
Taming Evasions in Machine Learning Based Detection
Pipelines

Alex Kantchelian

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-144
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-144.html

August 12, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Taming Evasions in Machine Learning Based Detection Pipelines

by

Alex Kantchelian

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Anthony D. Joseph, Co-chair
Professor J. D. Tygar, Co-chair

Professor Deborah Nolan

Summer 2016

Taming Evasions in Machine Learning Based Detection Pipelines

Copyright 2016
by

Alex Kantchelian

1

Abstract

Taming Evasions in Machine Learning Based Detection Pipelines

by

Alex Kantchelian

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Anthony D. Joseph, Co-chair

Professor J. D. Tygar, Co-chair

This thesis presents and evaluates three mitigation techniques for evasion attacks against machine
learning based detection pipelines. Machine learning based detection pipelines provide much of
the security in modern computerized system. For instance, these pipelines are responsible for
the detection of undesirable content on computing platforms and Internet-based services, such as
malicious software and email spam. By its adversarial nature, the security application domain
exhibits a permanent arms race between attackers who aim to avoid, or evade, detection and the
pipeline’s maintainers whose aim is to catch all undesirable content.

The first part of this thesis examines a defense technique for the concrete application domain of
comment spam on social media. We propose content complexity, a compression-based normalized
measure of textual redundancy that is mostly insensitive to the underlying language used and
adversarial word spelling variations. We demonstrate on a real dataset of tens of millions of
comments that content complexity alone achieves 15 percentage points higher precision than a
state-of-the-art detection system.

The second part of this thesis takes a quantitative approach to evasion and introduces one
machine learning algorithm and one learning framework for building hardened detection pipelines.
Both techniques are generic and suitable for a large class of application domains. We propose
the convex polytope machine, a non-linear large-scale learning algorithm which aims at finding
a large-margin polytope separator and thereby decrease the effectiveness of evasion attacks. We
show that as a general purpose machine learning algorithm, the convex polytope machine displays
an outstanding trade-off between classification accuracy and computational efficiency. We also
demonstrate on a benchmark handwritten digit recognition task that the convex polytope machine
is quantitatively as evasion-resistant as a classic neural network.

Wefinally introduce adversarial boosting, a boosting-inspired framework for iteratively building
ensemble classifiers that are hardened against evasion attacks. Adversarial boosting operates by
repeatedly constructing evasion attacks and adding the corresponding corrective sub-classifiers to
the ensemble. We implement this technique for decision tree sub-classifiers by constructing the
first exact and approximate automatic evasion algorithms for tree ensembles. For our benchmark

2

task, the adversarially boosted tree ensemble is respectively five times and two times less evasion-
susceptible than regular tree ensembles and the convex polytope machine.

i

To my grandmother

ii

Contents

Contents ii

List of Figures iv

List of Tables v

List of Algorithms vi

1 Introduction 1

2 Background and Prior Work 5
2.1 Machine Learning for Security Applications . 5
2.2 Attacking Machine-Learning-based Detection Systems 12

I Hardening Feature Extraction 21

3 Comment Spam Case Study 22
3.1 Introduction . 22
3.2 Content Complexity . 26
3.3 Latent Variable Model . 29
3.4 Evaluation Method . 32
3.5 Evaluation . 38
3.6 Open Problems . 40

II Hardening Machine Learning 42

4 Convex Polytope Machine 43
4.1 Introduction . 43
4.2 Large-Margin Convex Polytopes . 47
4.3 SGD-based Learning . 54
4.4 Non-Adversarial Evaluation . 57

iii

4.5 Exact Evasion . 60
4.6 Open Problems . 63

5 Evasion and Hardening of Tree Ensembles 65
5.1 Introduction . 65
5.2 Tree Ensemble Models . 66
5.3 Theoretical Hardness of Evasion . 66
5.4 Exact Evasion . 67
5.5 Approximate Evasion . 73
5.6 Adversarial Boosting . 75
5.7 Open Problems . 78

6 Empirical Adversarial Evaluation 79
6.1 Introduction . 79
6.2 Experimental Setup . 79
6.3 Evasion Susceptibility . 81
6.4 Hardening Tree Ensembles with Adversarial Boosting 83
6.5 Quality of the Approximate Evasion Method . 84
6.6 Discussion . 84

7 Conclusion 86

Bibliography 88

iv

List of Figures

1.1 Simplified anatomy of a machine learning based detection pipeline 3

2.1 Example of regression tree . 11
2.2 Evasion definition . 14

3.1 LZMA compression rates for six languages . 27
3.2 Compression rate by UserIDs . 28
3.3 Graphical probabilitic model for latent logistic regression 30
3.4 User interface for testing set labeling . 37
3.5 Precision-Recall performance curves . 38
3.6 Precision-Recall performance curves on same plot . 39

4.1 Evasion, stability and large-margin are related concepts 44
4.2 Example of small and large margin separation on same dataset 46
4.3 The double Convex Polytope Machine . 49
4.4 Worst-case margin is insensitive to sub-classifier wiggling 50
4.5 Effect of K ,T on the error rate . 60

5.1 Example of regression tree reduction from 3-SAT . 67
5.2 Regression tree example for MILP evasion reduction 69
5.3 The adversarial boosting framework . 77

6.1 Qualitative examples of evasions . 81
6.2 Quantitative evasion bounds . 82
6.3 Regular versus adversarial boosting error rates . 83
6.4 Optimal versus heuristic evasion bounds . 84

v

List of Tables

2.1 Terminology for classification events . 13
2.2 Typology of attacks . 13
2.3 Prior work for attacks . 17
2.4 Prior work for defenses. 20

3.1 Characteristics of the training and testing sets . 33
3.2 Characteristics of the final evaluation sample . 37

4.1 Summary description of evaluation datasets . 57
4.2 Error rates and running times for the Convex Polytope Machine 59
4.3 Error rates and running times for multi-class classification 60

6.1 Benchmarked models for evasion susceptiblity . 80

vi

List of Algorithms

1 Stochastic gradient descent learning algorithm for the CPM 55
2 Heuristic maximum assignment algorithm used in Algorithm 1 56
3 Greedy L0 evasion algorithm for tree ensembles 74
4 Symbolic prediction algorithm for tree ensembles 76

vii

Acknowledgments

During my years at Berkeley, I have been fortunate to meet colleagues, friends and family who
in one form or another left a lasting impression, and to whom I now express my deepest gratitude.

I would like to start by thanking my co-advisors, Professors Anthony D. Joseph and J. D. Tygar.
Their constant support, conversation and trust has made this thesis possible, and I am further
indebted for their insights on an effective technical communication style. I would also like to thank
Professors Peter L. Bartlett, Richard M. Karp, Christos H. Papadimitriou, Vern Paxson and David
Wagner for their inspiring intellectual rigor, inside and outside of the classroom.

I am also thankful to my colleagues Sadia Afroz, Rekha Bachwani, Riyaz Faizulabhoy, Michael
C. Tschantz, Vaishaal Shankar, George Yiu and Tony Wu for their enthusiastic collaboration and
invaluable conversations. I feel especially obliged to Justin Ma for his guidance in my initial year
and to Ling Huang and Brad Miller for their continued engagement, both on research and personal
grounds. I would also like to thank our program support assistant, Angie Abbatecola for her visible
and invisible help.

I am deeply grateful to my parents Karmena and Leonid, my grandmother Rositza and my
late grandparents for kindling a passion for science and engineering within me, and for their firm
support and encouragement throughout my academic life.

I would like to thank Milad Odabaei for having made Berkeley feel home in his presence and
for sympathetically enduring the unfolding of my research ideas over the past years and the writing
of this thesis. In addition, I want to extend my deepest gratitude to friends and family who have
filed my years in Berkeley with beautiful memories, including Golayoun, Jeanie, Shirin, Simon and
Vandad as well as Michel Brun, Nicolas Eid, Antony Lee, Chloe Matte, Sofia Medina Ruiz and
my quasi-roommate but complete-friend Denia Djokic. I am particularly grateful to my swimming
partners and dear friends Christophe Cochet and Faiza Sefta whose company made my transition to
UC Berkeley wonderful, and I wish I could always keep Sonia El Hedri and Emilia Esposito close
to me.

The research presented in this thesis was supported by Intel’s Science and Technology Center for
Secure Computing Research for the User’s Benefit (ISTC SCRUB), NSF grants 0424422 (TRUST)
and 1139158, the Freedom 2 Connect Foundation, US State Dept. DRL, LBNL Award 7076018,
DARPA XData Award FA8750-12-2-0331, and gifts from Amazon, Google, SAP, Apple, Cisco,
Clearstory Data, Cloudera, Ericsson, Facebook, GameOnTalis, General Electric, Hortonworks,
Huawei, Intel, Microsoft, NetApp, Oracle, Samsung, Splunk, VMware, WANdisco and Yahoo!.
The opinions in this thesis are solely those of its author and do not necessarily reflect the opinions
of any funding sponsor or the United States Government.

This thesis ties together work that in essence tackles the problem of evasion-resistant machine
learning. The three approaches of Chapters 3, 4 and 5 correspond to the chronological progression
ofmy researchwithin SecML,my advisors’ research group. These are in order thework on comment
spam detection (Kantchelian et al. 2012), the convex polytope machine (Kantchelian et al. 2014)
and adversarial tree ensembles (Kantchelian et al. 2016). As supplemental material to Chapter 4,
the authors of (Hao et al. 2016) demonstrate the effectiveness of the convex polytope machine for
the task of malicious URL detection. The SecML group has generally explored questions relevant

viii

to large-scale machine learning based detection pipelines, particularly in the context of malware
detection and its associated labeling issues (Kantchelian et al. 2013; Miller et al. 2014; Kantchelian
et al. 2015; Miller et al. 2016).

1

Chapter 1

Introduction

This thesis focuses on the casewheremachine learning is used for driving security critical decisions.
Without automatic undesirable content detection, many Internet-based communication services,
from regular email to the most famous social networks, would suffer reduced utility to the end
user as the ratio of useful versus useless content decreases. If one can argue that machine learning
simply improves the end user experience in this case, there are also many security applications with
potentially catastrophic consequences. Consider a cyber-physical installation such as a nuclear
power plant using machine learning to prevent execution of malicious code on its control systems,
or, closer to the end-user, self-driving cars which extensively use machine learning to navigate their
environment.

Present day computing systems produce data at phenomenal rates, both in the form of user
generated content or general cyber and physicalmeasurements. On one hand, data storage, computer
networking and distributed computing together provide the underlying means for the persistent
representation of those measurements. On the other hand, machine learning essentially turns
this raw and otherwise inert data into algorithms which accomplish some useful tasks. The
subfield of adversarial machine learning (Barreno et al. 2006) examines the security properties of
machine learning in adversarial environments. Broadly speaking, the environment of a machine
learning-based system is said to be adversarial when the goals of the system’s designers and the
environment’s agents are at least partially conflicting. Adversarial agents exist across a large
spectrum of targeted systems, internal goals and agent capabilities. For instance, spammers
target Internet-based communication services for monetary gain by typically sending product
advertisements (Levchenko et al. 2011; McCoy et al. 2012) and financial scams (Isacenkova et al.
2014) to end users. Their means include highly automated account creation and message posting
pipelines which often rely on a distributed botnet infrastructure. At the other end of the spectrum,
state sponsored attacks targeting critical physical infrastructure are becoming commonplace. Those
attackers can count on considerable technical and financial resources and are often highly trained
individuals.

In adversarial environments, themachine learning component of the targeted systems constitutes
and additional part available for attackers to subvert. In other words, the inclusion of machine
learning in a security critical system augments the attack surface (Howard and Lipner 2009)

CHAPTER 1. INTRODUCTION 2

available to the system’s adversaries. Somewhat paradoxically, this increase in attack surface
happens despite the fact that machine learning is frequently deployed for protecting the pre-existing
system from adversaries. This conceptual flaw can be readily understood as a mismatch between
the goals of the machine learning component and the system’s defender. Starting with an existing
system S we want to protect using some machine learning component M , the security practitioner
would today proceed to useM to protect S . However, this does not accomplish the defender’s goals
because the resulting system is no longer S alone, but a composition of S andM , which we loosely
denote by S∪M . Hence, the conceptually proper approach is to useM to protect S∪M instead. The
tricky self-referential nature of the correct approach is the implicit but fundamental reason why the
simpler approach of usingM to protect S is systematically applied.

To understand the nature of the additional attack surface presented by S ∪ M , it is useful to
consider the learning and inference phase of machine learning separately. In the learning phase,
we transform some training data into an algorithm which purpose is to protect the system by
performing some detection of dangerous environment inputs for S . This training data will usually
contain examples of both benign and dangerous inputs so that the resulting algorithm is effectively
taught by example. In practice, this algorithm is a parametrized instantiation of an abstract structural
algorithm. The set of parameters is traditionally called the model and the structural algorithm it
parametrizes is called the model class. In the inference phase, we simply apply the previously
learned algorithm to the inputs.

Chapter 2will paint a finer picture of the type of attacks towhichmachine learning is susceptible.
From a higher level perspective, an attacker can choose to target either one of the learning or
inference phases. Attacks targeting the learning phase are said to be poisoning because they
essentially amount to tampering with part of the training data to modify the learned model to
the attacker’s advantage. Generally speaking, a poisoning attack aims at decreasing the model’s
accuracy by increasing the number of times the model confuses dangerous inputs for benign ones
and vice versa. Note that in realistic systems, it is typically easy for attackers to gain partial write
access to the training set. Indeed, deployed systems need to regularly update their detection models
by training on fresh data which in turn is partially controlled by the adversary. By definition, the
adversary creates the malicious inputs, and depending on the volume of legitimate inputs naturally
present, the adversary might additionally be able to control a non-negligible portion of those benign
inputs by crafting his own.

The second family of attacks against machine learning takes place during the inference phase.
Generally speaking, attacking the inference phase means finding a surprising input, that is, an input
which the machine learning model and a human expert would label in a radically different manner.
An interesting example is voice command spoofing (Carlini et al. 2016): one can construct audio
sequences which on one hand do not sound like anything recognizable and on the other hand are
happily interpreted as voice commands by devices with such capabilities. This surprising behavior
is highly undesirable: an attacker can covertly direct the victim’s phone to perform unwanted
actions such as taking pictures or sending text messages in full presence of the victim.

This thesis focuses on a type of inference phase attacks called evasions. An evading attacker
aims at evading detection from the model. For the attacker, this amounts to crafting a dangerous
input which the model mistakenly recognizes as a benign input. At this point of the exposition, we

CHAPTER 1. INTRODUCTION 3

need to look into the structure of a machine learning based detection pipeline to understand how
an attacker might achieve evasion.

Figure 1.1 presents a high level description of a machine learning based detection pipeline
during the inference phase. Such a pipeline can be understood a function that maps an observation
into a decision. The type of the observation is specific to the application domain. For instance,
these could be emails, executable files or network traces; in which case the corresponding decisions
would be spam/hammessage, malicious/benign executable and attack/legitimate traffic respectively.
Because virtually all machine learning models operate on real-valued vectors, the observation is
first embedded into vectorial space during the feature extraction step. Each dimension of the space
represents a salient feature of the observation. Unlike the machine learning model which can be
pretty generic, the feature extractor is highly dependent on the specific application domain.

observation decision
detection

pipeline

feature

extractor

machine learning

model

Figure 1.1: Simplified anatomy of a machine learning based detection pipeline for the inference
phase. The feature extractor “adapts” the input into a format machine learning understands.

As can be seen from the decomposition of the detection pipeline, an attacker can achieve evasion
in at least two ways. When crafting its evading observation, the attacker can choose to target either
the feature extractor or the machine learning model itself. Evasion attacks that target the feature
extraction step take advantage of the loss of information between the original observation and its
vectorial embedding. Evasion attacks that target the machine learning model take advantage of
the imperfect nature of machine learning. This decomposition motivates the two parts of this
thesis: evasion attacks that target the feature extraction step, and evasion attacks that target machine
learning itself.

Because the feature extraction step is domain specific, we ground Chapter 3 in the practical
application of comment spam detection on a social-media platform. We introduce a new metric,
content complexity, that is robust to widespread evasion technique based on spelling variations. We
leverage this metric to create a small set of features well-adjusted to comment spam detection by
computing the content complexity over groupings of messages sharing the same author, the same
sender IP, the same included links, etc. We evaluate the new features against an exact set of tens
of millions of comments collected over a four months period and containing a variety of websites,
including blogs and news sites. The data was provided to us with an initial spam labeling from
an industry competitive source. Nevertheless the initial spam labeling had unknown performance
characteristics. To train a logistic regression on this dataset using our features, we derive a simple
mislabeling tolerant logistic regression algorithm based on expectation-maximization, which we
show generally outperforms the plain version in precision-recall space. We show that our method

CHAPTER 1. INTRODUCTION 4

can operate at an arbitrary high precision level, and that it significantly dominates, both in terms of
precision and recall, the original labeling, despite being trained on it alone.

In the second part of this thesis, we take a closer look at the machine learning itself and abstract
the feature extraction part to the highest possible extent. In contrast to Chapter 3, this allows us to
simulate powerful evading adversaries that operate in the embedding vectorial space and to make
general evasion robustness claims across a wild spectrum of machine learning algorithms.

In particular, Chapter 4 introduces the Convex Polytope Machine (CPM), a large-margin based,
non-linear algorithm for fast large scale model learning. Because of the particular model struc-
ture, we are able to study in an exact quantitative fashion its susceptibility to evasions. We
demonstrate that on one hand the CPM exhibits outstanding computational performance and com-
petitive accuracy while on the other hand being susceptible to evasions. We also demonstrate
particularly effective evasion attacks against tree ensembles in Chapter 5, a class of non-linear, non-
differentiable models which contains the popular gradient boosted trees and random forests model
classes. For a consequent selection of evasion attack types, Chapter 6 shows that tree ensemble
models systematically rank at the bottom in terms of robustness, notwithstanding their competitive
accuracy.

To end on a positive note, Chapter 6 also evaluates adversarial boosting, our novel tree ensemble
building algorithm based on boosting which creates significantly harder to evade models without
sacrificing the detection accuracy. As a way to harden otherwise weak machine learning models,
adversarial boosting offers interesting perspectives to the security decision pipelines designers and
practitioners.

5

Chapter 2

Background and Prior Work

This chapter formalizes and contextualizes the concepts presented earlier. We start with a succinct
overview of machine learning in the context of security applications. We then present a well known
taxonomy of attacks targeting machine learning and finally focus on evasion attacks for which we
provide a literature review of examples and suggested counter-measures.

2.1 Machine Learning for Security Applications
Broadly speaking, machine learning aims at turning data that is exemplary of a task to accom-
plish into an algorithm which accomplishes the said task. Machine learning has a plethora of
applications. In natural language processing, machine learning can perform automatic transla-
tion (Sutskever et al. 2014) and speech-to-text transcription (Graves et al. 2013); in robotics, it
enables environment navigation and interaction through obstacle detection (Benenson et al. 2012)
and movement planning (Peters and Schaal 2008); in artificial intelligence, machine learning has
been the driving force behind the fast progress of automatic picture description systems (Vinyals
et al. 2015).

In this thesis, we focus on detection tasks, or yes/no decision tasks. For such tasks, our aim is
to train the machine to answer binary yes/no questions. In the context of computer security, some
examples of binary questions of interest are:

• Is this email spam?

• Is this executable file malicious?

• Is this network traffic trace indicative of an attack?

Formally, let Ω be an observation space that is application domain specific, ω ∈ Ω an observa-
tion andY a set of two elements. For the three previous examples, Ω would be respectively defined
as the set of all possible emails, executable files and network traffic traces. We choose the two
specific elements of Y to lighten the notational formalism in each part of this thesis. Specifically,
in Chapter 3, we take Y = {0; 1}, and in every subsequent chapter Y = {−1; 1}. Throughout this

CHAPTER 2. BACKGROUND AND PRIOR WORK 6

thesis, the positive element 1 always represents a malicious, dangerous, or otherwise undesirable
observation, and the non-positive element stands for a benign observation.

A machine learning based detection pipeline provides a mapping Φ between Ω and Y:

Φ : Ω → Y
ω 7→ Φ(ω)

Machine learning provides a generic approach to building such mappings. Instead of accepting
arbitrary inputs from Ω, a machine learning classifier operates in a real-valued vectorial space.
Let d ∈ N∗ be the number of dimensions of the input space. A classifier c is a mapping between
instances x ∈ Rd and labels y ∈ Y. For all practical classifiers, c is constructed from a thresholded
real-valued classifier f :

f : Rd → R
x 7→ f (x)

so that we have c (x) = 1 ⇔ f (x) > τ for some threshold value τ , most commonly fixed at τ = 0.
f (x) is the signed margin of the binary classifier c and is classically understood as a measure of
confidence for the decision. The larger ��f (x)�� is, the more confident c is about the c (x) decision.
While c is technically our binary classifier, we more often work with the signed margin f directly.

Because machine learning only provides domain-agnostic tools, Φ operates in two phases. In
the first phase, a feature extraction function ψ : Ω → Rd embeds the observation ω into a point
ψ (ω) ∈ Rd . The embedding ψ is largely domain-dependent but generally aims at mapping the
informative characteristics of the observation into dimensions of Rd . In the second phase, the
machine learning classifier c performs the inference f (ψ (ω)). We refer to the dimensions of the
vectorψ (ω) as the feature dimensions.

Machine learning is the theoretical and practical body of work which aims at constructing
“good” classifiers f . Among all general purpose approaches for constructing f , Empirical Risk
Minimization dominates by far current machine learning techniques, both in terms of practical
results and theoretical understanding.

Empirical Risk Minimization
In this thesis, we restrict our interest to supervised machine learning. Given a labeled dataset D
of n instances x (1), . . . ,x (n) ∈ Rd with respective labels y1, . . . ,yn ∈ {−1; 1} and a loss function
` : R→ R+, the empirical risk of classifier f over dataset D is defined as:

RD (f) =
1
n

n∑
i=1
`(yi f (x

(i)))

In this thesis, i is the preferential variable name for indexing the dataset instances, and we use it
along with the superscript parenthesized notation.

CHAPTER 2. BACKGROUND AND PRIOR WORK 7

For example, RD (f) counts the proportion of misclassification errors made by f when ` is taken
to be the 0/1 loss:

∀q ∈ R, `0/1(q) =



0 if q > 0
1 if q ≤ 0

A supervised learning algorithm aims at finding a classifier f such that:

1. f has a low empirical risk on the given training set D, and
2. f has a low empirical risk on future, not yet seen, datasets.

Property (2) is often referred to as the ability of f to generalize well given its initial training
dataset D. Obviously, the training dataset and future unseen datasets must share some common
property for such endeavor to be meaningful. In the theoretical analysis of machine learning
algorithms, we formalize this requirement by introducing an underlying but unknown probability
distribution which generates an infinite amount of independent and identically distributed labeled
instances (x ,y), so thatD and all subsequent datasets emanate from the same stochastic process. In
practice, this is almost never the setting in which machine learning is applied. The main issue is the
presence of time. In reality, the (x ,y) pairs many neither be independent nor identically distributed.
The theoretical framework is nonetheless important for establishing necessary conditions for good
machine learning algorithms: if an algorithm fails to satisfy either (1) or (2) in the framework,
then we have no hope for it to be effective in practice. Algorithms that satisfy (1) and (2) under
independence and identical distribution of instances are said to be consistent.

Empirical Risk Minimization (ERM) is a generic approach to constructing consistent learning
algorithms. Let F be a model class, that is, a set of candidate classifiers:

F ⊂
{
f ��� f : Rd → R

}

As its name suggests, the ERM approach finds a classifier f ∈ F whichminimizes the empirical
risk on the dataset D:

min
f ∈F

RD (f) (2.1)

By definition, ERM itself focuses on satisfying condition (1). An important body of theoretical
work shows that for the proper choice of model class F , the solution of problem (2.1) also satisfies
condition (2). The relationship between F and generalization power takes the form of an intuitive
Occam’s razor argument: the less complex, or the smaller the model class is, the better the chosen
classifier f generalizes. Hence, there is a trade-off between conditions (1) and (2) as the simpler
F is, the less likely we are to find a good classifier describing D. This dilemma is often referred
to as underfitting v.s. overfitting, or a bias-variance trade-off.

Several measures of complexity and corresponding generalization bounds have been developed.
Historically important, the first such measure is the Vapnik-Chervonenkis (VC) dimension (Vapnik
1995), or shattering dimension. The VC dimension of F is the maximal size of a dataset of
labeled instances (x (i),yi) ∈ R

d × {−1; 1} for which there exists a classifier f ∈ F with empirical

CHAPTER 2. BACKGROUND AND PRIOR WORK 8

0/1-loss being 0. An alternative, finer-grained measure of model class size is the Rademacher
complexity (Bartlett and Mendelson 2003). We will use this latter measure when stating our
generalization bounds for the Convex Polytope Machine in Chapter 4.

We now give a brief overview of common model classes F , starting with linear models.

Linear Classifiers
f is a linear classifier if and only if there exists a vector w ∈ Rd and a term b ∈ R such that for all
x ∈ Rd we have

f (x) =
d∑
j=1

xjwj + b = xᵀw + b

where for vectors u,v ∈ Rd , the subscript notation uj denotes the value of dimension j of u and
uᵀv is the dot, scalar or inner product and j is the preferential variable name indexing the feature
dimensions of x . Vector w is called the weight vector because it multiplicatively weights each
dimension of x , and the constant b is called the bias or intercept term. For the sake of notational
brevity, when working with linear classifiers, we always include the bias term in the weight vector
w by appending a constant unitary dimension to all instances x . That is, ψ constructs instances x
such that xd = 1, andwd plays the role of b.

Owing to their long history and relatively simple structure, linear classifiers are by and large
well understood. In particular, there exists a profusion of algorithms for finding a good weight
vector w given some training data: the perceptron algorithm (Freund and Schapire 1999), the
naive Bayes algorithm (Russell and Norvig 2009), logistic regression (McCullagh and Nelder
1989), linear support vector machine (SVM) (Cortes and Vapnik 1995), confidence weighted linear
classification (Dredze et al. 2008), etc.

The perceptron, logistic regression and linear SVM models belong to the ERM family of
algorithms. In particular, logistic regression minimizes the logistic loss `LR which is a smooth,
convex upper-bound of the 0/1 loss:

`LR (q) = log2 (1 + exp (−q))

It is common to constrain the model class complexity using the L1 or L2-norm of w , in which
case we talk about L1 or L2-regularized logistic regression respectively. That is, for a given positive
constant Λ ∈ R+ and norm ρ ∈ {1; 2}, the Lρ-regularized logistic regression model class is:

Fρ,Λ =
{
f ��� ∃w ∈ R

d , ‖w ‖ρ ≤ Λ; ∀x ∈ Rd , f (x) = xᵀw
}

Generally speaking, L1 regularization results in a sparse weight vector solution for the learning
problem (2.1), where only a few dimensions of w are non-zero. The L2-regularized logistic
regression distributes weights more evenly across the dimensions of w . On the implementation
side, we note that because `LR is a convex function and the set of admissiblew is convex as well, the
machinery of convex optimization (Boyd and Vandenberghe 2004) is often successfully invoked
for solving the minimization problem (2.1), even for datasets of millions of samples n and feature
dimensions d (Fan et al. 2008).

CHAPTER 2. BACKGROUND AND PRIOR WORK 9

Neural Networks
The neural network model class is obtained by layered composition of linear models and non-linear
functions sometimes called activation functions (LeCun et al. 2012). Formally, let σ : R → R
be a non-linear function. For neural networks, σ is commonly chosen as a sigmoidal function.
Informally, σ is sigmoidal if the following conditions hold:

1. σ (0) = 0 (centered)
2. limq→+∞ σ (q) = 1 (unitary asymptote)
3. σ is non-decreasing
4. σ (q) = −σ (−q) (symmetry)

Typically used sigmoidal functions are:

σ (q) = tanh(q),

σ (q) =
q√

1 + q2
, and

σ (q) =
2
π
arctan

(π
2
q
)

Letp ≥ 1be a natural number. f belongs to themodel class ofp-layer deep neural networkswhen
there exists l1, . . . , lp−1 ∈ N∗ (the number of units, or artificial neurons per internal layer), weight
matricesW1 ∈ R

l1×d ,W2 ∈ R
l2×l1, . . . ,Wp ∈ R

1×lp−1 and offset vectors b1 ∈ Rl1,b2 ∈ Rl2, . . . ,bp ∈ R
such that f can be written as:

∀x ∈ Rd , f (x) =Wpσ
(
Wp−1σ (. . . σ (W1x + b1) . . .) + bp−1

)
+ bp

whereMu is the matrix-vector product betweenmatrixM and vectoru, andσ operates element-wise
on its vector argument. For p = 1, the model class collapses to linear classifiers:

f (x) =W1x + b1

where W1 ∈ R
1×d and b1 ∈ R. For p > 1, we say the model has p − 1 hidden layers. Neural

networks are considerably more expressive than linear classifiers: any reasonable function can be
approximated by a deep enough neural network (Hornik 1991).

ERM is the predominant method for finding the coefficients of W1, . . . ,Wp and b1, . . . ,bp .
Unlike logistic regression, the optimization problem (2.1) is generally non-convex, even when using
a convex loss function such as `LR. Stochastic Gradient Descent (SGD) is the method of choice for
finding good enough solutions (Bottou 2012). Historically, SGD is often called back-propagation,
because of the form ∇f takes from the chain rule for gradients of function compositions.

Recent work has considerably expanded the collection of tricks available for training neural
networks. For instance, a simple rectifier function σ (q) = max(0,q) can be as effective as more
complex sigmoids (Glorot et al. 2011). Pre-training (Erhan et al. 2010) and drop-out (Srivastava
et al. 2014) are also novel regularization techniques for neural networks.

CHAPTER 2. BACKGROUND AND PRIOR WORK 10

Kernel Methods
Kernel methods rely on a pre-specified similarity function K : Rd ×Rd → R to perform prediction.
f is a kernel classifier when there exists a weight vector w ∈ Rn and points x (1), . . . ,x (n) ∈ Rd

commonly referred to as support vectors, such that f can be written as:

f (x) =
n∑
i=1

wiK (x ,x (i))

Popular examples of similarity functions K are the linear kernel K (u,v) = uᵀv, the polynomial
kernel of degree t ∈ N∗ and constant term b ∈ R, K (u,v) = (uᵀv + b)t and the Radial Basis
Function (RBF), also called Gaussian kernel K (u,v) = exp

(
−γ ‖u −v ‖2

)
with a positive real-

valued parameter γ . Note that for the linear kernel choice, the model class collapses to linear
classifiers again.

Kernel methods have enjoyed a sustained popularity because of the flexibility for the choice of
K . That is, for problems where there exists a good notion of similarity between instances, a kernel
classifier with an adapted choice of K can achieve excellent performance.

In practice, themost popular incarnation of kernelmethods is the kernel Support VectorMachine
(SVM). Kernel SVM is another example of the ERM line of algorithms. The loss function for
SVM `H is a convex but non-smooth upper-bound of the 0/1 loss and is referred to as the hinge loss
because of its shape:

∀q ∈ R, `H (q) = max(0, 1 − q)

One can also prove that under ERM, and under certain conditions on the kernel K , the optimal
choice of support vectors for SVM is simply the set of original training instances (x (i)). In general,
SVMs have a deep connection with convex optimization concepts and a rich theory surrounding
those exist (Boser et al. 1992; Vapnik 1995; Thomas Hofmann 2008).

Decision and Regression Trees
A regression tree T is a binary tree where each internal node node ∈ T .nodes is labeled with
a logical predicate node.predicate over the dimensions of x , the two children of node are by
convention labeled node.true and node.false and finally each leaf leaf ∈ T .leaves holds a real
value leaf.prediction. For a given instance x , the prediction path in T is the path from the tree
root T .root to a leaf such that for each internal node node in the path, node.true is also in the
path if and only if node.predicate holds over the concrete instance x . The model prediction is the
leaf value of the prediction path. Figure 2.1 presents an example of a regression tree.

Node predicates can be arbitrary complex. In this thesis, we focus on the most prevalent type
of predicates encountered in practice: inequalities involving a single feature dimension.

Under ERM, we would have to find the best possible tree structure, predicates and leaf values
with respect to a given loss function and the training dataset. In practice, this optimization problem
is known to be computationally intractable. Instead, the tree classifier is greedily grown from
the root by finding at every step the predicate that would separate best the two classes, and thus

CHAPTER 2. BACKGROUND AND PRIOR WORK 11

x
1
 < 0.5

x
2

 < 0.5

true false

true false

1.3

0.3-0.9

Figure 2.1: Example of regression tree. For a given instance, inference is done by traversing the
tree from the root to a leaf such that each branch choice is consistent with the valuation of the
corresponding node predicate. For example, for instance x = (1, 0), the prediction of the model is
1.3.

give the “purest” leaves. The growing procedure is recursively applied until the current leaves are
pure, or a stopping criterion is met, e.g., a maximal depth has been reached (Hastie et al. 2005).
To control complexity and improve generalization, there also exists several tree simplification, or
pruning techniques (Mehta et al. 1995; Kearns and Mansour 1998). In practice, decision trees are
rarely used as classifiers on their own because of their relatively poor generalization performance
when compared to competing approaches.

Tree Ensembles
Informally, while a single decision tree is a weak1 classifier, many weak classifiers taken together
can form an accurate classifier. Specifically, summing together regression tree outputs is an effective
way to improve the generalization performance. f is a sum-ensemble of trees if and only if there
exists K ≥ 1 regression trees f1, . . . , fK such that:

f (x) =
K∑
k=1

fk (x)

The individual classifiers fk are often referred to as base classifiers in the context of ensembles.
There are two common approaches for building such ensembles: random forests and boosting. The
random forest technique (Breiman 2001) is an indirect ERM procedure. In a random forest, each
regression tree is built independently under ERM, with the added constraint that only predicates
over a randomly selected subset of the feature dimensions are allowed.

Unlike random forests, boosting (Freund et al. 1999; Friedman 2001) has a direct ERM inter-
pretation. Boosting is a greedy iterative approach where at each round, we find the best possible

1The weak terminology has a precise mathematical definition, see (Freund and Schapire 1995).

CHAPTER 2. BACKGROUND AND PRIOR WORK 12

classifier to add to the ensemble. Formally, let F be a subset of the regression tree model class.
The fi are iteratively obtained as correction terms to the current model as follows:

f1 = argmin
h∈F

RD (h)

f2 = argmin
h∈F

RD (f1 + h)

. . .

fK = argmin
h∈F

RD *
,

K−1∑
k=1

fk + h+
-

AdaBoost, or additive boosting is historically the first example of boosting (Freund and Schapire
1995). AdaBoost can be obtained from the above greedy ERM procedure by using the exponential
loss (Friedman 2001):

∀q ∈ R, `EXP (q) = exp(−q)

In practice, the logistic loss produces better results in an algorithm called logitboost (Friedman
et al. 2000; Li 2012). Careful adaptations of logitboost for regression trees exist (T. Chen and
Guestrin 2016) and have shown impressive results in numerous machine learning competitions.

Linear classifiers, common neural networks and kernelmethods are all differentiablemodels and
their gradient ∇f is often extremely useful both for learning and explanatory purposes. Decision
trees and tree ensembles on the other hand are piecewise constant models for which differentiation
is a useless tool.

2.2 Attacking Machine-Learning-based Detection Systems
When used in an adversarial setting, machine learning-based detection pipelines face a family of
challenges. On one hand, the system designer uses general purpose machine learning techniques
such as ERM to build the detection pipeline Φ. On the other hand, adversaries are by definition
aiming at undermining the system, by any sensible means. Even under the generous assumption
that the implementation of Φ itself is absolutely free of bugs, there still remains a consequent and
potentially exploitable attack surface.

Taxonomy of Attacks
Every attack aims at increasing the error rate of Φ. Table 2.1 describes the four types of events that
can happen for any given observation ω ∈ Ω. Attacks aim at either increasing the false positives or
false negatives.

The authors of (Barreno et al. 2006) lay out the landscape of attacks Φ is susceptible to. In
this taxonomy, an attack can be characterized along three dimensions: its influence capability, its
specificity and the type of security violation it causes. Table 2.2 presents the possible characteristics
for each dimension of the taxonomy. We succinctly expand on each attack dimension.

CHAPTER 2. BACKGROUND AND PRIOR WORK 13

benign ω malicious ω

Φ(ω) ≤ 0 True Negative False Negative
Φ(ω) > 0 False Positive True Positive

Table 2.1: Terminology for the decision events as a function of the ground truth nature of ω and
the actual decision Φ(ω).

Dimension Type for dimension

Causative Exploratory
Influence Attacker can partially manipulate

training set D.
Attacker can partially inspect the in-
ternals of Φ.

Targeted Indiscriminate
Specificity Attacker is only interested in a spe-

cific type of observation ω.
Attacker is indifferent to the type of
observation ω.

Integrity Availability
Security Violation Attacker increases false negatives. Attacker increases any type of error

and renders Φ useless.

Table 2.2: Typology of possible attacks. Each one of the three rows is an independent descriptive
axis.

The influence axis captures the amount of access to the system our attacker has. In causative,
or training-time attacks, the attacker can effectively control a portion of the training dataset. This
situation often occurs in practice, as by definition malicious observations are crafted by the attacker.
This problem is exacerbated in online and active learning (Miller et al. 2014) settings. In exploratory,
or testing-time attacks, the attacker can not modify Φ but has a given amount of knowledge over Φ
and probing capacity in the form of crafting queries ω and receiving Φ(ω) answers.

The specificity axis captures the focus of the attacker. In targeted attacks, the attacker only cares
about causing a misclassification on a small subset of observationsω. In indiscriminate attacks, the
specific nature of ω does not matter as much as the total number of misclassifications the attacker
wants to cause.

Finally, the security violation axis captures the type of misclassification errors caused. In
integrity attacks, the attacker increases the false negative errors, and thus evades detection. In
availability attacks, the attacker aims at increasing false positive, false negative or both errors to a
level where the prediction of Φ can no longer be acted on, rendering the system effectively useless.

This thesis focuses on exploratory attacks targeting the integrity of the detection system, that
is, on testing-time evasion attacks, or simply evasions.

CHAPTER 2. BACKGROUND AND PRIOR WORK 14

Evasions
Figure 2.2 presents the main ingredients of an evasion attack. We say that ω′ is an evading
observation for a given detection pipeline Φ if Φ(ω′) ≤ 0 and there exists a semantically-equivalent
observation ω such that Φ(ω) > 0. In other words, ω′ is a false negative and there exists a similar
instance which Φ correctly classifies as malicious. This definition captures the adversarial process:
if an attacker’s nefarious input ω is correctly detected by the pipeline, then the attacker seeks to
craft a new input ω′ which both achieve the attacker’s goals and is misclassified as benign.

malicious

observation

positive

detection

detection

pipeline
ω 1

evading

observation

negative

detection

detection

pipeline
ω’ 0

semantics-preserving

transformation

Figure 2.2: Definition of evasion.

Fully modeling the semantics-preserving transformation is, for most application domains, an
extremely difficult task. However, for many domains of interest, one can capture important aspects
of the transformation and study its effects on the detection pipeline. For example, in spam detection,
one can more or less significantly misspell content words and still preserve the general meaning of
the message. Alternatively, one can also replace the raw textual content altogether with a picture
of it, for no loss of meaning to a human reader.

Quantifying the Evasion Susceptibility of Classifiers
We now introduce a simple but powerful formalization of the semantics-preserving concept which
allows us to quantitatively study the evasion robustness properties of virtually all machine learning
classifiers f . Here, we forgo for a moment the application-specific feature extraction phase ψ and
directly work in the embedding space Rd where f operates.

We follow the definition of (Biggio et al. 2013). Let c be a classifier. For a given instance x and

CHAPTER 2. BACKGROUND AND PRIOR WORK 15

a given “distance” function ∆ : Rd × Rd → R+, the optimal evasion problem is defined as:

minimize
x ′∈Rd

∆(x ,x′) subject to c (x) , c (x′) (2.2)

Setting the classifier c aside, the distance function ∆ fully specifies (2.2), hence we later talk
about d-evading instances, or d-robustness. In fact, for many practical complete detection pipelines
Φ, we can exactly study evasion-related questions directly under formulation (2.2), with a judicious
choice for d . That is, d can both be used to:

1. model the semantic distortion between instances x and x′, or from a different perspective,
model the cost the attacker has to pay for changing her initial instance x into x′, and

2. model the effect of the feature extractorψ .

In this thesis, we proceed as if the attacker cost is decomposable over the feature dimensions.
In particular, part II presents results for four representative distances. We briefly describe those
and their typical effects on the solution of (2.2).

The L0 distance
∑d

k=1 Ixk,x ′k , or Hamming distance encourages the sparsest, most localized de-
formations with arbitrary magnitude. The techniques presented in this paper can also accommodate
the case of non-uniform costs over features. This situation corresponds to minimizing

∑d
k=1 skIxk,x ′k

where sk are non-negative weights.

The L1 distance
∑d

k=1 |xk − x
′
k
| encourages localized deformations and additionally controls for

their magnitude.

The L2 distance
√∑d

k=1(xk − x
′
k
)2 encourages less localized but small deformations.

The L∞ distance maxk |xk − x′
k
| encourages uniformly spread deformations with the smallest

possible magnitude.
Note that for binary-valued embedding domains x ∈ {0; 1}d , L1 and L2 reduce to L0 and L∞

results in the trivial solution value one for problem (2.2).
The feature extraction ψ can also be modeled in the optimal evasion problem by properly

defining d and potentially complex inter-feature dependencies can be modeled. For instance,
consider the common case of two mutually exclusive binary feature dimensions k and l such that for
any observation ω, featuresψ (ω)k andψ (ω)l can never be both non-zero at the same time. This can
be modeled in d as an additive term of the form +BIxk,0Ixl,0 with a large-enough constant penalty
value B. The approaches we present in Chapters 4 and 5 can readily accommodate such exclusion
constraints directly, without introducing extra constants like B.

CHAPTER 2. BACKGROUND AND PRIOR WORK 16

Evasion Attacks
Table 2.3 presents and organize prior work on designing attacks against detection pipelines, that is,
methods that find for a given malicious observation ω a corresponding evading observation ω′. We
categorize attacks across five dimensions: the considered application domain, the consideredmodel
class(es), the amount of knowledge the attacker has over the detection pipeline, the completeness
of the attack, and its computational cost.

We distinguish three specific application domains: email spam, PDF malware and image
recognition. In email spam, attack algorithms seek to minimally transform the content of a spam
email to evade detection. For all prior works, these attacks consist in either adding words that
are indicative of, or correlated with, benign messages, or replacing words associated to spam with
more neutral synonyms. For malicious PDF detection, structural metadata replaces words. Features
of interest are for example whether the PDF contains executable JavaScript code, the number of
distinct fonts used and the number of objects the document contains. A semantics-preserving
transformation would for example be allowed to increase the counts of fonts and objects, but not
remove JavaScript code. For image recognition, the semantics of pictures is preserved under a
large variety of transformations. For instance, arbitrary large modifications of a small number of
pixels or very small perturbations over all pixels almost never affect our perception of an image.
We also distinguish a generic application domain, where the specifics of the feature extraction ψ
are abstracted away and the algorithms directly operate in the embedding space Rd and focus on
solving problem (2.2).

The considered model classes in prior work are linear classifiers, kernel methods, neural
networks and generally differentiable classes (diff.), tree ensembles (tree ens.) and convex decision
boundary-inducting classifiers (Nelson et al. 2012), which we denote by linear+ as no off-the-shelf
model class but linear classifiers is a proper subset of this category. In Chapter 4, we also introduce
and study the Convex PolytopeMachine, a model that is constructed by ensembling linear classifiers
with the max operator (max ens.) instead of the addition operator as in boosting.

The amount of knowledge available over Φ largely informs the type of attack an adversary can
carry out. We distinguish three categories. Φ might be fully available to the attacker (full) in the
form of knowledge of the classifier parameters and the features used. Alternatively, in the query
setting (query), the attacker can only use Φ as a black-box oracle by submitting arbitrary queries.
Some prior works also make general assumptions over the form of Φ, for example the type of
features thatψ might produce and the model class of f and have some knowledge over the training
data used, typically by allowing access to a subset of it. We call this setting indirect knowledge
(indirect).

The completeness category describes whether the evasion algorithm is always able to find an
evading instance provided one exists, or, depending on the context, find an evading instance with
the minimal amount of deformation. Exact evasion algorithms always return an optimal evading
instance with respect to some criterion. By contrast, heuristic algorithms are not guaranteed to find
the optimal instance and, in many cases, are not even guaranteed to find any evading instance.

We also provide an approximate indication of the amount of work required for finding evading
instances. On one extreme, linear classifiers with full knowledge of the weight vector are easy to

CHAPTER 2. BACKGROUND AND PRIOR WORK 17

evade (Dalvi et al. 2004). On the other extreme, practical applications where the model class is
arbitrary complex and only querying knowledge is allowed have a large computational cost, even
under heuristic evasion (W. Xu et al. 2016). In our table, low cost methods are those which running
time are no worse than proportional to the size of the evaded model, medium cost methods are
theoretically super-linear but are reported to typically compute an evading instance in the order
of seconds, and high cost methods are methods which are theoretically super-linear and result in
unpredictably long generation time. Owing to its genetic algorithm approach, (W. Xu et al. 2016)
is the only work with a high computational cost in this table.

Prior work Domain Model Knowledge Complete Cost

Dalvi et al. (2004) generic,
email spam

linear full yes low

Lowd and Meek (2005b) email spam linear indirect, query no medium
Lowd and Meek (2005a) generic linear query yes medium
Smutz and Stavrou (2012) PDF malware tree ens. indirect no low
Nelson et al. (2012) generic linear+ query yes medium
Biggio et al. (2013) generic, image

recognition
diff. full no low

Szegedy et al. (2013) generic, image
recognition

diff. full no medium

Goodfellow et al. (2015) generic, image
recognition

diff. full no low

Srndic and Laskov (2014) PDF malware kernel,
tree ens.

indirect no low

W. Xu et al. (2016) PDF malware any query no high

This thesis, Section 4.5 generic, image
recognition

max ens. full yes medium

This thesis, Section 5.4 generic, image
recognition

tree ens. full no low

This thesis, Section 5.5 generic, image
recognition

tree ens. full yes medium

Table 2.3: Contrasting prior work on attacks with the work presented in this thesis (last three rows).

In this thesis, we present the first exact evasion algorithms against both max ensembles of linear
classifiers in Section 4.5 and tree ensembles in Section 5.4, when the models are fully known.

CHAPTER 2. BACKGROUND AND PRIOR WORK 18

Unlike virtually all prior work which uses gradient descent strategies on differentiable models, our
method casts the evasion problem into an Integer Linear Problemwhich can in turn be solved by off-
the-shelf optimization software. This allows us to compute exact lower-bounds for the classifiers’
evasion susceptibility. The main advantage of this technique is that when those lower-bounds are
high enough for a given classifier, we can formally rule out entire classes of evasion attacks before
even fielding the classifier. We also present a novel, fast and precise heuristic evasion method for
tree ensembles that we later use to make those ensembles more robust against evasions.

Evasion Defenses
The dual of finding evading instances is finding ways to robustify, or harden detection pipelines
against evasion. Table 2.4 categorizes the prior work pertaining to evasion defenses under five
categories: application domain, type of defense family, estimated practical effectiveness, impact
on classification accuracy and finally computational cost.

In addition to the three application domains encountered in attacks, we tackle the hardening
of a comment spam detection pipeline. Comment and email spam share the similar trait that both
types of messages degrade the end-user’s experience. Nevertheless, comment spam has unique
characteristics. Message lengths are usually considerably shorter, they exhibit a higher amount
of non-English content and are sometimes meant for search engine optimization, to name a few
differences.

We distinguish seven types of defense strategies. An often encountered strategy is to design a
novel model class (new model). The potential pitfall of this approach is that the new model class
is oftentimes designed with a weak adversary in mind. That is, the adversarial assumptions are
often such that the novel class is unknown to, or mistaken by the adversary. This assumption is too
strong for any practical adversarial setting and can be thought as violation of Kerckhoffs’ principle in
security: the security of a system should not exclusively rely on secrecy (Shannon 1949; Kerckhoffs
1883). In contrast, we derive an optimal evasion algorithm against our new model, the Convex
Polytope Machine in Chapter 4 and empirically study its susceptibility to evasion. Another defense
strategy is to design the feature extraction stepψ such that only features that are both informative and
hard to manipulate by an adversary are embedded (ψ -level). It is unfortunately often the case that
removing features that are easily modified but nonetheless correlated with malicious observations
decreases the system’s general accuracy. The regularization technique (regularization) aims at
further constraining the model class F . For example, in a differentiable model f , to make f more
stable around its future predictions and thus more resistant to evasive perturbations, it might be
valuable to flatten-out the prediction landscape around training instances x (i). This can be achieved
by constraining the size of ∇f (x (i)) for all x (i) in the ERM problem (2.1). Generally speaking, the
regularization technique constrains the model class once and for all at training time in the hope
of achieving evasion robustness at testing time. Distillation (distillation) is a generic technique
for transferring the knowledge of one neural network classifier f into another classifier f̃ with a
potentially different internal structure (Hinton et al. 2014). The authors of (Papernot et al. 2015)
show the beneficial effect of distillation on flattening-out the prediction landscape of the distilled
model f̃ . However, this regularization effect does not translate into evasion robustness at testing

CHAPTER 2. BACKGROUND AND PRIOR WORK 19

time after careful evaluation (Carlini and Wagner 2016). The vaccination technique relies on
the simple idea of training a classifier, generating evading instances for it, and re-training a new
classifier on the original dataset augmented with the previously found but correctly labeled evading
instances. A related technique is to randomly perturb the training set, focussing on features that are
easy to change for an attacker. Iterated vaccination consists in repeating the vaccination technique
for several rounds. When naively implemented, iterated vaccination increases the size of the
training set at each iteration by a constant number of instances. In Chapter 5, we introduce a set of
techniques that make iterated vaccination practical for tree ensemble classifiers and potentially very
large datasets. Our technique, adversarial boosting, incrementally grows the ensemble classifier
instead of the dataset.

As for any computer security problem, estimating the real-life effectiveness of an evasion defense
is difficult. We use the question mark for papers that do not evaluate the evasion susceptibility
of their proposed defense with a suitable attack strategy, or otherwise use a randomized cross-
validation procedure to evaluate the accuracy of the proposed method. We use “low” to denote the
case of papers which show that the proposed defense can still be evaded by a reasonable attack. In
practical applications, it might be difficult to design a realistic evasion attack against a proposed
defense. In those cases, the best evaluation strategy is to field the system and empirically observe its
effectiveness against evasion attacks. As this is rarely a feasible approach, an interesting alternative
is to use a temporally consistent validation procedure where the training data always predates the
testing data, thereby simulating the passage of time and changing adversarial strategies. Papers that
successfully test their defenses on temporally consistent benchmarks receive the “possibly” mark
for this category. Finally, papers that successfully demonstrate robustness to evasion against the
strongest possible adversary are rated “high”.

Aside from thwarting evasions, a defense approach must not significantly decrease the perfor-
mance of the detection pipeline. Papers which do not provide a regular accuracy evaluation are
denoted with an interrogation mark. Papers that show a negative, neutral or positive impact on
classification accuracy receive the corresponding rating.

As for attack strategies, we also estimate the computational cost in three increments: low,
medium and high. Generally, feature level approaches have a low computational cost, as those
approaches either build new features that are inexpensive to compute, or remove previously avail-
able features that give a disproportionate leverage to the adversary in crafting evading instances.
Approaches that require training a new classifier are marked as medium complexity, except if model
retraining is either very efficient (low rating) or very expensive (high rating).

CHAPTER 2. BACKGROUND AND PRIOR WORK 20

Prior work Domain Type Effective Class. Impact Cost

Dalvi et al. (2004) generic,
email spam

new model ? ? ?

Honglak and Ng (2005) email spam ψ -level ? ? low
Bratko et al. (2006) email spam new model ? positive low
Bruckner et al. (2012) generic,

email spam
regularization possibly positive high

Smutz and Stavrou (2012) PDF malware ψ -level,
vaccination,
perturbation

possibly neutral medium

Srndic and Laskov (2014) PDF malware ψ -level,
vaccination,
perturbation

low negative medium

Goodfellow et al. (2015) generic, image
recognition

regularization low positive medium

Gu and Rigazio (2015) generic, image
recognition

regularization low neutral medium

Papernot et al. (2015) generic, image
recognition

distillation low neutral medium

This thesis, Chapter 3 comment
spam

ψ -level possibly positive low

This thesis, Chapter 4 generic new model low positive low
This thesis, Section 5.6 generic, image

recognition
iterated

vaccination
high neutral medium

Table 2.4: Contrasting prior work on defenses with the work presented in this thesis (last three
rows).

21

Part I

Hardening Feature Extraction

22

Chapter 3

Comment Spam Case Study

3.1 Introduction
In the first part of this thesis, we examine a strategy for hardening amachine learning based detection
pipeline at the feature extraction phase. That is, we design a more evasion-resilient feature extractor
ψ while keeping a generic machine learning classifier f . As feature extraction is predominantly an
application domain-specific task, we fully ground this chapter in a specific application. We choose
to work on the problem of detecting comment spam on online social media for several reasons.
First, comment spam is a high impact issue for online social media; second, comment spam presents
highly adversarial characteristics, and third, comment spam has previously received only limited
attention. The work in this chapter was first reported in (Kantchelian et al. 2012).

Comment Spam in Online Social Networks
Online social media have become indispensable, and a large part of their success is that they are
platforms for hosting user-generated content. An important example of how users contribute value
to a social media site is the inclusion of comment threads in online articles of various kinds (news,
personal blogs, etc). Through comments, users have an opportunity to share their insights with
one another. However, the medium presents a unique opportunity for abuse by criminals and other
miscreants. Abusers use comment threads to post content containing links to spam and malware
sites, as well as content that itself is considered as spam by users. If left unaddressed, abuse reduces
the value of a social media site by reducing the proportion of legitimate comments, thereby leaving
users less satisfied with their experience.

Many approaches have been proposed for detecting email spam, e.g. (Ramachandran et al.
2007; Sculley and Wachman 2007; Xie et al. 2008; J.-M. Xu et al. 2009). However, most of them
are not directly applicable to detecting spam in social media. Spam in social media is different
from email spam in several ways. The majority of spam email messages are generated by dumb
botnets using certain predefined templates (Ramachandran and Feamster 2006). Large volumes
of them contain similar content, format and target URLs (Zhuang et al. 2008), and display strong
temporal regularity and correlation in their sending time (Ramachandran and Feamster 2006).

CHAPTER 3. COMMENT SPAM CASE STUDY 23

These properties make it relative easy to develop effective approaches to filter out email spam.
Unlike email spam messages, social media spam messages, for example blog comment spam
messages, are usually short and carefully crafted by humans, and even human experts have hard
times to differentiate from legitimate ones. We also observe little temporal regularity in the posting
of blog comment spam. These differences require the development of different detectors to filter
out comment spam.

Social media spam also takes the advantage of the open nature of the blog comment space.
Anonymous communication is allowed inmost socialmedia. A single spammessage can potentially
reach as many viewers as users of the social media. These spam messages usually target search
engines to increase the pagerank of the advertised page as well as users.

Because of the volume and complexity of the data involved in detecting social media spam,
approaches based on machine learning offer promising solutions since they scale beyond what a
human expert can achieve. However, developing a machine learning based detection pipeline for
comment spam face three fundamental challenges: first, we must develop a feature extractorψ that
both provide a strong signal for the classifier and is hard to temper with. Second, we must construct
an algorithmic approach that can make effective use of the features. Third, we must develop an
evaluation strategy. To be useful, the evaluation must both measure meaningful characteristics and
be conducted in a setting as realistic as possible. This means using a sample set which accurately
describes the real data and especially for our focus, shows evidence of evasion activities. Given
a limited amount of hand-labeling resources and the challenge of fielding a given method and
observing the reaction of real-world adversaries, this is usually a hard task.

Our approach
While it is possible to define blog comment spam as “any kind of undesirable content” analogous
to personal email spam, such a single-user centric view is problematic in the context of an open
medium where everybody is both entitled to contribute to the media and to access it. In particular,
it is possible to find instances of comments where two legitimate users might disagree on whether
the message is acceptable, as we show in the evaluation section. Moreover, the context of the
surrounding website plays a crucial role in evaluating the undesirability of the comment (Mishne
et al. 2005).

As the basis for our approach, we define spam as content that is uninformative in the information-
theoretic sense. Intuitively, if the comments generated by a particular user are highly redundant,
then there is a high likelihood that these messages will appear as undesirable to the other users
of the social media. By carefully calibrating the compression ratio output of an off-the-shelf data
compressor, the content complexity metric we develop quantifies this redundancy in an uniform
manner for variable length texts. Once constructed, we can almost immediately obtain meaningful
features for blog comment spam detection using this metric. Because content complexity operates
at the character-level over an aggregation of messages, it is relatively insensitive to classical evasion
strategies that plague regular content-based filters. In particular, when aggregated in a sensible
manner, neither adversarial misspellings of words nor templated spam messages exhibit enough

CHAPTER 3. COMMENT SPAM CASE STUDY 24

diversity to significantly perturb the content complexity metric. We discuss the limitations of our
information theoretic approach in Section 3.6.

In addition to the content complexity features, we introduce a latent variable model that can
tolerate noisy labels. For practitioners who want to use machine learning methods, acquiring
enough labeled training data is one of the biggest challenges. Sometimes they may gain access to
feeds or services that provide machine-labeled data that can be noisy (i.e., with the ground-truth
label for the data being different from the label provided). In an adversarial context, this noise-
tolerance is important because it may make our approach robust to mislabeled outliers deliberately
introduced. As such, we adapt our model training to be tolerant of noisy labels. We use a latent
variable model to handle noisy labels and enhance the detection accuracy of the content complexity
features.

Our approach provides contributions on three fronts:

1. We introduce content complexity features for characterizing the IP addresses, usernames, and
embedded URL hostnames associated with each comment;

2. We adopt a latent variable model for training a classifier with complexity features (with
non-linear expansion) that can tolerate noisy labels in our data sets;

3. We conduct a rigorous, temporally-consistent evaluation of our method, leading to semi-
normalized precision-recall curves which we believe are more telling than both receiver
operating characteristic curves or their associated single-dimension area under the curve
metric.

Related Work
User-generated content (e.g., comments and reviews) is widely available on blog and online shop-
ping websites, and online social networks. The authors of (Mishne and Glance 2006) analyze
various aspects of Web blog comments in their 2006 study, which among other findings, showed
that blog comments could be as crucial as the original blog post in providing original, searchable
content to the article. Brennan et al. use metadata, for example user activity, reputation, comment
time, and posts’ contents to predict the community ratings of the Slashdot comments (Brennan
et al. 2010).

Ranking and rating help to promote high-quality comments and demote low-quality ones.
Using a large corpus of Digg stories and comments, the authors of (Hsu et al. 2009) collect a
set of features related to user, content, and popularity to train a Support vector Machine to rank
comments according to quality. The authors find that the tandem of user and content based features
are among the most effective ones. Their measure of content complexity is different from ours
because they compute the entropy of a single comment message, whereas the study in this paper
computes messages over a set of comments grouped. The authors of (B.-C. Chen et al. 2011) show
that the quality of a comment is almost uncorrelated to the ratings of comment, and propose a
latent factor model to predict comment quality based on its content, author reputation, agreement in
opinions, etc. In (Mishra and Rastogi 2012), the authors apply semi-supervised learning techniques
to address the user bias issue in comment ratings using information from user-comment graph.

CHAPTER 3. COMMENT SPAM CASE STUDY 25

Using data compression for spam filtering is not new. The authors of (Bratko et al. 2006)
propose adaptive data compression models for email spam filtering. They train the classifier by
building two compression models from the training corpus, one from spam examples and one from
legitimate examples, and then predict the label of new instances using a minimum description
length principle (Barron et al. 1998).

In (Mishne et al. 2005), the authors study the feasibility of using unigram language models
for detecting off-topic link spam blog comments. They use Kullback-Leibler divergence between
language model of the blog post and that of the comment to predict whether a comment is link
spam. In (Shin et al. 2011), the authors study comment spam on a research blog using various
content specific and host-based features. Their approach showed significant performance but was
limited to only one particular blog whereas our data are more diverse including a wide range of
personal and commercial sites. In (Gao et al. 2010), the authors quantify and characterize spam
campaigns on online social networks using a dataset of “wall” messages between Facebook users.
Their approach first groups together wall posts that share either the same URL or strong textual
similarity using a graph-based clustering technique, and then apply threshold filters based on the
wall post sending rate of user accounts and time correlation within each subgraph to distinguish
potentially malicious clusters from benign ones.

The authors of (Lee et al. 2010) propose a honeypot-based approach for uncovering social
spammers in online social network. They deploy social honeypots for harvesting deceptive spam
profiles from social networking communities, and create spam classifier using machine learning
methods based on a variety features derived from user demographics (e.g., age, gender, location),
user contributed content (e.g., blog posts, comments, tweets), user activity features (e.g., posting
rate, tweet frequency), and user connections (e.g., number of friends, followers, following).

Email spam problem has been extensively studied in recent years. One category of approaches
are based on machine learning techniques. In (Sculley and Wachman 2007) the authors show that
linear classifiers produce state-of-the-art performance for online content-based detection of spam
on the web (e.g., spammy email, comments, blogs). To relieve the burden of labeling large-scale
data, the use of active semi-supervised learningmethod for the training spam classifier has also been
proposed (J.-M. Xu et al. 2009). The author’s approach can leverage both unlabeled emails and
asynchronous human feedback to build high performance classifiers with small amount of labeled
data. Instead of using content-based information, one can also develop a spam filtering system to
classify email senders based on their sending behavior (Ramachandran et al. 2007). The authors
of (Xie et al. 2008) characterize spamming botnets using information from both spam payload
(e.g., embedded URLs) and spam server traffic, and develop a signature-based framework to detect
botnet-based spam emails and botnet membership.

The rest of this chapter is organized as follows. Section 3.2 introduces the content complexity
metric and explains the construction of our feature vectors for comment spam detection. Section 3.3
describes the latent variable model we use for classification and tolerating noisy labels. Section 3.4
describes the data set and the methods we use for the evaluations in Section 3.5. We finish this
chapter with a list of open problems in Section 3.6.

CHAPTER 3. COMMENT SPAM CASE STUDY 26

3.2 Content Complexity
We now turn to the construction of the content complexity metric upon which we build features for
comment spam detection.

Intuitively, content complexity describes the amount of redundancy in the content associated
with a string. While remaining language-agnostic, it is normalized for the underlying compression
method, natural language and string length. In everything that follows andwithout loss of generality,
s ∈ {0; 1}∗ is a binary string and |s | designates its length,C is a lossless data compression algorithm.

The basis for the content complexity metric is the compression ratio |C (s) |/|s |. However, we
expect the compression ratio of a string to be sensitive to the original string length (e.g., we expect
the complexity of a long essay to be lower than the complexity of a short paragraph). Because we
want to be able to compare complexity values between strings of different lengths, we introduce a
normalization factor h(n), a parametrized function which models the expected compression ratio of
strings of length n. The addition of h(n) allows the content complexity of a string to be calculated
independently of its length.

Modeling the Compression Ratio
Let rC (s) = |C (s) |/|s | be the compression ratio (or the complexity rate) of string x under compressor
C. Let s1:n denote the first n bytes subsequence of s. For any well behaved s and compression
algorithm C, we use the following function h(n) to approximate rC (s1:n):

h(n) = α +A logn/nγ + B/n, (3.1)
α ,A,B > 0, 0 < γ < 1,

where α ,A,B,γ are constants which depend on the probability source emitting s alone.
The term B/n represents the fixed-size overhead of off-the-shelf compression algorithms, and

is an extension to Schurmann’s model to help model the expected compression ratio for small-to-
medium values of n (Schurmann and Grassberger 1996). For example, compressing a zero-length
string with Lempel-Ziv-Markov chain algorithm (LZMA) (Pavlov 2007) produces a 15 byte output.
The term is asymptotically negligible for large values of n.

The first two terms α + A logn/nγ describe a power-law convergence to a fixed value α which
can be interpreted as an upper bound on the entropy rate of s.

Finally, while it is possible to give a precise mathematical statement for what we mean by
a “well behaved” sequence by requiring stationarity and ergodicity of the stochastic process, we
consider in this work general sequences from natural language for which such strong assumptions
seem unwarranted. Furthermore, the model is essentially a postulate which is only backed up a
posteriori by the following experimental evidence.

Natural Language Complexity Rates
For the rest of this work, we fix the compression function to be LZMA. One reason for this choice
is that LZMA can be set up to use a very large compression block size - or equivalently a very

CHAPTER 3. COMMENT SPAM CASE STUDY 27

large dictionary size - which makes it able to capture long-range dependencies in its input. For
each of the six languages presented in Figure 3.1, we randomly select a dozen plain text UTF-8
e-books from Project Gutenberg. We minimally pre-process each file by discarding its header
and footer data which contain various copyright information in English, irrespective of the actual
document language. Then, for each text, we compute the sequence of compression ratios on initial
subsequences of increasing size and plot the resulting graph.

We finally superimpose the predicted compression ratio by the above model, where the four
parameters have been obtained by a standard Levenberg-Marquardt (Levenberg 1944; Marquardt
1963) optimization on the non-linear least squares formulation. The initial parameters values are
(α ,A,B,γ) = (0, 1, 1, 0.5), but the final result is independent of these values on a large domain. We
fit the model using the data of all six languages so that we obtain a single set of parameters.

Figure 3.1: LZMA compression ratios |C (s) |/|s | for prefixes of ebooks in six languages, with a
single fitted model (R2 = 0.995). Each line represents one ebook. Notice the lower compressibility
of Chinese.

The optimal parameters derived from our dataset are:

(α ,A,B,γ) = (2.23, 7.13, 120, 0.419) (3.2)

Notice that the extrapolated LZMA entropy rate on infinite length sequences is α = 2.23 bits per
byte. This is compatible with although much higher than Shannon’s experiments (Shannon 1951)
suggesting an average entropy rate of 1.3 bits per character for English texts. Remarkably, LZMA’s
stable behavior is well captured by our simple model. While European languages are particularly
well described, the Asian language samples of our dataset exhibit a much higher variance.

We can finally define the content complexity metric of a string s as Q (s) = |C (s) |/|s | − h(|s |),
where h is defined in Eqn (3.1), and its parameters are previously computed by Eqn (3.2). The
content complexity Q (s) is a real number. Intuitively, it represents the intrinsic “informativeness”

CHAPTER 3. COMMENT SPAM CASE STUDY 28

of the string s independent of its length. A low value of Q (s) means that s contains very little new
information and has a lot of redundancy. A high value of Q (s) means that x contains a lot of new
information and has little redundancy. Note that our definition of “informative” does not exactly
correspond to the colloquial use of the term. Nonetheless, as we discuss below, our definition is
highly effective at identifying commercial and other spam.

From Complexity to Detection Features
One important question to answer is whether the natural language as encountered in blog comments
is as well described by the same model h as for e-books. Figure 3.2 gives evidence of a positive
answer. Each point on this plot represents a username for which all the contributions are concate-
nated together in a single string and the compression ratio is subsequently computed. The predicted
natural language complexity h is represented in solid black. The model curve still describes fairly
accurately the bulk of the distribution, except for the fact that the entropy rate of blog comments
seems slightly lower than the one of e-books. More interestingly, we observe a relatively clear
separation between ham and spam on this graph.

Figure 3.2: A random sampling of a thousand usernames with two associated comments or more.
For each user, all her comments are concatenated and the compression ratio is computed. The
predicted compression ratio h learned on the e-books is indicated in solid black. The labels are
propagated from the comments to the usernames by a simple zero-tolerance rule: a user is labeled
as spam if and only if one of her comments is labeled as spam. Notice the occurring separation
between ham and spam.

The steps for generating our features are as follow. First, we minimally normalize the messages
by removing periodic runs of characters, for a period of at most four chars. By convention, we
only keep the first two runs. For example, ahahahah becomes ahah, ooooh becomes ooh but

CHAPTER 3. COMMENT SPAM CASE STUDY 29

ahAHaHaHAHAh remains unchanged. Such periodic runs artificially lower the content complexity
metric and are a non negligible source of false positives when left unaddressed.

Second, we choose an aggregation field between messages. In this work, we form the following
four groups:

1. messages which share the same username,
2. messages which share the same host name in any linked URL,
3. messages which are posted to the same permalink,
4. messages which come from the same IP address, within a given time period.

The reason why we aggregate on multiple dimensions and not just on a per username basis is that
a consequent portion of the comments of our dataset are anonymous, and that an adversary can
easily generate a new user account for every new comment, leading to singleton groupings. This
evasion strategy is made more difficult by aggregating and scoring across IP and including URL
host names.

For the URL extraction, we use a relatively naive regular expression which matches top-level
domains. To avoid IP aliasing, the aggregation by IP is parametrized by a timing parameter ∆t ,
such that if the time delta between two posts coming from the same IP address is smaller than ∆t ,
the messages are grouped together. The full IP clustering is obtained by transitively applying the
property: two messages a, b are in the same IP grouping if and only if there exists a sequence of
messages staring at a and finishing at b sharing the same IP and such that the consecutive time
deltas are smaller than ∆t . ∆t is taken to be three hours.

A further cleaning-up step we take is removing duplicate messages within groups. For our
dataset, we do this by relying on the presence of an update flag. We only keep the latest version
of an updated comment.

Finally, we compute the content complexity metric for all the groups of two messages or more,
and we back-propagate the results to the messages themselves. In the case of the host name
grouping, when a message contains several linked URLs and thus belongs to several host name
groupings, we back-propagate the lowest content complexity metric among all these groups. If a
grouping resulted in a singleton, we assign the normal content complexity zero to the corresponding
feature.

We call this set of features FC , for complexity features. Thus, there are exactly four FC features
permessage. We also define FLGS for log-group-sizewhich as their name suggests give the logarithm
of the grouping size (four features per message again), and FdG for is-defined-group which are four
binary features indicating whether the associated grouping resulted in a singleton or not.

3.3 Latent Variable Model
We now turn to the design of the classifier. As our base component, we use a linear model with
the machinery of logistic regression (LR), which accommodates well to unknown dependencies
between features. Besides, a linear model is a good classifier candidate in this case: classification is

CHAPTER 3. COMMENT SPAM CASE STUDY 30

X G Y

Figure 3.3: Graphical model for our learning approach

intuitivelymonotonic in the complexity features: a low content complexity score is highly indicative
of bulk and thus spam messages.

More formally, our approach of classifying social media comments trains a model using a
dataset of n points: {(x (1),y1), (x

(2),y2), . . . , (x
(n),yn)}. For comment i in the data set, x (i) is the

vector representing its associated features and yi ∈ {0, 1} represents the label (our convention is
zero for ham, one for spam).

Furthermore, the label yi might be a noisy representation of the example’s ground truth label
дi ∈ {0, 1}. For example, a spam comment could be mislabeled as benign in the training set (label
yi = 0) when its ground truth label is дi = 1. The goal of classification is to train a model so that
given a feature vector x (i) we can predict дi with high accuracy. Because the ground truth label is
not observed directly (only x and the noisy y are observed), we model д as a latent variable and
derive a latent version of LR similar to the approach proposed in (Raykar et al. 2010).

Model Description
Here we describe the probabilistic framework for the latent model, which is illustrated in Figure 3.3.
The variable X represents the distribution of messages in the feature space, G represents ground
truth labels, andY represents the noisy labels. We assume bothX andY are visible andG is hidden.
The conditional probabilities which define the model are P (G |X) (for inferring the ground truth
label given a data point) and P (Y |G) (for modeling the noise in the dataset’s labels).

We parametrize the conditional probability P (G |X) using the usual logistic regression model as
follows:

P (G = д |X = x) = σ (xᵀw)дσ (−xᵀw) (1−д) (3.3)

where σ is the logistic function: σ (q) = (1 + e−q)−1. We mention but notationally omit that we
append a dummy constant unitary dimension to all feature vectors x to handle bias.

We define the noise model P (Y |G) as a mixture of Bernoulli distributions:

P (Y =y |G=д) = αдy (1 − α)д(1−y) (1 − β) (1−д)yβ (1−д) (1−y)

Because y and д are either zero or one, the exponents act as indicator functions that select a
probability based on whether the ground truth label and data label match. For example, α is the
probability that a spam blog comment is labeled correctly (д = 1 andy = 1), (1−α) is the probability
that a spam blog comment is labeled incorrectly (д = 1 and y = 0), (1 − β) is the probability that

CHAPTER 3. COMMENT SPAM CASE STUDY 31

a ham blog comment is labeled incorrectly (д = 0 and y = 1), and β is the probability that a ham
blog comment is labeled correctly (д = 0 and y = 0).

Learning
The parameters we have to learn for our model are the classification weight vectorw , and the noise
parameters α , β . We use an expectation-maximization (EM) procedure (Dempster et al. 1977) to
maximize the model’s log-likelihoodL (w,α , β) =

∑
i Li (w,α , β), where the log-likelihood of each

data point (x (i),yi) is

Li (w,α , β) ,
дiyi logα + дi (1 − yi) log(1 − α)+
(1 − дi)yi log(1 − β) + (1 − дi) (1 − yi) log β+
дi logσ (x (i)ᵀw) + (1 − дi) logσ (x (i)ᵀw).

(3.4)

In the expectation step, we want to compute the expected value for each hidden ground truth
label дi in our dataset using existing estimates for conditional probabilities in our model. Because
дi is a binary value, we have E[дi |x (i),yi] = P (дi =1|x (i),yi) which we calculate as follows:

P (дi =1|x (i),yi) =
P (дi =1|x (i))P (yi |дi =1)∑
д∈{0,1} P (д |x (i))P (yi |д)

. (3.5)

Then, we assign д̂i ← E[дi |x (i),yi], substitute д̂i for дi in Equation (3.4), and then proceed to the
maximization step.

In the maximization step, we reassign the model parameters w , α , and β to maximize the
log-likelihood. Using the logistic regression model and the L-BFGS optimization routine (Richard
H. Byrd et al. 1995), we reassign the parameter vector w . The noise parameters α and β are
reassigned as follows:

α ←
∑
i д̂iyi∑
i д̂i

(3.6)

β ←
∑
i (1−д̂i) (1−yi)∑

i (1−д̂i)
(3.7)

A good initialization is a key to a successful run of the EM algorithm. Experimentally, we
found that initializing w to be the result of the plain logistic regression on the dataset and setting
α = β = 0.5 provides the best results.

Finally, we stop the EM loop as soon as we exceed 300 iterations or the relative L1 difference
of two consecutivew parameter vectors is within 1%, i.e.,

|w (i) −w (i−1) |

|w (i−1) |
≤ 0.01

CHAPTER 3. COMMENT SPAM CASE STUDY 32

Feature Expansion
To capture potential non-linear effects among features, we use polynomial basis functions over
those features. Specifically, if x = (x1,x2, . . . ,xd) is our initial feature vector of d features, we
expand it to all the terms in the expansion of the quadratic polynomial (1+x1+ . . .+xd)2. We define
expan(x , 2) as the mapping from the original data vector x to the quadratic polynomial expansion.

Formally:
expan(x , 2) = (1) ∪ (xi)i ∪ (xixi ′)i≤i ′ .

Expanding a feature vector of size d results in a new vector of size Θ(d2), thus we can only use this
strategy when the initial number of features is small.

Kernel logistic regression can be also used to handle non-linear effects among features. How-
ever, it usually results in more complex models and requires more computation budget to train a
model and make predictions than the linear method. We leave it as future work to explore the
feasibility of applying kernel logistic regression to our problem.

3.4 Evaluation Method
In this section, we explain our evaluation method. We start by describing our dataset and motivate
a sampling strategy for efficient hand-labeling. We conclude by explaining our actual labeling
process.

Dataset
The dataset we use for our evaluations comes from a provider that aggregates comment threads
from a variety of social media platforms, such as personal, political or business oriented blogs,
news websites, various entertainment websites, etc. The collection time period is four months
between December 2011 andMarch 2012. Non-English languages are present at a significant level:
we often encounter comments in Spanish, Portuguese, Chinese, Japanese or French. The comment
data also comes with machine-generated labels for each comment which contain some error. The
provider is a well reputed source which implement cutting-edge statistical filtering techniques.

In practice, the dataset resides in a Hadoop cluster where each record has the following fields:

timestamp, user_id, end_user_ip, article_permalink, content, spam_label

For a rigorous evaluation of our algorithms, we divide this dataset into two consecutive equal
length time periods of two months each. The first time period will always serve as the training set
(set A), while the second will be used for scoring only (set B). In particular, when computing the
groupings for the content complexity metrics, we never aggregate together two messages coming
from distinct subsets: future information is not available when training, and past information is not
available when scoring.

This temporally-consistent style of evaluation also ensures that existing evasion attacks in the
dataset are not denatured. Indeed, for the alternative random cross-validation scheme, training and

CHAPTER 3. COMMENT SPAM CASE STUDY 33

testing instances are randomly drawn without replacement from the dataset, negating the effect of
time and flattening out the surprising, adaptive or otherwise hard to predict observations.

A summary of the split dataset is presented in Table 3.1. For equal time periods, the scoring
dataset is significantly larger than the training dataset. We explain this fact by the rapid gain in
popularity and expansion of the associated web service. Note that the anti-aliasing process for
grouping by IP can produce several distinct groups sharing the same IP, but at different times.

Characteristic Training set A Scoring set B

Time period 12/01/2011 01/31/2012 02/01/2012 03/31/2012
Number of comments 25m (420k/day) 40m (660k/day)
Number of distinct user ids 990k 1.5m
Distinct anti-aliased IP addresses 3.9m 6.5m
Number of distinct article permalinks 1.4m 2.3m
Distinct hosts from linked URLs 99k 150k
Labeled spam 1.8% 3.6%

Table 3.1: Learning and training set characteristics.

An Unbiased Sampling Strategy
While we do have the provider’s labels for each of sets A and B, we can only use them for training.
Indeed, we know and we observe in the following evaluations that these labels display a non
negligible false positive rate. Since our goal is to compare our methods both against themselves
and the provider, we must establish a form of ground truth by manually labeling carefully chosen
samples from B.

Also, notice that we still want to use the provider’s labeling for training, as a way to minimize
the hand-labeling labor and test the latent logistic regression model in the wild.

While remaining unbiased, our sampling strategy is driven by two stringent constraints:

• the high cost of obtaining ground truth labels and

• the scarcity of positive (spam) instances in the data.

Because labeling blog comments requires looking up contextual information, e.g., the actual
blog post, surrounding comments, user profile and user past activity, translating the contents in
English when necessary, it is a rather time consuming task. Under such circumstances, a naive
uniform sampling over B is inefficient.

The problem is exacerbated because only a small fraction of the comments are actually spam.
In practice, this means that naive uniform sampling tends to have a strong bias towards extracting
ham comments.

The approach we choose relies on the observation that if one is just interested in the precision
score, i.e., the proportion of spam among all the flagged instances, then restricting the sampling to

CHAPTER 3. COMMENT SPAM CASE STUDY 34

be uniform only over the flagged instances is sufficient. This is expressed by the following basic
result.

Let l : B → {0; 1} the ground truth labeling (0=ham, 1=spam). Let τ be a detection threshold
and f a classifier. For notational convenience, we define fτ (x) = If (x)>τ to be our decision function.
τ -level precision is defined as:

pτ =

∑
x fτ (x)l (x)∑

x fτ (x)

Let B+ = {x ∈ B, l (x) = 1} be the subset of spam messages and χ+τ = {x ∈ B, fτ (x) = 1} be the
flagged users at detection level τ .
Proposition 3.4.1. Let χ̃+τ ⊂ χ+τ a uniformly selected subset of size n. The following is an unbiased
estimator of pτ :

p̃τ =

∑
x∈ χ̃+τ l (x)

n
and Var p̃τ =

|χ+τ | − n

n(|χ+τ | − 1)
(pτ − p

2
τ) ≤

1
4n
.

Proof. We first show that the estimator p̃r is unbiased:

E[p̃τ] =
(
|χ+τ |

n

)−1 ∑
| χ̃+τ |=n

∑
x ,x∈ χ̃+τ l (x)

n

=

(
|χ+τ |

n

)−11
n

∑
| χ̃+τ |=n

∑
x∈B

l (x)1x∈ χ̃+τ

=

(
|χ+τ |

n

)−11
n

∑
x∈B

l (x)
∑
| χ̃+τ |=n

1x∈ χ̃+τ

=

(
|χ+τ |

n

)−11
n

∑
x∈B

l (x)

(
|χ+τ | − 1
n − 1

)
1x∈χ+τ

=
1
n

∑
x∈B

l (x)1x∈χ+τ
n

|χ+τ |

=
1
|χ+τ |

∑
x∈B

l (x)1x∈χ+τ

= pτ

CHAPTER 3. COMMENT SPAM CASE STUDY 35

The variance of our estimator is:

E[p̃2τ] =
(
|χ+τ |

n

)−1 ∑
| χ̃+τ |=n

(∑
x ,x∈ χ̃+τ l (x)

n

)2

=

(
|χ+τ |

n

)−1 1
n2

∑
| χ̃+τ |=n

*
,

∑
x∈B

l (x)1x∈ χ̃+τ +
-

2

=

(
|χ+τ |

n

)−1 1
n2

∑
| χ̃+τ |=n

∑
x ,y∈B

l (x)l (y)1x∈ χ̃+τ 1y∈ χ̃+τ

=

(
|χ+τ |

n

)−1 1
n2

∑
x ,y∈B

l (x)l (y)
∑
| χ̃+τ |=n

1x∈ χ̃+τ 1y∈ χ̃+τ

=

(
|χ+τ |

n

)−1 1
n2

∑
x ,y∈B

l (x)l (y)
((
|χ+τ | − 1
n − 1

)
1x ,y∈χ+τ 1x=y +

(
|χ+τ | − 2
n − 2

)
1x ,y∈χ+τ 1x,y

)
=

1
n |χ+τ |

∑
x ,y∈B

l (x)l (y)1x ,y∈χ+τ

(
1x=y +

n − 1
|χ+τ | − 1

1x,y
)

=
1

n |χ+τ |

(n − 1
|χ+τ | − 1

∑
x ,y∈B

l (x)l (y)1x ,y∈χ+τ

+
|χ+τ | − n

|χ+τ | − 1

∑
x∈B

l (x)1x∈χ+τ
)

=
1

n(|χ+τ | − 1)
[
|χ+τ |(n − 1)p

2
τ + (|χ+τ | − n)pτ

]

Hence:

Var p̃τ = E[p̃2τ] − E[p̃τ]
2 = E[p̃2τ] − p

2
τ

=
|χ+τ | − n

n(|χ+τ | − 1)
(pτ − p

2
τ)

�

If we had a single classifier f to evaluate, we could start by finding a detection threshold τ0
such that

|χ+τ0 |

|B | = 5.66% for instance, meaning that the classifier flags 5.66% of the dataset at level
τ0. This is justified by the fact that the provider’s labeling which serves as a baseline comparison
is such that |χ

+ |

|B | = 3.62%, so that we need at least the same proportion of flagged instances for
comparison. Adding a reasonable safety margin gets us to 5.66%.

From there, we uniformly sample n instances χ̃+τ0 ⊂ χ+τ0 to obtain the base evaluation sample for
f . Notice that for the same classifier f and τ > τ0, any subset {x ∈ χ̄+τ0, f (x) > τ } is also a uniform
sample in χ+τ , albeit of a smaller size.

CHAPTER 3. COMMENT SPAM CASE STUDY 36

Besides the fact that such sampling does not directly yield the recall or equivalently the false
negative rate of the classifier, a major disadvantage is that the sampling is completely dependent on
the classifier. A sampling that is uniform for one classifier has no reason to be uniform for another
one. Thus, one practical issue is that it is difficult to sample and start labeling before the classifier
is defined.

Concerning the recall issue, we notice that it is sufficient to multiply the estimated precision
p̃τ by the volume of flagged instances |χ+τ | to obtain an unnormalized measure which is directly
proportional to the recall of the algorithm. As |χ+τ | is exactly known, the uncertainty on the
unnormalized recall is simply σ (p̃τ) |χ+τ |. To obtain a dimensionless number for the evaluations, we
use p̃τ

|χ+τ |
|B | as our unnormalized recall measure.

Finally, we build our evaluation dataset using the following strategy. Fix a uniform sampling
rate 0 < r < 1 and a flagged volume 0 < v < 1. Let f 1, . . . , f K be K classifiers we are interested
in evaluating. For each classifier k , compute by binary search the minimal detection threshold τk0
such that {x ∈ B | f k (x) > τk0 }/|B | ≈ v. Uniformly sample with rate r in subset:

{x ∈ B | f 1(x) > τ 10 } ∪ · · · ∪ {x ∈ B | f
K (x) > τK0 }.

The resulting sample provides by construction an unbiased evaluation sample for each classifier
w.r.t. the p̃ measure, provided no classifier k is operated at detection thresholds lower than τK0 . In
practice, we choose r = 0.06% and v = 5.66%, which corresponds to a minimum of rv |B | = 1358
samples to label.

Labeling Process
Once constructed, we must hand-label the sampled set. To this end, we wrote a simple Python
WSGI web application managing simultaneous labelers and datasets. Figure 3.4 shows the labeling
screen the labeler is presented after logging in and selecting a task. In the labeling screen, the
possible actions for the user are: (1) assign one of the three labels {ham, spam, I don’t know} along
with an optional short note on the instance; (2) browse back or forward to correct a label; (3) look
at the comment in its context.

The spam label is assigned to a comment when at least one of the following is true.

1. Comment links or refers to a commercial service (most of the time luxury, beauty, pharma-
ceutical, dating, or financial offers) and appears to be completely unrelated to the comments
thread. No URL needs to be present as the spammer can include it in the account profile, or
simply ask the users to search for a particular term.

2. Comment is a generic “thank you” or “nice blog”, with the intent of boosting the user account
reputation (when available, we examine user’s history).

Each comment gets three potentially conflicting labels from the three labelers, who used much
more or even completely different information for labeling than what the algorithm uses. With three
labelers and three labels, an instance label can only be one of the following. It is unanimous when

CHAPTER 3. COMMENT SPAM CASE STUDY 37

Figure 3.4: The developed user interface for testing set labeling. Labeler Monostatos has already
labeled 277 over 1000 instances in task aisec_classifier_positive.

the labelers choose the same label, a majority when exactly two labelers choose the same label,
and conflicting when all three labelers choose a different label. Table 3.2 summarizes the labelers
disagreement on all the evaluated instances. We briefly tried to resolve conflicts, but quickly
backtracked as the process is very time consuming. Instead, we used the majority label when one
was available, and we treated conflicts and I don’t know labels as spam. We also experimented
with turning the uncertain labels to ham or simply discarding them from the dataset at the risk of
breaking the uniformity of the sample. None of the policies noticeably changed the results and the
conclusions.

Label status number of instances proportion

Any 2349 100%
Unanimity 1575 67%
Majority 728 31%
Conflicted 46 2%
I don’t know 28 1%

Table 3.2: The final evaluation sample characteristics. Most of the comments have an unanimous
label while a tiny fraction result in intra-labelers conflicts.

CHAPTER 3. COMMENT SPAM CASE STUDY 38

(a) Complexity only (b) Complexity with quadratic expansion

(c) Complexity + isDefined (d) Complexity + log-group-size

Figure 3.5: Precision-recall plots for Plain LR and Latent LR using different combinations of
features, with standard deviations for both axis.

3.5 Evaluation
We evaluate the approach of using our latent variable model with content complexity features
associated with social media comments from our data set. Over the course of the evaluation,
we want to answer the following questions. How effective are content complexity features for
classification? Does the noise-tolerant latent variable model provide an improvement over standard
logistic regression which is not noise-tolerant? And which combinations of complexity features
provide the most accurate classification?

Figure 3.5 shows the precision-recall curves for the classification algorithms, comparing Plain
LR to Latent LR using four different combinations of features. In all figures, the precision and

CHAPTER 3. COMMENT SPAM CASE STUDY 39

recall of the data provider’s labels is shown for reference as a dot because the labels are discreet
“ham/spam” labels. The scaling of the x- and y-axis of all figures is the same. The filled area
around the curve is an upper bound of a standard deviation above and below the expected precision
and recall for a given threshold, as given by proposition 3.4.1. Notice the large precision variance
in the low recall region, as only a small number n of instances are labeled there. We stress the
fact that we use the same labeled set for all the different algorithms and features, meaning that the
relative position of the curves is by itself significant.

A few high-level trends emerge when looking at the plots. First is that in all cases, all our
classifiers that use complexity features outperform the labels from the reference data provider.
This is a notable result because it means that it is possible to use a training set labeled by another
algorithm to train a classifier that can outperform the original algorithm. This observation also
makes sense because the complexity features helpmodel a key characteristic of spam: the repetitive,
uninformative nature of the posted content associated with a user/IP/embedded hostname.

Second, from Figures 3.5a, 3.5c, and 3.5d, we see that for most feature sets the Latent LR
outperform the Plain LR. Thus, a noise-tolerant algorithm like Latent LR can provide an improve-
ment over Plain LR, especially in a data set that could contain noisy labels. The exception is
Figure 3.5b, where the performance of Plain and Latent LR are indistinguishable. This happens
in Figure 3.5b because in a quadratic expansion with a higher number of dimensions, the adverse
affects of mislabeling are less noticeable because the decision boundary itself is more complex,
i.e., more nonlinear with respect to the original, unexpanded features. Still, because Latent LR
performs better than Plain LR in most cases and in the worst case performs at least as well as Plain
LR, it is safe to use the Latent LR in practice.

Figure 3.6: A side-by-side comparison of the precision-recall performance for different feature sets
using Latent LR.

Given the Latent LR algorithm, which of the feature set combinations are most appropriate for
deploying in practice? As we can see from Figure 3.6, the performance of the different feature sets

CHAPTER 3. COMMENT SPAM CASE STUDY 40

are relatively close overall. A slight edge may be awarded to the FC ∪ FLGS feature set because it
has good performance in both the high-precision region and high-recall regions of the precision-
recall space, especially in the parts of the graph where unnormalized recall is ≤ 0.75 and ≥ 1.75,
respectively. By contrast, other feature sets may favor higher recall at the expense of lower precision
like (FC ∪ FLGS)

2, while yet others may favor high precision at the expense of recall. For example,
at a recall of 0.5, FC ∪ FLGS scores a precision of over 97%, whereas the quadratic expansion
(FC ∪ FLGS)

2 only achieves 90% precision. And at a recall of 1.8, FC ∪ FLGS achieves a precision of
69%, whereas the precision for FC and FC ∪ FdG is 65%.

On a computational complexity standpoint, there are three phases with distinct performances:
features extraction, learning, and scoring. The scoring phase consists solely of an inner product of
size the number of features and a scalar comparison, thus its running time is negligible. Depending
on the number of features used, training a plain logistic regression on the whole dataset takes from
a few minutes to an hour on a 2 GHz Intel Core i7. On the same machine, training a latent logistic
regression takes between half an hour to several hours. The feature extraction phase is the most
computationally expensive and is done on a Hadoop grid with eight mappers and six reducers.
Grouping comments in the map and sort phases and compressing groups in the reduce phase takes
a few hours, thus computing the four core groupings takes about half a day.

Overall, because of the performance of the complexity features combinedwith the latent variable
model, they provide a promising complementary to existing comment spam detection techniques.

Finally, there are two arbitrarily fixed parameters we did not evaluate. The first is the ∆t
parameter we use for IP anti-aliasing. Everything else considered equal, decreasing this parameter
breaks down groupings into smaller ones, until all IP groupings are singletons. On the contrary,
increasing it will merge all groups sharing the same IP together, thus loosing the anti-aliasing
benefit. Thus, there is arguably an optimal value for the parameter, which we did not try to
evaluate. An adversary might also want to arrange for posting her messages with a temporal rate
smaller than ∆t−1, thus it also acts as an implicit upper bound on the spam rate of a given IP.

In the same fashion, the second parameter which evaluation we did not take is the time window
on which we compute the features. This parameter is equal to two months in our evaluation, and
presents a behavior similar to the one of ∆t when varied.

3.6 Open Problems
This chapter described a robust approach of detecting spam in social media. Our approach uses
content complexity of comments with a latent logistic regression classifier. This approach is a first
step in detecting comment spam from noisy andmissing labels using language-agnostic features and
potentially evasion-resistant technique. Our evaluation shows the approach is general and robust,
and provides new insights for industry to further improve their techniques for fighting comment
spam.

Moving forward, a diverse of research directions can be pursued to improve the performance of
the proposed comment spam detection system.

CHAPTER 3. COMMENT SPAM CASE STUDY 41

Adapted Evasion Strategies
Although our evaluation is temporally-consistent and uses a large scale, real dataset containing
evading adversaries, we note that this is unfortunately not fully indicative of the real-life performance
of our technique. Indeed, if the system were fielded, we would expect the adversaries to react to
its specific presence by crafting adapted evasions. Under its current state, our proposal might be
vulnerable to a series of targeted evasion strategies.

One such strategy would be to artificially inflate the content complexity scores by appending
random characters to each messages. For such an attack, a defense technique would be to develop
a method to detect those random character runs, use their presence and length as a new feature, and
discard them before computing the compressibility of the messages. We believe that character-level
Markovian techniques such as Hidden Markov Models (Baum and Petrie 1966) or Prediction by
Partial Matching (Cleary and Witten 1984) would be well suited for this purpose.

Alternatively, a stronger attacker might increase the content complexity by appending natural
language content that is either synthetically generated, or copied from an offline (e-books) or
online (other blog content or comment) source. In this situation, we can instead focus on the
recurring parts in each message. In order to detect significant portions of repeated content in
an efficient and scalable manner, we can leverage text fingerprinting (Hoad and Zobel 2003) and
min-hashing (Broder et al. 1998) techniques for instance.

In addition to the content-complexity based features, there are a variety of other features we can
incorporate to increase evasion robustness. Among them, the containment of spam trigger words
and URLs has been shown to be very discriminative (Xie et al. 2008), as well as the posting behavior
of users (Ramachandran et al. 2007), user reputation (B.-C. Chen et al. 2011) and user-comment
relationship graph (Mishra and Rastogi 2012).

Online Update and Operation
In production, spam detectors are usually deployed and operated in an online setting. When a new
example arrives, features need to be extracted from the data and fed to the classifier. The classifier
makes a prediction, is told if its prediction is correct, and updates its model accordingly. While our
classifier itself can be easily adapted for online setting, the feature sets are very intertwined: when
a new data point is assigned to groups with several messages in it, the complete calculation of the
content complexity measure has to be re-triggered and back-propagated to all affected messages.
This could lead to an expensive online update step for several data points. We leave it as a future
work to develop an efficient (incremental) approach for extracting content complexity features from
comment data.

42

Part II

Hardening Machine Learning

43

Chapter 4

Convex Polytope Machine

4.1 Introduction
In this chapter, we take a systematic approach to evasion on detection pipelines that is independent
of the specifics of a given application domain and focuses on the intrinsic properties of the machine
learning classifier. To this end, we simplify the problem of modeling the evasions in the original
observation spaceΩ by insteadworking in themapped feature spaceRd . This amounts to identifying
Ω to Rd andψ to the identity application.

Chapter 3 presented a novel feature extractorψ in the context of comment spam detection. The
temporally consistent evaluation of the resulting detection pipeline provided an indirect evidence
of its robustness to evasion. In contrast, demonstrating that a strongly motivated adversary can not
reasonably evade detection would constitute a direct evidence of evasion robustness.

Unfortunately, modeling the adversary directly in the observation space Ω and constructing
corresponding evasion algorithms is a difficult task. In particular, estimating the cost incurred by
the adversary for changing a spam comment ω into an evading one ω′ requires estimating in turn
the importance of many hard to measure factors. For instance, we would need to quantitatively
understand how adding or modifying the intended content in ω impacts the effectiveness of the
message on end-users. Likewise, we would also need to understand how expensive it is to create
an evading observation ω′. This quantity decomposes into at least the computational cost and the
hardware, electricity and network communication costs.

As mentioned in Section 2.2, we can use the natural Lρ distances for ρ ∈ {0, 1, 2,∞} to quantify
the minimal amount of distortion between a correctly recognized input x and a corresponding
evading input x′. In the optimal evasion framework, problem (2.2), which we reproduce here,

minimize
x ′∈Rd

∆(x ,x′) subject to c (x) , c (x′)

serves as the evaluation metric for evasion robustness. According to this metric, the harder it is to
evade classifier c, the larger the optimal value of problem (2.2) is.

CHAPTER 4. CONVEX POLYTOPE MACHINE 44

Optimal Evasion and Large Margin Learning
An interesting interpretation of the optimal evasion problem is that a hard-to-evade classifier c is
also more stable in its decisions. That is, there exists some large stability radius r > 0 such that for
any instance x of interest, it is the case that any other instance x′ at distance less than r from x gets
assigned the same decision c (x). Figure 4.1 illustrates this observation in the case of the Euclidean
L2 distance.

f(x) ≥ 0 f(x) < 0

Figure 4.1: Evasion, stability and large-margin classification are related concepts. The decision
boundary of a classifier f is shown in solid black together with six correctly classified instances
(three on each side). For each instance is shown the corresponding “disk of decision stability”
where any other point is also correctly classified by f . The larger the disks are, the more evasion
resistant f is.

The correctly classified positive and negative instances can freely wiggle inside their corre-
sponding bounding circles without modifying the output of the classifier. Because the radius of a
bounding circle is effectively the distance of the instance to the decision boundary separating the
two classes, maximizing the stability regions corresponds to maximizing the separation margins, or
distances to the decision boundary, that the classifier induces over the dataset. Evasion robustness
is hence closely related to the large-margin understanding of classifiers (Smola et al. 2000), with
the important caveat that evasions occur at testing time, whereas large-margin is only applied at
training time.

Large-margin learning methods aim at finding the model f ∈ F which maximizes the distances
of the training points to the decision boundary in some sense. A historically important example
of learning algorithm that implements the large-margin idea is the Support Vector Machine. To
simplify, we can assume there exists a classifier in F which perfectly separates the training set.
That is, a classifier f for which f (x (i)) = 1 if and only if yi = 1 over the training set. Support
Vector Machines find a perfectly separating classifier such that the minimal distance of any instance
to the separation boundary is maximal. However, our current understanding of the good practical

CHAPTER 4. CONVEX POLYTOPE MACHINE 45

and theoretical performance of Support Vector Machines goes beyond this geometrically separable
case. Indeed, proper generalizations of a separation margin exist for non-separable data which
make the large-margin method essentially collapse to ERM (Bartlett et al. 2003).

The Convex Polytope Machine
In this chapter, we exploit the relationship between large-margin learning and evasion robustness.
Our hope is that by grounding our classifier in a large-margin framework, our method inherits
favorable evasion resistant properties. We also aim at creating a generic-purpose machine learn-
ing technique with outstanding training time performance on large training sets and competitive
classification accuracy and testing time performance. Part of the work presented below was first
reported in (Kantchelian et al. 2014).

Many application domains of machine learning use massive data sets in dense medium-
dimensional or sparse high-dimensional spaces. Some domains also require near real-time re-
sponses in both the prediction and the model training phases. These applications often deal with
inherent non-stationarity; thus, the models need to be constantly updated in order to catch up with
drift. Today, the de facto model class for tasks at these scales is a linear classifier which is trained
under the machinery of linear Support Vector Machine. Indeed, since (Shalev-Shwartz et al. 2007)
demonstrated both theoretically and experimentally that large margin linear classifiers can be ef-
ficiently trained at scale using stochastic gradient descent, their Pegasos algorithm has become a
standard tool for the machine learning practitioner.

As the learning capacity of the linear model class increases unboundedly with the number
of dimensions d , a linear classifier in very high dimension d is expected to have a considerable
expressiveness power. This argument is often understood as “everything is separable in high
dimensional spaces; hence, linear separation is good enough”. However, in practice, deployed
systems rarely use a single naked linear separator. One explanation for this gap between theory and
practice is that while a single hyperplane might indeed perfectly separating both classes in very
high dimensions, the resulting separation margin might be very small. Since the classifier margin
also accounts for the generalization power and evasion robustness, we might experience poor future
classification performance in this scenario.

Figure 4.2 provides a two-dimensional example of a data set that has a small margin when using
a single separator (solid line) despite being linearly separable and intuitively easily classified. The
intuition that the data is easily classified comes from the data naturally separating into three clusters
with two of them in the positive class. Such clusters can form due to the positive instances being
generated by a collection of different processes.

As Figure 4.2 shows, a way of increasing the margins is to introduce two linear separators
(dashed lines), one for each positive cluster. We take advantage of this intuition to design a novel
machine learning algorithm that will provide larger margins than a single linear classifier while still
enjoying much of the computational effectiveness of a simple linear separator. Our algorithm learns
a bounded number of linear classifiers simultaneously. The global classifier aggregates all the sub-
classifiers decisions by taking the maximum sub-classifier score. The maximum aggregation has

CHAPTER 4. CONVEX POLYTOPE MACHINE 46

+

-

A

B

+
-

+

-

Figure 4.2: Positive (•) and negative (◦) instances in continuous two dimensional feature space.
Instances are perfectly linearly separable (dashed line), although with small margin due to positive
instances (A & B) having conflicting patterns. We can obtain higher margin by separately training
two linear sub-classifiers (solid lines) on left and right clusters of positive instances, each against
all the negative instances, yielding a prediction value of the maximum of the sub-classifiers.

the effect of assigning a positive point to a unique sub-classifier. Geometrically, the corresponding
model class is the class of convex polytope separators in Rd .

In this chapter, we propose a novel algorithm for learning convex polytope classifiers with
superior empirical performance to existing algorithms. We call our algorithm the Convex Polytope
Machine, or CPM for short. Our experimental evaluations of the CPM on large-scale data sets from
distinct domains (MNIST handwritten digit recognition, text topic, and web security) demonstrate
that the CPM trains models faster, sometimes by several orders of magnitude, than state-of-the-
art similar approaches and kernel methods while achieving comparable or better classification
performance. Our empirical results suggest that, unlike prior similar approaches, we do not need
to control the number of sub-classifiers (sides of the polytope) to avoid overfitting.

Related Work
Fischer (1995) focuses on finding the polygon with the fewest misclassified points drawn indepen-
dently from an unknown distribution using an algorithm with a running time of more than O (n12)
where n is the number of sample points. We instead focus on finding good, not optimal, polygons
that generalize well in practice despite having fast running times. Our focus on generalization leads
us to maximize the margin, unlike this work, which actually minimizes it to make their proofs
easier.

Takacs (2010) proposes algorithms for training convex polytope classifiers based on the smooth
approximation of the maximum function. While his algorithms use smooth approximation during
training, it uses the original formula during prediction, which introduces a gap that could deteriorate
the accuracy. The proposed algorithms achieve similar classification accuracy to several nonlinear

CHAPTER 4. CONVEX POLYTOPE MACHINE 47

classifiers, including nearest neighbors, decision tree and kernel support vector machines. However,
the training time of the algorithms is often much longer than those nonlinear classifiers, sometimes
by an order of magnitude than the ID3 algorithm and eight times longer than kernel support vector
machines on medium size datasets, diminishing the motivation to use the proposed algorithms in
realistic settings.

The authors of (Wang et al. 2011) propose an Adaptive Multi-hyperplane Machine (AMM)
algorithm that is fast during both training and prediction, and capable of handling nonlinear
classification problems. They develop an iterative algorithm based on stochastic gradient descent
to search for the number of hyperplanes and train the model. Their experiments on several large
data sets show that AMM is nearly as fast as the state-of-the-art linear SVM solver and achieves
classification accuracy between linear and kernel support vector machines. In contrast to the
theoretical analysis of AMM, our experiments and to some extent our theoretical analysis suggest
that increasing the number of hyperplanes, or polytope faces, does not significantly decrease
generalization power. Building on the stochastic gradient descent training algorithm, we introduce
also an important corrective procedure to increase the utilization of hyperplanes. Finally, we
demonstrate how the AMMmodel can be derived under the more fundamental margin optimization
framework.

Manwani and Sastry (2010) propose twomethods for learning polytope classifiers, one based on
the logistic function, and another based on the perceptron method (Manwani and Sastry 2013), and
propose alternating optimization algorithms to train the classifiers. However, they only evaluate
the proposed methods on a few small data sets (with no more than 1000 samples in each), and do
not compare them to other widely used non-linear classifiers. It is unclear how applicable these
algorithms are to large-scale data. Our work makes three significant contributions over their work.
First, we derive the formulation from a large-margin argument and obtaining a regularization term
that is missing in (Manwani and Sastry 2013). Second, we show we can safely restrict the choice
of assignments to only positive instances, leading to a training time optimization heuristic. Third,
we demonstrate higher performance on non-synthetic, large scale data sets when using two convex
polytope classifiers together.

Finally, we note that the CPM is a special case of the more general latent support vector
machine formulation (Felzenszwalb et al. 2010). In particular, the latent variable represents the
sub-classifier, or face of the polytope, used for classifying the given instance.

4.2 Large-Margin Convex Polytopes
In this section, we derive and discuss several alternative optimization problems for finding a
large-margin convex polytope which separates binary labeled points of Rd .

Problem Setup and Model Space
Let D = {(x (i),yi)}1≤i≤n be a binary labeled data set of n instances, where x (i) ∈ Rd and yi ∈
{−1, 1}. For the sake of notational brevity, we assume that an instance x (i) includes a constant

CHAPTER 4. CONVEX POLYTOPE MACHINE 48

unitary component corresponding to a bias term. Our prediction problem is to find a classifier
c : Rd → {−1, 1} such that c (x (i)) is a good estimator of yi . To do so, we consider classifiers
constructed from convex K-faced polytope separators for a fixed positive integer K . Let PK be the
model space of convex K-faced polytope separators:

PK =

{
f : Rd → R

�����
f (x) = max

1≤k≤K
(Wx)k ,W ∈ RK×d

}
For each such function f in PK , we can get a classifier c f such that c f (x) is 1 if f (x) > 0 and

−1 otherwise. This model space corresponds to a shallow single hidden layer neural network with
a max aggregator.

Note that when K = 1, P1 is simply the space of all linear classifiers. Importantly, when K ≥ 2,
elements of PK are not guaranteed to have additive inverses in PK . Thus, the labels y = −1 and
y = +1 are not interchangeable. Geometrically, the negative class remains enclosed within the
convex polytope while the positive class lives outside of it, leading to the label asymmetry.

To construct a classifier without label asymmetry, we can use two polytopes, one with the
negative instances on the inside the polytope to get a classification function f− and one with the
positive instances on the inside to get f+. From these two polytopes, we construct the classifier
c f−,f+ where c f−,f+ (x) is 1 if f−(x) − f+(x) ≥ 0 and −1 otherwise. Both the evaluation section and
Chapter 6 use this double convex polytope construction. Figure 4.3 illustrates the resulting model
class.

To better understand the nature of the faces of a single polytope, for a given polytopeW and a
data point x , we denote by zW (x) the index of the maximum sub-classifier for x :

zW (x) = argmax
1≤k≤K

(Wx)k

We call zW (x) the assigned sub-classifier for instance x . When clear from context, we dropW
from zW . We use the notationWk to designate the k-th row of matrixW , which corresponds to
the k-th face of the polytope, or the k-th sub-classifier. Hence,Wz (x) identifies the weights of the
separator assigned to x .

We now pursue a geometric large-margin-based approach for formulating the concrete opti-
mization problem. To simplify notation and without loss of generality, we suppose that W is
row-normalized such that ‖Wk ‖ = 1 for all k . We also initially suppose our data set is perfectly
separable by a K-faced convex polytope.

Margins for Convex Polytopes
When K = 1, the problem reduces to finding a good linear classifier and only a single natural
margin δ of the separator exists (Cortes and Vapnik 1995):

δW = min
1≤i≤n

yiW1x
(i)

CHAPTER 4. CONVEX POLYTOPE MACHINE 49

x

d

W+x

K

max

sub

W–x

K

max

f
+
(x)

f
–
(x)

(f
+
- f

–
)(x)

Figure 4.3: Neural network representation of the difference of two convex polytope machines. For
both CPMs, the ouputs of a hidden layer ofK independent linear sub-classifiers are max-ensembled.

Maximizing δW yields the well known linear support vector machine. However, multiple notions
of margin exist for a K-faced convex polytope with K ≥ 2. We distinguish three notions of margin
in what follows.

Let the worst case margin δWC
W be the smallest margin of any point to the polytope. Over all the

K sub-classifiers, we find the one with the minimal margin to the closest point assigned to it:

δWC
W = min

1≤i≤n
yiWz (x (i))x

(i)

= min
1≤k≤K

min
i:z (x (i))=k

yiWkx
(i)

The worst case margin is very similar to the linear classifier margin but suffers from an important
drawback. Maximizing δWC leaves K − 1 sub-classifiers wiggling while over-focusing on the
sub-classifier with the smallest margin. Figure 4.4 presents a geometrical intuition for this fact.

Thus, we instead focus on the total margin, which measures each sub-classifier’s margin with

CHAPTER 4. CONVEX POLYTOPE MACHINE 50

2

1

1’

Figure 4.4: The worst-case margin is insensitive to wiggling of sub-classifiers having non-minimal
margin. Sub-classifier 2 has the smallest margin, and sub-classifier one is allowed to freely move
without affecting δWC. For comparison, the largest-margin solution 1′ is shown (dashed lines).

respect to just its assigned points. The total margin δTW is the sum of the K sub-classifiers margins:

δTW =

K∑
k=1

min
i:z (x (i))=k

yiWkx
(i)

The total margin gives the same importance to each of the K sub-classifier margins.
A potential improvement over the total margin is to give more importance to sub-classifiers

which are responsible for classifying a larger portion of the data set. We can accomplish this by
weighting each sub-classifier k by its number of classified instances αk = 1

n

∑n
i=1 Iz (x (i))=k . We have:

δEW =
K∑
k=1

αk min
i:z (x (i))=k

yiWkx
(i) (4.1)

We call δEW the effective margin.

Maximizing the Margin
We now turn to the question of maximizing the margin. We show the step-by-step derivation a
smoothed but non-convex optimization problem for maximizing the total margin.

max
W

δTW (4.2)

s.t. ‖W1‖ = · · · = ‖WK ‖ = 1

CHAPTER 4. CONVEX POLYTOPE MACHINE 51

Introducing one additional variable ζk per classifier, problem (4.2) is equivalent to:

max
W,ζ

K∑
k=1

ζk (4.3)

s.t. ∀i, ζz (x (i)) ≤ yiWz (x (i))x
(i)

ζ1 > 0, . . . , ζK > 0
‖W1‖ = · · · = ‖WK ‖ = 1

Considering the unnormalized rowsWk/ζk , we obtain the following equivalent formulation:

max
W

K∑
k=1

1
‖Wk ‖

(4.4)

s.t. ∀i, 1 ≤ yiWz (x (i))x
(i) (4.5)

When y = −1, z (x (i)) satisfying the margin constraint (4.5) implies that the constraint holds for
every sub-classifier k since yiWkx

(i) is minimal at k = z (x (i)). Thus, when y = −1, we can enforce
the constraint for all k yielding the following equivalent problem:

max
W

K∑
k=1

1
‖Wk ‖

(4.6)

s.t. ∀i : yi = −1,∀k ∈ {1, . . . ,K }, 1 +Wkx
(i) ≤ 0

∀i : yi = +1, 1 −Wz (x (i))x
(i) ≤ 0

Finally, we can relax the objective into a convex one by minimizing the sum of the inverse
squares of the terms instead of maximizing the sum of the terms. We obtain the following
smoothed problem:

min
W

K∑
k=1
‖Wk ‖

2 (4.7)

s.t. ∀i : yi = −1,∀k ∈ {1, . . . ,K }, 1 +Wkx
(i) ≤ 0 (4.8)

∀i : yi = +1, 1 −Wz (x (i))x
(i) ≤ 0 (4.9)

The objective (4.7) is now the familiar convex L2 regularization term ‖W ‖2. The negative
samples constraints (4.8) are convex (linear functions), but the positive terms (4.9) result in non-
convex constraints because of the instance-dependent assignment z. As for the Support Vector
Machine, we can introduce n slack variables ξi and a regularization factor C > 0 for the common

CHAPTER 4. CONVEX POLYTOPE MACHINE 52

case of noisy, non-separable data. Hence, the practical problem becomes:

min
W ,ξ
‖W ‖2 +C

n∑
i=1

ξi (4.10)

s.t. ∀i : yi = −1,∀k ∈ {1, . . . ,K }, 1 +Wkx
(i) ≤ ξi

∀i : yi = +1, 1 −Wz (x (i))x
(i) ≤ ξi

∀i, ξi ≥ 0

Following the same steps, we obtain the following problem for maximizing the worst-case
margin. The only difference is the regularization term in the objective function which becomes
maxk ‖Wk ‖

2 instead of ‖W ‖2.
The goal of our relaxation is to demonstrate that our solution involves two intuitive steps:

(i) assigning positive instances to sub-classifiers, and (ii) solving a collection of SVM-like sub-
problems. While our solution taken as a whole remains non-convex, this decomposition isolates the
non-convexity to a single intuitive assignment problem that is similar to clustering. This isolation
enables us to use intuitive heuristics or clustering-like algorithms to handle the non-convexity.
Indeed, in our final form (4.10), if the optimal assignment function z (x (i)) of positive instances to
sub-classifiers were known and fixed, the problem would be reduced to a collection of perfectly
independent convex minimization problems. Each such sub-problem corresponds to a classical
SVM defined on all negative instances and the subset of positive instances assigned by z (x (i)).

Choice of K , Generalization Bound for CPM
Assuming we can efficiently solve this optimization problem, we would need to adjust the number
K of faces and the degree C of regularization. The following result gives a generalization bound
for the CPM. For B1, . . . ,Bk ≥ 0, let FK ,B be the following subset of the set PK of convex polytope
separators:

FK ,B =

{
f : Rd → R

�����
f (x) = max

1≤k≤K
(Wx)k ,W ∈ RK×d ,∀k, ‖Wk ‖ ≤ Bk

}
Theorem 1. There exists some constant A > 0 such that for all distributions P over Rd × {−1, 1},
K in {1, 2, 3, . . .}, B1, . . . ,Bk ≥ 0, and δ > 0, with probability at least 1 − δ over the training set
(x (1),y (1)), . . . , (x (n),y (n)) ∼ P , any f in FK ,B is such that:

P (y f (x) ≤ 0) ≤
1
n

n∑
i=1

max(0, 1 − yi f (x (i))) +A

∑
k Bk
√
n
+

√
ln (2/δ)

2n

This is a uniform bound on the 0-1 risk of classifiers in FK ,B. It shows that with high probability,
the risk is bounded by the empirical hinge loss plus a capacity term that decreases in n−1/2 and is
proportional to the sum of the sub-classifier norms. Note that as we have

∑
k ‖Wk ‖ ≤

√
K ‖W ‖,

CHAPTER 4. CONVEX POLYTOPE MACHINE 53

the capacity term is essentially equivalent to
√
K ‖W ‖. As a comparison, the generalization error

for AMM (Wang et al. 2011), a related piecewise-linear classification method has previously been
shown to be proportional to K ‖W ‖ in (Wang et al. 2011, Thm. 2). In practice, this bound is very
loose as it does not explain the observed absence of over fitting as K gets large. We experimentally
demonstrate this phenomenon in the evaluation section. We conjecture that there exists a bound
that is independent of K altogether. The proof of Theorem 1 relies on a result of (Bartlett and
Mendelson 2003) on Rademacher complexities. We first prove that the Rademacher complexity of
FK ,B is inO (

∑
k Bk/

√
n). We then invoke Theorem 7 in (Bartlett and Mendelson 2003) to show our

result. The complete proof is as follows.

Proof. The Rademacher complexity of FK ,B is defined as

Rn (FK ,B) = E(x (i))Eϵ


sup

f ∈FK,B

������

1
n

∑
i

ϵi f (x
(i))

������


where the ϵi are ±1 i.i.d. Bernoulli with probability 1/2.

It is also possible to define the Gaussian Rademacher complexity of FK ,B as:

Gn (FK ,B) = E(x (i))Eд


sup

f ∈FK,B

������

1
n

∑
i

дi f (x
(i))

������


where the дis are i.i.d. standard normal variables.

By Lemma 4 in (Bartlett and Mendelson 2003), there exists an absolute constant b such that for
every FK ,B and n we have Rn (FK ,B) ≤ bGn (FK ,B). Thus, we can provide a bound on the Gaussian
Rademacher complexity. In our case, this can be directly done by invoking Theorem 14 in (Bartlett
and Mendelson 2003). Indeed, q1, . . . ,qk 7→ max(q1, . . . ,qk) is a Lipchitz function with constant
1, thus FK ,B can be viewed as the composition of the max function with the real valued classes of
linear separators Fi that are such that

Fi = {x 7→ wᵀx | ‖w ‖ ≤ Bi }

So we have that Gn (FK ,B) ≤ 2
∑K

k=1 Gn (Fk). The Gaussian Rademacher complexities of each
of these Fks is bounded by Bk/

√
n by a standard argument as follows:

CHAPTER 4. CONVEX POLYTOPE MACHINE 54

Gn (Fk) = E(x (i))Eд


sup
‖w ‖≤Bk

������

1
n

∑
i

дiw
ᵀx (i)

������



= E(x (i))Eд


sup
‖w ‖≤Bk

1
n
wᵀ *

,

n∑
i=1

x (i)дi+
-



= E(x (i))Eд
Bk
n
‖

n∑
i=1

x (i)дi ‖

≤ E(x (i))

Bk
n

√√
Eд‖

n∑
i=1

x (i)дi ‖2

= E(x (i))

Bk
n

√√
n∑
i=1
‖x (i) ‖2

≤
Bk
√
n

Hence, there exists a universal constant A > 0 such that

Rn (FK ,B) ≤ A
∑
k

Gn (Fk) = A

∑
k Bk
√
n

Finally, we apply Theorem 7 of (Bartlett and Mendelson 2003) where ϕ is taken to be the hinge
loss, and obtain the desired result. �

4.3 SGD-based Learning
In this section, we present a learning algorithm based on Stochastic Gradient Descent (SGD)
for approximately solving the total margin maximization problem (4.10). The choice of SGD is
motivated by two factors. First, we would like our learning technique to efficiently scale to several
million instances of sparse high dimensional space. The sample-iterative nature of SGD makes
it a very suitable candidate for this end (Bottou 2010). Second, the optimization problem we are
solving is non-convex. SGD has recently been shown to work well for such learning problems
when near-optimum solutions are acceptable (Hinton 2012).

Problem (4.10) can be expressed as an unconstrained minimization problem as follows:

min
W

∑
i:yi=−1

K∑
k=1

[1 +Wkx
(i)]+ +

∑
i:yi=+1

[1 −Wz (x (i))x
(i)]+ + λ‖W ‖2

where [x]+ = max(0,x) and λ > 0. This form reveals the strong similarity with optimizing K
unconstrained linear SVMs (Shalev-Shwartz et al. 2007). The difference is that although each sub-
classifier is trained on all the negative instances, positive instances are associated to a unique sub-
classifier. From the unconstrained form, we can derive the stochastic gradient descent Algorithm 1.

CHAPTER 4. CONVEX POLYTOPE MACHINE 55

For the positive instances, we isolate the task of finding the assigned sub-classifier z to a separate
procedure assign. We use the Pegasos inverse schedule ηt = 1/(λt).

Algorithm 1 Stochastic gradient descent algorithm for solving problem (4.10).
function sgdTrain(D, λ,T , (ηt),h)

InitializeW ∈ RK×d ,W ← 0

for t ← 1, . . . ,T do
Pick (x ,y) ∈ D

if y = −1 then
for k ← 1, . . . ,K do

ifWkx > −1 then
Wk ←Wk − ηtx

else if y = +1 then
z ← argmaxkWkx
ifWzx < 1 then

z ← assign(W ,x ,h)
Wz ←Wz + ηtx

W ← (1 − ηtλ)W
returnW

Assignment Heuristic
Since the optimization problem (4.10) is non-convex, a pure SGD approach could get stuck in a
low-quality local optimum andwe, indeed, found that this problem occurs in practice. These optima
assign most of the positive instances to a small number of sub-classifiers. In this configuration, the
remaining sub-classifiers serve no purpose. Intuitively, the algorithm clustered the data into large
“super-clusters” ignoring the more subtle sub-clusters comprising the larger super-clusters. The
large clusters represent an appealing local optima since breaking one down into sub-clusters often
requires transitioning through a patch of lower accuracy as the sub-classifiers align themselves to
the new cluster boundaries. We view the local optima as the algorithm underfitting the data by
using too simple of a model. In this case, the algorithm needs encouragement to explore more
complex clusterings.

With this intuition in mind, we add a term encouraging the algorithm to explore higher diversity
configurations of the sub-classifiers. To do so, we use the entropy of the random variable Z =
argmaxkWkx where x ∼ D+ is a distribution defined on the set of all positive instances as follows.
Let nk be the number of positive instances assigned to sub-classifier k , and n be the total number
of positive instances. We define D+ as the empirical distribution on

(
n1
n ,

n2
n , . . . ,

nk
n

)
. The entropy

is zero when the same classifier fires for all positive instances, and maximal at log2K when every

CHAPTER 4. CONVEX POLYTOPE MACHINE 56

classifier fires on aK−1 fraction of the positive instances. Thus, maximizing the entropy encourages
the algorithm to break down large clusters into smaller clusters of near equal size.

We use this notion of entropy in our heuristic procedure for assignment, described in Algo-
rithm 2. assign takes a predefined minimum entropy level h ≥ 0 and compensates for disparities in
how positive instances are assigned to sub-classifiers, where the disparity is measured by entropy.
When the entropy is above h, assign uses the natural argmaxkWkx assignment. Conversely, if the
current entropy is below h, then it picks an assignment that is guaranteed to increase the entropy.
Thus, when h = 0, there is no adjustment made. It keeps a dictionary unadj mapping the previous
points it has encountered to the unadjusted assignment that the natural argmax assignment would
had made at the time of encountering the point. We write unadj + (x ,k) to denote the new dictio-
nary U such that U [v] is equal to k if v = x and to unadj[v] otherwise. Dictionary unadj keeps
track of the assigned positives per sub-classifiers, and serves to estimate the current entropy in the
configuration without needing to recompute every prior point’s assignment.

Algorithm 2 Heuristic maximum assignment algorithm. The input is the current weight matrixW ,
positive instance x , and the desired assignment entropy h ≥ 0.

Initialize unadj← {}
function assign(W ,x ,h)

kunadj ← argmaxkWkx

if entropy(unadj + (x ,kunadj)) ≥ h then
kadj ← kunadj

else
hcur ← entropy(unadj)
Sinc ← {k: entropy(unadj + (x ,k)) > hcur}

kadj ← argmax
k∈Sinc

Wkx

unadj← unadj + (x ,kunadj)
return kadj

Implementation notes
As we plan to use small to medium values of K , we implementW as a dense matrix. Efficient
summations and inner products with sparse vectors are straightforward. We efficiently rescaleW
and its columns in constant time by using the standard trick of keeping a scaling factor a along
with an unscaled matrix W̃ such thatW = aW̃ . We compute the current assignment entropy in
O (K) time by storing the past positive instance assignments in a circular buffer augmented with
a K length table referencing the number of assigned instances for each sub-classifier. We update
this data structure in constant time by incrementing or decrementing at most two elements of the

CHAPTER 4. CONVEX POLYTOPE MACHINE 57

counts table every time we receive an instance. We make our C++11 implementation of the CPM,
together with friendly Python bindings available to the community (Kantchelian 2014).

4.4 Non-Adversarial Evaluation
We turn to the non-adversarial evaluation of the Convex Polytope Machine. We use seven data sets
all available on the LibSVM repository page (Fan 2011). Table 4.1 provides a brief description of
each dataset.

Name Features Train Size Test Size Domain

MNIST-2 784 60,000 10,000 handwritten digit “2” detection
MNIST8m-2 784 8,100,000 10,000 handwritten digit “2” detection
URL >2,300,000 1,198,065 1,198,065 malicious URL detection
RCV1-bin 47,236 20,242 677,399 text topic detection
IJCNN1 22 49,990 91,701 engine misfiring detection
A9A 123 32,561 16,281 credit scoring
KDDA 20,216,830 8,407,752 510,302 student performance prediction

Table 4.1: Summary description of our evaluation datasets.

The MNIST data set was compiled by LeCun et al. (1998) and consists of labeled handwritten
digits encoded in 28×28 gray scale pictures. TheMNIST8m data set consists of 8,100,000 pictures
obtained by applying various random deformations to MNIST training instances MNIST (Loosli
et al. 2007). Both the MNIST and MNIST8m are multi-class datasets, where the natural task is to
find which of the ten digits is represented in the picture. Since our focus is on binary classification,
we transform this task into a binary task by distinguishing the digit two from any other digit. To
do so, we effectively relabel each instance as y = 1 when the true class is digit 2, and y = −1
otherwise. We call those transformed datasets MNIST-2 and MNIST8m-2 respectively.

The URL dataset was collected by Ma et al. (2009) in the process of creating a malicious URL
detector. Each instance of this dataset is timestamped and we carve out temporally consistent
training and testing sets by splitting the full dataset in two halfs such that the most recent training
instance precedes the oldest testing instance.

The RCV1-bin dataset corresponds to the binary classification task of separating corporate
and economics categories from government and markets categories on the RCV1 data set of news
articles (Lewis et al. 2004).

The IJCNN1 dataset is set up for detecting the misfirings of a combustion engine from a
collection of indirect physical measurements (Prokhorov 2001). The A9A dataset (Kohavi 1996)
defines the task of predicting high annual income from census data, and finally the KDDA (Stamper
et al. 2010) dataset is developed for predicting student performance on tests.

CHAPTER 4. CONVEX POLYTOPE MACHINE 58

Parameter Tuning
All seven datasets have well defined training and testing subsets. To tune each algorithms meta-
parameters, namely λ and h for the CPM, C and γ for RBF-SVM, and λ for AMM, we randomly
select a fixed validation subset from the training set. The size of the validation subset varies between
1,000 to 10,000 depending on the size of the training set.

For the CPM, we use a double-sided CPM as described in figure 4.3, where both CPMs share the
same hyper-parameters. We start by fixing a number of iterations T and a number of hyperplanes
K which will result in a reasonable execution time, effectively treating these parameters as a
computational budget, and we experimentally demonstrate that increasing either K or T always
results in a decrease of the testing error. Once these are selected, we let h = 0 and select the best λ
in {T −1, 10×T −1, . . . , 104×T −1}. We then choose h from {0, logK/10, log 2K/10, . . . , log 9K/10},
effectively performing a one-round coordinate descent on λ,h. To test the effectiveness of our
empirical entropy-driven assignment procedure, we mute the mechanism by also testing with
h = 0.

The AMM (Djuric et al. 2013) has three parameters to adjust excluding T and the equivalent
of K , two of which control the weight pruning mechanism and are left set at default values. We
only adjust λ. Contrary to the CPM, we do not observe the testing error of the AMM to strictly
decrease with the number of iterationsT . We observe erratic behavior and thus we manually select
the smallest T for which the mean validation error appears to reach a minimum. For RBF-SVM,
we use the LibSVM (Chang and Lin 2011) implementation and perform the usual grid search on
the parameter space.

Performance
Unless stated otherwise, we used one core of an Intel Xeon E5 (3.2Ghz, 64GB RAM) for experi-
ments. Table 4.2 presents the results of experiments and shows that the CPM achieves comparable,
and at times better, classification accuracy than the RBF-SVM, while working at a relatively small
and constant computational budget. For the CPM, T was up to 32 million and K ranged from 10
to 100. For AMM, T ranged from 500,000 to 36 million. Across methods, the worst execution
time is for the MNIST8m-2 task, where a 512 core parallel implementation of RBF-SVM runs in
two days (Zhu et al. 2009), and our sequential single-core algorithm runs in less than five minutes.
The AMM has significantly larger errors and/or execution times. For small training sets such as
MNIST-2 and RCV1-bin, we were not able to achieve consistent results, regardless of how we setT
and λ, and we conjecture that this is a consequence of the weight pruning mechanism. The results
show that our empirical entropy-driven assignment procedure for the CPM leads to better solutions
for all tasks. In the RCV1-bin andMNIST-2 tasks, the improvement in accuracy from using a tuned
entropy parameter is 31% and 21%, respectively.

We use the MNIST8m-2 task to the study the effects of tuning T and K on the CPM. We first
choose a grid of values for T ,K and for a fixed regularization factor C and h = 0, we train a model
for each point of the parameter grid, and evaluate its performance on the testing set. Note that for
C to remain constant, we adjust λ = 1

CT . We run each experiment five times and only report the

CHAPTER 4. CONVEX POLYTOPE MACHINE 59

MNIST8m-2 URL KDDA

Error Time Error Time Error Time

CPM 0.30 ± 0.023 4m 1.32 ± 0.012 3m 10.38 ± 0.027 6m
CPM h=0 0.35 ± 0.034 4m 1.35 ± 0.029 3m 10.40 ± 0.021 6m
RBF-SVM 0.43∗ 2d∗∗ Timed out Timed out
AMM 0.38 ± 0.024 1hr 2.20 ± 0.067 5m 18.25 ± 6.51 53m
* for unadjusted parameters (Zhu et al. 2009)
** running on 512 processors (Zhu et al. 2009)

(a) Large Datasets

MNIST-2 IJCNN1 A9A RCV1-bin

Error Time Error Time Error Time Error Time

0.38 ± 0.028 2m 3.00 ± 0.114 2m 15.15 ± 0.062 15s 2.82 ± 0.059 2m
0.46 ± 0.026 2m Same as CPM Same as CPM 3.69 ± 0.156 2m
0.35 7m 1.44 1s 14.96 1m 3.7 46m
2.83 ± 1.090 1m 2.84 ± 0.312 14s 15.29 ± 0.181 12s 15.40 ± 6.420 1m

(b) Small Datasets

Table 4.2: Error rates and running times, including both training and testing periods, for the
evaluation datasets. Means and standard deviations for five runs with random shuffling of the
training set are shown.

mean accuracy. Figure 4.5 shows how this mean error rate evolves as a function of both T and K .
We observe two phenomena. First, for any value K > 1, the error rate decreases with T . Second,
for large enough values of T , the error rate decreases when K increases. These two observations
validate our treatment of both K and T as budgeting parameters. The observation about K also
provides empirical evidence of our conjecture that large values of K do not lead to noticeable
overfitting.

Multi-class Classification
We performed a preliminary multi-class classification experiment using the MNIST/MNIST8m
data sets. There are several approaches for building a multi-class classifier on top of a binary
classifier (Beygelzimer et al. 2009; Beygelzimer et al. 2005; Dietterich and Bakiri 1995). We used
a one-vs-one (OVO) approach where we train

(
10
2

)
= 45 one-vs-one classifiers and classify by a

majority vote rule with random tie breaking. While this approach is not optimal, it approximates
achievable performance. Table 4.3 presents the error rates and execution times of one-versus-one
CPM and RBF-SVMmodels. While RBF-SVM dominates CPM in terms of accuracy, CPM scales

CHAPTER 4. CONVEX POLYTOPE MACHINE 60

Figure 4.5: Error rate on MNIST8m-2 as a function of K ,T . C = 0.01 and h = 0 are fixed.

noticeably more favorably: CPM is more than 70 times faster than RBF-SVM on the MNIST8m
task, while achieving 1.03% error rate versus 0.67% for RBF-SVM.

CPM OVO RBF-SVM OVO

Error Time Error Time

MNIST 1.61 ± 0.019 7min 20s 1.47 6min 43s
MNIST8m 1.03 ± 0.074 2h 35min 0.67 8 days∗

* see (Loosli et al. 2007).

Table 4.3: Error rates and running times, including both training and testing periods, on the
multi-class handwritten digit recognition tasks.

4.5 Exact Evasion
The non-adversarial evaluation shows that the CPM is a competitive general purpose classifier.
The CPM is particularly advantageous as a drop-in replacement of linear classifiers on large-scale
decision problems, as it often significantly improves classification accuracy without incurring a
significant increase in computational cost.

CHAPTER 4. CONVEX POLYTOPE MACHINE 61

An important question that is left unanswered by the previous evaluations is whether or not the
CPMmodel also significantly improves evasion robustness. Because we are nowworking in feature
space, we can practically answer this question by solving the optimal evasion problem (2.2). We
present in this section an exact method for solving the constrained optimization problem (2.2) when
c is a difference of two convex polytope classifiers and ∆(x ,x′) = ‖x − x′‖ρ for ρ ∈ {0, 1, 2,∞}. In
this setting, the problem is non-convex essentially because of the non-convex constraint c (x) , c (x′)
and our strategy is to reduce to a Mixed Integer Linear or Quadratically Constrained Program form
(MILP or MIQCP) for which efficient commercial-off-the-shelf solvers exist (Wolsey 2007). We
now present the reduction of problem (2.2) to a set of mixed integer inequalities and objective
function. We begin by presenting the variables of the program and then introduce the constraints
and objective.

Program Variables
In what follows, the program variables are always bolded and italicized to distinguish them from
program constants. Variables of the same family u are indexed using the natural subscript notation
ui . Letx ∈ R be the input instance for whichwe are computing the optimal evasion,W +,W − ∈ RK×d

be the weight matrices and b+,b− ∈ RK the constant bias terms of each CPM.
The instance variables x ∈ Rd describe the solution of the optimization problem. That is, the

optimal solution x′ to problem (2.2) is such that for all feature dimension j, x′j = xj . The choice
variables z+, z− ∈ {0; 1}K model the max operator of each convex polytope classifier. These binary
variables effectively choose which sub-classifier’s prediction is active for the current solution x. The
classifier output variables f+, f− ∈ R denote the signed margin of each convex polytope classifier.
To model the distance ∆(x ,x′), we introduce additional cost variables p which number and type
depend on ρ, the considered distance. The cost variables are described along with the inequalities
in which they appear when presenting the modelization of the objective.

Model Consistency Constraints
We now describe in the language of linear inequalities the Rd → R mapping that the double-sided
CPM classifier performs. That is, we link together the input variables x and output variables f+, f−

using the choice variables z+, z− so as to respect the semantics of the classifier.
As can be seen in Figure 4.3, at the top level, the classifier decision is simply the difference

between the outputs of the two CPMs, that is, f+ − f−. Without loss of generality, if our initial
instance x is such that f (x) ≥ 0, the c (x) , c (x′) is equivalent to f (x) < 0, that is,

f+ − f− ≤ −ϵ

for a small constant guard value ϵ > 0. Because the classifier f is Lipschitzian with a modulus of
continuity which depends on the parametersW and b, the specific value of ϵ is not critical. We
choose ϵ = 10−3 in our implementation.

CHAPTER 4. CONVEX POLYTOPE MACHINE 62

Without loss of generality, we focus on the positive CPM f+. By definition of the max operator,
f+ must dominate all sub-classifier scoresW +

k
ᵀx + b+

k
and be equal to one of these scores. The first

condition gives the following K inequalities.

∀k ∈ ~1,K�, W +k
ᵀx + b+k ≤ f+

For the second condition, we use the choice variables to select which sub-classifier is active. Exactly
one indicator variable z+ is non-zero, which we encode as:

K∑
k=1

z+k = 1

To use those indicator variables, we employ the so-called “big-m” method (Belotti et al. 2016).
Let m > 0 be a large constant. The following K inequalities ensure that a single sub-classifier is
selected.

∀k ∈ ~1,K�, W +k
ᵀx + b+k +m(1 − z+k) ≥ f+ (4.11)

For a large-enough constant m, all inequalities with zero indicator variables z+
k
are essentially

inactive, and equality ensues at the non-zero index by virtue of the simultaneous upper and lower
bounding of f+. For good solving time performance, m should be the smallest value which does
not exclude valid solutions.

We use the following method to determine the smallest value form that is also safe. In practical
applications, the valid input instances x live in a strict subset of Rd . For instance, we often have
‖x‖2 ≤ 1 or ‖x‖∞ ≤ 1. In the later case, the largest and smallest possible values for f+ are:

f +max = max
k




d∑
j=1
|W +k,j | + b

+
k




and f +min = min
k




d∑
j=1
−|W +k,j | + b

+
k




A quick inspection of constraints (4.11) reveal that any value ofm larger than or equal to f +max− f
+
min

is a priori safe. Note that this computation can be done once and for all for a given CPM classifier.

Objective
The objective of the MIP and its associated constraints take different forms depending on the
considered type of distance. We treat each four case for ∆(x ,x′) = ‖x − x′‖ρ in order.

For the ρ = 0 distance, we are minimizing the number of altered feature dimensions. In this
case, we have d binary variables p ∈ {0, 1}d . By convention, pj = 1 if and only if feature dimension
j was modified. Our objective is thus:

min
d∑
j=1

pj (4.12)

CHAPTER 4. CONVEX POLYTOPE MACHINE 63

We use the big-m trick again to enforce the semantics of the cost variables. For a large-enough
constantm′ > 0, we have the following 2d constraints.

∀j ∈ ~1,d�, xj − xj ≤ m′pj and xj − xj ≤ m′pj (4.13)

The smallest safe value for m′ is again dictated by our bounds in feature space. For instance, if
every admissible instance x is such that ‖x ‖∞ ≤ 1, a safe value form′ is 1 − (−1) = 2.

The ρ = 1 case is quite similar. We can continuously relax the variables p ∈ Rd+ and fixm′ = 1
in constraints (4.13). Each pj measures the absolute value of the modification of feature dimension
i, and the objective (4.12) remains unchanged.

For the ρ = 2 case, our program equivalently minimizes the square of the L2 distance. As
for the ρ = 1 case, the p variables are continuous and non-negative and the objective remains as
before (4.12). Constraints (4.13) are replaced by d quadratic constraints, turning the MILP into a
MIQCP.

∀j ∈ ~1,d�,
(
xj − xj

)2
≤ pj ⇔ x2j − 2xjxj + x

2
j ≤ pj

Finally the ρ = ∞ case is obtained as follows. We define a single continuous non-negative
variable p which represents the maximum absolute deformation over all feature dimensions. The
objective of the MILP is simply min p and there are 2d linear constraints as follows.

∀j ∈ ~1,d�, xj − xj ≤ p and xj − xj ≤ p

Summary
Our MIP reduction has Θ(K + d) variables and constraints, and Θ(Kd) non-zero entries in the
corresponding constraint matrix whenW +,W − are dense. When ρ , 2, our reduction is an MILP
and in the case of the Euclidean distance, the reduction is an MIQCP. Hence, we can use any
modern off-the-shelf MIP solver which supports quadratic constraints to compute optimal evasion
instances under problem (2.2).

We defer to Chapter 6 the experimental estimation of the evasion robustness using our reduc-
tion. This presentation choice allows us to introduce additional evasion and hardening techniques
for different model classes before laying out a comprehensive evasion susceptibility comparison
between classifiers.

4.6 Open Problems
Drawing on the connection between evasion robustness and large-margin learning, we propose a
novel algorithm for convex polytope separation that provides larger margins than a single linear
classifier, while still enjoying the computational effectiveness of a simple linear separator. Our
algorithm learns a bounded number of linear classifiers simultaneously. On large data sets, the CPM
outperforms RBF-SVM and AMM, both in terms of running times and error rates. Furthermore,
by not pruning the number of sub-classifiers used, CPM is algorithmically simpler than AMM.

CHAPTER 4. CONVEX POLYTOPE MACHINE 64

CPM avoids such complications by having little tendency to overfit the data as the number K of
sub-classifiers increases, as we shown empirically. Additionally, the model class of convex polytope
classifiers lends itself well to the computation of exact optimal evasions. This in turns enables the
systematical study of the evasion robustness of CPM.

K and Generalization Power
Although the Rademacher-based complexity analysis suggests that the CPM overfitting error in-
creases in O (

√
K), the practical evaluation shows that when using the stochastic gradient descent

training method, increasing K does not lead to worse testing time accuracy. This suggests that
the bounds derived in Theorem 1 are lose for the CPM. A stronger bound exhibiting a weak, if
any, dependency on K might exist for the SGD-based training procedure. Alternatively, finding a
probability distribution P for which the CPM overfits with the predicted

√
K dependency would

guarantee the tightness of the bound.

Heuristic Assignment Algorithm
Our stochastic gradient descent training procedure includes a heuristic instance to sub-classifier
matching function which balances the assignment rates of the K polytope faces. While we em-
pirically find that the resulting diversification of the sub-classifiers is often beneficial, it might be
possible to ground the assignment balancing heuristic on more fundamental principles. On a re-
lated note, additional experiments on convex polytope machines that maximize the effective margin
have shown a noticeably degraded accuracy compared to using the total margin. Understanding
the reason for the poor performance of the effective margin may ultimately result in a novel and
improved margin metric.

65

Chapter 5

Evasion and Hardening of Tree Ensembles

5.1 Introduction
Chapters 3 and 4 have introduced two defense techniques against evasion attacks. In Chapter 3,
we proposed an evasion defense at the feature extraction level for the specific application domain
of comment spam. In Chapter 4, we derived a novel model class for generic machine learning
classification on large-scale datasets. The construction of the model class is grounded in an evasion
robustness requirement which we cast into a large-margin approach.

In this chapter, we explore a third venue for hardening a generic machine learning algorithm
against evasions: iterated re-training with artificially generated evading instances. To this end, we
fix our model class to tree ensembles. Several factors explain the choice of tree ensembles.

While prior work extensively studies the evasion problem on differentiable models by means
of gradient descent, those results are reported in an essentially qualitative fashion. Further, non-
differentiable, non-continuous models have received very little attention. Tree ensembles as pro-
duced by boosting or bagging (Breiman 1996) is perhaps the most important model class from this
family as they are often able to achieve competitive performance and enjoy good adoption rates in
both industrial and academic contexts. Frustratingly, little is known about the evasion susceptibility
of those models, and anecdotal claims of both robustness (Smutz and Stavrou 2012; Smutz and
Stavrou 2016) and brittleness (Srndic and Laskov 2014) are simultaneously reported.

In this chapter, we present the first heuristic and exact evasion algorithms for tree ensembles.
Our exact evasion method relies on a Mixed Integer Linear Program solver and enables precise
quantitative robustness statements. Our approximate evasion algorithm is based on symbolic
prediction, a fast and novel method for computing finite differences for tree ensemble models.

In addition, unlike their differentiable counterparts, tree ensembles are a natural candidate for
evasion hardening by adversarial iterated re-training. Specifically, when building a tree ensemble
model by a stepwise boosting algorithm, we can inexpensively modify the training set effectively
used at each step by adding fresh evading instances to the original training dataset. Because those
evading instances are discarded between each round, this procedure does not grows the training
dataset itself, but rather grows the classifier. We call the resulting iterative model “patching”

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 66

adversarial boosting because of its formal and operational similarity to regular boosting. The work
presented in this chapter was first reported in (Kantchelian et al. 2016).

Related Work
To the best of our knowledge, there exists no prior work for the case where the adversary has full
knowledge of the classifier’s parameters and there is a unique paper tackling the case of unlimited
query access to the model. The authors of (W. Xu et al. 2016) present a genetic algorithm for finding
malicious PDF instances which evade detection. The evaluation of the fitness function is done by
querying the classifier. In contrast to (W. Xu et al. 2016), our exact algorithm guarantees optimality
of the solution, and our approximate algorithm performs a fast coordinate descent without the
additional tuning and hyper-parameters that a genetic algorithm requires.

5.2 Tree Ensemble Models
A sum-ensemble of trees model f : Rn → R consists of a set T of regression trees. We follow
the conventions set in the description of the regression tree and tree ensembles model class in
Chapter 2. In this chapter, we consider the case of single-feature threshold predicates of the form
xj < τ or equivalently xj > τ , where 1 ≤ j ≤ d and τ ∈ R are fixed model parameters. This
restriction excludes oblique decision trees where predicates simultaneously involve several feature
variables. We however note that oblique trees are seldom used in ensemble classifiers, partially
because of their relatively high construction cost and complexity (Norouzi et al. 2015). Before
describing our generic approach for solving the optimal evasion problem, we first state a simple
worst-case complexity result for problem (2.2).

5.3 Theoretical Hardness of Evasion
For a given tree ensemble model f , finding an x ∈ Rd such that f (x) > 0 (or f (x) < 0 without
loss of generality) is NP-complete. That is, irrespectively of the choice for ∆, the optimal evasion
problem (2.2) requires solving an NP-complete feasibility subproblem.

We now give a proof of this fact by reduction from 3-SAT. First, given an instance x , computing
the sign of f (x) can be done in time at most proportional to the model size. Thus the feasibility
problem is in NP. It is further NP-complete by a linear time reduction from 3-SAT as follows. We
encode in x the assignment of values to the variables of the 3-SAT instance S . By convention, we
choose xj > 0.5 if and only if variable j is set to true in S . Next, we construct f by arranging each
clause of S as a binary regression tree. Each regression tree has exactly one internal node per level,
one for each variable appearing in the clause. Each internal node holds a predicate of the form
xj > 0.5 where j corresponds to a clause variable. The nodes are arranged such that there exists a
unique prediction path corresponding to the falseness of the clause. For this path, the prediction
value of the leaf is set to the opposite of the number of clauses in S , which is also the number of

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 67

trees in the reduction. The remaining leaves predictions are set to 1. Figure 5.1 illustrates this
construction on an example.

x
1
 > .5

T F

T F

T F

1

1

1 -13

x
2
 > .5

x
3
 > .5

Figure 5.1: Regression tree for the clause x1 ∨ ¬x2 ∨ x3. In this example, S has 13 clauses.

It is easy to see that S is satisfiable if and only if there exists x such that f (x) > 0. Indeed,
a satisfying assignment for S corresponds to x such that f (x) = |T | > 0 and any non-satisfying
assignment for S corresponds to x such that f (x) ≤ −1 < 0 because there is at least one false clause
which corresponds to a regression tree which output is −|T |.

While we can not expect an efficient algorithm for solving all instances of problem (2.2) unless
P = NP, it may be the case that tree ensemble models as produced by common learners such as
gradient boosting or random forests are practically easy to evade. We now turn to an algorithm for
optimally solving the evasion problem for tree ensemble classifiers.

5.4 Exact Evasion
Let f be a sum-ensemble of trees and x ∈ Rd an initial instance. We present a reduction of
problem (2.2) into a Mixed Integer Linear Program (MILP). In contrast to the CPM reduction
presented in Chapter 4, this reduction avoids introducing constraints with “big-m” constants at
the cost of a slightly more complex solution encoding. We experimentally find that our reduction
produces tight formulations and acceptable running times for all common models f .

In what follows, we present the mixed integer program by defining three groups of MILP
variables: the predicate variables encode the state (true or false) of all predicates, the leaf
variables encode which prediction leaf is active in each tree, and the optional objective variable
for the case where ∆ is defined as the L∞ norm.

We then introduce three families of constraints: the predicates consistency constraints enforce
the logical consistency between predicates, the leaves consistency constraints enforce the logical

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 68

consistency between prediction leaves and predicates, and themodel mislabel constraint enforces
the condition c (x) , c (x′), or equivalently that f (x′) > 0 or f (x′) < 0 depending on the sign of
f (x). Finally we reduce the objective of (2.2) by relating the predicate variables to the value of
∆(x ,x′) in the treatment of the objective.

Program Variables
For clarity, MILP variables are bolded and italicized throughout. Our reduction uses three families
of variables.

• At most
∑

T∈T |T .nodes| binary variables pk ∈ {0; 1} (predicates) encoding the state of
the predicates. Our implementation sparingly create those variables: if any two or more
predicates in the model are logically equivalent, their state is represented by a single variable.
For example, the state of x′j < 0 and −x′j > 0 would be represented by the same variable.

•
∑

T∈T |T .leaves| continuous variables 0 ≤ lk ≤ 1 (leaves) encoding which prediction leaf is
active in each tree. The MILP constraints force exactly one lk per tree to be non-zero with
lk = 1. The l variables are thus implied binary in any solution but are nonetheless typed
continuous to narrow down the choice of branching variable candidates during branch-and-
bound, and hence improve solving time.

• At most one non-negative continuous variable b (bound) for expressing the distance ∆(x ,x′)
of problem (2.2) when ∆ is the L∞ distance. This variable is first used in the objective
subsection.

In what follows, we illustrate our reduction by using a model with a single regression tree as
represented in figure 5.2.

Predicates consistency
Without loss of generality, each predicate variable pk corresponds to the state of a predicate of the
form xj < τk . If two variables pk and pk ′ correspond to predicates over the same variable xj < τ1 and
xj < τ2, then pk and pk ′ can take inconsistent values without additional constraints. For instance, if
τ1 < τ2, then pk = 1 and pk ′ = 0 would be logically inconsistent because xj < τ1 ⇒ xj < τ2, but
any other valuation is possible for pk and pk ′.

For each feature variable x′j , we can ensure the consistency of all p variables which reference
a predicate over x′j by adding K − 1 inequalities enforcing the implicit implication constraints
between the predicates, where K is the number of p variables referencing xj . For a given x′j , let
τ1 < · · · < τK be the sorted thresholds of the predicates over x′j . Let p1, . . . , pK be the MILP
variables corresponding to predicates x′j < τ1, . . . ,x

′
j < τK . A valuation of (pk)k=1..K is consistent

if and only if p1 = 1⇒ · · · ⇒ pK = 1. Thus the consistency constraints are:

p1 ≤ p2 ≤ · · · ≤ pK

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 69

x
1
 < 2

x
1
 < 1 x

2
 < 1

-2 1 -1 2

T F

T TF F

l
1

l
2

l
3

l
4

p
1

p
2

p
3

Figure 5.2: Regression tree for the reduction example. Predicate variables p and leaf variables l
are shown next to their corresponding internal and leaf nodes. There aren = 2 continuous features.
The leaf predictions are -2, 1, 1 and 2.

When the feature variables x′j are binary-valued, there is a single pk variable associated to a
feature variable: all predicates x′j < τ with 0 < τ < 1 are equivalent. Generally, tree building
packages generate a threshold of 0.5 in this situation. This is however implementation dependent
and we can simplify the formulation with additional knowledge of the value domain x′j is allowed to
take. In the worst case, every predicate holds over the same feature variable and no two thresholds
are equal. In this case, we need to introduce exactly

∑
T∈T |T .nodes| − 1 inequality constraints

involving two variables.
In our toy example in figure 5.2, variables p1 and p2 refer to the same feature dimension 1 and

are thus not independent. The predicate consistency constraint in this case is:

p2 ≤ p1

and no other predicate consistency constraint is needed.

Leaves consistency
These constraints bind the p and l variables so that the semantics of the regression trees are
preserved. Each regression tree has its own independent set of leaves consistency constraints. We
construct the constraints such that the following properties hold:

(i) if lk = 1, then every other lk ′,k variable within the same tree is zero, and

(ii) if a leaf variable lk is 1, then all predicate variables p encountered in the prediction path of
the corresponding leaf are forced to be either zero or one in accordance with the semantics
of the prediction path, and

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 70

(iii) exactly one lk variable per tree is equal to 1. This property is needed because (i) does not
force any lk to be non-zero.

Enforcing property (i) is done using a classic exclusion constraint. If l1, . . . , lK are the K leaf
variables for a given tree, then the following equality constraint enforces (i):

K∑
k=1

lk = 1 (5.1)

For our toy example, this constraint is:

l1 + l2 + l3 + l4 = 1

Enforcing property (ii) requires two constraints per internal node. Let us start at the root node
root. Let proot be the variable corresponding to the root predicate. Let lT1 , . . . , l

T
KT

be the variables
corresponding to the leaves of the subtree rooted at root.true, and lF1 , . . . , l

F
KF

the variables for the
subtree rooted at root.false. The root predicate is true if and only if the active prediction leaf
belongs to the subtree rooted at root.true. In terms of the MILP reduction, this means that proot
is equal to one if and only if one of the leaf variables of the true subtree is set to one. Similarly on
the false subtree, proot is zero if and only if one of the leaf variables of the false subtree is set to
one. Because only one leaf can be non-zero, these constraints can be written as:

proot = 1 −
KF∑
k=1

lFk and proot =

KT∑
k=1

lTk

The case of internal nodes is identical, except that if and only ifs are weakened to single side
implications. Indeed, unlike the root case, it is possible that no leaf in either subtree might be an
active prediction leaf. For an internal node node, let pnode be the variable attached to the node,
lT and lF the variables attached to leaves of the true and false subtrees rooted at node.true and
node.false. The constraints are:

pnode ≤ 1 −
KF∑
k=1

lFk and pnode ≥

KT∑
k=1

lTk

In our toy example, we have three internal nodes and thus six constraints. The constraints
associated with the root, the leftmost and rightmost internal nodes are respectively:

p1 = 1 − (l3 + l4) and p1 = l1 + l2
p2 ≤ 1 − l2 and p2 ≥ l1
p3 ≤ 1 − l4 and p3 ≥ l3

Finally, property (iii) automatically holds given the previously defined constraints. To see this,
one can walk down the prediction path defined by the p variables and notice that at each level, the

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 71

leaves values of one of the subtree rooted at the current node must be all zero. For instance, if
pnode = 1, then we have

KF∑
k=1

lFk ≤ 0 ⇒ lF1 = lF2 = · · · = lFKF
= 0

At the last internal node, exactly two leaf variables remain unconstrained, and one of them is pushed
to zero. By the exclusion constraint (5.1), the remaining leaf variable must be set to 1.

Model mislabel
Without loss of generality, consider an original instance x such that f (x) ≥ 0. In order for x′ to be
an evading instance, we must have f (x′) < 0. Encoding the model output f (x′) is straightforward
given the leaf variables l. The output of each regression tree is simply the weighted sum of its
leaf variables, where the weight of each variable lk corresponds to the prediction value vk of the
associated leaf. Hence, f (x′) is the sum of |T | weighted sums over the l variables and the following
constraint enforces f (x′) < 0: ∑

k

vk lk ≤ −ϵ

where ϵ > 0 is a small constant which acts as a guard value.
For our running example, the mislabeling constraint is:

−2l1 + l2 − l3 + 2l4 ≤ −ϵ

Objective
Finally, we need to translate the objective ∆(x ,x′) of problem (2.2). We rely on the predicate
variables p in doing so. For any distance Lρ with ρ ∈ N, there exists weights wk and a constant C
such that the MILP objective can be written as:∑

k

wkpk +C

We now describe the construction of (wk)k and C. Recall that for each feature dimension
1 ≤ j ≤ d , we have a collection of predicate variables (pk)k=1..K associated with predicates
x′j < τ1, . . . ,x

′
j < τK where the thresholds are sorted τ1 < · · · < τK . Thus, the p variables effectively

encode the interval to which x′j belongs to, and any feature value within the interval will lead to the
same prediction f (x′). There are exactly K + 1 distinct possible valuations for the binary variables
p1 ≤ p2 ≤ · · · ≤ pK and the value domain mapping ϕ : p→ (R ∪ {−∞;∞})2 is:

x′j ∈ ϕ (p) = [τk ,τk+1)
where k = max

{
k′ ∈ ~0,K + 1� �� pk ′ = 0

}

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 72

where by convention p0 = 0, pK+1 = 1 and τ0 = −∞, τK+1 = ∞. Setting aside the L∞ case for now,
consider ρ ∈ N the norm we are interested in for ∆. Instead of directly minimizing ‖x − x′‖ρ , our
formulation equivalently minimizes ‖x − x′‖ρρ . By minimizing the latter, we are able to consider
the contributions of each feature dimension independently:

‖x − x′‖
ρ
ρ =

d∑
j=1
|xj − x

′
j |
ρ

We take 00 = 0 by convention. At the optimal solution, |xj −x′j |
ρ can only takeK +1 distinct values.

Indeed, if x′j and xj belong to the same interval, then x′j = xj minimizes the distance along feature j,
and this distance is zero. If x′j and xj do not belong to same interval, then setting x′j at the bound of
ϕ (p) that is closest to xj minimizes the distance along j. If ϕ (p) = [τk ,τk+1), this distance is simply
equal to min{|xj − τk |ρ, |xj − τk+1 |ρ }. Note that because of the right-open interval, the minimum
distance is actually an infimum. In our implementation, we simply use a guard value ϵ = 10−4 of
the same magnitude order than the numerical tolerance of the MILP solver.

Hence, we can express the minimization objective of problem (2.2) as a weighted sum of p
variables without loss of generality. Let 0 ≤ k ≤ K + 1 be the indices such that xj ∈ [τk ,τk+1). Let
(wk)k=0..K+1 such that for any valid valuation of p we have

∑K+1
k=0 wkpk = infα∈ϕ (p) |xj − α |ρ . By the

discussion above and exhaustively enumerating the K + 1 valuations of p, w is the solution to the
following K + 1 equations:

wK+1 = |xj − τK |
ρ

wK +wK+1 = |xj − τK−1 |
ρ

. . .

wk+1 + · · · +wK+1 = |xj − τk+1 |
ρ

wk +wk+1 + · · · +wK+1 = 0
wk−1 +wk +wk+1 + · · · +wK+1 = |xj − τk − ϵ |

ρ

. . .

w1 +w2 +w3 + · · · +wK+1 = |xj − τ2 − ϵ |
ρ

w0 +w1 +w2 +w3 + · · · +wK+1 = |xj − τ1 − ϵ |
ρ

Note that this system of linear equations is already in triangular form and obtaining thew values is
immediate. To obtain the full MILP objective, we repeat this process for every feature j ∈ ~1,d�
and take the sum of all weighted sums of subsets of p.

Finally, for the L∞ case, we use one continuous variable b. We introduced additional constraints
to the formulation, one for each feature dimension j. As per the previous discussion, we can generate
the weightsw as in the ρ = 1 case:

K+1∑
k=0

wkpk = inf
α∈ϕ (p)

|xj − α |

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 73

The additional constraint on dimension j is then:
K+1∑
k=0

wkpk ≤ b

and the MILP objective simply becomes the variable b itself.
For our toy example, consider (x1 = 0,x2 = 3). In the case of the L0 distance, we have the

following objective:
1 − p2 + p3

For the (squared) L2 distance instead, the objective is, when setting the guard ϵ = 0:

4 − 3p1 − p2 + 4p3

For the L∞ case, our objective reduces to the variable b and we introduce d additional bounding
constraints of the form · · · ≤ b where the left hand side measures |xj −x′j | using the same technique
as the ρ = 1 case.

Hence, the full MILP reduction of the optimal L0-evasion for our toy instance is:

min
p,l

1 − p1 + p2

s.t. p1, p2, p3 ∈ {0; 1}; l1, l2, l3, l4 ∈ [0, 1]
p1 ≤ p0 predicates consistency
l1 + l2 + l3 + l4 = 1 leaves consistency
l1 + l2 = p0 = 1 − (l3 + l4) leaves consistency
l1 ≤ p1 ≤ 1 − l2 leaves consistency
l3 ≤ p2 ≤ 1 − l4 leaves consistency
− 2l1 + l2 − l3 + 2l4 ≥ 0 model mislabel

Additional Constraints
Reducing problem (2.2) to aMILP allows expressing potentially complex inter-feature dependencies
created by the feature extraction step ψ . For instance, consider the common case of K mutually
exclusive binary features x′j1, . . . ,x

′
jK

such that in any well-formed instance, exactly one feature is
non-zero. Letting pk be the predicate variable associated with x′jk < 0.5, mutual exclusivity can be
enforced by:

K∑
k=1

pk = K − 1

5.5 Approximate Evasion
While the above reduction of problem (2.2) to an MILP is linear in the size of the model f , the
actual solving time can be very significant for difficult models. Thus, as a complement to the

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 74

exact method, we develop an approximate evasion algorithm to generate good quality evading
instances. For this part, we exclusively focus on minimizing the L0 distance. Our approximate
evasion algorithm is based on the iterative coordinate descent procedure described in algorithm 3.

Algorithm 3 Coordinate Descent for Problem (2.2). u (j) is the j-th canonical basis vector of Rd .
That is, u (j) is a d-dimensional vector such that u (j)

j = 1 and every other coordinate is zero.

Input: model f , initial instance x (assumes f (x) ≥ 0)

function coordinateDescent(f ,x)
Initialize S ← {}
while f (x) ≥ 0 do

(j,α) ← argmin
j ′∈~1,d�, α ′∈R

f (x + α ′u (j ′))

if f (x + αu (j)) ≥ f (x) and j ∈ S then
break

xj ← xj + α
S ← S ∪ {j}

return x

This algorithm greedily modifies the single best feature at each iteration until either the sign
of f (x′) changes, or there is no new feature to modify in x . The last condition ensures that the
algorithm terminates in less than d steps. Even though the resulting x is not guaranteed to be
evading, we find that in practice Algorithm 3 almost always returns an evading instance.

We now present an efficient algorithm for solving the inner optimization subproblem

min
x̃ :‖x−x̃ ‖0=1

f (x̃) (5.2)

The time complexity of a careful brute force approach is high. For balanced regression trees,
the prediction time for a given instance is O (

∑
T∈T log |T .nodes|). Further, for each dimension

1 ≤ j ≤ d, we must compute all possible values of f (x̃) where x̃ and x only differ along dimension
j. Note that because the model predicates effectively discretize the feature space, f (x̃) takes a finite
number of distinct values. This number is no more than one plus the total number of predicates
holding over feature j. Hence, we must compute f (x̃) for a total of

∑
T∈T |T .nodes| candidates

x̃ and the total running time is O (
∑

T∈T |T .nodes| ×
∑

T∈T log |T .nodes|). If we denote by | f |
the size of the model which is proportional to the total number of predicates, the running time is
O

(
| f | |T | log | f |

|T |

)
. Tree ensembles often have thousands of trees, making the | f | |T | dependency

prohibitively expensive.
We can efficiently solve problem (5.2) by using a dynamic programming approach. The main

idea is to visit each internal node no more than once by computing what value of x̃ can land
us at each node. We call this approach symbolic prediction in reference to symbolic program
execution (King 1976), because we essentially move a symbolic instance x̃ down the regression

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 75

tree and keep track of the constraints imposed on x̃ by all encountered predicates. Because we
are only interested in x̃ instances that are at most one feature away from x , we can stop the tree
exploration early if the current constraints imply that at least two dimensions need to be modified
or more trivially, if there is no instance x̃ that can simultaneously satisfy all the constraints. When
reaching a leaf, we report the leaf prediction value f (x̃) along with the pair of perturbed dimension
number j and value interval for x̃j which would reach the given leaf.

To simplify the presentation of the algorithm, we introduce a SymbolicInstance data structure
which keeps track of the constraints on x̃ . This structure is initialized by x and has four methods.

• For a predicate p, .isFeasible(p) returns true if and only if there exists an instance x̃ such
that ‖x̃ − x ‖0 ≤ 1 and all constraints including p hold.

• .update(p) updates the set of constraints on x̃ by adding predicate p.

• .isChanged() returns true if and only if the current set of constraints imply x , x̃ .

• .getPerturbation() returns the index j such that xj , x′j and the admissible interval of values
for x̃j

It is possible to implement SymbolicInstance such that each method executes in constant time.
Algorithm 4 presents the symbolic prediction algorithm recursively for a given tree. It updates

a list of elements by appending tuples to it. The first element of a tuple is the feature index j where
x̃j , xj , the second element is the allowed right-open interval for x̃j , and the last element is the
prediction score f (x̃).

This algorithm visits each node at most once and performs at most one copy of the Sym-
bolicInstance s per visit. The copy operation is proportional to the number of constraints in
s. For a balanced tree T , the copy cost is O (log |T .nodes|), so that the total running time is
O (|T .nodes| log |T .nodes|).

For each tree of the model, once the list of (dimension, interval, prediction) tuples is obtained,
we substract the leaf prediction value for x from all predictions in order to obtain a score variation
between x̃ and x instead of the score for x̃ . With the help of an additional data structure, we
can use the (dimension, interval, variation) tuples across all trees to find the dimension j and
interval for x̃j which corresponds to the smallest variation f (x̃) − f (x). This final search can be
done in O (L logL), where L is the total number of tuples, and is no larger than

∑
T∈T |T .leaves|

by construction. To summarize, the time complexity of our method for solving problem (5.2) is
O (| f | log | f |), an exponential improvement over the brute force method.

5.6 Adversarial Boosting
We now turn to the presentation of our iterated retraining method for hardening tree ensembles
against evasion attacks. Iterative retraining mimics the arms race between the system defender
and an evading adversary. In its basic form, iterative retraining consists in the following iterative
process:

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 76

Algorithm 4 Recursive definition of the symbolic prediction algorithm. For the first call, node is
the tree root, s is a fresh SymbolicInstance object initialized on x with no additional constraints
and l is an empty list.

Input: node node (either internal or leaf)
Input: s of type SymbolicInstance
Input/Output: list of tuples l (see description)

if node is a leaf then
if s .isChanged() then

l ← l∪{s .getPerturbation(), node.prediction}
else

if s .isFeasible(node.predicate) then
sT ← copy(s)
sT .update(node.predicate)
symbolicPrediction(node.true, sT , l)

if s .isFeasible(¬node.predicate) then
s .update(¬node.predicate)
symbolicPrediction(node.false, s, l)

1. build a classifier from the training set,
2. compute evasion instances with starting points in the original training set for the classifier,
3. augment the training set by adding the evasion instances,
4. repeat from step 1.

The major issue of the naive iterative retraining process is its non-scalability with respect to
the size n of the original training set. Indeed, notice that the size of the effective training set grows
linearly at each iteration. Considering the optimistic case of a training algorithm with linear time
complexity over the size of the dataset, the total training time forK iterations is quadratic asΘ(nK2).
In practice, we find that iterative retraining requires relatively large values of K to be effective. For
instance, we demonstrate results for K ≈ 104 retraining rounds in Chapter 6. Thus, naive iterative
retraining is only practical for the smallest training datasets sizes n ≤ 103.

Adversarial boosting sidesteps the issue of the unbounded growth of the effective training set
by iteratively augmenting the classifier instead of the dataset. The intuition of adversarial boosting
is twofold. First, the procedure is computationally wasteful. At every round of naive iterated
retraining, we throw away the last learned classifier and learn a new one from scratch. Second,
the procedure is also redundant: the classifier learned from the dataset at iteration t by definition
contains a description of the dataset, so that materializing both the classifier and the augmented
dataset at every step is redundant.

Figure 5.3 presents the adversarial boosting framework in the context of tree ensembles. At every
iteration, adversarial boosting grows the model by adding a new base classifier to the ensemble.

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 77

+ ... + +

evasion

algorithm

tree

builder

ensemble model

at iteration t

next tree of

the ensemble

training set evading set

Figure 5.3: The adversarial boosting framework. We iteratively build a hardened tree ensemble by
adding at every round a tree which minimizes the error of the resulting model on an evading set of
instances instead of the original training data. The evading set is a pessimal version of the original
training set with respect to the current ensemble model.

Unlike regular boosting in which the new base classifier is chosen to minimize the error of the
resulting ensemble on the training data, adversarial boosting instead minimizes the error over a
pessimal set of instances. The pessimal set of instances is constructed by computing budgeted
evasions of the original training set with respect to the current model. In other words, the generated
pessimal instances are hard-to-classify variations of the original training instances for the current
model. Hence, adversarial boosting can be understood as iteratively finding the defects, or blind
spots, of a classifier and “patching” those by adding base classifiers.

Adversarial boosting needs two components: a model builder and an evasion algorithm. The
model builder can be any standard machine learning algorithm. Specifically, for a given, fixed
classifier f , e.g., a tree ensemble, and for a base model class F , e.g., regression trees, a model
builder is an algorithm that finds a classifier h ∈ F that minimizes the loss of the ensembled
classifier f + h over the dataset. Formally, the model builder solves the following optimization
problem.

min
h∈F

RD (f + h) = min
h∈F

1
n

n∑
i=1
`
(
yi f (x

(i)) + yih(x
(i))

)
In the case when F is the class of regression trees, Li (2012) presents an efficient and generic
model builder based on the second-order Taylor development of the loss term.

The evasion algorithm finds budgeted adversarial deformations of the original training instances
such that the altered instances are confusing for a given classifier f . In this thesis, the evasion
algorithm is given a deformation bound B > 0 and solves the following problem for each training

CHAPTER 5. EVASION AND HARDENING OF TREE ENSEMBLES 78

instance x with label y.
min

x ′ : ∆(x ,x ′)≤B
y f (x′) (5.3)

We can readily transform both our exact and heuristic solutions to the optimal evasion problem (2.2)
to instead solve the budgeted evasion problem (5.3). Because of the efficiency of modern tree
builders and our heuristic L0 evasion technique, tree ensembles are a natural candidate for hardening
under the adversarial boosting framework.

5.7 Open Problems
In this chapter, we develop two algorithms for solving the optimal evasion problem (2.2) when
the classifier is a sum ensemble of trees. Our first algorithm computes an exact solution for any
distance metric Lρ with ρ ∈ N ∪ {∞} by reduction to a mixed integer linear program. Our second
algorithm finds a heuristic solution for the L0 case by coordinate descent procedure. We develop
the symbolic prediction algorithm, an efficient dynamic programming technique for computing all
finite differences for a tree ensemble classifier.

Finally, borrowing from the concept of boosting, we present adversarial boosting, a general
machine learning framework for hardening classifiers by iterative re-training. When used in
tandem with symbolic prediction and efficient tree building techniques, adversarial boosting is a
computationally practical method for hardening tree ensembles.

Extended Heuristic Evasion Algorithm
Our heuristic evasion algorithm only handles the L0 case. Our formulation of the symbolic
prediction method points to a possible extension to the general Lρ case. For instance, instead
of collecting all possible finite differences f (x′) − f (x) for x′ that are one feature away from x ,
we could collect the finite differences for all x′ less than a given distance θ : ‖x′ − x ‖ρ ≤ θ . In
this generalized setting, we would also need to modify the coordinate descent in Algorithm 3 to
heuristically choose the best perturbation among all candidate perturbations returned by symbolic
prediction. Some of the relevant factors for a good choice are a small modification ‖x′ − x ‖ρ size
and a large negative finite difference f (x′) − f (x).

Theoretical Properties of Adversarial Boosting
Our introduction of adversarial boostingmimics the iterated evasion/retraining process thatmachine
learning practitioners experience in practical adversarial settings. One important question for
adversarial boosting, and for adversarial retraining in general is to understand the conditions under
which iterated retraining succeeds at constructing both an accurate and hard to evade classifier.
We suspect that those conditions involve at the minimum some characterisation of the dataset in
terms of the separating distance between the two classes and the maximal admissible adversarial
deformation B that the adversary can introduce.

79

Chapter 6

Empirical Adversarial Evaluation

6.1 Introduction
We now turn to the empirical measurement of evasion susceptibility for the classifiers considered in
Chapters 4 and 5 of this thesis. We present the first adversarial evaluations for the Convex Polytope
Machine developed in Chapter 4 as well as for random forests, boosted trees and adversarially
boosted trees from Chapter 5. For comparison purposes, we carry the same evasion experiments
for a large variety of common off-the-shelf machine learning models.

We start by describing our choice of benchmark classification task and comparative model
classes. We proceed to provide both qualitative and quantitative evasion susceptibility results for
all Lρ distances and all benchmarked models. We pay special attention to tree ensembles and to the
application of our exact and approximate evasion algorithms.

6.2 Experimental Setup
We choose digit recognition over the MNIST (LeCun et al. 1998) dataset as our benchmark
classification task. There are three benefits in choosing MNIST as our benchmark task. First,
MNIST is a well studied and recognized dataset in the machine learning community. In particular,
we can be confident that MNIST is largely exempt from labeling errors. Additionally, because
many classifiers perform well on MNIST, we can disentangle the problem of accurate classification
from evasion-resistant classification by making sure that all considered models enjoy useful testing
accuracies.

Second, the feature extractor ψ is essentially the identity function in this task: there is a trivial
one-to-one mapping between image pixels and feature dimensions. This implies there are no hidden
dependencies between features so that the coordinates of x can vary independently from each other.
In the same vein, we can pictorially represent evading instances, and this helps understanding the
models’ robustness or lack of.

Third, measuring the semantic distortion ∆(x ,x′) between two pictures x ,x′ by the Lρ distances
makes intuitive sense on this task. For example, when ∆ is the L0 distance, the optimal evasion

CHAPTER 6. EMPIRICAL ADVERSARIAL EVALUATION 80

problem (2.2) measures the minimal number of pixels to modify before changing the output label
of the classifier. In general, our perception of a picture remains unchanged for small enough values
of the Lρ distance, regardless of ρ ∈ N.

Method
Originally, MNIST defines a multi-class classification problem over the 10 handwritten digits. We
carve out a binary classification problem by focusing on distinguishing between handwritten digits
“2” and “6”. Our training and testing sets respectively include 11,876 and 1,990 images and each
image has d = 28 × 28 = 784 gray scale pixels. The intensity of each pixel is represented by a
continuous value between zero and one, so that our feature space is effectively [0, 1]784.

As our main goal is not to compare model accuracies, but rather to obtain the best possible
model for each model class, we tune the hyper-parameters so as to minimize the error on the
testing set directly. In addition to the training and testing sets, we create an evaluation dataset of
a hundred instances from the testing set such that every instance is correctly classified by all of
the benchmarked models. These correctly classified instances are to serve the purpose of x , the
starting point instances in the evasion problem (2.2).

Considered Models
Table 6.1 summarizes the seven benchmarked models with their salient hyper-parameters and error
rates on the testing set.

Model Parameters Test Error Evasion Method
Lin. L1 C = 0.5 1.5% Exact
Lin. L2 C = 0.2 1.5% Exact
BDT 1,000 trees, depth 4, η = 0.02 0.25% Exact (Chapter 5)
RF 80 trees, max. depth 22 0.20% Exact (Chapter 5)
CPM double sided, K = 30, C = 0.01 0.20% Exact (Chapter 4)
NN 60-60-30 sigmoidal (tanh) units 0.25% Heuristic (Projected Gradient Descent)
RBF-SVM γ = 0.04, C = 1 0.25% Heuristic (Projected Gradient Descent)
BDT-R 1,000 trees, depth 6, η = 0.01 0.20% Heuristic+Exact (Chapter 5)

Table 6.1: The benchmarked models. BDT-R is the hardened boosted trees model introduced in
Chapter 5 and is further discussed in Section 6.4.

For our tree ensembles, BDT is a (gradient) boosted decision trees model in the modern
XGBoost implementation (T. Chen and He 2014; T. Chen and Guestrin 2016) and RF is a random
forest trained using scikit-learn (Buitinck et al. 2013). We also include the following models for
comparison purposes. Lin. L1 and Lin. L2 are respectively a L1 and L2-regularized logistic
regression using the LibLinear (Fan et al. 2008) implementation. RBF-SVM is a Gaussian kernel
SVM trained using LibSVM (Chang and Lin 2011). NN is a three hidden layer neural network

CHAPTER 6. EMPIRICAL ADVERSARIAL EVALUATION 81

with a top logistic regression layer implemented using Theano (Bergstra et al. 2010). We use no
pre-training nor drop-out for trainingmodel NN. Finally, our last benchmarkmodel is the equivalent
of a shallow neural network made of two max-out units (one unit for each class) each made of thirty
linear classifiers. This model corresponds to the difference of two Convex Polytope Machines.
Finally, we use Gurobi (Gurobi Optimization 2016) as the MIP solver.

Except for the two linear classifiers, all considered models have a comparable, very low error
rate on this benchmark.

6.3 Evasion Susceptibility
For each learned model, and for all of the 100 correctly classified evaluation instance, we compute
the optimal (or best effort) solution to the optimal evasion problem under all deformation metrics.
The optimal evasions for all distances and all models but NN andRBF-SVMare optimally computed
by the MIP solver with the techniques we introduce in Chapters 4 and 5. We use a classic projected
gradient descent method for solving the L1,L2 and L∞ evasions of NN and RBF-SVM, and address
the L0-evasion case by an iterative coordinate descent algorithm and a brute force grid search at
each iteration.

Figure 6.1: First four rows: examples of optimal or best effort evading “6” instances. Every
picture is misclassified as “2” by its column model. Last row: feature importance computed as
frequency of pixel modification in the L0-evasions over the 100 evaluation instances (darker means
feature is more often picked).

Figure 6.1 provides a qualitative understanding of the optimal evading instances x′ across
models and distance types. In this example, the initial instance x is correctly recognized as the

CHAPTER 6. EMPIRICAL ADVERSARIAL EVALUATION 82

digit “6” by all classifiers. For most models and distances, the difference between x and the closest
image recognized as a “2” is insignificant.

Figure 6.2 quantitatively presents the adversarial bounds as one boxplot for each combination of
model and distance. Although the tree ensembles BDT and RF have very competitive accuracies,
they systematically rank at the bottom for robustness across all metrics. Remarkably, negligible
L1 or L2 perturbations suffice to evade those models. On the other end, RBF-SVM is apparently
the hardest model to evade, agreeing with the observations of (Goodfellow et al. 2015). NN and
CPM exhibit very similar performance despite having quite different architectures. Unfortunately,
in spite of its large-margin groundings, the CPM does not show a significant increase in evasion
robustness. Finally, the L1-regularized linear model exhibits significantly more brittleness than its
L2 counterpart. This phenomenon is explained by largeweights concentrating in specific dimensions
as a result of sparsity. Thus, small modifications in the heavily weighted model dimensions can
result in large classifier output variations.

Lin. L1 BDT RF Lin. L2 CPM NN RBF-SVMBDT-R
0

10

20

30

40

50

60

70

L
0
 e
va

si
o
n
 d
is
ta
n
ce

Lin. L1 BDT RF Lin. L2 CPM NN RBF-SVMBDT-R
0

10

20

30

40

50

60

70

80
L
1
 e

va
si

o
n
 d

is
ta

n
ce

Lin. L1 BDT RF Lin. L2 CPM NN RBF-SVMBDT-R
0

1

2

3

4

5

6

L
2
 e

va
si

o
n

 d
is

ta
n

ce

Lin. L1 BDT RF Lin. L2 CPM NN RBF-SVMBDT-R
0.0

0.1

0.2

0.3

0.4

0.5

L
∞

 e
va

si
o
n

 d
is

ta
n

ce

Figure 6.2: Optimal (white boxes) or best-effort (gray boxes) evasion bounds for different metrics
on the evaluation dataset. The smallest bounds, 25-50% and 50-75% quartiles and largest bounds
are shown. The red line is the median score. Larger scores mean more deformations are necessary
to change the model prediction.

CHAPTER 6. EMPIRICAL ADVERSARIAL EVALUATION 83

6.4 Hardening Tree Ensembles with Adversarial Boosting
We empirically demonstrate how to significantly improve the robustness of the BDT model by
adding evading instances to the training set during the boosting process. At each boosting round,
we use our fast symbolic prediction-based algorithm to create budgeted “adversarial” instances with
respect to the current model and for all the 11,876 original training instances. For a given training
instance x with label y and a modification budget B ≥ 1, a budgeted “adversarial” training instance
x∗ is such that ‖x − x∗‖0 ≤ B and the margin y f (x∗) is as small as possible. Here, we use B = 28,
the size of the diagonal of the picture, as our budget. The reason is that modifying 28 pixels over
784 is not enough to morph a handwritten “2” into “6” or vice-versa. The training dataset for the
current round is then formed by appending to the original training dataset these evading instances
along with their correct labels, thus increasing the size of the training set by a factor two. Finally,
gradient boosting produces the next regression tree which by definition minimizes the error of
the augmented ensemble model on the adversarially-enriched training set. After 1,000 adversarial
boosting round, our model has encountered more than eleven million adversarial instances, without
ever training on more than 24,000 instances at each round.

We found that we needed to increase the maximum tree depth from four to six in order to
obtain an acceptable error rate. After 1,000 iterations, the resulting model BDT-R has a slightly
higher testing accuracy than BDT but still makes a few errors over the training set as can be seen in
Figure 6.3. In contrast, regular boosting converges faster to a perfect classifier for the training set.

0 200 400 600 800 1000

Boosting Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr

o
r

(%
)

Train Error

Test Error

0 200 400 600 800 1000

Adversarial Boosting Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr

o
r

(%
)

Train Error

Test Error

Figure 6.3: Regular and adversarial boosting errors at each iteration. Regular boosting exhibits a
predictable error rate decay. In contrast, adversarial boosting starts with a significant drop in the
error rate followed by a slower and more chaotic decay.

Unlike BDT, BDT-R is also extremely challenging to optimally evade using the MILP solver:
the branch-and-bound search continues to expand nodes after one day on a six core Xeon 3.2GHz
machine. To obtain the tightest possible evasion bound, we warm-start the solver with the solution
found by the fast evasion technique and report the best solution found by the solver after an hour.
Figure 6.2 shows that BDT-R is significantly more robust against L0 evasions than our previous
champion RBF-SVM and the top right image in Figure 6.1 illustrates a best-effort evasion for

CHAPTER 6. EMPIRICAL ADVERSARIAL EVALUATION 84

BDT-R. To see if the gained robustness against L0-evasions translates into robustness against
other distances, we also measured the L1,L2 and L∞ robustness bounds. Unfortunately, we found
significantly lower scores on all three metrics compared to the original BDT model: hardening
against L0-evasions made the model extremely susceptible to all other types of evasions.

6.5 Quality of the Approximate Evasion Method
We also evaluate the quality of the solutions found by our heuristic L0-evasion procedure. Figure 6.4
shows the evasion bounds found by the optimal evasion technique using the MILP solver, and our
heuristic coordinate descent. Our evaluation suggests that for most of the evaluation instances, the
heuristic solution is close, if not identical, to the optimal solution. It should however be noted that in
at least one instance for the random forest model, the heuristic method significantly over-estimated
the minimal bound.

BDT BDT (G) RF RF (G)
0

5

10

15

20

25

30

35

L
0
 e

va
si

o
n

 d
is

ta
n

ce

Figure 6.4: Optimal and heuristic evasion bounds on the evaluation dataset. The heuristic bounds
are both denoted by “(G)” and grayed.

6.6 Discussion
The results presented in this chapter bring a set of sometimes astonishing observations regarding the
behavior of off-the-shelf machine learning classifiers under evasion attacks. Our first observation
is that by and large, current machine learning techniques present large blind spots: for any correctly
classified instance, there exists a variety of close-by evading instances which the classifier gets
wrong. This phenomenon largely occurs across model classes and happens in spite of the extremely
high testing accuracies of the classifiers. Even though the evading instances are highly non-random
and the specific targeted distortions must be carefully computed, this is points to a major deficiency
in the generalization power of machine learning. None of the tested classifiers has actually learned

CHAPTER 6. EMPIRICAL ADVERSARIAL EVALUATION 85

the concept of a handwritten “2” or “6”, but has rather compactly memorized salient features of the
training set.

Tree ensembles performworse in this regard than other classifiers, even against linear classifiers,
the simplest of all model classes. Both random forests and boosted trees exhibit high sensitivity
to adversarial Lρ perturbations, particularly for ρ ∈ {1, 2}. This is perhaps unsurprising. The
predicates of the decision nodes perform hard cuts on feature values, so that for a feature value
already close to the threshold, a tiny push in the right direction results in taking the opposite branch.
Note that this instability is not a problem when operating on binary valued features only, and this
might explain why tree ensembles fare better against L0-evasions. This “hard cut” property might
also play a role in the extreme weakness of the L0-hardened ensemble against all other types of
evasions. At any rate, the non-linearity of tree ensembles does not immunize them against evasions.

Another significant observation is the disappointing performance of the large-margin approach
embodied by the convex polytope model. The evasion susceptibilities of the CPM and neural
network models are almost indistinguishable, even though the model classes are quite different.
Although trivially related to evasion (un)susceptibility, the large-margin idea does not seem to
significantly help. One possible explanation is that large-margin is a training time constraint, but
evasion operates at testing time. In other words, a classifier that has a large separation margin on a
training dataset might not enjoy the same margin on random testing instances. Another explanation
is that our relaxation of the max-margin problem, which forms the basis of the training algorithm,
somehow denatures the large-margin requirement.

All is not lost however. Adversarial boosting is surprisingly effective at “patching” the blind
spots of tree ensembles. The adversarially boosted classifier has a slightly higher accuracy than
the regularly boosted model, and enjoys a five fold increase in L0-evasion robustness. Adversarial
boosting seems to operate like a powerful regularization method, forcing the model to take into
account significantly more evidence over the feature values before reaching a decision. The bottom
right picture in Figure 6.1 shows an evenly spread and attenuated decision importance of the pixels
for the hardened model. In contrast, the regular model strongly focuses on a small number of
features that are powerful discriminants for the training set, but useless in the presence of a testing
time adversary. Unfortunately, the hardened model exhibits considerable sensitivity to all other
types of evading adversaries. Whether tree ensembles can be adversarially boosted against all types
of Lρ deformations remains an open question.

86

Chapter 7

Conclusion

In taming evasion attacks against machine learning based detection pipelines, we encounter a rich
set of ideas, both in terms of practical and theoretical challenges. We now take a step back and
shed some light on important conceptual observations about the task of designing robust detection
pipelines.

In Chapter 3, we introduce a novel feature extraction for detecting comment spam. In contrast
to previous approaches, our feature extractor is less susceptible to simple evasion attacks based on
word spelling variations and better captures the essence of comment spam. Generally speaking,
if the feature extraction ψ loses task-relevant information in the embedding process, no amount
of subsequent machine learning can defend against evasion attacks. This particular situation is
characterized by the existence of malicious and benign observations ω+ , ω− having identical, or
equivalently, arbitrarily close feature vectorsψ (ω+) = ψ (ω−).

Hence, when designing a robust machine learning based detection pipeline, we should always
begin by paying close attention to the feature extraction step. In many cases however, determining
the list of exhaustive traits of the problem space Ω which captures the complete semantics of the
task, and should thus be embedded, is impractical. Even if such a list could be made, we can expect
some important measurements to be extremely expensive depending on our level of access to Ω.
For example, in the comment spam case study, we extensively leverage the vantage point offered
by the data provider to correlate messages across tens of thousands of websites. Had we operated
at the level of a single website however, no such information would have been available to us, and
our obtained groupings would have mostly consisted in useless singletons.

From this discussion, it would seem that to be evasion-safe, a good feature extractor should
embed as much information as possible about the observation space Ω. After all, the task of the
subsequent machine learning algorithms is to sift through the data and automatically weed-out the
non-relevant noise features, focussing on the signal alone. Unfortunately, current machine learning
methods do not behave in this way.

Statistical significance is one potential issue. Growing the size of the feature space provides
more opportunity for spurious, coincidental patterns to show up, which in turn implies that larger
amounts of training data are required to avoid overfitting. For the Convex Polytope Machine,
but also for most of the machine learning algorithms, the generalization bounds scale in O (n−

1
2).

CHAPTER 7. CONCLUSION 87

However, because of the remarkable fact that generalization bounds do not depend on the number of
features d but instead on the complexity of the model class, one can still achieve good classification
accuracy even for very large values of d . Modern distributed and parallel implementations of
learning algorithms can handle large amounts of instances n, so that choosing a small-enough
model class that also correctly fits the training data is the key to overcome the issue of statistical
significance.

Having set statistical significance aside, we argue that the main issue faced by off-the-shelf
machine learning in those circumstances is the familiar correlation/causation confusion. By break-
ing the tacit assumption that training and testing data are generated by the same process, evasion
attacks cast a hard light on the inability of learning algorithms to differentiate between patterns
that are merely correlated with a given label, and patterns that actually cause or explain the label.
In part II, and specifically in Chapter 6, our evasion algorithms show that common classifiers
systematically fail to consider all the available evidence in support of a given decision. This makes
evasion particularly easy by changing a few key features that happen to be statistically correlated
to the label in the training set. For the handwritten digit recognition task, those features fall short
of capturing the underlying semantics of the pictures.

The adversarial boosting framework proposes a cure to this state of affairs. Conceptually,
adversarial boosting is a powerful interactive regularization technique. At every step, the classifier
is inspected to reveal what it has learned. Practically, the classifier is asked to generate instances
which it “thinks” are representative of one label or another. An oracle-likemechanism then provides
the ground truth labels of the generated instances, so that the classifier’s beliefs can be corrected
by retraining. Although the actual implementation of adversarial boosting is not described in
those terms, this presentation of adversarial boosting is isomorphic to its introductive definition in
Section 5.6. In particular, the evasion algorithm is nothing less than a general purpose classifier
inversion technique: an evasion method finds an instance x such that f (x) = 1 or f (x) = −1 with
additional constraints on the form of x . Because these constraints are of the form “x is not too far
away from another instance x′ in the training set”, we know what the true label for the generated
instance x should be, namely the label of x′. Hence, the evasion algorithm is the part that inspects
f by inversion, and the labeling oracle part is accomplished by the boundedness constraint on
∆(x ,x′).

The main obstacle to the hardening of practical security decision pipelines by adversarial
boosting is the case-by-case design of an adapted distance function ∆. This function essentially
defines the set of label-invariant transformations that are allowed in the application domain. ∆
does not have to be exhaustive for adversarial boosting to work. It only has to capture plausible
input transformations that an evading adversary may try. In a fundamental way, ∆ and more largely
adversarial boosting provide the opportunity for the machine learning practitioner to customize
the learning algorithm for the specific requirements of the application domain while still enjoying
much of the benefits of off-the-shelf machine learning techniques.

88

Bibliography

Barreno, M., B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar (2006). “Can Machine Learning
Be Secure?” In: Proceedings of the ACM Symposium on Information, Computer and Commu-
nications Security. ASIACCS ’06, pp. 16–25.

Barron, A. R., J. Rissanen, and B. Yu (1998). “The Minimum Description Length Principle in
Coding and Modeling”. In: IEEE Transactions on Information Theory 44.6, pp. 2743–2760.

Bartlett, P. L., M. I. Jordan, and J. D. McAuliffe (2003). “Large Margin Classifiers: Convex Loss,
Low Noise, and Convergence Rates.” In: Proceedings of the Neural Information Processing
Systems Conference. NIPS ’03, pp. 1173–1180.

Bartlett, P. L. and S. Mendelson (2003). “Rademacher and Gaussian Complexities: Risk Bounds
and Structural Results”. In: Journal of Machine Learning Research 3, pp. 463–482.

Baum, L. E. and T. Petrie (1966). “Statistical Inference for Probabilistic Functions of Finite State
Markov Chains”. In: The Annals of Mathematical Statistics 37.6, pp. 1554–1563.

Belotti, P., P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gomez, and D. Salvagnin
(2016). “OnHandling Indicator Constraints inMixed Integer Programming”. In:Computational
Optimization and Applications, pp. 1–22.

Benenson, R., M. Mathias, R. Timofte, and L. Van Gool (2012). “Pedestrian Detection at 100
Frames per Second”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. CVPR ’12. IEEE, pp. 2903–2910.

Bergstra, J., O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-
Farley, and Y. Bengio (2010). “Theano: a CPU and GPU Math Expression Compiler”. In:
Proceedings of the Python for Scientific Computing Conference. SciPy ’10.

Beygelzimer, A., J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl (2009). “Conditional Probability
Tree Estimation Analysis and Algorithms”. In: Proceedings of the Conference on Uncertainty
in Artificial Intelligence. UAI ’09, pp. 51–58.

Beygelzimer, A., J. Langford, and B. Zadrozny (2005). “WeightedOne-against-all”. In:Proceedings
of the National Conference on Artificial Intelligence. AAAI ’05, pp. 720–725.

Biggio, B., I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto, and F. Roli
(2013). “Evasion Attacks against Machine Learning at Test Time”. In: Machine Learning and
Knowledge Discovery in Databases. Vol. 8190. Lecture Notes in Computer Science. Springer.

Boser, B. E., I. M. Guyon, and V. Vapnik (1992). “A Training Algorithm for Optimal Margin
Classifiers”. In: Proceedings of the Annual Workshop on Computational Learning Theory.
COLT ’92. New York, NY, USA: ACM, pp. 144–152.

BIBLIOGRAPHY 89

Bottou, L. (2010). “Large-ScaleMachine Learning with Stochastic Gradient Descent”. In: Proceed-
ings of COMPSTAT’2010: 19th International Conference on Computational Statistics, pp. 177–
186.

— (2012). “Neural Networks: Tricks of the Trade: Second Edition”. In: ed. by G. Montavon, G. B.
Orr, and K.-R. Muller. Springer. Chap. Stochastic Gradient Descent Tricks, pp. 421–436.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.
Bratko, A., B. Filipic, G. V. Cormack, T. R. Lynam, and B. Zupan (2006). “Spam Filtering Using

Statistical Data Compression Models”. In: Journal of Machine Learning Research 7, pp. 2673–
2698.

Breiman, L. (1996). “Bagging predictors”. In: Machine learning 24.2, pp. 123–140.
— (2001). “Random Forests”. In:Machine Learning 45.1, pp. 5–32.
Brennan, M., S. Wrazien, and R. Greenstadt (2010). “Learning to Extract Quality Discourse

in Online Communities”. In: Proceedings for the AAAI Conference on Collaboratively-Built
Knowledge Sources and Artificial Intelligence. AAAIWS’ 10, pp. 4–9.

Broder, A. Z., M. Charikar, A. M. Frieze, and M. Mitzenmacher (1998). “Min-wise Independent
Permutations”. In: Journal of Computer and System Sciences 60, pp. 327–336.

Bruckner, M., C. Kanzow, and T. Scheffer (2012). “Static Prediction Games for Adversarial Learn-
ing Problems”. In: Journal of Machine Learning Research 13.1, pp. 2617–2654.

Buitinck, L.,G. Louppe,M.Blondel, F. Pedregosa,A.Mueller,O.Grisel,V.Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux (2013).
“API Design for Machine Learning Software: Experiences from the Scikit-Learn Project”.
In: Proceedings of the ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pp. 108–122.

Carlini, N., P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, and W. Zhou (2016).
“Hidden Voice Commands”. In: Proceedings of the USENIX Security Symposium. USENIX
Security ’16. To appear.

Carlini, N. and D. Wagner (2016). Defensive Distillation is Not Robust to Adversarial Examples.
To appear.

Chang, C. and C. Lin (2011). “LIBSVM: A library for support vector machines”. In: ACM Trans-
actions on Intelligent Systems and Technology 2 (3).

Chen, B.-C., J. Guo, B. Tseng, and J. Yang (2011). “User Reputation in a Comment Rating
Environment”. In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’11.

Chen, T. and T. He (2014). XGBoost: eXtreme Gradient Boosting. https://github.com/dmlc/
xgboost. Accessed: 2016-06-15.

Chen, T. and C. Guestrin (2016). “XGBoost: A Scalable Tree Boosting System”. In: Proceedings of
the ACM SIGKKD International Conference on Knowledge Discovery and Data Mining. KDD
’16.

Cleary, J. and I. Witten (1984). “Data Compression Using Adaptive Coding and Partial String
Matching”. In: IEEE Transactions on Communications 32.4, pp. 396–402.

Cortes, C. and V. Vapnik (1995). “Support-Vector Networks”. In:Machine Learning 20.3, pp. 273–
297.

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost

BIBLIOGRAPHY 90

Dalvi, N., P. Domingos, Mausam, S. Sanghai, and D. Verma (2004). “Adversarial classification”.
In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’04, pp. 99–108.

Dempster, A. P., N.M. Laird, andD. B. Rubin (1977). “MaximumLikelihood from Incomplete Data
via the EM Algorithm”. In: Journal of the Royal Statistical Society. Series B (Methodological),
pp. 1–38.

Dietterich, T. G. and G. Bakiri (1995). “Solving Multiclass Learning Problems via Error-correcting
Output Codes”. In: Journal of Artificial Intelligence Research 2.1, pp. 263–286.

Djuric, N., L. Lan, S. Vucetic, and Z. Wang (2013). “BudgetedSVM: A Toolbox for Scalable SVM
Approximations”. In: Journal of Machine Learning Research 14, pp. 3813–3817.

Dredze, M., K. Crammer, and F. Pereira (2008). “Confidence-Weighted Linear Classification”. In:
Proceedings of the International Conference on Machine Learning. ICML ’08. ACM, pp. 264–
271.

Erhan, D., Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio (2010). “Why does
Unsupervised Pre-training Help Deep Learning?” In: Journal of Machine Learning Research
11, pp. 625–660.

Fan,R.-E. (2011).LibSVMDatasets.https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/. [Online; accessed 10-June-2016].

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin (2008). “LIBLINEAR: A Library
for Large Linear Classification”. In: Journal of Machine Learning Research 9, pp. 1871–1874.

Felzenszwalb, P. F., R. B. Girshick, D. McAllester, and D. Ramanan (2010). “Object Detection
with Discriminatively Trained Part Based Models”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 32.9, pp. 1627–1645.

Fischer, P. (1995). “More or Less Efficient Agnostic Learning of Convex Polygons”. In:Proceedings
of the Conference on Computational Learning Theory. COLT ’95. ACM, pp. 337–344.

Freund, Y. and R. E. Schapire (1995). “A Decision-Theoretic Generalization of Online Learning
and an Application to Boosting”. In:Proceedings of the Conference on Computational Learning
Theory. COLT ’95. Springer, pp. 23–37.

Freund, Y. and R. E. Schapire (1999). “Large Margin Classification Using the Perceptron Algo-
rithm”. In: Machine Learning 37.3, pp. 277–296.

Freund, Y., R. E. Schapire, and N. Abe (1999). “A Short Introduction to Boosting”. In: Japanese
Society For Artificial Intelligence 14.771-780, p. 1612.

Friedman, J. H. (2001). “Greedy Function Approximation: A Gradient Boosting Machine.” In: The
Annals of Statistics 29.5, pp. 1189–1232.

Friedman, J. H., T. Hastie, R. Tibshirani, et al. (2000). “Additive Logistic Regression: a Statistical
View of Boosting”. In: The Annals of Statistics 28.2, pp. 337–407.

Gao, H., J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Zhao (2010). “Detecting and Characterizing
Social Spam Campaigns”. In: Proceedings of the Internet Measurement Conference. ICM ’10.

Glorot, X., A. Bordes, and Y. Bengio (2011). “Deep Sparse Rectifier Neural Networks”. In: Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics. AISTATS ’11,
pp. 315–323.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

BIBLIOGRAPHY 91

Goodfellow, I. J., J. Shlens, and C. Szegedy (2015). “Explaining and Harnessing Adversarial
Examples”. In: Proceedings of the International Conference on Learning Representations.
ICLR ’15.

Graves, A., A.-R. Mohamed, and G. E. Hinton (2013). “Speech Recognition with Deep Recurrent
Neural Networks”. In: Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing. ICASSP ’13. IEEE, pp. 6645–6649.

Gu, S. and L. Rigazio (2015). “Towards Deep Neural Network Architectures Robust to Adversarial
Examples”. In: arXiv preprint. arXiv: arXiv:1412.7063v4.

Gurobi Optimization, I. (2016). Gurobi Optimizer Reference Manual. [Online; accessed 15-June-
2016].

Hao, S., A. Kantchelian, B. Miller, N. Feamster, and V. Paxson (2016). “PREDATOR: Proactive
Recognition and Elimination of Domain Abuse at Time-Of-Registration”. In: Proceedings of
the SIGSAC Conference on Computer and Communications Security. CCS ’16. To appear.
ACM.

Hastie, T., R. Tibshirani, J. Friedman, and J. Franklin (2005). “The Elements of Statistical Learning:
Data Mining, Inference and Prediction”. In: 27.2, pp. 83–85.

Hinton, G. E. (2012). “A practical guide to training restricted Boltzmann machines”. In: Neural
Networks: Tricks of the Trade, pp. 599–619.

Hinton, G. E., O. Vinyals, and J. Dean (2014). “Distilling the knowledge in a neural network”. In:
Proceedings of the Deep Learning and Representation Learning Workshop at NIPS.

Hoad, T. C. and J. Zobel (2003). “Methods for Identifying Versioned and Plagiarized Documents”.
In: Journal of the American Society for Information Science and Technology 54.3, pp. 203–215.

Honglak, L. and A. Ng (2005). “Spam Deobfuscation Using a Hidden Markov Model”. In: Pro-
ceedings of the Conference on Email and Anti-Spam. CEAS ’05.

Hornik, K. (1991). “Approximation Capabilities of Multilayer Feedforward Networks”. In: Neural
Networks 4.2, pp. 251–257.

Howard,M. and S. Lipner (2009).The security development lifecycle. O’ReillyMedia, Incorporated.
Hsu, C.-F., E. Khabiri, and J. Caverlee (2009). “Ranking Comments on the Social Web”. In:

Proceedings of the IEEE International Conference on Computational Science and Engineering.
CSE ’09, pp. 90–97.

Isacenkova, J., O. Thonnard, A. Costin, A. Francillon, and D. Balzarotti (2014). “Inside the Scam
Jungle: a Closer Look at 419 Scam Email Operations”. In: EURASIP Journal on Information
Security 2014.1, pp. 1–18.

Kantchelian, A. (2014). Convex Polytope Machine Implementation. https://github.com/
alkant/cpm. [Online; accessed 10-June-2016].

Kantchelian, A., S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C. Tschantz, R. Greenstadt, A. D.
Joseph, and J. D. Tygar (2013). “Approaches to Adversarial Drift”. In: Proceedings of the
Artificial Intelligence and Security Workshop. AISec ’13. ACM, pp. 99–110.

Kantchelian, A., J. Ma, L. Huang, S. Afroz, A. Joseph, and J. D. Tygar (2012). “Robust Detection of
Comment SpamUsing Entropy Rate”. In: Proceedings of the Security and Artificial Intelligence
Workshop. AISec ’12. ACM, pp. 59–70.

http://arxiv.org/abs/arXiv:1412.7063v4
https://github.com/alkant/cpm
https://github.com/alkant/cpm

BIBLIOGRAPHY 92

Kantchelian, A., M. C. Tschantz, L. Huang, P. L. Bartlett, A. D. Joseph, and J. D. Tygar (2014).
“Large-Margin Convex PolytopeMachine”. In: Proceedings of the Neural Information Process-
ing Systems Conference. NIPS ’14.

Kantchelian, A., M. C. Tschantz, S. Afroz, B. Miller, V. Shankar, R. Bachwani, A. D. Joseph,
and J. D. Tygar (2015). “Better Malware Ground Truth: Techniques for Weighting Anti-Virus
Vendor Labels”. In: Proceedings of the Artificial Intelligence and Security Workshop. AISec
’15. ACM, pp. 45–56.

Kantchelian, A., J. D. Tygar, and A. Joseph (2016). “Evasion and Hardening of Tree Ensemble
Classifiers”. In: Proceedings of the International Conference on Machine Learning. ICML ’16.

Kearns, M. J. and Y. Mansour (1998). “A Fast, Bottom-Up Decision Tree Pruning Algorithm with
Near-Optimal Generalization.” In: Proceedings of the International Conference on Machine
Learning. Vol. 98. ICML ’98, pp. 269–277.

Kerckhoffs, A. (1883). “La Cryptographie Militaire”. In: Journal des Sciences Militaires 9, p. 538.
King, J. C. (1976). “Symbolic Execution and Program Testing”. In: Communications of the ACM

19.7, pp. 385–394.
Kohavi, R. (1996). “Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid.”

In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. Vol. 96. KDD ’96, pp. 202–207.

LeCun, Y., L. Bottou, G. B. Orr, and K.-R. Muller (2012). “Efficient Backprop”. In: Neural
Networks: Tricks of the Trade. Springer, pp. 9–48.

LeCun, Y., C. Cortes, and C. J. Burges (1998). MNIST dataset.
Lee, K., J. Caverlee, and S. Webb (2010). “Uncovering Social Spammers: Social Honeypots +

Machine Learning”. In: Proceedings of the International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’10.

Levchenko, K., A. Pitsillidis, N. Chachra, B. Enright, M. Felegyhazi, C. Grier, T. Halvorson, C.
Kanich, C. Kreibich, H. Liu, et al. (2011). “Click trajectories: End-to-end analysis of the spam
value chain”. In: Proceedings of the IEEE Symposium on Security and Privacy. SP ’11. IEEE,
pp. 431–446.

Levenberg, K. (1944). “A Method for the Solution of Certain Non-Linear Problems in Least
Squares”. In: Quarterly of Applied Mathematics 2, pp. 164–168.

Lewis, D. D., Y. Yang, T. G. Rose, and F. Li (2004). “RCV1: A New Benchmark Collection for
Text Categorization Research”. In: Journal of Machine Learning Research 5, pp. 361–397.

Li, P. (2012). “Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost”. In: Proceedings
of the Conference on Uncertainty in Artificial Intelligence. UAI ’12.

Loosli, G., S. Canu, and L. Bottou (2007). “Training Invariant Support Vector Machines using
Selective Sampling”. In: Large Scale Kernel Machines. MIT Press, pp. 301–320.

Lowd, D. and C. Meek (2005a). “Adversarial Learning”. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining. KDD ’05.

— (2005b). “Good Word Attacks on Statistical Spam Filters”. In: Proceedings of the Conference
on Email and Anti-Spam. CEAS ’05.

BIBLIOGRAPHY 93

Ma, J., L. K. Saul, S. Savage, andG.M. Voelker (2009). “Beyond Blacklists: Learning to DetectMa-
licious Web Sites from Suspicious URLs”. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’09, pp. 1245–1254.

Manwani, N. and P. S. Sastry (2010). “Learning Polyhedral Classifiers Using Logistic Function”.
In: Proceedings of the Asian Conference on Machine Learning. ACML ’10, pp. 17–30.

— (2013). “Polyceptron: A Polyhedral Learning Algorithm”. In: arXiv:1107.1564.
Marquardt, D. W. (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”.

In: Journal of the Society for Industrial and Applied Mathematics. Vol. 11. 2, pp. 430–441.
McCoy, D., A. Pitsillidis, J. Grant, N. Weaver, C. Kreibich, B. Krebs, G. Voelker, S. Savage,

and K. Levchenko (2012). “Pharmaleaks: Understanding the business of online pharmaceutical
affiliate programs”. In: Proceedings of the USENIX Security Symposium. USENIX Security
’12, pp. 1–16.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. Chapman and Hall/CRC.
Mehta, M., J. Rissanen, and R. Agrawal (1995). “MDL-Based Decision Tree Pruning”. In: Pro-

ceedings of the International Conference on Knowledge Discovery and Data Mining. Vol. 21.
KDD ’95 2, pp. 216–221.

Miller, B., A. Kantchelian, S. Afroz, R. Bachwani, R. Faizullabhoy, L. Huang, V. Shankar, T. M.
C., T. Wu, G. Yiu, A. Joseph, and J. D. Tygar (2016). “Reviewer Integration and Performance
Measurement for Malware Detection”. In: Proceedings of the Conference on Detection of
Intrusions, Malware & Vulnerability Assessment. DIMVA ’16. Springer.

Miller, B., A. Kantchelian, S. Afroz, R. Bachwani, E. Dauber, L. Huang, M. C. Tschantz, A. D.
Joseph, and J. D. Tygar (2014). “Adversarial Active Learning”. In: Proceedings of the Artificial
Intelligence and Security Workshop. AISec ’14. ACM, pp. 3–14.

Mishne, G., D. Carmel, and R. Lempel (2005). “Blocking Blog Spam with Language Model
Disagreement”. In: Proceedings of the International Workshop on Adversarial Information
Retrieval on the Web. AIRWeb ’05.

Mishne, G. and N. Glance (2006). “Leave a Reply: An Analysis of Weblog Comments”. In:
Proceedings of the International World Wide Web Conference. WWW ’06.

Mishra, A. and R. Rastogi (2012). “Semi-Supervised Correction of Biased Comment Ratings”. In:
Proceedings of the International World Wide Web Conference. WWW ’12.

Nelson, B., B. I. P. Rubinstein, L. Huang, A. D. Joseph, S. J. Lee, S. Rao, and J. D. Tygar (2012).
“Query Strategies for Evading Convex-Inducing Classifiers”. In: Journal of Machine Learning
Research 13.

Norouzi, M., M. Collins, M. A. Johnson, D. J. Fleet, and P. Kohli (2015). “Efficient non-greedy
optimization of decision trees”. In: Proceedings of the Neural Information Processing Systems
Conference. NIPS ’15, pp. 1720–1728.

Papernot, N., P. McDaniel, X. Wu, S. Jha, and A. Swami (2015). “Distillation as a Defense
to Adversarial Perturbations against Deep Neural Networks”. In: Proceedings of the IEEE
Symposium on Security and Privacy. SP ’15.

Pavlov, I. (2007). LZMA SDK (Software Development Kit).
Peters, J. and S. Schaal (2008). “Reinforcement Learning of Motor Skills with Policy Gradients”.

In: Neural Networks 21.4. Robotics and Neuroscience, pp. 682–697.

BIBLIOGRAPHY 94

Prokhorov, D. (2001). “The IJCNN 2001 Neural Network Competition”. In: Slide presentation in
the International Joint Conference on Neural Networks (IJCNN).

Ramachandran, A. and N. Feamster (2006). “Understanding the Network-Level Behavior of Spam-
mers”. In: Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. SIGCOMM ’06.

Ramachandran, A., N. Feamster, and S. Vempala (2007). “Filtering Spamwith Behavioral Blacklist-
ing”. In: Proceedings of the SIGSAC Conference on Computer and Communications Security.
CCS ’07. ACM.

Raykar, V. C., S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L.Moy (2010). “Learning
From Crowds”. In: Journal of Machine Learning Research 11, pp. 1297–1322.

Richard H. Byrd, P. L., J. Nocedal, and C. Zhu (1995). “A Limited Memory Algorithm for Bound
Constrained Optimization”. In: SIAM Journal on Scientific Computing 16.5, pp. 1190–1208.

Russell, S. J. and P. Norvig (2009). Artificial Intelligence: A Modern Approach. 3rd ed. Pearson
Education.

Schurmann, T. and P. Grassberger (1996). “Entropy Estimation of Symbol Sequence”. In: Chaos
6.3, pp. 414–427.

Sculley, D. and G. M. Wachman (2007). “Relaxed Online SVMs for Spam Filtering”. In: Pro-
ceedings of the Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’07, pp. 415–422.

Shalev-Shwartz, S., Y. Singer, and N. Srebro (2007). “Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM”. In:Proceedings of the International Conference onMachine Learning. ICML
’07, pp. 807–814.

Shannon, C. E. (1949). “Communication Theory of Secrecy Systems”. In: Bell System Technical
Journal 28.4, pp. 656–715.

— (1951). “Prediction and Entropy of Printed English”. In: Bell System Technical Journal 30.1,
pp. 50–64.

Shin, Y., M. Gupta, and S. Myers (2011). “Prevalence and Mitigation of Forum Spamming”. In:
Proceedings of the IEEE International Conference on Computer Communications. INFOCOM
’11. IEEE, pp. 2309–2317.

Smola, A. J., P. L. Bartlett, B. Scholkopf, and D. Schuurmans, eds. (2000). Advances in Large
Margin Classifiers. MIT press.

Smutz, C. and A. Stavrou (2012). “Malicious PDF Detection Using Metadata and Structural
Features”. In: Proceedings of the Annual Computer Security Applications Conference. ACSAC
’12. ACM, pp. 239–248.

— (2016). “When a Tree Falls: Using Diversity in Ensemble Classifiers to Identify Evasion inMal-
ware Detectors”. In: Proceedings of the Network and Distributed Systems Security Symposium.
NDSS ’16.

Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal of Machine Learning
Research 15.1, pp. 1929–1958.

Srndic, N. and P. Laskov (2014). “Practical Evasion of a Learning-Based Classifier: A Case Study”.
In: Proceedings of the IEEE Symposium on Security and Privacy. SP ’14.

BIBLIOGRAPHY 95

Stamper, J., A. Nicolescu-Mizil, S. Ritter, G. J. Gordon, and K. R. Koedinger (2010). Algebra I
2008-2009. Challenge data set from KDD Cup 2010 Educational Data Mining Challenge.

Sutskever, I., O. Vinyals, and Q. V. Le (2014). “Sequence to Sequence Learning with Neural
Networks”. In: Proceedings of the Neural Information Processing Systems Conference. Ed. by
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. NIPS ’14,
pp. 3104–3112.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus (2013).
“Intriguing Properties of Neural Networks”. In: Proceedings of the International Conference
on Learning Representations. ICLR ’13.

Takacs, G. (2010). “Smooth Maximum Based Algorithms for Classification, Regression, and Col-
laborative Filtering”. In: Acta Technica Jaurinensis 3.1, pp. 27–63.

Thomas Hofmann Bernhard Scholkopf, A. J. S. (2008). “Kernel Methods in Machine Learning”.
In: The Annals of Statistics 36.3, pp. 1171–1220.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.
Vinyals, O., A. Toshev, S. Bengio, and D. Erhan (2015). “Show and Tell: A Neural Image Cap-

tion Generator”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. CVPR ’15, pp. 3156–3164.

Wang, Z., N. Djuric, K. Crammer, and S. Vucetic (2011). “Trading Representability for Scalability:
Adaptive Multi-Hyperplane Machine for Nonlinear Classification”. In: Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’11,
pp. 24–32.

Wolsey, L. A. (2007). “Mixed Integer Programming”. In:Wiley Encyclopedia of Computer Science
and Engineering. John Wiley & Sons, Inc.

Xie, Y., F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov (2008). “Spamming Botnets: Sig-
natures and Characteristics”. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. SIGCOMM ’08. ACM, pp. 171–
182.

Xu, J.-M., G. Fumera, F. Roli, and Z.-H. Zhou (2009). “Training SpamAssassin with Active Semi-
supervised Learning”. In: Proceedings of the Conference on Email and Anti-Spam. CEAS
’09.

Xu,W., Y. Qi, and D. Evans (2016). “Automatically Evading Classifiers: A Case Study on PDFMal-
ware Classifiers”. In: Proceedings of the Network and Distributed Systems Security Symposium.
NDSS ’16.

Zhu, Z. A., W. Chen, G. Wang, C. Zhu, and Z. Chen (2009). “P-packSVM: Parallel primal gradient
descent kernel SVM”. In: Proceedings of the International Conference on Data Mining. ICDM
’09. IEEE, pp. 677–686.

Zhuang, L., J. Dunagan, D. R. Simon, H. J. Wang, I. Osipkov, G. Hulten, and J. D. Tygar (2008).
“Characterizing Botnets from Email Spam Records”. In: Proceedings of the USENIXWorkshop
on Large-Scale Exploits and Emergent Threats. LEET ’08.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background and Prior Work
	Machine Learning for Security Applications
	Attacking Machine-Learning-based Detection Systems

	Hardening Feature Extraction
	Comment Spam Case Study
	Introduction
	Content Complexity
	Latent Variable Model
	Evaluation Method
	Evaluation
	Open Problems

	Hardening Machine Learning
	Convex Polytope Machine
	Introduction
	Large-Margin Convex Polytopes
	SGD-based Learning
	Non-Adversarial Evaluation
	Exact Evasion
	Open Problems

	Evasion and Hardening of Tree Ensembles
	Introduction
	Tree Ensemble Models
	Theoretical Hardness of Evasion
	Exact Evasion
	Approximate Evasion
	Adversarial Boosting
	Open Problems

	Empirical Adversarial Evaluation
	Introduction
	Experimental Setup
	Evasion Susceptibility
	Hardening Tree Ensembles with Adversarial Boosting
	Quality of the Approximate Evasion Method
	Discussion

	Conclusion
	Bibliography

