updates [7, 40, 83] and

CHAPTER 18. DEPTH MODALITY 136

transformation learning [104, 63]. Christoudias et al. [27] learned a mapping to hallucinate
a missing modality at training time, but was only shown with weak recognition models.
Along these lines a transformation learning approach was recently introduced to use depth
information at training time to inform RGB test time detection by learning transformations
into a common feature representation across modalities [24]. In contrast to our approach,
this paper learned a single representation for the joint modality space, while our work focuses
on learning an additional RGB representation which is informed during training by the depth
data. Such modality hallucination was explored in [166], which introduced a fusion approach
which was able to fill in a missing modality.

Transferring Information Across Tasks Multi-modal deep learning architectures have
been explored previously in a generative context [134, 167], and parallel convnet architec-
tures have been previously explored in the context of Siamese network learning [23, 26].
Given the ease of collecting annotations for an image classification task, as opposed to an
object detection task, there have been many techniques proposed to train detectors from
weak labels [163, 3, 2, 183]. These method are notoriously hard to optimize and must be
trained independently for each detection category. In Part V we proposed to transfer generic
information from CNN based detectors to transform CNN classifiers into object detectors.
Although e↵ective, it was limited to transferring information between RGB models. Other
approaches have been proposed to transfer generic information across modalities [27], but
have only been shown with weak detection models.

Learning using side information. Our problem can also be viewed from the learning
with side or privileged information perspective. This is when a learning algorithm has
additional knowledge at training time, whether meta data or in our case an additional
modality. One then uses this extra information to inform training of a stronger model than
could be produced otherwise. The theoretical framework was explored in [179] and a max-
margin framework for learning with side-information in the form of bounding boxes, image
tags, and attributes was examined in [155], while Shrivastava and Gupta [156] showed how
surface normals at training time could produce detection improvement within the DPM
framework.

Network transfer through distillation. Most related to our work is the concept of
network distillation and its extensions. Hinton et al. [74] and concurrently Ba et al. [8]
introduced the idea of model compression and fast transfer of information from one convo-
lutional network to another. Essentially, the output from one network is used as the target
probability distribution for a new network. This was shown to reduce training time of a
new network and in some cases reduce the number of parameters needed in order to achieve
equivalent performance. This approach was further applied for transferring task correlation
across domains, as discussed in Chapter III. Wang et al. [184] transfered information across
networks without labels by used a ranking loss across video frames to learn a deep represen-

CHAPTER 18. DEPTH MODALITY 137

tation which mapped patches from the same track closer together than patches from distinct
tracks.

Our approach can also be seen as using distillation to learn representations on RGB
images by transferring supervision from paired depth images, but we employ joint training
instead of staged training as was used in [69] for supervision transfer. In contrast to [69], our
focus is di↵erent, we are studying the problem of enriching RGB representations using depth
as side information. We show the result that learning representations using depth as side
information in this manner can lead to representation which when used in conjunction with
representations learned on ImageNet lead to boosts in performance for recognition tasks like
object detection.

138

Chapter 19

Limited Depth Training Data

19.1 Introduction

Most well performing methods rely on Convolutional Neural Networks (CNNs) to learn
features for depth images and require a large amount of annotated examples to be e↵ective.
Numerous e↵orts in the vision community over the last 15 years have led to the development
of large scale RGB datasets [35, 49, 120], which have enabled huge progress on a variety of
problems. However, while labeled RGB data is currently available for hundreds of categories
with strong annotations and for thousands with weak annotations, the available labeled
depth data is currently limited to tens of categories.

At the same time, the introduction of low cost and easy to use RGB-D image capturing
systems has enabled many robotic setups to have access to both RGB and depth information
during operation. Current techniques require bounding box annotations to train object
detectors and limit use of depth images to categories for which such annotations exist. Thus,
even though a depth sensor is available at test time, researchers are forced to use RGB-only
detectors for most object categories they may want to study. This situation presents us
with an interesting question: are detailed bounding box annotations for all object categories
necessary to enable improved test time recognition using additional modalities. Or is there
a way to utilize the vast amounts of labeled RGB data already available, along with limited
labeled depth data, to train object detectors which can use RGB-D images at test time to
boost performance over an RGB detector, even for objects with no labeled depth examples?

In this work, we address this question and propose a transfer approach which leverages
labeled RGB-D data for some categories (denoted as auxiliary categories) to build RGB-D
object detectors for additional categories for which we only have RGB training data (see
Figure 19.1). We do this by fusing mid-level representations from depth and RGB images.
This fused mid-level representation can be used with RGB-only classifiers to improve the
quality of the RGB detector.

We evaluate our technique on the challenging NYUD2 dataset and our experiments show
that we are able to e↵ectively adapt RGB detectors into RGB-D detectors. These RGB-D

CHAPTER 19. LIMITED DEPTH TRAINING DATA 139

Interactive Adaptation of Real-Time Object Detectors

Daniel Goehring1, Judy Hoffman2, Erik Rodner3, Kate Saenko4 and Trevor Darrell1,2

Abstract— In the following paper, we present a framework for
quickly training 2D object detectors for robotic perception. Our
method can be used by robotics practitioners to quickly (under
30 seconds per object) build a large-scale real-time perception
system. In particular, we show how to create new detectors on
the fly using large-scale internet image databases, thus allowing
a user to choose among thousands of available categories to
build a detection system suitable for the particular robotic
application. Furthermore, we show how to adapt these models
to the current environment with just a few in-situ images.
Experiments on existing 2D benchmarks evaluate the speed,
accuracy, and flexibility of our system.

I. INTRODUCTION

The ability to quickly program an interactive robotic
system to recognize large numbers of object categories
is desirable for numerous applications including eldercare,
inventory management, and assembly operations. However,
robust real-time training and detection of large numbers of
object models remains a key challenge problem in machine
vision.

In recent years, remarkable progress has been made to-
wards large scale object recognition, exploiting web-based
annotated datasets including ImageNet [1], PASCAL [2],
LabelMe [3], and SUN [4]; recognition of thousands of cate-
gories has been demonstrated in the ILSVRC challenge [1].
While bottom-up segmentation schemes are sometimes vi-
able, operation in cluttered real world conditions calls for
category-level detectors that perform multi-scale sub-window
scans over the image to detect a category of interest [5], [6].

Deformable Part Models (DPM) [5] are among the best
performing methods in challenges that rigorously test de-
tection performance in difficult conditions, e.g., PASCAL
VOC Challenge [2]. Implementations with efficient inference
schemes exist [7] but are limited to models trained offline
using a computationally expensive training process and a
fixed set of categories (e.g., the 20 PASCAL objects). At
the extreme, large numbers of such a priori models could
be pre-computed for all of ImageNet, or for typical search
phrases [8]. In this paper, we show how to train and adapt de-
tection models quickly and on-demand, allowing the robotics
user to customize the perception system to the particular
needs of the application.

1International Computer Science Institute (ICSI), Berkeley, CA, USA
goehring@icsi.berkeley.edu

2EECS, University of California at Berkeley, Berke-
ley, CA, USA judyhoffman@berkeley.edu,
trevor@eecs.berkeley.edu

3Friedrich Schiller University of Jena, Germany
erik.rodner@gmail.com

4EECS, University of Massachusetts at Lowell, Lowell, MA, USA
saenko@eecs.uml.edu

Fig. 1. Overview of our interactive object category learning and detection
approach.

Unfortunately, models trained on large-scale datasets col-
lected from the web often suffer in comparison to models
trained from in-situ data in many domains [9]. The con-
ventional alternative—requiring exhaustively labeled training
instances in an environment—is overly burdensome and not
necessary. Techniques for domain adaptation [10], [11] com-
bine examples from a source domain with a small number
of examples from the actual test environment, but require
an expensive training step. In this paper, we develop a near
real-time solution for adapting models from web sources to
the test environment.

Our key innovation is the use of a fast approximate training
scheme, based on the Whitened Histogram of Oriented gra-
dients (WHOG) classifier model recently presented in [12].
This method provides orders of magnitude faster training
of scanning window models than previously possible with
conventional SVM-based training schemes, and facilitates
training of models on-the-fly in target environments where
there is insufficient labeled data to train a part-based model1.

1But see [13] for a method that can train a WHOG-based model with
parts, albeit more slowly than the model used in this paper.

RGB Images Depth Images
(for a subset of categories)

Train RGB Net Train Depth Nettransfer weights

Joint RGB-d Net

lamp

pillow
bed

night-stand

Figure 19.1: Given labeled depth images for a handful of categories we adapt an RGB object
detector for a new category such that it can now use depth images in addition to RGB images
at test time to produce more accurate detections. We do this by fusing information across
modalities and use the available labeled depth data to extract mid-level depth representa-
tions which can be processed into semantic class labels for improved test time recognition
performance on all categories of interest.

detectors can e↵ectively leverage depth data at test time and we observe a 21% relative
improvement over an RGB-only detector. Note that this was done without using any depth
training data for the evaluated categories. We believe that our technique will facilitate the
transfer of progress made in computer vision to fields like robotics.

19.2 Multimodal Architecture with Generic Depth
Information

In this section, we describe our method for learning object detection models that use depth
information from auxiliary categories to improve test-time performance for a new category.

We use L to denote the set of auxiliary categories for which we have annotated RGB-D
data (bounding boxes around instances of the object in RGB-D scenes). We use U to denote
the set of categories for which we only have labeled RGB data (again bounding boxes around

CHAPTER 19. LIMITED DEPTH TRAINING DATA 140

instances of the object in RGB scenes). Our goal is to leverage depth representations learnt
by training RGB-D detectors for auxiliary categories L to adapt RGB object detectors for
categories U to RGB-D input, that is they can now start using RGB-D input and potentially
generate better output.

Intuitively, our method uses labeled depth training data for auxiliary categories L to
learn a mid-level representation for depth images, which can be combined with mid-level
representation from RGB images at test time. This mid-level fusion of representations can
be used to adapt and improve a RGB object detector for the set of categories U . The
resulting RGB-D detector is able to utilize the depth data provided at test time to improve
detection, without ever being trained on any depth data for categories U .

Most state-of-the-art object detection models follow a two stage approach:

1. Computing region proposals: These are bounding boxes on the image which have high
overlap with objects in the image.

2. Scoring region proposals: This is typically done by using CNNs [59, 72, 136, 170].
CNNs learn hierarchical feature representations in an end-to-end manner.

Our proposed technique incorporates depth information into both stages of this pipeline.
For region proposals, we experimented with an adaptation of Edge Boxes [197] to depth
images and RGB-D MCG [71]. We found RGB-D MCG to perform better and hence use
these.

Next, we describe our technique for training multi-modal CNN based architectures with
incomplete training data from one modality. In our case, we have complete RGB training
data and limited depth training data.

Incorporating Depth into the CNN Representation

Our key insight is to fuse representations from RGB and depth images at an appropriate
mid-level. Given a pair of RGB and depth images of a scene, the visual concepts depicted in
both images are the same, though the pixel values may di↵er significantly. This motivates a
processing pipeline which allows independent domain specific processing to arrive at a com-
mon mid-level representation, which can then be processed domain agnostically to obtain
the desired semantic output. Thus, the domain specific learning can happen in the lower lay-
ers. These lower layers are often category agnostic (but domain specific) and can be trained
e↵ectively using data from a small set of categories, and can then be used with category
specific but domain agnostic higher layers trained in a di↵erent domain or modality. Recent
work on analyzing CNN architectures [113] in-fact shows quantitative evidence towards do-
main specific lower layers and task or category specific higher layers. To operationalize these
findings, we use labeled RGB-D data from categories L to learn the domain specific but
category independent lower layers and we use category specific but domain agnostic higher
layers to obtain detectors for categories which lack labeled data in one of the modalities (U).

CHAPTER 19. LIMITED DEPTH TRAINING DATA 141

rgb
conv1

merge

Cross-Modal Adaptation for RGB-d Detection

rgb
conv5

rgb
fc6

depth
conv1

depth
conv5

depth
fc6

rgb
fc7

rgb
fc8

Shared category
specific upper layers

Modality specific
lower layers

all

Figure 19.2: Our CNN architecture. We have parallel modality-specific lower layers and
merge the two branches at a semantically meaningful higher layer.

Our proposed multi-modal architecture is depicted in Figure 19.2. We work with the
popular AlexNet architecture [103]. AlexNet has five convolutional layers, three max pooling
layers, and three fully connected layers. We use this architecture as a starting point for
both the RGB and depth branches. Our insights about mid-level fusion and our training
procedure are independent of the base CNN and should naturally extend to other CNN
architectures.

It has been shown that the activations from layers fc6 and fc7 (the fully connected layers)
produce semantically meaningful embeddings [40, 13]. We thus experimented with various
fuse points in the fully connected layers, and found that fusing at fc6 worked better than
both spatial fusion at pool5 and late fusion after fc7 (Section 19.3). For fusion we average
the fc6 activations, after relu, of both branches and connect them with the 4096-dimensional
fc7 layer, which is in turn connected to our final fc8 classifiers. We experimented with both
average and concatenation as fusion techniques and found average to be slightly more robust.

Sequential Fine-Tuning

With the network structure determined, we now describe our method for training the network
parameters. Since we lack depth training data for all categories in U , we cannot näıvely fine-
tune the full network. Instead, we propose a sequential fine-tuning procedure whereby the
parameters of the RGB and depth networks are learned independently using all available
labeled data from each modality.

Our training procedure is illustrated in Figure 19.1. We begin by training an RGB
network (with AlexNet architecture), using labeled RGB data from all categories (U [L).
We follow the standard practice of initializing this network from one that was pre-trained
on the ImageNet dataset [35] for the task of image classification [40].

CHAPTER 19. LIMITED DEPTH TRAINING DATA 142

Next, we would like to produce an identical architecture that uses depth input in the form
of an HHA encoding [71] (which encodes a depth image geocentrically using three channels:
horizontal disparity, height above ground, and angle between the pixel’s local surface normal
and the inferred gravity direction). However, since we only have depth training data for
categories in L, we can not fine-tune the network from scratch.

Instead, we begin by populating all the weights of our depth network using the fully
trained weights of our RGB network. By doing so, we initialize our depth network with
parameters which have been tuned to perform well on all categories of interest, and in
particular categories for which there is no depth training data. Additionally, initializing the
depth network with RGB weights enables a favorable alignment between the two networks
so they may be e↵ectively combined later.

We next fine-tune the depth network on all available depth training data, allowing it to
adapt to the new depth modality. Fine-tuning from RGB to depth HHA images is possible
because the two modalities have similar structures [71] and higher level semantic information
(e.g. object boundary information) is present in both.

Finally, after both the RGB and depth networks have been fine-tuned, we produce the
final multi-modal network parameter values. For layers before the merge point, we transfer
the weights from the RGB and depth networks directly to the corresponding weights of our
architecture. For all layer weights above the merge point, we use the RGB model weights.
This corresponds to reversing the upper depth weights back to their initialization point. We
do this since the RGB parameters were learned using all labels for the portion of the model
which processes mid-level representations into the final semantic outputs as opposed to the
trained depth layers which have no recognition of the held out categories in U .

19.3 Experiments

Dataset and Setup

We evaluate our algorithm with the NYUD2 dataset [158], using the standard split of 795
training images and 654 testing images. The split is selected such that images from the same
scene do not co-occur in both sets. For all our experiments, we use annotations of the 19
major furniture categories: bathtub, bed, bookshelf, box, chair, counter, desk, door, dresser,
garbage-bin, lamp, monitor, night-stand, pillow, sink, sofa, table, television, and toilet.

For all algorithms we use RGB-D MCG proposals [71]. MCG [4] generates a multi-scale
hierarchical segmentation which is then used to generate region proposals. The proposals
are then ranked by random forest regressors trained on features computed from the image
and the region shape. Gupta et al.[71] generalized this to RGB-D images by using improved
edge maps [71, 39, 68] and using features from the depth image in addition to features from
the RGB image and the region shape for re-ranking the proposals. RGB-D MCG produces
state-of-the-art region proposals for RGB-D images and we use these for our experiments.

CHAPTER 19. LIMITED DEPTH TRAINING DATA 143

method modality b
at

h
tu

b

b
ed

b
oo

k
sh

el
f

b
ox

ch
ai

r

co
u
nt

er

d
es

k

d
oo

r

d
re

ss
er

ga
rb

ag
e

b
in

la
m

p

m
on

it
or

n
ig

ht
st

an
d

p
il
lo

w

si
n
k

so
fa

ta
b
le

te
le

vi
si

on

to
il
et

m
ea

n

Girshick et al.(Fast R-CNN) [60] RGB 7.9 51.2 37.0 1.5 31.3 35.4 9.4 22.4 28.9 19.3 31.0 35.9 24.1 26.4 24.6 39.7 16.6 32.9 53.5 27.8

Our method merge fc6 RGB + aux D 9.7 64.1 37.4 2.1 40.2 44.8 11.9 21.7 39.2 27.8 35.4 46.8 40.2 36.8 27.9 48.4 22.8 35.5 49.0 33.8

Oracle merge fc6 RGB + D 4.7 73.3 45.6 3.6 45.2 54.6 16.8 26.1 47.1 34.9 40.8 49.7 51.7 41.6 39.3 55.7 27.3 48.5 64.4 40.6

Gupta et al. [70] RGB + D 39.4 73.6 38.4 5.9 50.1 47.3 14.6 24.4 42.9 51.5 36.2 52.1 41.5 42.9 42.6 54.6 25.4 48.6 50.2 41.2

Gupta et al. [71] + Fast R-CNN RGB + D 37.1 78.3 48.5 3.3 45.3 54.6 21.9 28.5 48.6 41.9 42.5 60.6 49.2 43.7 40.2 62.1 29.2 44.3 63.6 44.4

Table 19.1: RGB-D Detection (mean AP%) on NYUD2 test set: We compare our per-
formance against several state-of-the-art methods. All methods use the AlexNet architecture. To
report performance of our method ‘RGB + aux D’ for a particular category c, we use RGB data
from all 19 categories and depth data from the remaining 18 ‘auxiliary’ categories for training. We
see our method is able to improve performance on held out categories from 27.8% to 33.8%.

In addition, all variants of our algorithm as well as all baseline and state-of-the-art results
are reported using the AlexNet architecture, pre-trained with ImageNet RGB classification
data. For our detection pipeline, we use the recently proposed Fast R-CNN [60] algorithm.
We train both the RGB and depth networks each for 40,000 iterations with learning rate
0.001, momentum 0.9, and weight decay 0.0005 using the standard deep learning software
package, Ca↵e [92].

RGB-D Detection

We begin by evaluating our algorithm on the NYUD2 test set for the RGB-D detection
task [71]. Since we would like to understand the ability of our algorithm to produce an
RGB-D detection model when no depth data is available for direct training, we perform hold
one category out experiments. We perform 19 experiments where in the ith experiment we
remove labeled depth data corresponding to the ith category when training 1 (so the detector
has access to RGB data from all 19 categories and depth data from only 18 categories). We
then use these detectors to report the AP obtained on the ith category. The performance
obtained by our method is reported in Table 19.1 under the name ‘RGB + aux D’.

We compare against both the Fast R-CNN [60] RGB-only baseline as well as the state-of-
the-art RGB-D detection models from Gupta et al.([70] and [71] + Fast R-CNN as described
in [69]). Note that the later algorithms require full RGB and depth annotations and as such
serve as an upper bound performance for our detection scenario. For reference, we also train
our network using full RGB-D training data and report the performance as the oracle for our
method (see Table 19.2). This number is expected to be slightly lower than competing state-
of-the-art methods since our overall architecture ignores the semantic information learned in

1We do this by removing all bounding box proposals that overlap with the ground truth boxes for category
i by any amount, though due to the small dataset size we continue to use regions from the image which do
not overlap with the held out category. Note that a held out object may appear within the receptive field
of another completely non-overlapping positive object or background box proposal due to the large size of
pool5 receptive fields, but there is no supervision for the held-out category.

CHAPTER 19. LIMITED DEPTH TRAINING DATA 144

the highest layers of the depth network. This is necessary for the held out depth scenario,
but is limiting in the full annotation scenario.

Overall, our method achieves 33.8% mAP when averaged across each independent held
out category. In comparison RGB only model (but with the same MCG RGB-D proposals)
only obtains a mAP of 27.8%. This shows that our mid-level fusion of RGB and depth is
able to extract meaningful depth information which can be e↵ectively combined with the
RGB information to improve the eventual labeling function.

Ablation Study

In this section, we perform an ablation study on the architecture merge layer selection. For
this experiment we further split the training set into the standard train/val sets, training
with the train set and evaluating on the validation set. Table 19.2 reports results on the
NYUD2 validation data set for our algorithm while varying the merge point of the RGB and
depth networks. We select between the spatially aware pool5 layer and the higher, more
semantically meaningful, fully connected layers, fc6, fc7, and fc8 (for oracle only).

We run our algorithm using the same experimental setup of holding out depth training
data for one category at a time. For reference, we additionally report the performance of
the oracle full depth trained network using each of these merge point selections. We find
that merging the RGB and depth networks after fc6 provides the most benefit over using
the RGB-only network. Since the depth network was trained only on the auxiliary 18 object
categories, all category specific information which has been stored in the fc7 parameters
serves as a distraction when attempting to detect the held out category.

In contrast, the oracle network performs best when merged after fc8, in other words
a pure late-fusion approach. This is because the category specific parameters are relevant
for all categories we wish to detect and are complementary to the RGB category specific
parameters and aid the detection model at test time. Note that this is slightly di↵erent
than the performance for Gupta et al.[71] + Fast R-CNN reported in Table 19.1. In our
experiments the depth network was finetuned from the RGB network already finetuned on
NYUD2 RGB images, as opposed to Gupta et al.[71] + Fast R-CNN which was finetuned
from ImageNet classification weights.

Error Analysis

To investigate how our method uses depth to improve detection, we analyze the false positive
errors made by our RGB-D detectors as compared to the baseline RGB-only and oracle fully
supervised RGB-D detectors.

We know from Table 19.1 that our algorithm has fewer false positives overall than the
RGB baseline and has more false positives than the oracle fully supervised RGB-D model.
For further insight, we analyze the change in each type of false positives between our method
and the baseline and between the oracle and baseline methods (see Figure 19.3). More
precisely, for a given category, i, which has K ground truth instances in the test set, we look

CHAPTER 19. LIMITED DEPTH TRAINING DATA 145

method modality merge point b
at

h
tu

b

b
ed

b
oo

k
sh

el
f

b
ox

ch
ai

r

co
u
nt

er

d
es

k

d
oo

r

d
re

ss
er

ga
rb

ag
e

b
in

la
m

p

m
on

it
or

n
ig

ht
st

an
d

p
il
lo

w

si
n
k

so
fa

ta
b
le

te
le

vi
si

on

to
il
et

m
ea

n

Baseline [60] RGB - 9.2 44.1 11.6 1.4 24.4 25.0 6.8 17.8 15.0 18.6 18.1 42.1 25.3 16.3 19.6 21.0 13.6 35.5 58.5 22.3

Ours RGB + aux D pool5 8.4 50.2 3.4 2.1 26.8 25.7 3.6 10.0 23.9 33.5 14.1 38.7 36.1 23.3 20.1 28.8 14.8 31.6 61.6 24.0

Oracle RGB + D pool5 11.7 57.7 5.6 2.7 29.9 31.9 4.5 13.0 28.4 42.8 30.3 39.6 39.6 32.5 24.0 33.8 18.3 32.7 63.8 28.6

Ours RGB + aux D fc6 8.4 54.0 11.0 1.7 27.5 28.6 6.8 16.8 27.1 30.8 20.3 46.0 40.5 24.0 22.6 30.8 17.3 36.6 64.6 27.1

Oracle RGB + D fc6 14.3 66.1 16.9 3.0 36.4 39.3 6.8 20.2 31.9 39.2 31.6 45.1 48.1 32.8 28.6 38.9 22.9 37.7 69.1 33.1

Ours RGB + aux D fc7 4.7 54.3 6.3 1.1 26.4 26.4 5.7 9.3 27.6 21.9 15.2 44.2 35.6 15.6 8.8 28.8 16.3 35.8 54.0 23.1

Oracle RGB + D fc7 14.9 67.0 19.7 3.0 37.5 38.9 8.2 18.3 31.9 34.0 35.0 45.4 50.3 36.3 30.9 41.4 22.8 37.5 71.2 33.9

Oracle RGB + D fc8 15.4 70.6 21.6 3.7 37.4 38.2 8.8 17.4 31.1 34.4 36.7 43.6 50.7 37.5 30.2 40.4 22.9 38.1 71.5 34.2

Table 19.2: RGB-D Detection (mAP%) on NYUD2 val set: We compare various archi-
tecture merge points. All methods use the AlexNet architecture and hold depth training data out
for the category being studied. We find that merging after fc6 performs the best on this dataset
for the missing data setting. However, when all depth training data is available, late fusing at the
scores is the best option.

at the top K scoring regions across the test set from the category i detector from the baseline
RGB-only model, our model, and the oracle RGB-D model. For each model we compute the
percent of the top K detections which correspond to each type of false positives. We then
plot the di↵erence in this percentage between the baseline and our method and the baseline
and the oracle. For ease of viewing, categories are sorted per false positive type from least
improvement of our method to most improvement by our method.

By studying these changes in the false positives, some interesting trends emerge. For
instance, we find that our approach provides a relatively consistent improvement in localiza-
tion and confusion with other categories (most bars in the top row are greater than or close
to zero). In contrast, our method improves only 11/19 of the categories in confusion with
background and hinders performance for the other 8/19 categories. We see that the oracle
method provides improvement in confusion with background for almost all categories, which
indicates there is potential to further improve these types of errors when RGB-D training
data is available for the category of interest.

One interesting category is television, which has over a 15% reduction in the confusion
with background when using our algorithm over the RGB baseline, but simultaneously has
almost a 15% increase in the confusion with other category false positives. This is likely due
to the fact that monitor is another category available and since during depth training the
held out category television is not seen at the same time as the known category, monitor,
this makes it harder for our algorithm to disambiguate the two categories at test time. This
issue is mitigated with full supervision training of the depth net.

Finally, we show some qualitative examples of the improvements made by our approach.
We pick the two categories where our method improves the most and least over the baseline.
Figure 19.4 shows random images which contain bed and night-stand (categories where we
improve the most 12.9% and 16.1%) where the top scoring detection is a true positive for our
method and false positive for the baseline. Similarly in Figure 19.5 we show random images

CHAPTER 19. LIMITED DEPTH TRAINING DATA 146

Figure 19.3: We study the change in the type of false positives between baseline and our
method (top row) and the the change in the type of false positives between the baseline and
the oracle for our method (bottom row). We show here false positives due to localization
errors (red - left), confusion with background (green - center), and confusion with other
categories (blue - right).

containing toilets and doors (categories where we improve the least �4.5% and �0.7%) where
the highest scoring detection is a true positive for the baseline while it is false positive for
our method.

In Figure 19.4, we very clearly see the e↵ects of our method improving localization errors
as well as fixing confusion with other categories. Similarly, Figure 19.5, provides examples
where we begin to confuse with non-objects (background) for the toilet and door categories.
With the exception of one of the toilet examples (middle) which is simply a result of the
baseline region being just over threshold for overlap with ground truth to be considered a
true positive, while our method’s top scoring example was just under the threshold.

Large Scale RGB-D Detection

One of the main motivations behind our work is to enable enhanced RGB-D detection of
a large number of objects with no depth training data, for applications such as robotics.
We demonstrate the potential impact of our work by using our algorithm to extend the
released 7.6k RGB detector [85] into an RGB-D detector, and show qualitative results in
Figure 19.6. The LSDA [85] model was available only for RGB detection along with an RGB
region proposal method (selective search [178]). We show results for the model from [85]

CHAPTER 19. LIMITED DEPTH TRAINING DATA 147

Figure 19.4: Example detections on the NYUD2 test set where the top detection from our
method for the specified category is correct while the top detection from the RGB only
baseline is incorrect. Cyan boxes are from our method and yellow boxes are from the RGB
baseline.

Figure 19.5: Example detections on the NYUD2 test set where the top detection from the
RGB only baseline for the specified category is correct while the top detection from our
method is incorrect. Cyan boxes are from our method and yellow boxes are from the RGB
baseline.

CHAPTER 19. LIMITED DEPTH TRAINING DATA 148

RGB Model [85] RGB Model with RGB-D Proposals Our Method

bi−fold door: 5.0

bi−fold door: 5.1
person: 5.4 bi−fold door: 4.8 bi−fold door: 5.0person: 9.5 shower stall: 2.1person: 5.5

tv or monitor: 4.3

armoire: 5.1
chair: 5.5

tv or monitor: 4.5

credenza: 5.9 person: 6.0
chair: 1.9credenza: 2.5

person: 4.8

Figure 19.6: We use our algorithm to transform the publicly available 7.6k class RGB de-
tector [85] into an RGB-D detector. We show here detection results for all 7.6k categories
on example RGB-D images taken from two scenes in the Cornell activity dataset [169]. We
present top detections from the original RGB CNN with RGB selective search region pro-
posals (left), detections when using RGB-D MCG proposals (middle), and detections after
our proposed adaptation (right). Blue boxes are detections of the 200 ILSVRC categories,
while the red boxes are detections of the 7.4k categories corresponding to leaf nodes in the
ImageNet database. Our algorithm not only provides better localization, but even enables
extra categories to be detected.

in the left column. Next, we use the network parameters from the model from [85] along
with RGB-D MCG proposals, as used throughout our method – the results are displayed
in the center column. Finally, we produce a joint RGB-D network through our method of
mid-level representation fusion and show results for our algorithm in the right column.2 We
show results on images taken from two scenes in the Cornell activity dataset [169], which
contains categories not available during training on NYUD2 data, such as person.

After changing the region proposal mechanism to incorporate depth information, we see
significant improvement in object localization. Upon using our algorithm to transform the
RGB network into an RGB-D network, we see that false positives are reduced and new
objects are recognized.

2Note that these results were obtained using the publicly released LSDA R-CNN detector [85] and not
the Fast R-CNN detector that is used for the rest of the experiments. We expect similar results with the
Fast R-CNN based detector.

CHAPTER 19. LIMITED DEPTH TRAINING DATA 149

This qualitative result is highly encouraging as it demonstrates that our algorithm in-
corporates category invariant depth information that is generic enough to be useful with a
detector that was trained on separate tasks and in a di↵erent data source. For example,
people, shower stalls, and credenzas never appear in NYUD2 training annotations, where we
train our depth model. However, we are able to learn to e↵ectively combine the generic depth
and RGB processing of the lower layers and use the modified intermediate representation
as additional information for the category specific classification layer. This model was able
to be produced without further RGB training, meaning that our pre-trained RGB detector
could immediately be adapted to utilize depth information at test time. In the future we
plan to conduct a more quantitative study of this results.

150

Chapter 20

Limited Depth Test Data

20.1 Introduction

While RGB image capturing devices are pervasive, depth capturing devices are much less
prevalent for consumer applications. This means that many recognition models will need to
perform well on RGB images alone as input. We present an algorithm which uses available
paired RGB-d training data to learn to hallucinate mid-level convolutional features from an
RGB image. We demonstrate that through our approach we produce a novel convolutional
network model which operates over only the single RGB modality input, but outperforms
the standard network which only trains on RGB images. Thus, our method transfers infor-
mation commonly extracted from depth training data to a network which can extract that
information from the RGB counterpart.

Convolutional networks (ConvNets) have produced tremendous success on visual recog-
nition tasks, from classification [103, 159, 170], to detection [59, 152], to semantic segmenta-
tion [123, 196]. The standard approach for training these networks is to initialize the network
parameters using a large labeled image corpora (ex: ImageNet [35]) and then fine-tune using
the smaller target labeled data sources. While this strategy has been proven to be very
e↵ective, it o↵ers only one technique for learning representations for recognition and due to
the large parameter space of the network, runs the risk of overfitting to the nuances of the
small RGB dataset.

We propose an additional representation learning algorithm which incorporates side in-
formation in the form of an additional image modality at training time to produce a more
informed test time single modality model. We accomplish this by directly learning a modality
hallucination network which optimizes over the standard class and bounding box localization
losses while being guided by an additional hallucination loss which regresses the hallucination
features to the auxiliary modality features.

Due to its practicality, we consider the case of producing an RGB detector using some
paired RGB-D data at training time. In doing so, we produce a final model which at test
time only sees an RGB image, but is able to extract both the image features learned through

CHAPTER 20. LIMITED DEPTH TEST DATA 151

+DOOXFLQDWLRQ�/RVV��
UHJUHVV�PLG�OHYHO�

KDOOXFLQDWLRQ�WR�PLG�
OHYHO�GHSWK

FOV�DQG�
ORF�ORVV
5*%�+

FOV�DQG�
ORF�ORVV�
5*%�'

5*%�1HWZRUN

+DOOXFLQDWLRQ�1HWZRUN

'HSWK�1HWZRUN

5*%�,PDJH

'HSWK�,PDJH

FOV�DQG�
ORF�ORVV�
GHSWK

FOV�DQG�
ORF�ORVV�
5*%

FOV�DQG�
ORF�ORVV�

+

Figure 20.1: Training our modality hallucination architecture. We learn a multimodal Fast R-
CNN [60] convolutional network for object detection. Our hallucination branch is trained to
take an RGB input image and mimic the depth mid-level activations. The whole architecture
is jointly trained with the bounding box labels and the standard softmax cross-entropy loss.

finetuning with standard supervised losses as well as the hallucinated features which have
been trained to mirror those features you would extract if a depth image were present. We
demonstrate that our RGB with hallucination detector model outperforms the state-of-the-
art RGB model on the NYUD2 dataset.

20.2 Modality Hallucination Model

We present a modality hallucination architecture for training an RGB object detection model
which incorporates depth side information at training time. Our hallucination network learns
a new and complementary RGB image representation which is trained to mimic depth mid-
level features. This new representation is combined with the RGB image representation
learned through standard fine-tuning.

Figure 20.1 illustrates the training architecture for our hallucination model. We use
multi-layer convolutional networks (ConvNets) as our base recognition architecture which
have been shown to be very e↵ective for many di↵erent recognition tasks. Prior work on
RGB-D detection [71] has found success using a two channel model where RGB and depth
images are processed independently with a final detection score being the softmax of the
average of both predictions.

For our architecture we build o↵ of this same general model. However, we seek to share
information between the two modalities and in particular to use the training time privileged
depth modality to inform our final RGB only detector. To accomplish this, we introduce a

CHAPTER 20. LIMITED DEPTH TEST DATA 152

6RIWPD[
5*%�+

5*%�1HWZRUN

+DOOXFLQDWLRQ�1HWZRUN

5*%�,PDJH

Figure 20.2: Test time modality hallucination architecture.

third channel which we call the hallucination network (blue network in Figure 20.1). The
hallucination network takes as input an RGB image and a set of regions of interest and
produces detection scores for each category and for each region.

To cause the depth modality to share information with the RGB modality through this
hallucination network, we add a regression loss between paired hallucination and depth
layers. This choice is inspired by prior work which uses similar techniques for model distilla-
tion [74], task correlation transfer across domains [177], and supervision transfer from a well
labeled modality to one with limited labels [69]. Essentially, this loss guides the hallucina-
tion network to extract features from an RGB image which mimic the responses extracted
from the corresponding depth image. We will discuss the details of this loss and its opti-
mization in the next section. It is important that the hallucination network has parameters
independent of both the RGB and depth networks as we want the hallucination network
activations to match the corresponding depth mid-level activations, however we do not want
the feature extraction to be identical to the depth network as the inputs are RGB images
for the hallucination network and depth images for the depth network.

At test time, given only an RGB image and regions of interest, we pass our image through
both the RGB network and the hallucination network to produce two scores per category,
per region, which we average and take the softmax to produce our final predictions (see
Figure 20.2).

20.3 Architecture Optimization

In this section we describe the implementation and optimization details for our architecture.
At training time we assume access to paired RGB and depth images and regions of interest
within the image. We train our model one set of paired images at a time using the Fast
R-CNN [60] framework. The RGB and depth network are independently trained using the
Fast R-CNN algorithm with the corresponding image input. Next, the hallucination network

CHAPTER 20. LIMITED DEPTH TEST DATA 153

parameters are initialized with the learned depth network weights before joint training of
the three channel network. The choice of initialization for the hallucination parameters
is explored in Section 20.4. Note, that finetuning of the hallucination network with only
a softmax loss on the label space would be equivalent to the training procedure of the
RGB network. To facilitate transfer we must use an additional objective by introducing a
hallucination loss.

Hallucination Loss. We add the objective that activations after some layer, `, should be
similar between the hallucination and depth networks. In particular, we add a euclidean
loss between the depth activations AdNet

`

and the hallucination activations AhNet

`

so that the
hallucination loss for the given layer is defined as:

L
hallucinate

(`) = k�(AdNet

`

) � �(AhNet

`

)k2

2

(20.1)

where �(x) = 1/(1 + e�x) is the sigmoid function.
This loss can be applied after any layer in the network and can be optimized directly.

However, we are trying to learn an asymmetric transfer of information, namely we seek to
inform our RGB hallucination model using the pre-learned depth feature extraction network.
Therefore, we set the learning rates of all layers lower than the hallucination loss in the
depth network to zero. This e↵ectively freezes the depth extractor up to and including
layer ` so that the target depth activations are not modified through backpropagation of the
hallucination loss.

Multi-task Optimization The full training of our model requires balancing multiple
losses. More precisely we have 11 total losses, 5 softmax cross-entropy losses using bounding
box labels as targets, 5 Smooth L1 losses [60] using the bounding box coordinates as the
targets, and one additional hallucination loss which matches midlevel activations from the
hallucination branch to those from the depth branch. The 5 standard supervision and 5
bounding box regression losses operate over each of the three subnetworks, RGB, depth,
hallucination, independently so that each learns weights that are useful for then final task.
We then have 2 joint losses over the average of the final layer activations from both the
RGB-depth branches and from the RGB-hallucination branches. These losses encourage the
paired networks to learn complementary scoring functions.

For a given network, N, let us denote the softmax cross-entropy loss over category labels
as LN

cls

and the Smooth L1 loss over bounding box coordinate regression as LN

loc

. Then, the
total joint loss of our optimization can be described as follows:

L = �L
hallucinate

(20.2)

+↵
⇥
LdNet

loc

+ LrNet

loc

+ LhNet

loc

+ LrdNet

loc

+ LrhNet

loc

⇤

+�
⇥
LdNet

cls

+ LrNet

cls

+ LhNet

cls

+ LrdNet

cls

+ LrhNet

cls

⇤

CHAPTER 20. LIMITED DEPTH TEST DATA 154

method btub bed bshelf box chair counter desk door dresser gbin lamp monitor nstand pillow sink sofa table tv toilet mAP

RGB only [60] (A) 7.5 50.6 36.8 1.4 30.2 34.9 10.8 21.5 27.8 16.9 26.0 32.6 20.6 25.1 31.6 36.7 14.8 25.1 54.6 26.6

RGB ensemble (A-A) 10.5 53.7 33.6 1.6 32.0 34.8 12.2 20.8 34.5 19.6 28.6 45.7 28.5 24.4 31.4 34.7 14.5 34.0 56.1 29.0

Our Net (A-RGB, A-H) 13.9 56.1 34.4 1.9 32.9 40.5 12.9 22.6 37.4 22.0 28.9 46.2 31.9 22.9 34.2 34.2 19.4 33.2 53.6 30.5

RGB only [60] (V) 15.6 59.4 38.2 1.9 33.8 36.3 12.1 24.5 31.6 18.6 25.5 46.5 30.1 20.6 30.3 40.5 19.5 37.8 45.7 29.9

RGB ensemble (A-V) 14.8 60.4 43.1 2.1 36.4 40.7 13.3 27.1 35.5 20.8 29.9 52.9 33.5 26.2 33.0 44.4 19.9 36.7 50.2 32.7

Our Net (A-RGB, V-H) 16.8 62.3 41.8 2.1 37.3 43.4 15.4 24.4 39.1 22.4 30.3 46.6 30.9 27.0 42.9 46.2 22.2 34.1 60.4 34.0

Table 20.1: Detection (AP%) on NYUD2 test set: We compare our performance (pool5
hallucinate) against a Fast R-CNN [60] RGB detector trained on NYUD2 and against an ensemble
of Fast R-CNN RGB detectors. AlexNet [103] architecture is denoted as ‘A’ and VGG-1024 [60,
159] architecture is denoted as ‘V’. Our method outperforms both the RGB-only baselines and the
RGB ensemble baselines.

Balancing these objective is an important part of our joint optimization. For simplicity, we
choose to weight all localization losses equivalently and all category losses equivalently. This
leaves us with three parameters to set, denoted above as ↵, �, and �.

We set the category loss weights, � = 1.0, and then let the localization weights be a
factor of 2 smaller, ↵ = 0.5. Finally, to set the hallucination loss weight will depend on
the approximate scale of the loss function. This will vary based on the layer at which the
hallucination loss is added. For lower layers in the network, the loss tends to be larger.
Thus, a smaller value for � would make sense to avoid the hallucination loss dominating the
other objectives. We therefore use a heuristic that the contribution of the hallucination loss
should be around 10 times the size of the contribution from any of the other losses. For
example, if the contribution from a category loss is about 0.5, then the contribution from
the hallucination loss should be around 5. In practice, one can determine this by running a
few iterations of training and examining the losses.

Gradient Clipping In developing our model, we found that the optimization could be
susceptible to outliers causing large variations in gradient magnitudes for the hallucination
loss. One potential way to address this issue would be to set the loss weight very low on the
hallucination loss so that even when a large gradient appears the network optimization does
not diverge. However, this will limit the e↵ectiveness of the hallucination loss.

Instead, we have found that a more robust way to train with this euclidean loss is to use
gradient clipping. This simply means that when the total gradient (in terms of `2 norm) in
the network exceeds some threshold, T , all gradients are scaled by T / (total norm). Thus,
the e↵ective contribution of an outlier example is reduced since the large gradients will be
scaled down to the standard range. This approach is simple and already implemented in
many standard deep learning packages (ex: it involves a single line change in the Ca↵e [92]
solver file).

CHAPTER 20. LIMITED DEPTH TEST DATA 155

20.4 Experiments

We evaluate our model using a standard RGB-D detection dataset, NYUD2 [190]. The
NYUD2 dataset consists of 1449 labeled RGB-D images. The dataset is split into train (381
images), val (414 images), and test (654 images) sets. For our ablation experiments we train
our model using the train set only and evaluate our model on the validation set. For our
overall detection experiment which compares to prior work, we present results on the test
set for our algorithm trained using the combined trainval set.

Base Network. For the following experiments our base network architecture (used
for each of the RGB, depth and hallucination networks), is the single scale Fast R-CNN
modification to the AlexNet [103] architecture or the VGG-1024 architecture introduced
in [60] as a lower memory modification of VGG [159]. The RGB AlexNet network is initialized
with the Ca↵eNet [92] released weights, which were learned using ILSVRC12 [35] and the
RGB VGG-1024 network was initialized with the weights released with Fast R-CNN [60]. We
then finetune our RGB network on the NYUD2 dataset. We represent the depth images
using the HHA encoding introduced by Gupta et al. [71] and independently finetune the
depth network after initializing with the RGB weights.

Region Proposals. A Fast R-CNN architecture takes as input an image and its corre-
sponding regions of interest. To compute these regions of interest we use two di↵erent region
proposal algorithms. For the NYUD2 dataset we use multi-scale combinatorial grouping
(MCG) [4], which has been used in the past for this dataset as it is capable of incorporating
depth information into the proposal mechanism. We use the RGB-D version of MCG for
training all networks and then use the RGB version at test time. We found this to work
better than using RGB MCG for both training and testing by about 1-2%.

SGD Hyper-parameters. We optimize our network using the Ca↵e [92] learning frame-
work. We use a base learning rate of 0.001 and allow all layers of the three channel network
to update with the same learning rate, with the exception of the depth network layers below
the hallucination loss, which are frozen. We use a momentum of 0.9 and a weight decay
of 0.0005. We optimize our ablation experiments for 40K iterations and our full NYUD2
experiment for 60K iterations1 using a step learning rate policy where the base learning rate
is lowered by a factor of 10 (� = 0.1) every 30K iterations. Finally, we clip gradients when
the L2 norm of the network gradients exceeds 10.

NYUD2 Detection Evaluation

Table 20.1 reports performance of our full system with two di↵erent architecture on the
NYUD2 dataset. The two base architectures are either AlexNet (indicated as ‘A’) [103]
or VGG-1024 (indicated as ‘V’) [60, 159]. We train our initial RGB and depth networks

1Note that for one of the initial RGB AlexNet models we use the weights released with [69] which was
only trained for 40K iterations. We also note that in our experience training the RGB only AlexNet baseline
model for more than 40K iterations did not provide any benefit as it does for the joint hallucination model
and for the VGG-1024 architecture.

CHAPTER 20. LIMITED DEPTH TEST DATA 156

using the strategy proposed in [71], but use Fast R-CNN instead of RCNN as used in [71].
We then initialize our hallucination network using the depth parameter values. Finally, we
jointly optimize the three channel network structure with a hallucination loss on the pool5
activations. When our hallucination network is labeled with a particular architecture this
refers to the choice of the depth network and the hallucination network architecture and the
RGB architecture is chosen and indicated separately. In the next two sections we explore
our choice of initialization and at which layer to add a hallucination loss.

Initial Weights bathtub bed bshelf box chair counter desk door dresser gbin lamp monitor nstand pillow sink sofa table tv toilet mAP

RGB 7.5 50.4 9.9 0.9 26.2 24.9 5.8 15.8 13.0 29.8 12.0 43.1 20.9 14.7 17.9 25.3 15.1 32.5 59.1 22.4

depth 9.9 52.4 14.9 0.9 24.9 24.4 4.3 15.3 18.1 24.1 14.8 45.8 27.2 18.5 21.3 29.0 13.7 33.6 66.4 24.2

random 10.5 47.6 12.3 0.6 23.5 20.2 6.0 13.0 19.3 12.0 13.3 42.8 12.8 12.1 13.6 23.0 13.9 28.6 61.5 20.3

Table 20.2: RGB Detection (AP%) on NYUD2 val set: We compare intializing the hal-
lucination network by randomly initializing or by using the pre-trained RGB or depth parameter
values.

For each architecture choice we first compare against the corresponding RGB only Fast
R-CNN model and find that our hallucination network outperforms this baseline, with 30.5
mAP vs 26.6 mAP for the AlexNet architecture and 34.0 mAP vs 29.9 mAP for the VGG-
1024 architecture. Note that for our joint AlexNet method, A-RGB + A-H, we average the
APs of the joint model using each of the AlexNet RGB baseline models. As an additional
reference, the state-of-the-art performance of RGB-D detection algorithms on NYUD2 is
41.2 mAP [70], 44.4 mAP [71] when run with Fast R-CNN [60] and 47.1 mAP [69]. However,
these algorithms operate in the privileged regime with access to depth at test time, thus
they are able to achieve the highest overall performance.

It is well known that ensemble methods tend to outperform the single model approach.
For example, an ensemble of two ConvNets each initialized randomly and then trained using
the same data source, outperforms either model independently [67]. Since our method is
the combination of an RGB model trained using a standard supervised approach and an
RGB model trained using our depth hallucination technique, we additionally compare our
approach to an ensemble of standard trained RGB models. Table 20.1 reports the perfor-
mance both for an ensemble of two di↵erent AlexNet RGB models, the weights for which
were randomly initialized with di↵erent seeds before being pre-trained with ImageNet [35],
and for an ensemble of an AlexNet RGB model with a VGG-1024 RGB model. We find
in both cases that the RGB ensemble improves performance over the single RGB model,
while our hallucination model o↵ers the highest performance overall, with 14/19 categories
improving for the AlexNet comparisons to ensemble and 13/19 categories improving for the
VGG-1024 hallucination net comparisons to ensemble. This suggests that our hallucination
model o↵ers more benefit than a simple RGB ensemble.

While our method hallucinates mid-level depth features, other work has proposed halluci-
nating the pixel level depth from an RGB image. As an additional baseline, we have taken a
state-of-the-art depth estimation approach [121] and used the model to produce hallucinated
depth images at test time which can be used as input to the depth channel of our pre-trained

CHAPTER 20. LIMITED DEPTH TEST DATA 157

RGB-D detector. However, doing this performed worse than using our RGB model alone
(22% mAP vs 27% mAP) so we have omitted the results from Table 20.1. Note that we
do not fine-tune our detection model using the depth pixel hallucinations and thus a drop
in performance is likely due, at least in part, to the mismatch between the true depth used
at training time and the hallucinated depth images used at test time. We refer the inter-
ested reader to a related and more comprehensive investigation of pixel depth hallucination
by Eigen and Fergus [48] who replaced the true depth input into their network with their
hallucinated depths and normals and did fine-tune, yet still did not observe performance
improvements for the final semantic segmentation task.

In the next subsections we explore ablation studies and analysis on our hallucination
model. For all the following experiments we use the AlexNet RGB and hallucination archi-
tecture.

How to initialize the hallucination net?

One important parameter of training our model is how to initialize the hallucination network.
We explore three natural choices in Table 20.2, random initialization, initialization with the
RGB network parameter values, and initialization with the depth network parameter values.
Here we use RGB and depth networks trained using NYUD2 train set only and then we
use the NYUD2 validation set for evaluation of the di↵erent choices. We find that both the
RGB and depth initialization schemes outperform the baseline RGB only model (20.6% mAP
for this setting) and the random initialization model. The depth initialization model has
the highest mAP performance and higher AP than the RGB initialization model on 12/19
categories (plus 1 tied category). We thus choose to initialize our hallucination network in
all future experiments with the depth parameter values.

hallucination

layer bathtub bed bshelf box chair counter desk door dresser gbin lamp monitor nstand pillow sink sofa table tv toilet mAP

RGB only 4.9 45.5 10.9 1.3 21.5 23.6 5.4 14.5 12.7 17.4 9.4 40.9 17.2 14.9 19.9 19.2 14.0 32.5 66.3 20.6

pool1 12.0 54.0 17.9 1.1 24.5 23.6 5.0 15.2 16.3 12.7 13.3 40.0 24.7 16.6 20.5 29.6 14.9 27.4 55.3 22.3

pool2 8.4 50.7 13.5 1.0 24.2 26.0 6.6 13.1 13.8 17.8 11.7 40.7 21.8 15.0 20.5 22.4 15.2 27.2 59.7 21.5

conv3 8.8 52.5 13.2 1.0 25.6 26.2 3.3 13.2 14.9 17.0 16.2 41.6 22.2 20.2 22.9 24.6 17.2 37.4 65.6 23.3

conv4 9.7 51.2 12.9 1.0 26.3 26.8 6.9 17.4 16.7 22.0 12.4 43.2 15.5 16.4 24.0 23.5 16.2 34.2 64.2 23.2

pool5 9.9 52.4 14.9 0.9 24.9 24.4 4.3 15.3 18.1 24.1 14.8 45.8 27.2 18.5 21.3 29.0 13.7 33.6 66.4 24.2

fc6 10.3 47.2 12.0 0.6 21.7 20.0 5.9 12.8 13.8 20.5 11.8 34.4 16.3 13.1 14.8 27.3 16.1 28.8 60.5 20.4

fc7 3.3 49.4 12.7 0.8 24.1 21.8 4.8 15.2 16.8 11.7 10.0 43.4 18.7 14.2 20.6 25.2 14.4 29.5 63.1 21.0

fc8 4.2 50.7 13.9 0.9 23.8 23.6 5.4 15.5 18.0 13.2 13.3 42.0 20.9 15.8 22.3 23.8 14.5 29.6 63.6 21.8

Table 20.3: RGB Detection (AP%) on NYUD2 val set: We compare hallucinating di↵erent
mid-level features with our method.

Which layer to hallucinate?

Another important parameter of our method is to choose which mid-level activations the
hallucination loss should regress to. In Table 20.3 we systematically explore placing the

CHAPTER 20. LIMITED DEPTH TEST DATA 158

method chair dining table sofa tv mAP

RGB 17.5 13.0 10.4 26.7 16.9

RGB+H 19.5 17.4 19.3 27.1 20.8

RGB (pascal ft) 33.1 63.5 49.1 62.7 52.1

RGB (pascal ft) + H (no ft) 34.3 61.9 53.3 63.9 53.4

Table 20.4: RGB Detection (AP%) on PASCAL voc 2007 test set: We compare running
our hallucination network on a new dataset. We compare the RGB only vs hallucination network
of NYUD2 by first directly applying the networks on pascal. Then we finetune the RGB model
on pascal data (leaving the hallucination portion fixed) and continue to find that the nyud trained
hallucination model provides performance improvements.

hallucination loss after each layer from pool1 to fc8. We found that overall adding the
hallucination loss at a mid to lower layer improved performance the most over the RGB only
baseline network.

The highest overall performance was achieved with the hallucination loss on the pool5
activations. However, the result was not uniformly distributed across all categories. For
example, bathtub received a noticeably greater performance increase with a hallucination
loss at pool1.

We also experimented with adding the hallucination loss at multiple layers in the network,
but did not find this to be more e↵ective than pool5 alone.

Does hallucination help on other datasets?

We next study the application of our hallucination network on the Pascal [49] dataset (VOC
2007) which lacks depth data. First, we directly evaluate both the NYUD2 RGB-only
network and our NYUD2 RGB plus hallucination network on the four overlapping categories
in Pascal. Results for this experiment are reported in the first two rows of Table 20.4.

We find that our hallucination network provides 3.9% mAP improvements across these
four Pascal categories when compared to the RGB-only baseline (from 16.9 to 20.8 mAP).
Additionally, we note that there is a dataset shift between Pascal and NYUD2 which causes
the overall performance of both methods to be lower than that of a network which was
explicitly trained on Pascal. Therefore, we also explore further fine-tuning on the available
Pascal VOC 2007 trainval set. This set only contains RGB images so we may only further
fine-tune the RGB network.

This means that the dataset shift is mitigated in the RGB network but not in the hal-
lucination network. Nevertheless, we find that the combination of our Pascal fine-tuned
RGB network with our NYUD2 trained hallucination network continues to outperform the
RGB-only baseline, achieving 53.2 mAP instead of 52.1 mAP and higher performance on
3/4 categories.

CHAPTER 20. LIMITED DEPTH TEST DATA 159

This indicates that the hallucination technique provides benefit beyond the NYUD2
dataset and we expect that the gains from the hallucination network would only become
larger if we were able to adapt the parameters to the new dataset directly.

What did the hallucination net learn?

Regression losses can often be di�cult to train together with the supervised cross-entropy
loss. We first verify that our hallucination loss is e↵ectively learning by examining the
training loss vs iteration and confirming that the hallucination loss does indeed decrease.

We next verify that this training loss decrease translates to a decreased loss on the test
data and hence a better depth activation alignment. To this end, we examine the network
outputs on the NYUD2 test set. We first compute the hallucination loss value across the
entire test set before and after learning and find that the value decreases from 216.8 to 94.6.

We additionally compare the euclidean distance between the hallucination activations
and the RGB activations and find that after learning, the hallucination and depth activa-
tions are closer than the hallucination and RGB activations. Specifically, for the case where
the hallucination network was initialized with RGB weights, the hallucination network acti-
vations start out being same as the RGB network activations but over time become closer to
the depth network as can be seen from the post-training euclidean losses of H-RGB =113.0
while H-HHA=97.5.m

As an example, Figure 20.3 shows roi-pool5 activations from corresponding regions in the
test image which have highest final detection scores. The visualization shows all 256⇥ 6⇥ 6
roi-pool5 activations and corresponding region label. This figure illustrates the di↵erence be-
tween the RGB activations learned through our approach and through the standard learning
procedure.

Finally, we know from the detection experiments in the previous section that training
with the hallucination loss o↵ers performance improvements over a single RGB model or
an ensemble of RGB models trained without the depth hallucination loss. However, it’s
important to know how the network is improving.

Therefore, in Figure 20.4, we show randomly sampled images from the NYUD2 test set
where the top scored region from our hallucination model corresponds to a true positive and
the top scoring region from the single RGB baseline corresponds to a false positive. Our
method output is illustrated with a green box and the baseline is illustrated with a red box.

CHAPTER 20. LIMITED DEPTH TEST DATA 160

Figure 20.3: Roi-pool5 activations on three top scoring regions from an NYUD2 test set
image. This figure illustrates the di↵erence between the activations from the three networks.

CHAPTER 20. LIMITED DEPTH TEST DATA 161

Figure 20.4: Example Detections on the NYUD2 test set where our RGB hallucination
network’s (green box) top scoring detection for the image is correct while the baseline RGB
detector’s (red box) top scoring detection is incorrect.

Figure 20.5: Example Detections on the NYUD2 test set where our RGB hallucination
network’s (green box) top scoring detection for the image is a false positive while the baseline
RGB detector’s (red box) top scoring detection is a true positive.

162

Chapter 21

Summary

We have presented an algorithm that can transform an RGB object detector into a RGB-D
detector which can use depth data at test time to improve performance. Our multi-modal
CNN architecture combines mid-level RGB and depth representations to incorporate both
modalities into the final object class prediction. This mid-level fusion enables us to train
RGB-D detectors without needing complete RGB-D data, unlike most conventional CNN
based RGB-D object detection algorithms.

We present experiments showing that our approach provides a 21% relative improvement
in performance over just using an RGB detector for categories without no depth data avail-
able at training time. We provide insight on how our system helps improve object detection
compared to RGB-only detection. Finally, we use our algorithm to adapt the 7.6k category
detectors from [85] into a multi-modal RGB-D version, and show qualitative results with
this large scale depth detector.

Experiments thus far have been presented using the two stage region proposals and CNN-
based feature computation per region, as introduced in R-CNN [59] and Fast R-CNN [60].
Our final goal is to provide a system which can be practically used in a robotics setting. In
the future we will work towards making our detectors faster possibly with the use of end-to-
end CNN object detection systems like Faster R-CNN [145] and more accurate with use of
better CNNs for depth images [69]. We have introduced a novel technique for incorporating
additional information, in the form of depth images, at training time to improve our test
time RGB only detection models. We accomplish this through our modality hallucination
architecture which combines a traditional RGB ConvNet representation with an additional
and complementary RGB representation which has been trained to hallucinate depth mid-
level features. Our approach outperforms the corresponding Fast R-CNN RGB detection
models on the NYUD2 dataset.

163

Bibliography

[1] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. “What is an object?” In:
Proc. CVPR. 2010.

[2] K. Ali and K. Saenko. “Confidence-Rated Multiple Instance Boosting for Object
Detection”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2014.

[3] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. “Support vector ma-
chines for multiple-instance learning”. In: Proc. NIPS. 2002, pp. 561–568.

[4] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Ferran Marques, and Jitendra
Malik. “Multiscale Combinatorial Grouping”. In: In: CVPR (2014).

[5] Christoph Arndt. Information Measures: Information and its Description in Science
and Engineering. Signals and Communication Technology. Springer Verlag, 2004,
p. 547.

[6] Y. Aytar and A. Zisserman. “Enhancing Exemplar SVMs using Part Level Transfer
Regularization”. In: British Machine Vision Conference. 2012.

[7] Y. Aytar and A. Zisserman. “Tabula Rasa: Model Transfer for Object Category De-
tection”. In: Proc. ICCV. 2011.

[8] Jimmy Ba and Rich Caruana. “Do Deep Nets Really Need to be Deep?” In: Ad-
vances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani, M.
Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger. Curran Associates, Inc.,
2014, pp. 2654–2662. url: http://papers.nips.cc/paper/5484-do-deep-nets-
really-need-to-be-deep.pdf.

[9] S. Basu, M. Bilenko, and R. Mooney. “A Probabilistic Framework for Semi-Supervised
Clustering”. In: Proc. 22nd SIGKDD Conference. 2004.

[10] S. Basu, I. Davidson, and K. Wagsta↵, eds. Constrained Clustering: Advances in
Algorithm, Theory, and Applications. CRC Press, 2008.

[11] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. “Analysis of
representations for domain adaptation”. In: Proc. NIPS (2007).

[12] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger. “Review and
evaluation of commonly-implemented background subtraction algorithms”. In: Proc.
ICPR. 2008.

BIBLIOGRAPHY 164

[13] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. “Unsupervised Feature
Learning and Deep Learning: A Review and New Perspectives”. In: CoRR abs/1206.5538
(2012). url: http://arxiv.org/abs/1206.5538.

[14] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. “Curriculum
learning”. In: In Proc. ICML. 2009.

[15] A. Berg, J. Deng, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
2012. url: http://www.image-net.org/challenges/LSVRC/2012/.

[16] A. Bergamo and L. Torresani. “Exploiting weakly-labeled Web images to improve ob-
ject classification: a domain adaptation approach”. In: Neural Information Processing
Systems (NIPS). Dec. 2010. url: \url{http://vlg.cs.dartmouth.edu/projects/
domainadapt/}.

[17] Hakan Bilen, Vinay P Namboodiri, and Luc J Van Gool. “Object and action classifi-
cation with latent window parameters”. In: IJCV 106.3 (2014), pp. 237–251.

[18] J. Blitzer, M. Dredze, and F. Pereira. “Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification”. In: ACL (2007).

[19] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman.
“Learning bounds for domain adaptation”. In: Proc. NIPS. 2007.

[20] Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bern-
hard Schölkopf, and Alex J. Smola. “Integrating structured biological data by Kernel
Maximum Mean Discrepancy”. In: Bioinformatics. 2006.

[21] Damian Borth, Rongrong Ji, Tao Chen, Thomas Breuel, and Shih Fu Chang. “Large-
scale Visual Sentiment Ontology and Detectors Using Adjective Nown Paiars”. In:
ACM Multimedia Conference. 2013.

[22] John Bridle and Stephen Cox. “RecNorm: Simultaneous normalisation and classifi-
cation applied to speech recognition”. In: Neural Information Processing Symposium
(NIPS). 1990.

[23] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cli↵
Moore, Eduard Säckinger, and Roopak Shah. “Signature verification using a Siamese
time delay neural network”. In: International Journal of Pattern Recognition and
Artificial Intelligence 7.04 (1993), pp. 669–688.

[24] Lin Chen, Wen Li, and Dong Xu. “Recognizing RGB Images by Learning from RGB-D
Data”. In: CVPR. 2014.

[25] Sumit Chopra, Suhrid Balakrishnan, and Raghuraman Gopalan. “DLID: Deep Learn-
ing for Domain Adaptation by Interpolating between Domains”. In: ICML Workshop
on Challenges in Representation Learning. 2013.

BIBLIOGRAPHY 165

[26] Sumit Chopra, Raia Hadsell, and Yann LeCun. “Learning a similarity metric dis-
criminatively, with application to face verification”. In: Computer Vision and Pat-
tern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1.
IEEE. 2005, pp. 539–546.

[27] C. Mario Chrisoudias, Raquel Urtasun, Mathieu Salzmann, and Trevor Darrell. “Learn-
ing to Recognize Objects from Unseen Modalities”. In: ECCV. 2010.

[28] Ramazan Gokberk Cinbis, Jakob Verbeek, Cordelia Schmid, et al. “Multi-fold MIL
Training for Weakly Supervised Object Localization”. In: CVPR. 2014.

[29] A. Coates, A. Karpathy, and A. Ng. “Emergence of Object-Selective Features in
Unsupervised Feature Learning”. In: Proc. NIPS. 2012.

[30] Wenyuan Dai, Yuqiang Chen, Gui-Rong Xue, Qiang Yang, and Yong Yu. “Translated
Learning: Transfer Learning across Di↵erent Feature Spaces”. In: Proc. NIPS. 2008.

[31] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection”.
In: In Proc. CVPR. 2005.

[32] H. Daumé III. “Frustratingly easy domain adaptation”. In: ACL. 2007.

[33] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. “Information-Theoretic Metric
Learning”. In: ICML (2007).

[34] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, and A. Ng. “Large Scale Distributed Deep Networks”.
In: Proc. NIPS. 2012.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR. 2009.

[36] Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. “Weakly supervised localiza-
tion and learning with generic knowledge”. In: IJCV (2012).

[37] Tom Diethe, David Roi Hardoon, and John Shawe-Taylor. “Constructing nonlinear
discriminants from multiple data views”. In: Machine Learning and Knowledge Dis-
covery in Databases. Springer, 2010, pp. 328–343.

[38] Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. “Solving the
multiple instance problem with axis-parallel rectangles”. In: Artificial intelligence
(1997).

[39] Piotr Dollár and C. Lawrence Zitnick. “Fast Edge Detection Using Structured Forests”.
In: CoRR abs/1406.5549 (2014). url: http://arxiv.org/abs/1406.5549.

[40] Je↵ Donahue, Yangqing Jia, Oriol Vinyals, Judy Ho↵man, Ning Zhang, Eric Tzeng,
and Trevor Darrell. “DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition”. In: International Conference in Machine Learning (ICML). 2014.

[41] Je↵ Donahue, Judy Ho↵man, Erik Rodner, Kate Saenko, and Trevor Darrell. “Semi-
Supervised Domain Adaptation with Instance Constraints”. In: Computer Vision and
Pattern Recognition (CVPR). 2013.

BIBLIOGRAPHY 166

[42] M. Dredze and K. Crammer. “Online methods for multi-domain learning and adap-
tation”. In: Proc. EMNLP. 2008.

[43] Mark Dredze, Koby Crammer, and Fernando Pereira. “Confidence-Weighted Linear
Classification”. In: International Conference on Machine Learning (ICML). 2008.

[44] L. Duan, D. Xu, and Ivor W. Tsang. “Learning with Augmented Features for Het-
erogeneous Domain Adaptation”. In: Proc. ICML. 2012.

[45] L. Duan, I. W. Tsang, D. Xu, and T. Chua. “Domain adaptation from multiple sources
via auxiliary classifiers”. In: Proceedings of the 26th Annual International Conference
on Machine Learning. ICML ’09. 2009.

[46] Lixin Duan, Ivor W. Tsang, Dong Xu, and Stephen J. Maybank. “Domain Transfer
SVM for Video Concept Detection”. In: CVPR. 2009.

[47] Lixin Duan, Dong Xu, Ivor Wai-Hung Tsang, and Jiebo Luo. “Visual event recognition
in videos by learning from web data”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 34.9 (2012), pp. 1667–1680.

[48] David Eigen and Rob Fergus. “Predicting Depth, Surface Normals and Semantic
Labels with a Common Multi-Scale Convolutional Architecture”. In: ICCV. 2015.

[49] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. “The
Pascal Visual Object Classes (VOC) Challenge”. In: IJCV 88.2 (June 2010), pp. 303–
338.

[50] Ali Farhadi and Mostafa Kamali Tabrizi. “Learning to Recognize Activities from the
Wrong View Point”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2008, pp. 154–166.

[51] Jason Farquhar, David Hardoon, Hongying Meng, John S Shawe-taylor, and Sandor
Szedmak. “Two view learning: SVM-2K, theory and practice”. In: Advances in neural
information processing systems (NIPS). 2005, pp. 355–362.

[52] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. “Object Detection
with Discriminatively Trained Part-Based Models”. In: IEEE Trans. Pattern Anal.
Mach. Intell. (2010).

[53] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. “Unsupervised Visual Do-
main Adaptation Using Subspace Alignment”. In: Proc. ICCV. 2013.

[54] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. “Descriptor Matching with
Convolutional Neural Networks: a Comparison to SIFT”. In: ArXiv e-prints abs/1405.5769
(2014). arXiv: 1405.5769.

[55] K. Fukushima. “A self-organizing neural netowrk model for a mechanism of pat-
tern recognition una↵ected by shift position”. In: Biological Cybernetics, 36(4):93-202
(1980).

[56] Carolina Galleguillos, Boris Babenko, Andrew Rabinovich, and Serge Belongie. “Weakly
Supervised Object Localization with Stable Segmentations”. In: ECCV. 2008.

BIBLIOGRAPHY 167

[57] Y. Ganin and V. Lempitsky. “Unsupervised Domain Adaptation by Backpropaga-
tion”. In: ICML. 2015.

[58] Muhammad Ghifary, W. Bastiaan Kleijn, and Mengjie Zhang. “Domain Adaptive
Neural Networks for Object Recognition”. In: CoRR abs/1409.6041 (2014). url:
http://arxiv.org/abs/1409.6041.

[59] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for accu-
rate object detection and semantic segmentation”. In: In Proc. CVPR. 2014.

[60] Ross Girshick. “Fast R-CNN”. In: CVPR. 2015.

[61] D. Giuliani, R. Gretter, and F. Brugnara. “On-line speaker adaptation on telephony
speech data with adaptively trained acoustic models”. In: Proc. ICASSP. 2009.

[62] Daniel Goehring, Judy Ho↵man, Erik Rodner, Kate Saenko, and Trevor Darrell. “In-
teractive Adaptation of Real-Time Object Detectors”. In: International Conference
on Robotics and Automation (ICRA). 2014.

[63] B. Gong, Y. Shi, F. Sha, and K. Grauman. “Geodesic Flow Kernel for Unsupervised
Domain Adaptation”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2012, pp. 2066–2073.

[64] R. Gopalan, R. Li, and R. Chellappa. “Domain Adaptation for Object Recognition:
An Unsupervised Approach”. In: Proc. ICCV. 2011.

[65] M. Guillaumin and V. Ferrari. “Large-scale knowledge transfer for object localization
in ImageNet”. In: CVPR. 2012, pp. 3202–3209. doi: 10.1109/CVPR.2012.6248055.

[66] Matthieu Guillaumin, Daniel Küttel, and Vittorio Ferrari. “ImageNet Auto-Annotation
with Segmentation Propagation”. In: IJCV 110 (2014), pp. 328–348. issn: 0920-5691.
doi: 10.1007/s11263-014-0713-9. url: http://dx.doi.org/10.1007/s11263-
014-0713-9.

[67] Jian Guo and Stephen Gould. “Deep CNN Ensemble with Data Augmentation for
Object Detection”. In: CoRR abs/1506.07224 (2015). url: http://arxiv.org/abs/
1506.07224.

[68] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. “Perceptual organization and
recognition of indoor scenes from rgb-d images”. In: Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on. IEEE. 2013, pp. 564–571.

[69] Saurabh Gupta, Judy Ho↵man, and Jitendra Malik. “Cross Modal Distillation for Su-
pervision Transfer”. In: CVPR. 2016. url: http://arxiv.org/abs/1507.00448v1.

[70] Saurabh Gupta, Pablo Andrés Arbeláez, Ross B. Girshick, and Jitendra Malik. “Align-
ing 3D Models to RGB-D Images of Cluttered Scenes”. In: Computer Vision and
Pattern Recognition (CVPR). 2015.

[71] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. “Learning rich
features from rgb-d images for object detection and segmentation”. In: Computer
Vision–ECCV 2014. Springer, 2014, pp. 345–360.

BIBLIOGRAPHY 168

[72] K. He, X. Zhang, S. Ren, and J. Sun. “Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition”. In: In Proc. ECCV. 2014.

[73] James Heckman. “Sample selection bias as a specification error (with an application
to estimation of labor supply functions)”. In: National Bureau of Economic Research
(1977).

[74] Geo↵rey Hinton, Oriol Vinyals, and Je↵ Dean. “Distilling the Knowledge in a Neural
Network”. In: NIPS Deep Learning and Representation Learning Workshop. 2014.

[75] D. Hoeim, Y. Chodpathumwan, and Q. Dai. “Diagnosing Error in Object Detectors”.
In: In Proc. ECCV. 2012.

[76] J. Ho↵man, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell. “One-Shot
Learning of Supervised Deep Convolutional Models”. In: arXiv 1312.6204; presented
at ICLR Workshop. 2014.

[77] Judy Ho↵man, Trevor Darrell, and Kate Saenko. “Continuous Manifold Based Adap-
tation For Evolving Visual Domains”. In: Computer Vision and Pattern Recognition
(CVPR). 2014.

[78] Judy Ho↵man, Saurabh Gupta, and Trevor Darrell. “Learning with Side Informa-
tion through Modality Hallucination”. In: In Proc. Computer Vision and Pattern
Recognition (CVPR). 2016.

[79] Judy Ho↵man, Erik Rodner, Je↵ Donahue, Brian Kulis, and Kate Saenko. “Asym-
metric and Category Invariant Feature Transformations for Domain Adaptation”.
English. In: International Journal of Computer Vision 109.1-2 (2014), pp. 28–41.
issn: 0920-5691. doi: 10.1007/s11263-014-0719-3. url: http://dx.doi.org/10.
1007/s11263-014-0719-3.

[80] Judy Ho↵man, Saurabh Gupta, Jian Leong, Sergio Guadarrama, and Trevor Darrell.
“Cross-Modal Adaptation for RGB-D Detection”. In: International Conference in
Robotics and Automation (ICRA). 2016.

[81] Judy Ho↵man, Deepak Pathak, Trevor Darrell, and Kate Saenko. “Detector Discovery
in the Wild: Joint Multiple Instance and Representation Learning”. In: Computer
Vision and Pattern Recognition (CVPR). 2015.

[82] Judy Ho↵man, Brian Kulis, Trevor Darrell, and Kate Saenko. “Discovering Latent
Domains for Multisource Domain Adaptation”. In: European Conference on Computer
Vision (ECCV). 2012.

[83] Judy Ho↵man, Erik Rodner, Je↵ Donahue, Kate Saenko, and Trevor Darrell. “E�-
cient Learning of Domain-invariant Image Representations”. In: International Con-
ference on Learning Representations. 2013.

[84] Judy Ho↵man, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Je↵ Donahue, Ross
Girshick, Trevor Darrell, and Kate Saenko. “LSDA: Large Scale Detection through
Adaptation”. In: Neural Information Processing Symposium (NIPS). 2014.

BIBLIOGRAPHY 169

[85] Judy Ho↵man, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Je↵ Donahue, Ross
Girshick, Trevor Darrell, and Kate Saenko. “LSDA: Large Scale Detection through
Adaptation”. In: Neural Information Processing Systems (NIPS). 2014.

[86] J. Hosang, R. Benenson, and B. Schiele. “How good are detection proposals, really?”
In: BMVC. 2014.

[87] Jiayuan Huang, Alexander Smola, Arthur Gretton, Karster Borgwardt, and Bern-
hard Scholkopf. “Correcting Sample Selection Bias by Unlabeled Data”. In: Neural
Information Processing Symposium (NIPS). 2006.

[88] D. Hubel and T. Wiesel. “Receptive fields of single neurones in the cat’s striate
cortex”. In: The Journal of Physiology 148 (3): 574-591 (1959).

[89] V. Jain and E. Learned-Miller. “Online domain adaptation of a pre-trained cascade
of classifiers”. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on. 2011.

[90] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T Barron, Mario Fritz,
Kate Saenko, and Trevor Darrell. “A Category-Level 3D Object Dataset: Putting
the Kinect to Work”. In: Consumer Depth Cameras for Computer Vision. 2013.

[91] I-Hong Jhuo, Dong Liu, Shih-Fu Chang, and Der-Tsai Lee. “Robust Visual Domain
Adaptation with Low-Rank Reconstruction”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2012, pp. 2168–2175.

[92] Yangqing Jia, Evan Shelhamer, Je↵ Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. “Ca↵e: Convolutional Architecture
for Fast Feature Embedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[93] J. Jiang. A Literature Survey on Domain Adaptation of Statistical Classifiers. http:
//sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/. 2008.

[94] J. Jiang and C. X. Zhai. “Instance Weighting for Domain Adaptation in NLP”. In:
ACL. 2007, pp. 264–271.

[95] W. Jiang, E. Zavesky, S. Chang, and A. Loui. “Cross-domain learning methods for
high-level visual concept classification”. In: ICIP. 2008.

[96] R Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:
Transactions of the ASME–Journal of Basic Engineering (1960).

[97] Meina Kan, Shiguang Shan, Haihong Zhang, Shihong Lao, and Xilin Chen. “Multi-
view discriminant analysis”. In: Proceedings of the European Computer Vision Con-
ference (ECCV). Springer, 2012, pp. 808–821.

[98] A. Kembhavi, B. Siddiquie, Roland Miezianko, Scott McCloskey, and L.S. Davis.
“Incremental Multiple Kernel Learning for object recognition”. In: Computer Vision,
2009 IEEE 12th International Conference on. 2009.

BIBLIOGRAPHY 170

[99] A. Khosla, T. Zhou, T. Malisiewicz, A. Efros, and A. Torralba. “Undoing the damage
of dataset bias”. In: Proceedings of the 12th European conference on Computer Vision.
2012.

[100] D. Kifer, S. Ben-David, and J. Gehrke. “Detecting change in data streams”. In: Proc.
VLDB. 2004.

[101] Byung soo Kim, Shili Xu, and Silvio Savarese. “Accurate Localization of 3D Objects
from RGB-D Data Using Segmentation Hypotheses”. In: CVPR. 2013.

[102] Philipp Krähenbühl and Vladlen Koltun. “Geodesic object proposals”. In: Computer
Vision–ECCV 2014. Springer, 2014, pp. 725–739.

[103] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Proc. NIPS. 2012.

[104] B. Kulis, K. Saenko, and T. Darrell. “What You Saw is Not What You Get: Domain
Adaptation Using Asymmetric Kernel Transforms”. In: Proc. CVPR. 2011.

[105] B. Kulis, S. Basu, I. Dhillon, and R. Mooney. “Semi-supervised Graph Clustering: A
Kernel Approach”. In: Proc. ICML. 2005.

[106] Brian Kulis and Michael I. Jordan. “Revisiting k-means: New Algorithms via Bayesian
Nonparametrics”. In: ICML. Arxiv:1111.0352. 2012.

[107] M Pawan Kumar, Benjamin Packer, and Daphne Koller. “Self-paced learning for
latent variable models”. In: In Proc. NIPS. 2010.

[108] Kevin Lai, Liefeng Bo, and Dieter Fox. “Unsupervised Feature Learning for 3D Scene
Labeling”. In: IEEE International Conference on on Robotics and Automation. 2014.

[109] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “A large-scale hierarchical
multi-view RGB-D object dataset”. In: ICRA. 2011.

[110] S. Lazebnik, C. Schmid, and J. Ponce. “Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories”. In: Computer Vision and Pat-
tern Recognition (CVPR). 2006.

[111] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L.
Jackel. “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural
Computation (1989).

[112] Y. J. Lee, A. Efros, and M. Hebert. “Style-aware Mid-level Representation for Dis-
covering Visual Connections in Space and Time”. In: Proc. ICCV. 2013.

[113] K. Lenc and A. Vedaldi. “Understanding image representations by measuring their
equivariance and equivalence”. In: Proceedings of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2015.

[114] A. Levey and gM. Lindenbaum. “Sequential Karhunen-Loeve basis extraction and its
application to images”. In: Image Processing, IEEE Transactions on (2000).

BIBLIOGRAPHY 171

[115] Ruonan Li and Todd Zickler. “Discriminative virtual views for cross-view action recog-
nition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2012, pp. 2855–2862.

[116] X. Li. “Regularized Adaptation: Theory, Algorithms and Applications”. In: PhD the-
sis, University of Washington, USA. 2007.

[117] X. Li, K. Wang, W. Wang, and Y. Li. “A multiple object tracking method using
Kalman filter”. In: Information and Automation (ICIA), 2010 IEEE International
Conference on. 2010.

[118] Hank Liao. “Speaker Adaptation of Context Dependent Deep Neural Networks”. In:
ICASSP. 2013.

[119] Dahua Lin, Sanja Fidler, and Raquel Urtasun. “Holistic scene understanding for 3D
object detection with RGBD cameras”. In: ICCV. 2013.

[120] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Pitro Dollár, and C. Lawrence Zitnick. “Microsoft COCO: Common objects
in context”. In: arXiv:1405.0312 [cs.CV] (2014).

[121] Fayao Liu, Chunhua Shen, and Guosheng Lin. “Deep Convolutional Neural Fields for
Depth Estimation from a Single Image”. In: CVPR. 2015. url: http://arxiv.org/
abs/1411.6387.

[122] Wei Liu, Andrew Rabinovich, and Alexander C Berg. “Parsenet: Looking wider to
see better”. In: arXiv preprint (2015).

[123] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: CVPR (Nov. 2015). arXiv: 1411.4038 [cs.CV].

[124] Mingsheng Long and Jianmin Wang. “Learning Transferable Features with Deep
Adaptation Networks”. In: ICML. 2015.

[125] D. G. Lowe. “Distinctive image features from scale-invariant key points”. In: IJCV
(2004).

[126] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. “Domain Adaptation:
Learning Bounds and Algorithms”. In: COLT. 2009.

[127] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. “Domain Adaptation
with Multiple Sources”. In: NIPS. 2008.

[128] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. “Multiple Source Adap-
tation and the Rényi Divergence”. In: UAI. 2009, pp. 367–374.

[129] O. Matan, C. J. Burges, Y. LeCun, and J. S. Denker. “Multidigit recognition using a
space displacement neural network”. In: NIPS. 1991, pp. 488–495.

[130] Ofer Matan, Christopher J.C. Burges, Yann Le Cun, and John S. Denker. “Multi-Digit
Recognition Using A Space Displacement Neural Network”. In: Neural Information
Processing Systems. Morgan Kaufmann, 1992, pp. 488–495.

BIBLIOGRAPHY 172

[131] M. Minsky and S. Papert. “Perceptrons”. In: Cambridge, MA: MIT Press (1969).

[132] Damian Mrowca, Marcus Rohrbach, Judy Ho↵man, Ronghang Hu, Kate Saenko, and
Trevor Darrell. “Spatial Semantic Regularisation for Large Scale Object Detection”.
In: ICCV. 2015.

[133] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. “Domain Generaliza-
tion via Invariant Feature Representation”. In: Proceedings of ICML. 2013, pp. 10–
18.

[134] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y
Ng. “Multimodal deep learning”. In: Proceedings of the 28th International Conference
on Machine Learning (ICML-11). 2011, pp. 689–696.

[135] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano. “Toward
automatic phenotyping of developing embryos from videos”. In: IEEE Transactions
on Image Processing. 2005, 14(9):1360–1371.

[136] Wanli Ouyang, Ping Luo, Xingyu Zeng, Shi Qiu, Yonglong Tian, Hongsheng Li, Shuo
Yang, Zhe Wang, Yuanjun Xiong, Chen Qian, et al. “DeepID-Net: multi-stage and de-
formable deep convolutional neural networks for object detection”. In: arXiv:1409.3505
(2014).

[137] S. J. Pan and Q. Yang. “A survey on transfer learning”. In: IEEE Transactions on
Knowledge and Data Engineering. 2010.

[138] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. “Domain Adap-
tation via Transfer Component Analysis”. In: IJCA. 2009.

[139] Megha Pandey and Svetlana Lazebnik. “Scene recognition and weakly supervised
object localization with deformable part-based models”. In: Proc. ICCV. 2011.

[140] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. “Weakly-and semi-supervised
learning of a dcnn for semantic image segmentation”. In: CoRR abs/1502.02734
(2015).

[141] Deepak Pathak, Philipp Krähenbühl, and Trevor Darrell. “Constrained Convolutional
Neural Networks for Segmentation”. In: ICCV. 2015.

[142] Deepak Pathak, Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully Con-
volutional Multi-Class Multiple Instance Learning”. In: CoRR abs/1412.7144 (2014).
url: http://arxiv.org/abs/1412.7144.

[143] Novi Quadrianto and Christoph H. Lampert. “Learning multi-view neighborhood
preserving projections”. In: Proceedings of the International Conference on Machine
Learning (ICML). 2011, pp. 425–432.

[144] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. Dataset Shift in Machine Learning. The MIT Press, 2009.

BIBLIOGRAPHY 173

[145] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN: Towards
real-time object detection with region proposal networks”. In: Advances in neural
information processing systems. 2015.

[146] Q. Rentmeesters, P-A Absil, P. Van Dooren, K. Gallivan, and A. Srivastava. “An
e�cient particle filtering technique on the Grassmann manifold”. In: Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference on. 2010.

[147] Alfréd Rényi. “On Measures of Entropy and Information”. In: Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1. 1961,
pp. 547–561.

[148] Erik Rodner, Judy Ho↵man, Je↵ Donahue, Trevor Darrell, and Kate Saenko. “To-
wards Adapting ImageNet to Reality: Scalable Domain Adaptation with Implicit
Low-rank Transformations”. In: arXiv preprint arXiv:1308.4200 (2013).

[149] Frank Rosenblatt. “The Perceptron – a perceiving an drecognizing automaton”. In:
Report 850460-1, Cornell Aeronautical Laboratory (1957).

[150] D. Ross, J. Lim, and M.H. Yang. “Adaptive Probabilistic Visual Tracking with Incre-
mental Subspace Update”. In: European Conference on Computer Vision (ECCV).
2004.

[151] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. “Adapting Visual Category Models to
New Domains”. In: Proc. ECCV. 2010.

[152] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. “OverFeat:
Integrated Recognition, Localization and Detection using Convolutional Networks”.
In: CoRR abs/1312.6229 (2013).

[153] S. Shalev-Shwartz. “Online Learning and Online Convex Optimization”. In: Found.
Trends Mach. Learn. (2012).

[154] Abhishek Sharma, Abhishek Kumar, H Daume, and David W Jacobs. “Generalized
multiview analysis: A discriminative latent space”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. IEEE. 2012, pp. 2160–2167.

[155] V. Sharmanska, N. Quadrianto, and C.H. Lampert. “Learning to Rank Using Privi-
leged Information”. In: ICCV. 2013, pp. 825–832. doi: 10.1109/ICCV.2013.107.

[156] Abhinav Shrivastava and Abhinav Gupta. “Building Part-based Object Detectors via
3D Geometry”. In: ICCV. 2013.

[157] C. Siagian and L. Itti. “Rapid Biologically-Inspired Scene Classification Using Fea-
tures Shared with Visual Attention”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2007).

[158] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. “Indoor Segmen-
tation and Support Inference from RGBD Images”. In: ECCV. 2012.

[159] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: CoRR abs/1409.1556 (2014).

BIBLIOGRAPHY 174

[160] Saurabh Singh, Abhinav Gupta, and Alexei A Efros. “Unsupervised discovery of mid-
level discriminative patches”. In: ECCV. 2012.

[161] Parthipan Siva, Chris Russell, and Tao Xiang. “In defence of negative mining for
annotating weakly labelled data”. In: ECCV. 2012.

[162] Parthipan Siva, Chris Russell, Tao Xiang, and Lourdes Agapito. “Looking beyond
the image: Unsupervised learning for object saliency and detection”. In: Proc. CVPR.
2013.

[163] H. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, and T. Darrell. “On learning
to localize objects with minimal supervision”. In: ICML. 2014.

[164] Hyun Oh Song, Yong Jae Lee, Stefanie Jegelka, and Trevor Darrell. “Weakly-supervised
Discovery of Visual Pattern Configurations”. In: Proc. NIPS. 2014.

[165] Shuran Song and Jianxiong Xiao. “Sliding shapes for 3D object detection in depth
images”. In: Computer Vision–ECCV 2014. Springer, 2014, pp. 634–651.

[166] Luciano Spinello and Kai O. Arras. “Leveraging RGB-D Data: Adaptive Fusion and
Domain Adaptation for Object Detection”. In: ICRA. 2012.

[167] Nitish Srivastava and Ruslan R Salakhutdinov. “Multimodal learning with deep boltz-
mann machines”. In: Advances in neural information processing systems. 2012, pp. 2222–
2230.

[168] C. Stau↵er and W. E L Grimson. “Adaptive background mixture models for real-
time tracking”. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer
Society Conference on. 1999.

[169] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. “Unstructured hu-
man activity detection from rgbd images”. In: Robotics and Automation (ICRA),
2012 IEEE International Conference on. IEEE. 2012, pp. 842–849.

[170] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going
Deeper with Convolutions”. In: arXiv:1409.4842 (2014).

[171] Jie Tang, Stephen Miller, Arjun Singh, and Pieter Abbeel. “A Textured Object Recog-
nition Pipeline for Color and Depth Image Data”. In: International Conference on
Robotics and Automation. 2012.

[172] Shuai Tang, Xiaoyu Wang, Xutao Lv, Tony X Han, James Keller, Zhihai He, Mar-
jorie Skubic, and Shihong Lao. “Histogram of Oriented Normal Vectors for Object
Recognition with a Depth Sensor”. In: ACCV. 2012.

[173] Ekaterina Taralova, Fernando De la Torre Frade, and Martial Hebert. “Source Con-
strained Clustering”. In: 13th International Conference on Computer Vision 2011.
2011.

[174] T. Tommasi, T. Tuytelaars, and B. Caputo. “A Testbed for Cross-Dataset Analysis”.
In: TASK-CV Workshop, ECCV. 2014.

BIBLIOGRAPHY 175

[175] A. Torralba and A. Efros. “Unbiased Look at Dataset Bias”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2011, pp. 1521–1528.

[176] Eric Tzeng, Judy Ho↵man, Ning Zhang, Kate Saenko, and Trevor Darrell. “Deep
Domain Confusion: Maximizing for Domain Invariance”. In: CoRR abs/1412.3474
(2014). url: http://arxiv.org/abs/1412.3474.

[177] Eric Tzeng, Judy Ho↵man, Trevor Darrell, and Kate Saenko. “Simultaneous Deep
Transfer Across Domains and Tasks”. In: International Conference in Computer Vi-
sion (ICCV). 2015.

[178] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders. “Selective
Search for Object Recognition”. In: IJCV 104.2 (2013), pp. 154–171.

[179] Vladimir Vapnik and Akshay Vashist. “A new learning paradigm: Learning using
privileged information”. In: Neural Networks 22.5â6 (2009). Advances in Neural Net-
works Research: {IJCNN20092009} International Joint Conference on Neural Net-
works, pp. 544 –557. issn: 0893-6080. doi: http://dx.doi.org/10.1016/j.neunet.
2009.06.042. url: http://www.sciencedirect.com/science/article/pii/
S0893608009001130.

[180] Alexander Vezhnevets and Vittorio Ferrari. “Associative Embeddings for Large-scale
Knowledge Transfer with Self-assessment”. In: CVPR (2014).

[181] K. Wagsta↵, C. Cardie, S. Rogers, and S. Schroedl. “Constrained k-means clustering
with background knowledge”. In: Proc. ICML. 2001.

[182] A. Wang, J. Lu, J. Cai, T. Cham, and G. Wang. “Large-Margin Multi-Modal Deep
Learning for RGB-D Object Recognition”. In: IEEE Transactions on Multimedia.
2015.

[183] Chong Wang, Weiqiang Ren, Kaiqi Huang, and Tieniu Tan. “Weakly Supervised Ob-
ject Localization with Latet Category Learning”. In: European Conference on Com-
puter Vision (ECCV). 2014.

[184] Xiaolong Wang and Abhinav Gupta. “Unsupervised Learning of Visual Representa-
tions using Videos”. In: ICCV. 2015. url: http://arxiv.org/abs/1505.00687.

[185] Ralph Wolf and John C. Platt. “Postal address block location using a convolutional
locator network”. In: in Advances in Neural Information Processing Systems 6. Mor-
gan Kaufmann Publishers, 1994, pp. 745–752.

[186] J. Xu, S. Ramos, D. Vázquez, and A.M. López. “Domain Adaptation of Deformable
Part-Based Models”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence
In Press (2014).

[187] Zheng Xu, Wen Li, Li Niu, and Dong Xu. “Exploiting Low-Rank Structure from
Latent Domains for Domain Generalization”. In: European Conference in Computer
Vision (ECCV). 2014.

BIBLIOGRAPHY 176

[188] J. Yang, R. Yan, and A. Hauptmann. “Adapting svm classifiers to data with shifted
distributions”. In: ICDM Workshops. 2007.

[189] J. Yang, R. Yan, and A. G. Hauptmann. “Cross-domain video concept detection using
Adaptive SVMs”. In: ACM Multimedia (2007).

[190] Edmund Shanming Ye. “Object Detection in RGB-D Indoor Scenes”. MA thesis.
EECS Department, University of California, Berkeley, 2013. url: http : / / www .
eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-3.html.

[191] Chun-Nam John Yu and Thorsten Joachims. “Learning structural svms with latent
variables”. In: Proc. ICML. 2009, pp. 1169–1176.

[192] Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggregation by Dilated Convo-
lutions”. In: ICLR (2016).

[193] Alan L Yuille and Anand Rangarajan. “The concave-convex procedure”. In: Neural
Computation 15.4 (2003), pp. 915–936.

[194] M. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Networks”.
In: ArXiv e-prints (2013). arXiv: 1311.2901.

[195] Cha Zhang, John C Platt, and Paul A Viola. “Multiple instance boosting for object
detection”. In: Advances in neural information processing systems. 2005.

[196] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong
Su, Dalong Du, Chang Huang, and Philip Torr. “Conditional Random Fields as Re-
current Neural Networks”. In: ICCV. 2015.

[197] C Lawrence Zitnick and Piotr Dollár. “Edge boxes: Locating object proposals from
edges”. In: Computer Vision–ECCV 2014. Springer, 2014, pp. 391–405.

