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Abstract

Autonomous Palpation for Tumor Localization:
Design of a Palpation Probe and Gaussian Process Adaptive Sampling

by

Animesh Garg

Master of Science in Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

In surgical tumor removal, inaccurate localization can lead to the removal of excessive healthy
tissue and failure to completely remove cancerous tissue. Automated palpation with a tactile sensor
has the potential to precisely estimate the geometry of embedded tumors during robot-assisted
minimally invasive surgery (RMIS). This thesis is a step towards enabling autonomous palpation
for tumor localization. Specifically, this thesis presents a novel, low-cost design for a palpation
probe and a Bayesian algorithm using Gaussian Process Adaptive Sampling for tumor localization.

First, we describe the design and evaluation of the single-use palpation probe, which we call
PALP, to localize subcutaneous blood vessels. It measures probe tip deflection using a Hall Ef-
fect sensor as the spherical tip is moved tangentially across a surface under automated control.
The probe is intended to be single-use and disposable and fits on the end of an 8mm diameter
needle driver in the Intuitive Surgical da Vinci® Research Kit (dVRK). We report experiments for
quasi-static sliding palpation with silicone based tissue phantoms with subcutaneous blood vessel
phantoms. We analyze the signal-to-noise ratios with varying size of blood vessels, subcutaneous
depths, indentation depths and sliding speeds. We observe that the probe can detect phantoms of
diameter 2.25 mm at a depth of up to 5 mm below the tissue surface.

Secondly, we address the use of our design for autonomous tumor localization. We formulate
tumor boundary localization as a Bayesian optimization model along implicit curves overestimated
tissue stiffness. We propose a Gaussian Process Adaptive Sampling algorithm called Implicit Level
Set Upper Confidence Bound (ILS-UCB), that prioritizes sampling near a level set of the estimate.
We compare ILS-UCB to two other palpation algorithms in simulated experiments with varying
levels of measurement noise and bias. We find that ILS-UCB significantly outperforms the other
two algorithms as measured by the symmetric difference between tumor boundary estimate and
ground truth, reducing error by up to 10x. Physical experiments with the PALP in a dVRK show
that ILS-UCB can localize the tumor boundary with approximately the same accuracy as a dense
raster scan while requiring 10x fewer measurements.
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Chapter 1

Introduction to Tactile Tumor Localization

This thesis presents a novel, low-cost palpation probe design for use in Robot-Assisted Minimally
Invasive Surgery. It also presents a Gaussian Process Adaptive Sampling algorithm that results in
tumor localization using our probe with approximately the same accuracy as a dense raster scan
while requiring at least 10x fewer measurements.

Overview
Robotic surgical assistants (RSAs) such as the Intuitive Surgical’s da Vinci system have been
shown to be effective in facilitating precise minimally invasive surgery [1, 2], by providing in-
creased dexterity and control for the surgeon. And palpation, using the sense of touch to examine
part of the body or organ, is frequently used during surgery for in-situ assessment and localization
of cancerous tissue for diagnosis or tumor resection. During an open surgery, a surgeon can di-
rectly palpate tissue to identify and localize subsurface structures or tumors based on changes in
tissue stiffness relative to the surrounding substrate [3].

In clinical usage, RSAs are controlled by surgeons in local teleoperation mode (master-slave
with negligible time delays) and the operating surgeon depends primarily on vision for complex
tasks such as tumor localization and resection. While there have been advances in providing hap-
tic feedback for Robot-assisted minimally invasive surgery (RMIS) [4], RSAs used in clinic still
largely lack haptic sensing. In spite of the increasing use of RMIS in cancer treatment [5], the
lack of haptic perception as compared to open surgery can potentially increase the risk of tissue
damage [6] and the likelihood of incomplete removal of cancer cells [7].

Tactile and force sensors to have the potential to provide haptic feedback in RMIS, enabling
the surgeon to perform an array of survey operations such as in-situ diagnosis and localization.
A recent survey of medical tactile force sensors by Konstantinova et al. [4] reports that numerous
devices exist to estimate tactile information during static (point based) measurements. However, a
gap exists in scanning soft tissue surfaces in a dynamic (continuous) manner. Another major lim-
itation in the clinical use of tactile force sensing in RMIS is the need for sterilization of tools [8].
After every use, end-effectors are cleaned in an autoclave using high-pressure, high-temperature
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steam. Most haptic sensors have delicate components, such as resistive strain gauges or electro-
magnets, which cannot withstand such a harsh sterilization process. Hence, there is a need to
develop low-cost single-use tactile or force sensing devices for RMIS that operate in real-time,
provide reproducible and repeatable measurements.

In addition to sensors compatible with RMIS tool-tips, automation of tumor resection also
requires a high confidence estimate of both the organ geometry and the tumor boundary [9]. Un-
certainty in organ geometry can result in incorrect stiffness estimates and uncertainty in the tumor
(or cyst) location can result in an imprecise incision. A negative margin could result in a con-
servative estimate (cutting out excessive healthy tissue), while a positive margin could result in
undercutting the tumor and spreading the cells.

1.1 Summary of Contributions
1. Design of Palpation Probe: This thesis presents a novel low-cost, disposable, haptic palpation
probe to be used with the da Vinci RSA tools as discussed in Chapter 2. The probe is designed to
sense relative deflection differences for localization of subcutaneous or subserous inclusions such
as blood vessels or tumors. It is an indentation based device using a displacement-based contact
sensing mechanism. A spherical indenter of 4.5 mm diameter allows quasi-static sliding palpation
for continuous measurements.

Section 2.3 discusses the probe design details along with sliding indentation experiments on silicone-
based tissue phantoms. Silicone inclusions of varying diameters ({1.58, 2.38, 3.175, 4.75} mm)
placed at varying depths ({1, 2, 3, 5}mm) were used to evaluate probe sensitivity. For characteri-
zation of robustness to sliding surface speed, the probe was mounted on a CNC milling machine (as
shown in Figure 2.3a) and was palpated across the tissue phantom in sliding at varying indentation
depths ({1, 3, 8}mm) and sliding speeds (0.5-21 mm/s). The use of the palpation probe as a tool
mounted on the dVRK to perform automated sliding palpation in the silicone-based tissue phan-
toms is also demonstrated. Initial results suggest a potential for the clinical utility of automated
sliding palpation in both supervised and semi-supervised telesurgery.

The design details are described in Chapter 2 and were published in:
• Stephen McKinley, Animesh Garg, Siddarth Sen, Rishi Kapadia, Adithyavairavan Murali, Kirk Nichols,
Susan Lim, Sachin Patil, Pieter Abbeel, Allison M Okamura, and Ken Goldberg. “A disposable haptic
palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery”. In:
IEEE Conf. on Automation Science and Engineering (CASE). 2015

2. Gaussian Process Adaptive Sampling: This thesis also proposes an algorithm for autonomous
tumor localization with palpation in RMIS for a given organ geometry. The tumor boundary local-
ization is posed as a Bayesian optimization problem along implicit curves defined by a Gaussian
Process (GP) representing estimated tissue stiffness. This approach focuses on reducing uncer-
tainty along level sets of the surface stiffness as opposed to creating a high-certainty stiffness map
for the entire search area. This approach is compared to two other palpation algorithms for map-
ping subsurface stiffness: one which prioritizes exploration alone, and the other which balances
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exploration and exploitation of high stiffness areas, as opposed to along implicit curves.

The results evaluate the symmetric difference in the boundary estimate obtained with the ground
truth in all three cases as described in Section 3.4. Simulation results suggest that as compared
to EVR and UCB, ILS-UCB converges to the tumor boundary more quickly and can accommo-
date higher levels of measurement noise and bias (see Section 3.4). In addition to evaluation in
simulation, this thesis demonstrates results for autonomous segmentation of subcutaneous tumor
in soft tissue phantom with an end-effector mounted palpation sensor, presented in Chapter 2, on
the da Vinci Research Kit (dVRK) [11] in Section 3.5. Experimental Results on dVRK suggest
that this approach can localize the tumor boundary with approximately the same accuracy while
requiring at least 10x fewer measurements than uniform raster search.

The algorithm is described in Chapter 3 and was published in:
• Animesh Garg, Siddarth Sen, Rishi Kapadia, Yiming Jen, Stephen McKinley, Lauren Miller, and Ken
Goldberg. “Tumor Localization using Automated Palpation with Gaussian Process Adaptive Sampling”. In:
IEEE Conf. on Automation Science and Engineering (CASE). 2016

1.2 Background and Related Work
Tactile force sensing is used by humans to explore, manipulate, or respond to their environ-
ment [13]. Robotic tactile sensing is applied in diverse fields including surgical devices, industrial
equipment, and dexterous robotic hands [13]. In this work, we focus on the exploratory and diag-
nostic aspect of tactile feedback within the purview of Robot-assisted Minimally Invasive Surgery
(RMIS).

Palpation sensors are a subclass of tactile and force sensors that mimic the biological sense of
cutaneous touch. In RMIS, palpation sensors can estimate relative tissue stiffness and allow the
surgeon to adjust force control input for safer tissue manipulation. It has been demonstrated that a
RMIS tool equipped with tactile sensing under autonomous control reduces the maximum applied
force to the tissue by more than 35% compared to manual palpation with the same instrument [14].
Other studies have compared human sensing with probing sensors for tumor localization and have
found probing sensor arrays to be more effective in requiring lesser forces for inclusion identifica-
tion [15, 16].

This work will focus on a novel palpation probe design and active search algorithms for au-
tonomous tumor localization under observation uncertainty. The following sections detail the state-
of-the-art in both of these areas.

1.2.1 Design of RMIS Palpation Probe
Modes of tactile force sensing

Tactile feedback can be obtained by using a number of transduction principles [4, 17]. The reader
is referred to Girão et al. [18] and Tiwana et al. [19] for detailed surveys of existing tactile and
force feedback devices in the context of robotic and biomedical applications respectively. A study
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by Puangmali et al. [17] also reviews tactile sensing at the end-effectors of RSAs classified by
transduction principle used in sensors.

Particularly, tactile sensing can be classified based on its underlying transduction principles:
mechanical [20], piezoresistive [21, 22], capacitive [23], piezoelectric [24], strain gauge [25],
optical [26], and magnetic [27]. While each of these techniques has respective advantages and
limitations as listed by Tiwana et al. [19], a number of these techniques require complicated signal
conditioning infrastructures, are susceptible to drift, and have a limited range of measurable forces.

Tactile force sensing in RMIS

Konstantinova et al. [4] describe of a number of RMIS tactile feedback devices and compare them
based on desired features for tactile probes in RMIS such as: (a) repeatability, (b) reliability, (c)
speed of sensing, (d) static versus dynamic response, (d) miniaturized form and (e) cost. Addi-
tionally, since RMIS tools are between 5 mm to 12 mm in diameter [28], hence the sensor needs
to be small enough to pass through the trocar port and be placed proximal to the tool-tip. Further,
strict certification requirements for medical devices warrant that these probes have high accuracy
and stable response. There have been a number of efforts in probe design research to address some
of these considerations [29]. Moreover, requirements for sterilization of devices are also essential
considerations for the design of surgical tools [8]; heat, pressure, and humidity during treatment
for tool reprocessing can destroy sensors.

Althoefer et al. [30] presented a sensor using compressed air to investigate the mechanical
properties of soft tissue; maintaining constant airflow is a challenge and requires additional equip-
ment. Murayama et al. [31] devised a sensor array for lump detection in breast cancer aimed at
identifying large (> 10 mm) inclusions close to the surface (< 20 mm) but it faces limited adop-
tion in laparoscopic procedures given its large size (45 mm in cross-section). Beccani et al. [32]
developed a wireless sensor based on external static magnetic fields within a small workspace.
Developments in MEMS devices have allowed a multitude of sensors to be miniaturized inexpen-
sively. Peng et al. [33] proposed a MEMS tactile sensor which can provide fast relative elasticity
measurement. Gafford et al. [34] proposed a monolithic approach to building a tri-axis force sensor
for medical applications. However, none of these methods provide continuous tangential sliding
surface measurements.

Liu et al. [35] used a force sensitive wheeled probe to gather a “rolling mechanical image” to
observe that a continuous measurement approach is more sensitive to differences in force profiles
caused by simulated tumors than single-site data acquisition. However, rolling teeth cause periodic
perturbations impairing the continuous measurement. An improved design by Liu et al. [36] with
a greater complexity was able to identify spherical inclusions larger than 3 mm in diameter at a
depth of less than 2 mm. Non-contact sensing methods such as intraoperative MIS ultrasound
probes [37] and optical coherence tomography (OCT) devices [38] have also been explored.
These methods provide lower resolution compared to contact probes [4] and are limited to sensing
within a comparatively low subcutaneous depth (0-2 mm).
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Comparison with the proposed design

While many of the tactile and force sensors described by Konstantinova et al. [4] have a subset
of desired characteristics, limitations such as repeatability, ease of manufacturing, and cost, have
slowed widespread adoption in clinical settings. Many of these sensors are often operable only in
a discrete mode for orthogonal point measurements and cannot survive sterilization. As concluded
by [4], “A number of devices have been developed to provide accurate tactile information during
static measurements from one point. However, to detect information about mechanical properties
of an organ, it is required to perform dynamic tissue scans." There is a need for RMIS compatible
sensors with rapid response time for stable measurements in sliding or rolling modes.

This work presents a novel low-cost, single-use RMIS tool-tip deflection measurement device
for localization of subcutaneous blood vessels. This design achieves high speed sliding palpation
(tested up to 21 mm/s) while maintaining high sensitivity in deflection (~50µm) and force (4mN
least count). In the case of single-use devices, a design for manufacturability in a sterile envi-
ronment is required but considerations for reprocessing are circumvented. The simplicity of the
design presented in this work is low-cost that potentially allows utility as a single-use device. The
proposed palpation probe measures displacement-based force properties of tissue using a commer-
cially available MEMS-based Hall Effect encoder as its core sensor. Hall Effect sensors measure
minute changes in electric potential produced by magnetic flux passing through a conductor; a
single sensor design favorably reduces fabrication complexity [4]. We use a 4.5 mm diameter
spherical probe tip as the end-effector for tangential sliding point-contact interaction analogous to
human fingertip palpation. Other physical characteristics can be found in Table 2.1.

1.2.2 Tumor Search and Localization
Active Search and Mapping

Decision-theoretic approaches have been employed in best action selection problem such as active
mapping problems [39]. Literature from automating grasping and grasp planning, for example,
examines the problem of estimating and refining 2D and 3D estimates of objects using different
sensing modalities [40, 41]. Our approach draws on prior work from adaptively estimating shapes
and curves using noisy measurements. Dragiev et al. [41] represent the shape of 3D objects us-
ing Gaussian Process Implicit Surfaces (GPIS), and their algorithm explores the shape estimate
by attempting grasps in areas with highest variance along the implicit surface, using information
from failed grasp attempts (missing or unexpected contacts) to refine the GPIS estimate. [39] -
The method uses an information gain metric based on the uncertainty of the object’s pose to deter-
mine the next best touching action and is demonstrated on a real system. In Hollinger et al. [42],
coverage-based inspection paths are planned based on estimated uncertainty over a GPIS model of
a ship’s hull. The method by Bjorkman et al. [40] initializes an object shape estimate using stereo
vision, and calculates a GPIS representation of object geometry. The estimate is then refined by
iteratively collecting haptic measurements at points along the estimated surface with the highest
predicted uncertainty.
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Tumor Localization with Tactile Sensing

A number of recent works focus on leveraging haptic/tactile feedback to automate mapping subsur-
face stiffness or material variation in soft tissue for RMIS procedures. Many approaches are con-
cerned with creating a map of subsurface stiffness or variations in material properties using such
sensors. Goldman et al. [43] recursively increase spatial resolution in areas where the measurement
passes a certain threshold during stiffness mapping for haptic localization of subcutaneous tissue
boundaries. Similarly, Nichols et al. [44] use elastography data from discrete measurements along
a grid, train a classifier for stiffness discrimination between tumors and surrounding tissue, and
perform local refinement around points identified as boundary points. Ayvali et al. [45], present an
algorithm for registration of surface geometry to pre-operative data.

While many of the methods discussed above use adaptive sampling techniques, they attempt
to map the complete surface. In the problem of tumor localization, a complete stiffness map is
unnecessary and needs many more samples. The approach proposed in this work as described in
Chapter 3 is most closely related to recent work in active level-set estimation using mobile sensors
for environmental modeling [46, 47]. Hitz et al. [47] use a receding horizon path planner to
reduce uncertainty specifically around a threshold value for plankton level modeling using aquatic
robots. In Gotovos et al. [46], a traveling salesman algorithm is used to plan paths that sample
a set of new measurement sites chosen using the same information measure. Both [46] and [47]
use a sampling criterion based on the ambiguity of the function value at a particular point being
above (or below) a threshold to select subsequent sampling locations. Similar to these approaches,
rather than achieving low estimate error everywhere, the palpation strategy in this work is to focus
on regions representing boundaries of level sets, or where a scalar function crosses a specific
threshold.

However, it is worth noting that uncertainty in the stiffness map depends on the accuracy of the
organ surface estimate. A few recent studies have studied tactile surface estimation [48, 49], using
a high-definition multi-axis force sensor that is unavailable in the form-factor for RMIS. This work
assumes that the surface estimate a priori is available, and hence a uniform measurement noise in
the GP update can be used (see eq. (3.2)).
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Chapter 2

Design of a Disposable Palpation Probe

This chapter introduces the design of a low-cost, disposable palpation probe for use with a standard
da Vinci classic tool. As noted in Section 1.2.1, a palpation probe design for robot-assisted surgery
has design constraints that require it to be small in profile, return observations to allow tumor
localization and should operate with a functional surgical robot with possibly uncertain kinematics.
This chapter describes the design constraints (Section 2.1), design principles (Section 2.2), probe
characterization on a CNC vertical mill and an initial study of probe response in subcutaneous
tumor localization when mounted on the end of a da Vinci Needle Driver (Section 2.3).

2.1 Palpation Probe Design

2.1.1 Design Requirements
The primary consideration for the palpation probe design in this work was to achieve high sensi-
tivity and repeatability at a low-cost. The requirement of high sensitivity and repeatability is as a
result of the probe to enable autonomous palpation and autonomous operation requires a consistent
measurement model. While the need to sterilize clinical equipment entails that the probe design to
be either robust to autoclave or be low-cost enough to justify disposal after single use. Addition-
ally, requirements for compact size and resolution, as described subsequently, were also carefully
considered during the design iterations.

Compact Size and Low Cost

The probe must match size constraints imposed by minimally invasive tools (diameter 5 mm to
12 mm) [28] used in laparoscopic procedures. The palpation probe was designed to mount onto
the 8 mm diameter tool-tip of the da Vinci Research Kit (dVRK) Patient Side Manipulator (PSM).
The current prototype adds a total length offset of 75 mm to the needle driver tool as shown in
Figure 2.2. To limit costs, the probe sensing element is designed as a single-use add-on to an
existing gripping tool. The gripper and data collection board may be reused.
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Table 2.1: Palpation Probe Specifications

Property Value
Probe-Tip Radius 2.25 mm
Force Resolution 4 mN
Maximum Linear Displacement 12 mm
Spring Rate 0.08 N/mm
Total Linear Offset of Device (from dVRK gripper) 75 mm
Magnetic Encoder NSE5310
Pole Pair Length 2 mm
Number of Pole Pairs 6

Resolution in Deflection

Palpation measurements are improved by matching the impedance of test probe to sampled tissue.
If the sensor is excessively stiff there would not be a measurable deflection in the probe tip to
register an inclusion. If the sensor is too pliable tissue inclusions would not be registered as probe
tip deflections. While searching for subcutaneous inclusions, it is essential to indent appreciably
within the tissue to observe a deflection in the probe, as demonstrated later in the experiments (see
Figure 2.5(c)). The total displacement of the device was designed to be 10 mm with replaceable
springs to allow for operation over tissues of different stiffness values.

2.1.2 Principle of Operation
The probe uses Hall Effect sensing to compare displacement from the palpation probe to a known
deflection value taken from a relative sample. The probe tip displacement (δp) relative to the body
of the device is measured with an incremental magnetic encoder and can be linearly related to a
tissue reaction force (F) using Hooke’s Law (F = kδp). The spring constant is known apriori and
in this case chosen to be k = 0.08 N/mm.

For this device the indentation depth di can be calculated from the relative positions of the

Figure 2.1: A schematic illustrating the indentation process as well as the parameters which define the
relationship between indentation depth and probe-tip deflection as described in Section 2.1.2.
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device (position of the robot arm), end effector (displacement of probe tip), and the baseline height
(b) as (see Figure 2.1):

δp = Z1−Z2

di = δr− (δp−b)
(2.1)

where di is the depth of indentation, δp is the probe-tip displacement, δr is the displacement of
the palpation probe body along the contact normal with respect to the datum, and b is the baseline
height of the sample.

2.2 System Design

2.2.1 Sensing
Deflection of the probe tip was measured with an NSE5310 Austria Microsystems incremental
position sensor. Magnetic Hall Effect sensors (such as the NSE5310) do not require direct contact
with the sensed element which minimizes friction between the probe tip and the body of the device.
The probe tip and axisymmetric magnet column were free to rotate with respect to the shaft of the
da Vinci robot allowing the palpation probe to slide and rotate while in contact with surfaces. The
NSE5310 magnetic encoder was mounted on the reverse of the electronics board and was located
0.125 mm from a central column of magnets which followed the movement of a 2.25 mm radius
spherical indenter. Neodymium disc magnets (of 2 mm diameter and 2 mm pole pair length) were
installed within the sense column with an inter-magnet air-gap of 2 mm. There were 4 magnets
within the central column yielding a theoretical total displacement of 16 mm. Hard-stops were
placed on the device to limit total displacement to 12 mm. The central column was made from
magnetically permeable 316 Stainless Steel with a wall thickness of 0.23 mm and slid co-axially
within 316 Stainless Steel bushings. Magnetic permeability is critical for allowing lines of flux to
pass through the magnetic column to the NSE5310 Hall Effect sensors. An internal view of the
mechanical components can be seen in Figure 2.2a.

2.2.2 Electronics Design
To reduce size and cost, only components critical to sensing and voltage stability were included
onboard the sensor. The power supply for the NSE5310 encoder was buffered and isolated using
low-pass capacitors. A power indication LED and a current limiting 470Ω resistor were included
for debugging. The total footprint of the electronics board is less than 15 mm per edge as illustrated
in Figure 2.2b.

2.2.3 Signal Processing and Data Linearization
An Arduino Mega microprocessor was used for signal processing, data transmission, and interfac-
ing with the dVRK. The NSE5310 encoder transmits 14-bit position measurements to the Arduino
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(a) (b) (c)

Figure 2.2: An exploded view of palpation probe components. (a) Internal components of the probe with
8 mm da Vinci needle driver for comparison. The mounting bracket for the sensor is not shown. (b)Two
layer printed circuit board design of the Sense Board showing surface mount components on top layer in red
and bottom layer in blue. Connectors have been omitted from the design in the interest of minimizing size.
(c) Linearization of output: Raw output of the sensor with respect to actual probe-tip position shown as red
circles, cleaned data with non-linearities removed in real time signal processing as described in Section 2.2.3
are shown in solid blue.

via I2C at a rate of 300Hz. A 50 sample sliding average low-pass filter was used to condition the
raw encoder measurements.

The absolute position between magnet pole pairs was calculated as a 14-bit integer in software
by comparing any two consecutive readings and shifting the most significant bit up or down by
one if the differences between consecutive readings were greater or less than a shifting threshold
of 4000 or -4000 respectively. The shifting threshold was chosen to be greater than 6 standard
deviations of the noise away from the maximum sensor value of 4096 (sensor noise is addressed
below).

Sensor output was recorded at known probe-tip indentation depths by mounting the sensor in
a computer numerical controlled (CNC) Bridgeport vertical milling machine, as shown in Fig-
ure 2.3a, equipped with a digital readout and accurate to 0.01 mm. For every probe tip position,
10,000 samples were collected and averaged. These data points revealed a non-linearity between
probe output and CNC measured compression as illustrated in Figure 2.2c. Transitional air gaps
between magnetic pole-pairs, spaced alternately every 2 mm as seen in the Magnet Column in
Figure 2.2a, create non-linearities in magnetic flux along the axis of travel. A six-degree polyno-
mial was fit to the 4 mm repeating segment of data used by the microprocessor to scale probe-tip
indentation depth to a linear output as shown in Figure 2.2c.

2.2.4 Cost Estimates
The total cost for the electronics on the disposable printed circuit board was less than $7.00 at the
single-unit prototype scale. The structural hardware can be injection molded or made from simple
tubular components and modular springs and cost less than $2.00. The magnets in the probe cost
approximately $0.01 each.
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2.3 Experimental evaluation of Palpation Probe

(a) Probe characterization on a CNC Vertical Mill (b) Probe Output for a tissue phantom

Figure 2.3: (a) Probe characterization on a Bridgeport CNC (XY-Axis) Vertical Mill. The vertical axis
movement (δr in Equation 2.1) was measured by a digital encoder (accurate to 0.01 mm). For every setting
of indentation depth, the vertical position was held constant as the tissue phantom was moved along a linear
path across the subcutaneous vessels. (b) A silicone tissue phantom is shown with blood vessel inclusions
and overlaid dermal phantom. sliding palpation from starting point (green circle) to end point (red circle)
over 80 mm of travel reveals the presence of subcutaneous blood-vessel inclusions as observed from the
probe-tip deflection in the graph above. Depth of indentation was held constant at 8 mm, sliding speed was
1 mm/s, and skin thickness was 1 mm.

2.3.1 Tissue Phantom with Linear Vessels
A tissue phantom comprising a cutaneous layer with subcutaneous inclusions was created for test-
ing and characterization of the stiffness probe, as shown in Figure 2.3b. Silicone Rubber Ecoflex
00-30 (Smooth-On) was cast in a 1A:1B ratio into a 100 mm long, 50 mm wide, 20 mm thick mold
CNC machined from a block of Delrin to create a subcutaneous tissue matrix. Linear cylindrical
inclusions of Silicone Rubber (thickness {1.58, 2.38, 3.175, 4.75}mm; Shore hardness of 70A)
were arranged in the bottom of the mold prior to casting to serve as subcutaneous blood vessel
phantoms. After setting, the subcutaneous phantom was unmolded and inverted. A cutaneous
phantom was created using a slightly stiffer (shore hardness 2A) DragonSkin 10 Medium Silicone
Rubber (Smooth-On) in a 1A:1B ratio. Opaque pigmentation was achieved using a 0.5% by vol-
ume addition of Oil Pigment (Winton Oil Colour, Flesh Tint). The pigmented dermal layer was
cast at various thicknesses ({1, 2, 3, 5}mm) in molds milled from Delrin (with width of 60 mm
and length of 100 mm). Upon solidification,the dermal phantom was overlaid on the subcutaneous
phantom (as shown in Figures 2.6b) to create the tissue phantom setup.
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2.3.2 Calibration using CNC Tool
The probe was affixed to a Bridgeport CNC vertical mill (with digital encoders accurate to 0.01 mm)
for sensor calibration similar to the linearization procedure in Section 2.2.3. The tissue phantom
was mounted securely to an acrylic plate affixed in a vise. The vertical position of the sensor
was held constant at an initial probe deflection of 2 mm while the tissue phantom along with a
cutaneous layer (lubricated by petroleum jelly) was moved beneath the sensor at a feed rate of
1 mm/s. Each trial was conducted across the same line running transverse to the veins embedded
in the tissue phantom as shown in Figure 2.3b. The standard error across 10 trials, quantified by a
normalized root mean square difference, was found to be 0.931 µm.

Baseline sensor noise data (> 10,000 samples) were collected with no signal processing; the
standard deviation of the noise was found to be 12.9 µm. A measured value 52 µm (~4σ ) above
baseline can be considered statistically dissimilar from noise; and using F = kδp, we can get a
minimum palpation probe sensitivity of 4 mN.

2.3.3 Probe Characterization using CNC Tool
A surface profile was constructed by interpolating the δr position of probed surface contact points
spaced at 10 mm intervals along areas of interest. A surface contact point is described as the
first time the probe registers a non-trivial measurement upon touching the surface; quantitatively
defined as the δr position of the sensor after statistically significant deflection (4σ ≈ 52 µm ) is
observed at the probe-tip (δb). This profile accounts for physical irregularities in the sample surface
shape and is used to account for surface offset represented by b in Equation 2.1.

Figure 2.3b shows the probe-tip deflection (δp) using a sliding measurement across the silicone
tissue phantom with blood vessel phantoms and overlaid dermal phantom. The probe was slid
across the surface from the starting point (green circle) to end point (red circle) over 80 mm of
displacement. Parameters used in this trial were: indentation depth (δr) of 8 mm, sliding speed of
1 mm/s, and a skin thickness of 1 mm.

Deflection Response Characterization

Localization of a subcutaneous blood vessel (or tumor) depends on several parameters such as the
indentation depth, depth of the vessel below the surface, and speed of probe sliding. Characteri-
zation of the probe behavior is essential to analyze the deflection response for different parameter
settings.

Probe response was tested by varying each of these parameters for a fixed value of the other
two as shown in the series of graphs in Figure 2.4. Each graph in the figure shows the variation in
probe-tip deflection for different indentation depths (1 mm, 3 mm, 8 mm) at a fixed skin thickness
and a constant sliding speed of 1 mm/s. The different graphs show the variation for different skin
thicknesses (1 mm, 2 mm, 3 mm, 5 mm).

Similarly, fixing the indentation depth at 8 mm and skin thickness at 1 mm, we varied the
sliding speed to four different settings, ({0.5, 1, 6.3, 21}mm/s) and observed the probing response
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Figure 2.4: Increasing Skin thickness decreases palpation probe sensitivity, while increasing penetration
depth increases probe sensitivity to buried blood-vessel phantoms. Displacement of the probe-tip during
sliding palpation plotted at 1 mm/s surface speed; indentation depth (δr) of 1 mm shown in red, 3 mm shown
in blue, and 8 mm shown in black.

Figure 2.5: Sensor response was tested with respect to varying speed and direction on CNC vertical mill,
and automation by the dVRK. (a) robustness to sliding speed was tested at four surface feed-rates; 0.5 mm/s
is shown in red, 1 mm/s is shown in black, 6.3 mm/s is shown in green, and 21 mm/s is shown in blue. Probe
indentation depth was held constant at 8 mm; skin thickness is 1 mm. (b) Hysteresis of sliding palpation
collected continuously in opposite directions without lifting the probe. The maximum maximum difference
between data observed are within 4σ of noise levels, indicating very low hysteresis. Motion in the positive
x-direction is shown in red; negative x-direction palpation is shown in green. This data was collected using
a 1 mm skin thickness and 2 mm indentation at 1 mm/s sliding speed. (c) Deflection of palpation probe at
three different indentation depths with an automated routine on the dVRK.

as shown in Figure 2.5(a). The probe was used to acquire deflection measurements along the same
raster line in a forward and a backward pass. The results from this hysteresis analysis are shown in
Figure 2.5(b); the maximum difference between the directional data was not statistically significant
(≥ 10× larger than 4σ of Gaussian noise).

2.3.4 Autonomous Palpation with dVRK
The palpation probe was mounted on the end of an 8 mm da Vinci Needle Driver as shown in
Figures 2.6b and 2.6a, extending the tool tip by 75 mm. Figure 2.5(c) shows the deflection response
obtained for three indentation depths ({4, 6, and 8} mm) at 2 mm/s in single-sweep automated
sliding palpation.
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(a) Overall Setup (b) Probe Output for a tissue phantom

Figure 2.6: (a) A disposable palpation probe mounted on the tip of an 8 mm diameter dVRK needle driver
tool. (b) It is also shown alongside a regular 8 mm diameter da Vinci tool and a with a tissue phantom with
subcutaneous vessels. This device is a low-cost extension to an existing da Vinci tool for acquiring tactile
information from surface probing in robot-assisted minimally invasive surgery. The presented design of
the palpation probe can be automated to search for blood vessel phantoms with the da Vinci Research Kit
Patient Side Manipulator.

Figure 2.7: An estimate of subcutaneous blood vessels generated by as raster scan on the region of interest.
Delaunay surface interpolation was used to create a continuous estimate from raster samples. Start and
end points for each linear segment are shown overlaid above a tissue phantom as green and red circles
respectively with indicative raster scan paths (shown as black dashed lines).
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An autonomous palpation routine was created for the dVRK accounting for the linear offset
along the insertion direction as shown in Figure 2.7: a plane representing the surface of the tis-
sue phantom was created by recording the pose of the dVRK at the four corner points defined by
point-contact of the palpation probe (≥ 50 µm indentation). This plane (45 mm× 25 mm) was seg-
mented into 10 linear palpation sub-routines transversely crossing two subcutaneous blood vessel
phantoms. The dVRK returned the palpation probe-tip to a home position 2cm above the area of
interest between each linear segment. Continuous tangential palpation at 2 mm/s with an inden-
tation depth of 8 mm was used to search within the area of interest on the tissue phantom. The
blood vessel silicone phantoms used for these trials were 2.5 mm and 3.5 mm in diameter embed-
ded subcutaneously beneath a layer of 1 mm thick dermal phantom. An estimate of the location of
subcutaneous vessels generated by Delaunay interpolation of a raster scanning pattern is illustrated
in Fig. 2.7. Start and end points of the raster path are shown overlaid above a tissue phantom as
green and red circles respectively.

2.4 Discussion of Results
Preliminary characterization results from the palpation probe demonstrate the ability to identify
and localize a subcutaneous blood vessel. As we observe in Figure 2.3b, as the size of the under-
lying vessel increases the sensor deflection also increases. In all cases, the deflection obtained is
significantly above the noise (≥ 10× larger than 4σ of Gaussian noise). Increasing depth of the
inclusion decreases the signal-to-noise ratio from 40:1 at 1 mm skin thickness to ~4:1 at 5 mm skin
thickness for a vessel of diameter 4.75 mm. Signal-to-noise ratio amplifies approximately linearly
with increase in indentation depth as observed in Figure 2.4. A discernible peak is obtained even
in the raw data without signal conditioning for a subcutaneous vessel of 2.25 mm diameter under
a 5 mm skin with an 8 mm indentation depth. As we increase the sliding speed of the probe on the
phantom surface, we observe a small decrease in signal-to-noise ratios as shown in Figure 2.5(a).
However, even the speed of 21 mm/s, which is comparatively high in the context of RMIS, we
obtain statistically significant deflections for all 4 subcutaneous vessels.

Repeatability of measurements is required of RMIS probes which are supported by measure-
ments obtained from forward and backward runs of the probe along the same raster line. These
measurements are within acceptable noise levels of 50 µm(≈ 4σ) as shown in Figure 2.5(b).

Experiments with autonomous palpation routines on dVRK corroborate the findings from probe
characterization on CNC machine tool. In spite of the millimeter level positioning inaccuracies
in the dVRK, Figure 2.5(c) shows a high gain in signal with an increase in indentation depth
with constant skin thickness and sliding speed. Further, the raster scan results from Figure 2.7
demonstrate that this method can be used to search and localize a subcutaneous inclusion in a large
surface area and can be automated for use by RMIS devices.
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Chapter 3

Guassian Process Adaptive Sampling

This chapter introduces the design of a low-cost, disposable palpation probe for use with a standard
da Vinci classic tool. As noted in Section 1.2.1, a palpation probe design for robot-assisted surgery
has design constraints that require it to be small in profile, return observations to allow tumor
localization and should operate with a functional surgical robot with possibly uncertain kinematics.
This chapter describes the design constraints (Section 2.1), design principles (Section 2.2), probe
characterization on a CNC vertical mill and an initial study of probe response in subcutaneous
tumor localization when mounted on the end of a da Vinci Needle Driver (Section 2.3).

This chapter details active tumor localization with Gaussian process adaptive sampling. Prior
art in active search, as described in Section 1.2.2, has attempted similar problems in localization.
However, majority of the focus has been on complete surface mapping which often results in
minimizing estimate variance everywhere. This chapter highlights that the search can be focused
only on the tumor boundaries which can result in high-quality estimates in 10x fewer samples. This
chapter formalizes the tumor localization problem, introduces Gaussian Process adaptive sampling
with an implicit level set upper confidence bound (ILS-UCB). Furthermore, the proposed method
is compared in the simulation with other methods to provide intuition and is compared to physical
experiments with raster search methods using a da Vinci system (Section 3.5).

3.1 Problem Statement
This chapter looks at the problem of localizing the boundary of a subcutaneous tumor using a
palpation probe that provides a measure of effective surface stiffness.
Assumptions. We assume a single, solid, connected 3D tumor is embedded in a volume of tissue.
We assume the tumor is within depth d from the surface, resulting in measurable stiffness differ-
ences, and that the difference in stiffness measured at the surface due to the embedded tumor is
at least ∆k. We assume that we have access to the surface of the tissue for probing, the surface
geometry is known, and the boundary of the tumor projected on the surface is smooth with an
upper bound on the local curvature (κ).
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Expected Output. The goal is to estimate the nonparametric curve C representing the projection
of the subcutaneous tumor(s) T on the soft tissue surface. The curve is defined by level sets of the
stiffness S(x) over the surface parameterized by x ∈ R2, measured using the palpation probe. Our
algorithm produces a sequence of locations on the surface for palpation.
Evaluation. In our simulation experiments, we assume we have access to the ground truth of
the inclusion boundary, CGT . We evaluate the proposed method and compare to other sampling
approaches by comparing the symmetric difference between ground truth CGT and the algorithm
estimate C. Note that we penalize both under and overestimation equally.

3.2 Gaussian Process Adaptive Sampling
Algorithm overview

The stiffness map estimate S(x), represented as a Gaussian process (GP), is initialized with mea-
surements collected at randomly selected locations. Based on the current estimate and uncertainty,
measurement locations are iteratively selected according to sampling criterion, defined in Sec-
tion 3.3, to refine the estimate. Measurements are taken and appended to the set of data used to
retrain the Gaussian Process. The updated estimate is then used to select new locations to probe.

Gaussian Process Model

GPs extend multivariate Gaussian distributions to infinite dimensions [50]. GPs are often used to
estimate and model continuous spatial data. GP models provide a smooth estimate everywhere,
even given sparse sets of training data, allow multi-modal sensor fusion, and provide a statistical
representation of the estimate useful for active refinement using Bayesian optimization methods.
We use a GP to represent the stiffness S(x) and associated uncertainty from the observed palpation
measurements.

The input data for a GP is a set of training data D with observations Y taken at states X , or D =
{X ,Y} = {(x1,y1), ...(xn,yn)} for a set of n training samples. The GP model assumes a function
f is a noisy spatial process yi = f (xi) + δ , where x ∈ R2, δ ∼ N (0,σ) is additive zero-mean
Gaussian measurement noise. Given training data D, the posterior distribution for the function
f (·) at new points x+ is Gaussian with mean µx+ and variance σ2

x+ , i.e. p( f (x+)|x+,X ,Y ) =
N ( f (x+); µx+,σ

2
x+), where

µx+ = kT
+(K +σ

2
n I)−1Y, (3.1)

σ
2
x+ = k(x+,x+)− k(x+,X)T (K +σ

2
n I)−1k(x+,X) (3.2)

Here k(x+,X) is the n× 1 vector of covariances between x+ and the n training inputs X , K is the
covariance matrix of the inputs X , and σ2

n is the noise variance of the additive measurement noise
δ (.). The covariance function (or kernel) K determines the correlation between input locations
xi. We use the squared exponential kernel [50] for the experiments in this chapter because they
produce very sooomth output, but other kernels such as Matern and Periodic ones may also be
used based on the domain.
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Tumor Boundaries as Implicit Surfaces

The stiffness S(x) can be used to define the tumor boundary contour C. Implicit curves are defined
by the set of points for which an implicit function—a scalar-valued function defined over R2—
takes on a particular value [51–53]. We define the tumor boundary (C) as an implicit curve based
on the GP representing the stiffness S(x), i.e. as the α-level set for the stiffness S(x), such that:

S(x)


= α, x on C
> α, x inside C
< α, x outside C.

(3.3)

Since S(x) is an estimate with associated uncertainty, we define the implicit curve using the GP
mean and choose α based on maximum and minimum deflection measurements observed, repre-
senting likely tumor boundaries. This relaxes the need to define precise expected stiffness mea-
surements prior to probing.

3.3 Palpation Algorithms
As described in Section 3.2, the GP representation of the stiffness S(x) can be leveraged by an
algorithm to balance exploration and exploitation for tumor localization. We introduce three pal-
pation algorithms that are evaluated in Section 3.4. All three iteratively select measurements by
optimizing a sampling criterion A(µt−1(x),σt−1(x)), parametrized by the sufficient statistics of
the GP estimate, the mean µ(x) and variance σ(x).

Sampling criterion are often referred to as acquisition functions in GP optimization. In all 3 of
these cases, we select sampling locations that maximize the criterion over the search space X . Be-
cause the variance depends only on the locations of samples (see eq. (3.2)), not the measurements,
one can select sets of sample points that take into account local variance decrease following mea-
surements, prior to taking them. Following [46], we select a set of samples during each iteration
of the algorithm using the estimated mean and the known variance from the prior iterations and
solve a traveling salesmen problem approximately to plan paths between the selected measurement
locations.

1. Expected Variance Reduction (EVR)

The EVR algorithm is a purely exploratory approach, selecting sampling points where the variance
of the Gaussian process estimate is highest: i.e.

xt = arg max
x∈X

σ(t−1)(x).

2. Upper Confidence Bound (UCB)

The UCB palpation algorithm balances exploration, i.e. prioritizing areas with high uncertainty
(high GP variance σ ) and exploitation i.e. areas where the expected stiffness is high (high GP
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(a) GP Mean and Variance Estimate

(b) Three different Palpation Algorithms

Figure 3.1: (a) Mean and variance of a circular tumor for Gaussian process estimate after 2 iterations of batch
size 10 in simulation. (b) Different palpation algorithms evaluated for the Gaussian Process estimate (a).
EVR prioritizes exploration in unsampled regions, UCB prioritizes exploitation of the maximum stiffness
areas and uncertainty, and ILS-UCB balances sampling near level sets between the max and minimum
values, and uncertainty.

mean µ):
xt = arg max

x∈X
γ ∗µt−1(x)+(1− γ)σt−1(x).

Prioritizing high stiffness areas guides sampling toward regions that are likely to be tumor vs. sur-
rounding tissue, and prioritizing high variance regions prioritizes sampling where the confidence
bound is very large (there is high uncertainty in the stiffness estimate).

3. Implicit Level Set Upper Confidence Bound (ILS-UCB)

The ILS-UCB algorithm also trades off between exploration and exploitation. This algorithm
prioritizes searching the expected tumor boundary, conditional on estimate uncertainty, and does
not seek to precisely learn a stiffness map of the entire workspace. Intuitively, by reducing the
estimation space to specifically localize the tumor boundary, we can reduce the total number of
measurements–and consequently the time–required to achieve an estimate of the boundary.
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Hence, rather than prioritizing the both high variance and high mean like UCB, ILS-UCB
prioritizes sampling in areas near a level set of the mean represented by the Gaussian process
implicit surface, i.e. to minimize the implicit potential defined by µt−1(x)− ht−1, and where the
confidence interval is large:

xt = arg max
x∈X

(1− γ)σt−1(x)− γ ∗ |µt−1(x)−ht−1| .

The level set ht−1 is not assumed a priori, but is a percentage α of the current estimated mean:
ht−1 = α (maxµt−1(x)−minµt−1(x)). Note that the second term in the equation above is negative,
as we are trying to sample in locations where the distance to the level set is minimized.

3.4 Simulation Experiments
We compare the three palpation algorithms described in Section 3.3 in simulation for estimation of
two phantoms with known tumor geometry: 1) a circular disk (area 1.23cm2) and 2) a horseshoe
(area 1.26cm2). The search space is a 2.5×5 cm region. For the selection of sampling points, the
search area was discretized into a 200× 200 grid (40,000 points), and γ for the UCB and ILS-UCB
algorithms was chosen to be 0.5, which empirically balanced exploitation and exploration well for
this application. In the simulations experiments, we use 5 initial measurements and a 50% level
set (α) of the stiffness map as the tumor boundary which is indicated as the tumor boundary in
Figure 3.2. We use Python package GPy [54] to implement Gaussian process regression.

We evaluate the performance of all three algorithms varying two possible noise sources: ad-
ditive measurement noise (σ ), and systematic measurement bias (β ). The latter arises when, for
example, unmodeled deviations in the palpation surface lead to systematic error in the stiffness
measurements due to non-constant probe indentation.

Measurements are simulated using a sigmoidal model, which approximates the probe measure-
ments made using our a customized sensor, PALP [10],

Y (x) = Ymin +
Ymax−Ymin

1+ e−k(x−C) +δ +βx1(Ymax−Ymin), (3.4)

where k represents the slope, Ymin and Ymax the maximum and minimum measurements, and (x−
C) is the distance between points x and the closest point on the tumor boundary. δ is additive
measurement noise (δ ∼ N (0,σ)), and we use a linear measurement bias βx1(Ymax−Ymin) that
increases from 0 along one dimension x1 (vertical dimension in Figure 3.2), proportional to a bias
constant β .

Table 3.1 shows the final boundary error for each palpation of the three algorithms and two
phantoms. Each value is the symmetric difference error between the estimated boundary (α is the
50% level set of the mean) and the ground truth tumor boundary, as a percentage of the search
area averaged over five trials. Measurement noise (σ ) is shown as a percentage of the difference
between the simulated measurement maximum and minimum. Measurement bias constant β is
shown as a percentage of the difference between the measurement maximum and minimum.
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Table 3.1: Simulation: Symmetric difference of boundary estimate from the Ground Truth with varying
levels of measurement noise and bias in the measurement function (see eq(3.4)) for each of the three probing
algorithms. We use two tumor models, a circular disk shaped tumor (#1) and a horse-shoe shaped tumor
(#2). Error is reported as a percentage of the search space area after 10 iterations (with a batch size of 10, i.e.
100 measurements), averaged over five trials. Using the ILS-UCB palpation algorithm outperforms other
algorithm in most cases and achieves up to 10x reduction in error.

Variance
(σ )

Tumor#1 Circular Disk Tumor#2 Horse-Shoe
EVR UCB ILS-UCB EVR UCB ILS-UCB

1 % 0.840 0.567 0.056 1.467 1.001 0.175
5 % 0.807 0.672 0.177 1.525 1.256 0.373
10 % 1.189 0.951 0.393 2.155 2.135 0.749
25 % 2.610 2.870 1.314 3.987 5.116 2.210

Bias (β )
Tumor#1 Circular Disk Tumor#2 Horse-Shoe

EVR UCB ILS-UCB EVR UCB ILS-UCB
1% 0.759 0.573 0.060 1.255 1.093 0.141
5% 0.667 0.818 0.267 1.460 1.186 0.305
10% 5.064 5.085 3.906 4.212 4.881 3.234
100% 11.084 10.818 9.810 10.084 10.085 10.091

(a) noise=1%, bias=0 (b) noise=25%, bias=0 (c) noise=1%, bias=100
Figure 3.2: Estimated stiffness maps and boundary estimates for simulated experiments after 10 iterations
(of batch size 10, i.e. 100 measurements) using the ILS-UCB algorithm, for different noise levels and
measurement bias. Regions in blue denote surrounding tissue with lower stiffness and regions in red denote
higher stiffness.
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Figure 3.3: Simulation Experiments: Convergence of the symmetric difference error (as % of search space
area) for palpation algorithms as a function of iteration for two different levels of measurement noise, using
a horseshoe shaped tumor in simulation. As the noise increases, there is randomized exploration which
results in non-smooth convergence curves in the right graph.

Figure 3.2 shows three cases of varying noise and bias levels with corresponding stiffness
mean and estimated boundary for both tumors. Figure 3.3 shows the error for the horseshoe tumor
(tumor 2) as a function of iterations, at two measurement noise values, for all three algorithms.
Performance for all three algorithms degrades with increasing noise and measurement bias, and all
three algorithms have a similarly high error for the highest noise and bias cases.; the final error is
up to 10% smaller, however, using the ILS-UCB algorithm.

3.5 Physical Experiments
In this section, we evaluate the performance of the ILS-UCB algorithm, which outperformed the
alternative algorithms in simulation, for tumor localization on a physical phantom using the dVRK
robot. We compare the ILS-UCB algorithm to a dense raster scanning strategy, evaluating the total
number of measurements made, time, and error between the estimated boundary and the Ground
Truth.

dVRK: Hardware and Software

We use the Intuitive Surgical da Vinci Research Kit (dVRK) surgical robot assistant with a setup
similar to described in [55, 56]. We interface with the dVRK using open-source electronics and
software developed by WPI and Johns Hopkins University [57]. The software system is integrated
with ROS and allows direct robot pose control. We use the customized sensor, PALP, presented
in Chapter 2. PALP is a low-cost, disposable sensor that mounts on a DVRK classic tool-tip. The
PALP probe uses a displacement-based contact sensing mechanism as discussed in Section 2.1.
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Figure 3.4: This figure illustrates autonomous
localization of an embedded tumor in a tissue
phantom. The top image shows the experi-
mental setup with a palpation probe mounted
on a Da Vinci Research Kit (dVRK). The se-
quence of images on the bottom illustrates the
progression of the estimated stiffness over the
tissue surface at intermediate stages (i=2, 4)
and also the final estimate (i=10), with the es-
timated tumor boundary shown as a black line.

Soft Tissue Phantoms

Tumor phantoms were molded from silicone rubber (thickness 4.5 mm; Shore hardness 30A), and
are embedded in softer silicon rubber Ecoflex 00-20 (Smooth-On) with a total size of 100× 50×
20 mm (L×W ×H) simulating subcutaneous tissue. More details on phantom prepartion are de-
scribed in Section 2.3.1.

Tumor Localization

We demonstrate the performance of tumor localization using the ILS-UCB algorithm, which out-
performed other methods in simulation in terms of robustness to noise. We perform the localization
experiment on a circular disk and a horseshoe-shaped tumor similar to the simulation setup. The
search space is 5.4×4.9 cm (26.46 cm2) and the tumor areas are 3.84 cm2 for the horseshoe and
1.84 cm2 for the circle.

In these physical experiments, we use 16 samples on a uniform grid across the workspace to
initialize the Gaussian process representation. Each tumor localization trial is run for at most 20
iterations with a batch of 10 measurements each iteration. Hence for each trial, 200 points are
selected for measurement. Selected points were ordered by approximately solving a Travelling
Salesman Problem at each iteration. In the interest of reducing computation time, scanning trajec-
tories on the robot were computed by linearly interpolating between the points selected based on
the sampling criterion.

At each iteration, the probe moves on the surface between the selected points, continuously
collecting measurements. The robot moves at 5mm/s and measurements are collected at 1 sam-
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(i) Physical Experiments with a Circular Tumor

(ii) Physical Experiments with a Horse-Shoe Tumor

Figure 3.5: Physical Experiments: Tumor boundary estimation for a circular tumor phantom and a
horseshoe-shaped tumor phantom with the PALP probe mounted on the dVRK. In both Figures (i) and (ii),
(a) shows a top-down view of a molded rubberized tumor (orange) embedded in a silicone matrix (white).
(b) shows the estimated stiffness map and the measurement locations for the raster scan (black). (c) shows
the estimated boundary (black), with the error shown as positive and negative margins for the raster scan.
(d) shows the estimated stiffness map measurement locations using ILS-UCB (black), and (e) shows the
estimated boundary using ILS-UCB. Raster scanning for circular tumor takes 9,965 measurements and re-
sults in an error of 0.95 cm2 from Ground Truth. While raster scanning in case of horseshoe-shaped tumor
takes 11,774 measurements and results in an error of 0.98 cm2 from Ground Truth. ILS-UCB takes 200
measurements both cases and results in an error of 1.51 cm2 for the circular tumor and 0.24 cm2 for the
horseshoe-shaped tumor. It is worth noting that because ILS-UCB prioritizes sampling along an implicit
level set of the stiffness, the measurements in (d) are clustered near the boundary of the tumor, resulting in
faster convergence.

ple/mm. Unlike simulation experiments, measurements obtained between the selected points were
incorporated into the GP update in physical experiments to speed up convergence.

To establish a baseline, we also perform a continuous raster scan using the robot the same
speed with 2.0 mm between rows and obtaining 9,965 measurements for the circle and 11,774
measurements for the horseshoe. Table 3.2 details the results from raster scan as well as 5 trials of
ILS-UCB on both the circular and horseshoe tumor. As in simulation, the values are the symmetric
difference between estimated boundary and ground truth. Ground truth of the tumor boundaries is
calculated by registering the search area between the camera image and the robot. The resulting
image is then rectified and the tumor is segmented and the area is calculated from the resulting
closed contour.
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Table 3.2: Physical Experiments: Symmetric difference of the Ground Truth from the boundary estimate
obtained from Raster Scans and ILS-UCB Adaptive Sampling algorithm. We use two tumor shapes, a
circular disk-shaped tumor (#1) and a horse-shoe shaped tumor (#2) similar to the Simulation setup. The
error is reported as a percentage of the search space area (26.46 cm2). Raster scan uses approximately
10,000 samples and ILS-UCB uses 200 samples( 20 iterations with a batch size of 10). ILS-UCB algorithm
achieves the same order of performance with 10x fewer samples than Raster scan.

Tumor#1 Circular Disk Tumor#2 Horse-shoe
Raster Scan 3.60 3.73
ILS-UCB

Trial 1 0.92 5.73
Trial 2 2.99 5.68
Trial 3 3.48 6.67
Trial 4 1.01 7.08
Trial 5 0.97 8.65
Mean 1.87±1.25 6.76±1.21

Figures 3.5ia-c and 3.5iia-c show the physical phantom, the raster scan path, and the estimate
of the mean stiffness obtained using the raster scanning strategy. Figures 3.5id-e and 3.5iid-e show
the estimate of the mean stiffness obtained after 20 iterations (in batches of 10) using ILS-UCB
as the palpation algorithm for the two sets of physical experiments. Estimates of the boundary,
as well as the positive and negative margins, are shown for Figures 3.5ie and 3.5iie. We use the
70% level set of the estimated stiffness map as the tumor boundary (α = 0.7) which is indicated
as a black line on the image. Note that because ILS-UCB prioritizes sampling along an implicit
level set of the stiffness, the measurements in both Figures 3.5id and 3.5iid are clustered near the
boundary of the tumor, resulting in faster convergence.
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Chapter 4

Future Work and Conclusion

Review of Contributions
The main contributions of this thesis are hardware design for a novel low-cost, single-use palpation
probe and bayesian algorithm using Gaussian Process Adaptive Sampling for tumor localization in
Robot-assisted minimally invasive surgery (RMIS). In Chapter 2, we described the design of the
low-cost, single-use palpation probe (PALP) for localizing subcutaneous blood vessels and tumors
in RMIS. It senses relative differences in probe tip reaction force by measuring tip deflection with
respect to a known spring constant using a Hall Effect sensor. The palpation probe fits on the end of
a 8 mm diameter needle driver and extends it by 75 mm. The issue of sterilization is circumvented
by use of disposable sensors, wherein a cost of less than $10 is achieved by use of off-the-shelf
electronics and 3D printed components. The probe can be used for quasi-static sliding palpation
as well as for discrete point palpation. We have used quasi-static sliding to localize subcutaneous
blood vessel phantoms in silicone tissue.

The deflection response on sensor probe was characterized on a CNC machine tool with respect
to various parameter settings such as multiple diameters of subcutaneous silicone cylinders (1.58-
4.75 mm) at varying subcutaneous depths (1-5 mm) with a range of indentation depths (0-8 mm)
and sliding speeds (0.5-21 mm/s). The probe can detect subcutaneous structures in phantoms of
diameter 2.25 mm at a depth of up to 5 mm below the tissue surface and can operate up to speeds
of 21 mm/s in sliding palpation. Experiments with the dVRK under autonomous execution demon-
strate the feasibility of operation with the da Vinci.

In Chapter 3, we study tumor boundary estimation for robot-assisted minimally invasive surgery.
We propose a Gaussian Process Adaptive Sampling algorithm, ILS-UCB, for autonomous tumor
localization using palpation along implicit curves defined by stiffness measurements. Simulation
results show that ILS-UCB can achieve up to a 10x reduction in boundary estimation error over
other methods. We also perform physical experiments, using the custom palpation probe we de-
signed, on a da Vinci Research kit (dVRK) and observe that algorithmic search along implicit
curves requires at least 10x fewer measurements than uniform raster scanning.
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Limitations and Future Work
Design of Palpation Probe

The proposed sensor is primarily aimed to differentiate areas of interest based on relative deflection
changes. We note that the sensor is limited to finding subcutaneous cylindrical phantoms up to
5mm. Methods for noise reduction and signal amplification can extend the limits of the sensor to
identify deeper inclusions while negating the effects of errors in robot positioning.

Further, prior studies have not investigated methods for automated shape and impedance explo-
ration in unknown flexible environments with a continuous probing mechanism. Possessing prior
knowledge of the surface profile, the insertion axis of the dVRK could be used to maintain con-
sistent probe-tip indentation depth across non-planar (or irregular) surface paths while searching
tissue for inclusions.

And lastly, we will explore further miniaturization of the sensor. The electronics board can be
miniaturized further to fit within the cylindrical profile of the da Vinci’s 8 mm Needle Driver by
designing with smaller surface mount components and traces. Improvement in design of the probe
tip mount on the tool to allow for wrist rotation to control sensor orientation is also envisioned.

Gaussian Process Adaptive Sampling

A limitation of the proposed adaptive sampling method for tumor localization is that an accurate
estimate of the surface geometry is required for a correct estimate of sub-surface stiffness and, by
extension, of the tumor boundary. We show in Figure 3.2(c) that stiffness estimates are affected
by errors in surface estimates. While using contact-based tactile probes such as PALP, controlling
the applied force is critical in interpreting measurements, in addition to maintaining a constant
indentation and performing measurements along surface normals. We will focus future effort on
extending the current approach to non-planar surfaces with uncertain surface estimates using, e.g.,
a heteroscedastic GP model to model non-uniform measurement noise.

Automation of subcutaneous tumor excision in robot-assisted surgery is an important problem.
Our recent work for Hamlyn Surgical Robotics Challenge [58] built a system for 2D cutting and
tumor excision from planar phantoms. We will explore the use of PALP to localize subcutaneous
inclusions for autonomous tumor excision in 3D.

Concluding Remarks
This thesis is a step towards closely examining the design of sensors and algorithms for high impact
applications such as robot-assisted surgery. Tumor localization results presented in this thesis that
couple the customized palpation probe PALP and Gaussian process adaptive sampling algorithms
illustrate a new paradigm of low-cost yet effective design of autonomous system achieved through
the interaction of design and optimization.
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