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Abstract

Fast Randomized Algorithms for Convex Optimization
and Statistical Estimation

by

Mert Pilanci

Doctor of Philosophy in Engineering – Electrical Engineering and Computer
Sciences

University of California, Berkeley

Professor Martin J. Wainwright, Co-chair
Professor Laurent El Ghaoui, Co-chair

With the advent of massive datasets, statistical learning and information process-
ing techniques are expected to enable exceptional possibilities for engineering, data
intensive sciences and better decision making. Unfortunately, existing algorithms for
mathematical optimization, which is the core component in these techniques, often
prove ineffective for scaling to the extent of all available data. In recent years, ran-
domized dimension reduction has proven to be a very powerful tool for approximate
computations over large datasets. In this thesis, we consider random projection meth-
ods in the context of general convex optimization problems on massive datasets. We
explore many applications in machine learning, statistics and decision making and
analyze various forms of randomization in detail. The central contributions of this
thesis are as follows:

• We develop random projection methods for convex optimization problems and
establish fundamental trade-offs between the size of the projection and accuracy
of solution in convex optimization.

• We characterize information-theoretic limitations of methods that are based on
random projection, which surprisingly shows that the most widely used form of
random projection is, in fact, statistically sub-optimal.

• We present novel methods, which iteratively refine the solutions to achieve sta-
tistical optimality and enable solving large scale optimization and statistical
inference problems orders-of-magnitude faster than existing methods.
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• We develop new randomized methodologies for relaxing cardinality constraints
in order to obtain checkable and more accurate approximations than the state
of the art approaches.
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Chapter 1

Introduction

1.1 Motivation and background

As a result of the rapid growth of information sources, today’s computing de-
vices face unprecedented volumes of data. In fact, 90% of all the data in the world
today has been generated within the last two years1. With the advent of massive
datasets, new possibilities for better decision making are unraveled via statistical
learning and information processing techniques. Unfortunately, existing algorithms
for mathematical optimization, which is the core component in these techniques, of-
ten prove ineffective for scaling to the extent of all available data. However, we can
address problems at much larger scales by considering fundamental changes in how
we access the data and design the underlying algorithms. For instance, we may pre-
fer non-deterministic algorithms for better computational and statistical trade-offs
compared to deterministic algorithms.

In this thesis we consider novel randomized algorithms and a theoretical frame-
work that enable faster mathematical optimization and statistical estimation for large
datasets. The key idea is to employ a carefully designed randomness in the data read-
ing process to gather the essence of data without accessing it in entirety. We consider
many applications in machine learning, data driven decision making and signal pro-
cessing, then discuss theoretical and practical implications of the developed methods
in detail.

1 Big Data at the Speed of Business. IBM.com
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1.1.1 Convex optimization

Mathematical optimization is a branch of applied mathematics focused on min-
imization or maximization of certain functions, potentially subject to given con-
straints. Convex optimization is a special class of mathematical optimization which
has found wide applications in many areas of engineering and sciences including esti-
mation, signal processing, control, data analysis and modeling, statistics and finance.
The most basic advantage of convex optimization compared to other optimization
problems is that any local minimum must be a global minimum. Hence the problems
can be solved efficiently using specialized numerical methods for convex optimization.
A very large class of inference, approximation, data analytics and engineering design
problems can be formulated as convex optimization.

A function f is convex if it satisfies the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rd and λ ∈ [0, 1].

A convex optimization problem is written as

min f(x)
subject to gi(x) ≤ 0, i = 1, ..., n

where f and gi are convex functions. Note that we can replace an affine constraint
h(x) = 0 by a pair of inequality constraints h(x) ≤ 0 and h(x) ≥ 0 which are both
convex constraints. Important examples are linear programs and quadratic programs
where the objective and constraint functions are affine and quadratic respectively. In
chapter 2 we describe how randomization can be used to solve quadratic programs
with constraints approximately and faster. We review existing numerical methods
and investigate novel fast randomized algorithms for solving general convex problems
in Chapter 4.

1.1.2 Empirical risk minimization

In many machine learning, statistical estimation and decision making tasks, we
frequently encounter the risk minimization problem

min
θ∈Θ

Ew[`(θ, w)]

where w is a random vector and ` is a loss function. The expected objective function
is usually referred as the population risk. In general, minimizing the expected risk
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is often intractable and the empirical risk minimization (ERM) method considers
an empirical approximation of the risk using independent and identically distributed
(i.i.d.) samples of w1, ..., wn as follows

min
θ∈Θ

1

n

n∑
i=1

`(θ, wi) .

In big data applications, the number of samples n can be very large and solving the
above problem becomes a significant computational challenge. In the following three
chapters of the thesis we will explore and theoretically analyze novel randomized
algorithms in order to solve these problems faster than existing methods. In chapters
2, 3 and 4 we will consider instances of ERM including least-squares and logistic
regression, support-vector machines and portfolio optimization.

1.1.3 Minimax theory

Minimax theory studies fundamental limits in statistical estimation and hypothe-
sis testing problems. Here we only briefly review the basics of minimax theory which
will play an essential role in Chapter 3 for designing better randomized sketching
algorithms.

Suppose that we have samples w1, ..., wn i.i.d. from a distribution pθ ∈ P where
θ is a parameter which belongs to a known set Θ. In estimating θ from samples, we
define the minimax risk as follows

M(P ,Θ) : = inf
θ̂

sup
θ∈Θ

Eθ
[
‖θ̂ − θ‖2

2

]
,

where the infimum is taken over all estimators, i.e., functions of the observed data.
The minimax risk can be interpreted in a game-theoretical setting: the statistician
chooses an optimal estimator θ̂ based on the data, then the adversary chooses a
worst-case parameter θ consistent with the observed data w ∼ pθ.

In Chapter 3 we study the minimax risk in estimation problems when the data is
sketched, i.e., randomly projected and we consider all estimators that are functions of
the sketched data. Surprisingly, for most of the popular sketching matrices, we show
the existence of a gap in terms of statistical estimation performance. Consequently in
Chapter 3, we propose efficient iterative algorithms which obtain statistical minimax
estimation error.
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1.1.4 Random projection

A fundamental component of randomized algorithms considered in this thesis is
randomized mechanisms for dimension reduction. Random projection is a mathemat-
ical technique to lower the dimensionality of a set of points lying in the Euclidean
space. Here we briefly describe this simple but extremely powerful technique. Con-
sider the set of points {x1, ..., xN} where each of which is an element of Rn. We would
like to obtain N points y1, ..., yN each of which is in Rm where m� n. The following
lemma provides a randomized way to obtain such an embedding.

Lemma 1 (The Johnson-Lindenstrauss (J-L) lemma [70, 139]). Given N points

{xi}Ni=1, let Sm×n be a matrix such that Skl ∼ 1√
m
N(0, 1) i.i.d. for all k, l. De-

fine the points yi = Sxi. Then if m ≥ 20 log(N)
ε2

for some ε ∈ (0, 1/2), then with

probability at least 1/2 it holds that

(1− ε)‖xi − xj‖2
2 ≤ ‖yi − yj‖2

2 ≤ (1 + ε)‖xi − xj‖2
2 ,

for all i and j.

Note that, in order to store the original points we need O(Nn) space. The J-L
lemma allows us to store the embedded points which needs only O(N log(N)) space.
Instead of using a i.i.d. Gaussian embedding matrix S we can also use an i.i.d. ±1
matrix [1] which has computational advantages. Computing the embedding takes
O(Nmn) time. Recently, faster random projections which employ the Fast Fourier
Transform (FFT) have been discovered which can reduce the embedding time to
O(Nn log(m)). In the sequel we will describe these fast embeddings which play a
significant role in our development of fast optimization algorithms.

1.1.5 Sketching data streams and matrices

A sketch is a small data structure that is used to approximate high dimensional
data streams or large matrices for approximate computing, querying and updating.
Random projections provide a simple construction of linear sketches where we apply
the random projection matrix S ∈ Rm×n to a data vector x ∈ Rn to obtain the sketch
Sx. In this context, the matrix S is referred as a sketching matrix and the vector x
can be representing a data stream at a particular time instant.

One of the first uses of sketching in streaming algorithms have been approximating
frequency moments [8]. When the vector x ∈ Rn contains number of occurrences of
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objects and we would like to update x via x′ = x + ∆, we can use the linearity
of the sketch Sx′ = Sx + S∆ to update our approximation. Most importantly, we

can approximate the second frequency moment (
∑n

i=1 x
2
i )

1/2
= ‖x‖2 via the quantity

‖Sx‖2 using the J-L lemma without storing the entire data stream.

Sketching can also be used to obtain approximations of large data matrices. Con-
sider M ∈ Rn×d and the sketch SM ∈ Rm×d where we can interpret it as randomly
projecting each column Mei of the matrix M . When m � n, the sketched matrix
provides computational advantages in linear algebraic operations such as Singular
Value Decomposition (SVD) or QR decomposition.

1.1.6 Different kinds of sketches

Given a sketching matrix S ∈ Rm×n, we use {si}mi=1 to denote the collection of
its n-dimensional rows. We restrict our attention to sketch matrices that are zero-
mean, and that are normalized so that E[STS/m] = In. Various types of randomized
sketches of matrices are possible, and we describe a few of them here.

1.1.6.0.1 Sub-Gaussian sketches The most classical sketch is based on a ran-
dom matrix S ∈ Rm×n with i.i.d. standard Gaussian entries, or somewhat more gen-
erally, sketch matrices based on i.i.d. sub-Gaussian rows. In particular, a zero-mean
random vector s ∈ Rn is 1-sub-Gaussian if for any u ∈ Rn, we have

P[〈s, u〉 ≥ ε‖u‖2

]
≤ e−ε

2/2 for all ε ≥ 0. (1.1)

For instance, a vector with i.i.d. N(0, 1) entries is 1-sub-Gaussian, as is a vector
with i.i.d. Rademacher entries (uniformly distributed over {−1,+1}). We use the
terminology sub-Gaussian sketch to mean a random matrix S ∈ Rm×n with i.i.d. rows
that are zero-mean, 1-sub-Gaussian, and with cov(s) = In.

From a theoretical perspective, sub-Gaussian sketches are attractive because of
the well-known concentration properties of sub-Gaussian random matrices (e.g., [44,
140]). On the other hand, from a computational perspective, a disadvantage of sub-
Gaussian sketches is that they require matrix-vector multiplications with unstruc-
tured random matrices. In particular, given a data matrix A ∈ Rn×d, computing
its sketched version SA requires O(mnd) basic operations in general (using classical
matrix multiplication).

1.1.6.0.2 Sketches based on randomized orthonormal systems (ROS)
The second type of randomized sketch we consider is randomized orthonormal system
(ROS), for which matrix multiplication can be performed much more efficiently. In
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order to define a ROS sketch, we first let H ∈ Cn×n be an orthonormal complex valued
matrix with unit magnitude entries, i.e., |Hij| ∈ [− 1√

n
, 1√

n
]. Standard classes of such

matrices are the Hadamard or Fourier bases, for which matrix-vector multiplication
can be performed in O(n log n) time via the fast Hadamard or Fourier transforms,
respectively. Based on any such matrix, a sketching matrix S ∈ Cm×n from a ROS
ensemble is obtained by sampling i.i.d. rows of the form

sT =
√
neTj HD with probability 1/n for j = 1, . . . , n,

where the random vector ej ∈ Rn is chosen uniformly at random from the set of all
n canonical basis vectors, and D = diag(ν) is a diagonal matrix of i.i.d. Rademacher
variables ν ∈ {−1,+1}n. Given a fast routine for matrix-vector multiplication, the
sketch SM for a data matrix M ∈ Rn×d can be formed in O(n d logm) time (for
instance, see the papers [5, 4, 55]). The fast matrix multiplication usually requires
n to be a power of 2 (or power of r for a radix-r construction). However, in order
to use the fast multiplication for an arbitrary n, we can augment the data matrix
with a block of zero rows and do the same for the square root of the Hessian without
changing the objective value.

1.1.6.0.3 Sketches based on random row sampling Given a probability dis-
tribution {pj}nj=1 over [n] = {1, . . . , n}, another choice of sketch is to randomly sample
the rows of a data matrix M a total of m times with replacement from the given prob-
ability distribution. Thus, the rows of S are independent and take on the values

sT =
ej√
pj

with probability pj for j = 1, . . . , n

where ej ∈ Rn is the jth canonical basis vector. Different choices of the weights
{pj}nj=1 are possible, including those based on the row `2 norms pj ∝ ‖Mej‖2

2 and
leverage values of M—i.e., pj ∝ ‖Uej‖2 for j = 1, . . . , n, where U ∈ Rn×d is the
matrix of left singular vectors of M (e.g., see the paper [52]). When the matrix
M ∈ Rn×d corresponds to the adjacency matrix of a graph with d vertices and n
edges, the leverage scores of M are also known as effective resistances which can be
used to sub-sample edges of a given graph by preserving its spectral properties [129].

1.1.6.0.4 Sparse JL Sketches For sparse data matrices, the sketching operation
can be done faster if the sketching matrix is chosen from a distribution over sparse
matrices. Several works developed sparse JL embeddings [1, 42, 74] and sparse sub-
space embeddings [103]. Here we describe a construction given by [103, 74]. Given
an integer s, each column of S is chosen to have exactly s non-zero entries in random
locations, each equal to ±1/

√
s uniformly at random. The column sparsity parame-

ter s can be chosen O(1/ε) for subspace embeddings and O(log(1/δ)/ε) for sparse JL
embeddings where δ is the failure probability.
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1.2 Goals and contributions of this thesis

We can list the high level goals of this thesis as follows:

1. Developing random projection methods for convex optimization problems and
characterizing fundamental trade-offs between the size of the projection and
accuracy of solutions.

2. Analyzing information-theoretic limitations of random projection algorithms in
statistics and optimization.

3. Designing computationally and statistically efficient statistical estimation al-
gorithms when the sample size is very large. More precisely, the algorithm
should run in linear time in the input data size and achieve statistical minimax
optimality.

4. Developing new randomized methodologies for relaxing cardinality constraints
in order to obtain better approximations than the state of the art approaches
(e.g., `1 heuristic).

More specifically we can list the central contributions of this thesis as follows:

• Novel randomized algorithms for convex optimization: We develop a novel
framework for general convex optimization problems which yields provably
faster algorithms than currently available methods for large sample sizes. Specif-
ically, the derived algorithms run in exactly linear time in the input data size.
The algorithms significantly outperform existing methods on real-world large
scale problems such as least-squares, logistic regression and linear, quadratic
and semidefinite programming.

• Information-theoretical sub-optimality of traditional random projection meth-
ods: Using an information theoretical argument which is analogous to commu-
nication systems, we showed that these methods are sub-optimal in terms of a
natural statistical error measure. Moreover, a novel alternative method is pro-
posed which is proven to be statistically optimal and at the same time enjoys
the same fast computation

• Novel convex relaxations with checkable optimality: We present a new frame-
work which has several advantages over the well-known convex relaxations. In
particular, the proposed approach produces bounds and checkable optimality
without any assumptions on the data in contrast to known methods, such as `1

relaxation. Moreover, in many fundamental problems, such as estimation of a
probability distribution, `1 relaxations are inapplicable while our methods were
proven to be very effective in a variety of applications including data clustering.
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• Privacy and accuracy trade-offs of random projections: We characterize a the-
oretical trade-off between the information theoretic amount of revealed data to
an optimization service and the quality of optimization. Our theoretical results
state that, privacy preserving optimization using a randomization method is
possible depending on the geometric properties of the optimization constraint
set. Interestingly, in many cases of interest, we need not know about the data
to be able to optimize over it.

1.2.1 Thesis organization and previously published work

Several portions of this thesis are based on the previously published joint work
with several collaborators. Chapter 2, 3 and 4 are based on joint work with Martin
Wainwright [114, 115, 113]. Chapter 5 is based on a joint work with Yun Yang
[151]. Chapter 6 is based on joint work with Laurent El Ghaoui [116] and Venkat
Chandrasekaran [111].

1.2.2 Notation

For sequences {at}∞t=0 and {bt}∞t=0, we use the notation at � bt to mean that there
is a constant (independent of t) such that at ≤ C bt for all t. Equivalently, we write
bt � at. We write at � bt if at � bt and bt � at. We use `p to denote the usual

p-norms ‖x‖p : = (
∑

i x
p
i )

1/p and ‖x‖∞ = maxi |xi|. We use ei ∈ Rn, to denote the
i’th ordinary basis vector in Rn. We use xi to denote the i’th index of a vector x and
Mij to denote the (i, j)’th element of a matrix M . We use λmin(M) and λmax(M) to
denote the minimum and maximum eigenvalue of a matrix M ∈ Rn1×n2 respectively.
For an integer i, 1 ≤ i ≤ rank(M), σi(M) is the i’th largest singular value of a matrix
M . The Frobenius norm is defined by ‖M‖F : =

√∑
i σ

2
i (M) for a matrix. The `2

operator norm of a matrix M is defined by

‖M‖2 : = max
‖x‖2≤1

‖Mx‖2 = σ1.

The nuclear norm of a matrix is defined by ‖M‖∗ : =
∑

i σi(M). E denotes the
expectation of a random variable. The notation ()+ denotes the positive part of a
real scalar.
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Chapter 2

Random projections of convex

quadratic programs

Optimizing a convex function subject to convex constraints is fundamental to
many disciplines in engineering, applied mathematics, and statistics [28, 104]. While
most convex programs can be solved in polynomial time, the computational cost can
still be prohibitive when the problem dimension and/or number of constraints are
large. For instance, although many quadratic programs can be solved in cubic time,
this scaling may be prohibitive when the dimension is on the order of millions. This
type of concern is only exacerbated for more sophisticated cone programs, such as
second-order cone and semidefinite programs. Consequently, it is of great interest
to develop methods for approximately solving such programs, along with rigorous
bounds on the quality of the resulting approximation.

In this section, we analyze a particular scheme for approximating a convex pro-
gram defined by minimizing a convex quadratic objective function over an arbitrary
convex set. The scheme is simple to describe and implement, as it is based on perform-
ing a random projection of the matrices and vectors defining the objective function.
Since the underlying constraint set may be arbitrary, our analysis encompasses many
problem classes including quadratic programs (with constrained or penalized least-
squares as a particular case), as well as second-order cone programs and semidefinite
programs (including low-rank matrix approximation as a particular case).

An interesting class of such optimization problems arise in the context of statistical
estimation. Many such problems can be formulated as estimating an unknown pa-
rameter based on noisy linear measurements, along with the side information that the

9



true parameter belongs to a low-dimensional space. Examples of such low-dimensional
structures include sparse vectors, low-rank matrices, discrete sets defined in a combi-
natorial manner, as well as algebraic sets, including norms for inducing shrinkage or
smoothness. Convex relaxations provide a principled way of deriving polynomial-time
methods for such problems [28], and their statistical performance has been extensively
studied over the past decade (see the sources [30, 35, 144] for overviews). For many
such problems, the ambient dimension of the parameter is very large, and the num-
ber of samples can also be large. In these contexts, convex programs may be difficult
to solve exactly, and reducing the dimension and sample size by sketching is a very
attractive option.

Our work is related to a line of work on sketching unconstrained least-squares
problems (e.g., see the papers [123, 55, 90, 27] and references therein). The results
given here generalize this line of work by providing guarantees for a broader class of
constrained quadratic programs. In addition, our techniques are convex-analytic in
nature, and by exploiting analytical tools from Banach space geometry and empirical
process theory [45, 85, 84], lead to sharper bounds on the sketch size as well as
sharper probabilistic guarantees. Our work also provides a unified view of both least-
squares sketching [55, 90, 27] and compressed sensing [49, 51]. As we discuss in the
sequel, various results in compressed sensing can be understood as special cases of
sketched least-squares, in which the data matrix in the original quadratic program is
the identity.

In addition to reducing computation and storage, random projection is also useful
in the context of privacy preservation. Many types of modern data, including finan-
cial records and medical tests, have associated privacy concerns. Random projection
allows for a sketched version of the data set to be stored, but such that there is a
vanishingly small amount of information about any given data point. Our theory
shows that this is still possible, while still solving a convex program defined by the
data set up to δ-accuracy. In this way, we sharpen some results by Zhou and Wasser-
man [158] on privacy-preserving random projections for sparse regression. Our theory
points to an interesting dichotomy in privacy-preserving optimization problems based
on the trade-off between the complexity of the constraint set and mutual information
between data and its sketch. We show that if the constraint set is simple enough
in terms of a statistical measure, privacy-preserving optimization can be done with
arbitrary accuracy.

2.1 Problem formulation

We begin by formulating the problem analyzed in this section, before turning to
a statement of our main results.
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Consider a convex program of the form

x∗ ∈ arg min
x∈C
‖Ax− y‖2

2︸ ︷︷ ︸
f(x)

, (2.1)

where C is some convex subset of Rd, and y ∈ Rn A ∈ Rn×d are a data vector and
data matrix, respectively. Our goal is to obtain an δ-optimal solution to this problem
in a computationally simpler manner, and we do so by projecting the problem into
the lower dimensional space Rm for m < n. In particular, given a sketching matrix
S ∈ Rm×n. consider the sketched problem

x̂ ∈ arg min
x∈C
‖S(Ax− y)‖2

2︸ ︷︷ ︸
g(x)

. (2.2)

Note that by the optimality and feasibility of x∗ and x̂, respectively, for the original
problem (2.1), we always have f(x∗) ≤ f(x̂). Accordingly, we say that x̂ is an δ-
optimal approximation to the original problem (2.1) if

f(x̂) ≤
(
1 + δ

)2
f(x∗). (2.3)

Our main result characterizes the number of projections m required to achieve this
bound as a function of δ, and other problem parameters.

Our analysis involves a natural geometric object in convex analysis, namely the
tangent cone of the constraint set C at the optimum x∗, given by

K : = clconv
{

∆ ∈ Rd | ∆ = t(x− x∗) for some t ≥ 0 and x ∈ C}, (2.4)

where clconv denotes the closed convex hull. This set arises naturally in the convex
optimality conditions for the original problem (2.1): any vector ∆ ∈ K defines a
feasible direction at the optimal x∗, and optimality means that it is impossible to
decrease the cost function by moving in directions belonging to the tangent cone.
Figure 2.1 depicts an example of a tangent cone.

We use AK to denote the linearly transformed cone {A∆ ∈ Rn | ∆ ∈ K}.
Our main results involve measures of the “size” of this transformed cone when it is
intersected with the Euclidean sphere Sn−1 = {z ∈ Rn | ‖z‖2 = 1}. In particular, we
define Gaussian width of the set AK ∩ Sn−1 via

W(AK) : = Eg
[

sup
z∈AK∩Sn−1

∣∣〈g, z〉∣∣] (2.5)

where g ∈ Rn is an i.i.d. sequence of N(0, 1) variables. This complexity measure plays
an important role in Banach space theory, learning theory and statistics (e.g., [117,
78, 85, 19]). As an example of a transformed tangent cone with small width, consider
a low-rank matrix A where r : = rank(A)� d, then the supremum in equation (2.5) is
taken in an r-dimensional subspace. In this case, it can be shown that W(AK) ≤ √r—
see Corollary 2 for details.
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Figure 2.1: Tangent cone at x∗

2.1.1 Guarantees for sub-Gaussian sketches

Our first main result provides a relation between the sufficient sketch size and
Gaussian complexity in the case of sub-Gaussian sketches.

Theorem 1 (Guarantees for sub-Gaussian projections). Let S ∈ Rm×n be drawn from

a σ-sub-Gaussian ensemble. Then there are universal constants (c0, c1, c2) such that,

for any tolerance parameter δ ∈ (0, 1), given a sketch size lower bounded as

m ≥ c0

δ2
W2(AK), (2.6)

the approximate solution x̂ is guaranteed to be δ-optimal (2.3) for the original program

with probability at least 1− c1e
−c2mδ2

.

As will be clarified in examples to follow, the squared width W2(AK) scales pro-
portionally to the effective dimension, or number of degrees of freedom in the set
AK∩Sn−1. Consequently, up to constant factors, Theorem 1 guarantees that we can
project down to the effective dimension of the problem while preserving δ-optimality
of the solution. Moreover, as we show in section 2.2-C, the sketch size lower-bound
in Theorem 1 can not be improved substantially for arbitrary A and C due to con-
nections with Compressed Sensing and denoising.

This fact has an interesting corollary in the context of privacy-preserving opti-
mization. Suppose that we model the data matrix A ∈ Rn×d as being random, and
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our goal is to solve the original convex program (2.1) up to δ-accuracy while revealing
as little as possible about the individual entries of A. By Theorem 1, whenever the
sketch dimension satisfies the lower bound (2.6), the sketched data matrix SA ∈ Rm×d

suffices to solve the original program up to δ-accuracy. We can thus ask about how
much information per entry of A is retained by the sketched data matrix. One way
in which to do so is by computing the mutual information per symbol, namely

I(SA;A)

nd
=

1

nd
D
(
PSA,A ‖PSAPA

)
},

corresponding to the (renormalized) Kullback-Leibler divergence between the joint
distribution over (SA,A) and the product of the marginals. Here we have chosen
the renormalization (nd) since the matrix has dimensions n × d. This question was
studied by Zhou and Wasserman [158] in the context of privacy-preserving sparse
regression, in which C is an `1-ball, to be discussed more at length in Section 2.2.2.
In our setting, we have the following more generic corollary of Theorem 1:

Corollary 1. Let the entries of A be drawn i.i.d. from a distribution with finite

variance γ2. By using m = c0
δ2 W2(AK) random Gaussian projections, we can ensure

that

I(SA;A)

nd
≤ c0

δ2

W2(AK)

n
log(2πeγ2), (2.7)

and that the sketched solution is δ-optimal with probability at least 1− c1e
−c2mδ2

.

Note that the inequality W2(AK) ≤ n always holds. However, for many problems,
we have the much stronger guarantee W2(AK) = o(n), in which case the bound (2.7)
guarantees that the mutual information per symbol is vanishing. There are various
concrete problems, as discussed in Section 2.2, for which this type of scaling is rea-
sonable. Thus, for any fixed δ ∈ (0, 1), we are guaranteed a δ-optimal solution with
a vanishing mutual information per symbol.1

Corollary 1 follows by a straightforward combination of past work with Theorem 1.
In particular, Zhou and Wasserman [158] show that under the stated conditions, for a
standard i.i.d. Gaussian sketching matrix S, the mutual information rate per symbol
is upper bounded as

I(SA;A)

nd
≤ m

2n
log(2πeγ2).

Substituting in the stated choice of m and applying Theorem 1 yields the claim.

1While this is a reasonable guarantee, we note that there are stronger measures of privacy then
vanishing mutual information (e.g., differential privacy [56]).
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2.1.2 Guarantees for randomized orthogonal systems

Our main result for randomized orthonormal systems involves the S-Gaussian
width of the set AK ∩ Sn−1, given by

WS(AK) : = Eg,S
[

sup
z∈AK∩Sn−1

∣∣∣〈g, Sz√
m
〉
∣∣∣]. (2.8)

As will be clear in the corollaries to follow, in many cases, the S-Gaussian width is
equivalent to the ordinary Gaussian width (2.5) up to numerical constants. It also
involves the Rademacher width of the set AK ∩ Sn−1, given by

R(AK) = Eε
[

sup
z∈AK∩Sn−1

∣∣〈z, ε〉∣∣], (2.9)

where ε ∈ {−1,+1}n is an i.i.d. vector of Rademacher variables.

Theorem 2 (Guarantees for randomized orthonormal system). Let S ∈ Rm×n be

drawn from a randomized orthonormal system (ROS). Then given a sample size m

lower bounded as

m

logm
>
c0

δ2

(
R2(AK) + log n

)
W2

S(AK), (2.10)

the approximate solution x̂ is guaranteed to be δ-optimal (2.3) for the original program

with probability at least 1− c1
(mn)2 − c1 exp

(
− c2

mδ2

R2(AK)+log(mn)

)
.

The required projection dimension (2.10) for ROS sketches is in general larger
than that required for sub-Gaussian sketches, due to the presence of the additional
pre-factor R2(AK) + log n. For certain types of cones, we can use more specialized
techniques to remove this pre-factor, so that it is not always required. The details of
these arguments are given in Section 2.4, and we provide some illustrative examples
of such sharpened results in the corollaries to follow. However, the potentially larger
projection dimension is offset by the much lower computational complexity of forming
matrix vector products using the ROS sketching matrix.

2.2 Applications

Our two main theorems are general results that apply to any choice of the convex
constraint set C. We now turn to some consequences of Theorems 1 and 2 for more
specific classes of problems, in which the geometry enters in different ways.
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2.2.1 Unconstrained least squares

We begin with the simplest possible choice, namely C = Rd, which leads to an
unconstrained least squares problem. This class of problems has been studied ex-
tensively in past work on least-square sketching [90]; our derivation here provides a
sharper result in a more direct manner. At least intuitively, given the data matrix
A ∈ Rn×d, it should be possible to reduce the dimensionality to the rank of the
data matrix A, while preserving the accuracy of the solution. In many cases, the
quantity rank(A) is substantially smaller than min{n, d}. The following corollaries of
Theorem 1 and 2 confirm this intuition:

Corollary 2 (Approximation guarantee for unconstrained least squares). Con-

sider the case of unconstrained least squares with C = Rd:

(a) Given a sub-Gaussian sketch with dimension m > c0
rank(A)
δ2 , the sketched solu-

tion is δ-optimal (2.3) with probability at least 1− c1e
−c2mδ2

.

(b) Given an ROS sketch with dimension m > c′0
rank(A)
δ2 log4(n), the sketched solu-

tion is δ-optimal (2.3) with probability at least 1− c1e
−c2mδ2

.

This corollary improves known results both in the probability estimate and required
samples, in particular previous results hold only with constant probability; see the
paper [90] for an overview of such results. Note that the total computational com-
plexity of computing SA and solving the sketched least squares problem, for instance
via QR decomposition [62], is of the order O(ndm+md2) for sub-Gaussian sketches,
and of the order O(nd log(m) +md2) for ROS sketches. Consequently, by using ROS
sketches, the overall complexity of computing a δ-approximate least squares solution
with exponentially high probability is O(rank(A)d2 log4(n)/δ2 +nd log(rank(A)/δ2)).
In many cases, this complexity is substantially lower than direct computation of the
solution via QR decomposition, which would require O(nd2) operations. We also note
that the rank(A) may not be known in advance. However in many applications such
as polynomial and kernel regression, the matrix is approximately low rank. In such
cases, standard bounds from matrix perturbation theory [132] can be applied to ob-
tain an approximation bound via the decomposition A = Ar+E, where rank(Ar) = r
and |||E|||2 is small.

Proof. Since C = Rd, the tangent cone K is all of Rd, and the set AK is the image of
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A. Thus, we have

W(AK) = E
[

sup
u∈Rd

|〈Au, g〉|
‖Au‖2

]
≤
√

rank(A), (2.11)

where the inequality follows from the the fact that the image of A is at most rank(A)-

dimensional. Thus, the sub-Gaussian bound in part (a) is an immediate consequence

of Theorem 1.

Turning to part (b), an application of Theorem 2 will lead to a sub-optimal result

involving (rank(A))2. In Section 2.4.1, we show how a refined argument will lead to

bound stated here.

In order to investigate the theoretical prediction of Corollary 2, we performed
some simple simulations on randomly generated problem instances. Fixing a dimen-
sion d = 500, we formed a random ensemble of least-squares problems by first gener-
ating a random data matrix A ∈ Rn×500 with i.i.d. standard Gaussian entries. For a
fixed random vector x0 ∈ Rd, we then computed the data vector y = Ax0 +w, where
the noise vector w ∼ N(0, ν2) where ν =

√
0.2. Given this random ensemble of prob-

lems, we computed the projected data matrix-vector pairs (SA, Sy) using Gaussian,
Rademacher, and randomized Hadamard sketching matrices, and then solved the pro-
jected convex program. We performed this experiment for a range of different problem
sizes n ∈ {1024, 2048, 4096}. For any n in this set, we have rank(A) = d = 500, with
high probability over the choice of randomly sampled A. Suppose that we choose a
projection dimension of the form m = max{1.5αd, 1}, where the control parameter
α ranges over the interval [0, 1]. Corollary 2 predicts that the approximation error
should converge to 1 under this scaling, for each choice of n.

Figure 2.2 shows the results of these experiments, plotting the approximation ratio
f(x̂)/f(x∗) versus the control parameter α. Consistent with Corollary 2, regardless of
the choice of n, once the projection dimension is a suitably large multiple of rank(A) =
500, the approximation quality becomes very good.

2.2.2 `1-constrained least squares

We now turn to a constrained form of least-squares, in which the geometry of
the tangent cone enters in a more interesting way. In particular, consider the `1-
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Figure 2.2: Comparison of Gaussian, Rademacher and randomized Hadamard

sketches for unconstrained least squares. Each curve plots the approximation ra-

tio f(x̂)/f(x∗) versus the control parameter α, averaged over Ttrial = 100 trials, for

projection dimensions m = max{1.5αd, 1} and for problem dimensions d = 500 and

n ∈ {1024, 2048, 4096}.

constrained least squares program, known as the Lasso [36, 134], given by

x∗ ∈ arg min
‖x‖1≤R

‖Ax− y‖2
2. (2.12)

It is is widely used in signal processing and statistics for sparse signal recovery and
approximation.

In this section, we show that as a corollary of Theorem 1, this quadratic program
can be sketched logarithmically in dimension d when the optimal solution to the
original problem is sparse. In particular, assuming that x∗ is unique, we let k denote
the number of non-zero coefficients of the unique solution to the above program.
(When x∗ is not unique, we let k denote the minimal cardinality among all optimal
vectors). Define the `1-restricted eigenvalues of the given data matrix A as

γ−k (A) : = min
‖z‖2=1

‖z‖1≤2
√
k

‖Az‖2
2, and (2.13)

γ+
k (A) : = max

‖z‖2=1

‖z‖1≤2
√
k

‖Az‖2
2 . (2.14)
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We note that our choice of introducing the factor of two in the the constraint ‖z‖1 ≤
2
√
k is for later theoretical convenience, due to the structure of the tangent cone

associated with the `1-norm. By rescaling as necessary, we may assume γ−k (A) ≤ 1
without loss of generality.

Corollary 3 (Approximation guarantees for `1-constrained least squares). Consider

the `1-constrained least squares problem (2.12):

(a) For sub-Gaussian sketches, a sketch dimension lower bounded by

m ≥ c0

δ2
min

{
rank(A), max

j∈[1:d]

‖aj‖2
2

γ−k (A)
k log(d)

}
(2.15)

guarantees that the sketched solution is δ-optimal (2.3) with probability at least

1− c1e
−c2mδ2

.

(b) For ROS sketches, a sketch dimension lower bounded by

m >
c′0
δ2

log4(n) min
{

rank(A)

(maxj ‖aj‖22
γ−k (A)

k log(d)
)2

log4(n)
,
(γ+

k (A) + 1

γ−k (A)

)2
k log(d)

}
(2.16)

guarantees that the sketched solution is δ-optimal (2.3) with probability at least

1− c1e
−c2mδ2

.

We note that part (a) of this corollary improves the result of Zhou et al. [158],
which establishes consistency of Lasso with a Gaussian sketch dimension of the order
k2 log(dnk), in contrast to the k log(d) requirement in the bound (2.15). To be more
precise, these two results are slightly different, in that the result [158] focuses on
support recovery, whereas Corollary 3 guarantees a δ-accurate approximation of the
cost function.

Let us consider the complexity of solving the sketched problem using different
methods. In the regime n > d, the complexity of solving the original Lasso problem
as a linearly constrained quadratic program via interior point solvers is O(nd2) per
iteration (e.g., see Nesterov and Nemirovski [107]). Thus, computing the sketched
data and solving the sketched Lasso problem requires O(ndm + md2) operations for
sub-Gaussian sketches, and O(nd log(m) +md2) for ROS sketches.
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Another popular choice for solving the Lasso problem is to use a first-order al-
gorithm [106]; such algorithms require O(nd) operations per iteration, and yield a
solution that is O(1/T )-optimal within T iterations. If we apply such an algorithm
to the sketched version for T steps, then we obtain a vector such that

f(x̂) ≤ (1 + δ)2f(x∗) +O(
1

T
).

Overall, obtaining this guarantee requiresO(ndm+mdT ) operations for sub-Gaussian
sketches, and O(nd log(m) +mdT ) operations for ROS sketches.

Proof. Let S denote the support of the optimal solution x∗. The tangent cone to the

`1-norm constraint at the optimum x∗ takes the form

K =
{

∆ ∈ Rd | 〈∆S, ẑS〉+ ‖∆Sc‖1 ≤ 0}, (2.17)

where ∆S and ∆c
S denote the restriction of the vector ∆ to subsets S and Sc respec-

tively and ẑS : = sign(x∗S) ∈ {−1,+1}k is the sign vector of the optimal solution on

its support S. By the triangle inequality, any vector ∆ ∈ K satisfies the inequality

‖∆‖1 ≤ 2‖∆S‖1 ≤ 2
√
k‖∆S‖2 ≤ 2

√
k‖∆‖2. (2.18)

If ‖A∆‖2 = 1, then by the definition (2.13), we also have the upper bound ‖∆‖2 ≤
1√
γ−k (A)

, whence

〈A∆, g〉 ≤ 2
√
|S| ‖∆‖2‖ATg‖∞ ≤

2
√
|S| ‖ATg‖∞√
γ−k (A)

. (2.19)

Note that ATg is a d-dimensional Gaussian vector, in which the jth-entry has vari-

ance ‖aj‖2
2. Consequently, inequality (2.19) combined with standard Gaussian tail

bounds [85] imply that

W(AK) ≤ 6
√
k log(d) max

j=1,...,d

‖aj‖2√
γ−k (A)

. (2.20)

Combined with the bound from Corollary 2, also applicable in this setting, the

claim (2.15) follows.
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Turning to part (b), the first lower bound involving rank(A) follows from Corol-

lary 2. The second lower bound follows as a corollary of Theorem 2 in application to

the Lasso; see Section 2.6.1 for the calculations. The third lower bound follows by a

specialized argument given in Section 2.4.3.

In order to investigate the prediction of Corollary 3, we generated a random
ensemble of sparse linear regression problems as follows. We first generated a data
matrix A ∈ R4096×500 by sampling i.i.d. standard Gaussian entries, and then a k′-
sparse base vector x0 ∈ Rd by choosing a uniformly random subset S of size k′ = d/10,
and setting its entries to in {−1,+1} independent and equiprobably. Finally, we
formed the data vector y = Ax0 + w, where the noise vector w ∈ Rn has i.i.d.
N(0, ν2) entries with ν =

√
0.2.
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Figure 2.3: Comparison of Gaussian, Rademacher and randomized Hadamard

sketches for the Lasso program (2.12). Each curve plots the approximation ra-

tio f(x̂)/f(x∗) versus the control parameter α, averaged over Ttrial = 100 trials,

for projection dimensions m = max{4α‖x∗‖0 log d, 1}, problem dimensions (n, d) =

(4096, 500), and `1-constraint radius R ∈ {1, 5, 10, 20}.

In our experiments, we solved the Lasso (2.12) with a choice of radius param-
eter R ∈ {1, 5, 10, 20}, and set k = ‖x∗‖0. We then set the projection dimension
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m = max{4αk log d, 1} where α ∈ (0, 1) is a control parameter, and solved the
sketched Lasso for Gaussian, Rademacher and randomized Hadamard sketching ma-
trices. Our theory predicts that the approximation ratio tends to one as the control
parameter α increases. The results are plotted in Figure 2.3, and confirm this quali-
tative prediction.

2.2.3 Compressed sensing and noise folding

It is worth noting that various compressed sensing results can be recovered as
a special case of Corollary 3—more precisely, one in which the “data matrix” A is
simply the identity (so that n = d). With this choice, the original problem (2.1)
corresponds to the classical denoising problem, namely

x∗ = arg min
x∈C
‖x− y‖2

2, (2.21)

so that the cost function is simply f(x) = ‖x − y‖2
2. With the choice of constraint

set C = {‖x‖1 ≤ R}, the optimal solution x∗ to the original problem is unique, and
can be obtained by performing a coordinate-wise soft-thresholding operation on the
data vector y. For this choice, the sketched version of the de-noising problem (2.21)
is given by

x̂ = arg min
x∈C
‖Sx− Sy‖2

2 (2.22)

2.2.3.0.5 Noiseless version: In the noiseless version of compressed sensing, we
have y = x̄ ∈ C, and hence the optimal solution to the original “denoising” prob-
lem (2.21) is given by x∗ = x̄, with optimal value

f(x∗) = ‖x∗ − x̄‖2
2 = 0.

Using the sketched data vector Sx̄ ∈ Rm, we can solve the sketched program (2.22).
If doing so yields a δ-approximation x̂, then in this special case, we are guaranteed
that

‖x̂− x̄‖2
2 = f(x̂) ≤ (1 + δ)2f(x∗) = 0, (2.23)

which implies that we have exact recovery—that is, x̂ = x̄.

2.2.3.0.6 Noisy versions: In a more general setting, we observe the vector y =
x̄ + w, where x̄ ∈ C and w ∈ Rn is some type of observation noise. The sketched
observation model then takes the form

Sy = Sx̄+ Sw,
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so that the sketching matrix is applied to both the true vector x̄ and the noise vector
w. This set-up corresponds to an instance of compressed sensing with “folded” noise
(e.g., see the papers [12, 2]), which some argue is a more realistic set-up for compressed
sensing. In this context, our results imply that the sketched version satisfies the bound

‖x̂− y‖2
2 ≤

(
1 + δ

)2 ‖x∗ − y‖2
2. (2.24)

If we think of y as an approximately sparse vector and x∗ as the best approxi-
mation to y from the `1-ball, then this bound (2.24) guarantees that we recover a
δ-approximation to the best sparse approximation. Moreover, this bound shows that
the compressed sensing error should be closely related to the error in denoising, as
has been made precise in recent work [51]. Moreover, this connection and information
theoretic lower-bounds for Compressed Sensing (see e.g., [2]) also imply that our
approximation results in Theorems 1 and 2 can not be improved substantially.

Let us summarize these conclusions in a corollary:

Corollary 4. Consider an instance of the denoising problem (2.21) when C = {x ∈

Rn | ‖x‖1 ≤ R}.

(a) For sub-Gaussian sketches with projection dimension m ≥ c0
δ2 ‖x∗‖0 log d, we

are guaranteed exact recovery in the noiseless case (2.23), and δ-approximate

recovery (2.24) in the noisy case, both with probability at least 1− c1e
−c2mδ2

.

(b) For ROS sketches, the same conclusions hold with probability 1−e−c1
mδ2

log4 n using

a sketch dimension

m ≥ c0

δ2
min

{
‖x∗‖0 log5 d, ‖x∗‖2

0 log d
}
. (2.25)

Of course, a more general version of this corollary holds for any convex constraint
set C, involving the Gaussian/Rademacher width functions. In this more setting, the
corollary generalizes results by Chandrasekaran et al. [35], who studied randomized
Gaussian sketches in application to atomic norms, to other types of sketching matrices
and other types of constraints. They provide a number of calculations of widths for
various atomic norm constraint sets, including permutation and orthogonal matrices,
and cut polytopes, which can be used in conjunction with the more general form of
Corollary 4.
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2.2.4 Support vector machine classification

Our theory also has applications to learning linear classifiers based on labeled
samples. In the context of binary classification, a labeled sample is a pair (ai, zi),
where the vector ai ∈ Rn represents a collection of features, and zi ∈ {−1,+1} is the
associated class label. A linear classifier is specified by a function a 7→ sign(〈w, a〉) ∈
{−1,+1}, where w ∈ Rn is a weight vector to be estimated.

Given a set of labelled patterns {ai, zi}di=1, the support vector machine [40, 131]
estimates the weight vector w∗ by minimizing the function

w∗ = arg min
w∈Rn

{ 1

2C

d∑
i=1

g(zi, 〈w, ai〉) +
1

2
‖w‖2

2

}
. (2.26)

In this formulation, the squared hinge loss g(w) : = (1−yi〈w, ai〉)2
+ is used to measure

the performance of the classifier on sample i, and the quadratic penalty ‖w‖2
2 serves

as a form of regularization.

By considering the dual of this problem, we arrive at a least-squares problem that
is amenable to our sketching techniques. Let A ∈ Rn×d be a matrix with ai ∈ Rn

as its ith column, let D = diag(z) ∈ Rd×d be a diagonal matrix, and define BT =
[(AD)T 1

C
I]. With this notation, the associated dual problem (e.g. see the paper [86])

takes the form

x∗ : = arg min
x∈Rd
‖Bx‖2

2 s.t. x ≥ 0 and
d∑
i=1

xi = 1. (2.27)

The optimal solution x∗ ∈ Rd corresponds to a vector of weights associated with the
samples: it specifies the optimal SVM weight vector via w∗ =

∑d
i=1 x

∗
i ziai. It is often

the case that the dual solution x∗ has relatively few non-zero coefficients, correspond-
ing to samples that lie on the so-called margin of the support vector machine.

The sketched version is then given by

x̂ : = arg min
x∈Rd
‖SBx‖2

2 s.t. x ≥ 0 and
d∑
i=1

xi = 1. (2.28)

The simplex constraint in the quadratic program (2.27), although not identical to an
`1-constraint, leads to similar scaling in terms of the sketch dimension.

Corollary 5 (Sketch dimensions for support vector machines). Given a collection of

labeled samples {(ai, zi)}di=1, let ‖x∗‖0 denote the number of samples on the margin in

the SVM solution (2.27). Then given a sub-Gaussian sketch with dimension

m ≥ c0

δ2
‖x∗‖0 log(d) max

j=1,...,d

‖aj‖2
2

γ−k (A)
, (2.29)
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the sketched solution (2.28) is δ-optimal with probability at least 1− c1e
−c2mδ2

.

We omit the proof, as the calculations specializing from Theorem 1 are essentially
the same as those of Corollary 3. The computational complexity of solving the SVM
problem as a linearly constrained quadratic problem is same with the Lasso problem,
so that the same conclusions apply.
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Figure 2.4: Comparison of Gaussian, Rademacher and randomized Hadamard

sketches for the support vector machine (2.27). Each curve plots the approxima-

tion ratio f(x̂)/f(x∗) versus the control parameter α, averaged over Ttrial = 100

trials, for projection dimensions m = max{5α‖x∗‖0 log d, 1}, and problem dimensions

d ∈ {1024, 2048, 4096}.

In order to study the prediction of Corollary 5, we generated some classification
experiments, and tested the performance of the sketching procedure. Consider a two-
component Gaussian mixture model, based on the component distributions N(µ0, I)
and N(µ1, I), where µ0 and µ1 are uniformly distributed in [−3, 3]. Placing equal
weights on each component, we draw d samples from this mixture distribution, and
then use the resulting data to solve the SVM dual program (2.27), thereby obtaining
an optimal linear decision boundary specified by the vector x∗. The number of non-
zero entries ‖x∗‖0 corresponds to the number of examples on the decision boundary,
known as support vectors. We then solve the sketched version (2.28), using either
Gaussian, Rademacher or randomized Hadamard sketches, and using a projection
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dimension scaling as m = max{5α‖x∗‖0 log d, 1}, where α ∈ [0, 1] is a control pa-
rameter. We repeat this experiment for problem dimensions d ∈ {1024, 2048, 4096},
performing Ttrial = 100 trials for each choice of (α, d).

Figure 2.4 shows plots of the approximation ratio versus the control parameter.
Each bundle of curves corresponds to a different problem dimension, and has three
curves for the three different sketch types. Consistent with the theory, in all cases,
the approximation error approaches one as α scales upwards.

It is worthwhile noting that similar sketching techniques can be applied to other
optimization problems that involve the unit simplex as a constraint. Another instance
is the Markowitz formulation of the portfolio optimization problem [91]. Here the
goal is to estimate a vector x ∈ Rd in the unit simplex, corresponding to non-negative
weights associated with each of d possible assets, so as to minimize the variance of
the return subject to a lower bound on the expected return. More precisely, we let
µ ∈ Rd denote a vector corresponding to mean return associated with the assets,
and we let Σ ∈ Rd×d be a symmetric, positive semidefinite matrix, corresponding to
the covariance of the returns. Typically, the mean vector and covariance matrix are
estimated from data. Given the pair (µ,Σ), the Markowitz allocation is given by

x∗ = arg min
x∈Rd

xTΣx such that 〈µ, x〉 ≥ γ, x ≥ 0 and
∑d

j=1 xj = 1. (2.30)

Note that this problem can be written in the same form as the SVM, since the
covariance matrix Σ � 0 can be factorized as Σ = ATA. Whenever the expected
return constraint 〈µ, x〉 ≥ γ is active at the solution, the tangent cone is given by

K =
{

∆ ∈ Rd | 〈µ, ∆〉 ≥ 0,
d∑
j=1

∆j = 0, ∆Sc ≥ 0}

where S is the support of x∗. This tangent cone is a subset of the tangent cone for the
SVM, and hence the bounds of Corollary 5 also apply to the portfolio optimization
problem.

2.2.5 Matrix estimation with nuclear norm regularization

We now turn to the use of sketching for matrix estimation problems, and in
particular those that involve nuclear norm constraints. Let C ⊂ Rd1×d2 be a convex
subset of the space of all d1 × d2 matrices. Many matrix estimation problems can be
written in the general form

min
X∈C
‖y −A(X)‖2

2
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where y ∈ Rn is a data vector, and A is a linear operator from Rd1×d2 to Rn. Letting
vec denote the vectorized form of a matrix, we can write A(X) = A vec(X) for a
suitably defined matrix A ∈ Rn×D, where D = d1d2. Consequently, our general
sketching techniques are again applicable.

In many matrix estimation problems, of primary interest are matrices of relatively
low rank. Since rank constraints are typically computationally intractable, a standard
convex surrogate is the nuclear norm of matrix, given by the sum of its singular values

|||X|||∗ =

min{d1,d2}∑
j=1

σj(X). (2.31)

As an illustrative example, let us consider the problem of weighted low-rank matrix
approximation, Suppose that we wish to approximate a given matrix Z ∈ Rd1×d2

by a low-rank matrix X of the same dimensions, where we measure the quality of
approximation using a weighted Frobenius norm

|||Z −X|||2ω =

d2∑
j=1

ω2
j‖zj − xj‖2

2, (2.32)

where zj and xj are the jth columns of Z and X respectively, and ω ∈ Rd2 is a vector
of non-negative weights. If the weight vector is uniform (ωj = c for all j = 1, . . . , d),
then the norm ||| · |||ω is simply the usual Frobenius norm, a low-rank minimizer can
be obtained by computing a partial singular value decomposition of the data ma-
trix Y . For non-uniform weights, it is no longer easy to solve the rank-constrained
minimization problem. Accordingly, it is natural to consider the convex relaxation

X∗ : = arg min
|||X|||∗≤R

|||Z −X|||2ω, (2.33)

in which the rank constraint is replaced by the nuclear norm constraint |||X|||∗ ≤ R.
This program can be written in an equivalent vectorized form in dimension D = d1d2

by defining the block-diagonal matrix A = blkdiag(ω1I, . . . , ωd2I), as well as the
vector y ∈ RD whose jth block is given by ωjyj. We can then consider the equivalent
problem X∗ : = arg min

|||X|||∗≤R
‖y − A vec(X)‖2

2, as well as its sketched version

X̂ : = arg min
|||X|||∗≤R

‖Sy − SA vec(X)‖2
2. (2.34)

Suppose that the original optimum X∗ has rank r: it then be described using at
O(r(d1 + d2)) real numbers. Intuitively, it should be possible to project the original
problem down to this dimension while still guaranteeing an accurate solution. The
following corollary provides a rigorous confirmation of this intuition:
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Corollary 6 (Sketch dimensions for weighted low-rank approximation). Consider

the weighted low-rank approximation problem (2.33) based on a weight vector with

condition number κ2(ω) =
max

j=1,...,d
ω2
j

min
j=1,...,d

ω2
j
, and suppose that the optimal solution has rank

r = rank(X∗).

(a) For sub-Gaussian sketches, a sketch dimension lower bounded by

m ≥ c0

δ2
κ2(ω) r (d1 + d2) (2.35)

guarantees that the sketched solution (2.34) is δ-optimal (2.3) with probability

at least 1− c1e
−c2mδ2

.

(b) For ROS sketches, a sketch dimension lower bounded by

m >
c′0
δ2
κ2(ω)r (d1 + d2) log4(d1d2). (2.36)

guarantees that the sketched solution (2.34) is δ-optimal (2.3) with probability

at least 1− c1e
−c2mδ2

.

For this particular application, the use of sketching is not likely to lead to substantial
computational savings, since the optimization space remains d1d2 dimensional in both
the original and sketched versions. However, the lower dimensional nature of the
sketched data can be still very useful in reducing storage requirements and privacy-
preserving optimization.

Proof. We prove part (a) here, leaving the proof of part (b) to Section 2.4.4. Through-

out the proof, we adopt the shorthand notation ωmin = min
j=1,...,d

ωj and ωmax = max
j=1,...,d

ωj.

As shown in past work on nuclear norm regularization (see Lemma 1 in the pa-

per [101]), the tangent cone of the nuclear norm constraint |||X|||∗ ≤ R at a rank r

matrix is contained within the cone

K′ =
{

∆ ∈ Rd1×d2 | |||∆|||∗ ≤ 2
√
r|||∆|||F

}
. (2.37)
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For any matrix ∆ with ‖A vec(∆)‖2 = 1, we must have |||∆|||F = ‖ vec(∆)‖2 ≤ 1
ωmin

.

By definition of the Gaussian width, we then have

W(AK) ≤ 1

ωmin

E
[

sup
|||∆|||∗≤2

√
r

|〈ATg, vec(∆)〉|
]
.

Since AT is a diagonal matrix, the vector ATg has independent entries with maximal

variance ω2
max. Letting G ∈ Rd1×d2 denote the matrix formed by segmenting the

vector ATg into d2 blocks of length d1, we have

W(AK) ≤ 1

ωmin

E
[

sup
|||∆|||∗≤2

√
r

|trace(G∆)|
]

≤ 2
√
r

ωmin

E
[
|||G|||2

]
where we have used the duality between the operator and nuclear norms. By standard

results on operator norms of Gaussian random matrices [44], we have E[|||G|||2] ≤

ωmax

(√
d1 +

√
d2

)
, and hence

W(AK) ≤ 2
ωmax

ωmin

√
r
(√

d1 +
√
d2

)
.

Thus, the bound (2.35) follows as a corollary of Theorem 1.

2.2.6 Group sparse regularization

As a final example, let us consider optimization problems that involve constraints
to enforce group sparsity. This notion is a generalization of elementwise sparsity,
defined in terms of a partition G of the index set [d] = {1, 2, . . . , d} into a collection
of non-overlapping subsets, referred to as groups. Given a group g ∈ G and a vector
x ∈ Rd, we use xg ∈ R|g| to denote the sub-vector indexed by elements of g. A basic
form of the group Lasso norm [154] is given by

‖x‖G =
∑
g∈G

‖xg‖2. (2.38)

Note that in the special case that G consists of d groups, each of size 1, this norm
reduces to the usual `1-norm. More generally, with non-trivial grouping, it defines a
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second-order cone constraint [28]. Bach et al. [17] provide an overview of the group
Lasso norm (2.38), as well as more exotic choices for enforcing group sparsity.

Here let us consider the problem of sketching the second-order cone program
(SOCP)

x∗ = arg min
‖x‖G≤R

‖Ax− y‖2
2. (2.39)

We let k denote the number of active groups in the optimal solution x∗—that
is, the number of groups for which x∗g 6= 0. For any group g ∈ G, we use
Ag to denote the n × |g| sub-matrix with columns indexed by g. In analogy to
the sparse RE condition (2.13), we define the group-sparse restricted eigenvalue
γ−k,G(A) : = min ‖z‖2=1

‖z‖G≤2
√
k

‖Az‖2
2.

Corollary 7 (Guarantees for group-sparse least-squares squares). For the group

Lasso program (2.39) with maximum group size M = maxg∈G |g|, a projection di-

mension lower bounded as

m ≥ c0

δ2
min

{
rank(A), max

g∈G

|||Ag|||2
γ−k,G(A)

(
k log |G|+ kM

)}
(2.40)

guarantees that the sketched solution is δ-optimal (2.3) with probability at least 1 −

c1e
−c2mδ2

.

Note that this is a generalization of Corollary 3 on sketching the ordinary Lasso.
Indeed, when we have |G| = d groups, each of size M = 1, then the lower bound (2.40)
reduces to the lower bound (2.15). As might be expected, the proof of Corollary 7 is
similar to that of Corollary 3. It makes use of some standard results on the expected
maxima of χ2-variates to upper bound the Gaussian complexity; see the paper [100]
for more details on this calculation.

2.3 Proofs of main results

We now turn to the proofs of our main results, namely Theorem 1 on sub-Gaussian
sketching, and Theorem 2 on sketching with randomized orthogonal systems. At a
high level, the proofs consists of two parts. The first part is a deterministic argument,
using convex optimality conditions. The second step is probabilistic, and depends on
the particular choice of random sketching matrices.
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2.3.1 Main argument

Central to the proofs of both Theorem 1 and 2 are the following two variational
quantities:

Z1(AK) : = inf
v∈AK∩Sn−1

1

m
‖Sv‖2

2, and (2.41a)

Z2(AK) : = sup
v∈AK∩Sn−1

∣∣∣〈u, (
STS

m
− I) v〉

∣∣∣, (2.41b)

where we recall that Sn−1 is the Euclidean unit sphere in Rn, and in equation (2.41b),
the vector u ∈ Sn−1 is fixed but arbitrary. These are deterministic quantities for any
fixed choice of sketching matrix S, but random variables for randomized sketches. As
it will be illustrated by our subsequent analysis, these quantities isolate the stochas-
tic nature of the random sketch S and are considerably easier to analyze owing to
connections with some well-studied sub-Gaussian empirical processes (e.g. see [97]).
The following lemma demonstrates the significance of these two quantities:

Lemma 2. For any sketching matrix S ∈ Rm×n, we have

f(x̂) ≤
{

1 + 2
Z2(AK)

Z1(AK)

}2

f(x∗) (2.42)

Consequently, we see that in order to establish that x̂ is δ-optimal, we need to control
the ratio Z2(AK)/Z1(AK).

Proof. Define the error vector ê : = x̂− x∗. We first assume f(x∗) = ‖Ax∗ − y‖2
2 > 0

and we shall return to this case later. By the triangle inequality, we have

‖Ax̂− y‖2 ≤ ‖Ax∗ − y‖2 + ‖Aê‖2 (2.43)

= ‖Ax∗ − y‖2

{
1 +

‖Aê‖2

‖Ax∗ − y‖2

}
. (2.44)

Squaring both sides yields

f(x̂) ≤
(

1 +
‖Aê‖2

‖Ax∗ − y‖2

)2

f(x∗).

Consequently, it suffices to control the ratio ‖Aê‖2
‖Ax∗−y‖2 , and we use convex optimality

conditions to do so. If ‖Aê‖2 = 0, the claim (2.42) is trivially true, hence we assume

‖Aê‖2 > 0 without loss of generality.
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Since x̂ and x∗ are optimal and feasible, respectively, for the sketched prob-

lem (2.2), we have g(x̂) ≤ g(x∗), or equivalently

1

2m
‖SAê+ SAx∗ − Sy)‖2

2 ≤
1

2m
‖SAx∗ − Sy‖2

2 .

Expanding the left-hand-side and subtracting 1
2m
‖SAx∗−Sy‖2

2 from both sides yields

1

2m
‖SAê‖2

2 ≤ −〈Ax∗ − y,
1

m
STS Aê〉

= −〈Ax∗ − y, (
1

m
STS − I)Aê〉 − 〈Ax∗ − y, Aê〉,

where we have added and subtracted 〈Ax∗− y, Aê〉. Now by the optimality of x∗ for

the original problem (2.1), we have

〈(Ax∗ − y), Aê〉 = 〈AT (Ax∗ − y), x̂− x∗〉 ≥ 0,

and hence

1

2m
‖SAê‖2

2 ≤
∣∣∣〈Ax∗ − y, (

1

m
STS − I)Aê〉

∣∣∣. (2.45)

Letting {si}mi=1 correspond to the rows of S, note that the first term in the above

right-hand side contains the random matrix

1

m
STS − I =

1

m

m∑
i=1

sis
T
i − I.

Since Es1s
T
1 = I, this random matrix is zero-mean and it should be possible to control

its fluctuations as a function of m, and the two vectors Ax∗−y and Aê that also arise

in the inequality (2.45). Whereas the vector Ax∗ − y is non-random, the challenge

here is that ê is a random vector that also depends on the sketch matrix. For this

reason, we need to prove a form of uniform law of large numbers of this term. In

this context, the previously defined quantities Z1(AK) and Z2(AK) play the role of
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uniform lower and upper bounds on appropriately scaled form of the left-hand-side

and right-hand side (respectively) of the inequality (2.45). Renormalizing the right-

hand side of inequality (2.45), we find that

1

2m
‖SAê‖2

2 ≤ ‖Ax∗ − y‖2 ‖Aê‖2

∣∣∣〈 Ax∗ − y
‖Ax∗ − y‖2

, (
1

m
STS − I)

Aê

‖Aê‖2

〉
∣∣∣.

By the optimality of x̂, we have Aê ∈ AK and Ax∗−y
‖Ax∗−y‖22

is a fixed unit-norm vector,

whence the basic inequality (2.46) and definitions (2.41a) and (2.41b) imply that

1

2
Z1(AK) ‖Aê‖2

2 ≤ ‖Aê‖2 ‖Ax∗ − y‖2 Z2(AK)

Cancelling terms yields the inequality

‖Aê‖2

‖Ax∗ − y‖2

≤ 2
Z2(AK)

Z1(AK)
.

Combined with our earlier inequality (2.43), the claim (2.42) follows for ‖Ax∗−y‖2
2 >

0.

Finally, consider the special case f(x∗) = ‖Ax∗−y‖2
2 = 0, and show that f(x̂) = 0.

Since inequality (2.45) still holds, we find that

1

2m
‖SAê‖2

2 ≤ 0.

Combined with the definition (2.41a) of Z1(AK), we see that 1
2
Z1(AK)‖Aê‖2

2 ≤ 0. As

long as Z1(AK) > 0, we are thus guaranteed that ‖Aê‖2 = 0. Since ‖Ax̂ − y‖2 ≤

‖Aê‖2, we conclude that f(x̂) = ‖Ax̂− y‖2
2 = 0 as claimed.

2.3.2 Proof of Theorem 1

In order to complete the proof of Theorem 1, we need to upper bound the ratio
Z2(AK)/Z1(AK). The following lemmas provide such control in the sub-Gaussian
case. As usual, we let S ∈ Rm×n denote the matrix with the vectors {si}mi=1 as its
rows.
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Lemma 3 (Lower bound on Z1(AK)). Under the conditions of Theorem 1, for i.i.d.

σ-sub-Gaussian vectors {si}mi=1, we have

inf
v∈AK∩Sn−1

1

m
‖Sv‖2

2︸ ︷︷ ︸
Z1(AK)

≥ 1− δ (2.46)

with probability at least 1− exp
(
− c1

mδ2

σ4

)
.

Lemma 4 (Upper bound on Z2(AK)). Under the conditions of Theorem 1, for i.i.d.

σ-sub-Gaussian vectors {si}mi=1 and any fixed vector u ∈ Sn−1, we have

sup
v∈AK∩Sn−1

∣∣∣〈u, (
1

m
STS − I) v〉

∣∣∣︸ ︷︷ ︸
Z2(AK)

≤ δ (2.47)

with probability at least 1− 6 exp
(
− c1

mδ2

σ4

)
.

Taking these two lemmas as given, we can complete the proof of Theorem 1. As
long as δ ∈ (0, 1/2), they imply that

2
Z2(AK)

Z1(AK)
≤ 2δ

1− δ ≤ 4δ (2.48)

with probability at least 1−4 exp
(
−c1

mδ2

σ4

)
. The rescaling 4δ 7→ δ, with appropriate

changes of the universal constants, yields the result.

It remains to prove the two lemmas. In the sub-Gaussian case, both of these
results exploit a result due to Mendelson et al. [97]:

Proposition 1. Let {si}mi=1 be i.i.d. samples from a zero-mean σ-sub-Gaussian dis-

tribution with cov(si) = In×n. Then there are universal constants such that for any

subset Y ⊆ Sn−1, we have

sup
y∈Y

∣∣∣yT (STS
m
− In×n

)
y
∣∣∣ ≤ c1

W(Y)√
m

+ δ (2.49)

with probability at least 1− e−
c2mδ

2

σ4 .

This claim follows from their Theorem D, using the linear functions fy(s) = 〈s, y〉.
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2.3.2.1 Proof of Lemma 3

Lemma 3 follows immediately from Proposition 1: in particular, the bound (2.49)
with the set Y = AK ∩ Sn−1 ensures that

inf
v∈AK∩Sn−1

‖Sv‖2
2

m
≥ 1− c1

W(Y)√
m
− δ

2

(i)

≥ 1− δ,

where inequality (i) follows as long as m > c0
δ2W(AK) for a sufficiently large universal

constant.

2.3.2.2 Proof of Lemma 4

The proof of this claim is more involved. Let us partition the set V = AK∩Sn−1

into two disjoint subsets, namely

V+ = {v ∈ V | 〈u, v〉 ≥ 0}, and

V− = {v ∈ V | 〈u, v〉 < 0}.

Introducing the shorthand Q = STS
m
− I, we then have

Z2(AK) ≤ sup
v∈V+

|uTQv|+ sup
v∈V−
|uTQv|,

and we bound each of these terms in turn.

Beginning with the first term, for any v ∈ V+, the triangle inequality implies that

|uTQv| ≤ 1

2

∣∣(u+ v)TQ(u+ v)
∣∣+

1

2

∣∣uTQu∣∣
+

1

2

∣∣vTQv∣∣. (2.50)

Defining the set U+ : = { u+v
‖u+v‖2 | v ∈ V+}, we apply Proposition 1 three times in

succession, with the choices Y = U+, Y = V+ and Y = {u} respectively, which yields

sup
v∈V+

∣∣(u+ v)TQ(u+ v)
∣∣

‖u+ v‖2
2

≤ c1
W(U+)√

m
+ δ (2.51a)

sup
v∈AK∩Sn−1

∣∣vTQv∣∣ ≤ c1
W(AK ∩ Sn−1)√

m
+ δ, (2.51b)

∣∣uTQu∣∣ ≤ c1
W({u})√

m
+ δ. (2.51c)
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All three bounds hold with probability at least 1−3e−c2mδ
2/σ4

. Note that ‖u+v‖2
2 ≤ 4,

so that the bound (2.51a) implies that
∣∣(u+v)TQ(u+v)

∣∣ ≤ 4c1W(U+)+4δ for all v ∈
V+. Thus, when inequalities (2.51a) through (2.51c) hold, the decomposition (2.50)
implies that

|uTQu|
≤ c1

2

{
4W(U+) + W(AK ∩ Sn−1) + W({u})

}
+ 3δ. (2.52)

It remains to simplify the sum of the three Gaussian complexity terms. An easy
calculation gives W({u}) ≤

√
2/π ≤W(AK ∩ Sn−1). In addition, we claim that

W(U+) ≤W({u}) + W(AK ∩ Sn−1). (2.53)

Given any v ∈ V+, let Π(v) denote its projection onto the subspace orthogonal to u.
We can then write v = αu+Π(v) for some scalar α ∈ [0, 1], where ‖Π(v)‖2 =

√
1− α2.

In terms of this decomposition, we have

‖u+ v‖2
2 = ‖(1 + α)u+ Π(v)‖2

2

= (1 + α)2 + 1− α2

= 2 + 2α.

Consequently, we have∣∣∣〈g, u+ v

‖u+ v‖2

〉
∣∣∣ =

∣∣∣ (1 + α)√
2(1 + α)

〈g, u〉+
1√

2(1 + α)
〈g, Π(v)〉

∣∣∣
≤
∣∣〈g, u〉∣∣+

∣∣〈g, Π(v)〉
∣∣. (2.54)

For any pair v, v′ ∈ V+, note that

var
(
〈g, Π(v)〉 − 〈g, Π(v′)〉

)
= ‖Π(v)− Π(v′)‖2

2 ≤ ‖v − v′‖2
2

= var
(
〈g, v〉 − 〈g, v′〉

)
.

where the inequality follows by the non-expansiveness of projection. Consequently,
by the Sudakov-Fernique comparison inequality [85], we have

E
[

sup
v∈V+

|〈g, Π(v)〉|
]
≤ E

[
sup
v∈V+

|〈g, v〉|
]

= W(V+).

Since V+ ⊆ AK∩Sn−1, we have W(V+) ≤W(AK∩Sn−1). Combined with our earlier
inequality (2.54), we have shown that

W(U+) ≤W({u}) + W(AK ∩ Sn−1) ≤ 2W(AK ∩ Sn−1).
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Substituting back into our original upper bound (2.52), we have established that

sup
v∈V+

∣∣uTQv∣∣
≤ c1

2
√
m

{
8W(AK ∩ Sn−1) + 2W(AK ∩ Sn−1)

}
+ 3δ (2.55)

=
5 c1√
m

W(AK ∩ Sn−1) + 3δ. (2.56)

with high probability.

As for the supremum over V−, in this case, we use the decomposition

uTQv =
1

2

{
vTQv + uTQu− (v − u)TQ(v − u)

}
.

The analogue of U+ is the set U− = { v−u
‖v−u‖2 | v ∈ V−}. Since 〈−u, v〉 ≥ 0 for all

v ∈ V−, the same argument as before can be applied to show that supv∈V− |uTQv|
satisfies the same bound (2.55) with high probability.

Putting together the pieces, we have established that, with probability at least
1− 6e−c2mδ

2/σ4
, we have

Z2(AK) = sup
v∈AK∩Sn−1

∣∣uTQv∣∣
≤ 10c1√

m
W(AK ∩ Sn−1) + 6δ

(i)

≤ 9δ,

where inequality (i) makes use of the assumed lower bound on the projection di-
mension. The claim follows by rescaling δ and redefining the universal constants
appropriately.

2.3.3 Proof of Theorem 2

We begin by stating two technical lemmas that provide control on the random
variables Z1(AK) and Z2(AK) for randomized orthogonal systems. These results
involve the S-Gaussian width previously defined in equation (2.8); we also recall the
Rademacher width

R(AK) : = Eε
[

sup
z∈AK∩Sn−1

|〈z, ε〉|
]
. (2.57)
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Lemma 5 (Lower bound on Z1(AK)). Given a projection size m satisfying the

bound (2.10) for a sufficiently large universal constant c0, we have

inf
v∈AK∩Sn−1

1

m
‖Sv‖2

2︸ ︷︷ ︸
Z1(AK)

≥ 1− δ (2.58)

with probability at least 1− c1
(mn)2 − c1 exp

(
− c2

mδ2

R2(AK)+log(mn)

)
.

Lemma 6 (Upper bound on Z2(AK)). Given a projection size m satisfying the

bound (2.10) for a sufficiently large universal constant c0, we have

sup
v∈AK∩Sn−1

∣∣∣〈u, (
STS

m
− I) v〉

∣∣∣︸ ︷︷ ︸
Z2(AK)

≤ δ (2.59)

with probability at least 1− c1
(mn)2 − c1 exp

(
− c2

mδ2

R2(AK)+log(mn)

)
.

Taking them as given, the proof of Theorem 2 is easily completed. Based on a
combination of the two lemmas, for any δ ∈ [0, 1/2], we have

2
Z2(AK)

Z1(AK)
≤ 2δ

1− δ ≤ 4δ,

with probability at least 1− c1
(mn)2 − c1 exp

(
− c2

mδ2

R2(AK)+log(mn)

)
. The claimed form of

the bound follows via the rescaling δ 7→ 4δ, and suitable adjustments of the universal
constants.

In the following, we use Bn2 = {z ∈ Rn | ‖z‖2 ≤ 1} to denote the Euclidean ball of
radius one in Rn.

Proposition 2. Let {si}mi=1 be i.i.d. samples from a randomized orthogonal system.

Then for any subset Y ⊆ Bn2 and any δ ∈ [0, 1] and κ > 0, we have

sup
y∈Y

∣∣∣yT(STS
m
− I
)
y
∣∣

≤ 8
{
R(Y) +

√
2(1 + κ) log(mn)

} WS(Y)√
m

+
δ

2
(2.60)

with probability at least 1− c1
(mn)κ

− c1 exp
(
− c2

mδ2

R2(Y)+log(mn)

)
.
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2.3.3.1 Proof of Lemma 5

This lemma is an immediate consequence of Proposition 2 with Y = AK ∩ Sn−1

and κ = 2. In particular, with a sufficiently large constant c0, the lower bound (2.10)

on the projection dimension ensures that 8
{
R(Y) +

√
6 log(mn)

}
≤ δ

2
, from which

the claim follows.

2.3.3.2 Proof of Lemma 6

We again introduce the convenient shorthand Q = STS
m
− I. For any subset

Y ⊆ Bn2 , define the random variable Z0(Y) = supy∈Y |yTQy|. Note that Proposition 2
provides control on any such random variable. Now given the fixed unit-norm vector
u ∈ Rn, define the set

V =
1

2
{u+ v | v ∈ AK ∩ Sn−1}.

Since ‖u + v‖2 ≤ ‖u‖2 + ‖v‖2 = 2, we have the inclusion V ⊆ Bn2 . For any v ∈
AK ∩ Sn−1, the triangle inequality implies that∣∣uTQv∣∣

= 4
∣∣(u+ v

2

)T
Q(
u+ v

2
)
∣∣+
∣∣vTQv∣∣+

∣∣uTQu∣∣
≤ 4Z0(V) + Z0(AK ∩ Sn−1) + Z0({u}).

We now apply Proposition 2 in three times in succession with the sets Y = V , Y =
AK ∩ Sn−1 and Y = {u}, thereby finding that∣∣uTQv∣∣

≤ 1√
m

{
4Φ(V) + Φ(AK ∩ Sn−1) + Φ({u})

}
+ 3δ,

where we have defined the set-based function

Φ(Y) = 8
{
R(Y) +

√
6 log(mn)

}
WS(Y)

By inspection, we have R({u}) ≤ 1 ≤ 2R(AK∩Sn−1) and WS({u}) ≤ 1 ≤ 2WS(AK),
and hence Φ({u}) ≤ 2Φ(AK ∩ Sn−1). Moreover, by the triangle inequality, we have

R(V) ≤ Eε |〈ε, u〉|+ Eε
[

sup
v∈AK∩Sn−1

|〈ε, v〉|

≤ 1 + R(AK ∩ Sn−1) ≤ 4R(AK ∩ Sn−1).
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A similar argument yields WS(V) ≤ 3WS(AK), and putting together the pieces yields

Φ(V)

≤ 8
{

3R(AK ∩ Sn−1) +
√

6 log(mn)
}

(3WS(AK))

≤ 9Φ(AK ∩ Sn−1).

Putting together the pieces, we have shown that for any v ∈ AK ∩ Sn−1,

|uTQv| ≤ 39√
m

Φ(AK ∩ Sn−1) + 3δ.

Using the lower bound (2.10) on the projection dimension, we are have 39√
m

Φ(AK ∩
Sn−1) ≤ δ, and hence Z2(AK) ≤ 4δ with probability at least 1 − c1

(mn)2 − c1 exp
(
−

c2
mδ2

R2(AK)+log(mn)

)
. A rescaling of δ, along with suitable modification of the numerical

constants, yields the claim.

2.3.3.3 Proof of Proposition 2

We first fix the diagonal matrix D = diag(ν), and compute probabilities over
the randomness in the vectors s̃i =

√
nHTpi, where the picking vector pi is chosen

uniformly at random from the canonical basis in Rn. Using PP to denote probability
taken over these i.i.d. choices, we define an i.i.d. copy S ′ of the sketching matrix S.
Then following the classical symmetrization argument (see [118], p. 14) yields

PP
[
Z0 ≥ t] = PP

[
sup
z∈Y
|zT
(

1

m
STS − 1

m
ES ′TS ′

)
z|
]

≤ 4Pε,P
[

sup
z∈AK∩Sn−1

∣∣ 1

m

m∑
i=1

εi〈s̃i, Dz〉2
∣∣

︸ ︷︷ ︸
Z′0

≥ t

4

]
,

where {εi}mi=1 is an i.i.d. sequence of Rademacher variables. Now define the function
g : {−1, 1}d → R via

g(ν) : = Eε,P
[

sup
y∈Y

∣∣ 1

m

m∑
i=1

εi〈s̃i, diag(ν)y〉
∣∣]. (2.61)

Note that E[g(ν)] = WS(Y) by construction since the randomness in S consists of
the choice of ν and the picking matrix P . For a truncation level τ > 0 to be chosen,
define the events

G1 : =
{

max
j=1,...,n

sup
y∈Y
|〈√nhj, diag(ν)y〉| ≤ τ

}
,

G2 : =
{
g(ν) ≤WS(Y) +

δ

32τ

}
.
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To be clear, the only randomness involved in either event is over the Rademacher
vector ν ∈ {−1,+1}n. We then condition on the event G = G1∩G2 and its complement
to obtain

Pε,P,ν
[
Z ′0 ≥ t

]
= E

{
I[Z ′0 ≥ t] I[G] + I[Z ′0 ≥ t]I[Gc]

}
≤ Pε,P

[
Z ′0 ≥ t | ν ∈ G

]
Pν [G] + Pν [Gc].

We bound each of these two terms in turn.

Lemma 7. For any δ ∈ [0, 1], we have

Pε,P
[
Z ′0 ≥ 2τWS(Y) +

δ

16
| G
]

PD
[
G
]
≤ c1e

−c2mδ
2

τ2 . (2.62)

Lemma 8. With truncation level τ = R(Y) +
√

2(1 + κ) log(mn) for some κ > 0,

we have

Pν [Gc] ≤
1

(mn)κ
+ e−

mδ2

4096τ2 . (2.63)

See Section 2.6.2 for the proof of these two claims.

Combining Lemmas 7 and 8, we conclude that

PP,ν [Z ≥ 8τWS(Y) +
δ

2
]

≤ 4Pε,P,ν [Z ′0 ≥ 2τWS(Y) +
δ

8
]

≤ c1e
−c2mδ

2

τ2 +
1

(mn)κ
,

as claimed.

2.4 Techniques for sharpening bounds

In this section, we provide some technique for obtaining sharper bounds for ran-
domized orthonormal systems when the underlying tangent cone has particular struc-
ture. In particular, this technique can be used to obtain sharper bounds for subspaces,
`1-induced cones, as well as nuclear norm cones.
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2.4.1 Sharpening bounds for a subspace

As a warm-up, we begin by showing how to obtain sharper bounds when K is a
subspace. For instance, this allows us to obtain the result stated in Corollary 2(b).
Consider the random variable

Z(AK) := sup
z∈AK∩B2

∣∣zTQz∣∣
≥ sup

z∈AK∩Sn−1

∣∣zTQz∣∣, where Q = STS
m
− I.

For a parameter ε ∈ (0, 1) to be chosen, let {z1, . . . , zM} be an ε-cover of the set
AK ∩ B2. For any z ∈ AK ∩ B2, there is some j ∈ [M ] such that z = zj + ∆, where
‖∆‖2 ≤ ε. Consequently, we can write∣∣zTQz∣∣ ≤ |(zj)TQzj|+ 2|∆TQzj|+ |∆TQ∆| .

Since AK is a subspace, the difference vector ∆ also belongs to AK. Consequently,
we have

|∆TQzj|
≤ ε sup

z,z′∈AK∩B2

|zTQz′|

= ε sup
z,z′∈AK∩B2

1

2

∣∣∣4(z + z′

2

)T
Q

(
z + z′

2

)
− zTQz − (z′)TQz′

∣∣∣
≤ ε sup

z∈AK∩B2

4

2

∣∣∣zTQz∣∣∣+ ε sup
z∈AK∩B2

∣∣∣zTQz∣∣∣+ ε sup
z∈AK∩B2

∣∣∣zTQz∣∣∣
= 4ε sup

z∈AK∩B2

∣∣∣zTQz∣∣∣.
Noting also that |∆TQ∆| ≤ ε2Z(AK), we have shown that

(1− 4ε− ε2)Z(AK) ≤ max
j=1,...,M

|(zj)TQzj|.

Setting ε = 1/16 yields that Z(AK) ≤ 3
2

max
j=1,...,M

|(zj)TRzj|.

Having reduced the problem to a finite maximum, we can now make use of JL-
embedding property of a randomized orthogonal system proven in Theorem 3.1 of
Krahmer and Ward [80]: in particular, their theorem implies that for any collection
of M fixed points {z1, . . . , zM} and δ ∈ (0, 1), an ROS sketching matrix S ∈ Rm×n

satisfies the bounds

(1− δ)‖zj‖2
2 ≤

1

m
‖Szj‖2

2 ≤ (1 + δ)‖zj‖2
2 (2.64)

for all j = 1, . . . ,M
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with probability 1 − η if m ≥ c
δ2 log4(n) log(M

η
). For our chosen collection, we have

‖zj‖2 = 1 for all j = 1, . . . ,M , so that our discretization plus this bound implies that
Z(AK) ≤ 3

2
δ. Setting η = e−c2mδ

2
for a sufficiently small constant c2 yields that this

bound holds with probability 1− e−c2mδ2
.

The only remaining step is to relate logM to the Gaussian width of the set. By
the Sudakov minoration [85] and recalling that ε = 1/16, there is a universal constant
c > 0 such that √

logM ≤ cW(AK)
(i)

≤ c
√

rank(A),

where the final inequality (i) follows from our previous calculation (2.11) in the proof
of Corollary 2.

2.4.2 Reduction to finite maximum

The preceding argument suggests a general scheme for obtaining sharper results,
namely by reducing to finite maxima. In this section, we provide a more general form
of this scheme. It applies to random variables of the form

Z(Y) = sup
y∈Y

∣∣yT (ATSTSA
m

− I
)
y
∣∣, where Y ⊆ Rd. (2.65)

For any set Y , we define the first and second set differences as

∂[Y ] : = Y − Y =
{
y − y′ | y, y′ ∈ Y

}
, and

∂2[Y ] : = ∂[∂[Y ]].

Note that Y ⊆ ∂[Y ] whenever 0 ∈ Y . Let Π(Y) denote the projection of Y onto the
Euclidean sphere Sd−1.

With this notation, the following lemma shows how to reduce bounding Z(Y) to
taking a finite maximum over a cover of a related set.

Lemma 9. Consider a pair of sets Y0 and Y1 such that 0 ∈ Y0, the set Y1 is convex,

and for some constant α ≥ 1, we have

(a) Y1 ⊆ clconv(Y0), (2.66)

(b) ∂2[Y0] ⊆ αY1, and (2.67)

(c) Π(∂2[Y0]) ⊆ αY1. (2.68)
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Let {z1, . . . , zM} be an ε-covering of the set ∂[Y0] in Euclidean norm for some ε ∈

(0, 1
27α2 ]. Then for any symmetric matrix Q, we have

sup
z∈Y1

|zTQz| ≤ 3 max
j=1,...,M

|(zj)TQzj|. (2.69)

See Section 2.6.5 for the proof of this lemma. In the following subsections, we demon-
strate how this auxiliary result can be used to obtain sharper results for various
special cases.

2.4.3 Sharpening `1-based bounds

The sharpened bounds in Corollary 3 are based on the following lemma. It applies
to the tangent cone K of the `1-norm at a vector x∗ with `0-norm equal to k, as defined
in equation (2.17).

Lemma 10. For any δ ∈ (0, 1), a projection dimension lower bounded as m ≥
c0
δ2

(γ+
k (A)+1

γ−k (A)

)2
k log5(d) guarantees that

sup
v∈AK∩Sn−1

|v(
STS

m
− I)v| ≤ δ (2.70)

with probability at least 1− e−c1
mδ2

log4 n .

Proof. Any v ∈ AK ∩ Sn−1 has the form v = Au for some u ∈ K. Any u ∈ K

satisfies the inequality ‖u‖1 ≤ 2
√
k‖u‖2, so that by definition of the `1-restricted

eigenvalue (2.13), we are guaranteed that γ−k (A)‖u‖2
2 ≤ ‖Au‖2

2 = 1. Putting together

the pieces, we conclude that

sup
v∈AK∩Sn−1

|vT (STS − I)v|

≤ 1

γ−k (A)
sup
y∈Y1

∣∣∣y(ATSTSA
m

− ATA
)
y
∣∣∣

=
1

γ−k (A)
Z(Y1),
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where

Y1 = B2(1) ∩ B1(2
√
k)

=
{

∆ ∈ Rd | ‖∆‖1 ≤ 2
√
k, ‖∆‖2 ≤ 1

}
.

Now consider the set

Y0 = B2(3) ∩ B0(4k)

=
{

∆ ∈ Rd | ‖∆‖0 ≤ 4k, ‖∆‖2 ≤ 3
}
,

We claim that the pair (Y0,Y1) satisfy the conditions of Lemma 9 with α = 24. The

inclusion (2.66)(a) follows from Lemma 11 in the paper [87]; it is also a consequence

of a more general result to be stated in the sequel as Lemma 14. Turning to the

inclusion (2.66)(b), any vector v ∈ ∂2[Y0] can be written as y − y′ − (x − x′) with

x, x′, y, y′ ∈ Y0, whence ‖v‖0 ≤ 16k and ‖v‖2 ≤ 12. Consequently, we have ‖v‖1 ≤

4
√
k‖v‖2. Rescaling by 1/12 shows that ∂2[Y0] ⊆ 24Y1. A similar argument shows

that Π(∂2[Y0]) satisfies the same containment.

Consequently, applying Lemma 9 with the symmetric matrix R = ATSTSA
m

−ATA

implies that

Z(Y1) ≤ 3 max
j=1,...,M

|(zj)TRzj|,

where {z1, . . . , zM} is an 1
27α2 covering of the set ∂[Y0]. By the JL-embedding result

of Krahmer and Ward [80], taking m > c
δ2 log4 d log(M/η) samples suffices to ensure

that, with probability at least 1− η, we have

max
j=1,...,M

|(zj)TRzj| ≤ δ max
j=1,...,M

‖Azj‖2
2. (2.71)

By the Sudakov minoration [85] and recalling that ε = 1
27α2 is a fixed quantity, we

have √
logM ≤ c′W(Y0) ≤ c′′

√
k log d, (2.72)
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where the final step follows by an easy calculation. Since ‖zj‖2 = 1 for all j ∈ [M ],

we are guaranteed that maxj=1,...,M ‖Azj‖2
2 ≤ γ+

k (A), so that our earlier bound (2.71)

implies that as long as m > c
δ2k log(d) log4 n, we have

sup
v∈AK∩Sn−1

|v(
STS

m
− I)v| ≤ 3δ

γ+
k (A)

γ−k (A)

with high probability. Applying the rescaling δ 7→ γ−k (A)

γ+
k (A)

δ yields the claim.

Lemma 11. Let u ∈ Sd−1 be a fixed vector. Under the conditions of Lemma 10, we

have

max
v∈AK∩Sn−1

∣∣u(
STS

m
− I)v

∣∣ ≤ δ (2.73)

with probability at least 1− e−c1
mδ2

log4 n .

Proof. Throughout this proof, we make use of the convenient shorthand Q = STS
m
−I.

Choose the sets Y0 and Y1 as in Lemma 10. Any v ∈ AK ∩ Sn−1 can be written as

v = Az for some z ∈ K, and for which ‖z‖2 ≤ ‖Az‖2√
γ−k (A)

. Consequently, using the

definitions of Y0 and Y1, we have

max
v∈AK∩Sn−1

|uTQv|

≤ 1√
γ−k (A)

max
z∈Y1

∣∣uTQAz∣∣ (2.74)

≤ 1√
γ−k (A)

max
z∈clconv(Y0)

∣∣uTQAz∣∣
=

1√
γ−k (A)

max
z∈Y0

∣∣uTQAz∣∣, (2.75)

where the last equality follows since the supremum is attained at an extreme point

of Y0.

For a parameter ε ∈ (0, 1) to be chosen, let {z1, . . . , zM} be a ε-covering of the set
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Y0 in the Euclidean norm. Using this covering, we can write

sup
z∈Y0

∣∣uTQAz∣∣
≤ max

j∈[M ]

∣∣uTQAzj∣∣+ sup
∆∈∂[Y0], ‖∆‖2≤ε

∣∣uTQA∆
∣∣

= max
j∈[M ]

∣∣uTQAzj∣∣+ ε sup
∆∈Π(∂[Y0])

∣∣uTQA∆
∣∣

≤ max
j∈[M ]

∣∣uTQAzj∣∣+ εα sup
∆∈Y1

∣∣uTQA∆
∣∣.

Combined with equation (2.75), we conclude that

sup
z∈AK∩Sn−1

∣∣uTQAz∣∣
≤ 1

(1− εα)
√
γ−k (A)

max
j∈[M ]

∣∣uTQAzj∣∣. (2.76)

For each j ∈ [M ], we have the upper bound∣∣uTQAzj∣∣ ≤|(Azj + u)TQ(Azj + u)|

+ |(Azj)TQAzj|+ |uTQu|. (2.77)

Based on this decomposition, we apply the JL-embedding property [80] to ROS ma-

trices to the collection of 2M + 1 points given by ∪j∈[M ]{Azj, Azj +u, }∪{u}. Doing

so ensures that, for any fixed δ ∈ (0, 1), we have

max
j∈[M ]

∣∣uTQAzj∣∣ ≤ δ
(
‖Azj + u‖2

2 + ‖Azj‖2
2 + ‖u‖2

2

)
.

with probability 1− η as long as m > c0
δ2 log4(n) log

(
2M+1
η

)
. Now observe that

‖Azj + u‖2
2 + ‖Azj‖2

2 + ‖u‖2
2 ≤ 3‖Azj‖2

2 + 3‖u‖2
2

≤ 3
(
3γ+

k (A) + 1
)
,

where the final inequality follows by noting

max
z∈Y0

‖Az‖2
2 ≤ max

‖z‖2≤3

‖z‖1≤6
√
k

‖Az‖2
2 ≤ 3γ+

k (A) .
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Consequently, we have maxj∈[M ]

∣∣uTQAzj∣∣ ≤ 9δ
(
γ+
k (A) + 1

)
. Setting ε = 1

2α
, η =

e
−c1 mδ2

log4(n) and with our earlier bound (2.76), we conclude that

sup
v∈AK∩Sn−1

|uT (
STS

m
− I)Av| ≤ 18δ

(
γ+
k (A) + 1

)√
γ−k (A)

(2.78)

≤ 18δ

(
γ+
k (A) + 1

)
γ−k (A)

(2.79)

with probability 1 − e−c1
mδ2

log4 n where the last inequality follows from the assumption

γ−k (A) ≤ 1. Combined with the covering number estimate from equation (2.72), the

claim follows.

2.4.4 Sharpening nuclear norm bounds

We now show how the same approach may also be used to derive sharper bounds
on the projection dimension for nuclear norm regularization. As shown in Lemma 1
in the paper [101], for the nuclear norm ball |||X|||∗ ≤ R, the tangent cone at any rank
r matrix is contained within the set

K : =
{

∆ ∈ Rd1×d2 | |||∆|||∗ ≤ 2
√
r|||∆|||F

}
, (2.80)

and accordingly, our analysis focuses on the set AK ∩ Sn−1, where A : Rd1×d2 → Rn

is a general linear operator.

In analogy with the sparse restricted eigenvalues (2.13), we define the rank-
constrained eigenvalues of the general operator A : Rd1×d2 → Rn as follows:

γ−r (A) : = min
|||Z|||F=1
|||Z|||∗≤2

√
r

‖A(Z)‖2
2, and (2.81)

γ+
r (A) : = max

|||Z|||F=1
|||Z|||∗≤2

√
r

‖A(Z)‖2
2. (2.82)

Lemma 12. Suppose that the optimum X∗ has rank at most r. For any δ ∈ (0, 1), an

ROS sketch dimension lower bounded as m ≥ c0
δ2

(γ+
r (A)

γ−r (A)

)2
r(d1 + d2) log4(d1d2) ensures

that

sup
z∈AK∩Sn−1

|z(
STS

m
− I)z| ≤ δ (2.83)
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with probability at least 1− e−c1
mδ2

log4(d1 d2) .

Proof. For an integer r ≥ 1, consider the sets

Y1(r) = BF (1) ∩ B∗(2
√
r) (2.84a)

=
{

∆ ∈ Rd1×d2 | |||∆|||∗ ≤ 2
√
r, |||∆|||F ≤ 1

}
,

Y0(r) =
{
BF (3) ∩ Brank(4r)

}
(2.84b)

=
{

∆ ∈ Rn1×n2 | |||∆|||0 ≤ 4r, |||∆|||F ≤ 3
}
.

In order to apply Lemma 9 with this pair, we must first show that the inclusions (2.66)

hold. Inclusions (b) and (c) hold with α = 12, as in the preceding proof of Lemma 10.

Moreover, inclusion (a) also holds, but this is a non-trivial claim stated and proved

separately as Lemma 14 in Section 2.6.6.

Consequently, an application of Lemma 9 with the symmetric matrix Q =

A∗STSA
m

−A∗A in dimension d1d2 guarantees that

Z(Y1(r)) ≤ 3 max
j=1,...,M

|(zj)TQzj|,

where {z1, . . . , zM} is a 1
27α2 -covering of the set Y0(r). By arguing as in the preced-

ing proof of Lemma 10, the proof is then reduced to upper bounding the Gaussian

complexity of Y0(r). Letting G ∈ Rd1×d2 denote a matrix of i.i.d. N(0, 1) variates,

we have

W(Y0(r)) = E
[

sup
∆∈Y0(r)

〈〈G, ∆〉〉
]

≤ 6
√
rE[|||G|||2]

≤ 6
√
r
(√

d1 +
√
d2

)
,

where the final line follows from standard results [44] on the operator norms of Gaus-

sian random matrices.
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Lemma 13. Let u ∈ Sn−1 be a fixed vector. Under the assumptions of Lemma 12,

we have

sup
z∈AK∩Sn−1

|u(
STS

m
− I)z| ≤ δ (2.85)

with probability at least 1− e−c1
mδ2

log4(d1 d2) .

The proof parallels the proof of Lemma 11, and hence is omitted. Finally the sharp-
ened bounds follow from the above lemmas and the deterministic bound (2.48).

2.5 Discussion

In this chapter, we have analyzed random projection methods for computing ap-
proximation solutions to convex programs. Our theory applies to any convex pro-
gram based on a linear/quadratic objective functions, and involving arbitrary convex
constraint set. Our main results provide lower bounds on the projection dimension
that suffice to ensure that the optimal solution to sketched problem provides a δ-
approximation to the original problem. In the sub-Gaussian case, this projection
dimension can be chosen proportional to the square of the Gaussian width of the
tangent cone, and in many cases, the same results hold (up to logarithmic factors) for
sketches based on randomized orthogonal systems. This width depends both on the
geometry of the constraint set, and the associated structure of the optimal solution
to the original convex program. We also provided numerical simulations to illustrate
the corollaries of our theorems in various concrete settings.

It is also worthwhile to make some comments about the practical uses of our
guarantees. In some cases, our lower bounds on the required projection dimension m
involve quantities of the unknown optimal solution x∗—for instance, its sparsity in an
`1-constrained problem, or its rank as a matrix in nuclear norm constrained problem.
We note that it always suffices to choose m proportional to the dimension d, since
we always have W2(AK) ≤ rank(A) ≤ d for any constraint set and optimal solution.
However depending on the regularization parameters, i.e., radius of the constraint
set, or some additional information, a practitioner can choose a smaller value of m
depending on the application. In certain scenarios, it is known a priori that that
optimal solution x∗ has a bounded sparsity: for instance, this is the case in decoding
sparse least-squares superposition codes [10, 72], in which the sparsity ‖x∗‖0 relates
to the rate of the code. There is also a recent line of work in sparse learning literature
aimed towards bounding the support of the optimal solution x∗ before solving an
`1 penalized convex optimization problem. Such bounds can be computed in O(nd)
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time, and have been shown to be accurate for real datasets [58]. In conjunction with
such bounds, our theory provides practical choices for choosing m. Another possibility
is based on a form of cross-validation: over a sequence of projection dimensions, one
could solve a small subset of sketched problems, and choose a reliable dimension based
on the (lack of) variability in the subset. (Once the projection dimension satisfies our
bounds, our theory guarantees that the solutions from two independent sketches will
be extremely close with very high probability.) research.

2.6 Proofs of technical results

2.6.1 Technical details for Corollary 3

In this section, we show how the second term in the bound (2.16) follows as a
corollary of Theorem 2. From our previous calculations in the proof of Corollary 3(a),
we have

R(AK) ≤ Eε
[

sup
‖u‖1≤2

√
k‖u‖2

‖Au‖2=1

∣∣〈u, AT ε〉∣∣ (2.86)

≤ 2
√
k√

γ−k (A)
E[‖AT ε‖∞] (2.87)

≤ 6
√
k log d max

j=1,...,d

‖aj‖2√
γ−k (A)

. (2.88)

Turning to the S-Gaussian width, we have

WS(AK) = Eg,S
[

sup
‖u‖1≤2

√
k‖u‖2

‖Au‖2=1

∣∣∣〈g, SAu√
m
〉
∣∣∣]

≤ 2
√
k√

γ−k (A)
Eg,S‖

ATSTg√
m
‖∞.

Now the vector STg/
√
m is zero-mean Gaussian with covariance STS/m. Conse-

quently

Eg‖
ATSTg√

m
‖∞ ≤ 4 max

j=1,...d

‖Saj‖2√
m

√
log d.

Define the event E =
{‖Saj‖2√

m
≤ 2‖aj‖2 for j = 1, . . . , d

}
. By the JL embedding

theorem of Krahmer and Ward [80], as long as m > c0 log5(n) log(d), we can ensure
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that P[Ec] ≤ 1
n
. Since we always have ‖Saj‖2/

√
m ≤ ‖aj‖2

√
n, we can condition on

E and its complement, thereby obtaining that

Eg,S
[
‖A

TSTg√
m
‖∞
]

≤ 8 max
j=1,...d

‖aj‖2

√
log d+ 4P[Ec] √n max

j=1,...d
‖aj‖2

√
log d

≤ 12 max
j=1,...d

‖aj‖2

√
log d.

Combined with our earlier calculation, we conclude that

WS(AK) ≤
max
j=1,...,d

‖aj‖2√
γ−k (A)

√
k log d.

Substituting this upper bound, along with our earlier upper bound on the Rademacher
width (2.86), yields the claim as a consequence of Theorem 2.

2.6.2 Technical lemmas for Proposition 2

In this section, we prove the two technical lemmas, namely Lemma 7 and 8, that
underlie the proof of Proposition 2.

2.6.3 Proof of Lemma 7

Fixing some D = diag(ν) ∈ G, we first bound the deviations of Z ′0 above its
expectation using Talagrand’s theorem on empirical processes (e.g., see Massart [92]
for one version with reasonable constants). Define the random vector s̃ =

√
nh, where

h is a randomly selected row, as well as the functions gy(ε, s̃) = ε〈s̃, diag(ν)y〉2, we
have ‖gz‖∞ ≤ τ 2 for all y ∈ Y . Letting s̃ =

√
nh for a randomly chosen row h, we

have

var(gy) ≤ τ 2E[〈s̃, diag(ν)y〉2] = τ 2,

also uniformly over y ∈ Y . Thus, for any ν ∈ G, Talagrand’s theorem [92] implies
that

Pε,P
[
Z ′0 ≥ Eε,P [Z ′0] +

δ

16
] ≤ c1e

−c2mδ
2

τ2 for all δ ∈ [0, 1].
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It remains to bound the expectation. By the Ledoux-Talagrand contraction for
Rademacher processes [85], for any ν ∈ G, we have

Eε,P [Z ′0]
(i)

≤ 2 τ Eε,P
[

sup
y∈Y

∣∣ 1

m

m∑
i=1

εi〈si, y〉
∣∣]

(ii)

≤ 2τ
{
WS(Y) +

δ

32τ

}
= 2τWS(Y) +

δ

16
,

where inequality (i) uses the inclusion ν ∈ G1, and step (ii) relies on the inclusion
ν ∈ G2. Putting together the pieces yields the claim (2.62).

2.6.4 Proof of Lemma 8

It suffices to show that

P[Gc1] ≤ 1

(mn)κ
and P[Gc2] ≤ c1e

−c2mδ2

.

We begin by bounding P[Gc1]. Recall sTi =
√
npTi Hdiag(ν), where ν ∈ {−1,+1}n

is a vector of i.i.d. Rademacher variables. Consequently, we have 〈si, y〉 =∑n
j=1(
√
nHij)νjyj. Since |√nHij| = 1 for all (i, j), the random variable 〈si, y〉 is

equal in distribution to the random variable 〈ν, y〉. Consequently, we have the equal-
ity in distribution

sup
y∈Y

∣∣〈√npTi Hdiag(ν), y〉
∣∣ d

= sup
y∈Y

∣∣〈ν, y〉∣∣︸ ︷︷ ︸
f(ν)

.

Since this equality in distribution holds for each i = 1, . . . , n, the union bound guar-
antees that

P[Gc1] ≤ n P
[
f(ν) > τ

]
.

Accordingly, it suffices to obtain a tail bound on f . By inspection, the the function
f is convex in ν, and moreover |f(ν) − f(ν ′)| ≤ ‖ν − ν ′‖2, so that it is 1-Lipschitz.
Therefore, by standard concentration results [84], we have

P
[
f(ν) ≥ E[f(ν)] + t

]
≤ e−

t2

2 . (2.89)

By definition, E[f(ν)] = R(Y), so that setting t =
√

2(1 + κ) log(mn) yields the
bound tail bound P[Gc1] ≤ 1

(mn)κ
}, as claimed.
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Next we control the probability of the event Gc2. The function g from equa-
tion (2.61) is clearly convex in the vector ν; we now show that it is also Lipschitz
with constant 1/

√
m. Indeed, for any two vectors ν, ν ′ ∈ {−1, 1}d, we have

|g(ν)− g(ν ′)| ≤ Eε,P
[

sup
y∈Y
|〈 1

m

m∑
i=1

εidiag(ν − ν ′)√nHTpi, y〉|
]
≤ Eε,P‖(diag(ν − ν ′)) 1

m

m∑
i=1

εi
√
nHTpi‖2 ,

where the first inequality follows from triangle inequality and the definition (2.61)
and the second inequality follows from Cauchy-Schwartz inequality since ‖y‖2 ≤ 1.
Introducing the shorthand ∆ = diag(ν − ν ′) and s̃i =

√
nHTpi, Jensen’s inequality

yields

|g(ν)− g(ν ′)|2 ≤ 1

m2
Eε,P‖∆

m∑
i=1

εis̃i‖2
2

=
1

m2
trace

(
∆EP

[ m∑
i=1

s̃is̃
T
i

]
∆
)

=
1

m
trace

(
∆2 diag(EP

[ 1

m

m∑
i=1

s̃is̃
T
i

]))
.

By construction, we have |s̃ij| = 1 for all (i, j), whence diag(EP
[

1
m

∑m
i=1 s̃is̃

T
i

])
=

In×n. Since trace(∆2) = ‖ν − ν ′‖2
2, we have established that |g(ν)− g(ν ′)|2 ≤ ‖ν−ν′‖22

m
,

showing that g is a 1/
√
m-Lipschitz function. By standard concentration results [84],

we conclude that

P[Gc2] = P
[
g(ν) ≥ E[g(ν)] +

δ

32τ

]
≤ e−

mδ2

4096τ2 ,

as claimed.

2.6.5 Proof of Lemma 9

By the inclusion (2.66)(a), we have supz∈Y1
|zTQz| ≤ supz∈clconv(Y0) |zTQz|. Any

vector v ∈ conv(Y0) can be written as a convex combination of the form v =
∑T

i=1 αizi,
where the vectors {zi}Ti=1 belong to Y0 and the non-negative weights {αi}Ti=1 sum to
one, whence

|vTQv| ≤
T∑
i=1

T∑
j=1

αiαj
∣∣zTi Qzj∣∣

≤ 1

2
max
i,j∈[T ]

∣∣(zi + zj)
TQ(zi + zj)− zTi Qzi − zTj Qzj

∣∣
≤ 3

2
sup

z∈∂[Y0]

|zTQz|.
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Since this upper bound applies to any vector v ∈ conv(Y0), it also applies to any
vector in the closure, whence

sup
z∈Y1

|zTQz| ≤ sup
z∈clconv(Y0)

|zTQz| (2.90)

≤ 3

2
sup

z∈∂[Y0]

|zTQz|. (2.91)

Now for some ε ∈ (0, 1] to be chosen, let {z1, . . . , zM} be an ε-covering of the set
∂[Y0] in Euclidean norm. Any vector z ∈ ∂[Y0] can be written as z = zj + ∆ for
some j ∈ [M ], and some vector with Euclidean norm at most ε. Moreover, the vector
∆ ∈ ∂2[Y0], whence

sup
z∈∂[Y0]

|zTQz|

≤ max
j∈[M ]

|(zj)TQzj|+ 2 sup
∆∈∂2[Y0]
‖∆‖2≤ε

max
j∈[M ]

|∆TQzj|

+ sup
∆∈∂2[Y0]
‖∆‖2≤ε

|∆TQ∆|. (2.92)

Since zj ∈ Y0 ⊆ ∂2[Y0], we have

sup
z∈∂[Y0]

|zTQz|

≤ max
j∈[M ]

|(zj)TQzj|+ 2 sup
∆,∆′∈∂2[Y0]
‖∆‖2≤ε

|∆TQ∆′|

+ sup
∆∈∂2[Y0]
‖∆‖2≤ε

|∆TQ∆|

≤ max
j∈[M ]

|(zj)TQzj|+ 3 sup
∆,∆′∈∂2[Y0]
‖∆‖2≤ε

|∆TQ∆′|

≤ max
j∈[M ]

|(zj)TQzj|+ 3ε sup
∆∈Π(∂2[Y0])

∆′∈∂2[Y0]

|∆TQ∆′|

≤ max
j∈[M ]

|(zj)TQzj|+ 3ε sup
∆,∆′∈αY1

|∆TQ∆′|,

where the final inequality makes use of the inclusions (2.66)(b) and (c). Finally, we
observe that

sup
∆,∆′∈αY1

|∆TQ∆′| = sup
∆,∆′∈αY1

1

2
|(∆ + ∆′)TQ(∆ + ∆′)T −∆Q∆−∆′Q∆′|

≤ 1

2

{
4 + 1 + 1

}
sup

∆∈αY1

|∆TQ∆|

= 3α2 sup
z∈Y1

|zTQz|,
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where we have used the fact that ∆+∆′

2
∈ αY1, by convexity of the set αY1.

Putting together the pieces, we have shown that

sup
z∈Y1

|zTQz| ≤ 3

2

{
max
j∈[M ]

|(zj)TQzj|+ 9εα2 sup
∆∈Y1

|∆TQ∆|
}
.

Setting ε = 1
27α2 ensures that 9εα2 < 1/3, and hence the claim (2.69) follows after

some simple algebra.

2.6.6 A technical inclusion lemma

Recall the sets Y1(r) and Y0(r) previously defined in equations (2.84a) and (2.84b).

Lemma 14. We have the inclusion

Y1(r) ⊆ clconv
(
Y0(r)

)
, (2.93)

where clconv denotes the closed convex hull.

Proof. Define the support functions φ0(X) = sup∆∈Y0
〈〈X, ∆〉〉 and φ1(X) =

sup∆∈Y1
〈〈X, ∆〉〉 where 〈〈X, ∆〉〉 : = trace

(
XT∆

)
stands for the standard inner prod-

uct. It suffices to show that φ1(X) ≤ 3φ0(X) for each X ∈ Sd×d. The Frobenius

norm, nuclear norm and rank are all invariant to unitary transformation, so we may

take X to be diagonal without loss of generality. In this case, we may restrict the

optimization to diagonal matrices ∆, and note that

|||∆|||F =

√√√√ d∑
j=1

∆2
jj, and |||∆|||∗ =

d∑
j=1

|∆jj|.

Let S be the indices of the brc diagonal elements that are largest in absolute value.

It is easy to see that

φ0(X) =

√∑
j∈S

X2
jj.
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On the other hand, for any index k /∈ S, we have |Xkk| ≤ |Xjj| for j ∈ S, and hence

max
k/∈S
|Xkk| ≤

1

brc
∑
j∈S

|Xjj| ≤
1√
brc

√∑
j∈S

X2
jj

Using this fact, we can write

φ1(X) ≤ sup∑
j∈S ∆2

jj≤1

∑
j∈S

∆jjXjj

+ sup∑
k/∈S |∆kk|≤

√
r

∑
k/∈S

∆kkXkk

=

√∑
j∈S

X2
jj +
√
rmax
k/∈S
|Xkk|

≤
(
1 +

√
r√
brc
)√∑

j∈S

X2
jj

≤ 3φ0(X),

as claimed.
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Chapter 3

Iterative random projections and

information theoretical bounds

Randomized sketches are a well-established way of obtaining an approximate so-
lutions to a variety of problems, and there is a long line of work on their uses (e.g.,
see the books and papers by [139, 26, 90, 55, 73], as well as references therein). In
application to the least-squares problem we considered in the previous chapter,

xLS : = arg min
x∈C

f(x) where f(x) : = 1
2n
‖Ax− y‖2

2. (3.1)

sketching methods involves using a random matrix S ∈ Rm×n to project the data ma-
trix A and/or data vector y to a lower dimensional space (m� n), and then solving
the approximated least-squares problem. In this chapter we explore alternative ap-
proximation properties of various sketches from a statistical perspective. There are
many choices of random sketching matrices; see Section 3.1.1 for discussion of a few
possibilities. Given some choice of random sketching matrix S, the most well-studied
form of sketched least-squares is based on solving the problem

x̃ : = arg min
x∈C

{ 1

2n
‖SAx− Sy‖2

2

}
, (3.2)

in which the data matrix-vector pair (A, y) are approximated by their sketched ver-
sions (SA, Sy). Note that the sketched program is an m-dimensional least-squares
problem, involving the new data matrix SA ∈ Rm×d. Thus, in the regime n � d,
this approach can lead to substantial computational savings as long as the projec-
tion dimension m can be chosen substantially less than n. A number of authors
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(e.g., [123, 26, 55, 90, 114]) have investigated the properties of this sketched solu-
tion (3.2), and accordingly, we refer to to it as the classical least-squares sketch.

There are various ways in which the quality of the approximate solution x̃ can be
assessed. One standard way is in terms of the minimizing value of the quadratic cost
function f defining the original problem (3.1), which we refer to as cost approximation.
In terms of f -cost, the approximate solution x̃ is said to be δ-optimal if

f(xLS) ≤ f(x̃) ≤ (1 + δ)2f(xLS). (3.3)

For example, in the case of unconstrained least-squares (C = Rd) with n > d, it is
known that with Gaussian random sketches, a sketch size m % 1

δ2d suffices to guar-
antee that x̃ is δ-optimal with high probability (for instance, see the papers by [123]
and [90], as well as references therein). Similar guarantees can be established for
sketches based on sampling according to the statistical leverage scores [54, 52]. Sketch-
ing can also be applied to problems with constraints: [26] prove analogous results
for the case of non-negative least-squares considering the sketch in equation (3.2),
whereas our own past work [114] provides sufficient conditions for δ-accurate cost
approximation of least-squares problems over arbitrary convex sets based also on the
form in (3.2).

It should be noted, however, that other notions of “approximation goodness” are
possible. In many applications, it is the least-squares minimizer xLS itself—as opposed
to the cost value f(xLS)—that is of primary interest. In such settings, a more suitable
measure of approximation quality would be the `2-norm ‖x̃−xLS‖2, or the prediction
(semi)-norm

‖x̃− xLS‖A : =
1√
n
‖A(x̃− xLS)‖2. (3.4)

We refer to these measures as solution approximation.

Now of course, a cost approximation bound (3.3) can be used to derive guarantees
on the solution approximation error. However, it is natural to wonder whether or not,
for a reasonable sketch size, the resulting guarantees are “good”. For instance, using
arguments from [55], for the problem of unconstrained least-squares, it can be shown
that the same conditions ensuring a δ-accurate cost approximation also ensure that

‖x̃− xLS‖A ≤ δ
√
f(xLS). (3.5)

Given lower bounds on the singular values of the data matrix A, this bound also
yields control of the `2-error.

In certain ways, the bound (3.5) is quite satisfactory: given our normalized def-
inition (3.1) of the least-squares cost f , the quantity f(xLS) remains an order one
quantity as the sample size n grows, and the multiplicative factor δ can be reduced
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by increasing the sketch dimension m. But how small should δ be chosen? In many
applications of least-squares, each element of the response vector y ∈ Rn corresponds
to an observation, and so as the sample size n increases, we expect that xLS provides
a more accurate approximation to some underlying population quantity, say x∗ ∈ Rd.
As an illustrative example, in the special case of unconstrained least-squares, the accu-
racy of the least-squares solution xLS as an estimate of x∗ scales as ‖xLS−x∗‖A � σ2d

n
.

Consequently, in order for our sketched solution to have an accuracy of the same order
as the least-square estimate, we must set δ2 � σ2d

n
. Combined with our earlier bound

on the projection dimension, this calculation suggests that a projection dimension of
the order

m %
d

δ2
� n

σ2

is required. This scaling is undesirable in the regime n � d, where the whole point
of sketching is to have the sketch dimension m much lower than n.

Now the alert reader will have observed that the preceding argument was only
rough and heuristic. However, the first result of this chapter (Theorem 3) provides
a rigorous confirmation of the conclusion: whenever m � n, the classical least-
squares sketch (3.2) is sub-optimal as a method for solution approximation. Figure 3.1
provides an empirical demonstration of the poor behavior of the classical least-squares
sketch for an unconstrained problem.
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Figure 3.1: Plots of mean-squared error versus the row dimension n ∈

{100, 200, 400, . . . , 25600} for unconstrained least-squares in dimension d = 10.

This sub-optimality holds not only for unconstrained least-squares but also more
generally for a broad class of constrained problems. Actually, Theorem 3 is a more
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general claim: any estimator based only on the pair (SA, Sy)—an infinite family
of methods including the standard sketching algorithm as a particular case—is sub-
optimal relative to the original least-squares estimator in the regime m� n. We are
thus led to a natural question: can this sub-optimality be avoided by a different type
of sketch that is nonetheless computationally efficient? Motivated by this question,
our second main result (Theorem 4) is to propose an alternative method—known as
the iterative Hessian sketch—and prove that it yields optimal approximations to the
least-squares solution using a projection size that scales with the intrinsic dimension
of the underlying problem, along with a logarithmic number of iterations. The main
idea underlying iterative Hessian sketch is to obtain multiple sketches of the data
(S1A, ..., SNA) and iteratively refine the solution where N can be chosen logarithmic
in n.

The remainder of this chapter is organized as follows. In Section 3.1, we begin
by introducing some background on classes of random sketching matrices, before
turning to the statement of our lower bound (Theorem 3) on the classical least-squares
sketch (3.2). We then introduce the Hessian sketch, and show that an iterative version
of it can be used to compute ε-accurate solution approximations using log(1/ε)-steps
(Theorem 4). In Section 3.2, we illustrate the consequences of this general theorem for
various specific classes of least-squares problems, and we conclude with a discussion
in Section 3.3.

3.1 Main results and consequences

In this section, we begin with background on different classes of randomized
sketches, including those based on random matrices with sub-Gaussian entries, as
well as those based on randomized orthonormal systems and random sampling. In
Section 3.1.2, we prove a general lower bound on the solution approximation accu-
racy of any method that attempts to approximate the least-squares problem based
on observing only the pair (SA, Sy). This negative result motivates the investigation
of alternative sketching methods, and we begin this investigation by introducing the
Hessian sketch in Section 3.1.3. It serves as the basic building block of the iterative
Hessian sketch (IHS), which can be used to construct an iterative method that is
optimal up to logarithmic factors.

3.1.1 Types of randomized sketches

In the following section, we present a lower bound that applies to all the three
kinds of sketching matrices described in this thesis including Sub-Gaussian sketches,
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ROS sketches and random row sampling. For sketches based on random row sampling,
we assume that the weights are α-balanced, meaning that

max
j=1,...,n

pj ≤
α

n
(3.6)

for some constant α independent of n.

3.1.2 Information-theoretical sub-optimality of the classical

sketch

We begin by proving a lower bound on any estimator that is a function of the
pair (SA, Sy). In order to do so, we consider an ensemble of least-squares problems,
namely those generated by a noisy observation model of the form

y = Ax∗ + w, where w ∼ N(0, σ2In), (3.7)

the data matrix A ∈ Rn×d is fixed, and the unknown vector x∗ belongs to some
set C0 that is star-shaped around zero.1 In this case, the constrained least-squares
estimate xLS from equation (3.1) corresponds to a constrained form of maximum-
likelihood for estimating the unknown regression vector x∗. In Section 3.7, we provide
a general upper bound on the error E[‖xLS − x∗‖2

A] in the least-squares solution as
an estimate of x∗. This result provides a baseline against which to measure the
performance of a sketching method: in particular, our goal is to characterize the
minimal projection dimension m required in order to return an estimate x̃ with an
error guarantee ‖x̃− xLS‖A ≈ ‖xLS − x∗‖A. The result to follow shows that unless
m ≥ n, then any method based on observing only the pair (SA, Sy) necessarily has
a substantially larger error than the least-squares estimate. In particular, our result
applies to an arbitrary measurable function (SA, Sy) 7→ x†, which we refer to as an
estimator.

More precisely, our lower bound applies to any random matrix S ∈ Rm×n for
which

|||E
[
ST (SST )−1S

]
|||2 ≤ η

m

n
, (3.8)

where η is a constant independent of n and m, and |||A|||2 denotes the `2-operator
norm (maximum eigenvalue for a symmetric matrix). In Section 3.4.1, we show that
these conditions hold for various standard choices, including most of those discussed
in the previous section. Letting BA(1) denote the unit ball defined by the semi-norm

1Explicitly, this star-shaped condition means that for any x ∈ C0 and scalar t ∈ [0, 1], the point
tx also belongs to C0.
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‖ · ‖A, our lower bound also involves the complexity of the set C0 ∩ BA(1), which we
measure in terms of its metric entropy. In particular, for a given tolerance δ > 0, the
δ-packing number Mδ of the set C0∩BA(1) with respect to ‖ ·‖A is the largest number
of vectors {xj}Mj=1 ⊂ C0 ∩BA(1) such that ‖xj − xk‖A > δ for all distinct pairs j 6= k.

With this set-up, we have the following result:

Theorem 3 (Sub-optimality). For any random sketching matrix S ∈ Rm×n satisfying

condition (3.8), any estimator (SA, Sy) 7→ x† has MSE lower bounded as

sup
x∗∈C0

ES,w
[
‖x† − x∗‖2

A

]
≥ σ2

128 η

log(1
2
M1/2)

min{m,n} (3.9)

where M1/2 is the 1/2-packing number of C0 ∩ BA(1) in the semi-norm ‖ · ‖A.

The proof, given in Section 3.4, is based on a reduction from statistical minimax
theory combined with information-theoretic bounds. The lower bound is best under-
stood by considering some concrete examples:

Example 1 (Sub-optimality for ordinary least-squares). We begin with the simplest

case—namely, in which C = Rd. With this choice and for any data matrix A with

rank(A) = d, it is straightforward to show that the least-squares solution xLS has its

prediction mean-squared error at most

E
[
‖xLS − x∗‖2

A

]
-

σ2d

n
. (3.10a)

On the other hand, with the choice C0 = B2(1), we can construct a 1/2-packing with

M = 2d elements, so that Theorem 3 implies that any estimator x† based on (SA, Sy)

has its prediction MSE lower bounded as

ES,w
[
‖x̂− x∗‖2

A

]
%

σ2 d

min{m,n} . (3.10b)

Consequently, the sketch dimension m must grow proportionally to n in order

for the sketched solution to have a mean-squared error comparable to the original
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least-squares estimate. This is highly undesirable for least-squares problems in which

n � d, since it should be possible to sketch down to a dimension proportional to

rank(A) = d. Thus, Theorem 3 this reveals a surprising gap between the classical

least-squares sketch (3.2) and the accuracy of the original least-squares estimate.

In contrast, the sketching method we describe now, known as iterative Hessian

sketching (IHS), matches the optimal mean-squared error using a sketch of size d +

log(n) in each round, and a total of log(n) rounds; see Corollary 9 for a precise

statement. The red curves in Figure 3.1 show that the mean-squared errors (‖x̂−x∗‖2
2

in panel (a), and ‖x̂−x∗‖2
A in panel (b)) of the IHS method using this sketch dimension

closely track the associated errors of the full least-squares solution (blue curves).

Consistent with our previous discussion, both curves drop off at the n−1 rate.

Since the IHS method with log(n) rounds uses a total of T = log(n)
{
d+ log(n)}

sketches, a fair comparison is to implement the classical method with T sketches in

total. The black curves show the MSE of the resulting sketch: as predicted by our

theory, these curves are relatively flat as a function of sample size n. Indeed, in this

particular case, the lower bound (3.9)

ES,w
[
‖x̃− x∗‖2

A

]
%
σ2d

m
%

σ2

log2(n)
,

showing we can expect (at best) an inverse logarithmic drop-off. ♦

This sub-optimality can be extended to other forms of constrained least-squares esti-
mates as well, such as those involving sparsity constraints.

Example 2 (Sub-optimality for sparse linear models). We now consider the sparse

variant of the linear regression problem, which involves the `0-“ball”

B0(k) : =
{
x ∈ Rd |

d∑
j=1

I[xj 6= 0] ≤ k},
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corresponding to the set of all vectors with at most k non-zero entries. Fixing some

radius R ≥
√
k, consider a vector x∗ ∈ C0 : = B0(k) ∩ {‖x‖1 = R}, and suppose that

we make noisy observations of the form y = Ax∗ + w.

Given this set-up, one way in which to estimate x∗ is by by computing the least-

squares estimate xLS constrained2 to the `1-ball C = {x ∈ Rn | ‖x‖1 ≤ R}. This

estimator is a form of the Lasso [134]: as shown in Section 3.7.2, when the design

matrix A satisfies the restricted isometry property (see [34] for a definition), then it

has MSE at most

E
[
‖xLS − x∗‖2

A

]
-
σ2k log

(
ed
k

)
n

. (3.11a)

On the other hand, the 1
2
-packing number M of the set C0 can be lower bounded as

logM % k log
(
ed
k

)
; see Section 3.7.2 for the details of this calculation. Consequently,

in application to this particular problem, Theorem 3 implies that any estimator x†

based on the pair (SA, Sy) has mean-squared error lower bounded as

Ew,S
[
‖x† − x∗‖2

A

]
%
σ2k log

(
ed
k

)
min{m,n} . (3.11b)

Again, we see that the projection dimension m must be of the order of n in order

to match the mean-squared error of the constrained least-squares estimate xLS up to

constant factors. By contrast, in this special case, the sketching method we describe

in this section matches the error ‖xLS−x∗‖2 using a sketch dimension that scales only

as k log
(
ed
k

)
+ log(n); see Corollary 10 for the details of a more general result. ♦

Example 3 (Sub-optimality for low-rank matrix estimation). In the problem of mul-

tivariate regression, the goal is to estimate a matrix X∗ ∈ Rd1×d2 model based on

2This set-up is slightly unrealistic, since the estimator is assumed to know the radius R = ‖x∗‖1.
In practice, one solves the least-squares problem with a Lagrangian constraint, but the underlying
arguments are basically the same.
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observations of the form

Y = AX∗ +W, (3.12)

where Y ∈ Rn×d1 is a matrix of observed responses, A ∈ Rn×d1 is a data matrix, and

W ∈ Rn×d2 is a matrix of noise variables. One interpretation of this model is as a

collection of d2 regression problems, each involving a d1-dimensional regression vector,

namely a particular column of X∗. In many applications, among them reduced rank

regression, multi-task learning and recommender systems (e.g., [130, 154, 101, 31]), it

is reasonable to model the matrix X∗ as having a low-rank. Note a rank constraint on

matrix X be written as an `0-“norm” constraint on its singular values: in particular,

we have

rank(X) ≤ r if and only if

min{d1,d2}∑
j=1

I[γj(X) > 0] ≤ r,

where γj(X) denotes the jth singular value of X. This observation motivates

a standard relaxation of the rank constraint using the nuclear norm |||X|||∗ : =∑min{d1,d2}
j=1 γj(X).

Accordingly, let us consider the constrained least-squares problem

XLS = arg min
X∈Rd1×d2

{1

2
|||Y − AX|||2F

}
such that |||X|||∗ ≤ R, (3.13)

where ||| · |||F denotes the Frobenius norm on matrices, or equivalently the Euclidean

norm on its vectorized version. Let C0 denote the set of matrices with rank r <

1
2

min{d1, d2}, and Frobenius norm at most one. In this case, we show in Section 3.7

that the constrained least-squares solution XLS satisfies the bound

E
[
‖XLS −X∗‖2

A

]
-
σ2r (d1 + d2)

n
. (3.14a)

On the other hand, the 1
2
-packing number of the set C0 is lower bounded as

logM % r
(
d1 + d2

)
, so that Theorem 3 implies that any estimator X† based on the
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pair (SA, SY ) has MSE lower bounded as

Ew,S
[
‖X† −X∗‖2

A

]
%
σ2r
(
d1 + d2

)
min{m,n} . (3.14b)

As with the previous examples, we see the sub-optimality of the sketched approach

in the regime m < n. In contrast, for this class of problems, our sketching method

matches the error ‖XLS −X∗‖A using a sketch dimension that scales only as {r(d1 +

d2) + log(n)} log(n). See Corollary 11 for further details.

♦

3.1.3 Introducing the Hessian sketch

As will be revealed during the proof of Theorem 3, the sub-optimality is in part
due to sketching the response vector—i.e., observing Sy instead of y. It is thus natural
to consider instead methods that sketch only the data matrix A, as opposed to both
the data matrix and data vector y. In abstract terms, such methods are based on
observing the pair

(
SA,ATy

)
∈ Rm×d × Rd. One such approach is what we refer to

as the Hessian sketch—namely, the sketched least-squares problem

x̂ : = arg min
x∈C

{ 1

2
‖SAx‖2

2 − 〈ATy, x〉︸ ︷︷ ︸
gS(x)

}
. (3.15)

As with the classical least-squares sketch (3.2), the quadratic form is defined by the
matrix SA ∈ Rm×d, which leads to computational savings. Although the Hessian
sketch on its own does not provide an optimal approximation to the least-squares
solution, it serves as the building block for an iterative method that can obtain an
ε-accurate solution approximation in log(1/ε) iterations.

In controlling the error with respect to the least-squares solution xLS the set of
possible descent directions {x− xLS | x ∈ C} plays an important role. In particular,
we now define the transformed tangent cone

KLS

A =
{
v ∈ Rd | v = t A(x− xLS) for some t ≥ 0 and x ∈ C

}
. (3.16)

Note that the error vector v̂ : = A(x̂ − xLS) of interest belongs to this cone. Our
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approximation bound is a function of the quantities

Z1(AK)(S) : = inf
v∈KLS

A ∩Sn−1

1

m
‖Sv‖2

2 and (3.17a)

Z2(AK)(S) : = sup
v∈KLS

A ∩Sn−1

∣∣∣〈u, (
STS

m
− In) v〉

∣∣∣, (3.17b)

where u is a fixed unit-norm vector. These variables played an important role in our
previous analysis [114] of the classical sketch (3.2). The following bound applies in a
deterministic fashion to any sketching matrix.

Proposition 3 (Bounds on Hessian sketch). For any convex set C and any sketching

matrix S ∈ Rm×n, the Hessian sketch solution x̂ satisfies the bound

‖x̂− xLS‖A ≤
Z2(AK)

Z1(AK)
‖xLS‖A. (3.18)

For random sketching matrices, Proposition 3 can be combined with probabilistic
analysis to obtain high probability error bounds. For a given tolerance parameter
ρ ∈ (0, 1

2
], consider the “good event”

E(ρ) : =

{
Z1(AK) ≥ 1− ρ, and Z2(AK) ≤ ρ

2

}
. (3.19a)

Conditioned on this event, Proposition 3 implies that

‖x̂− xLS‖A ≤
ρ

2 (1− ρ)
‖xLS‖A ≤ ρ‖xLS‖A, (3.19b)

where the final inequality holds for all ρ ∈ (0, 1/2].

Thus, for a given family of random sketch matrices, we need to choose the projec-
tion dimension m so as to ensure the event Eρ holds for some ρ. For future reference,
let us state some known results for the cases of sub-Gaussian and ROS sketching
matrices. We use (c0, c1, c2) to refer to numerical constants, and we let D = dim(C)
denote the dimension of the space C. In particular, we have D = d for vector-valued
estimation, and D = d1d2 for matrix problems.

Our bounds involve the “size” of the cone KLS
A previously defined (3.16), as mea-

sured in terms of its Gaussian width

W(KLS

A ) : = Eg
[

sup
v∈KLS

A ∩B2(1)

|〈g, v〉|
]
, (3.20)

where g ∼ N(0, In) is a standard Gaussian vector. With this notation, we have the
following:
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Lemma 15 (Sufficient conditions on sketch dimension [114]).

(a) For sub-Gaussian sketch matrices, given a sketch size m > c0
ρ2W2(KLS

A ), we have

P
[
E(ρ)] ≥ 1− c1e

−c2mδ2

. (3.21a)

(b) For randomized orthogonal system (ROS) sketches (sampled with replacement)

over the class of self-bounding cones, given a sketch size m > c0 log4(D)
ρ2 W2(KLS

A ),

we have

P
[
E(ρ)] ≥ 1− c1e

−c2 mρ2

log4(D) . (3.21b)

The class of self-bounding cones is described more precisely in Lemma 8 of [114].
It includes among other special cases the cones generated by unconstrained least-
squares (Example 1), `1-constrained least squares (Example 2), and least squares
with nuclear norm constraints (Example 3). For these cones, given a sketch size

m > c0 log4(D)
ρ2 W2(KLS

A ), the Hessian sketch applied with ROS matrices is guaranteed
to return an estimate x̂ such that

‖x̂− xLS‖A ≤ ρ‖xLS‖A (3.22)

with high probability. More recent work by [25] has established sharp bounds for
various forms of sparse Johnson-Lindenstrauss transforms [73]. As a corollary of
their results, a form of the guarantee (3.22) also holds for such random projections.

Returning to the main thread, the bound (3.22) is an analogue of our earlier
bound (3.5) for the classical sketch with

√
f(xLS) replaced by ‖xLS‖A. For this reason,

we see that the Hessian sketch alone suffers from the same deficiency as the classical
sketch: namely, it will require a sketch size m � n in order to mimic the O(n−1)
accuracy of the least-squares solution.

3.1.4 Iterative Hessian sketch

Despite the deficiency of the Hessian sketch itself, it serves as the building block for
an novel scheme—known as the iterative Hessian sketch—that can be used to match
the accuracy of the least-squares solution using a reasonable sketch dimension. Let
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begin by describing the underlying intuition. As summarized by the bound (3.19b),
conditioned on the good event E(ρ), the Hessian sketch returns an estimate with
error within a ρ-factor of ‖xLS‖A, where xLS is the solution to the original unsketched
problem. As show by Lemma 15, as long as the projection dimension m is sufficiently
large, we can ensure that E(ρ) holds for some ρ ∈ (0, 1/2) with high probability.
Accordingly, given the current iterate xt, suppose that we can construct a new least-
squares problem for which the optimal solution is xLS − xt. Applying the Hessian
sketch to this problem will then produce a new iterate xt+1 whose distance to xLS

has been reduced by a factor of ρ. Repeating this procedure N times will reduce the
initial approximation error by a factor ρN .

With this intuition in place, we now turn a precise formulation of the iterative
Hessian sketch. Consider the optimization problem

û = arg min
u∈C−xt

{1

2
‖Au‖2

2 − 〈AT (y − Axt), u〉
}
, (3.23)

where xt is the iterate at step t. By construction, the optimum to this problem
is given by û = xLS − xt. We then apply to Hessian sketch to this optimization
problem (3.23) in order to obtain an approximation xt+1 = xt + û to the original
least-squares solution xLS that is more accurate than xt by a factor ρ ∈ (0, 1/2). Re-
cursing this procedure yields a sequence of iterates whose error decays geometrically
in ρ.

Formally, the iterative Hessian sketch algorithm takes the following form:

Iterative Hessian sketch (IHS): Given an iteration number N ≥ 1:

(1) Initialize at x0 = 0.

(2) For iterations t = 0, 1, 2, . . . , N − 1, generate an independent sketch matrix
St+1 ∈ Rm×n, and perform the update

xt+1 = arg min
x∈C

{ 1

2m
‖St+1A(x− xt)‖2

2 − 〈AT (y − Axt), x〉
}
. (3.24)

(3) Return the estimate x̂ = xN .

The following theorem summarizes the key properties of this algorithm. It involves the
sequence {Z1(AK)(St), Z2(AK)(St)}Nt=1, where the quantities Z1(AK) and Z2(AK)
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were previously defined in equations (3.17a) and (3.17b). In addition, as a general-
ization of the event (3.19a), we define the sequence of “good” events

E t(ρ) : =

{
Z1(AK)(St) ≥ 1− ρ, and Z2(AK)(St) ≤ ρ

2

}
for t = 1, . . . , N . (3.25)

With this notation, we have the following guarantee:

Theorem 4 (Guarantees for iterative Hessian sketch). The final solution x̂ = xN

satisfies the bound

‖x̂− xLS‖A ≤
{ N∏
t=1

Z2(AK)(St)

Z1(AK)(St)

}
‖xLS‖A. (3.26a)

Consequently, conditioned on the event ∩Nt=1E t(ρ) for some ρ ∈ (0, 1/2), we have

‖x̂− xLS‖A ≤ ρN ‖xLS‖A. (3.26b)

Note that for any ρ ∈ (0, 1/2), then event E t(ρ) implies that Z2(AK)(St)
Z1(AK)(St)

≤ ρ, so that

the bound (3.26b) is an immediate consequence of the product bound (3.26a).

Remark. For unconstrained problems, St = S can be generated once and fixed for
all iterations and the guarantees of the theorem still hold. This follows from a simple
modification of the proof of Theorem 4.

Lemma 15 can be combined with the union bound in order to ensure that the
compound event ∩Nt=1E t(ρ) holds with high probability over a sequence of N iterates,
as long as the sketch size is lower bounded as m ≥ c0

ρ2W2(KLS
A ) log4(D)+ logN . Based

on the bound (3.26b), we then expect to observe geometric convergence of the iterates.

In order to test this prediction, we implemented the IHS algorithm using Gaussian
sketch matrices, and applied it to an unconstrained least-squares problem based on a
data matrix with dimensions (d, n) = (200, 6000) and noise variance σ2 = 1. As shown
in Section 3.7.2, the Gaussian width of KLS

A is proportional to d, so that Lemma 15
shows that it suffices to choose a projection dimension m % γd for a sufficiently
large constant γ. Panel (a) of Figure 3.2 illustrates the resulting convergence rate of
the IHS algorithm, measured in terms of the error ‖xt − xLS‖A, for different values
γ ∈ {4, 6, 8}. As predicted by Theorem 4, the convergence rate is geometric (linear
on the log scale shown), with the rate increasing as the parameter γ is increased.

Assuming that the sketch dimension has been chosen to ensure geometric con-
vergence, Theorem 4 allows us to specify, for a given target accuracy ε ∈ (0, 1), the
number of iterations required.
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Figure 3.2: Simulations of the IHS algorithm for an unconstrained least-squares prob-

lem with noise variance σ2 = 1, and of dimensions (d, n) = (200, 6000).

Corollary 8. Fix some ρ ∈ (0, 1/2), and choose a sketch dimension m >

c0 log4(D)
ρ2 W2(KLS

A ). If we apply the IHS algorithm for N(ρ, ε) : = 1 + log(1/ε)
log(1/ρ)

steps,

then the output x̂ = xN satisfies the bound

‖x̂− xLS‖A
‖xLS‖A

≤ ε (3.27)

with probability at least 1− c1N(ρ, ε)e
−c2 mρ2

log4(D) .

This corollary is an immediate consequence of Theorem 4 combined with Lemma 15,
and it holds for both ROS and sub-Gaussian sketches. (In the latter case, the addi-
tional log(D) terms may be omitted.) Combined with bounds on the width function
W(KLS

A ), it leads to a number of concrete consequences for different statistical models,
as we illustrate in the following section.

One way to understand the improvement of the IHS algorithm over the classical
sketch is as follows. Fix some error tolerance ε ∈ (0, 1). Disregarding logarithmic
factors, our previous results [114] on the classical sketch then imply that a sketch size
m % ε−2 W2(KLS

A ) is sufficient to produce a ε-accurate solution approximation. In
contrast, Corollary 8 guarantees that a sketch size m % log(1/ε)W2(KLS

A ) is sufficient.
Thus, the benefit is the reduction from ε−2 to log(1/ε) scaling of the required sketch
size.
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It is worth noting that in the absence of constraints, the least-squares problem
reduces to solving a linear system, so that alternative approaches are available. For
instance, one can use a randomized sketch to obtain a preconditioner, which can then
be used within the conjugate gradient method. As shown in past work [122, 14], two-
step methods of this type can lead to same reduction of ε−2 dependence to log(1/ε).
However, a method of this type is very specific to unconstrained least-squares, whereas
the procedure described here is generally applicable to least-squares over any compact,
convex constraint set.

3.1.5 Computational and space complexity

Let us now make a few comments about the computational and space complex-
ity of implementing the IHS algorithm using the fast Johnson-Lindenstrauss (ROS)
sketches, such as those based on the fast Hadamard transform. For a given sketch
size m, the IHS algorithm requires O(nd log(m)) basic operations to compute the
data sketch St+1A at iteration t; in addition, it requires O(nd) operations to compute
AT (y−Axt). Consequently, if we run the algorithm for N iterations, then the overall
complexity scales as

O
(
N
(
nd log(m) + C(m, d)

))
, (3.28)

where C(m, d) is the complexity of solving the m × d dimensional problem in the
update (3.24). Also note that, in problems where the data matrix A is sparse, St+1A
can be computed in time proportional to the number of non-zero elements in A
using Gaussian sketching matrices. The space used by the sketches SA scales as
O(md). To be clear, note that the IHS algorithm also requires access to the data via
matrix-vector multiplies for forming AT (y − Axt). In limited memory environments,
computing matrix-vector multiplies is considerably easier via distributed or interactive
computation. For example, they can be efficiently implemented for multiple large
datasets which can be loaded to memory only one at a time.

If we want to obtain estimates with accuracy ε, then we need to perform N �
log(1/ε) iterations in total. Moreover, for ROS sketches, we need to choose m %
W2(KLS

A ) log4(d). Consequently, it only remains to bound the Gaussian width W in
order to specify complexities that depend only on the pair (n, d), and properties of
the solution xLS.

For an unconstrained problem with n > d, the Gaussian width can be bounded
as W2(KLS

A ) - d, and the complexity of the solving the sub-problem (3.24) can be
bounded as d3. Thus, the overall complexity of computing an ε-accurate solution
scales as O(nd log(d) + d3) log(1/ε), and the space required is O(d2).
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As will be shown in Section 3.2.2, in certain cases, the cone KLS
A can have sub-

stantially lower complexity than the unconstrained case. For instance, if the solution
is sparse, say with k non-zero entries and the least-squares program involves an `1-
constraint, then we have W2(KLS

A ) - k log d. Using a standard interior point method
to solve the sketched problem, the total complexity for obtaining an ε-accurate solu-
tion is upper bounded by O((nd log(k)+k2d log2(d)) log(1/ε)). Although the sparsity
k is not known a priori, there are bounds on it that can be computed in O(nd) time
(for instance, see [58]).

3.2 Consequences for concrete models

In this section, we derive some consequences of Corollary 8 for particular classes of
least-squares problems. Our goal is to provide empirical confirmation of the sharpness
of our theoretical predictions, namely the minimal sketch dimension required in order
to match the accuracy of the original least-squares solution.

3.2.1 Unconstrained least squares

We begin with the simplest case, namely the unconstrained least-squares problem
(C = Rd). For a given pair (n, d) with n > d, we generated a random ensemble of
least-square problems according to the following procedure:

• first, generate a random data matrix A ∈ Rn×d with i.i.d. N(0, 1) entries

• second, choose a regression vector x∗ uniformly at random from the sphere Sd−1

• third, form the response vector y = Ax∗ +w, where w ∼ N(0, σ2In) is observa-
tion noise with σ = 1.

As discussed following Lemma 15, for this class of problems, taking a sketch di-
mension m % d

ρ2 guarantees ρ-contractivity of the IHS iterates with high probability.
Consequently, we can obtain a ε-accurate approximation to the original least-squares
solution by running roughly log(1/ε)/ log(1/ρ) iterations.

Now how should the tolerance ε be chosen? Recall that the underlying reason for
solving the least-squares problem is to approximate x∗. Given this goal, it is natural
to measure the approximation quality in terms of ‖xt−x∗‖A. Panel (b) of Figure 3.2
shows the convergence of the iterates to x∗. As would be expected, this measure of
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error levels off at the ordinary least-squares error

‖xLS − x∗‖2
A �

σ2d

n
≈ 0.10.

Consequently, it is reasonable to set the tolerance parameter proportional to σ2 d
n
,

and then perform roughly 1 + log(1/ε)
log(1/ρ)

steps. The following corollary summarizes the
properties of the resulting procedure:

Corollary 9. For some given ρ ∈ (0, 1/2), suppose that we run the IHS algorithm

for

N = 1 + d log
√
n ‖x

LS‖A
σ

log(1/ρ)
e

iterations using m = c0
ρ2d projections per round. Then the output x̂ satisfies the bounds

‖x̂− xLS‖A ≤
√
σ2d

n
, and ‖xN − x∗‖A ≤

√
σ2d

n
+ ‖xLS − x∗‖A (3.29)

with probability greater than 1− c1N e
−c2 mρ2

log4(d) .

In order to confirm the predicted bound (3.29) on the error ‖x̂ − xLS‖A, we per-
formed a second experiment. Fixing n = 100d, we generated T = 20 random least
squares problems from the ensemble described above with dimension d ranging over
{32, 64, 128, 256, 512}. By our previous choices, the least-squares estimate should

have error ‖xLS − x∗‖2 ≈
√

σ2d
n

= 0.1 with high probability, independently of the

dimension d. This predicted behavior is confirmed by the blue bars in Figure 3.3; the
bar height corresponds to the average over T = 20 trials, with the standard errors
also marked. On these same problem instances, we also ran the IHS algorithm using
m = 6d samples per iteration, and for a total of

N = 1 + d
log
(√

n
d

)
log 2

e = 4 iterations.

Since ‖xLS−x∗‖A �
√

σ2d
n
≈ 0.10, Corollary 9 implies that with high probability, the

sketched solution x̂ = xN satisfies the error bound

‖x̂− x∗‖2 ≤ c′0

√
σ2d

n

for some constant c′0 > 0. This prediction is confirmed by the green bars in Figure 3.3,
showing that ‖x̂− x∗‖A ≈ 0.11 across all dimensions. Finally, the red bars show the
results of running the classical sketch with a sketch dimension of (6 × 4)d = 24d
sketches, corresponding to the total number of sketches used by the IHS algorithm.
Note that the error is roughly twice as large.
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Figure 3.3: Simulations of the IHS algorithm for unconstrained least-squares.

3.2.2 Sparse least-squares

We now turn to a study of an `1-constrained form of least-squares, referred to
as the Lasso or relaxed basis pursuit program [36, 134]. In particular, consider the
convex program

xLS = arg min
‖x‖1≤R

{1

2
‖y − Ax‖2

2

}
, (3.30)

where R > 0 is a user-defined radius. This estimator is well-suited to the problem of
sparse linear regression, based on the observation model y = Ax∗ + w, where x∗ has
at most k non-zero entries, and A ∈ Rn×d has i.i.d. N(0, 1) entries. For the purposes
of this illustration, we assume3 that the radius is chosen such that R = ‖x∗‖1.

Under these conditions, the proof of Corollary 10 shows that a sketch size m ≥
γ k log

(
ed
k

)
suffices to guarantee geometric convergence of the IHS updates. Panel

(a) of Figure 3.4 illustrates the accuracy of this prediction, showing the resulting
convergence rate of the the IHS algorithm, measured in terms of the error ‖xt−xLS‖A,
for different values γ ∈ {2, 5, 25}. As predicted by Theorem 4, the convergence rate is
geometric (linear on the log scale shown), with the rate increasing as the parameter
γ is increased.

3In practice, this unrealistic assumption of exactly knowing ‖x∗‖1 is avoided by instead con-
sidering the `1-penalized form of least-squares, but we focus on the constrained case to keep this
illustration as simple as possible.
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Figure 3.4: Plots of the log error ‖xt−xLS‖2 (a) and ‖xt−x∗‖2 (b) versus the iteration

number t.

As long as n % k log
(
ed
k

)
, it also follows as a corollary of Proposition 4 that

‖xLS − x∗‖2
A -

σ2k log
(
ed
k

)
n

. (3.31)

with high probability. This bound suggests an appropriate choice for the tolerance
parameter ε in Theorem 4, and leads us to the following guarantee.

Corollary 10. For the stated random ensemble of sparse linear regression prob-

lems, suppose that we run the IHS algorithm for N = 1 + d log
√
n
‖xLS‖A

σ

log(1/ρ)
e iterations

using m = c0
ρ2k log

(
ed
k

)
projections per round. Then with probability greater than

1− c1N e
−c2 mρ2

log4(d) , the output x̂ satisfies the bounds

‖x̂− xLS‖A ≤

√
σ2k log

(
ed
k

)
n

and ‖xN − x∗‖A ≤

√
σ2k log

(
ed
k

)
n

+ ‖xLS − x∗‖A.

(3.32)

In order to verify the predicted bound (3.32) on the error ‖x̂−xLS‖A, we performed
a second experiment. Fixing n = 100k log

(
ed
k

)
. we generated T = 20 random least

squares problems (as described above) with the regression dimension ranging as d ∈
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Figure 3.5: Simulations of the IHS algorithm for `1-constrained least-squares

{32, 64, 128, 256}, and sparsity k = d2
√
de. Based on these choices, the least-squares

estimate should have error ‖xLS − x∗‖A ≈
√

σ2k log
(
ed
k

)
n

= 0.1 with high probability,

independently of the pair (k, d). This predicted behavior is confirmed by the blue
bars in Figure 3.5; the bar height corresponds to the average over T = 20 trials, with
the standard errors also marked.

On these same problem instances, we also ran the IHS algorithm using N = 4
iterations with a sketch size m = 4k log

(
ed
k

)
. Together with our earlier calculation

of ‖xLS − x∗‖A, Corollary 9 implies that with high probability, the sketched solution
x̂ = xN satisfies the error bound

‖x̂− x∗‖A ≤ c0

√
σ2k log

(
ed
k

)
n

(3.33)

for some constant c0 ∈ (1, 2]. This prediction is confirmed by the green bars in
Figure 3.5, showing that ‖x̂ − x∗‖A % 0.11 across all dimensions. Finally, the green
bars in Figure 3.5 show the error based on using the naive sketch estimate with a total
of M = Nm random projections in total; as with the case of ordinary least-squares,
the resulting error is roughly twice as large. We also note that a similar bound also
applies to problems where a parameter constrained to unit simplex is estimated, such
as in portfolio analysis and density estimation [91, 111].
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3.2.3 Some larger-scale experiments

In order to further explore the computational gains guaranteed by IHS, we per-
formed some larger scale experiments on sparse regression problems, with the sample
size n ranging over the set {212, 213, ..., 219} with a fixed input dimension d = 500. As
before, we generate observations from the linear model y = Ax∗ + w, where x∗ has
at most k non-zero entries, and each row of the data matrix A ∈ Rn×d is distributed
i.i.d. according to a N(1d,Σ) distribution. Here the d-dimensional covariance matrix
Σ has entries Σjk = 2×0.9|j−k|, so that the columns of the matrix A will be correlated.
Setting a sparsity k = d3 log(d)e, we chose the unknown regression vector x∗ with its
support uniformly random with entries ± 1√

k
with equal probability.

Baseline: In order to provide a baseline for comparison, we used the homotopy
algorithm—that is, the Lasso modification of the LARS updates [110, 57]—to solve
the original `1 constrained problem with `1-ball radius R =

√
k. The homotopy algo-

rithm is especially efficient when the Lasso solution xLS is sparse. Since the columns
of A are correlated in our ensemble, standard first-order algorithms—among them
iterative soft-thresholding, FISTA, spectral projected gradient methods, as well as
(block) coordinate descent methods, see, e.g., [20, 149]—performed poorly relative to
the homotopy algorithm in terms of computation time; see [18] for observations of
this phenomenon in past work.

IHS implementation: For comparison, we implemented the IHS algorithm with a
projection dimension m = b4k log(d)c. After projecting the data, we then used the
homotopy method to solve the projected sub-problem at each step. In each trial, we
ran the IHS algorithm for N = dlog ne iterations.

Table 3.1 provides a summary comparison of the running times for the baseline
method (homotopy method on the original problem), versus the IHS method (running
time for computing the iterates using the homotopy method), and IHS method plus
sketching time. Note that with the exception of the smallest problem size (n = 4096),
the IHS method including sketching time is the fastest, and it is more than two times
faster for large problems. The gains are somewhat more significant if we remove the
sketching time from the comparison.

One way in which to measure the quality of the least-squares solution xLS as an
estimate of x∗ is via its mean-squared (in-sample) prediction error ‖xLS − x∗‖2

A =
‖A(xLS−x∗)‖22

n
. For the random ensemble of problems that we have generated, the

bound (3.33) guarantees that the squared error should decay at the rate 1/n as
the sample size n is increased with the dimension d and sparsity k fixed. Figure 3.6
compares the prediction MSE of xLS versus the analogous quantity ‖x̂− x∗‖2

A for the
sketched solution. Note that the two curves are essentially indistinguishable, showing
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Samples n 4096 8192 16384 32768 65536 131072 262144 524288
Baseline 0.0840 0.1701 0.3387 0.6779 1.4083 2.9052 6.0163 12.0969

IHS 0.0783 0.0993 0.1468 0.2174 0.3601 0.6846 1.4748 3.1593
IHS+Sketch 0.0877 0.1184 0.1887 0.3222 0.5814 1.1685 2.5967 5.5792

Table 3.1: Running time comparison in seconds of the Baseline (homotopy method

applied to original problem), IHS (homotopy method applied to sketched subprob-

lems), and IHS plus sketching time. Each running time estimate corresponds to an

average over 300 independent trials of the random sparse regression model described

in the main text.

that the sketched solution provides an estimate of x∗ that is as good as the original
least-squares estimate.

3.2.4 Matrix estimation with nuclear norm constraints

We now turn to the study of nuclear-norm constrained form of least-squares matrix
regression. This class of problems has proven useful in many different application
areas, among them matrix completion, collaborative filtering, multi-task learning and
control theory (e.g., [59, 153, 15, 121, 102]). In particular, let us consider the convex
program

XLS = arg min
X∈Rd1×d2

{1

2
|||Y − AX|||2F

}
such that |||X|||∗ ≤ R, (3.34)

where R > 0 is a user-defined radius as a regularization parameter.

3.2.4.1 Simulated data

Recall the linear observation model previously introduced in Example 3: we ob-
serve the pair (Y,A) linked according to the linear Y = AX∗+W , where the unknown
matrix X∗ ∈ Rd1×d2 is an unknown matrix of rank r. The matrix W is observation
noise, formed with i.i.d. N(0, σ2) entries. This model is a special case of the more
general class of matrix regression problems [102]. As shown in Section 3.7.2, if we
solve the nuclear-norm constrained problem with R = |||X∗|||∗, then it produces a so-

lution such that E
[
|||XLS −X∗|||2F] - σ2 r (d1+d2)

n
. The following corollary characterizes

79



9 11 13 15 17 19

0

0.2

0.4

0.6

0.8

1

1.2

Prediction MSE versus sample size

P
re

d
ic

ti
o
n
 M

S
E

Sample size

 

 

Original

IHS

Figure 3.6: Plots of the mean-squared prediction errors
‖A(x̃−x∗)‖22

n
versus the sample

size n ∈ 2{9,10,...,19} for the original least-squares solution (x̃ = xLS in blue) versus the

sketched solution (x̂ = xLS in red).

the sketch dimension and iteration number required for the IHS algorithm to match
this scaling up to a constant factor.

Corollary 11 (IHS for nuclear-norm constrained least squares). Suppose that we run

the IHS algorithm for N = 1 + d log
√
n
‖XLS‖A

σ

log(1/ρ)
e iterations using m = c0ρ

2r
(
d1 + d2

)
projections per round. Then with probability greater than 1 − c1N e

−c2 mρ2

log4(d1d2) , the

output XN satisfies the bound

‖XN −X∗‖A ≤

√
σ2r
(
d1 + d2

)
n

+ ‖XLS −X∗‖A. (3.35)

We have also performed simulations for low-rank matrix estimation, and observed
that the IHS algorithm exhibits convergence behavior qualitatively similar to that
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shown in Figures 3.3 and 3.5. Similarly, panel (a) of Figure 3.8 compares the per-
formance of the IHS and classical methods for sketching the optimal solution over a
range of row sizes n. As with the unconstrained least-squares results from Figure 3.1,
the classical sketch is very poor compared to the original solution whereas the IHS
algorithm exhibits near optimal performance.

3.2.4.2 Application to multi-task learning

To conclude, let us illustrate the use of the IHS algorithm in speeding up the
training of a classifier for facial expressions. In particular, suppose that our goal is
to separate a collection of facial images into different groups, corresponding either
to distinct individuals or to different facial expressions. One approach would be
to learn a different linear classifier (a 7→ 〈a, x〉) for each separate task, but since
the classification problems are so closely related, the optimal classifiers are likely
to share structure. One way of capturing this shared structure is by concatenating
all the different linear classifiers into a matrix, and then estimating this matrix in
conjunction with a nuclear norm penalty [9, 11].

Figure 3.7: Japanese Female Facial Expression (JAFFE) Database: The JAFFE

database consists of 213 images of 7 different emotional facial expressions (6 basic

facial expressions + 1 neutral) posed by 10 Japanese female models.

In more detail, we performed a simulation study using the The Japanese Female
Facial Expression (JAFFE) database [89]. It consists of N = 213 images of 7 facial
expressions (6 basic facial expressions + 1 neutral) posed by 10 different Japanese
female models; see Figure 3.7 for a few example images. We performed an approx-
imately 80 : 20 split of the data set into ntrain = 170 training and ntest = 43 test
images respectively. Then we consider classifying each facial expression and each
female model as a separate task which gives a total of dtask = 17 tasks. For each
task j = 1, . . . , dtask, we construct a linear classifier of the form a 7→ sign(〈a, xj〉),
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where a ∈ Rd denotes the vectorized image features given by Local Phase Quantiza-
tion [108]. In our implementation, we fixed the number of features d = 32. Given
this set-up, we train the classifiers in a joint manner, by optimizing simultaneously
over the matrix X ∈ Rd×dtask with the classifier vector xj ∈ Rd as its jth column.
The image data is loaded into the matrix A ∈ Rntrain×d, with image feature vector
ai ∈ Rd in column i for i = 1, . . . , ntrain. Finally, the matrix Y ∈ {−1,+1}ntrain×dtask

encodes class labels for the different classification problems. These instantiations of
the pair (Y,X) give us an optimization problem of the form (3.34), and we solve it
over a range of regularization radii R.

More specifically, in order to verify the classification accuracy of the classifier
obtained by IHT algorithm, we solved the original convex program, the classical
sketch based on ROS sketches of dimension m = 100, and also the corresponding IHS
algorithm using ROS sketches of size 20 in each of 5 iterations. In this way, both the
classical and IHS procedures use the same total number of sketches, making for a fair
comparison. We repeated each of these three procedures for all choices of the radius
R ∈ {1, 2, 3, . . . , 12}, and then applied the resulting classifiers to classify images in
the test dataset. For each of the three procedures, we calculated the classification
error rate, defined as the total number of mis-classified images divided by ntest×dtask.
Panel (b) of Figure 3.8 plots the resulting classification errors versus the regularization
parameter. The error bars correspond to one standard deviation calculated over the
randomness in generating sketching matrices. The plots show that the IHS algorithm
yields classifiers with performance close to that given by the original solution over
a range of regularizer parameters, and is superior to the classification sketch. The
error bars also show that the IHS algorithm has less variability in its outputs than
the classical sketch.

3.3 Discussion

In chapter, we focused on the problem of solution approximation (as opposed
to cost approximation) for a broad class of constrained least-squares problem. We
began by showing that the classical sketching methods are sub-optimal, from an
information-theoretic point of view, for the purposes of solution approximation. We
then proposed a novel iterative scheme, known as the iterative Hessian sketch, for
deriving ε-accurate solution approximations. We proved a general theorem on the
properties of this algorithm, showing that the sketch dimension per iteration need
grow only proportionally to the statistical dimension of the optimal solution, as mea-
sured by the Gaussian width of the tangent cone at the optimum. By taking log(1/ε)
iterations, the IHS algorithm is guaranteed to return an ε-accurate solution approxi-
mation with exponentially high probability.
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Figure 3.8: Simulations of the IHS algorithm for nuclear-norm constrained problems

on the JAFFE dataset: Mean-squared error versus the row dimension n ∈ [10, 100]

for recovering a 20 × 20 matrix of rank r2, using a sketch dimension m = 60 (a).

Classification error rate versus regularization parameter R ∈ {1, . . . , 12}, with error

bars corresponding to one standard deviation over the test set (b).

In addition to these theoretical results, we also provided empirical evaluations that
reveal the sub-optimality of the classical sketch, and show that the IHS algorithm pro-
duces near-optimal estimators. Finally, we applied our methods to a problem of facial
expression using a multi-task learning model applied to the JAFFE face database.
We showed that IHS algorithm applied to a nuclear-norm constrained program pro-
duces classifiers with considerably better classification accuracy compared to the naive
sketch.

There are many directions for further research, but we only list here some of
them. The idea behind iterative sketching can also be applied to problems beyond
minimizing a least-squares objective function subject to convex constraints. Examples
include penalized forms of regression, e.g., see the recent work [151], and various other
cost functions. An important class of such problems are `p-norm forms of regression,
based on the convex program

min
x∈Rd
‖Ax− y‖pp for some p ∈ [1,∞].

The case of `1-regression (p = 1) is an important special case, known as robust
regression; it is especially effective for data sets containing outliers [69]. Recent
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work [37] has proposed to find faster solutions of the `1-regression problem using the
classical sketch (i.e., based on (SA, Sy)) but with sketching matrices based on Cauchy
random vectors. Our iterative technique might be useful in obtaining sharper bounds
for solution approximation in this setting as well. In the following section we will
show how these result can be generalized to sketching for general convex objective
functions.

3.4 Proof of lower bounds

This section is devoted to the verification of condition (3.8) for different model
classes, followed by the proof of Theorem 3.

3.4.1 Verification of condition (3.8)

We verify the condition for three different types of sketches.

3.4.1.1 Gaussian sketches:

First, let S ∈ Rm×n be a random matrix with i.i.d. Gaussian entries. We use the
singular value decomposition to write S = UΛV T where both U and V are orthonor-
mal matrices of left and right singular vectors. By rotation invariance, the columns
{vi}mi=1 are uniformly distributed over the sphere Sn−1. Consequently, we have

ES
[
ST
(
SST )−1S

]
= E

m∑
i=1

viv
T
i =

m

n
In, (3.36)

showing that condition (3.8) holds with η = 1.

3.4.1.2 ROS sketches (sampled without replacement):

In this case, we have S =
√
nPHD, where P ∈ Rm×n is a random picking matrix

with each row being a standard basis vector sampled without replacement. We then
have SST = nIm and also EP [P TP ] = m

n
In, so that

ES[ST (SST )−1S] = ED,P [DHTP TPHD] = ED[DHT (
m

n
In)HD] =

m

n
In,

showing that the condition holds with η = 1.
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3.4.1.3 Weighted row sampling:

Finally, suppose that we sample m rows independently using a distribution {pj}nj=1

on the rows of the data matrix that is α-balanced (3.6). Letting R ⊆ {1, 2, . . . , n} be
the subset of rows that are sampled, and let Nj be the number of times each row is
sampled. We then have

E
[
ST
(
SST )−1S

]
=
∑
j∈R

E[eje
T
j ] = D,

where D ∈ Rn×n is a diagonal matrix with entries Djj = P[j ∈ R]. Since the trials
are independent, the jth row is sampled at least once in m trials with probability
qj = 1− (1− pj)m, and hence

ES
[
ST
(
SST )−1S

]
= diag

(
{1− (1− pi)m}mi=1

)
�
(
1− (1− p∞)m

)
In � mp∞,

where p∞ = maxj∈[n] pj. Consequently, as long as the row weights are α-balanced (3.6)
so that p∞ ≤ α

n
, we have

|||ES
[
ST
(
SST )−1S

]
|||2 ≤ α

m

n

showing that condition (3.8) holds with η = α, as claimed.

3.4.2 Proof of Theorem 3

Let {zj}Mj=1 be a 1/2-packing of C0 ∩ BA(1) in the semi-norm ‖ · ‖A, and for a
fixed δ ∈ (0, 1/4), define xj = 4δzj. Sine 4δ ∈ (0, 1), the star-shaped assumption
guarantees that each xj belongs to C0. We thus obtain a collection of M vectors in
C0 such that

2δ ≤ 1√
n
‖A(xj − xk)‖2︸ ︷︷ ︸
‖xj−xk‖A

≤ 8δ for all j 6= k.

Letting J be a random index uniformly distributed over {1, . . . ,M}, suppose that
conditionally on J = j, we observe the sketched observation vector Sy = SAxj +Sw,
as well as the sketched matrix SA. Conditioned on J = j, the random vector Sy
follows a N(SAxj, σ2SST ) distribution, denoted by Pxj . We let Y denote the resulting
mixture variable, with distribution 1

M

∑M
j=1 Pxj .

Consider the multiway testing problem of determining the index J based on
observing Y . With this set-up, a standard reduction in statistical minimax
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(e.g., [23, 152]) implies that, for any estimator x†, the worst-case mean-squared error
is lower bounded as

sup
x∗∈C

ES,w‖x† − x∗‖2
A ≥ δ2 inf

ψ
P[ψ(Y ) 6= J ], (3.37)

where the infimum ranges over all testing functions ψ. Consequently, it suffices to
show that the testing error is lower bounded by 1/2.

In order to do so, we first apply Fano’s inequality [39] conditionally on the sketch-
ing matrix S to see that

P[ψ(Y ) 6= J ] = ES
{
P[ψ(Y ) 6= J | S]

}
≥ 1− ES

[
IS(Y ; J)

]
+ log 2

logM
, (3.38)

where IS(Y ; J) denotes the mutual information between Y and J with S fixed. Our
next step is to upper bound the expectation ES[I(Y ; J)].

Letting D(Pxj ‖ Pxk) denote the Kullback-Leibler divergence between the distri-
butions Pxj and Pxk , the convexity of Kullback-Leibler divergence implies that

IS(Y ; J) =
1

M

M∑
j=1

D(Pxj ‖
1

M

M∑
k=1

Pxk) ≤
1

M2

M∑
j,k=1

D(Pxj ‖ Pxk).

Computing the KL divergence for Gaussian vectors yields

IS(Y ; J) ≤ 1

M2

M∑
j,k=1

1

2σ2
(xj − xk)TAT

[
ST (SST )−1S

]
A(xj − xk).

Thus, using condition (3.8), we have

ES[I(Y ; J)] ≤ 1

M2

M∑
j,k=1

m η

2nσ2
‖A(xj − xk)‖2

2 ≤
32mη

σ2
δ2,

where the final inequality uses the fact that ‖xj − xk‖A ≤ 8δ for all pairs.

Combined with our previous bounds (3.37) and (3.38), we find that

sup
x∗∈C

E‖x̂− x∗‖2
2 ≥ δ2

{
1− 32mη δ2

σ2 + log 2

logM

}
.

Setting δ = σ2 log(M/2)
64 ηm

yields the lower bound (3.9).
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3.5 Proof of Proposition 3

Since x̂ and xLS are optimal and feasible, respectively, for the Hessian sketch
program (3.15), we have

〈ATST
(
SAx̂− y

)
, xLS − x̂〉 ≥ 0 (3.39a)

Similarly, since xLS and x̂ are optimal and feasible, respectively, for the original least
squares program

〈AT (AxLS − y), x̂− xLS〉 ≥ 0. (3.39b)

Adding these two inequalities and performing some algebra yields the basic inequality

1

m
‖SA∆‖2

2 ≤
∣∣∣(AxLS)T

(
In −

STS

m

)
A∆
∣∣∣. (3.40)

Since AxLS is independent of the sketching matrix and A∆ ∈ KLS
A , we have

1

m
‖SA∆‖2

2 ≥ Z1(AK) ‖A∆‖2
2, and

∣∣∣(AxLS)T
(
In − STS

)
A∆
∣∣∣ ≤ Z2(AK)‖AxLS‖2 ‖A∆‖2,

using the definitions (3.17a) and (3.17b) of the random variables Z1(AK) and Z2(AK)
respectively. Combining the pieces yields the claim.

3.6 Proof of Theorem 4

It suffices to show that, for each iteration t = 0, 1, 2, . . ., we have

‖xt+1 − xLS‖A ≤
Z2(AK)(St+1)

Z1(AK)(St+1)
‖xt − xLS‖A. (3.41)

The claimed bounds (3.26a) and (3.26b) then follow by applying the bound (3.41)
successively to iterates 1 through N .

For simplicity in notation, we abbreviate St+1 to S and xt+1 to x̂. Define the error
vector ∆ = x̂− xLS. With some simple algebra, the optimization problem (3.24) that
underlies the update t+ 1 can be re-written as

x̂ = arg min
x∈C

{ 1

2m
‖SAx‖2

2 − 〈AT ỹ, x〉
}
,

where ỹ : = y −
[
I − STS

m

]
Axt. Since x̂ and xLS are optimal and feasible respectively,

the usual first-order optimality conditions imply that

〈AT S
TS

m
Ax− AT ỹ, xLS − x̂〉 ≥ 0.
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As before, since xLS is optimal for the original program, we have

〈AT (AxLS − ỹ +
[
I − STS

m

]
Axt), x̂− xLS〉 ≥ 0.

Adding together these two inequalities and introducing the shorthand ∆ = x̂ − xLS

yields

1

m
‖SA∆‖2

2 ≤
∣∣∣(A(xLS − xt)T

[
I − STS

m

]
A∆
∣∣∣ (3.42)

Note that the vector A(xLS−xt) is independent of the randomness in the sketch matrix
St+1. Moreover, the vector A∆ belongs to the cone K, so that by the definition of
Z2(AK)(St+1), we have∣∣∣(A(xLS − xt)T

[
I − STS

m

]
A∆
∣∣∣ ≤ ‖A(xLS − xt)‖2 ‖A∆‖2 Z2(AK)(St+1). (3.43a)

Similarly, note the lower bound

1

m
‖SA∆‖2

2 ≥ ‖A∆‖2
2 Z1(AK)(St+1). (3.43b)

Combining the two bounds (3.43a) and (3.43b) with the earlier bound (3.42) yields
the claim (3.41).

3.7 Maximum likelihood estimator and examples

In this section, we a general upper bound on the error of the constrained least-
squares estimate. We then use it (and other results) to work through the calculations
underlying Examples 1 through 3 from Section 3.1.2.

3.7.1 Upper bound on MLE

The accuracy of xLS as an estimate of x∗ depends on the “size” of the star-shaped
set

K(x∗) =
{
v ∈ Rd | v =

t√
n
A(x− x∗) for some t ∈ [0, 1] and x ∈ C

}
. (3.44)

When the vector x∗ is clear from context, we use the shorthand notation K∗ for this
set. By taking a union over all possible x∗ ∈ C0, we obtain the set K : =

⋃
x∗∈C0

K(x∗),
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which plays an important role in our bounds. The complexity of these sets can be
measured of their localized Gaussian widths. For any radius ε > 0 and set Θ ⊆ Rn,
the Gaussian width of the set Θ ∩ B2(ε) is given by

Wε(Θ) : = Eg
[

sup
θ∈Θ
‖θ‖2≤ε

|〈w, θ〉|
]
, (3.45a)

where g ∼ N(0, In×n) is a standard Gaussian vector. Whenever the set Θ is star-
shaped, then it can be shown that, for any σ > 0 and positive integer `, the inequality

Wε(Θ)

ε
√
`
≤ ε

σ
(3.45b)

has a smallest positive solution, which we denote by ε`(Θ;σ). We refer the reader
to [19] for further discussion of such localized complexity measures and their proper-
ties.

The following result bounds the mean-squared error associated with the constrained
least-squares estimate:

Proposition 4. For any set C containing x∗, the constrained least-squares esti-

mate (3.1) has mean-squared error upper bounded as

Ew
[
‖xLS − x∗‖2

A

]
≤ c1

{
ε2
n

(
K∗
)

+
σ2

n

}
≤ c1

{
ε2
n

(
K
)

+
σ2

n

}
. (3.46)

We provide the proof of this claim in Section 3.7.3.

3.7.2 Detailed calculations for illustrative examples

In this section, we collect together the details of calculations used in our illustrative
examples from Section 3.1.2. In all cases, we make use tof the convenient shorthand
Ã = A/

√
n.

3.7.2.1 Unconstrained least squares: Example 1

By definition of the Gaussian width, we have

Wδ(K∗) = Eg
[

sup
‖Ã (x−x∗)‖2≤δ

|〈g, Ã(x− x∗)〉|
]
≤ δ
√
d

since the vector Ã(x − x∗) belongs to a subspace of dimension rank(A) = d. The
claimed upper bound (3.10a) thus follows as a consequence of Proposition 4.
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3.7.2.2 Sparse vectors: Example 2

The RIP property of order 8k implies that

‖∆‖2
2

2

(i)

≤ ‖Ã∆‖2
2

(ii)

≤ 2‖∆‖2
2 for all vectors with ‖∆‖0 ≤ 8k,

a fact which we use throughout the proof. By definition of the Gaussian width, we
have

Wδ(K∗) = Eg
[

sup
‖x‖1≤‖x∗‖1
‖Ã(x−x∗)‖2≤δ

|〈g, Ã(x− x∗)〉|
]
.

Since x∗ ∈ B0(k), it can be shown (e.g., see the proof of Corollary 3 in [114]) that
for any vector ‖x‖1 ≤ ‖x∗‖1, we have ‖x− x∗‖1 ≤ 2

√
k‖x− x∗‖2. Thus, it suffices to

bound the quantity

F (δ; k) : = Eg
[

sup
‖∆‖1≤2

√
k‖∆‖2

‖Ã∆‖2≤δ

|〈g, Ã∆〉|
]
.

By Lemma 11 in [87], we have

B1(
√
s) ∩ B2(1) ⊆ 3 clconv

{
B0(s) ∩ B2(1)

}
,

where clconv denotes the closed convex hull. Applying this lemma with s = 4k, we
have

F (δ; k) ≤ 3
[

sup
‖∆‖0≤4k

‖Ã∆‖2≤δ

|〈g, Ã∆〉|
]
≤ 3E

[
sup

‖∆‖0≤4k
‖∆‖2≤2δ

|〈g, Ã∆〉|
]
,

using the lower RIP property (i). By the upper RIP property, for any pair of vectors
∆,∆′ with `0-norms at most 4k, we have

var
(
〈g, Ã∆〉 − 〈g, Ã∆′〉

)
≤ 2‖∆−∆′‖2

2 = 2 var
(
〈g, ∆−∆′〉

)
Consequently, by the Sudakov-Fernique comparison [85], we have

E
[

sup
‖∆‖0≤4k
‖∆‖2≤2δ

|〈g, Ã∆〉|
]
≤ 2E

[
sup

‖∆‖0≤4k
‖∆‖2≤2δ

|〈g, ∆〉|
]
≤ c δ

√
k log

(ed
k

)
,

where the final inequality standard results on Gaussian widths [63]. All together, we
conclude that

ε2
n(K∗;σ) ≤ c1σ

2k log
(
ed
k

)
n

.

Combined with Proposition 4, the claimed upper bound (3.11a) follows.

In the other direction, a straightforward argument (e.g., [119]) shows that there is
a universal constant c > 0 such that logM1/2 ≥ c k log

(
ed
k

)
, so that the stated lower

bound follows from Theorem 3.
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3.7.2.3 Low rank matrices: Example 3:

By definition of the Gaussian width, we have width, we have

Wδ(K∗) = Eg

[
sup

|||Ã (X−X∗)|||F≤δ
|||X|||∗≤|||X∗|||∗

|〈〈ÃTG, (X −X∗)〉〉|
]
,

where G ∈ Rn×d2 is a Gaussian random matrix, and 〈〈C, D〉〉 denotes the trace inner
product between matrices C and D. Since X∗ has rank at most r, it can be shown
that |||X−X∗|||∗ ≤ 2

√
r|||X−X∗|||F; for instance, see Lemma 1 in [101]. Recalling that

γmin(Ã) denotes the minimum singular value, we have

|||X −X∗|||F ≤
1

γmin(Ã)
|||Ã(X −X∗)|||F ≤

δ

γmin(Ã)
.

Thus, by duality between the nuclear and operator norms, we have

Eg

[
sup

|||Ã (X−X∗)|||F≤δ
|||X|||∗≤|||X∗|||∗

|〈〈G, Ã(X −X∗)〉〉|
]
≤ 2

√
r δ

γmin(A)
E
[
|||ÃTG|||2].

Now consider the matrix ATG ∈ Rd1×d2 . For any fixed pair of vectors
(u, v) ∈ Sd1−1 × Sd2−1, the random variable Z = uT ÃTGv is zero-mean Gaussian

with variance at most γ2
max(Ã). Consequently, by a standard covering argument in

random matrix theory [140], we have E
[
|||ÃTG|||2] - γmax(Ã)

(√
d1 + d2

)
. Putting

together the pieces, we conclude that

ε2
n � σ2 γ

2
max(A)

γ2
min(A)

r (d1 + d2),

so that the upper bound (3.14a) follows from Proposition 4.

3.7.3 Proof of Proposition 4

Throughout this proof, we adopt the shorthand εn = εn(K∗). Our strategy is to
prove the following more general claim: for any t ≥ εn, we have

PS,w
[
‖xLS − x∗‖2

A ≥ 16tεn
]
≤ c1e

−c2 ntεn
σ2 . (3.47)

A simple integration argument applied to this tail bound implies the claimed
bound (3.46) on the expected mean-squared error.
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Since x∗ and xLS are feasible and optimal, respectively, for the optimization prob-
lem (3.1), we have the basic inequality

1

2n
‖y − AxLS‖2

2 ≤
1

2n
‖y − Ax∗‖2 =

1

2n
‖w‖2

2.

Introducing the shorthand ∆ = xLS − x∗ and re-arranging terms yields

1

2
‖∆‖2

A =
1

2n
‖A∆‖2

2 ≤
σ

n

∣∣ n∑
i=1

〈g, A∆〉
∣∣, (3.48)

where g ∼ N(0, In) is a standard normal vector.

For a given u ≥ εn, define the “bad” event

B(u) : =
{
∃ z ∈ C − x∗ with ‖z‖A ≥ u, and |σ

n

∑n
i=1 gi(Az)i| ≥ 2u ‖z‖A

}
The following lemma controls the probability of this event:

Lemma 16. For all u ≥ εn, we have P[B(u)] ≤ e−
nu2

2σ2 .

Returning to prove this lemma momentarily, let us prove the bound (3.47). For
any t ≥ εn, we can apply Lemma 16 with u =

√
tεn to find that

P[Bc(
√
tεn)] ≥ 1− e−ntεn2σ2 .

If ‖∆‖A <
√
t εn, then the claim is immediate. Otherwise, we have ‖∆‖A ≥

√
t εn.

Since ∆ ∈ C − x∗, we may condition on Bc(√tεn) so as to obtain the bound

∣∣σ
n

n∑
i=1

gi(A∆)i
∣∣ ≤ 2 ‖∆‖A

√
tεn.

Combined with the basic inequality (3.48), we see that

1

2
‖∆‖2

A ≤ 2 ‖∆‖A
√
tεn, or equivalently ‖∆‖2

A ≤ 16tεn,

a bound that holds with probability greater than 1− e−ntεn2σ2 as claimed.

It remains to prove Lemma 16. Our proof involves the auxiliary random variable

Vn(u) : = sup
z∈star(C−x∗)
‖z‖A≤u

|σ
n

n∑
i=1

gi (Az)i|,
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Inclusion of events: We first claim that B(u) ⊆ {Vn(u) ≥ 2u2}. Indeed, if B(u)
occurs, then there exists some z ∈ C − x∗ with ‖z‖A ≥ u and

|σ
n

n∑
i=1

gi (Az)i| ≥ 2u ‖z‖A. (3.49)

Define the rescaled vector z̃ = u
‖z‖A

z. Since z ∈ C − x∗ and u
‖z‖A

≤ 1, the vector

z̃ ∈ star(C − x∗). Moreover, by construction, we have ‖z̃‖A = u. When the inequal-
ity (3.49) holds, the vector z̃ thus satisfies |σ

n

∑n
i=1 gi (Az̃)i| ≥ 2u2, which certifies

that Vn(u) ≥ 2u2, as claimed.

Controlling the tail probability: The final step is to control the probability of
the event {Vn(u) ≥ 2u2}. Viewed as a function of the standard Gaussian vector
(g1, . . . , gn), it is easy to see that Vn(u) is Lipschitz with constant L = σu√

n
. Conse-

quently, by concentration of measure for Lipschitz Gaussian functions, we have

P
[
Vn(u) ≥ E[Vn(u)] + u2

]
≤ e−

nu2

2σ2 . (3.50)

In order to complete the proof, it suffices to show that E[Vn(u)] ≤ u2. By definition,
we have E[Vn(u)] = σ√

n
Wu(K∗). Since K∗ is a star-shaped set, the function v 7→

Wv(K∗)/v is non-increasing [19]. Since u ≥ εn, we have

σ
Wu(K∗)

u
≤ σ
Wεn(K∗)

εn
≤ εn.

where the final step follows from the definition of εn. Putting together the pieces, we
conclude that E[Vn(u)] ≤ εnu ≤ u2 as claimed.
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Chapter 4

Random projections for nonlinear
optimization

Relative to first-order methods, second-order methods for convex optimization en-
joy superior convergence in both theory and practice. For instance, Newton’s method
converges at a quadratic rate for strongly convex and smooth problems. Even for func-
tions that are weakly convex—that is, convex but not strongly convex—modifications
of Newton’s method have super-linear convergence (for instance, see the paper [150]
for an analysis of the Levenberg-Marquardt Method). This rate is faster than the
1/T 2 convergence rate that can be achieved by a first-order method like accelerated
gradient descent, with the latter rate known to be unimprovable (in general) for
first-order methods [104]. Yet another issue in first-order methods is the tuning of
step size, whose optimal choice depends on the strong convexity parameter and/or
smoothness of the underlying problem. For example, consider the problem of opti-
mizing a function of the form x 7→ g(Ax), where A ∈ Rn×d is a “data matrix”, and
g : Rn → R is a twice-differentiable function. Here the performance of first-order
methods will depend on both the convexity/smoothness of g, as well as the condi-
tioning of the data matrix. In contrast, whenever the function g is self-concordant,
then Newton’s method with suitably damped steps has a global complexity guarantee
that is provably independent of such problem-dependent parameters.

On the other hand, each step of Newton’s method requires solving a linear system
defined by the Hessian matrix. For instance, in application to the problem family just
described involving an n× d data matrix, each of these steps has complexity scaling
as O(nd2). For this reason, both forming the Hessian and solving the corresponding
linear system pose a tremendous numerical challenge for large values of (n, d)— for in-
stance, values of thousands to millions, as is common in big data applications. In order
to address this issue, a wide variety of different approximations to Newton’s method
have been proposed and studied. The general class of quasi-Newton methods are
based on estimating the inverse Hessian using successive evaluations of the gradient
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vectors. Examples of such quasi-Newton methods include DFP and BFGS schemes
as well their limited memory versions; see the book by Wright and Nocedal [148] and
references therein for further details. A disadvantage of such first-order Hessian ap-
proximations is that the associated convergence guarantees are typically weaker than
those of Newton’s method and require stronger assumptions.

In this chapter, we propose and analyze a randomized approximation of Newton’s
method, known as the Newton Sketch. Instead of explicitly computing the Hessian,
the Newton Sketch method approximates it via a random projection of dimension
m. When these projections are carried out using the fast Johnson-Lindenstrauss
(JL) transform, say based on Hadamard matrices, each iteration has complexity
O(nd log(m) + dm2). Our results show that it is always sufficient to choose m pro-
portional to min{d, n}, and moreover, that the sketch dimension m can be much
smaller for certain types of constrained problems. Thus, in the regime n > d and
with m � d, the complexity per iteration can be substantially lower than the O(nd2)
complexity of each Newton step. For instance, for an objective function of the form
f(x) = g(Ax) in the regime n ≥ d2, the complexity of Newton Sketch per iteration is
O(nd log d), which (modulo the logarithm) is linear in the input data size nd. Thus,
the computational complexity per iteration is comparable to first-order methods that
have access only to the gradient ATg′(Ax). In contrast to first-order methods, we
show that for self-concordant functions, the total complexity of obtaining a δ-optimal
solution is O

(
nd(log d) log(1/δ)

)
, and without any dependence on constants such as

strong convexity or smoothness parameters. Moreover, for problems with d > n, we
provide a dual strategy that effectively has the same guarantees with roles of d and
n exchanged.

We also consider other random projection matrices and sub-sampling strategies,
including partial forms of random projection that exploit known structure in the
Hessian. For self-concordant functions, we provide an affine invariant analysis proving
that the convergence is linear-quadratic and the guarantees are independent of various
problem parameters, such as condition numbers of matrices involved in the objective
function. Finally, we describe an interior point method to deal with arbitrary convex
constraints, which combines the Newton sketch with the barrier method. We provide
an upper bound on the total number of iterations required to obtain a solution with
a pre-specified target accuracy.

The remainder of this chapter is organized as follows. We begin in Section 4.1
with some background on the classical form of Newton’s method, past work on ap-
proximate forms of Newton’s method, random matrices for sketching, and Gaussian
widths as a measure of the size of a set. In Section 4.2, we formally introduce the
Newton Sketch, including both fully and partially sketched versions for unconstrained
and constrained problems. We provide some illustrative examples in Section 4.2.3 be-
fore turning to local convergence theory in Section 4.2.4. Section 4.3 is devoted to
global convergence results for self-concordant functions, in both the constrained and
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unconstrained settings. In Section 4.4, we consider a number of applications and pro-
vide additional numerical results. The bulk of our proofs are in given in Section 4.5,
with some more technical aspects deferred to later sections.

4.1 Background

We begin with some background material on the standard form of Newton’s
method, past work on approximate or stochastic forms of Newton’s method, the basics
of random sketching, and the notion of Gaussian width as a complexity measure.

4.1.1 Classical version of Newton’s method

In this section, we briefly review the convergence properties and complexity of
the classical form of Newton’s method; see the sources [148, 28, 104] for further
background. Let f : Rd → R be a closed, convex and twice-differentiable function that
is bounded below. Given a convex and closed set C, we assume that the constrained
minimizer

x∗ : = arg min
x∈C

f(x) (4.1)

exists and is uniquely defined. We define the minimum and maximum eigenvalues
γ = λmin(∇2f(x∗)) and β = λmax(∇2f(x∗)) of the Hessian evaluated at the minimum.

We assume moreover that the Hessian map x 7→ ∇2f(x) is Lipschitz continuous
with modulus L, meaning that

|||∇2f(x+ ∆)−∇2f(x)|||2 ≤ L ‖∆‖2. (4.2)

Under these conditions and given an initial point x̃0 ∈ C such that ‖x̃0 − x∗‖2 ≤ γ
2L

,
the Newton updates are guaranteed to converge quadratically—viz.

‖x̃t+1 − x∗‖2 ≤
2L

γ
‖x̃t − x∗‖2

2,

This result is classical: for instance, see Boyd and Vandenberghe [28] for a proof.
Newton’s method can be slightly modified to be globally convergent by choosing the
step sizes via a simple backtracking line-search procedure.

The following result characterizes the complexity of Newton’s method when ap-
plied to self-concordant functions and is central in the development of interior point
methods (for instance, see the books [107, 28]). We defer the definitions of self-
concordance and the line-search procedure in the following sections. The number
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of iterations needed to obtain a δ approximate minimizer of a strictly convex self-
concordant function f is bounded by

20− 8a

ab(1− 2a)

(
f(x0)− f(x∗)

)
+ log2 log2(1/δ) ,

where a, b are constants in the line-search procedure.1

4.1.2 Approximate Newton methods

Given the complexity of the exact Newton updates, various forms of approximate
and stochastic variants of Newton’s method have been proposed, which we discuss
here. In general, inexact solutions of the Newton updates can be used to guaran-
tee convergence while reducing overall computational complexity [47, 48]. In the
unconstrained setting, the Newton update corresponds to solving a linear system of
equations, and one approximate approach is truncated Newton’s method: it involves
applying the conjugate gradient (CG) method for a specified number of iterations,
and then using the solution as an approximate Newton step [48]. In applying this
method, the Hessian need not be formed since the CG updates only need access to
matrix-vector products with the Hessian. While this strategy is popular, theoretical
analysis of inexact Newton methods typically need strong assumptions on the eigen-
values of the Hessian [47]. Since the number of steps of CG for reaching a certain
residual error necessarily depends on the condition number, the overall complexity
of truncated Newton’s Method is problem-dependent; the condition numbers can be
arbitrarily large, and in general are unknown a priori. Ill-conditioned Hessian sys-
tem are common in applications of Newton’s method within interior point methods.
Consequently, software toolboxes typically perform approximate Newton steps using
CG updates in earlier iterations, but then shift to exact Newton steps via Cholesky
or QR decompositions in later iterations.

A more recent line of work, inspired by the success of stochastic first-order algo-
rithms for large scale machine learning applications, has focused on stochastic forms of
second-order optimization algorithms (e.g., [126, 24, 32, 33]). Schraudolph et al. [126]
use online limited memory BFGS-like updates to maintain an inverse Hessian approx-
imation. Byrd et al. [33, 32] propose stochastic second-order methods that use batch
sub-sampling in order to obtain curvature information in a computationally inexpen-
sive manner. These methods are numerically effective in problems in which objective
consists of a sum of a large number of individual terms; however, their theoretical
analysis again involves strong assumptions on the eigenvalues of the Hessian. More-
over, such second-order methods do not retain the affine invariance of the original
Newton’s method, which guarantees iterates are independent of the coordinate sys-
tem and conditioning. When simple stochastic schemes like sub-sampling are used

1Typical values of these constants are a = 0.1 and b = 0.5 in practice.
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to approximate the Hessian, affine invariance is lost, since subsampling is coordinate
and conditioning dependent. In contrast, the stochastic form of Newton’s method we
proposed is constructed so as to retain this affine invariance property, and thus not
depend on the problem conditioning.

4.2 Newton Sketch and local convergence

With the basic background in place, let us now introduce the Newton sketch
algorithm, and then develop a number of convergence guarantees associated with it.
It applies to an optimization problem of the form minx∈C f(x), where f : Rd → R is
a twice-differentiable convex function, and C ⊆ Rd is a closed and convex constraint
set.

4.2.1 Newton Sketch algorithm

In order to motivate the Newton Sketch algorithm, recall the standard form of
Newton’s algorithm: given a current iterate x̃t ∈ C, it generates the new iterate x̃t+1

by performing a constrained minimization of the second order Taylor expansion—viz.

x̃t+1 = arg min
x∈C

{1

2
〈x− x̃t, ∇2f(x̃t) (x− x̃t)〉+ 〈∇f(x̃t), x− x̃t〉

}
. (4.3a)

In the unconstrained case—that is, when C = Rd—it takes the simpler form

x̃t+1 = x̃t −
[
∇2f(x̃t)

]−1∇f(x̃t) . (4.3b)

Now suppose that we have available a Hessian matrix square root∇2f(x)1/2—that
is, a matrix ∇2f(x)1/2 of dimensions n× d such that

(∇2f(x)1/2)T∇2f(x)1/2 = ∇2f(x) for some integer n ≥ rank(∇2f(x)).

In many cases, such a matrix square root can be computed efficiently. For in-
stance, consider a function of the form f(x) = g(Ax) where A ∈ Rn×d, and
the function g : Rn → R has the separable form g(Ax) =

∑n
i=1 gi(〈ai, x〉). In

this case, a suitable Hessian matrix square root is given by the n × d matrix
∇2f(x)1/2 : = diag

{
g′′i (〈ai, x〉)1/2

}n
i=1
A. In Section 4.2.3, we discuss various concrete

instantiations of such functions.

In terms of this notation, the ordinary Newton update can be re-written as

x̃t+1 = arg min
x∈C

{ 1

2
‖∇2f(x̃t)1/2(x− x̃t)‖2

2 + 〈∇f(x̃t), x− x̃t〉︸ ︷︷ ︸
Φ̃(x)

}
,
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and the Newton Sketch algorithm is most easily understood based on this form of
the updates. More precisely, for a sketch dimension m to be chosen, let S ∈ Rm×n

be a sub-Gaussian, ROS, sparse-JL sketch or subspace embedding (when C is a sub-
space), satisfying the relation E[STS] = In. The Newton Sketch algorithm generates
a sequence of iterates {xt}∞t=0 according to the recursion

xt+1 ∈ arg min
x∈C

{ 1

2
‖St∇2f(xt)1/2(x− xt)‖2

2 + 〈∇f(xt), x− xt〉︸ ︷︷ ︸
Φ(x;St)

}
, (4.4)

where St ∈ Rm×d is an independent realization of a sketching matrix. When the
problem is unconstrained, i.e., C = Rd and the matrix ∇2f(xt)1/2(St)TSt∇2f(xt)1/2

is invertible, the Newton Sketch update takes the simpler form

xt+1 = xt −
(
∇2f(xt)1/2(St)TSt∇2f(xt)1/2

)−1∇f(xt). (4.5)

The intuition underlying the Newton Sketch updates is as follows: the iterate xt+1

corresponds to the constrained minimizer of the random objective function Φ(x;St)
whose expectation E[Φ(x;St)], taking averages over the isotropic sketch matrix St,
is equal to the original Newton objective Φ̃(x). Consequently, it can be seen as a
stochastic form of the Newton update, which minimizes a random quadratic approx-
imation at each iteration.

We also analyze a partially sketched Newton update, which takes the following
form. Given an additive decomposition of the form f = f0 +g, we perform a sketch of
of the Hessian ∇2f0 while retaining the exact form of the Hessian ∇2g. This splitting
leads to the partially sketched update

xt+1 : = arg min
x∈C

{1

2
(x− xt)TQt(x− xt) + 〈∇f(xt), x− xt〉

}
, (4.6)

where Qt : = (St∇2f0(xt)1/2)TSt∇2f0(xt)1/2 +∇2g(xt).

For either the fully sketched (4.4) or partially sketched updates (4.6), our analysis
shows that there are many settings in which the sketch dimension m can be chosen
to be substantially smaller than n, in which cases the sketched Newton updates will
be much cheaper than a standard Newton update. For instance, the unconstrained
update (4.5) can be computed in at most O(md2) time, as opposed to the O(nd2)
time of the standard Newton update. In constrained settings, we show that the sketch
dimension m can often be chosen even smaller—even m� d—which leads to further
savings.
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4.2.2 Affine invariance of the Newton Sketch and sketched
KKT systems

A desirable feature of the Newton Sketch is that, similar to the original Newton’s
method, both of its forms remain (statistically) invariant under an affine transfor-
mation. In other words, if we apply Newton Sketch on an affine transformation of
a particular function, the statistics of the iterates are related by the same trans-
formation. As a concrete example, consider the problem of minimizing a function
f : Rd → R subject to equality constraints Cx = e, for some matrix C ∈ Rn×d and
vector e ∈ Rn. For this particular problem, the Newton Sketch update takes the form

xt+1 : = arg min
Cx=d

{1

2
‖St∇2f(xt)1/2(x− xt)‖2

2 + 〈∇f(xt), x− xt〉
}
. (4.7)

Equivalently, by introducing Lagrangian dual variables for the linear constraints, it
is equivalent to solve the following sketched KKT system[

(∇2f(xt)1/2)T (St)TSt∇2f(xt)1/2 CT

C 0

] [
∆xNSK

wNSK

]
= −

[
∇f(xt)

0

]
where ∆xNSK = xt+1 − xt ∈ Rd is the sketched Newton step where xt is assumed
feasible, and wNSK ∈ Rn is the optimal dual variable for the stochastic quadratic
approximation.

Now fix the random sketching matrix St and consider the transformed objective
function f̂(y) : = f(By), where B ∈ Rd×d is an invertible matrix. If we apply the New-

ton Sketch algorithm to the transformed problem involving f̂ , the sketched Newton
step ∆yNSK is given by the solution to the system[

BT (∇2f(xt)1/2)T (St)TSt∇2f(xt)1/2B BTCT

CB 0

] [
∆yNSK

ŵNSK

]
= −

[
BT∇f(xt)

0

]
,

which shows that B∆yNSK = ∆xNSK. Note that the upper-left block in the above
matrix is has rank at most m, and consequently the above 2 × 2 block matrix has
rank at most m+ rank(C).

4.2.3 Some examples

In order to provide some intuition, let us provide some simple examples to which
the sketched Newton updates can be applied.

Example: Newton Sketch for LP solving
Consider a linear program (LP) in the standard form

min
Ax≤b
〈c, x〉 (4.8)
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where A ∈ Rn×d is a given constraint matrix. We assume that the polytope {x ∈
Rd | Ax ≤ b} is bounded so that the minimum achieved. A barrier method approach
to this LP is based on solving a sequence of problems of the form

min
x∈Rd

{
τ 〈c, x〉 −

n∑
i=1

log(bi − 〈ai, x〉)︸ ︷︷ ︸
f(x)

}
,

where ai ∈ Rd denotes the ith row of A, and τ > 0 is a weight parameter that is
adjusted during the algorithm. By inspection, the function f : Rd → R ∪ {+∞} is
twice-differentiable, and its Hessian is given by ∇2f(x) = ATdiag

{
1

(bi−〈ai, x〉)2

}
A. A

Hessian square root is given by ∇2f(x)1/2 : = diag
(

1
|bi−〈ai, x〉|

)
A, which allows us to

compute the sketched version

S∇2f(x)1/2 = S diag

(
1

|bi − 〈ai, x〉|

)
A.

With a ROS sketch matrix, computing this matrix requires O(nd log(m)) basic op-
erations. The complexity of each Newton Sketch iteration scales as O(md2), where
m is at most O(d). In contrast, the standard unsketched form of the Newton up-
date has complexity O(nd2), so that the sketched method is computationally cheaper
whenever there are many more constraints than dimensions (n > d).

By increasing the barrier parameter τ , we obtain a sequence of solutions that
approach the optimum to the LP, which we refer to as the central path. As a simple
illustration, Figure 4.1 compares the central paths generated by the ordinary and
sketched Newton updates for a polytope defined by n = 32 constraints in dimension
d = 2. Each row shows three independent trials of the method for a given sketch
dimension m; the top, middle and bottom rows correspond to sketch dimensions
m ∈ {d, 4d, 16d} respectively. Note that as the sketch dimension m is increased, the
central path taken by the sketched updates converges to the standard central path.

As a second example, we consider the problem of maximum likelihood estimation
for generalized linear models.

Example: Newton Sketch for maximum likelihood estimation
The class of generalized linear models (GLMs) is used to model a wide variety of

prediction and classification problems, in which the goal is to predict some output
variable y ∈ Y on the basis of a covariate vector a ∈ Rd. it includes as special cases
the standard linear Gaussian model (in which Y = R), as well as logistic models for
classification (in which Y = {−1,+1}), as well as as Poisson models for count-valued
responses (in which Y = {0, 1, 2, . . .}). See the book [94] for further details and
applications.
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Given a collection of n observations {(yi, ai)}ni=1 of response-covariate pairs from
some GLM, the problem of constrained maximum likelihood estimation be written in
the form

min
x∈C

{ n∑
i=1

ψ(〈ai, x〉, yi)︸ ︷︷ ︸
f(x)

}
, (4.9)

where ψ : R×Y → R is a given convex function, and C ⊂ Rd is a convex constraint set,
chosen by the user to enforce a certain type of structure in the solution. Important
special cases of GLMs include the linear Gaussian model, in which ψ(u, y) = 1

2
(y−u)2,

and the problem (4.9) corresponds to a regularized form of least-squares, as well as
the problem of logistic regression, obtained by setting ψ(u, y) = log(1 + exp(−yu)).

Letting A ∈ Rn×d denote the data matrix with ai ∈ Rd as its ith row, the Hessian
of the objective (4.9) takes the form

∇2f(x) = ATdiag
(
ψ′′(aTi x)

)n
i=1

A

Since the function ψ is convex, we are guaranteed that ψ′′(aTi x) ≥ 0, and hence the

n× d matrix diag
(
ψ′′(aTi x)

)1/2
A can be used as a matrix square-root. We return to

explore this class of examples in more depth in Section 4.4.1.

4.2.4 Local convergence analysis using strong convexity

Returning now to the general setting, we begin by proving a local convergence
guarantee for the sketched Newton updates. In particular, this theorem provides
insight into how large the sketch dimension m must be in order to guarantee good
local behavior of the sketched Newton algorithm.

Our analysis involves the geometry of the tangent cone of the optimal vector x∗

which was first introduced in Section 2. Let us recall the definition in this context:
Given a constraint set C and the minimizer x∗ : = arg min

x∈C
f(x) the tangent cone at

x∗ is given by

K =
{

∆ ∈ Rd | x∗ + t∆ ∈ C for some t > 0
}
. (4.10)

The local analysis to be given in this section involves the cone-constrained eigenvalues
of the Hessian ∇2f(x∗), defined as

γ = inf
z∈K∩Sd−1

〈z, ∇2f(x∗))z〉, and β = sup
z∈K∩Sd−1

〈z, ∇2f(x∗))z〉. (4.11)

In the unconstrained case (C = Rd), we haveK = Rd, and so that γ and β reduce to the
minimum and maximum eigenvalues of the Hessian ∇2f(x∗). In the classical analysis
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of Newton’s method, these quantities measure the strong convexity and smoothness
parameters of the function f . Note that the condition γ > 0 much weaker than strong
convexity as it can hold for Hessian matrices that are rank-deficient, as long as the
tangent cone K is suitably small.

Recalling the definition of the Gaussian width from Section 2, our choice of the
sketch dimension m depends on the width of the renormalized tangent cone. In
particular, for the following theorem, we require it to be lower bounded as

m ≥ c

ε2
max
x∈C

W2(∇2f(x)1/2K), (4.12)

where ε ∈ (0, γ
9β

) is a user-defined tolerance, and c is a universal constant. Since the

Hessian square-root ∇2f(x)1/2 has dimensions n × d, this squared Gaussian width
is at at most min{n, d}. This worst-case bound is achieved for an unconstrained
problem (in which case K = Rd), but the Gaussian width can be substantially smaller
for constrained problems. For instance, consider an equality constrained problem
with affine constraint Cx = b. For such a problem, the tangent cone lies within
the nullspace of the matrix C—say it is dC-dimensional. It then follows that the
squared Gaussian width (4.12) is also bounded by dC ; see the example following
Theorem 5 for a concrete illustration. Other examples in which the Gaussian width
can be substantially smaller include problems involving simplex constraints (portfolio
optimization), or `1-constraints (sparse regression).

With this set-up, the following theorem is applicable to any twice-differentiable
objective f with cone-constrained eigenvalues (γ, β) defined in equation (4.11), and
with Hessian that is L-Lipschitz continuous, as defined in equation (4.2).

Theorem 5 (Local convergence of Newton Sketch). For a given tolerance ε ∈ (0, 2γ
9β

),

consider the Newton Sketch updates (4.4) based on an initialization x0 such that
‖x0 − x∗‖2 ≤ γ

8L
, and a sketch dimension m satisfying the lower bound (4.12). Then

with probability at least 1− c1Ne
−c2m, the Euclidean error satisfies the bound

‖xt+1 − x∗‖2 ≤ ε
β

γ
‖xt − x∗‖2 +

4L

γ
‖xt − x∗‖2

2, for iterations t = 0, . . . , N − 1.

(4.13)

The bound (4.13) shows that when ε is small enough—say ε = β/4γ—then the
optimization error ∆t = xt − x∗ decays at a linear-quadratic convergence rate. More
specifically, the rate is initially quadratic—that is, ‖∆t+1‖2 ≈ 4L

γ
‖∆t‖2

2 when ‖∆t‖2 is

large. However, as the iterations progress and ‖∆t‖2 becomes substantially less than
1, then the rate becomes linear—meaning that ‖∆t+1‖2 ≈ εβ

γ
‖∆t‖2—since the term

4L
γ
‖∆t‖2

2 becomes negligible compared to εβ
γ
‖∆t‖2. Unwrapping the recursion for all
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N steps, the linear rate guarantees the conservative error bounds

‖xN − x∗‖2 ≤
γ

8L

(1

2
+ ε

β

γ

)N
, and f(xN)− f(x∗) ≤ βγ

8L

(1

2
+ ε

β

γ

)N
. (4.14)

A notable feature of Theorem 5 is that, depending on the structure of the problem,
the linear-quadratic convergence can be obtained using a sketch dimension m that
is substantially smaller than min{n, d}. As an illustrative example, we performed
simulations for some instantiations of a portfolio optimization problem: it is a linearly-
constrained quadratic program of the form

min
x≥0∑d
j=1 xj=1

{1

2
xTATAx− 〈c, x〉

}
, (4.15)

where A ∈ Rn×d and c ∈ Rd are matrices and vectors that arise from data (see
Section 4.4.3 for more details). We used the Newton Sketch to solve different sizes of
this problem d ∈ {10, 20, 30, 40, 50, 60}, and with n = d3 in each case. Each problem
was constructed so that the optimal vector x∗ ∈ Rd had at most k = d2 log(d)e non-
zero entries. A calculation of the Gaussian width for this problem (see Section 4.7.3
for the details) shows that it suffices to take a sketch dimension m % s log d, and we
implemented the algorithm with this choice. Figure 4.2 shows the convergence rate of
the Newton Sketch algorithm for the six different problem sizes: consistent with our
theory, the sketch dimension m� min{d, n} suffices to guarantee linear convergence
in all cases.

It is also possible obtain an asymptotically super-linear rate by using an iteration-
dependent sketching accuracy ε = ε(t). The following corollary summarizes one such
possible guarantee:

Corollary 12. Consider the Newton Sketch iterates using the iteration-dependent
sketching accuracy ε(t) = 1

log(1+t)
. Then with the same probability as in Theorem 5,

we have

‖xt+1 − x∗‖2 ≤
1

log(1 + t)

β

γ
‖xt − x∗‖2 +

4L

γ
‖xt − x∗‖2

2,

and consequently, super-linear convergence is obtained—namely, limt→∞
‖xt+1−x∗‖2
‖xt−x∗‖2 =

0.

Note that the price for this super-linear convergence is that the sketch size is inflated
by the factor ε−2(t) = log2(1 + t), so it is only logarithmic in the iteration number.
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4.3 Newton Sketch for self-concordant functions

The analysis and complexity estimates given in the previous section involve the
curvature constants (γ, β) and the Lipschitz constant L, which are seldom known in
practice. Moreover, as with the analysis of classical Newton method, the theory is
local, in that the linear-quadratic convergence takes place once the iterates enter a
suitable basin of the origin.

In this section, we seek to obtain global convergence results that do not depend on
unknown problem parameters. As in the classical analysis, the appropriate setting in
which to seek such results is for self-concordant functions, and using an appropriate
form of backtracking line search. We begin by analyzing the unconstrained case,
and then discuss extensions to constrained problems with self-concordant barriers. In
each case, we show that given a suitable lower bound on the sketch dimension, the
sketched Newton updates can be equipped with global convergence guarantees that
hold with exponentially high probability. Moreover, the total number of iterations
does not depend on any unknown constants such as strong convexity and Lipschitz
parameters.

4.3.1 Unconstrained case

In this section, we consider the unconstrained optimization problem minx∈Rd f(x),
where f is a closed convex self-concordant function that is bounded below. A closed
convex function φ : R→ R is said to be self-concordant if

|φ′′′(x)| ≤ 2 (φ′′(x))
3/2
. (4.16)

This definition can be extended to a function f : Rd → R by imposing this requirement
on the univariate functions φx,y(t) : = f(x+ty), for all choices of x, y in the domain of
f . Examples of self-concordant functions include linear and quadratic functions and
negative logarithm. Moreover, the property of self-concordance is preserved under
addition and affine transformations.

Our main result provide a bound on the total number of Newton Sketch iterations
required to obtain a δ-accurate solution without imposing any sort of initialization
condition, as was done in our previous analysis. This bound scales proportionally to
log(1/δ) and inversely in a parameter ν that depends on sketching accuracy ε ∈ (0, 1

4
)

and backtracking parameters (a, b) via

ν = ab
η2

1 + (1+ε
1−ε)η

where η =
1

8

1− 1
2
(1+ε

1−ε)
2 − a

(1+ε
1−ε)

3
. (4.17)

With this set-up, we have the following guarantee:
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Algorithm 1 Unconstrained Newton Sketch with backtracking line search

Require: Starting point x0, tolerance δ > 0, (a, b) line-search parameters, sketching matrices {St}∞t=0 ∈ Rm×n.
1: Compute approximate Newton step ∆xt and approximate Newton decrement λ(x)

∆xt : = arg min
∆
〈∇f(xt), ∆〉+

1

2
‖St(∇2f(xt))1/2∆‖22;

λ̃f (xt) : = ∇f(x)T∆xt.

2: Quit if λ̃(xt)2/2 ≤ δ.
3: Line search: choose µ : while f(xt + µ∆xt) > f(xt) + aµλ(xt), µ← bµ
4: Update: xt+1 = xt + µ∆xt

Ensure: minimizer xt, optimality gap λ(xt)

Theorem 6. Let f be a strictly convex self-concordant function. Given a sketching
matrix S ∈ Rm×n with m = c3

ε2
max
x∈C

rank(∇2f(x)), the number of total iterations T

for obtaining an δ approximate solution in function value via Algorithm 1 is bounded
by

N =
f(x0)− f(x∗)

ν
+ 0.65 log2(

1

16δ
) , (4.18)

with probability at least 1− c1Ne
−c2m.

The iteration bound (4.18) shows that the convergence of the Newton Sketch is in-
dependent of the properties of the function f and problem parameters, similar to
classical Newton’s method. Note that for problems with n > d, the complexity of
each Newton Sketch step is at most O(d3 + nd log d), which is smaller than that of
Newton’s Method (O(nd2)), and also smaller than typical first-order optimization
methods (O(nd)) whenever n > d2.

4.3.1.1 Rank-deficient Hessians

As stated, Theorem 6 requires the function to be strictly convex. However, by
exploiting the affine invariance of the Newton Sketch updates, we can also obtain guar-
antees of the form (4.18) for the Newton sketch applied to problems with singular
Hessians. As a concrete example, given a matrix A ∈ Rn×d that is rank-deficient—
that is, with rank(A) = r < min{n, d}—consider a function of the form f(x) = g(Ax),
where g : Rn → R is strictly convex and self-concordant. Due to the rank-deficiency
of A, the Hessian of f will also be rank-deficient, so that Theorem 6 does not directly
apply. However, suppose that we let let A = UΣV T be the full singular value decom-
position of A, where Σ is a diagonal matrix with Σjj = 0 for all indices j > r. With

this notation, define the function f̂(y) = g(AV y), corresponding to the intervertible
transformation x = V y. We then have

f̂(y) = g(UΣy) = g(UΣ1:ry1:r),
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where y1:r ∈ Rr denotes the subvector of the first r entries of y. Hence, viewed as a
function on Rr, the transformed function f̂ is strictly convex and self-concordant, so
that Theorem 6 can be applied. By the affine invariance property, the Newton Sketch
applied to the original function f has the same convergence guarantees (and trans-
formed iterates) as the reduced strictly convex function. Consequently, the sketch size
choice m = c

ε2
rank(A) is sufficient. Note that in many applications, the rank of A can

be much smaller than min(n, d), and so that the Newton Sketch complexity O(m2d)
is correspondingly smaller, relative to other schemes that do not exploit the low-rank
structure. Some optimization methods can exploit low-rankness when a factorization
of the form A = LR is available. However, note that the cost of computing such a
low rank factorization scales as O(nd2), which dominates the overall complexity of
Newton Sketch, including sketching time.

4.3.2 Newton Sketch with self-concordant barriers

We now turn to the more general constrained case. Given a closed, convex self-
concordant function f0 : Rd → R, let C be a convex subset of Rd, and consider
the constrained optimization problem minx∈C f0(x). If we are given a convex self-
concordant barrier function g(x) for the constraint set C, it is customary to consider
the unconstrained and penalized problem

min
x∈Rd

{
f0(x) + g(x)︸ ︷︷ ︸

f(x)

}
,

which approximates the original problem. One way in which to solve this uncon-
strained problem is by sketching the Hessian of both f0 and g, in which case the
theory of the previous section is applicable. However, there are many cases in which
the constraints describing C are relatively simple, and so the Hessian of g is highly-
structured. For instance, if the constraint set is the usual simplex (i.e., x ≥ 0 and
〈1, x〉 ≤ 1), then the Hessian of the associated log barrier function is a diagonal
matrix plus a rank one matrix. Other examples include problems for which g has
a separable structure; such functions frequently arise as regularizers for ill-posed in-
verse problems. Examples of such regularizers include `2 regularization g(x) = 1

2
‖x‖2

2,
graph regularization g(x) = 1

2

∑
i,j∈E(xi − xj)2 induced by an edge set E (e.g., finite

differences) and also other differentiable norms g(x) =
(∑d

i=1 x
p
i

)1/p

for 1 < p <∞.

In all such cases, an attractive strategy is to apply a partial Newton Sketch, in
which we sketch the Hessian term ∇2f0(x) and retain the exact Hessian ∇2g(x),
as in the previously described updates (4.6). More formally, Algorithm 2 provides
a summary of the steps, including the choice of the line search parameters. The
main result of this section provides a guarantee on this algorithm, assuming that the
sequence of sketch dimensions {mt}∞t=0 is appropriately chosen.
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Algorithm 2 Newton Sketch with self-concordant barriers

Require: Starting point x0, constraint C, corresponding barrier function g such that f = f0 + g, tolerance δ > 0,
(α, β) line-search parameters, sketching matrices St ∈ Rm×n.

1: Compute approximate Newton step ∆xt and approximate Newton decrement λ̃f .

∆xt : = arg min
xt+∆∈C

〈∇f(xt), ∆〉+
1

2
‖St(∇2f0(xt))1/2∆‖22 +

1

2
∆T∇2g(xt)∆;

λ̃f (xt) : = ∇f(x)T∆xt

2: Quit if λ̃(xt)2/2 ≤ δ.
3: Line search: choose µ : while f(xt + µ∆xt) > f(xt) + αµλ(xt), µ← βµ.
4: Update: xt+1 = xt + µ∆xt.

Ensure: minimizer xt, optimality gap λ(xt).

The choice of sketch dimensions depends on the tangent cones defined by the
iterates, namely the sets

Kt : =
{

∆ ∈ Rd | xt + α∆ ∈ C for some α > 0
}
.

For a given sketch accuracy ε ∈ (0, 1), we require that the sequence of sketch dimen-
sions satisfies the lower bound

mt ≥ c3

ε2
max
x∈C

W2(∇2f(x)1/2Kt). (4.19)

Finally, the reader should recall the parameter ν was defined in equation (4.17), which
depends only on the sketching accuracy ε and the line search parameters. Given this
set-up, we have the following guarantee:

Theorem 7. Let f : Rd → R be a convex and self-concordant function, and let
g : Rd → R ∪ {+∞} be a convex and self-concordant barrier for the convex set C.
Suppose that we implement Algorithm 2 with sketch dimensions {mt}t≥0 satisfying
the lower bound (4.19). Then performing

N =
f(x0)− f(x∗)

ν
+ 0.65 log2

( 1

16δ

)
iterations

suffices to obtain δ-approximate solution in function value with probability at least
1− c1Ne

−c2m.

Thus, we see that the Newton Sketch method can also be used with self-concordant
barrier functions, which considerably extends its scope. In the above theorem, note
that we can isolate affine constraints from C and enforce them at each Newton step.
Section 4.4.6 provides a numerical illustration of its performance in this context. As
we discuss in the next section, there is a flexibility in choosing the decomposition
f0 and g corresponding to objective and barrier, which enables us to also sketch the
constraints.
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4.3.3 Sketching with interior point methods

In this section, we discuss the application of Newton Sketch to a form of barrier
or interior point methods. In particular we discuss two different strategies and pro-
vide rigorous worst-case complexity results when the functions in the objective and
constraints are self-concordant. More precisely, let us consider a problem of the form

min
x∈Rd

f0(x) subject to gj(x) ≤ 0 for j = 1, . . . , r, (4.20)

where f0 and {gj}rj=1 are twice-differentiable convex functions. We assume that there
exists a unique solution x∗ to the above problem.

The barrier method for computing x∗ is based on solving a sequence of problems
of the form

x̂(τ) : = arg min
x∈Rd

{
τf0(x)−

r∑
j=1

log(−gj(x))
}
, (4.21)

for increasing values of the parameter τ ≥ 1. The family of solutions {x̂(τ)}τ≥1

trace out what is known as the central path. A standard bound (e.g., [28]) on the
sub-optimality of x̂(τ) is given by

f0(x̂(τ))− f0(x∗) ≤ r

τ
.

The barrier method successively updates the penalty parameter τ and also the starting
points supplied to Newton’s method using previous solutions.

Since Newton’s method lies at the heart of the barrier method, we can obtain a
fast version by replacing the exact Newton minimization with the Newton Sketch.
Algorithm 3 provides a precise description of this strategy. As noted in Step 1,
there are two different strategies in dealing with the convex constraints gj(x) ≤ 0 for
j = 1, . . . , r:

• Full sketch: Sketch the full Hessian of the objective function (4.21) using Algo-
rithm 1 ,

• Partial sketch: Sketch only the Hessians corresponding to a subset of the func-
tions {f0, gj, j = 1, . . . , r}, and use exact Hessians for the other functions. Apply
Algorithm 2.

As shown by our theory, either approach leads to the same convergence guarantees,
but the associated computational complexity can vary depending both on how data
enters the objective and constraints, as well as the Hessian structure arising from
particular functions. The following theorem is an application of the classical results
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Algorithm 3 Interior point methods using Newton Sketch

Require: Strictly feasible starting point x0, initial parameter τ0 s.t. τ := τ0 > 0, µ > 1, tolerance δ > 0.
1: Centering step: Compute x̂(τ) by Newton Sketch with backtracking line-search initialized at x

using Algorithm 1 or Algorithm 2.
2: Update x := x̂(τ).
3: Quit if r/τ ≤ δ.
4: Increase τ by τ := µτ .

Ensure: minimizer x̂(τ).

on the barrier method tailored for Newton Sketch using any of the above strategies
(e.g., see Boyd and Vandenberghe [28]). As before, the key parameter ν was defined
in Theorem 6.

Theorem 8 (Newton Sketch complexity for interior point methods). For a given
target accuracy δ ∈ (0, 1) and any µ > 1, the total number of Newton Sketch iterations
required to obtain a δ-accurate solution using Algorithm 3 is at most

log (r/(τ 0δ)

log µ

(
r(µ− 1− log µ)

ν
+ 0.65 log2(

1

16δ
)

)
. (4.22)

If the parameter µ is set to minimize the above upper-bound, the choice µ = 1 + 1
r

yields O(
√
r) iterations. However, this “optimal” choice is typically not used in

practice when applying the standard Newton method; instead, it is common to use
a fixed value of µ ∈ [2, 100]. In experiments, experience suggests that the number
of Newton iterations needed is a constant independent of r and other parameters.
Theorem 8 allows us to obtain faster interior point solvers with rigorous worst-case
complexity results. We show different applications of Algorithm 3 in the following
section.

4.4 Applications and numerical results

In this section, we discuss some applications of the Newton Sketch to different
optimization problems. In particular, we show various forms of Hessian structure
that arise in applications, and how the Newton sketch can be computed. When the
objective and/or the constraints contain more than one term, the barrier method
with Newton Sketch has some flexibility in sketching. We discuss the choices of
partial Hessian sketching strategy in the barrier method. It is also possible to apply
the sketch in the primal or dual form, and we provide illustrations of both strategies
here.
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4.4.1 Estimation in generalized linear models

Recall the problem of (constrained) maximum likelihood estimation for a general-
ized linear model, as previously introduced in Example 4.2.3. It leads to the family of
optimization problems (4.9): here ψ : R→ R is a given convex function arising from
the probabilistic model, and C ⊆ Rd is a closed convex set that is used to enforce a
certain type of structure in the solution, Popular choices of such constraints include
`1-balls (for enforcing sparsity in a vector), nuclear norms (for enforcing low-rank
structure in a matrix), and other non-differentiable semi-norms based on total varia-
tion (e.g.,

∑d−1
j=1 |xj+1−xj|), useful for enforcing smoothness or clustering constraints.

Suppose that we apply the Newton Sketch algorithm to the optimization prob-
lem (4.9). Given the current iterate xt, computing the next iterate xt+1 requires
solving the constrained quadratic program

min
x∈C

{
1

2
‖Sdiag

(
ψ′′(〈ai, xt〉, yi)

)1/2
A(x− xt)‖2

2 +
n∑
i=1

〈x, ψ′(〈ai, xt〉, yi)〉
}
. (4.23)

When the constraint C is a scaled version of the `1-ball—that is, C = {x ∈ Rd | ‖x‖1 ≤
R} for some radius R > 0—the convex program (4.23) is an instance of the Lasso
program [134], for which there is a very large body of work. For small values of R,
where the cardinality of the solution x is very small, an effective strategy is to apply a
homotopy type algorithm, also known as LARS [57, 66], which solves the optimality
conditions starting from R = 0. For other sets C, another popular choice is projected
gradient descent, which is efficient when projection onto C is computationally simple.

Focusing on the `1-constrained case, let us consider the problem of choosing a
suitable sketch dimension m. Our choice involves the `1-restricted minimal eigenvalue
of the data matrix A, which is defined by (2.13) in Section 2. Note that we are always
guaranteed that γ−k (A) ≥ λmin(ATA). Our result also involves certain quantities that
depend on the function ψ, namely

ψ′′min : = min
x∈C

min
i=1,...,n

ψ′′(〈ai, x〉, yi), and ψ′′max : = max
x∈C

max
i=1,...,n

ψ′′(〈ai, x〉, yi),

where ai ∈ Rd is the ith row of A. With this set-up, supposing that the optimal
solution x∗ has cardinality at most ‖x∗‖0 ≤ k, then it can be shown (see Lemma 25
in Section 4.7.3) that it suffices to take a sketch size

m = c0
ψ′′max

ψ′′min

max
j=1,...,d

‖Aj‖2
2

γ−k (A)
k log d, (4.24)

where c0 is a universal constant. Let us consider some examples to illustrate:

• Least-Squares regression: ψ(u) = 1
2
u2, ψ′′(u) = 1 and ψ′′min = ψ′′max = 1.
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• Poisson regression: ψ(u) = eu, ψ′′(u) = eu and ψ′′max

ψ′′min
= eRAmax

e−RAmin

• Logistic regression: ψ(u) = log(1 + eu), ψ′′(u) = eu

(eu+1)2 and ψ′′max

ψ′′min
=

eRAmin

e−RAmax

(e−RAmax+1)2

(eRAmin+1)2 ,

where Amax : = max
i=1,...,n

‖ai‖∞, and Amin : = min
i=1,...,n

‖ai‖∞.

For typical distributions of the data matrices, the sketch size choice given in
equation (4.24) scales as O(k log d). As an example, consider data matrices A ∈
Rn×d where each row is independently sampled from a sub-Gaussian distribution with
parameter one (see equation (1.1)). Then standard results on random matrices [140]
show that γ−k (A) > 1/2 with high probability as long as n > c1k log d for a sufficiently

large constant c1. In addition, we have max
j=1,...,d

‖Aj‖2
2 = O(n), as well as ψ′′max

ψ′′min
=

O(log(n)). For such problems, the per iteration complexity of Newton Sketch update
scales as O(k2d log2(d)) using standard Lasso solvers (e.g., [75]) or as O(kd log(d))
using projected gradient descent. Both of these scalings are substantially smaller
than conventional algorithms that fail to exploit the small intrinsic dimension of the
tangent cone.

4.4.2 Semidefinite programs

The Newton Sketch can also be applied to semidefinite programs. As one illustra-
tion, let us consider a metric learning problem studied in machine learning. Suppose
that we are given d-dimensional feature vectors {ai}ni=1 and a collection of

(
n
2

)
binary

indicator variables yij ∈ {−1,+1}n given by

yij =

{
+1 if ai and aj belong to the same class

−1 otherwise,

defined for all distinct indices i, j ∈ {1, . . . , n}. The task is to estimate
a positive semidefinite matrix X such that the semi-norm ‖(ai − aj)‖X : =√
〈ai − aj, X(ai − aj)〉 is a good predictor of whether or not vectors i and j be-

long to the same class. Using the least-squares loss, one way in which to do so is by
solving the semidefinite program (SDP)

min
X�0

{ (n2)∑
i 6=j

(
〈X, (ai − aj)(ai − aj)T 〉 − yij

)2
+ λtrace(X)

}
.

Here the term trace(X), along with its multiplicative pre-factor λ > 0 that can be
adjusted by the user, is a regularization term for encouraging a relatively low-rank
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solution. Using the standard self-concordant barrier X 7→ log det(X) for the PSD
cone, the barrier method involves solving a sequence of sub-problems of the form

min
X∈Rd×d

{
τ

n∑
i=1

(〈X, aiaTi 〉 − yi)2 + τλtraceX − log det (X)︸ ︷︷ ︸
f(vec(X))

}
.

Now the Hessian of the function vec(X) 7→ f(vec(X)) is a d2 × d2 matrix given by

∇2f
(

vec(X)
)

= τ

(n2)∑
i 6=j

vec(Aij) vec(Aij)
T +X−1 ⊗X−1,

where Aij : = (ai − aj)(ai − aj)
T . Then we can apply the barrier method with

partial Hessian sketch on the first term, {Sij vec(Aij)}i 6=j and exact Hessian for the
second term. Since the vectorized decision variable is vec(X) ∈ Rd2

the complexity
of Newton Sketch is O(m2d2) while the complexity of a classical SDP interior-point
solver is O(nd4) in practice.

4.4.3 Portfolio optimization and SVMs

Here we consider the Markowitz formulation of the portfolio optimization prob-
lem [91]. The objective is to find a vector x ∈ Rd belonging to the unit simplex,
corresponding to non-negative weights associated with each of d possible assets, so as
to maximize the expected return minus a coefficient times the variance of the return.
Letting µ ∈ Rd denote a vector corresponding to mean return of the assets, and we
let Σ ∈ Rd×d be a symmetric, positive semidefinite matrix, covariance of the returns.
The optimization problem is given by

max
x≥0,

∑d
j=1 xj≤1

{
〈µ, x〉 − λ1

2
xTΣx

}
. (4.25)

The covariance of returns is often estimated from past stock data via an empirical co-
variance matrix of the form Σ = ATA; here columns of A are time series corresponding
to assets normalized by

√
n, where n is the length of the observation window.

The barrier method can be used solve the above problem by solving penalized
problems of the form

min
x∈Rd

{
−τ µTx+ τλ

1

2
xTATAx−

d∑
i=1

log(〈ei, x〉)− log(1− 〈1, x〉)︸ ︷︷ ︸
f(x)

}
,
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where ei ∈ Rd is the ith element of the canonical basis and 1 is a row vector of all-ones.
Then the Hessian of the above barrier penalized formulation can be written as

∇2f(x) = τλATA+
(
diag{x2

i }di=1

)−1
+ 11T .

Consequently, we can sketch the data dependent part of the Hessian via τλSA which
has at most rank m and keep the remaining terms in the Hessian exact. Since the
matrix 11T is rank one, the resulting sketched estimate is therefore diagonal plus rank
(m+1) where the matrix inversion lemma [62] can be applied for efficient computation
of the Newton Sketch update. Therefore, as long as m ≤ d, the complexity per
iteration scales as O(md2), which is cheaper than the O(nd2) per step complexity
associated with classical interior point methods. We also note that support vector
machine classification problems with squared hinge loss also has the same form as in
equation (4.25), so that the same same strategy can be applied.

4.4.4 Unconstrained logistic regression with d� n

Let us now turn to some numerical comparisons of the Newton Sketch with other
popular optimization methods for large-scale instances of logistic regression. More
specifically, we generated a data matrix A ∈ Rn×d with d = 100 features and n =
65536 observations. Each row ai ∈ Rd was generated from the d-variate Gaussian
distribution N(0,Σ) where the covariance matrix Σ has 1 on diagonals and ρ on off-
diagonals. As shown in Figures 4.3 and 4.3, the convergence of the algorithm per
iteration is very similar to Newton’s method. Besides the original Newton’s method,
the other algorithms compared are

• Gradient Descent (GD) with backtracking line search

• Stochastic Average Gradient (SAG) with line search

• Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) (MATLAB R2015a im-
plementation)

• Truncated Newton’s Method (trunNewt)

We ran the Newton Sketch algorithm with ROS sketch and sketch size m =
4d and plot iterates over 10 independent trials. The gradient method is us-
ing backtracking line search. For the Truncated Newton’s Method, we first per-
formed experiments by setting the maximum CG iteration number in the range
{log(d), 2 log(d), 3 log(d)..., 10 log(d)}, and then also implemented the residual stop-
ping rule with accuracy 1/t as suggested in [48]. The best choice among these param-
eters is shown as trunNewt in the plots. All algorithms are implemented in MATLAB
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(R2015a). In the plots, each iteration of the SAG algorithm corresponds to a pass
over the data, which is of comparable complexity to a single iteration of GD. In or-
der to keep the plots relatively uncluttered, we have excluded Stochastic Gradient
Descent since it is dominated by another stochastic first-order method (SAG), and
Accelerated Gradient Method as it is quite similar to Gradient Descent. In Figure 4.3,
panels (a) and (b) show the case with no correlation (ρ = 0), panels (c) and (d) show
the case with correlation ρ = 0.5 and panels (e) and (f) shows the case with corre-
lation ρ = 0.9. Plots on the left in Figure 4.3—that is panels (a), (c) and (e)—show
the log duality gap versus the number of iterations: as expected, on this scale, the
classical form of Newton’s method is the fastest. However, when the log optimality
gap is plotted versus the wall-clock time (right-side panels (b), (d) and (e)), we now
see that the Newton sketch is the fastest.

On the other hand, Figure 4.4 reveals the sensitivity of first order methods to data
conditioning. For these experiments, we generated a feature matrix A with d = 100
features and n = 65536 observations where each row ai ∈ Rd was generated from
the Student’s t-distribution with covariance Σ. The covariance matrix Σ has 1 on
diagonals and ρ on off-diagonals. In Figure 4.4, panels (a) and (b) show the case
with no correlation (ρ = 0), panels (c) and (d) show the case with correlation ρ = 0.5
and panels (e) and (f) shows the case with correlation ρ = 0.9. As it can be seen
in Figure 4.4, SAG and GD perform quite poor. As predicted by theory, Newton
Sketch performs well even with high correlations and non-Gaussian data while first
order algorithms perform poorly.

4.4.5 `1-constrained logistic regression and data conditioning

Next we provide some numerical comparisons of Newton Sketch, Newton’s Method
and Projected Gradient Descent when applied to an `1-constrained form of logistic
regression. More specifically, we first generate a feature matrix A ∈ Rn×d based on
d = 100 features and n = 1000 observations. Each row ai ∈ Rd is drawn from the
d-variate Gaussian distribution N(0,Σ); the covariance matrix has entries of the form
Σij = 2|ρ|i−j, where ρ ∈ [0, 1) is a parameter controlling the correlation, and hence the
condition number of the data. For 10 different values of ρ we solved the `1-constrained
problem (‖x‖1 ≤ 0.1), performing 200 independent trials (regenerating the data and
sketching matrices randomly each time). The Newton and sketched Newton steps are
solved exactly using the homotopy algorithm—that is, the Lasso modification of the
LARS updates [110, 57]. The homotopy method is very effective when the solution
is very sparse. The ROS sketch with a sketch size of m = d4× 10 log de is used where
10 is the estimated cardinality of solution. As shown in Figure 4.5, Newton Sketch
converges in about 6 (± 2) iterations independent of data conditioning while the exact
Newton’s method converges in 3 (± 1) iterations. However the number of iterations
needed for projected gradient with line search increases steeply as ρ increases. Note
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that, ignoring logarithmic terms, the projected gradient and Newton Sketch have
similar computational complexity (O(nd)) per iteration while the Newton’s method
has higher computational complexity (O(nd2)).

4.4.6 A dual example: Lasso with d� n

The regularized Lasso problem takes the form min
x∈Rd

{
1
2
‖Ax− y‖2

2 +λ‖x‖1

}
, where

λ > 0 is a user-specified regularization parameter. In this section, we consider efficient
sketching strategies for this class of problems in the regime d� n. In particular, let
us consider the corresponding dual program, given by

max
‖ATw‖∞≤λ

{
− 1

2
‖y − w‖2

2

}
.

By construction, the number of constraints d in the dual program is larger than the
number of optimization variables n. If we apply the barrier method to solve this dual
formulation, then we need to solve a sequence of problems of the form

min
w∈Rn

{
τ‖y − w‖2

2 −
d∑
j=1

log(λ− 〈Aj, w〉)−
d∑
j=1

log(λ+ 〈Aj, w〉)︸ ︷︷ ︸
f(x)

}
,

where Aj ∈ Rn denotes the jth column of A. The Hessian of the above barrier
penalized formulation can be written as

∇2f(w) = τIn + Adiag

(
1

(λ− 〈Aj, w〉)2

)
AT + Adiag

(
1

(λ+ 〈Aj, w〉)2

)
AT ,

Consequently we can keep the first term in the Hessian, τI exact and apply partial
sketching to the Hessians of the last two terms via

Sdiag

(
1

|λ− 〈Aj, w〉|
+

1

|λ+ 〈Aj, w〉|

)
AT .

Since the partially sketched Hessian is of the form tIn + V V T , where V is rank at
most m, we can use matrix inversion lemma for efficiently calculating Newton Sketch
updates. The complexity of the above strategy for d > n is O(nm2), where m is at
most n, whereas traditional interior point solvers are typically O(dn2) per iteration.

In order to test this algorithm, we generated a feature matrix A ∈ Rn×d with
d = 4096 features and n = 50 observations. Each row ai ∈ Rd was generated from
the multivariate Gaussian distribution N(0,Σ) with Σij = 2 ∗ |0.5|i−j. For a given
problem instance, we ran 10 independent trials of the sketched barrier method with
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m = 4d and ROS sketch, and compared the results to the original barrier method.
Figure 4.6 shows the the duality gap versus iteration number (top panel) and versus
the wall-clock time (bottom panel) for the original barrier method (blue) and sketched
barrier method (red): although the sketched algorithm requires more iterations, these
iterations are cheaper, leading to a smaller wall-clock time. This point is reinforced by
Figure 4.7, where we plot the wall-clock time required to reach a duality gap of 10−6

versus the number of features n in problem families of increasing size. Note that the
sketched barrier method outperforms the original barrier method, with significantly
less computation time for obtaining similar accuracy.

4.5 Proofs of main results

We now turn to the proofs of our theorems, with more technical details deferred
to later sections.

4.5.1 Proof of Theorem 5

For any x ∈ dom (f), and r ∈ Rd\{0}, we define the following pair of random
variables

Zu(S; x, r) : = sup
w∈∇2f(x)1/2K∩Sn−1

〈w,
(
STS − I

) r

‖r‖2

〉,

Z`(S; x) : = inf
w∈∇2f(x)1/2K∩Sn−1

‖Sw‖2
2.

Of particular interest to us in analyzing the sketched Newton updates are the sequence
of random variables

Zt
u : = Zu(S

t; xt,∇2f(xt)1/2∆t), and Zt
` : = Z`(S

t; xt).

For a given tolerance parameter ε ∈ (0, 2γ
9β

], we define the “good event”

E t : =

{
Z1(AK)t ≤ ε

2
, and Z2(AK)t ≥ 1− ε

}
. (4.26)

The following result gives sufficient conditions on the sketch dimension for this event
to hold with high probability:

Lemma 17 (Sufficient conditions on sketch dimension [114]). (a) For sub-
Gaussian sketch matrices, given a sketch size m > c0

ε2
maxx∈CW2(∇2f(x)1/2K),

we have

P
[
E t] ≥ 1− c1e

−c2mε2 . (4.27)
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(b) For randomized orthogonal system (ROS) sketches and JL embed-
dings, over the class of self-bounding cones, given a sketch size m >
c0 log4 n

ε2
maxx∈CW2(∇2f(x)1/2K), we have

P
[
E t] ≥ 1− c1e

−c2 mε2

log4 n . (4.28)

The remainder of our proof is based on showing that given any initialization x0

such that ‖x0 − x∗‖2 ≤ γ
8L

, then whenever the event ∩Nt=1E t holds, the error vectors
∆t = xt − x∗ satisfy the recursion

‖∆t+1‖2 ≤
Z2(AK)t

Z1(AK)t
β

7γ
‖∆t‖2 +

1

Z1(AK)t
8L

7γ
‖∆t‖2

2 for all t = 0, 1, . . . , N − 1.

(4.29)

Since we have Z2(AK)t

Z1(AK)t
≤ ε and 1

Z1(AK)t
≤ 2 whenever the event ∩Nt=1E t holds, the

bound (4.13) stated in the theorem then follows. Applying Lemma 17 yields the
stated probability bound.

Accordingly, it remains to prove the recursion (4.29), and we do so via a basic
inequality argument. Recall the function x 7→ Φ(x;St) that underlies the sketch New-
ton update (4.4) in moving from iterate xt to iterate xt+1. Since the vectors xt+1 and
x∗ are optimal and feasible, respectively, for the constrained optimization problem,
the error vector ∆t+1 : = xt+1−x∗ satisfies the inequality 〈∇Φ(xt+1;St), −∆t+1〉 ≥ 0,
or equivalently

〈(St∇2f(xt)1/2)TSt∇2f(xt)1/2(∆t+1 −∆t) +∇f(xt), −∆t+1〉 ≥ 0.

Similarly, since x∗ and xt+1 are optimal and feasible, respectively, for the minimization
of f , we have

〈f(x∗), ∆t+1〉 ≥ 0.

Adding these two inequalities and re-arranging leads to the basic inequality

‖St∇2f(xt)1/2∆t+1‖2
2︸ ︷︷ ︸

LHS

≤ 〈St∇2f(xt)1/2∆t+1, St∇2f(xt)1/2∆t〉 − 〈∇f(xt)−∇f(x∗), ∆t+1〉︸ ︷︷ ︸
RHS

(4.30)

This inequality forms the core of our argument: in particular, the bulk of our proof
is devoted to establishing the following bounds:
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Lemma 18 (Upper and lower bounds). We have

LHS ≥ Z1(AK)t
{
γ − L‖∆t‖2

}
‖∆t+1‖2

2, and (4.31a)

RHS ≤ Z2(AK)t
{
β + L‖∆t‖2

}
‖∆t‖2‖∆t+1‖2 + L‖∆t‖2

2‖∆t+1‖2. (4.31b)

Taking this lemma as given for the moment, let us complete the proof of the
recursion (4.29). Our proof consists of two steps:

• we first show that bound (4.29) holds for ∆t+1 whenever ‖∆t‖2 ≤ γ
8L

.

• we then show by induction that, conditioned on the event ∩Nt=1E t, the bound
‖∆t‖2 ≤ γ

8L
holds for all iterations t = 0, 1, . . . , N .

Assuming that ‖∆t‖2 ≤ γ
8L

, then our basic inequality (4.30) combined with Lemma 18
implies that

‖∆t+1‖2 ≤
Z2(AK)t{β + L‖∆t‖2}
Z1(AK)t{γ − L‖∆t‖2}

‖∆t‖2 +
L

Z1(AK)t{γ − L‖∆t‖2}
‖∆t‖2

2.

We have L‖∆t‖2 ≤ γ/8 ≤ β/8, and (γ − L‖∆t‖2)−1 ≤ 8
7γ

hence

‖∆t+1‖2 ≤
Z2(AK)t

Z1(AK)t
9

7

β

γ
‖∆t‖2 +

1

Z1(AK)t
8L

7γ
‖∆t‖2

2, (4.32)

thereby verifying the claim (4.29).

Now we need to check for any iteration t, the bound ‖∆t‖2 ≤ γ
8L

holds. We do so
by induction. The base case is trivial since ‖∆0‖2 ≤ γ

8L
by assumption. Supposing

that the bound holds at time t, by our argument above, inequality (4.32) holds, and
hence

‖∆t+1‖2 ≤
9

56

βZ2(AK)t

LZ1(AK)t
+

16L

7γZ1(AK)t
γ2

64L2
=

Z2(AK)t

Z1(AK)t
9

28

β

L
+

1

Z1(AK)t
1

28

γ

L
.

Whenever E t holds, we have Z2(AK)t

Z1(AK)t
≤ 2γ

9β
and 1

Z1(AK)t
≤ 1

2
, whence ‖∆t+1‖2 ≤(

1
28

+ 1
14

)
γ
L
≤ γ

8L
, as claimed.

The final remaining detail is to prove Lemma 18.
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4.5.1.0.1 Proof of Lemma 18: We first prove the lower bound (4.31a) on the
LHS. Since ∇2f(xt)1/2∆t+1 ∈ ∇2f(xt)1/2K, the definition of Z1(AK)t ensures that

LHS = ‖St∇2f(xt)1/2∆t+1‖2
2 ≥ Z1(AK)t‖∇2f(xt)1/2∆t+1‖2

2

(i)
= Z1(AK)t(∆t+1)T∇2f(xt)∆t+1

= Z1(AK)t{(∆t+1)T∇2f(x∗)∆t+1 + (∆t+1)T (∇2f(xt)−∇2f(x∗))∆t+1

(ii)

≥ Z1(AK)t
{
γ‖∆t+1‖2

2 − L‖∆t+1‖2
2‖∆t‖2

}
where step (i) follows since (∇2f(x)1/2)T∇2f(x)1/2 = ∇2f(x), and step (ii) follows
from the definitions of γ and L.

Next we prove the upper bound (4.31b) on the RHS. Throughout this proof, we
write S instead of St so as to simplify notation. By the integral form of Taylor series,
we have

RHS =

∫ 1

0

(∆t)T
[
(S∇2f(xt)1/2)TS∇2f(xt)1/2 −∇2f(xt + u(x∗ − xt))

]
∆t+1du

= T1 + T2

where

T1 : = (∆t)T
[
(S∇2f(xt)1/2)TS∇2f(xt)1/2 −∇2f(xt)

]
∆t+1, and (4.33a)

T2 : =

∫ 1

0

(∆t)T
[
−∇2f(xt + u(x∗ − xt)) +∇2f(xt)

]
∆t+1du. (4.33b)

Here the decomposition into T1 and T2 follows by adding and subtracting the term
(∆t)T∇2f(xt)∆t+1.

We begin by upper bounding the term T1. By the definition of Z2(AK)t, we have

T1 ≤
∣∣∣∣(∆t)TQT (xt)

[
STS

m
− I
]
∇2f(xt)1/2∆t+1

∣∣∣∣ ≤ Z2‖∇2f(xt)1/2∆t‖2‖∇2f(xt)1/2∆t+1‖2.

By adding and subtracting terms, we have

‖∇2f(xt)1/2∆t‖2
2 = (∆t)T∇2f(xt)∆t = (∆t)T∇2f(x∗)∆t + (∆t)T

[
∇2f(xt)−∇2f(x∗)

]
∆t

≤ β‖∆t‖2
2 + L‖∆t‖3 = ‖∆t‖2

2(β + L‖∆t‖),

where the final step follows from the definitions of β and L. A similar argument yields

‖∇2f(xt)1/2∆t+1‖2
2 ≤ ‖∆t+1‖2

2(β + L‖∆t‖).

Overall, we have shown that

T1 ≤ Z2(AK)t(β + L‖∆t‖)‖∆t‖2‖∆t+1‖2. (4.34)
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Turning to the quantity T2, we have

T2 ≤
{∫ 1

0

sup
v,ṽ∈K∩Sd−1

∣∣vT [∇2f(xt + u(x∗ − xt))−∇2f(xt)
]
ṽ
∣∣ du} ‖∆t‖2‖∆t+1‖2

≤ L‖∆t‖2
2‖∆t+1‖2, (4.35)

where the final step uses the local Lipschitz property again. Combining the
bound (4.34) with the bound (4.35) yields the bound (4.31b) on the RHS.

4.5.2 Proof of Theorem 6

Recall that in this case, we assume that f is a self-concordant strictly convex
function. We adopt the following notation and conventions from the book [107]. For
a given x ∈ Rd, we define the pair of dual norms

‖u‖x : = 〈∇2f(x)u, u〉1/2, and ‖v‖∗x : = 〈∇2f(x)−1v, v〉1/2 ,

as well as the Newton decrement

λf (x) = 〈∇2f(x)−1∇f(x), ∇f(x)〉1/2 = ‖∇2f(x)−1∇f(x)‖x = ‖∇2f(x)−1/2∇f(x)‖2 .

Note that ∇2f(x)−1 is well-defined for strictly convex self-concordant functions. In
terms of this notation, the exact Newton update is given by x 7→ xNE : = x+ v, where

vNE : = arg min
z∈C−x

{ 1

2
‖∇2f(x)1/2z‖2

2 + 〈z, ∇f(x)〉︸ ︷︷ ︸
Φ(z)

}
, (4.36)

whereas the Newton Sketch update is given by x 7→ xNSK : = x+ vNSK, where

vNSK : = arg min
z∈C−x

{1

2
‖S∇2f(x)1/2z‖2

2 + 〈z, ∇f(x)〉
}
. (4.37)

The proof of Theorem 6 given in this section involves the unconstrained case (C = Rd),
whereas the proofs of later theorems involve the more general constrained case. In
the unconstrained case, the two updates take the simpler forms

xNE = x− (∇2f(x))−1∇f(x), and xNSK = x− (∇2f(x)1/2STS∇2f(x)1/2)−1∇f(x).

For a self-concordant function, the sub-optimality of the Newton iterate xNE in
function value satisfies the bound

f(xNE)− min
x∈Rd

f(x)︸ ︷︷ ︸
f(x∗)

≤
[
λf (xNE)

]2
.

121



This classical bound is not directly applicable to the Newton Sketch update, since
it involves the approximate Newton decrement λ̃f (x)2 = −〈∇f(x), vNSK〉, as opposed
to the exact one λf (x)2 = −〈∇f(x), vNE〉. Thus, our strategy is to prove that with
high probability over the randomness in the sketch matrix, the approximate Newton
decrement can be used as an exit condition.

Recall the definitions (4.36) and (4.37) of the exact vNE and sketched Newton vNSK

update directions, as well as the definition of the tangent cone K at x ∈ C. Let Kt be
the tangent cone at xt. The following lemma provides a high probability bound on
their difference:

Lemma 19. Let S ∈ Rm×n be a sub-Gaussian, ROS or JL sketching matrix and con-

sider any fixed vector x ∈ C independent of the sketch matrix. If m ≥ c0
W(∇2f(x)1/2Kt)2

ε2
,

then ∥∥∇2f(x)1/2(vNSK − vNE)
∥∥

2
≤ ε

∥∥∇2f(x)1/2vNE

∥∥
2

(4.38)

with probability at least 1− c1e
−c2mε2.

Similar to the standard analysis of Newton’s method, our analysis of the Newton
Sketch algorithm is split into two phases defined by the magnitude of the decrement
λ̃f (x). In particular, the following lemma constitute the core of our proof:

Lemma 20. For ε ∈ (0, 1/2), there exist constants ν > 0 and η ∈ (0, 1/16) such that:

(a) If λ̃f (x) > η, then f(xNSK)− f(x) ≤ −ν with probability at least 1− c1e
−c2mε2.

(b) Conversely, if λ̃f (x) ≤ η, then

λ̃f (xNSK) ≤ λ̃f (x), and (4.39a)

λf (xNSK) ≤
(16

25

)
λf (x), (4.39b)

where both bounds hold with probability 1− c1e
c2mε2.

Using this lemma, let us now complete the proof of the theorem, dividing our analysis
into the two phases of the algorithm.

4.5.2.0.2 First phase analysis: By Lemma 20(a) each iteration in the first phase
decreases the function value by at least ν > 0, the number of first phase iterations
N1 is at most

N1 : =
f(x0)− f(x∗)

ν
,

with probability at least 1−N1c1e
−c2m.

122



4.5.2.0.3 Second phase analysis: Next, let us suppose that at some iteration
t, the condition λ̃f (x

t) ≤ η holds, so that part (b) of Lemma 20 can be applied. In

fact, the bound (4.39a) then guarantees that λ̃f (x
t+1) ≤ η, so that we may apply the

contraction bound (4.39b) repeatedly for N2 rounds so as to obtain that

λf (x
t+N2) ≤

(16

25

)N2λf (x
t)

with probability 1−N2c1e
c2m.

Since λf (x
t) ≤ η ≤ 1/16 by assumption, the self-concordance of f then implies

that

f(xt+k)− f(x∗) ≤
(

16

25

)k
1

16
.

Therefore, in order to ensure that and consequently for achieving f(xt+k)− f(x∗) ≤
ε, it suffices to the number of second phase iterations lower bounded as N2 ≥
0.65 log2( 1

16ε
).

Putting together the two phases, we conclude that the total number of iterations
N required to achieve ε- accuracy is at most

N = N1 +N2 ≤
f(x0)− f(x∗)

γ
+ 0.65 log2(

1

16ε
) ,

and moreover, this guarantee holds with probability at least 1−Nc1e
−c2mε2 .

The final step in our proof of the theorem is to establish Lemma 20, and we do
in the next two subsections.

4.5.2.1 Proof of Lemma 20(a)

Our proof of this part is performed conditionally on the event D : = {λ̃f (x) > η}.
Our strategy is to show that the backtracking line search leads to a stepsize s > 0 such
that function decrement in moving from the current iterate x to the new sketched
iterate xNSK = x+ svNSK is at least

f(xNSK)− f(x) ≤ −ν with probability at least 1− c1e
−c2m. (4.40)

The outline of our proof is as follows. Defining the univariate function g(u) : =
f(x+ uvNSK) and ε′ = 2ε

1−ε , we first show that û = 1

1+(1+ε′)λ̃f (x)
satisfies the bound

g(û) ≤ g(0)− aûλ̃f (x)2, (4.41a)
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which implies that û satisfies the exit condition of backtracking line search. Therefore,
the stepsize s must be lower bounded as s ≥ bû, which then implies that the updated
solution xNSK = x+ svNSK satisfies the decrement bound

f(xNSK)− f(x) ≤ −ab λ̃f (x)2

1 + (1 + 2ε
1−ε)λ̃f (x)

. (4.41b)

Since λ̃f (x) > η by assumption and the function u→ u2

1+(1+ 2ε
1−ε )u

is monotone increas-

ing, this bound implies that inequality (4.40) holds with ν = ab η2

1+(1+ 2ε
1−ε )η

.

It remains to prove the claims (4.41a) and (4.41b), for which we make use of the
following auxiliary lemma:

Lemma 21. For u ∈ domg ∩ R+, we have the decrement bound

g(u) ≤ g(0) + u〈∇f(x), vNSK〉 − u‖[∇2f(x)]1/2vNSK‖2 − log
(
1− u‖[∇2f(x)]1/2vNSK‖2

)
.

(4.42)

provided that u‖[∇2f(x)]1/2vNSK‖2 < 1.

Lemma 22. With probability at least 1− c1e
−c2m, we have

‖[∇2f(x)]1/2vNSK‖2
2 ≤

(
1 + ε

1− ε

)2 [
λ̃f (x)

]2
. (4.43)

The proof of these lemmas are provided in Sections 4.7.1.2 and 4.7.1.3. Using them, let
us prove the claims (4.41a) and (4.41b). Recalling our shorthand ε′ : = 1+ε

1−ε −1 = 2ε
1−ε ,

substituting inequality (4.43) into the decrement formula (4.42) yields

g(u) ≤ g(0)− uλ̃f (x)2 − u(1 + ε′) λ̃f (x)− log(1− u(1 + ε′) λ̃f (x)) (4.44)

= g(0)−
{
u(1 + ε′)2λ̃f (x)2 + u(1 + ε′) λ̃f (x) + log(1− u(1 + ε′) λ̃f (x))

}
+ u((1 + ε′)2 − 1)λ̃f (x)2

where we added and subtracted u(1 + ε′)2λ̃f (x)2 so as to obtain the final equality.

We now prove inequality (4.41a). Now setting u = û : = 1

1+(1+ε′)λ̃f (x)
, which

satisfies the conditions of Lemma 21 yields

g(û) ≤ g(0)− (1 + ε′) λ̃f (x) + log(1 + (1 + ε′) λ̃f (x)) +
(ε′2 + 2ε′)λ̃f (x)2

1 + (1 + ε′)λ̃f (x)
.

124



Making use of the standard inequality −u + log(1 + u) ≤ −
1
2
u2

(1+u)
(for instance, see

the book [28]), we find that

g(û) ≤ g(0)−
1
2
(1 + ε′)2λ̃f (x)2

1 + (1 + ε′)λ̃f (x)
+

(ε′2 + 2ε′)λ̃f (x)2

1 + (1 + ε′)λ̃f (x)

= g(0)− (
1

2
− 1

2
ε′

2 − ε′)λ̃f (x)2û

≤ g(0)− αλ̃f (x)2û,

where the final inequality follows from our assumption α ≤ 1
2
− 1

2
ε′2 − ε′. This

completes the proof of the bound (4.41a). Finally, the lower bound (4.41b) follows
by setting u = bû into the decrement inequality (4.42).

4.5.2.2 Proof of Lemma 20(b)

The proof of this part hinges on the following auxiliary lemma:

Lemma 23. For all ε ∈ (0, 1/2), we have

λf (xNSK) ≤
(1 + ε)λ2

f (x) + ελf (x)(
1− (1 + ε)λf (x)

)2 , and (4.45a)

(1− ε)λf (x) ≤ λ̃f (x) ≤ (1 + ε)λf (x) , (4.45b)

where all bounds hold with probability at least 1− c1e
−c2mε2.

See Section 4.7.1.4 for the proof.

We now use Lemma 23 to prove the two claims in the lemma statement.

4.5.2.2.1 Proof of the bound (4.39a): Recall from the theorem statement that

η : = 1
8

1− 1
2

( 1+ε
1−ε )2−a

( 1+ε
1−ε )3 . By examining the roots of a polynomial in ε, it can be seen that

η ≤ 1−ε
1+ε

1
16

. By applying the inequalities (4.45b), we have

(1 + ε)λf (x) ≤ 1 + ε

1− ελ̃f (x) ≤ 1 + ε

1− ε η ≤
1

16
(4.46)

whence inequality (4.45a) implies that

λf (xNSK) ≤
1
16
λf (x) + ελf (x)

(1− 1
16

)2
≤
(

16

225
+

256

225
ε

)
λf (x) ≤ 16

25
λf (x). (4.47)
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Here the final inequality holds for all ε ∈ (0, 1/2). Combining the bound (4.45b) with
inequality (4.47) yields

λ̃f (xNSK) ≤ (1 + ε)λf (xNSK) ≤ (1 + ε)
(16

25

)
λ̃f (x) ≤ λ̃f (x) ,

where the final inequality again uses the condition ε ∈ (0, 1
2
). This completes the

proof of the bound (4.39a).

4.5.2.2.2 Proof of the bound (4.39b): This inequality has been established as
a consequence of proving the bound (4.47).

4.5.3 Proof of Theorem 7

Given the proof of Theorem 6, it remains only to prove the following modi-
fied version of Lemma 19. It applies to the exact and sketched Newton directions
vNE, vNSK ∈ Rd that are defined as follows

vNE : = arg min
z∈C−x

{1

2
‖∇2f(x)1/2z‖2

2 + 〈z, ∇f(x)〉+
1

2
〈z, ∇2g(x)z〉

}
, (4.48a)

vNSK = arg min
z∈C−x

{ 1

2
‖S∇2f(x)1/2z‖2

2 + 〈z, ∇f(x)〉+
1

2
〈z, ∇2g(x)z〉︸ ︷︷ ︸

Ψ(z;S)

}
. (4.48b)

Thus, the only difference is that the Hessian ∇2f(x) is sketched, whereas the term
∇2g(x) remains unsketched. Also note that since the function g is a self-concordant
barrier for the set C, we can safely omit the constraint C in the definitions of sketched
and original Newton steps.

Lemma 24. Let S ∈ Rm×n be a sub-Gaussian, ROS or JL sketching matrix,
and let x ∈ Rd be a (possibly random) vector independent of S. If m ≥
c0 maxx∈C

W(∇2f(x)1/2K)2

ε2
, then∥∥∇2f(x)1/2(vNSK − vNE)

∥∥
2
≤ ε

∥∥∇2f(x)1/2vNE

∥∥
2

(4.49)

with probability at least 1− c1e
−c2mε2.

4.6 Discussion

In this chapter we introduced and analyzed the Newton Sketch, a randomized
approximation to the classical Newton updates. This algorithm is a natural general-
ization of the Iterative Hessian Sketch (IHS) updates analyzed in the previous chapter.
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The IHS applies only to constrained least-squares problems (for which the Hessian
is independent of the iteration number), whereas the Newton Sketch applies to twice
differentiable convex functions, minimized over a closed and convex set. We described
various applications of the Newton Sketch, including its use with barrier methods to
solve various forms of constrained problems. For the minimization of self-concordant
functions, the combination of the Newton Sketch within interior point updates leads
to much faster algorithms for an extensive body of convex optimization problems.

Each iteration of the Newton Sketch has lower computational complexity than
classical Newton’s method. Moreover, ignoring logarithmic factors, it has lower overall
computational complexity than first-order methods when either n ≥ d2, when applied
in the primal form, or d ≥ n2, when applied in the dual form; here n and d denote the
dimensions of the data matrix A. In the context of barrier methods, the parameters
n and d typically correspond to the number of constraints and number of variables,
respectively. In many “big data” problems, one of the dimensions is much larger than
the other, in which case the Newton Sketch is advantageous. Moreover, sketches based
on the randomized Hadamard transform are well-suited to in parallel environments:
in this case, the sketching step can be done in O(logm) time with O(nd) processors.
This scheme significantly decreases the amount of central computation—namely, from
O(m2d+ nd logm) to O(m2d+ log d).

There are a number of open problems associated with the Newton Sketch. Here
we focused our analysis on the cases of sub-Gaussian, randomized orthogonal system
(ROS) sketches and JL embeddings. It would also be interesting to analyze sketches
based on row sampling and leverage scores. Such techniques preserve the sparsity
of the Hessian, and can be used in conjunction with sparse KKT system solvers.
Finally, it would be interesting to explore the problem of lower bounds on the sketch
dimension m. In particular, is there a threshold below which any algorithm that
has access only to gradients and m-sketched Hessians must necessarily converge at
a sub-linear rate, or in a way that depends on the strong convexity and smoothness
parameters? Such a result would clarify whether or not the guarantees we obtained
are improvable.

4.7 Proofs of technical results

4.7.1 Technical results for Theorem 6

In this section, we collect together various technical results and proofs that are
required in the proof of Theorem 6.
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4.7.1.1 Proof of Lemma 19

Let u be a unit-norm vector independent of S, and consider the random quantities

Z1(AK)(S, x) : = inf
v∈∇2f(x)1/2Kt∩Sn−1

‖Sv‖2
2 and (4.50a)

Z2(AK)(S, x) : = sup
v∈∇2f(x)1/2Kt∩Sn−1

∣∣∣〈u, (STS − In) v〉
∣∣∣. (4.50b)

By the optimality and feasibility of vNSK and vNE (respectively) for the sketched New-
ton update (4.37), we have

1

2
‖S∇2f(x)1/2vNSK‖2

2 − 〈vNSK, ∇f(x)〉 ≤ 1

2
‖∇2f(x)1/2vNE‖2

2 − 〈vNE, ∇f(x)〉.

Defining the difference vector ê : = vNSK − vNE, some algebra leads to the basic
inequality

1

2
‖S∇2f(x)1/2ê‖2

2 ≤ −〈∇2f(x)1/2vNE, S
TS∇2f(x)1/2ê〉+ 〈ê, ∇f(x)〉. (4.51)

Moreover, by the optimality and feasibility of vNE and vNSK for the exact Newton
update (4.36), we have

〈∇2f(x)vNE −∇f(x), ê〉 = 〈∇2f(x)vNE −∇f(x), vNSK − vNE〉 ≥ 0. (4.52)

Consequently, by adding and subtracting 〈∇2f(x)vNE, ê〉, we find that

1

2
‖S∇2f(x)1/2ê‖2

2 ≤
∣∣∣〈∇2f(x)1/2vNE,

(
In − STS

)
∇2f(x)1/2ê〉

∣∣∣ . (4.53)

By definition, the error vector ê belongs to the cone Kt and the vector ∇2f(x)1/2vNE

is fixed and independent of the sketch. Consequently, invoking definitions (4.50a)
and (4.50b) of the random variables Z1(AK) and Z2(AK) yields

1

2
‖S∇2f(x)1/2ê‖2

2 ≥
Z1(AK)

2
‖∇2f(x)1/2ê‖2

2,∣∣∣〈∇2f(x)1/2vNE,
(
In − STS

)
∇2f(x)1/2ê〉

∣∣∣ ≤ Z2(AK)‖∇2f(x)1/2vNE‖2 ‖∇2f(x)1/2ê‖2,

Putting together the pieces, we find that∥∥∇2f(x)1/2(vNSK − vNE)
∥∥

2
≤ 2Z2(AK)(S, x)

Z1(AK)(S, x)

∥∥∇2f(x)1/2(vNE)
∥∥

2
. (4.54)

Finally, for any δ ∈ (0, 1), let us define the event E(δ) = {Z1(AK) ≥ 1 −
δ, and Z2(AK) ≤ δ}. By Lemma 4 and Lemma 5 of [114], we are guaranteed
that P[E(δ)] ≥ 1 − c1e

−c2mδ2
. Conditioned on the event E(δ), the bound (4.54) im-

plies that ∥∥∇2f(x)1/2(vNSK − vNE)
∥∥

2
≤ 2δ

1− δ
∥∥∇2f(x)1/2(vNE)

∥∥
2
.

By setting δ = ε
4
, the claim follows.
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4.7.1.2 Proof of Lemma 21

By construction, the function g(u) = f(x + uvNSK) is strictly convex and self-
concordant. Consequently, it satisfies the bound d

du

(
g′′(u)−1/2

)
≤ 1, whence

g′′(s)−1/2 − g′′(0)−1/2 =

∫ s

0

d

du

(
g′′(u)−1/2

)
du ≤ s.

or equivalently g′′(s) ≤ g′′(0)

(1−sg′′(0)1/2)2 for s ∈ domg ∩ [0, g′′(0)−1/2). Integrating this

inequality twice yields the bound

g(u) ≤ g(0) + ug′(0)− ug′′(0)1/2 − log(1− ug′′(0)1/2) . (4.55)

Since g′(u) = 〈∇f(x + uvNSK), vNSK〉 and g′′(u) = 〈vNSK, ∇2f(x + uvNSK)vNSK〉, the
decrement bound (4.42) follows.

4.7.1.3 Proof of Lemma 22

We perform this analysis conditional on the bound (4.38) from Lemma 19. We
begin by observing that

‖[∇2f(x)]1/2vNSK‖2 ≤ ‖[∇2f(x)]1/2vNE‖2 + ‖[∇2f(x)]1/2(vNSK − vNE)‖2

= λf (x) + ‖[∇2f(x)]1/2(vNSK − vNE)‖2 . (4.56)

Lemma 19 implies that ‖∇2[f(x)]1/2(vNSK−vNE)‖2 ≤ ε‖∇2[f(x)]1/2vNE‖2 = ελf (x). In
conjunction with the bound (4.56), we see that

‖[∇2f(x)]1/2vNSK‖2 ≤ (1 + ε)λf (x) . (4.57)

Our next step is to lower bound the term 〈∇f(x), vNSK〉: in particular, by adding and
subtracting a factor of the original Newton step vNE, we find that

〈∇f(x), vNSK〉 = 〈[∇2f(x)]−1/2∇f(x), ∇2[f(x)]1/2vNSK〉
= 〈[∇2f(x)]−1/2∇f(x), ∇2[f(x)]1/2vNE〉+ 〈[∇2f(x)]−1/2∇f(x), ∇2[f(x)]1/2(vNSK − v)〉
= −‖∇2[f(x)]−1/2∇f(x)‖2

2 + 〈[∇2f(x)]−1/2∇f(x), ∇2[f(x)]1/2(vNSK − vNE)〉
≤ −‖∇2[f(x)]−1/2∇f(x)‖2

2 + ‖[∇2f(x)]−1/2∇f(x)‖2‖∇2[f(x)]1/2(vNSK − vNE)‖2

= −λf (x)2 + λf (x)‖∇2[f(x)]1/2(vNSK − vNE)‖2

≤ −λf (x)2(1− ε), (4.58)

where the final step again makes use of Lemma 19. Repeating the above argument in
the reverse direction yields the lower bound 〈∇f(x), vNSK〉 ≥ −λf (x)2(1 + ε), so that
we may conclude that

|λ̃f (x)− λf (x)| ≤ ελf (x). (4.59)
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Finally, by squaring both sides of the inequality (4.56) and combining with the above
bounds gives

‖[∇2f(x)]1/2vNSK‖2
2 ≤

− (1 + ε)2

1− ε 〈∇f(x), vNSK〉 =
(1 + ε)2

1− ε λ̃2
f (x) ≤

(
1 + ε

1− ε

)2

λ̃2
f (x),

as claimed.

4.7.1.4 Proof of Lemma 23

We have already proved the bound (4.45b) during our proof of Lemma 22—in
particular, see equation (4.59). Accordingly, it remains only to prove the inequal-
ity (4.45a).

Introducing the shorthand λ̃ : = (1 + ε)λf (x), we first claim that the Hessian
satisfies the sandwich relation

(1− sα)2∇2f(x) � ∇2f(x+ svNSK) � 1

(1− sα)2
∇2f(x) , (4.60)

for |1− sα| < 1 where α = (1 + ε)λf (x), with probability at least 1− c1e
−c2mε2 . Let

us recall Theorem 4.1.6 of Nesterov [104]: it guarantees that

(1− s‖vNSK‖x)2∇2f(x) � ∇2f(x+ svNSK) � 1

(1− s‖vNSK‖x)2
∇2f(x) . (4.61)

Now recall the bound (4.38) from Lemma 19: combining it with an application of the
triangle inequality (in terms of the semi-norm ‖v‖x = ‖∇2f(x)1/2v‖2) yields∥∥∇2f(x)1/2vNSK

∥∥
2
≤(1 + ε)

∥∥∇2f(x)1/2vNE

∥∥
2

= (1 + ε)‖vNE‖x ,

with probability at least 1 − e−c1mε
2
, and substituting this inequality into the

bound (4.61) yields the sandwich relation (4.60) for the Hessian.

Using this sandwich relation (4.60), the Newton decrement can be bounded as

λf (xNSK) = ‖∇2f(xNSK)−1/2∇f(xNSK)‖2

≤ 1

(1− (1 + ε)λf (x))
‖∇2f(x)−1/2∇f(xNSK)‖2

=
1

(1− (1 + ε)λf (x))

∥∥∥∥∇2f(x)−1/2

(
∇f(x) +

∫ 1

0

∇2f(x+ svNSK)vNSK ds

)∥∥∥∥
2

=
1

(1− (1 + ε)λf (x))

∥∥∥∥∇2f(x)−1/2

(
∇f(x) +

∫ 1

0

∇2f(x+ svNSK)vNE ds+ ∆

)∥∥∥∥
2

,
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where we have defined ∆ =
∫ 1

0
∇2f(x + svNSK) (vNSK − vNE) ds. By the triangle in-

equality, we can write λf (xNSK) ≤ 1

(1−(1+ε)λf (x))

(
M1 +M2

)
, where

M1 : =

∥∥∥∥∇2f(x)−1/2

(
∇f(x) +

∫ 1

0

∇2f(x+ tvNSK)vNEdt

)∥∥∥∥
2

, and M2 : =
∥∥∇2f(x)−1/2∆

∥∥
2
.

In order to complete the proof, it suffices to show that

M1 ≤
(1 + ε)λf (x)2

1− (1 + ε)λf (x)
, and M2 ≤

ελf (x)

1− (1 + ε)λf (x)
.

4.7.1.4.1 Bound on M1: Re-arranging and then invoking the Hessian sandwich
relation (4.60) yields

M1 =

∥∥∥∥∫ 1

0

(
∇2f(x)−1/2∇2f(x+ svNSK)∇2f(x)−1/2 − I

)
ds
(
∇2f(x)1/2vNE

)∥∥∥∥
2

≤
∣∣∣∣∫ 1

0

(
1

(1− s(1 + ε)λf (x))2
− 1

)
ds

∣∣∣∣ (∇2f(x)1/2vNE

)
‖2

=
(1 + ε)λf (x)

1− (1 + ε)λf (x)

∥∥∇2f(x)1/2vNE

∥∥
2

=
(1 + ε)λ2

f (x)

1− (1 + ε)λf (x)
.

4.7.1.4.2 Bound on M2: We have

M2 =

∥∥∥∥∫ 1

0

∇2f(x)−1/2∇2f(x+ svNSK)∇2f(x)−1/2ds∇2f(x)1/2(vNSK − vNE)

∥∥∥∥
2

≤
∥∥∥∥∫ 1

0

1

(1− s(1 + ε)λf (x))2
ds∇2f(x)1/2(vNSK − vNE)

∥∥∥∥
2

=
1

1− (1 + ε)λf (x)

∥∥∇2f(x)1/2(vNSK − vNE)
∥∥

2

(i)

≤ 1

1− (1 + ε)λf (x)
ε
∥∥∇2f(x)1/2vNE

∥∥
2

=
ελf (x)

1− (1 + ε)λf (x)
,

where the inequality in step (i) follows from Lemma 19.
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4.7.2 Proof of Lemma 24

The proof follows the basic inequality argument of the proof of Lemma 19.
Since vNSK and vNE are optimal and feasible (respectively) for the sketched New-
ton problem (4.48b), we have Ψ(vNSK;S) ≤ Ψ(vNE;S). Defining the difference vector
ê : = vNSK − v, some algebra leads to the basic inequality

1

2
‖S∇2f(x)1/2ê‖2

2 +
1

2
〈ê, ∇2g(x)ê〉 ≤ −〈∇2f(x)1/2vNE, S

TS∇2f(x)1/2ê〉
+ 〈ê,

(
∇f(x)−∇2g(x)

)
vNE〉.

On the other hand since vNE and vNSK are optimal and feasible (respectively) for the
Newton step (4.48a), we have

〈∇2f(x)vNE +∇2g(x)vNE −∇f(x), ê〉 ≥ 0.

Consequently, by adding and subtracting 〈∇2f(x)vNE, ê〉, we find that

1

2
‖S∇2f(x)1/2ê‖2

2 +
1

2
〈vNE, ∇2g(x)vNE〉 ≤

∣∣∣〈∇2f(x)1/2vNE,
(
In − STS

)
∇2f(x)1/2ê〉

∣∣∣ .
(4.62)

We next define the matrix H̄(x)1/2 : =

[
∇2f(x)1/2

∇2g(x)1/2

]
and the augmented sketching

matrix S̄ : =

[
S 0
0 Iq

]
where q = 2n. Then we can rewrite the inequality (4.62) as

follows

1

2
‖S̄H̄(x)1/2ê‖2

2 ≤
∣∣∣〈H̄(x)1/2vNE,

(
Iq − S̄T S̄

)
H̄(x)1/2ê〉

∣∣∣ .
Note that the modified sketching matrix S̄ also satisfies the conditions (4.50a) and
(4.50b). Consequently the remainder of the proof follows as in the proof of Lemma 19.

4.7.3 Gaussian widths with `1-constraints

In this section, we state and prove an elementary lemma that bounds for the
Gaussian width for a broad class of `1-constrained problems. In particular, given a
twice-differentiable convex function ψ, a vector c ∈ Rd, a radius R and a collection
of d-vectors {ai}ni=1, consider a convex program of the form

min
x∈C

{ n∑
i=1

ψ
(
〈ai, x〉

)
+ 〈c, x〉

}
, where C = {x ∈ Rd | ‖x‖1 ≤ R}. (4.63)
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Lemma 25. Suppose that the `1-constrained program (4.63) has a unique optimal
solution x∗ such that ‖x∗‖0 ≤ s for some integer k. Then denoting the tangent cone
at x∗ by K, then

max
x∈C

W(∇2f(x)1/2K) ≤ 6
√
k log d

√
ψ′′max

ψ′′min

max
j=1,...,d

‖Aj‖2√
γ−k (A)

,

where

ψ′′min = min
x∈C

min
i=1,...,n

ψ′′(〈ai, x〉, yi), and ψ′′max = max
x∈C

max
i=1,...,n

ψ′′(〈ai, x〉, yi).

Proof. It is well-known (e.g., [67, 114]) that the tangent cone of the `1-norm at any
k-sparse solution is a subset of the cone {z ∈ Rd | ‖z‖1 ≤ 2

√
k‖z‖2}. Using this fact,

we have the following sequence of upper bounds

W(∇2f(x)1/2K) = Ew max
zT∇2f(x)z=1 ,

z∈K

〈w, ∇2f(x)1/2z〉

= Ew max
zTATdiag(ψ′′(〈ai, x〉x,yi))Az=1 ,

z∈K

〈w, diag (ψ′′(〈ai, x〉, yi))1/2
Az〉

≤ Ew max
zTATAz≤1/ψ′′min

z∈K

〈w, diag (ψ′′(〈ai, x〉, yi))1/2
Az〉

≤ Ew max
‖z‖1≤ 2

√
k√

γ−
k

(A)

1√
ψ′′

min

〈w, diag (ψ′′(〈ai, x〉, yi))1/2
Az〉

=
2
√
k√

γ−k (A)

1√
ψ′′min

Ew ‖ATdiag (ψ′′(〈ai, x〉, yi))1/2
w‖∞

=
2
√
s√

γ−k (A)

1√
ψ′′min

Ew max
j=1,...,d

∣∣∣ ∑
i=1,...,n

wiAijψ
′′(〈ai, x〉, yi)1/2

︸ ︷︷ ︸
Qj

∣∣∣.
Here the random variables Qj are zero-mean Gaussians with variance at most∑

i=1,...,n

A2
ijψ
′′(〈ai, x〉, yi) ≤ ψ′′max‖Aj‖2

2.

Consequently, applying standard bounds on the suprema of Gaussian variates [85],
we obtain

Ew max
j=1,...,d

∣∣∣ ∑
i=1,...,n

wiAijψ
′′(〈ai, x〉, yi)1/2

∣∣∣ ≤ 3
√

log d
√
ψ′′max max

j=1,...,d
‖Aj‖2.

When combined with the previous inequality, the claim follows.
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(a) Sketch size m = d

(b) Sketch size m = 4d

(c) Sketch size m = 16d

Figure 4.1: Comparisons of central paths for a simple linear program in two dimen-
sions. Each row shows three independent trials for a given sketch dimension: across
the rows, the sketch dimension ranges as m ∈ {d, 4d, 16d}. The black arrows show
Newton steps taken by the standard interior point method, whereas red arrows show
the steps taken by the sketched version. The green point at the vertex represents the
optimum. In all cases, the sketched algorithm converges to the optimum, and as the
sketch dimension m increases, the sketched central path converges to the standard
central path.
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Figure 4.2: Empirical illustration of the linear convergence of the Newton Sketch
algorithm for an ensemble of portfolio optimization problems (4.15). In all cases, the
algorithm was implemented using a sketch dimension m = d4s log de, where s is an
upper bound on the number of non-zeros in the optimal solution x∗; this quantity
satisfies the required lower bound (4.12), and consistent with the theory, the algorithm
displays linear convergence.
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Figure 4.3: Comparison of Newton Sketch with various other algorithms in the logistic
regression problem with Gaussian data.
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Figure 4.4: Comparison of Newton Sketch with other algorithms in the logistic re-
gression problem with Student’s t-distributed data
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Figure 4.5: The performance of Newton Sketch is independent of condition num-
bers and problem related quantities. Plots of the number of iterations required to
reach 10−6 accuracy in `1-constrained logistic regression using Newton’s Method and
Projected Gradient Descent using line search.
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Figure 4.6: Plots of the duality gap versus iteration number (top panel) and duality
gap versus wall-clock time (bottom panel) for the original barrier method (blue) and
sketched barrier method (red). The sketched interior point method is run 10 times
independently yielding slightly different curves in red. While the sketched method
requires more iterations, its overall wall-clock time is much smaller.
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Chapter 5

Random projection, effective
dimension and nonparametric
regression

The goal of non-parametric regression is to make predictions of a response variable
Y ∈ R based on observing a covariate vector X ∈ X . In practice, we are given a
collection of n samples, say {(xi, yi)}ni=1 of covariate-response pairs and our goal is to
estimate the regression function f ∗(x) = E[Y | X = x]. In the standard Gaussian
model, it is assumed that the covariate-response pairs are related via the model

yi = f ∗(xi) + σwi, for i = 1, . . . , n (5.1)

where the sequence {wi}ni=1 consists of i.i.d. standard Gaussian variates. It is typical
to assume that the regression function f ∗ has some regularity properties, and one way
of enforcing such structure is to require f ∗ to belong to a reproducing kernel Hilbert
space, or RKHS for short [13, 141, 65]). Given such an assumption, it is natural
to estimate f ∗ by minimizing a combination of the least-squares fit to the data and
a penalty term involving the squared Hilbert norm, leading to an estimator known
kernel ridge regression, or KRR for short [68, 127]). From a statistical point of view,
the behavior of KRR can be characterized using existing results on M -estimation
and empirical processes (e.g. [79, 96, 138]). When the regularization parameter is set
appropriately, it is known to yield a function estimate with minimax prediction error
for various classes of kernels.

Despite these attractive statistical properties, the computational complexity of
computing the KRR estimate prevents it from being routinely used in large-scale
problems. More precisely, in a standard implementation [124], the time complexity
and space complexity of KRR scales as O(n3) and O(n2), respectively, where n refers
to the number of samples. As a consequence, it becomes important to design methods
for computing approximate forms of the KRR estimate, while retaining guarantees
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of optimality in terms of statistical minimaxity. Various authors have taken different
approaches to this problem. Zhang et al. [155] analyze a distributed implementation
of KRR, in which a set of t machines each compute a separate estimate based on a
random t-way partition of the full data set, and combine it into a global estimate by
averaging. This divide-and-conquer approach has time complexity and space com-
plexity O(n3/t3) and O(n2/t2), respectively. Zhang et al. [155] give conditions on the
number of splits t, as a function of the kernel, under which minimax optimality of
the resulting estimator can be guaranteed. More closely related to our methods that
are based on forming a low-rank approximation to the n-dimensional kernel matrix,
such as the Nyström methods (e.g. [53, 61]). The time complexity by using a low-
rank approximation is either O(nr2) or O(n2r), depending on the specific approach
(excluding the time for factorization), where r is the maintained rank, and the space
complexity is O(nr). Some recent work [16, 7] analyzes the tradeoff between the rank
r and the resulting statistical performance of the estimator, and we discuss this line
of work at more length in Section 5.2.3.

We will consider approximations to KRR based on random projections, also known
as sketches, of the data. Random projections are a classical way of performing di-
mensionality reduction, and are widely used in many algorithmic contexts (e.g., see
the book [139] and references therein). Our proposal is to approximate n-dimensional
kernel matrix by projecting its row and column subspaces to a randomly chosen m-
dimensional subspace with m � n. By doing so, an approximate form of the KRR
estimate can be obtained by solving an m-dimensional quadratic program, which in-
volves time and space complexity O(m3) and O(m2). Computing the approximate
kernel matrix is a pre-processing step that has time complexity O(n2 log(m)) for suit-
ably chosen projections; this pre-processing step is trivially parallelizable, meaning it
can be reduced to to O(n2 log(m)/t) by using t ≤ n clusters.

Given such an approximation, we pose the following question: how small can
the projection dimension m be chosen while still retaining minimax optimality of
the approximate KRR estimate? We answer this question by connecting it to the
statistical dimension dn of the n-dimensional kernel matrix, a quantity that measures
the effective number of degrees of freedom. (See Section 5.1.3 for a precise definition.)
From the results of earlier work on random projections for constrained Least Squares
estimators (e.g., see [114, 112]), it is natural to conjecture that it should be possible to
project the kernel matrix down to the statistical dimension while preserving minimax
optimality of the resulting estimator. The main contribution of this chapter is to
confirm this conjecture for several classes of random projection matrices.

It is worth mentioning that our sketching approach is radically different from the
classical least-squares sketch—the former applies random projection to reduce the
parameter dimension while the latter reduce the number of observations. As shown
in [112], although the classical least-squares sketch approximates the value of the
quadratic objective function, it is sub-optimal for approximating the solution in terms
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of some distance measure between the approximate minimizer and the true minimizer.
However, our sketching approach retains minimax optimality of the approximate KRR
estimate.

The remainder of this chapter is organized as follows. Section 5.1 is devoted to
further background on non-parametric regression, reproducing kernel Hilbert spaces
and associated measures of complexity, as well as the notion of statistical dimension
of a kernel. In Section 5.2, we turn to statements of our main results. Theorem 10
provides a general sufficient condition on a random sketch for the associated approx-
imate form of KRR to achieve the minimax risk. In Corollary 13, we derive some
consequences of this general result for particular classes of random sketch matrices,
and confirm these theoretical predictions with some simulations. We also compare at
more length to methods based on the Nyström approximation in Section 5.2.3. Sec-
tion 5.3 is devoted to the proofs of our main results. We conclude with a discussion
in Section 5.4.

5.1 Problem formulation and background

We begin by introducing some background on nonparametric regression and re-
producing kernel Hilbert spaces, before formulating the main problem.

5.1.1 Regression in reproducing kernel Hilbert spaces

Given n samples {(xi, yi)}ni=1 from the non-parametric regression model (5.1), our
goal is to estimate the unknown regression function f ∗. The quality of an estimate
f̂ can be measured in different ways: for consistency with our earlier results, we will
focus on the squared L2(Pn) error

‖f̂ − f ∗‖2
n : =

1

n

n∑
i=1

(
f̂(xi)− f ∗(xi)

)2
. (5.2)

Naturally, the difficulty of non-parametric regression is controlled by the structure
in the function f ∗, and one way of modeling such structure is within the framework
of a reproducing kernel Hilbert space (or RKHS for short). Here we provide a very
brief introduction referring the reader to the books [21, 65, 141] for more details and
background.

Given a space X endowed with a probability distribution P, the space L2(P)
consists of all functions that are square-integrable with respect to P. In abstract
terms, a space H ⊂ L2(P) is an RKHS if for each x ∈ X , the evaluation function
f 7→ f(x) is a bounded linear functional. In more concrete terms, any RKHS is
generated by a positive semidefinite (PSD) kernel function in the following way. A
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PSD kernel function is a symmetric function K : X × X → R such that, for any
positive integer N , collections of points {v1, . . . , vN} and weight vector ω ∈ RN , the
sum

∑N
i,j=1 ωiωjK(vi, vj) is non-negative. Suppose moreover that for each fixed v ∈ X ,

the function u 7→ K(u, v) belongs to L2(P). We can then consider the vector space of
all functions g : X → R of the form

g(·) =
N∑
i=1

ωiK(·, vi)

for some integer N , points {v1, . . . , vN} ⊂ X and weight vector w ∈ RN . By taking
the closure of all such linear combinations, it can be shown [13] that we generate
an RKHS, and one that is uniquely associated with the kernel K. We provide some
examples of various kernels and the associated function classes in Section 5.1.3 to
follow.

5.1.2 Kernel ridge regression and its sketched form

Given the dataset {(xi, yi)}ni=1, a natural method for estimating unknown function
f ∗ ∈ H is known as kernel ridge regression (KRR): it is based on the convex program

f♦ : = arg min
f∈H

{ 1

2n

n∑
i=1

(
yi − f(xi)

)2
+ λn‖f‖2

H

}
, (5.3)

where λn is a regularization parameter corresponding to the Hilbert space norm ‖·‖H.
As stated, this optimization problem can be infinite-dimensional in nature, since it

takes place over the Hilbert space. However, as a straightforward consequence of the
representer theorem [76], the solution to this optimization problem can be obtained by
solving the n-dimensional convex program. In particular, let us define the empirical
kernel matrix, namely the n-dimensional symmetric matrix K with entries Kij =
n−1K(xi, xj). Here we adopt the n−1 scaling for later theoretical convenience. In
terms of this matrix, the KRR estimate can be obtained by first solving the quadratic
program

ω† = arg min
ω∈Rn

{1

2
ωTK2ω − ωTKy√

n
+ λnω

TKω
}
, (5.4a)

and then outputting the function

f♦(·) =
1√
n

n∑
i=1

ω†iK(·, xi). (5.4b)

In principle, the original KRR optimization problem (5.4a) is simple to solve: it
is an n dimensional quadratic program, and can be solved exactly using O(n3) via a
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QR decomposition. However, in many applications, the number of samples may be
large, so that this type of cubic scaling is prohibitive. In addition, the n-dimensional
kernel matrix K is dense in general, and so requires storage of order n2 numbers,
which can also be problematic in practice.

We consider an approximation based on limiting the original parameter ω ∈ Rn

to an m-dimensional subspace of Rn, where m � n is the projection dimension. We
define this approximation via a sketch matrix S ∈ Rm×n, such that the m-dimensional
subspace is generated by the row span of S. More precisely, the sketched kernel ridge
regression estimate is given by first solving

α̂ = arg min
θ∈Rm

{1

2
αT (SK)(KST )α− αTS Ky√

n
+ λnα

TSKSTα
}
, (5.5a)

and then outputting the function

f̂(·) : =
1√
n

n∑
i=1

(ST α̂)iK(·, xi). (5.5b)

Note that the sketched program (5.5a) is a quadratic program in m dimensions: it
takes as input the m-dimensional matrices (SK2ST , SKST ) and the m-dimensional
vector SKy. Consequently, it can be solved efficiently via QR decomposition with
computational complexity O(m3). Moreover, the computation of the sketched kernel
matrix SK = [SK1, . . . , SKn] in the input can be parallellized across its columns.

In this section, we analyze various forms of randomized sketching matrices. In
section 5.5, we show that the sketched KRR estimate (5.5a) based on a sub-sampling
sketch matrix is equivalent to the Nyström approximation.

5.1.3 Kernel complexity measures and statistical guarantees

So as to set the stage for later results, let us characterize an appropriate choice
of the regularization parameter λ, and the resulting bound on the prediction error
‖f♦ − f ∗‖n. Recall the empirical kernel matrix K defined in the previous section:
since it is symmetric and positive definite, it has an eigendecomposition of the form
K = UDUT , where U ∈ Rn×n is an orthonormal matrix, and D ∈ Rn×n is diagonal
with elements µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂n ≥ 0. Using these eigenvalues, consider the kernel
complexity function

R̂(δ) =

√√√√ 1

n

n∑
j=1

min{δ2, µ̂j}, (5.6)

corresponding to a rescaled sum of the eigenvalues, truncated at level δ2. This function
arises via analysis of the local Rademacher complexity of the kernel class (e.g., [19,
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79, 96, 120]). For a given kernel matrix and noise variance σ > 0, the critical radius
is defined to be the smallest positive solution δn > 0 to the inequality

R̂(δ)

δ
≤ δ

σ
. (5.7)

Note that the existence and uniqueness of this critical radius is guaranteed for any
kernel class [19].

5.1.3.0.3 Bounds on ordinary KRR: The significance of the critical radius is
that it can be used to specify bounds on the prediction error in kernel ridge regres-
sion. More precisely suppose that we compute the KRR estimate (5.3) with any
regularization parameter λ ≥ 2δ2

n. Then with probability at least 1 − c1e
−c2nδ2

n , we
are guaranteed that

‖f♦ − f ∗‖2
n ≤ cu

{
λn + δ2

n

}
, (5.8)

where cu > 0 is a universal constant (independent of n, σ and the kernel). This known
result follows from standard techniques in empirical process theory (e.g., [138, 19]);
we also note that it can be obtained as a corollary of our more general theorem on
sketched KRR estimates to follow (viz. Theorem 10).

To illustrate, let us consider a few examples of reproducing kernel Hilbert spaces,
and compute the critical radius in different cases. In working through these examples,
so as to determine explicit rates, we assume that the design points {xi}ni=1 are sampled
i.i.d. from some underlying distribution P, and we make use of the useful fact that, up
to constant factors, we can always work with the population-level kernel complexity
function

R(δ) =

√√√√ 1

n

∞∑
j=1

min{δ2, µj}, (5.9)

where {µj}∞j=1 are the eigenvalues of the kernel integral operator (assumed to be
uniformly bounded). This equivalence follows from standard results on the population
and empirical Rademacher complexities [96, 19].

Example 4 (Polynomial kernel). For some integer D ≥ 1, consider the kernel func-

tion on [0, 1]× [0, 1] given by Kpoly(u, v) =
(
1 + 〈u, v〉

)D
. For D = 1, it generates the

class of all linear functions of the form f(x) = a0 + a1x for some scalars (a0, a1), and
corresponds to a linear kernel. More generally, for larger integers D, it generates the
class of all polynomial functions of degree at most D—that is, functions of the form
f(x) =

∑D
j=0 ajx

j.

Let us now compute a bound on the critical radius δn. It is straightforward to show
that the polynomial kernel is of finite rank at most D + 1, meaning that the kernel
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matrix K always has at most min{D + 1, n} non-zero eigenvalues. Consequently, as
long n > D + 1, there is a universal constant c such that

R̂(δ) ≤ c

√
D + 1

n
δ,

which implies that δ2
n - σ2D+1

n
. Consequently, we conclude that the KRR estimate

satisifes the bound ‖f̂ − f ∗‖2
n - σ2D+1

n
with high probability. Note that this bound

is intuitive, since a polynomial of degree D has D + 1 free parameters.

Example 5 (Gaussian kernel). The Gaussian kernel with bandwidth h > 0 takes the

form KGau(u, v) = e−
1

2h2 (u−v)2

. When defined with respect to Lebesgue measure on the
real line, the eigenvalues of the kernel integral operator scale as µj � exp(−πh2j2)
as j → ∞. Based on this fact, it can be shown that the critical radius scales as

δ2
n � σ2

n

√
log
(
n
σ2

)
. Thus, even though the Gaussian kernel is non-parametric (since

it cannot be specified by a fixed number of parametrers), it is still a relatively small
function class.

Example 6 (First-order Sobolev space). As a final example, consider the kernel
defined on the unit square [0, 1]× [0, 1] given by Ksob(u, v) = min{u, v}. It generates
the function class

H1[0, 1] =
{
f : [0, 1]→ R | f(0) = 0,

and f is abs. cts. with
∫ 1

0
[f ′(x)]2 dx <∞

}
,

(5.10)

a class that contains all Lipschitz functions on the unit interval [0, 1]. Roughly speak-
ing, we can think of the first-order Sobolev class as functions that are almost every-
where differentiable with derivative in L2[0, 1]. Note that this is a much larger kernel
class than the Gaussian kernel class. The first-order Sobolev space can be generalized
to higher order Sobolev spaces, in which functions have additional smoothness. See
the book [65] for further details on these and other reproducing kernel Hilbert spaces.

If the kernel integral operator is defined with respect to Lebesgue measure on the

unit interval, then the population level eigenvalues are given by µj =
(

2
(2j−1)π

)2
for

j = 1, 2, . . .. Given this relation, some calculation shows that the critical radius scales

as δ2
n �

(
σ2

n

)2/3
. This is the familiar minimax risk for estimating Lipschitz functions

in one dimension [133].

5.1.3.0.4 Lower bounds for non-parametric regression: For future refer-
ence, it is also convenient to provide a lower bound on the prediction error achievable
by any estimator. In order to do so, we first define the statistical dimension of the
kernel as

dn : = min
{
j ∈ [n] : µ̂j ≤ δ2

n}, (5.11)
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and dn = n if no such index j exists. By definition, we are guaranteed that µ̂j > δ2
n

for all j ∈ {1, 2, . . . , dn}. In terms of this statistical dimension, we have

R̂(δn) =
[dn
n
δ2
n +

1

n

n∑
j=dn+1

µ̂j

]1/2

,

showing that the statistical dimension controls a type of bias-variance tradeoff.

It is reasonable to expect that the critical rate δn should be related to the statisti-
cal dimension as δ2

n � σ2dn
n

. This scaling relation holds whenever the tail sum satisfies
a bound of the form

∑n
j=dn+1 µ̂j - dnδ

2
n. Although it is possible to construct patho-

logical examples in which this scaling relation does not hold, it is true for most kernels
of interest, including all examples considered in this section. For any such regular
kernel, the critical radius provides a fundamental lower bound on the performance of
any estimator, as summarized in the following theorem:

Theorem 9 (Critical radius and minimax risk). Given n i.i.d. samples {(yi, xi)}ni=1

from the standard non-parametric regression model over any regular kernel class, any
estimator f̃ has prediction error lower bounded as

sup
‖f∗‖H≤1

E‖f̃ − f ∗‖2
n ≥ c`δ

2
n, (5.12)

where c` > 0 is a numerical constant, and δn is the critical radius (5.7).

The proof of this claim, provided in Section 5.6.1, is based on a standard applicaton of
Fano’s inequality, combined with a random packing argument. It establishes that the
critical radius is a fundamental quantity, corresponding to the appropriate benchmark
to which sketched kernel regression estimates should be compared.

5.2 Main results and their consequences

We now turn to statements of our main theorems on kernel sketching, as well
as a discussion of some of their consequences. We first introduce the notion of a
K-satisfiable sketch matrix, and then show (in Theorem 10) that any sketched KRR
estimate based on a K-satisfiable sketch also achieves the minimax risk. We illus-
trate this achievable result with several corollaries for different types of randomized
sketches. For Gaussian and ROS sketches, we show that choosing the sketch di-
mension proportional to the statistical dimension of the kernel (with additional log
factors in the ROS case) is sufficient to guarantee that the resulting sketch will be
K-satisfiable with high probability. In addition, we illustrate the sharpness of our
theoretical predictions via some experimental simulations.
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5.2.1 General conditions for sketched kernel optimality

Recall the definition (5.11) of the statistical dimension dn, and consider the eigen-
decomposition K = UDUT of the kernel matrix, where U ∈ Rn×n is an orthonormal
matrix of eigenvectors, and D = diag{µ̂1, . . . , µ̂n} is a diagonal matrix of eigenval-
ues. Let U1 ∈ Rn×dn denote the left block of U , and similarly, U2 ∈ Rn×(n−dn)

denote the right block. Note that the columns of the left block U1 correspond to the
eigenvectors of K associated with the leading dn eigenvalues, whereas the columns
of the right block U2 correspond to the eigenvectors associated with the remaining
n − dn smallest eigenvalues. Intuitively, a sketch matrix S ∈ Rm×n is “good” if the
sub-matrix SU1 ∈ Rm×dn is relatively close to an isometry, whereas the sub-matrix
SU2 ∈ Rm×(n−dn) has a relatively small operator norm.

This intuition can be formalized in the following way. For a given kernel matrix
K, a sketch matrix S is said to be K-satisfiable if there is a universal constant c such
that

|||(SU1)TSU1 − Idn|||2 ≤ 1/2, and |||SU2D
1/2
2 |||2 ≤ c δn, (5.13)

where D2 = diag{µ̂dn+1, . . . , µ̂n}.
Given this definition, the following theorem shows that any sketched KRR esti-

mate based on a K-satisfiable matrix achieves the minimax risk (with high probability
over the noise in the observation model):

Theorem 10 (Upper bound). Given n i.i.d. samples {(yi, xi)}ni=1 from the standard
non-parametric regression model, consider the sketched KRR problem (5.5a) based
on a K-satisfiable sketch matrix S. Then any for λn ≥ 2δ2

n, the sketched regression

estimate f̂ from equation (5.5b) satisfies the bound

‖f̂ − f ∗‖2
n ≤ cu

{
λn + δ2

n

}
with probability greater than 1− c1e

−c2nδ2
n.

We emphasize that in the case of fixed design regression and for a fixed sketch
matrix, the K-satisfiable condition on the sketch matrix S is a deterministic state-
ment: apart from the sketch matrix, it only depends on the properties of the kernel
function K and design variables {xi}ni=1. Thus, when using randomized sketches, the
algorithmic randomness can be completely decoupled from the randomness in the
noisy observation model (5.1).

5.2.1.0.5 Proof intuition: The proof of Theorem 10 is given in Section 5.3.1.
At a high-level, it is based on an upper bound on the prediction error ‖f̂ − f ∗‖2

n

that involves two sources of error: the approximation error associated with solving
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a zero-noise version of the KRR problem in the projected m-dimensional space, and
the estimation error between the noiseless and noisy versions of the projected prob-
lem. In more detail, letting z∗ : = (f ∗(x1), . . . , f ∗(xn)) denote the vector of function
evaluations defined by f ∗, consider the quadratic program

α† : = arg min
α∈Rm

{ 1

2n
‖z∗ −√nKSTα‖2

2 + λn‖K1/2STα‖2
2

}
, (5.14)

as well as the associated fitted function f † = 1√
n

∑n
i=1(Sα†)iK(·, xi). The vector

α† ∈ Rm is the solution of the sketched problem in the case of zero noise, whereas the
fitted function f † corresponds to the best penalized approximation of f ∗ within the
range space of ST .

Given this definition, we then have the elementary inequality

1

2
‖f̂ − f ∗‖2

n ≤ ‖f † − f ∗‖2
n︸ ︷︷ ︸

Approximation error

+ ‖f † − f̂‖2
n︸ ︷︷ ︸

Estimation error

. (5.15)

For a fixed sketch matrix, the approximation error term is deterministic: it corre-
sponds to the error induced by approximating f ∗ over the range space of ST . On
the other hand, the estimation error depends both on the sketch matrix and the ob-
servation noise. In Section 5.3.1, we state and prove two lemmas that control the
approximation and error terms respectively.

As a corollary, Theorem 10 implies the stated upper bound (5.8) on the prediction
error of the original (unsketched) KRR estimate (5.3). Indeed, this estimator can be
obtained using the “sketch matrix” S = In×n, which is easily seen to be K-satisfiable.
In practice, however, we are interested in m × n sketch matrices with m � n, so as
to achieve computational savings. In particular, a natural conjecture is that it should
be possible to efficiently generate K-satisfiable sketch matrices with the projection
dimension m proportional to the statistical dimension dn of the kernel. Of course,
one such K-satisfiable matrix is given by S = UT

1 ∈ Rdn×n, but it is not easy to
generate, since it requires computing the eigendecomposition of K. Nonetheless, as
we now show, there are various randomized constructions that lead to K-satisfiable
sketch matrices with high probability.

5.2.2 Corollaries for randomized sketches

When combined with additional probabilistic analysis, Theorem 10 implies that
various forms of randomized sketches achieve the minimax risk using a sketch dimen-
sion proportional to the statistical dimension dn. Here we analyze the Gaussian and
ROS families of random sketches, as previously defined in Section 5.1.2. Throughout
our analysis, we require that the sketch dimension satisfies a lower obund of the form
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m ≥
{
c dn for Gaussian sketches, and

c dn log4(n) for ROS sketches,
(5.16a)

where dn is the statistical dimension as previously defined in equation (5.11). Here it
should be understood that the constant c can be chosen sufficiently large (but finite).
In addition, for the purposes of stating high probability results, we define the function

φ(m, dn, n) : =

c1e
−c2m for Gaussian sketches, and

c1

[
e
−c2 m

dn log2(n) + e−c2dn log2(n)

]
for ROS sketches,

(5.16b)

where c1, c2 are universal constants. With this notation, the following result provides
a high probability guarantee for both Gaussian and ROS sketches:

Corollary 13 (Guarantees for Gaussian and ROS sketches). Given n i.i.d. samples
{(yi, xi)}ni=1 from the standard non-parametric regression model (5.1), consider the
sketched KRR problem (5.5a) based on a sketch dimension m satisfying the lower
bound (5.16a). Then there is a universal constant c′u such that for any λn ≥ 2δ2

n, the
sketched regression estimate (5.5b) satisfies the bound

‖f̂ − f ∗‖2
n ≤ c′u

{
λn + δ2

n

}
with probability greater than 1− φ(m, dn, n)− c3e

−c4nδ2
n.

In order to illustrate Corollary 13, let us return to the three examples previously
discussed in Section 5.1.3. To be concrete, we derive the consequences for Gaussian
sketches, noting that ROS sketches incur only an additional log4(n) overhead.

• for the Dth-order polynomial kernel from Example 4, the statistical dimension
dn for any sample size n is at most D+ 1, so that a sketch size of order D+ 1 is
sufficient. This is a very special case, since the kernel is finite rank and so the
required sketch dimension has no dependence on the sample size.

• for the Gaussian kernel from Example 5, the statistical dimension satisfies the
scaling dn �

√
log n, so that it suffices to take a sketch dimension scaling loga-

rithmically with the sample size.

• for the first-order Sobolev kernel from Example 6 , the statistical dimension
scales as dn � n1/3, so that a sketch dimension scaling as the cube root of the
sample size is required.
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Remark. In practice, the target sketch dimension m is only known up to a mul-
tiplicative constant. To determine this multiplicative constant, one can implement
the randomized algorithm in an adaptive fashion where the multiplicative constant is
increased until the squared L2(Pn) norm of the change in the fitted function f̂ falls
below a desired tolerance. This adaptive procedure only slightly increases the time
complexity—when increasing the sketch dimension from m to m′, we only need to
sample additional m′−m rows to form the new sketch matrix S ′ for any of the three
random sketch schemes described in Section 5.1.2. Correspondingly, to form the new
sketched kernel matrix S ′K, we only need to compute the product of the new rows
of S ′ and the kernel matrix K. Fig. 5.1(d) and Fig. 5.2(d) below show that the rela-

tive approximation error ‖f̂ − f♦‖2
n/‖f♦ − f ∗‖2

n has a rapid decay as the projection
dimension m grows, which justifies the validity of the adaptive procedure.

In order to illustrate these theoretical predictions, we performed some simulations.
Beginning with the Sobolev kernel Ksob(u, v) = min{u, v} on the unit square, as
introduced in Example 6, we generated n i.i.d. samples from the model (5.1) with
noise standard deviation σ = 0.5, the unknown regression function

f ∗(x) = 1.6 |(x− 0.4)(x− 0.6)| − 0.3, (5.17)

and uniformly spaced design points xi = i
n

for i = 1, . . . , n. By construction, the
function f ∗ belongs to the first-order Sobolev space with ‖f ∗‖H ≈ 1.3. As suggested
by our theory for the Sobolev kernel, we set the projection dimension m = dn1/3e, and
then solved the sketched version of kernel ridge regression, for both Gaussian sketches
and ROS sketches based on the fast Hadamard transform. We performed simulations
for n in the set {32, 64, 128, . . . , 16384} so as to study scaling with the sample size.

As noted above, our theory predicts that the squared prediction loss ‖f̂−f ∗‖2
n should

tend to zero at the same rate n−2/3 as that of the unsketched estimator f♦. Figure 5.1
confirms this theoretical prediction. In panel (a), we plot the squared prediction error
versus the sample size, showing that all three curves (original, Gaussian sketch and

ROS sketch) tend to zero. Panel (b) plots the rescaled prediction error n2/3‖f̂ − f ∗‖2
n

versus the sample size, with the relative flatness of these curves confirming the n−2/3

decay predicted by our theory. Panel (c) plots the running time versus the sample size
and the squared prediction error, showing that kernel sketching considerably speeds
up KRR.

In our second experiment, we repeated the same set of simulations this time for the

3-d Gaussian kernel KGau(u, v) = e−
1

2h2 ‖u−v‖22 with bandwidth h = 1, and the function
f ∗(x) = 0.5 e−x1+x2 − x2x3. In this case, as suggested by our theory, we choose the
sketch dimension m = d1.25(log n)3/2e. Figure 5.2 shows the same types of plots
with the prediction error. In this case, we expect that the squared prediction error

will decay at the rate (logn)3/2

n
. This prediction is confirmed by the plot in panel (b),
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Figure 5.1: Prediction error versus sample size for original KRR, Gaussian sketch, and
ROS sketches for the Sobolev one kernel for the function f ∗(x) = 1.6 |(x − 0.4)(x −
0.6)| − 0.3. In all cases, each point corresponds to the average of 100 trials, with

standard errors also shown. (a) Squared prediction error ‖f̂ −f ∗‖2
n versus the sample

size n ∈ {32, 64, 128, . . . , 16384} for projection dimension m = dn1/3e. (b) Rescaled

prediction error n2/3‖f̂ − f ∗‖2
n versus the sample size. (c) Runtime versus the sample

size. (d) Relative approximation error ‖f̂−f♦‖2
n/‖f♦−f ∗‖2

n versus scaling parameter
c for n = 1024 and m = dcn1/3e with c ∈ {0.5, 1, 2, . . . , 7}. The original KRR under
n = 8192 and 16384 are not computed due to out-of-memory failures.

showing that the rescaled error n
(logn)3/2‖f̂ − f ∗‖2

n, when plotted versus the sample

size, remains relatively constant over a wide range.

5.2.3 Comparison with Nyström-based approaches

It is interesting to compare the convergence rate and computational complexity
of our methods with guarantees based on the Nyström approximation. As shown in
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Figure 5.2: Prediction error versus sample size for original KRR, Gaussian sketch, and
ROS sketches for the Gaussian kernel with the function f ∗(x) = 0.5 e−x1+x2 − x2x3.
In all cases, each point corresponds to the average of 100 trials, with standard errors
also shown. (a) Squared prediction error ‖f̂ − f ∗‖2

n versus the sample size n ∈
{32, 64, 128, . . . , 16384} for projection dimension m = d1.25(log n)3/2e. (b) Rescaled

prediction error n
(logn)3/2‖f̂ − f ∗‖2

n versus the sample size. (c) Runtime versus the

sample size. (d) Relative approximation error ‖f̂ − f♦‖2
n/‖f♦ − f ∗‖2

n versus scaling
parameter c for n = 1024 and m = dc(log n)3/2e with c ∈ {0.5, 1, 2, . . . , 7}. The
original KRR under n = 8192 and 16384 are not computed due to out-of-memory
failures.

Section 5.5, this Nyström approximation approach can be understood as a particular
form of our sketched estimate, one in which the sketch corresponds to a random
row-sampling matrix.

Bach [16] analyzed the prediction error of the Nyström approximation to KRR
based on uniformly sampling a subset of p-columns of the kernel matrix K, leading
to an overall computational complexity of O(np2). In order for the approximation

154



to match the performance of KRR, the number of sampled columns must be lower
bounded as

p % n‖diag(K(K + λnI)−1)‖∞ log n,

a quantity which can be substantially larger than the statistical dimension required
by our methods. Moreover, as shown in the following example, there are many classes
of kernel matrices for which the performance of the Nyström approximation will be
poor.

Example 7 (Failure of Nyström approximation). Given a sketch dimension m ≤
n log 2, consider an empirical kernel matrix K that has a block diagonal form
diag(K1, K2), where K1 ∈ R(n−k)×(n−k) and K2 ∈ Rk×k for any integer k ≤ n

m
log 2.

Then the probability of not sampling any of the last k columns/rows is at least
1 − (1 − k/n)m ≥ 1 − e−km/n ≥ 1/2. This means that with probability at least 1/2,
the sub-sampling sketch matrix can be expressed as S = (S1, 0), where S1 ∈ Rm×(n−k).
Under such an event, the sketched KRR (5.5a) takes on a degenerate form, namely

α̂ = arg min
θ∈Rm

{1

2
αTS1K

2
1S

T
1 α− αTS1

K1y1√
n

+ λnα
TS1K1S

T
1 α
}
,

and objective that depends only on the first n − k observations. Since the values of
the last k observations can be arbitrary, this degeneracy has the potential to lead to
substantial approximation error.

The previous example suggests that the Nyström approximation is likely to be
very sensitive to non-inhomogeneity in the sampling of covariates. In order to explore
this conjecture, we performed some additional simulations, this time comparing both
Gaussian and ROS sketches with the uniform Nyström approximation sketch. Return-

ing again to the Gaussian kernel KGau(u, v) = e−
1

2h2 (u−v)2

with bandwidth h = 0.25,
and the function f ∗(x) = −1 + 2x2, we first generated n i.i.d. samples that were
uniform on the unit interval [0, 1]. We then implemented sketches of various types
(Gaussian, ROS or Nyström) using a sketch dimension m = d4√log ne. As shown in
the top row (panels (a) and (b)) of Figure 5.3, all three sketch types perform very
well for this regular design, with prediction error that is essentially indistiguishable
from the original KRR estimate. Keeping the same kernel and function, we then
considered an irregular form of design, namely with k = d√ne samples perturbed as
follows:

xi ∼
{

Unif [0, 1/2] if i = 1, . . . , n− k
1 + zi for i = k + 1, . . . , n

where each zi ∼ N(0, 1/n). The performance of the sketched estimators in this case
are shown in the bottom row (panels (c) and (d)) of Figure 5.3. As before, both
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Figure 5.3: Prediction error versus sample size for original KRR, Gaussian sketch,
ROS sketch and Nyström approximation. Left panels (a) and (c) shows ‖f̂ − f ∗‖2

n

versus the sample size n ∈ {32, 64, 128, 256, 512, 1024} for projection dimension m =
d4√log ne. In all cases, each point corresponds to the average of 100 trials, with
standard errors also shown. Right panels (b) and (d) show the rescaled prediction

error n√
logn
‖f̂−f ∗‖2

n versus the sample size. Top row correspond to covariates arranged
uniformly on the unit interval, whereas bottom row corresponds to an irregular design
(see text for details).

the Gaussian and ROS sketches track the performance of the original KRR estimate
very closely; in contrast, the Nyström approximation behaves very poorly for this
regression problem, consistent with the intuition suggested by the preceding example.

As is known from general theory on the Nyström approximation, its performance
can be improved by knowledge of the so-called leverage scores of the underlying ma-
trix. In this vein, recent work by Alaoui and Mahoney [7] suggests a Nyström approx-

156



imation non-uniform sampling of the columns of kernel matrix involving the leverage
scores. Assuming that the leverage scores are known, they show that their method
matches the performance of original KRR using a non-uniform sub-sample of the
order trace(K(K + λnI)−1) log n) columns. When the regularization parameter λn
is set optimally—that is, proportional to δ2

n—then apart from the extra logarithmic
factor, this sketch size scales with the statistical dimension, as defined here. How-
ever, the leverage scores are not known, and their method for obtaining a sufficiently
approximation requires sampling p̃ columns of the kernel matrix K, where

p̃ % λ−1
n trace(K) log n.

For a typical (normalized) kernel matrix K, we have trace(K) % 1; moreover, in
order to achieve the minimax rate, the regularization parameter λn should scale with
δ2
n. Putting together the pieces, we see that the sampling parameter p̃ must satisfy

the lower bound p̃ % δ−2
n log n. This requirement is much larger than the statistical

dimension, and prohibitive in many cases:

• for the Gaussian kernel, we have δ2
n �
√

log(n)

n
, and so p̃ % n log1/2(n), meaning

that all rows of the kernel matrix are sampled. In contrast, the statistical
dimension scales as

√
log n.

• for the first-order Sobolev kernel, we have δ2
n � n−2/3, so that p̃ % n2/3 log n. In

contrast, the statistical dimension for this kernel scales as n1/3.

It remains an open question as to whether a more efficient procedure for approximat-
ing the leverage scores might be devised, which would allow a method of this type to
be statistically optimal in terms of the sampling dimension.

5.3 Proofs of technical results

In this section, we provide the proofs of our main theorems. Some technical proofs
of the intermediate results are provided in later sections.

5.3.1 Proof of Theorem 10

Recall the definition (5.14) of the estimate f †, as well as the upper bound (5.15)
in terms of approximation and estimation error terms. The remainder of our proof
consists of two technical lemmas used to control these two terms.

Lemma 26 (Control of estimation error). Under the conditions of Theorem 10, we
have

‖f † − f̂‖2
n ≤ c δ2

n (5.18)
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with probability at least 1− c1e
−c2nδ2

n.

Lemma 27 (Control of approximation error). For any K-satisfiable sketch matrix
S, we have

‖f † − f ∗‖2
n ≤ c

{
λn + δ2

n

}
and ‖f †‖H ≤ c

{
1 +

δ2
n

λn

}
. (5.19)

These two lemmas, in conjunction with the upper bound (5.15), yield the claim in
the theorem statement. Accordingly, it remains to prove the two lemmas.

5.3.1.1 Proof of Lemma 26

So as to simplify notation, we assume throughout the proof that σ = 1. (A simple
rescaling argument can be used to recover the general statement). Since α† is optimal
for the quadratic program (5.14), it must satisfy the zero gradient condition

−SK
( 1√

n
f ∗ −KSTα†

)
+ 2λnSKS

Tα† = 0. (5.20)

By the optimality of α̂ and feasibility of α† for the sketched problem (5.5a), we have

1

2
‖KST α̂‖2

2 −
1√
n
yTKST α̂ + λn‖K1/2ST α̂‖2

2

≤ 1

2
‖KSTα†‖2

2 −
1√
n
yTKSTα† + λn‖K1/2STα†‖2

2

Defining the error vector ∆̂ : = ST (α̂ − α†), some algebra leads to the following
inequality

1

2
‖K∆̂‖2

2 ≤ −
〈
K∆̂, KSTα†

〉
+

1√
n
yTK∆̂ + λn‖K1/2STα†‖2

2 − λn‖K1/2ST α̂‖2
2.

(5.21)

Consequently, by plugging in y = z∗+w and applying the optimality condition (5.20),
we obtain the basic inequality

1

2
‖K∆̂‖2

2 ≤
∣∣∣ 1√
n
wTK∆̂

∣∣∣− λn‖K1/2∆̂‖2
2. (5.22)

The following lemma provides control on the right-hand side:

Lemma 28. With probability at least 1− c1e
−c2nδ2

n, we have∣∣∣ 1√
n
wTK∆

∣∣∣ ≤ {6δn‖K∆‖2 + 2δ2
n for all ‖K1/2∆‖2 ≤ 1,

2δn‖K∆‖2 + 2δ2
n‖K1/2∆‖2 + 1

16
δ2
n for all ‖K1/2∆‖2 ≥ 1.

(5.23)
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See Section 5.6.2 for the proof of this lemma.

Based on this auxiliary result, we divide the remainder of our analysis into two cases:

5.3.1.1.1 Case 1: If ‖K1/2∆̂‖2 ≤ 1, then the basic inequality (5.22) and the top
inequality in Lemma 28 imply

1

2
‖K∆̂‖2

2 ≤
∣∣∣ 1√
n
wTK∆̂

∣∣∣ ≤ 6δn‖K∆̂‖2 + 2δ2
n (5.24)

with probability at least 1− c1e
−c2nδ2

n . Note that we have used that fact that the ran-
domness in the sketch matrix S is independent of the randomness in the noise vector
w. The quadratic inequality (5.24) implies that ‖K∆̂‖2 ≤ cδn for some universal
constant c.

5.3.1.1.2 Case 2: If ‖K1/2∆̂‖2 > 1, then the basic inequality (5.22) and the
bottom inequality in Lemma 28 imply

1

2
‖K∆̂‖2

2 ≤ 2δn‖K∆̂‖2 + 2δ2
n‖K1/2∆̂‖2 +

1

16
δ2
n − λn‖K1/2∆̂‖2

2

with probability at least 1− c1e
−c2nδ2

n . If λn ≥ 2δ2
n, then under the assumed condition

‖K1/2∆̂‖2 > 1, the above inequality gives

1

2
‖K∆̂‖2

2 ≤ 2δn‖K∆̂‖2 +
1

16
δ2
n ≤

1

4
‖K∆̂‖2

2 + 4δ2
n +

1

16
δ2
n.

By rearranging terms in the above, we obtain ‖K∆̂‖2
2 ≤ cδ2

n for a universal constant,
which completes the proof.

5.3.1.2 Proof of Lemma 27

Our goal is to show that the bound

1

2n
‖z∗ −√nKSTα†‖2

2 + λn‖K1/2STα†‖2
2 ≤ c

{
λn + δ2

n

}
.

In fact, since α† is a minimizer, it suffices to exhibit some α ∈ Rm for which this
inequality holds. Recalling the eigendecomposition K = UDUT , it is equivalent to
exhibit some α ∈ Rm such that

1

2
‖θ∗ −DS̃Tα‖2

2 + λnα
T S̃DS̃Tα ≤ c

{
λn + δ2

n

}
, (5.25)
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where S̃ = SU is the transformed sketch matrix, and the vector θ∗ = n−1/2Uz∗ ∈ Rn

satisfies the ellipse constraint ‖D−1/2θ∗‖2 ≤ 1.

We do so via a constructive procedure. First, we partition the vector θ∗ ∈ Rn into
two sub-vectors, namely θ∗1 ∈ Rdn and θ∗2 ∈ Rn−dn . Similarly, we partition the diagonal
matrix D into two blocks, D1 and D2, with dimensions dn and n − dn respectively.
Under the condition m > dn, we may let S̃1 ∈ Rm×dn denote the left block of the
transformed sketch matrix, and similarly, let S̃2 ∈ Rm×(n−dn) denote the right block.
In terms of this notation, the assumption that S is K-satisfiable corresponds to the
inequalities

|||S̃T1 S̃1 − Idn|||2 ≤
1

2
, and |||S̃2

√
D2|||2 ≤ cδn. (5.26)

As a consequence, we are guarantee that the matrix S̃T1 S̃1 is invertible, so that we
may define the m-dimensional vector

α̂ = S̃1(S̃T1 S̃1)−1(D1)−1β∗1 ∈ Rm,

Recalling the disjoint partition of our vectors and matrices, we have

‖θ∗ −DS̃T α̂‖2
2 = ‖θ∗1 −D1S̃

T
1 α̂‖2︸ ︷︷ ︸

=0

+ ‖θ∗2 −D2S̃
T
2 S̃1(S̃T1 S̃1)−1D−1

1 θ∗1‖2
2︸ ︷︷ ︸

T 2
1

(5.27a)

By the triangle inequality, we have

T1 ≤ ‖θ∗2‖2 + ‖D2S̃
T
2 S̃1(S̃T1 S̃1)−1D−1

1 θ∗1‖2

≤ ‖θ∗2‖2 + |||D2S̃
T
2 |||2|||S̃1|||2|||(S̃T1 S̃1)−1|||2|||D−1/2

1 |||2‖D−1/2
1 θ∗1‖2

≤ ‖θ∗2‖2 + |||
√
D2|||2|||S̃2

√
D2|||2|||S̃1|||2|||(S̃T1 S̃1)−1|||2|||D−1/2

1 |||2‖D−1/2
1 θ∗1‖2.

Since ‖D−1/2θ∗‖2 ≤ 1, we have ‖D−1/2
1 θ∗1‖2 ≤ 1 and moreover

‖θ∗2‖2
2 =

n∑
j=dn+1

(θ∗j )
2 ≤ δ2

n

n∑
j=dn+1

(θ∗j )
2

µ̂j
≤ δ2

n,

since µ̂j ≤ δ2
n for all j ≥ dn + 1. Similarly, we have |||√D2|||2 ≤

√
µ̂dn+1 ≤ δn, and

|||D−1/2
1 |||2 ≤ δ−1

n . Putting together the pieces, we have

T1 ≤ δn + |||S̃2

√
D2|||2|||S̃1|||2|||(S̃T1 S̃1)−1|||2 ≤

(
cδn)

√
3

2
2 = c′δn, (5.27b)

where we have invoked the K-satisfiability of the sketch matrix to guarantee the
bounds |||S̃1|||2 ≤

√
3/2, |||(S̃T1 S̃)|||2 ≥ 1/2 and |||S̃2

√
D2|||2 ≤ cδn. Bounds (5.27a)

and (5.27b) in conjunction guarantee that

‖θ∗ −DS̃T α̂‖2
2 ≤ c δ2

n, (5.28a)

160



where the value of the universal constant c may change from line to line.

Turning to the remaining term on the left-side of inequality (5.25), applying the
triangle inequality and the previously stated bounds leads to

α̂T S̃DS̃T α̂ ≤ ‖D−1/2
1 θ∗1‖2

2 + |||D1/2
2 S̃T2 |||2|||S̃1|||2

· |||(S̃T1 S̃1)−1|||2|||D−1/2
1 |||2‖D−1/2

1 θ∗1‖2

≤ 1 +
(
cδn
) √

3/2
1

2
δ−1
n

(
1
)
≤ c′. (5.28b)

Combining the two bounds (5.28a) and (5.28b) yields the claim (5.25).

5.4 Discussion

In this chapter, we have analyzed randomized sketching methods for kernel ridge
regression. Our main theorem gives sufficient conditions on any sketch matrix for
the sketched estimate to achieve the minimax risk for non-parametric regression over
the underlying kernel class. We specialized this general result to two broad classes
of sketches, namely those based on Gaussian random matrices and randomized or-
thogonal systems (ROS), for which we proved that a sketch size proportional to the
statistical dimension is sufficient to achieve the minimax risk. More broadly, we sus-
pect that sketching methods of the type analyzed here have the potential to save time
and space in other forms of statistical computation, and we hope that the results given
here are useful for such explorations.

5.5 Subsampling sketches yield Nyström approxi-

mation

In this section, we show that the the sub-sampling sketch matrix described at
the end of Section 5.1.2 coincides with applying Nyström approximation [147] to the
kernel matrix.

We begin by observing that the original KRR quadratic program (5.4a) can be
written in the equivalent form min

ω∈Rn, u∈Rn
{ 1

2n
‖u‖2+λnω

TKω} such that y−√nKω = u.

The dual of this constrained quadratic program (QP) is given by

ξ† = arg max
ξ∈Rn

{
− n

4λn
ξTKξ + ξTy − 1

2
ξT ξ
}
. (5.29)

The KRR estimate f † and the original solution ω† can be recovered from the dual
solution ξ† via the relation f †(·) = 1√

n

∑n
i=1 ω

†
iK(·, xi) and ω† =

√
n

2λn
ξ†.
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Now turning to the the sketched KRR program (5.5a), note that it can be written
in the equivalent form min

α∈Rn, u∈Rn

{
1

2n
‖u‖2 + λnα

TSKSTα
}

subject to the constraint

y −√nKSTα = u. The dual of this constrained QP is given by

ξ‡ = arg max
ξ∈Rn

{
− n

4λn
ξT K̃ξ + ξTy − 1

2
ξT ξ
}
, (5.30)

where K̃ = KST (SKST )−1SK is a rank-m matrix in Rn×n. In addition, the sketched

KRR estimate f̂ , the original solution α̂ and the dual solution ξ‡ are related by
f̂(·) = 1√

n

∑n
i=1(ST α̂)iK(·, xi) and α̂ =

√
n

2λn
(SKST )−1SKξ‡.

When S is the sub-sampling sketch matrix, the matrix K̃ = KST (SKST )−1 SK
is known as the Nyström approximation [147]. Consequently, the dual formulation
of sketched KRR based on a sub-sampling matrix can be viewed as the Nyström ap-
proximation as applied to the dual formulation of the original KRR problem.

5.6 Proofs of technical results

5.6.1 Proof of Theorem 9

We begin by converting the problem to an instance of the normal sequence
model [71]. Recall that the kernel matrix can be decomposed as K = UTDU , where
U ∈ Rn×n is orthonormal, and D = diag{µ̂1, . . . , µ̂n}. Any function f ∗ ∈ H can be
decomposed as

f ∗ =
1√
n

n∑
j=1

K(·, xj)(UTβ∗)j + g, (5.31)

for some vector β∗ ∈ Rn, and some function g ∈ H is orthogonal to span{ K(·, xj), j =
1, . . . , n}. Consequently, the inequality ‖f ∗‖H ≤ 1 implies that∥∥∥ 1√

n

n∑
j=1

K(·, xj)(UTβ∗)j

∥∥∥2

H
=
(
UTβ∗

)T
UTDU

(
UTβ∗

)
= ‖
√
Dβ∗‖2

2 ≤ 1.

Moreover, we have f ∗(xn1 ) =
√
nUTDβ∗, and so the original observation model (5.1)

has the equivalent form y =
√
nUT θ∗ + w, where θ∗ = Dβ∗. In fact, due to the

rotation invariance of the Gaussian, it is equivalent to consider the normal sequence
model

ỹ = θ∗ +
w√
n
. (5.32)
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Any estimate θ̃ of θ∗ defines the function estimate f̃(·) = 1√
n

∑n
i=1K(·, xi)

(
UTD−1θ̃)i,

and by construction, we have ‖f̃ − f ∗‖2
n = ‖θ̃ − θ∗‖2

2. Finally, the original constraint
‖
√
Dβ∗‖2

2 ≤ 1 is equivalent to ‖D−1/2θ∗‖2 ≤ 1. Thus, we have a version of the normal
sequence model subject to an ellipse constraint.

After this reduction, we can assume that we are given n i.i.d. observations ỹn1 =

{ỹ1, . . . , ỹn}, and our goal is to lower bound the Euclidean error ‖θ̃ − θ∗‖2
2 of any

estimate of θ∗. In order to do so, we first construct a δ/2-packing of the set B = {θ ∈
Rn | ‖D−1/2θ‖2 ≤ 1}, say {θ1, . . . , . . . , θM}. Now consider the random ensemble of
regression problems in which we first draw an index A uniformly at random from
the index set [M ], and then conditioned on A = a, we observe n i.i.d. samples from
the non-parametric regression model with f ∗ = fa. Given this set-up, a standard
argument using Fano’s inequality implies that

P
[
‖f̃ − f ∗‖2

n ≥
δ2

4

]
≥ 1− I(ỹn1 ;A) + log 2

logM
,

where I(ỹn1 ;A) is the mutual information between the samples ỹn1 and the random
index A. It remains to construct the desired packing and to upper bound the mutual
information.

For a given δ > 0, define the ellipse

E(δ) : =
{
θ ∈ Rn |

n∑
j=1

θ2
j

min{δ2, µ̂j}︸ ︷︷ ︸
‖θ‖2E

≤ 1
}
. (5.33)

By construction, observe that E(δ) is contained within Hilbert ball of unit radius.
Consequently, it suffices to construct a δ/2-packing of this ellipse in the Euclidean
norm.

Lemma 29. For any δ ∈ (0, δn], there is a δ/2-packing of the ellipse E(δ) with
cardinality

logM =
1

64
dn. (5.34)

Taking this packing as given, note that by construction, we have

‖θa‖2
2 = δ2

n∑
j=1

(θa)2
j

δ2
≤ δ2, and hence ‖θa − θb‖2

2 ≤ 4δ2.

In conjunction with concavity of the KL diveregence, we have

I(yn1 ; J) ≤ 1

M2

M∑
a,b=1

D(Pa ‖ Pb) =
1

M2

n

2σ2

M∑
a,b=1

‖θa − θb‖2
2 ≤

2n

σ2
δ2
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For any δ such that log 2 ≤ 2n
σ2 δ

2 and δ ≤ δn, we have

P
[
‖f̃ − f ∗‖2

n ≥
δ2

4

]
≥ 1− 4nδ2/σ2

dn/64
.

Moreover, since the kernel is regular, we have σ2dn ≥ cnδ2
n for some positive constant

c. Thus, setting δ2 = cδ2
n

512
yields the claim.

5.6.1.0.1 Proof of Lemma 29: It remains to prove the lemma, and we do so
via the probabilistic method. Consider a random vector θ ∈ Rn of the form

θ =
[

δ√
2dn
w1

δ√
2dn
w2 · · · δ√

2dn
wdn 0 · · · 0

]
, (5.35)

where w = (w1, . . . , wdn)T ∼ N(0, Idn) is a standard Gaussian vector. We claim that
a collection of M such random vectors {θ1, . . . , θM}, generated in an i.i.d. manner,
defines the required packing with high probability.

On one hand, for each index a ∈ [M ], since δ2 ≤ δ2
n ≤ µ̂j for each j ≤ dn, we

have ‖θa‖2
E =

‖wa‖22
2dn

, corresponding to a normalized χ2-variate. Consequently, by a
combination of standard tail bounds and the union bound, we have

P
[
‖θa‖2

E ≤ 1 for all a ∈ [M ]
]
≥ 1−M e−

dn
16 .

Now consider the difference vector θa − θb. Since the underlying Gaussian noise
vectors wa and wb are independent, the difference vector wa−wb follows a N(0, 2Im)
distribution. Consequently, the event ‖θa − θb‖2 ≥ δ

2
is equivalent to the event√

2‖θ‖2 ≥ δ
2
, where θ is a random vector drawn from the original ensemble. Note

that ‖θ‖2
2 = δ2 ‖w‖22

2dn
. Then a combination of standard tail bounds for χ2-distributions

and the union bound argument yields

P
[
‖θa − θb‖2

2 ≥
δ2

4
for all a, b ∈ [M ]

]
≥ 1−M2 e−

dn
16 .

Combining the last two display together, we obtain

P
[
‖θa‖2

E ≤ 1 and ‖θa − θb‖2
2 ≥

δ2

4
for all a, b ∈ [M ]

]
≥ 1−M e−

dn
16 −M2 e−

dn
16 .

This probability is positive for logM = dn/64.
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5.6.2 Proof of Lemma 28

For use in the proof, for each δ > 0, let us define the random variable

Zn(δ) = sup
‖K1/2∆‖2≤1
‖K∆‖2≤δ

∣∣∣ 1√
n
wTK∆

∣∣∣. (5.36)

5.6.2.0.2 Top inequality in the bound (5.23): If the top inequality is violated,
then we claim that we must have Zn(δn) > 2δ2

n. On one hand, if the bound (5.23) is
violated by some vector ∆ ∈ Rn with ‖K∆‖2 ≤ δn, then we have

2δ2
n ≤

∣∣∣ 1√
n
wTK∆

∣∣∣ ≤ Zn(δn).

On the other hand, if the bound is violated by some function with ‖K∆‖2 > δn, then

we can define the rescaled vector ∆̃ = δn
‖K∆‖2 ∆, for which we have

‖K∆̃‖2 = δn, and ‖K1/2∆̃‖2 =
δn

‖K∆‖2

‖K1/2∆‖2 ≤ 1

showing that Zn(δn) ≥ 2δ2
n as well.

When viewed as a function of the standard Gaussian vector w ∈ Rn, it is easy to
see that Zn(δn) is Lipschitz with parameter δn/

√
n. Consequently, by concentration

of measure for Lipschitz functions of Gaussians [84], we have

P
[
Zn(δn) ≥ E[Zn(δn)] + t

]
≤ e

− nt
2

2δ2n . (5.37)

Moreover, we claim that

E[Zn(δn)]
(i)

≤

√√√√ 1

n

n∑
i=1

min{δ2
n, µ̂j}︸ ︷︷ ︸

R̂(δn)

(ii)

≤ δ2
n (5.38)

where inequality (ii) follows by definition of the critical radius (recalling that we have
set σ = 1 by a rescaling argument). Setting t = δ2

n in the tail bound (5.37), we see
that P[Zn(δn) ≥ 2δ2

n] ≤ enδ
2
n/2, which completes the proof of the top bound.

It only remains to prove inequality (i) in equation (5.38). The kernel matrix K
can be decomposed as K = UTDU , where D = diag{µ̂1, . . . , µ̂n}, and U is a unitary
matrix. Defining the vector β = DU∆, the two constraints on ∆ can be expressed as
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‖D−1/2β‖2 ≤ 1 and ‖β‖2 ≤ δ. Note that any vector satisfying these two constraints
must belong to the ellipse

E : =
{
β ∈ Rn |

n∑
j=1

β2
j

νj
≤ 2 where νj = max{δ2

n, µ̂j}
}
.

Consequently, we have

E[Zn(δn)] ≤ E
[

sup
β∈E

1√
n

∣∣〈UTw, β〉
∣∣] = E

[
sup
β∈E

1√
n

∣∣〈w, β〉∣∣],
since UTw also follows a standard normal distribution. By the Cauchy-Schwarz in-
equality, we have

E
[

sup
β∈E

1√
n

∣∣〈w, β〉∣∣] ≤ 1√
n
E

√√√√ n∑
j=1

νjw2
j ≤

1√
n

√√√√ n∑
j=1

νj︸ ︷︷ ︸
R̂(δn)

,

where the final step follows from Jensen’s inequality.

5.6.2.0.3 Bottom inequality in the bound (5.23): We now turn to the proof
of the bottom inequality. We claim that it suffices to show that∣∣∣ 1√

n
wTK∆̃

∣∣∣ ≤ 2 δn‖K∆̃‖2 + 2 δ2
n +

1

16
‖K∆̃‖2

2 (5.39)

for all ∆̃ ∈ Rn such that ‖K1/2∆̃‖2 = 1. Indeed, for any vector ∆ ∈ Rn with

‖K1/2∆‖2 > 1, we can define the rescaled vector ∆̃ = ∆/‖K1/2∆‖2, for which we

have ‖K1/2∆̃‖2 = 1. Applying the bound (5.39) to this choice and then multiplying
both sides by ‖K1/2∆‖2, we obtain∣∣∣ 1√

n
wTK∆

∣∣∣ ≤ 2 δn‖K∆‖2 + 2 δ2
n‖K1/2∆‖2 +

1

16

‖K∆‖2
2

‖K1/2∆‖2

≤ 2 δn‖K∆‖2 + 2 δ2
n‖K1/2∆‖2 +

1

16
‖K∆‖2

2,

as required.

Recall the family of random variables Zn previously defined (5.36). For any u ≥ δn,
we have

E[Zn(u)] = R̂(u) = u
R̂(u)

u

(i)

≤ u
R̂(δn)

δn

(ii)

≤ uδn,
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where inequality (i) follows since the function u 7→ R̂(u)
u

is non-increasing, and step

(ii) follows by our choice of δn. Setting t = u2

32
in the concentration bound (5.37), we

conclude that

P
[
Zn(u) ≥ uδn +

u2

64

]
≤ e−cnu

2

for each u ≥ δn. (5.40)

We are now equipped to prove the bound (5.39) via a “peeling” argument. Let E
denote the event that the bound (5.39) is violated for some vector ∆̃ with ‖K1/2∆̃‖2 =
1. For real numbers 0 ≤ a < b, let E(a, b) denote the event that it is violated for some

vector with ‖K1/2∆‖2 = 1 and ‖K∆̃‖2 ∈ [a, b]. For m = 0, 1, 2, . . ., define um = 2mδn.
We then have the decomposition E = E(0, u0) ∪

(⋃∞
m=0 E(um, um+1)

)
and hence by

union bound,

P[E ] ≤ P[E(0, u0)] +
∞∑
m=0

P[E(um, um+1)]. (5.41)

The final step is to bound each of the terms in this summation, Since u0 = δn, we
have

P[E(0, u0)] ≤ P[Zn(δn) ≥ 2δ2
n] ≤ e−cnδ

2
n . (5.42)

On the other hand, suppose that E(um, um+1) holds, meaning that there exists some

vector ∆̃ with ‖K1/2∆̃‖2 = 1 and ‖K∆̃‖2 ∈ [um, um+1] such that∣∣∣ 1√
n
wTK∆̃

∣∣∣ ≥ 2 δn‖K∆̃‖2 + 2 δ2
n +

1

16
‖K∆̃‖2

2

≥ 2δnum + 2δ2
n +

1

16
u2
m

≥ δnum+1 +
1

64
u2
m+1,

where the second inequality follows since ‖K∆̃‖2 ≥ um; and the third inequality

follows since um+1 = 2um. This lower bound implies that Zn(um+1) ≥ δnum+1 +
u2
m+1

64
,

whence the bound (5.40) implies that

P
[
E(um, um+1)] ≤ e−cnu

2
m+1 ≤ e−cn 22mδ2

n .

Combining this tail bound with our earlier bound (5.42) and substituting into the
union bound (5.41) yields

P[E ] ≤ e−cnδ
2
n +

∞∑
m=0

exp
(
− cn 22mδ2

n

)
≤ c1e

−c2nδ2
n ,

as claimed.
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5.6.3 Proof of Corollary 13

Based on Theorem 10, we need to verify that the stated lower bound (5.16a) on
the projection dimension is sufficient to guarantee that that a random sketch matrix
is K-satisfiable is high probability. In particular, let us state this guarantee as a
formal claim:

Lemma 30. Under the lower bound (5.16a) on the sketch dimension, a {Gaussian,
ROS} random sketch is K-satisfiable with probability at least φ(m, dn, n).

We split our proof into two parts, one for each inequality in the definition (5.13) of
K-satisfiability.

5.6.3.1 Proof of inequality (i):

We need to bound the operator norm of the matrix Q = UT
1 S

TSU1 − Idn , where
the matrix U1 ∈ Rn×dn has orthonormal columns. Let {v1, . . . , vN} be a 1/2-cover of
the Euclidean sphere Sdn−1; by standard arguments [93], we can find such a set with
N ≤ e2dn elements. Using this cover, a straightforward discretization argument yields

|||Q|||2 ≤ 4 max
j,k=1,...,N

〈vj, Qvk〉 = 4 max
j,k=1,...,N

(ṽ)j
{
STS − In

}
ṽk,

where ṽj : = U1v
j ∈ Sn−1, and Q̃ = STS − In. In the Gaussian case, standard sub-

exponential bounds imply that P
[
(ṽ)jQ̃ṽk ≥ 1/8

]
≤ c1e

−c2m, and consequently, by
the union bound, we have

P
[
|||Q|||2 ≥ 1/2] ≤ c1e

−c2m+4dn ≤ c1e
−c′2m,

where the second and third steps uses the assumed lower bound on m. In the ROS
case, results of Krahmer and Ward [80] imply that

P
[
|||Q|||2 ≥ 1/2] ≤ c1e

−c2 m
log4(n) .

where the final step uses the assumed lower bound on m.

5.6.3.2 Proof of inequality (ii):

We split this claim into two sub-parts: one for Gaussian sketches, and the other
for ROS sketches. Throughout the proof, we make use of the n× n diagonal matrix
D = diag(0dn , D2), with which we have SU2D

1/2
2 = SUD1/2.
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5.6.3.2.1 Gaussian case: By the definition of the matrix spectral norm, we know

|||SUD1/2|||2 : = sup
u∈Sm−1

v∈E

〈u, Sv〉, (5.43)

where E = {v ∈ Rn | ‖UDv‖2 ≤ 1}, and Sm−1 = {u ∈ Rm | ‖u‖2 = 1}.
We may choose a 1/2-cover {u1, . . . , uM} of the set Sm−1 of the set with logM ≤

2m elements. We then have

|||SUD1/2|||2 ≤ max
j∈[M ]

sup
v∈E
〈uj, Sv〉+

1

2
sup

u∈Sdn−1

v∈E

〈u, Sv〉

= max
j∈[M ]

sup
v∈E
〈uj, Sv〉+

1

2
|||SUD1/2|||2,

and re-arranging implies that

|||SUD1/2|||2 ≤ 2 max
j∈[M ]

sup
v∈E
〈uj, S̃v〉︸ ︷︷ ︸
Z̃

.

For each fixed uj ∈ Sdn−1, consider the random variable Zj : = supv∈E〈uj, Sv〉. It is
equal in distribution to the random variable V (g) = 1√

m
supv∈E〈g, v〉, where g ∈ Rn

is a standard Gaussian vector. For g, g′ ∈ Rn, we have

|V (g)− V (g′)| ≤ 2√
m

sup
v∈E
|〈g − g′, v〉|

≤ 2|||D1/2
2 |||2√
m

‖g − g′‖2 ≤
2δn√
m
‖g − g′‖2,

where we have used the fact that µ̂j ≤ δ2
n for all j ≥ dn + 1. Consequently, by

concentration of measure for Lipschitz functions of Gaussian random variables [84],
we have

P
[
V (g) ≥ E[V (g)] + t

]
≤ e

−mt
2

8δ2n . (5.44)

Turning to the expectation, we have

E[V (g)] =
2√
m
E
∥∥D1/2

2 g
∥∥

2
≤ 2

√∑n
j=dn+1 µj

m
= 2

√
n

m

√∑n
j=dn+1 µj

n
≤ 2δn (5.45)

where the last inequality follows since m ≥ nδ2
n and

√∑n
j=dn+1 µj

n
≤ δ2

n. Combining

the pieces, we have shown have shown that P[Zj ≥ c0(1 + ε)δn] ≤ e−c2m for each
j = 1, . . . ,M . Finally, setting t = cδn in the tail bound (5.44) for a constant c ≥ 1
large enough to ensure that c2m

8
≥ 2 logM . Taking the union bound over all j ∈ [M ]

yields

P[|||SUD1/2|||2 ≥ 8c δn] ≤ c1e
− c2m

8
+logM ≤ c1e

−c′2m

which completes the proof.
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5.6.3.2.2 ROS case: Here we pursue a matrix Chernoff argument analogous to
that in the paper [137]. Letting r ∈ {−1, 1}n denote an i.i.d. sequence of Rademacher
variables, the ROS sketch can be written in the form S = PHdiag(r), where P is a
partial identity matrix scaled by n/m, and the matrix H is orthonormal with elements
bounded as |Hij| ≤ c/

√
n for some constant c. With this notation, we can write

|||PHdiag(r)D̄1/2|||22 = ||| 1
m

m∑
i=1

viv
T
i |||2,

where vi ∈ Rn are random vectors of the form
√
nD1/2diag(r)He, where e ∈ Rn is

chosen uniformly at random from the standard Euclidean basis.

We first show that the vectors {vi}mi=1 are uniformly bounded with high probability.
Note that we certainly have maxi∈[m] ‖vi‖2 ≤ maxj∈[n] Fj(r), where

Fj(r) : =
√
n‖D1/2diag(r)Hej‖2 =

√
n‖D1/2diag(Hej)r‖2.

Begining with the expectation, define the vector r̃ = diag(Hej)r, and note that it has
entries bounded in absolute value by c/

√
n. Thus we have,

E[Fj(r)] ≤
[
nE[r̃TDr̃]

]1/2

≤ c

√√√√ n∑
j=dn+1

µ̂j ≤ c
√
nδ2

n

For any two vectors r, r′ ∈ Rn, we have∣∣∣F (r)− F (r′)
∣∣∣ ≤ √n‖r − r′‖2‖D1/2diag(Hej)‖2 ≤ δn.

Consequently, by concentration results for convex Lipschitz functions of Rademacher
variables [84], we have

P
[
Fj(r) ≥ c0

√
nδ2

n log n
]
≤ c1e

−c2nδ2
n log2 n.

Taking the union bound over all n rows, we see that

max
i∈[n]
‖vi‖2 ≤ max

j∈[n]
Fj(r) ≤ 4

√
nδ2

n log(n)

with probabablity at least 1−c1e
−c2nδ2

n log2(n). Finally, a simple calculation shows that
|||E[v1v

T
1 ]|||2 ≤ δ2

n. Consequently, by standard matrix Chernoff bounds [135, 137], we
have

P
[
||| 1
m

m∑
i=1

viv
T
i |||2 ≥ 2δ2

n

]
≤ c1e

−c2
mδ2n

nδ4n log2(n) + c1e
−c2nδ2

n log2(n), (5.46)

from which the claim follows.
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Chapter 6

Relaxations of combinatorial
optimization problems

Over the past several decades, the rapid increase of data dimensionality and com-
plexity has led a tremendous surge of interest of models for high-dimensional data
that incorporate some type of low-dimensional structure. Sparsity is a canonical
way of imposing low-dimensional structure, and has received considerable attention
in many fields, including statistics, signal processing, machine learning and applied
mathematics [49, 134, 144]. Sparse models often typically more interpretable from the
scientific standpoint, and they are also desirable from a computational perspective.

The most direct approach to enforcing sparsity in a learning problem is by con-
trolling the `0-“norm” of the solution, which counts the number of non-zero entries
in a vector. Unfortunately, at least in general, optimization problems involving such
an `0-constraint are known to be computationally intractable. The classical approach
of circumventing this difficulty while still promoting sparisty in the solution is to
replace the `0-constraint with an `1-constraint, or alternatively to augment the objec-
tive function with an `1-penalty. This approach is well-known and analyzed various
assumptions on the data generating mechanisms (e.g., [34, 49, 30, 144]). However, in
a typical statistical setting, these mechanisms are not under the user’s control, and
it is difficult to verify post hoc that an `1-based solution is of suitably high quality.

The main contribution of this chapter is to provide novel frameworks for obtain-
ing approximate solutions to cardinality-constrained problems, and one in which the
quality can be easily verified. Our first approach is based on showing a broad class
of cardinality-constrained (or penalized) problems can be expressed equivalently as
convex programs involving Boolean variables. This reformulation allows us to ap-
ply various standard hierarchies of relaxations for Boolean programs, among them
Sherali-Adams or Lasserre hierarchies [128, 82, 83, 145]. When the solution of any
such relaxation is integral—i.e., belongs to the Boolean hypercube—then it must be
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an optimal solution to the original problem. Otherwise, any non-integral solution still
provides a lower bound on the minimum over all Boolean solutions.

The simplest relaxation is the first-order one, based on relaxing each Boolean
variable to the unit interval [0, 1]. We provide an in-depth analysis of the necessary
and sufficient conditions for this first-order relaxation to have an integral solution.
In the case of least-squares regression, and for a random ensemble of problems of the
compressed sensing type [34, 49], we show that the relaxed solution is integral with
high probability once the sample size exceeds a critical threshold. In this regime, like
`1-relaxations, our first-order method recovers the support of sparse vector exactly,
but unlike `1-relaxations, the integral solution also certifies that it has recovered the
sparest solution. Finally, there are many settings in which the first-order relaxation
might not be integral. For such cases, we study a form of randomized rounding for
generating feasible solutions, and we prove a result that controls the approximation
ratio. Our framework also allows to specify a target cardinality unlike methods based
on `1 regularization. This feature is desirable for many applications including portfolio
optimization [91], machine learning [46, 111] and control theory [28].

The remainder of this chapter is organized as follows. We begin in Section 6.1 by
introducing the problem of sparse learning, and then showing how the constrained
version can be reformulated as a convex program in Boolean variables. In Section 6.2,
we study the first-order relaxation in some detail, including conditions for exactness
as well as analysis of randomized rounding procedures. Section 6.3 is devoted to dis-
cuss of the penalized form of sparse learning problems, whereas Section 6.4 discusses
numerical issues and applications to real-world data sets. In Section 6.5, we describe
a novel relaxation approach for optimization problems with simplex constraints and
present applications and numerical simulations.

6.1 General Sparse Learning as a Boolean Prob-

lem

We consider a learning problem based on samples of the form (x, y) ∈ Rd×Y . This
set-up is flexible enough to model various problems, including regression problems
(output space Y = R), binary classification problems (output space Y = {−1,+1}),
and so on. Given a collection of n samples {(xi, yi)}ni=1, our goal is to learn a linear
function x 7→ 〈x, w〉 that can be used to predict or classify future (unseen) outputs.
In order to learn the weight vector w ∈ Rd, we consider a cardinality-constrained
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program of the form

P ∗ : = min
w∈Rd
‖w‖0≤k

{ n∑
i=1

f(〈xi, w〉; yi) +
1

2
ρ‖w‖2

2

}
︸ ︷︷ ︸

F (w)

(6.1)

As will be clarified, the additional regularization term 1
2
ρ‖w‖2

2 is useful for convex-
analytic reasons, in particular in ensuring strong convexity and coercivity of the
objective, and thereby the existence of a unique optimal solution w∗ ∈ Rd. Our
results also involve the Legendre-Fenchel conjugate of the function t 7→ f(t; y), given
by (for each fixed y ∈ Y)

f ∗(s; y) : = sup
t∈R

{
s t− f(t; y)

}
. (6.2)

Let us consider some examples to illustrate.

Example 8 (Least-squares regression). In the problem of least-squares regression, the

outputs are real-valued (see e.g., [28]). Adopting the cost function f(t, y) = 1
2

(
t− y

)2

leads to `0-constrained problem

P ∗ : = min
w∈Rd
‖w‖0≤k

{1

2

n∑
i=1

(
〈xi, w〉 − yi

)2
+

1

2
ρ‖w‖2

2

}
︸ ︷︷ ︸

FLS(w)

(6.3)

This formulation, while close in spirit to elastic net [159], is based on imposing the
cardinality constraint exactly, as opposed to in a relaxed form via `1-regularization.
However, in contrast to the elastic net, it is a nonconvex problem, so that we need
to study relaxations of it. A straightforward calculation yields the conjugate dual
function

f ∗(s; y) =
s2

2
+ s y, (6.4)

which will play a role in our relaxations of the nonconvex problem (6.3). �

The preceding example has a natural extension in terms of generalized linear models:

Example 9 (Generalized linear models). In a generalized linear model, the output
y ∈ Y is related to the covariate x ∈ Rd via a conditional distribution in the expo-
nential form (see e.g. [94, 99])

Pw(y | x) = h(y) exp
(
y 〈x, w〉 − ψ(〈x, w〉)

)
. (6.5)
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Here h : Rd → R+ is some fixed function, and ψ : R→ R is the cumulant generating
function, given by ψ(t) = log

∫
Y e

tyh(y)dy. Letting f(〈x, w〉; y) be the negative log-
likelihood associated with this family, we obtain the general family of cardinality-
constrained likelihood estimates

min
w∈Rd
‖w‖0≤k

{ n∑
i=1

{
ψ(〈xi, w〉

)
− yi〈xi, w〉

}
+

1

2
ρ‖w‖2

2

}
︸ ︷︷ ︸

FGR(w)

(6.6)

Specifically, least-squares regression is a particular case of the problem (6.6), corre-
sponding to the choice ψ(t) = t2/2. Similarly, logistic regression for binary responses
y ∈ {0, 1} can be obtained by setting ψ(t) = log(1 + et).

In the likelihood formulation (6.6), we have f(t; y) = ψ(t)− yt, whence conjugate
dual takes the form

f ∗(s; y) = sup
t∈R

{
st− ψ(t) + yt

}
= ψ∗(s+ y), (6.7)

where ψ∗ denotes the conjugate dual of ψ. As particular examples, in the case of
logistic regression, the dual of the logistic function ψ(t) = log(1 + et) takes the form
ψ∗(s) = s log s+(1−s) log(1−s) for s ∈ [0, 1], and takes the value infinity otherwise.
�

As a final example, let us consider a cardinality-constrained version of the support
vector machine:

Example 10 (Support vector machine classification). In this case, the outputs are bi-
nary y ∈ {−1, 1}, and our goal is to learn a linear classifier x 7→ sign(〈x, w〉) ∈ {−1, 1}
[40]. The cardinality-constrained version of the support vector machine (SVM) is
based on minimizing the objective function

min
w∈Rd
‖w‖0≤k

{ n∑
i=1

φ
(
yi 〈xi, w〉

)
+

1

2
ρ‖w‖2

2

}
︸ ︷︷ ︸

FSVM(w)

, (6.8)

where φ(t) = max{1− t, 0} is known as the hinge loss function. The conjugate dual
of the hinge loss takes the form

φ∗(s) =

{
s if s ∈ [−1, 0]

∞ otherwise.

�

Having considered various examples of sparse learning, we now turn to developing an
exact Boolean representation that is amenable to various relaxations.
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6.1.1 Exact representation as a Boolean convex program

Let us now show how the cardinality-constrained program (6.1) can be represented
exactly as a convex program in Boolean variables. This representation, while still
nonconvex, is useful because it immediately leads to a hierarchy of relaxations. Given
the collection of covariates {xi}ni=1, we let X ∈ Rn×d denote the design matrix with
xTi ∈ Rd as its ith row.

Theorem 11 (Exact representation). Suppose that for each y ∈ Y, the function
t 7→ f(t; y) is closed and convex. Then for any ρ > 0, the cardinality-constrained
program (6.1) can be represented exactly as the Boolean convex program

P ∗ = min
u∈{0,1}d∑d
j=1 uj≤k

max
v∈Rn

{
− 1

2ρ
vTXD(u)XTv −

n∑
i=1

f ∗(vi; yi)
}

︸ ︷︷ ︸
G(u)

, (6.9)

where D(u) : = diag(u) ∈ Rd×d is a diagonal matrix.

The function u 7→ G(u)—in particular, defined by maximizing over v ∈ Rn—is a
maximum of a family of functions that are linear in the vector u, and hence is convex.
Thus, apart from the Boolean constraint, all other quantities in the program (6.9)
are relatively simple: a linear constraint and a convex objective function. Conse-
quently, we can obtain tractable approximations by relaxing the Boolean constraint.
The simplest such approach is to replace the Boolean hypercube {0, 1}d with the
unit hypercube [0, 1]d. Doing so leads the interval relaxation of the exact Boolean
representation, namely the convex relaxation

PIR = min
u∈[0,1]d∑d
j=1 uj≤k

max
v∈Rn

{
− 1

2ρ
vTXD(u)XTv −

n∑
i=1

f ∗(vi; yi)
}

︸ ︷︷ ︸
G(u)

. (6.10)

Note that this is a convex program, and so can be solved by standard methods. In
particular the sub-gradient descent method (e.g., see [105]) can be applied directly if
a closed form solution, or a solver for the inner maximization problem is available.
In Section 6.2, we return to analyze when the interval relaxation is tight—that is,
when PIR = P ∗.

In the case of least-squares regression, Theorem 11 and the interval relaxation
take an especially simple form, which we state as a corollary.

Corollary 14. The cardinality constrained problem is equivalent to the Boolean SDP

P ∗ = min
(u,t)∈{0,1}d×R+∑d

j=1 uj≤k

t such that

[
In + 1

ρ
XD(u)XT y

yT t

]
� 0. (6.11)
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Thus, the interval relaxation (6.10) is an ordinary SDP in variables (u, t) ∈ [0, 1]d ×
R+.

Proof. As discussed in Example 8, the conjugate dual of the least-squares loss t 7→
f(t; y) = 1

2
(t− y)2 is given by f ∗(s; y) = s2

2
+ sy. Substituting this dual function into

equation (6.9), we find that

G(u) = max
v∈Rn

{
− 1

2
vT
(XD(u)XT

ρ
+ I
)
v − 〈v, y〉

}
,

where we have defined the diagonal matrix D(u) : = diag(u) ∈ Rd×d. Taking deriva-
tives shows that the optimum is achieved at

v̂ = −
(XD(u)XT

ρ
+ I
)−1

y, (6.12)

and substituting back into equation (6.9) and applying Theorem 11 yield the repre-
sentation

P ∗ = min
u∈{0,1}d∑d
j=1 uj≤k

{
yT (

1

ρ
XD(u)XT + In)−1y

}
. (6.13)

By introducing a slack variable t ∈ R+ and using the Schur complement formula
(see e.g. [28]), some further calculation shows that this Boolean problem (6.13) is
equivalent to the Boolean SDP (6.11), as claimed.

We now present the proof of Theorem 11.

Proof. Recalling that D(u) : = diag(u) is a diagonal matrix, for each fixed u ∈ {0, 1}d,
consider the change of variable w 7→ D(u)w. With this notation, the original prob-
lem (6.1) is equivalent to

P ∗ = min
‖D(u)w‖0≤k

{ n∑
i=1

f(〈D(u)xi, w〉; yi) +
1

2
ρ‖D(u)w‖2

2

}
. (6.14)

Noting that we can take wi = 0 when ui = 0 and vice-versa, the original problem (6.1)
becomes

P ∗ = min
u∈{0,1}d∑d
j=1 uj≤k

min
w∈Rd

{ n∑
i=1

f(〈D(u)xi, w〉; yi) +
1

2
ρ‖w‖2

2

}
. (6.15)
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It remains to prove that, for each fixed Boolean vector u ∈ {0, 1}d, we have

min
w∈Rd

{ n∑
i=1

f(〈D(u)xi, w〉; yi) +
1

2
ρ‖w‖2

2

}
= max

v∈Rn

{
− 1

2ρ
‖D(u)XTv‖2

2 −
n∑
i=1

f ∗(vi; yi)
}
.

(6.16)

From the conjugate representation of f , we find that

min
w∈Rd

max
v∈Rn

{ n∑
i=1

vi〈D(u)xi, w〉 − f ∗(vi; yi) +
1

2
ρ‖w‖2

2

}
.

Under the stated assumptions, strong duality must hold, so that it is permissible to
exchange the order of the minimum and maximum. Doing so yields

max
v∈Rn

min
w∈Rd

{ n∑
i=1

vi〈D(u)xi, w〉 − f ∗(vi; yi) +
1

2
ρ‖w‖2

2

}
.

Finally, strong convexity ensures that the minimum over w is unique: more specif-
ically, it is given by w∗ = 1

ρ

∑n
i=1 D(u)xivi. Substituting this optimum yields the

claimed equality (6.16).

6.2 Convex-analytic conditions for IR exactness

We now turn to analysis of the interval relaxation (6.10), and in particular, de-
termining when it is exact. Note that by strong convexity, the original cardinality-
constrained problem (6.1) has a unique solution, say w∗ ∈ Rd. Let S denote the
support set of w∗, and let u∗ be a Boolean indicator vector for membership in S—
that is, u∗j = 1 if j ∈ S and zero otherwise.

An attractive feature of the IR relaxation is that integrality of an optimal solution
û to the relaxed problem provides a certificate of exactness—that is, if the interval
relaxation (6.10) has an optimal solution û ∈ {0, 1}d, then it must be the case that
û = u∗ (so that we recover the support set of w∗), and moreover that

PIR = P ∗. (6.17)

In this case, we are guaranteed to recover the optimal solution w∗ of the original
problem (6.1) by solving the constrained problem with wj = 0 for all j /∈ S.

In contrast, methods based on `1-relaxations do not provide such certificates of
exactness. In the least-squares regression, the use of `1-relaxation is known as the
Lasso [134], and there is an extensive literature devoted to conditions on the design
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matrix X ∈ Rn×d under which the `1-relaxation provides a “good” solution. Unfortu-
nately, these conditions are either computationally infeasible to check (e.g., restricted
eigenvalue, isometry and nullspace conditions [22, 43] and the related irrepresentabil-
ity conditions for support recovery [60, 95, 157]). Although polynomial-time checkable
conditions do exist (such as pairwise incoherence conditions [136, 50, 60]), they pro-
vide weak guarantees, only holding for sample sizes much larger than the threshold
at which the `1-relaxation begins to work. In addition, most of the previous work on
analyzing `1 relaxations considered a statistical data model where there exists a true
sparse coefficient generating the response. However in many applications such as-
sumptions do not necessarily hold and it is unclear whether `1 regularization provides
a good optimization heuristic for an arbitrary input data.

It is thus of interest to investigate conditions under which the relaxation (IR)
is guaranteed to have an integer solution and hence be tight. The following result
provides an if-and-only if characterization.

Proposition 5. The interval relaxation is tight—that is, PIR = P ∗—if and only if
there exist a pair (λ, v̂) ∈ R+ × Rn such that

v̂ ∈ arg max
v∈Rn

{
− 1

2ρ
vTXSX

T
S v −

n∑
i=1

f ∗(vi; yi)
}
, and (6.18a)

|〈Xj, v̂〉| > λ for all j ∈ S, and |〈Xj, v̂〉| < λ for all j /∈ S, (6.18b)

where Xj ∈ Rn denotes the jth column of the design matrix, S denotes the support of
the unique optimal solution w∗ to the original problem (6.1).

Proof. Beginning with the saddle-point representation from equation (6.10), we ap-
ply the first-order convex optimality condition for constrained minimization. More
precisely, the relaxed solution û is optimal if and only if the following inclusion holds:

0 ∈
{
∂u max

v∈Rn

{
− 1

2ρ
vTXD(u)XTv −

n∑
i=1

f ∗(vi; yi)
}

+ N

}
,

where N denotes the normal cone of the constraint set
{
u ∈ [0, 1]d | ∑d

j=1 uj ≤ k
}

.

Note that the subgradient with respect to uj is given by −(〈Xj, v̂〉)2, where the
vector v̂ was defined in equation (6.18a). Using representation of the normal cone at
the integral point u∗ and associating λ ≥ 0 as the dual parameter corresponding to
constraint

∑d
j=1 uj, we arrive at the stated condition (6.18b).

In the case of least-squares regression, the conditions of Proposition 5 can be
simplified substantially. Recall that interval relaxation for least-squares regression is
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given by

PIR = min
u∈[0,1]d∑d
j=1 uj≤k

{
yT (

1

ρ
XD(u)XT + In)−1y

}
. (6.19)

Let S denote the support of the unique optimal solution w∗ to the original least-
squares problem (6.3), say of cardinality k, and define the n× n matrix

M : =
(
In + ρ−1XSX

T
S

)−1
(6.20)

With this notation, we have:

Corollary 15. The interval relaxation of cardinality-constrained least-squares is exact
(PIR = P ∗) if and only there exists a scalar λ ∈ R+ such that∣∣XT

j My
∣∣ > λ for all j ∈ S, and (6.21a)∣∣XT

j My
∣∣ ≤ λ for all j /∈ S, (6.21b)

where Xj ∈ Rn denotes the jth column of X.

Proof. From the proof of Corollary 14, recall the Boolean convex program (6.13). As
shown in equation (6.12), its optimum is achieved at v̂ = −(In+XD(u∗)XT )y, where
u∗ is a Boolean indicator for membership in S. Applying Proposition 5 with this
choice of v̂ yields the necessary and sufficient conditions∣∣yT (ρIn +XD(u∗)XT )−1Xj

∣∣ > λ for all j ∈ S, and∣∣yT (ρIn +XD(u∗)XT )−1Xj

∣∣ ≤ λ for all j ∈ Sc ,

and completes the proof.

In order to gain an understanding of the above corollary consider an example where
the rows of XS are orthonormal and n = k, hence M = (In+ρ(−1)In)−1 = ρ/(1+ρ)In.
Then the conditions for integrality reduce to checking whether there exists λ′ ∈ R+

such that ∣∣XT
j y
∣∣ > λ′ for all j ∈ S, and∣∣XT

j y
∣∣ ≤ λ′ for all j /∈ S .

Intuitively the above condition basically checks if the columns in the correct support
are more aligned to the response y compared to the columns outside the support.

Also note that by the matrix inversion formula, we have the alternative represen-
tation,

M =
(
In + ρ−1XSX

T
S

)−1
= In −XS

(
ρId +XT

SXS)−1XT
S ,
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For random ensembles, Corollary 15 allows the use of a primal witness method
to certify exactness of the IR method. In particular, if we can construct a scalar λ
for which the two bounds (6.21a) and (6.21b) hold with high probability, then we
can certify exactness of the relaxation. We illustrate this approach in the following
subsection.

6.2.1 Sufficient conditions for random ensembles

In order to assess the performance of the interval relaxation (6.10), we performed
some simple experiments for the least squares case, first generating a design matrix
X ∈ Rn×d with i.i.d. N(0, 1) entries, and then forming the response vector y =
Xw∗ + ε, where the noise vector ε ∈ Rn has i.i.d. N(0, γ) entries. The unknown
regression vector w∗ was k-sparse, with absolute entries of the order 1/

√
k on its

support. Each such problem can be characterized by the triple (n, d, k) of sample
size, dimension and sparsity, and the question of interest is to understand how large
the sample size should be in order to ensure exactness of a method. For instance, for
this random ensemble, the Lasso is known [143] to perform exact support recovery
once n >

∼k log(d−k), and this scaling is information-theoretically optimal [142]. Does
the interval relaxation also satisfy this same scaling?

In order to test the IR relaxation, we performed simulations with sample size
n = αk log d for a control parameter α ∈ [2, 8], for three different problem sizes d ∈
{64, 128, 256} and sparsity k = d

√
de. Figure 6.1 shows the probability of successful

recovery versus the control parameter α for these different problem sizes, for both the
Lasso and the IR method. Note that both methods undergo a phase transition once
the sample size n is larger than some constant multiple of k log(d− k).

The following result provides theoretical justification for the phase transition behavior
exhibited in Figure 6.1:

Theorem 12. Suppose that we are given a sample size n > c0
γ2+‖w∗S‖

2
2

w2
min

log d, and that

we solve the interval relaxation with ρ =
√
n. Then with probability at least 1−2e−c1n,

the interval relaxation is integral, so that PIR = P ∗.

For a typical k-sparse vector, we have
‖w∗‖22
w2

min
� k, so that Theorem 12 predicts that

the interval relaxation should succeed with n % k log(d − k) samples, as confirmed
by the plots in Figure 6.1.

6.2.2 Analysis of randomized rounding

In this section, we describe a method to improve the interval relaxation scheme
introduced earlier. The convex relaxation of the Boolean hypercube constraint u ∈
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Figure 6.1: Problem of exact support recovery for the Lasso and the interval relaxation
for different problem sizes d ∈ {64, 128, 256}. As predicted by theory, both methods
undergo a phase transition from failure to success once the control parameter α : =

n
k log(d−k)

is sufficiently large. This behavior is confirmed for the interval relaxation in
Theorem 12.

{0, 1}d to the standard hypercube constraint u ∈ [0, 1]d might produce an integral
solution—in particular, when the conditions in Proposition 5 are not satisfied. In this
case, it is natural to consider how to use the fractional solution û ∈ [0, 1]d to produce
a feasible Boolean solution ũ ∈ {0, 1}d. By construction, the objective function values
(G(û), G(ũ)) defined by this pair will sandwich the optimal value—viz

G(û) ≤ P ∗ ≤ G(ũ).

Here G is the objective function from the original Boolean problem (6.9).

Randomized rounding is a classical technique for converting fractional solutions
into integer solutions with provable approximation guarantees [98]. Here we consider
the simplest possible form of randomized rounding in application to our relaxation.
Given the fractional solution û ∈ [0, 1]d, suppose that we generate a feasible Boolean
solution ũ ∈ {0, 1}d as follows

P[ũi = 1] = ûi and P[ũi = 0] = 1− ûi. (6.22)

By construction, this random Boolean vector matches the fractional solution in
expectation—that is, E[ũ] = û, and moreover its expected `0-norm is given by

E[‖ũ‖0] =
d∑
i=1

P[ũi = 1] =
d∑
i=1

ûi ≤ k,
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where the final inequality uses the feasibility of the fractional solution û. The random
Boolean solution ũ can be used to define a randomized solution w̃ ∈ Rd of the original
problem via

w̃ = arg min
w∈Rd

F
(
D(ũ)w

)
, (6.23)

where the function F was defined in equation (6.1).

Without loss of generality, consider the least squares problem and assume the
columns are normalized, i.e., ‖xj‖2 = 1 for j = 1, . . . , d and ‖y‖2 = 1, then we have
the following result. Let R ⊂ {1, . . . , d} be the subset of coordinates on which û takes
fractional values (i.e., ûj ∈ (0, 1) for all j ∈ R) and let r = |R| be the cardinality of
this set.

Theorem 13. There are universal constants cj such that for any δ ∈ (0, 1), with
probability at least 1 − c1e

−c2kδ2 − 1
min{r,n}c3 , the randomly rounded solution w̃ has

`0-norm at most (1 + δ)k, and has optimality gap at most

F (w̃)− P ∗ ≤ c4

√
r log min{r, n}

ρ
. (6.24)

Note that the optimality gap in the preceding bound is negligible when the number
of fractional solutions are small enough, and vanishes when the solution is integral,
i.e., r = 0. The optimality gap also decreases when ρ gets larger in which case
the objective of the original problem is heavily regularized by ρ

2
‖w‖2

2. The bound
in Theorem 13 uses concentration bounds from random matrix theory [3] which are
known to be sharp estimates of the statistical deviation in random sampling.

In our simulations, in order to be sure that we compare with a feasible integral
solution (i.e., with at most k entries), we generate T realizations—say {ũ1, . . . , ũT} of
the rounding procedure—and then pick the one ũ∗ that has smallest objective value
G(ũ) among the feasible solutions. (Note that ũ∗ will exist with high probability
for reasonable choices of T .) Finally, we define w̃∗ = arg minw F (D(ũ∗)). Denoting
this procedure as randomized rounding of order T , we study its empirical behavior in
Section 6.4 in the sequel.

The computational complexity of the randomized rounding procedure is domi-
nated by evaluating F

(
D(ũ)w

)
a total of T times. However since ũ are sparse vectors

this procedure is very efficient. For the least squares problem with target cardinality
k the complexity becomes O(Tk2n) since evaluating

(
D(ũ)w

)
can be done in O(k2n)

time using QR decomposition.

We note that in some other applications there might be additional constraints
imposed on the vector u such as block sparsity or graphical structure. In such cases the
randomized rounding process needs to be altered accordingly, or variants of rejection
sampling can be used to generate vectors until constraints are satisfied.
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6.3 Penalized forms of cardinality

Up to this point, we have consider the cardinality-constrained versions of sparse
learning problems. If we instead enforce sparsity by augmenting the objective with
some multiple of the `0-norm, this penalized objective can also be reformulated as
Boolean program with a convex objective.

6.3.1 Reformulation as Boolean program

More precisely, suppose that we begin with the cardinality-penalized program

P ∗(λ) : = min
w∈Rd

{ n∑
i=1

f(〈xi, w〉; yi) +
1

2
ρ‖w‖2

2 + λ‖w‖0

}
. (6.25)

As before, we suppose that for each y ∈ Y , the function t 7→ f(t; y) is closed and
convex. Under this condition, the following result provides an equivalent formulation
as a convex program in Boolean variables:

Theorem 14. For any ρ > 0 and λ > 0, the cardinality-penalized program (6.25) can
be represented exactly as the Boolean convex program

P ∗(λ) = min
u∈{0,1}d

max
v∈Rn

{
− 1

2ρ
vTXD(u)XTv −

n∑
i=1

f ∗(vi; yi) + λ
d∑
i=1

ui

}
, (6.26)

where D(u) : = diag(u) ∈ Rd×d is a diagonal matrix.

The proof is very similar to that of Theorem 11, and so we omit it.

As a consequence of the equivalent Boolean form (6.26), we can also obtain various
convex relaxations of the cardinality-penalized program. For instance, the first-order
relaxation takes the form

PIR(λ) = min
u∈[0,1]d

max
v∈Rn

{
− 1

2ρ
vTXD(u)XTv −

n∑
i=1

f ∗(vi; yi) + λ
d∑
i=1

ui

}
, (6.27)

which is the analogue of our first-order relaxation (6.13) for the constrained version
of sparse learning.

As with our previous analysis, it is possible to eliminate the minimization over u
from this saddle point expression. Strong duality holds, so that the maximum and
minimum may be exchanged. In order to evaluate the minimum over u, we observe
that 1

2ρ
vTXD(u)XTv =

∑d
i=1 ui

(
1
2ρ

(xTi v)2
)
, and moreover that

min
u∈[0,1]d

{
−

d∑
i=1

ui
( 1

2ρ
(xTi v)2 − λ

)}
= −

d∑
i=1

( 1

2ρ
(xTi v)2 − λ

)
+
,
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Putting together the pieces, we can write the interval relaxation in the penalized case
as the following convex (but non-differentiable) program

PIR(λ) = max
v∈Rn

{
−

d∑
i=1

( 1

2ρ
(xTi v)2 − λ

)
+
−

n∑
i=1

f ∗(vi; yi)
}
. (6.28)

6.3.2 Least-squares regression

As before, the relaxation (6.28) takes an especially simple form for the special but
important case of least-squares regression. In particular, in the least-squares case,

we have f(t, y) = 1
2

(
t − y

)2
, along with the corresponding conjugate dual function

f ∗(s; y) = s2

2
+ s y. Consequently, the general relaxation (6.28) reduces to

PIR(λ) = max
v∈Rn

{
−

d∑
i=1

(
1

2ρ
(xTi v)2 − λ

)
+

− vTy − 1

2
‖v‖2

2

}
, (6.29)

As we now show, this convex program is equivalent to minimizing the least-squares
objective using a form of regularization that combines the `1 and `2-norms. In par-
ticular, let us define

B(t) =
1

2
min
z∈[0,1]

{
z +

t2

z

}
=

{
|t| if |t| ≤ 1
t2+1

2
otherwise

. (6.30)

This function combines the `1 and `2 norms in the way that is the opposite Huber’s
robust penalty; consequently, we call it the reverse Huber penalty.
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Corollary 16. The interval relaxation (6.29) for the cardinality-penalized least-
squares problem has the equivalent form

PIR(λ) = min
w∈Rd

{1

2
‖Xw − y‖2

2 + 2λ
d∑
i=1

B
(√ρwi√

λ

)}
, (6.31)

where B denotes the reverse Huber penalty.

A plot of the reverse Huber penalty is displayed in Figure 6.2 and compared with the
`1-norm t 7→ λ|t|, as well as the `0-based penalty t 7→ λ‖t‖0 + 1

2
t2.

Proof. Consider the representation (6.29) for the least-squares case. We can represent
the coordinatewise functions (·)+ function using a vector p ∈ Rd of auxiliary variables
as follows

PIR(λ) = max
v,p

{
− 1Tp− 1

2
‖v‖2

2 − 〈v, y〉
}

subject to p ≥ 0, and pi ≥ 1
2ρ

(〈xi, v〉)2 − λ for i = 1, . . . , d.

Making use of rotated second order cone constraints, we have the equivalence

pi ≥
1

2ρ

(
〈xi, v〉

)2 − λ ⇐⇒
∥∥∥∥( 〈xi, v〉

pi + λ− 1

)∥∥∥∥ ≤ pi + λ+ 1, for i = 1, . . . , d.

Thus, the relaxation (6.29) has the equivalent representation

PIR(λ) = max
v∈Rn
p∈Rd

{
− 〈1, p〉 − 1

2
‖v‖2

2 − 〈v, y〉
}

subject to p ≥ 0,

∥∥∥∥( √ρ−1〈xi, v〉
pi + λ− 1

)∥∥∥∥ ≤ pi + λ+ 1, i = 1, . . . , d,

which is a second order cone program (SOCP) in variables (v, p) ∈ Rn × Rd.

Introducing Lagrange vectors for the constraints, we have

PIR(λ) = max
v,p

min
α,β,γ

{
− 〈1, p〉 − 1

2
‖v‖2

2 − 〈v, y〉+
d∑
i=1

(
γi(pi + λ− 1)−

√
ρ−1αi〈xi, v〉 − βi(pi + λ+ 1)

)}
subject to p ≥ 0,

∥∥∥∥( αi
βi + λ− 1

)∥∥∥∥ ≤ γi, i = 1, . . . , d .

Since λ > 0, strong duality holds by primal strict feasibility (see e.g., [28]), we may
exchange the order of the minimum and the maximum. Making the substitutions
w = α/ρ, u = γ+β, z = γ−β, and then eliminating v = y−Xw yields the equivalent
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Figure 6.3: Objective value versus cardinality trade-off in a real dataset from cancer
research. The proposed randomized rounding method considerably outperforms other
methods by achieving lower objective value with smaller cardinality.

expression

PIR(λ) = min
w,u,z

max
p≥0

{1

2
‖Xw − y‖2

2 + 〈p, z − 1〉+ 〈1, λz + y〉
}

subject to

∥∥∥∥( √ρxiyi − zi

)∥∥∥∥ ≤ yi + zi i = 1, . . . , n.

= min
w,u,z

{1

2
‖Xw − y‖2

2 + 〈p, λz + y〉
}

subject to 0 ≤ zi ≤ 1, yi ≥ 0, ρw2
i ≤ yizi, i = 1, . . . , n

= min
w,z

{1

2
‖Xw − y‖2

2 +
d∑
i=1

(
λzi +

ρw2
i

zi

)}
, 0 ≤ zi ≤ 1, i = 1, . . . , n ,

= min
w

{1

2
‖Xw − y‖2

2 + 2λ
d∑
i=1

B
(√ρwi√

λ

)}
,

which completes the proof.

We note that the alternative reverse Huber representation of the least squares
problem can potentially be used to apply convex optimization toolboxes (e.g., [41, 64])
where the reverse Huber function is readily available.

6.4 Numerical Results

In this section, we discuss some numerical aspects of solving the relaxations that
we have introduced, and illustrate their behavior on some real-world problems of
sparse learning.
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6.4.1 Optimization techniques

Although efficient polynomial-time methods exist for solving semi-definite pro-
grams, solving large-scale problems remains challenging using current computers and
algorithms. For the SDP problems of interest here, one attractive alternative is to
instead develop algorithms to solve the saddle-point problem in equation (6.10). For
instance, in the least-squares case, the gradients of the relaxed objective in equa-
tion (6.19) are given by

∂iG(u) = −
(
xTi (I +XD(u)XT/ρ)−1y

)2

.

Computing such a gradient requires the solution of a rank-‖u‖0 linear system of size
n, which can be done exactly in time O(‖u‖3

0) + O(nd) via the QR decomposition.
Therefore, the overall complexity of using first-order and quasi-Newton methods is
comparable to the Lasso when the sparsity level k is relatively small. We then employ
a projected quasi-Newton method [125] to numerically optimize the convex objective.
The randomized rounding procedure requires T evaluations of function value, which
takes additional O(T‖ũ‖3

0) time.

6.4.2 Experiments on real datasets

We consider two well known high-dimensional datasets studied in cancer research,
the 62× 2000 Colon cancer dataset1 and 216× 4000 Ovarian cancer dataset2 which
contain ion intensity levels corresponding to related proteins and corresponding cancer
or normal output labels.. We consider classical `2

2-regularized least lquares classifica-
tion using the mapping −1 for cancer label and +1 for normal label. We numerically
implemented the proposed randomized rounding procedure of T = 1000 trials based
on the relaxed solution. For other methods we identify their support and predict
using regularized least squares solution constrained to that support where regulariza-
tion parameter is optimized for each method on the training set. Figure 6.3 depicts
optimization error (training error) as a function of the cardinality of the solution for
both of the datasets. It is observed that the randomized rounding approach provides
a considerable improvement in the optimal value for any fixed cardinality. In order
to assess the learning and generalization performance of the trained model, we then
split the dataset into two halves for training and testing. We present the plots of the
test error as a function of cardinality over 1000 realizations of data splits and show
the corresponding error-bars calculated for 1.5σ in Figure 6.4. The proposed algo-
rithm also shows a considerable improvement in both training and test error compared

1Taken from the Princeton University Gene Expression Project; for original source and further
details please see the references therein.

2Taken from FDA-NCI Clinical Proteomics Program Databank; for original source and further
details please see the references therein.
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Figure 6.4: Classification accuracy versus cardinality in a real dataset from cancer
research. The proposed method has considerably higher classification accuracy for a
fixed cardinality.

to the other methods, as can be seen from the figures. We observed that choosing
T ∈ [100, 1000] gave satisfactory results however T can be chosen larger for higher
dimensional problems without any computational difficulty.

We also note that in many applications choosing a target cardinality k with good
predictive accuracy is an important problem. For a range of cardinality values the
proposed approach can be combined with cross-validation and other model selection
methodologies such as the Bayesian information criterion (BIC) or Akaike information
criterion (AIC) [6, 146]. However there are also machine learning applications where
the target cardinality is specified due to computational complexity requirements at
runtime (see e.g. [46]). In these applications the cardinality directly effects the
number of features that needs to be checked for classifying a new sample.

6.5 Simplex Constrained Problems

In this section we consider optimization problems of the following form,

p∗ = min
x∈C

f(x) + λcard(x)

where f is a convex function, C is a convex set, card(x) denotes the number of
nonzero elements of x and λ ≥ 0 is a given tradeoff parameter for adjusting desired
sparsity. Since the cardinality penalty is inherently of combinatorial nature, these
problems are in general not solvable in polynomial-time. In recent years `1 norm
penalization as a proxy for penalizing cardinality has attracted a great deal of atten-
tion in machine learning, statistics, engineering and applied mathematics [34], [36],
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[29], [35]. However the aforementioned types of sparse probability optimization prob-
lems are not amenable to the `1 heuristic since ‖x‖1 = 1Tx = 1 is constant on the
probability simplex. Numerous problems in machine learning, statistics, finance and
signal processing fall into this category however to the authors’ knowledge there is
no known general convex optimization strategy for such problems constrained on the
probability simplex. We claim that the reciprocal of the infinity-norm, i.e., 1

maxi xi
is

the correct convex heuristic for penalizing cardinality on the probability simplex and
the resulting relaxations can be solved via convex optimization. Figure 6.5 depicts
an example of a sparse probability measure which also has maximal infinity norm. In
the following sections we expand our discussion by exploring two specific problems:
recovering a measure from given moments where f = 0 and C is affine, and convex
clustering where f is a log-likelihood and C = R. For the former case we give a
sufficient condition for this convex relaxation to exactly recover the minimal cardi-
nality solution of p∗. We then present numerical simulations for the both problems
which suggest that the proposed scheme offers a very efficient convex relaxation for
penalizing cardinality on the probability simplex.

6.6 Optimizing over sparse probability measures

We begin the discussion by first taking an alternative approach to the cardinality
penalized optimization by directly lower-bounding the original hard problem using
the following relation

‖x‖1 =
n∑
i=1

|xi| ≤ card(x) max
i
|xi| ≤ card(x) ‖x‖∞

which is essentially one of the core motivations of using `1 penalty as a proxy for
cardinality. When constrained to the probability simplex, the lower-bound for the
cardinality simply becomes 1

maxi xi
≤ card(x). Using this bound on the cardinality,

we immediately have a lower-bound on our original NP-hard problem which we denote
by p∗∞:

p∗ ≥ p∗∞ := min
x∈C, 1T x=1, x≥0

f(x) + λ
1

maxi xi
(6.32)

The function 1
maxi xi

is concave and hence the above lower-bounding problem is not
a convex optimization problem. However below we show that the above problem can
be exactly solved using convex programming.

Proposition 1. The lower-bounding problem defined by p∗∞ can be globally solved
using the following n convex programs in n+ 1 dimensions:

p∗ ≥ p∗∞ = min
i=1,...,n

{
min

x∈C, 1T x=1, x≥0, t≥0
f(x) + t : xi ≥ λ/t

}
. (6.33)
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C x * 

Figure 6.5: Probability simplex and the reciprocal of the infinity norm . The sparsest
probability distribution on the set C is x∗ (green) which also minimizes 1

maxi xi
on the

intersection (red)

Note that the constraint xi ≥ λ/t is jointly convex since 1/t is convex in t ∈ R+,
and they can be handled in most of the general purpose convex optimizers, e.g. cvx,
using either the positive inverse function or rotated cone constraints.

Proof.

p∗∞ = min
x∈C, 1T x=1, x≥0

f(x) + min
i

λ

xi
(6.34)

= min
i

min
x∈C, 1T x=1, x≥0

f(x) +
λ

xi
(6.35)

= min
i

min
x∈C, 1T x=1, x≥0,t≥0

f(x) + t s.t.
λ

xi
≤ t (6.36)

The above formulation can be used to efficiently approximate the original cardi-
nality constrained problem by lower-bounding for arbitrary convex f and C. In the
next section we show how to compute the quality of approximation.

6.6.1 Computing a bound on the quality of approximation

By the virtue of being a relaxation to the original cardinality problem, we have the
following remarkable property. Let x̂ be an optimal solution to the convex program
p∗∞, then we have the following relation

f(x̂) + λcard(x̂) ≥ p∗ ≥ p∗∞ (6.37)
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Since the left-hand side and right-hand side of the above bound are readily available
when p∗∞ defined in (6.33) is solved, we immediately have a bound on the quality of
relaxation. More specifically the relaxation is exact, i.e., we find a solution for the
original cardinality penalized problem, if the following holds:

f(x̂) + λcard(x̂) = p∗∞

It should be noted that for general cardinality penalized problems, using `1 heuris-
tic does not yield such a quality bound, since it is not a lower or upper bound in
general. Moreover most of the known equivalence conditions for `1 heuristics such
as Restricted Isometry Property and variants are NP-hard to check. Therefore a re-
markable property of the proposed scheme is that it comes with a simple computable
bound on the quality of approximation.

6.7 Recovering a Sparse Measure

Suppose that µ is a discrete probability measure and we would like to know the
sparsest measure satisfying some arbitrary moment constraints:

p∗ = min
µ

card(µ) : Eµ[Xi] = bi, i = 1, . . . ,m

where Xi’s are random variables and Eµ denotes expectation with respect to the
measure µ. One motivation for the above problem is the fact that it upper-bounds
the minimum entropy power problem:

p∗ ≥ min
µ

expH(µ) : Eµ[Xi] = bi, i = 1, . . . ,m

where H(µ) := −∑i µi log µi is the Shannon entropy. Both of the above problems
are non-convex and in general very hard to solve.

When viewed as a finite dimensional optimization problem the minimum cardi-
nality problem can be cast as a linear sparse recovery problem:

p∗ = min
1T x=1, x≥0

card(x) : Ax = b (6.38)

As noted previously, applying the `1 heuristic doesn’t work and it does not even
yield a unique solution when the problem is underdetermined since it simply solves a
feasibility problem:

p∗1 = min
1T x=1, x≥0

‖x‖1 : Ax = b (6.39)

= min
1T x=1, x≥0

1 : Ax = b (6.40)
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and recovers the true minimum cardinality solution if and only if the set 1Tx = 1, x ≥
0, Ax = b is a singleton. This condition may hold in some cases, i.e. when the first
2k − 1 moments are available, i.e., A is a Vandermonde matrix where k = card(x)
[38]. However in general this set is a polyhedron containing dense vectors. Below we
show how the proposed scheme applies to this problem.

Using general form in (6.33), the proposed relaxation is given by the following,

(p∗)−1 ≤ (p∗∞)−1 = max
i=1,...,n

{
max

1T x=1, x≥0
xi : Ax = b

}
. (6.41)

which can be solved very efficiently by solving n linear programs in n variables. The
total complexity is at most O(n4) using a primal-dual LP solver.

It’s easy to check that strong duality holds and the dual problems are given by
the following:

(p∗∞)−1 = max
i=1,...,n

{
min
w, λ

wT b+ λ : ATw + λ1 ≥ ei

}
. (6.42)

where 1 is the all ones vector and ei is all zeros with a one in only i’th coordinate.

6.7.1 An alternative minimal cardinality selection scheme

When the desired criteria is to find a minimum cardinality probability vector sat-
isfying Ax = b, the following alternative selection scheme offers a further refinement,
by picking the lowest cardinality solution among the n linear programming solutions.
Define

x̂i : = arg max
1T x=1, x≥0

xi : Ax = b (6.43)

x̂min : = arg min
i=1,...,n

card(x̂i) (6.44)

The following theorem gives a sufficient condition for the recovery of a sparse measure
using the above method.

Theorem 2. Assume that the solution to p∗ in (6.38) is unique and given by x∗. If
the following condition holds

min
1T x=1, y≥0, 1T y=1

xi s.t. ASx = AScy > 0

where b = Ax∗ and AS is the submatrix containing columns of A corresponding to
non-zero elements of x∗ and ASc is the submatrix of remaining columns, then the
convex linear program

max
1T x=1, x≥0

xi : Ax = b

has a unique solution given by x∗.
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Let Conv(a1, . . . , am) denote the convex hull of the m vectors {a1, . . . , am}. The
following corollary depicts a geometric condition for recovery.

Corollary 3. If Conv(ASc) does not intersect an extreme point of Conv(AS) then
x̂min = x∗, i.e. we recover the minimum cardinality solution using n linear programs.

Proof. Consider k’th inner linear program defined in the problem p∗∞. Using the
optimality conditions of the primal-dual linear program pairs in (6.41) and (6.42), it
can be shown that the existence of a pair (w, λ) satisfying

ATSw + λ1 = ek (6.45)

ATScw + λ1 > 0 (6.46)

implies that the support of solution of the linear program is exactly equal to the
support of x∗, and in particular they have the same cardinality. Since the solution of
p∗ is unique and has minimum cardinality, we conclude that x∗ is indeed the unique
solution to the k’th linear program. Applying Farkas’ lemma and duality theory we
arrive at the conditions defined in Theorem 2. The corollary follows by first observing
that the condition of Theorem 2 is satisfied if Conv(ASc) does not intersect an extreme
point of Conv(AS). Finally observe that if any of the n linear programs recover the
minimal cardinality solution then x̂min = x∗, since card(x̂min) ≤ card(x̂k), ∀k.

6.7.2 Noisy measure recovery

When the data contains noise and inaccuracies, such as the case when using
empirical moments instead of exact moments, we propose the following noise-aware
robust version, which follows from the general recipe given in the first section:

min
i=1,...,n

{
min

1T x=1, x≥0,t≥0
‖Ax− b‖2

2 + t : xi ≥ λ/t

}
. (6.47)

where λ ≥ 0 is a penalty parameter for encouraging sparsity. The above problem can
be solved using n second-order cone programs in n + 1 variables, hence has O(n4)
worst case complexity.

The proposed measure recovery algorithms are investigated and compared with a
known suboptimal heuristic in Section 6.10.

6.8 Convex Clustering

In this section we base our discussion on the exemplar based convex clustering
framework of [81]. Given a set of data points {z1, . . . , zn} of d-dimensional vectors, the
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task of clustering is to fit a mixture probability model to maximize the log likelihood
function

L :=
1

n

n∑
i=1

log

[
k∑
j=1

xjf(zi;mj)

]

where f(z;m) is an exponential family distribution on Z with parameter m, and
x is a k-dimensional vector on the probability simplex denoting the mixture weights.
For the standard multivariate Normal distribution we have f(zi;mj) = e−β‖zi−mj‖

2
2

for some parameter β > 0. As in [81] we’ll further assume that the mean parameter
mj is one of the examples zi which is unknown a-priori. This assumption helps to
simply the log-likelihood whose data dependence is now only through a kernel matrix
Kij := e−β‖zi−zj‖

2
2 as follows

L =
1

n

n∑
i=1

log

[
k∑
j=1

xje
−β‖zi−zj‖22

]
(6.48)

=
1

n

n∑
i=1

log

[
k∑
j=1

xjKij

]
(6.49)

Partitioning the data {z1, . . . , zn} into few clusters is equivalent to have a sparse
mixture x, i.e., each example is assigned to few centers (which are some other ex-
amples). Therefore to cluster the data we propose to approximate the following
cardinality penalized problem,

p∗c := max
1T x=1, x≥0

n∑
i=1

log

[
k∑
j=1

xjKij

]
− λcardx (6.50)

As hinted previously, the above problem can be seen as a lower-bound for the entropy
penalized problem

p∗c ≤ max
1T x=1, x≥0

n∑
i=1

log

[
k∑
j=1

xjKij

]
− λ expH(x) (6.51)

where H(x) is the Shannon entropy of the mixture probability vector.

Applying our convexification strategy, we arrive at another upper-bound which
can be computed via convex optimization

p∗c ≤ p∗∞ := max
1T x=1, x≥0

n∑
i=1

log

[
k∑
j=1

xjKij

]
− λ

maxi xi
(6.52)

We investigate the above approach in a numerical example in Section 6.10 and
compare with the well-known soft k-means algorithm.
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6.9 Algorithms

6.9.1 Exponentiated Gradient

Exponentiated gradient [77] is a proximal algorithm to optimize over the probabil-
ity simplex which uses the Kullback-Leibler divergence D(x, y) =

∑
i xi log xi

yi
between

two probability distributions as a proximal map. For minimizing a convex function
ψ the exponentiated gradient updates are given by the following:

xk+1 = arg min
x

ψ(xk) +∇ψ(xk)T (x− xk) +
1

α
D(x, xk)

When applied to the general form of 6.33 it yields the following updates to solve the
i’th problem of p∗∞

xk+1
i = rki x

k
i /

(∑
j

rkj x
k
j

)
where the weights ri are exponentiated gradients:

rki = exp
(
α(∇if(xk)− λ/x2

i )
)

We also note that the above updates can be done in parallel for the n convex programs,
and they are guaranteed to converge to the optimum.

6.10 Numerical Results

6.10.1 Recovering a Measure from Gaussian Measurements

Here we show that the proposed recovery scheme is able to recover a sparse mea-
sure exactly with overwhelming probability, when the matrix A ∈ Rm×n is chosen
from the independent Gaussian ensemble, i.e, Ai,j ∼ N (0, 1) i.i.d.

As an alternative method we consider a commonly employed simple heuristic to
optimize over a probability measure which first drops the constraint 1Tx = 1 and
solves the corresponding `1 penalized problem. And finally rescales the optimal x
such that 1Tx = 1. This procedure is clearly suboptimal and we will refer it as the
rescaling heuristic. We set n = 50 and randomly pick a 2-sparse probability vector x∗

which is k sparse, let b = Ax∗ be m noiseless measurements, then check the probability
of recovery, i.e. x̂ = x∗ where x̂ is the solution to,

max
i=1,...,n

{
max

1T x=1, x≥0
xi : Ax = b

}
. (6.53)
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Figure 6.6: A comparison of the exact recovery probability in the noiseless setting
(top) and estimation error in the noisy setting (bottom) of the proposed approach
and the rescaled `1 heuristic

Figure 6.6(a) shows the probability of exact recovery as a function of m, the number
of measurements, in 100 independent realizations of A for the proposed LP formu-
lation and the rescaling heuristic. As it can be seen in Figure 6.6(a), the proposed
method recovers the correct measure with probability almost 1 when m ≥ 5. Quite
interestingly the rescaling heuristic doesn’t succeed to recover the true measure with
high probability even for a cardinality 2 vector.

We then add normal distributed noise with standard deviation 0.1 on the obser-
vations and solve,

min
i=1,...,n

{
min

1T x=1, x≥0,t≥0
‖Ax− b‖2

2 + t : xi ≥ λ/t

}
. (6.54)

We compare the above approach by the corresponding rescaling heuristic, which first
solves a nonnegative Lasso,

min
x≥0

‖Ax− b‖2
2 + λ ‖x‖1 (6.55)
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Figure 6.7: Proposed convex clustering scheme

then rescales x such that 1Tx = 1. For each realization of A and measurement noise
we run both methods using a primal-dual interior point solver for 30 equally spaced
values of λ ∈ [0, 10] and record the minimum error ‖x̂− x∗‖1. The average error over
100 realizations are shown in Figure 6.6(b). Is it can be seen in the figure the proposed
scheme clearly outperforms the rescaling heuristic since it can utilize the fact that x
is on the probability simplex, without trivializing it’s complexity regularizer.

6.10.2 Convex Clustering

We generate synthetic data using a Gaussian mixture of 4 components with iden-
tity covariances and cluster the data using the proposed method, the resulting clusters
given by the mixture density is presented in Figure 6.7. The centers of the circles
represent the means of the mixture components and the radii are proportional to the
respective mixture weights. We then repeat the clustering procedure using the well
known soft k-means algorithm and present the results in Figure 6.8.

As it can be seen from the figures the proposed convex relaxation is able to penalize
the cardinality on the mixture probability vector and produce clusters close to the
soft k-means algorithm. Note that soft k-means is a non-convex procedure whose
performance depends heavily on the initialization. The proposed approach is convex
hence insensitive to the initializations. Note that in [81] the number of clusters are
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Figure 6.8: Soft k-means algorithm

adjusted indirectly by varying the β parameter of the distribution. In contrast our
approach tries to implicitly optimizes the likelihood/cardinality tradeoff by varying
λ.

6.11 Discussion

We first showed how a broad class of cardinality-constrained (or penalized) sparse
learning problems can be reformulated exactly as Boolean programs involving convex
objective functions. The utility of this reformulation is in permitting the application
of various types of relaxation hierarchies, such as the Sherali-Adams and Lasserre hi-
erarchies for Boolean programs. The simplest such relaxation is the first-order interval
relaxation, and we analyzed the conditions for its exactness in detail. In contrast to
the classical `1 heuristic, the presented method provides a lower bound on the so-
lution value, and moreover a certificate of optimality when the solution is integral.
We provided sufficient conditions for the solution to be integral for linear regression
problems with random Gaussian design matrices. For problems in which the solution
is not integral, we proposed an efficient randomized rounding procedure, and showed
that its approximation accuracy can be controlled in terms of the number of fractional
entries, and a regularization parameter in the algorithm, In our experiments with real
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data sets, the output of this randomized rounding procedure provided considerably
better solutions than standard competitors such as the Lasso or orthogonal matching
pursuit.

We also presented a convex cardinality penalization scheme for problems con-
strained on the probability simplex. We then derived a sufficient condition for recov-
ering the sparsest probability measure in an affine space using the proposed method.
The geometric interpretation suggests that it holds for a large class of matrices. An
interesting direction is to extend the recovery analysis to the noisy setting and ar-
bitrary functions such as the log-likelihood in the clustering example. There might
also be other problems where proposed approach could be practically useful such
as portfolio optimization, or sparse multiple kernel learning where a sparse convex
combination of assets is sought.

There are a range of interesting open problem suggested by our developments.
In particular, we have studied only the most naive first-order relaxation for the
problem: it would be interesting to see whether one quantify how quickly the
performance improves (relative to the exact cardinality-constrained solution) as
the level of relaxation—say in one of the standard hierarchies for Boolean prob-
lems [128, 88, 82, 83, 145]—is increased. This question is particularly interesting
in light of recent work [156] showing that, under a standard conjecture in computa-
tional complexity, there are fundamental gaps between the performance of cardinality-
constrained estimators and polynomial-time methods for the prediction error in sparse
regression.

6.12 Proofs of technical results

In this section, we provide the proofs of Theorems 12 and Theorem 13.

6.12.1 Proof of Theorem 12

Recalling the definition (6.20) of the matrix M , for each j ∈ {1, . . . , d}, define the

rescaled random variable Uj : =
XT
j My

ρn
. In terms of this notation, it suffices to find a

scalar λ such that

min
j∈S
|Uj| > λ and max

j∈Sc
|Uj| < λ. (6.56)

By definition, we have y = XSw
∗
S + ε, whence

Uj =
XT
j MXSw

∗
S

ρn︸ ︷︷ ︸
Aj

+
XT
j Mε

ρn︸ ︷︷ ︸
Bj

.
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Based on this decomposition, we then make the following claims:

Lemma 31. There are numerical constants c1, c2 such that

P
[

max
j=1,...,d

|Bj| ≥ t
]
≤ c1e

−c2 n t
2

γ2 +log d
. (6.57)

Lemma 32. There are numerical constants c1, c2 such that

P
[

min
j∈S
|Aj| <

wmin

4

]
≤ c1e

−c2n
w2
min

‖w∗
S
‖22

+log(2k)
and (6.58a)

P
[

max
j∈Sc
|Aj| ≥

wmin

16

]
≤ c3e

−c4n
w2
min

‖w∗
S
‖22

+log(d−k)
, (6.58b)

Using these two lemmas, we can now complete the proof. Recall that Theorem 12

assumes a lower bound of the form n > c0
γ2+‖w∗S‖

2
2

w2
min

log d, where c0 is a sufficiently

large constant. Thus, setting t = wmin

16
in Lemma 31 ensures that max

j=1,...,d
|Bj| ≤ wmin

16

with high probability. Combined with the bound (6.58a) from Lemma 32, we are
guaranteed that

min
j∈S
|Uj| ≥

wmin

4
− wmin

16
=

3wmin

16
with high probability.

Similarly, the bound (6.58b) guarantees that

max
j∈Sc
|Uj| ≤

wmin

16
+
wmin

16
=

2wmin

16
also with high probability.

Thus, setting λ = 5wmin

32
ensures that the condition (6.56) holds.

The only remaining detail is to prove the two lemmas.

6.12.1.0.3 Proof of Lemma 31: Define the event Ej = {‖Xj‖2/
√
n ≤ 2}, and

observe that

P
[
|Bj| > t

]
≤ P[|Bj| > t | E ] + P[Ec].

Since the variable ‖Xj‖2
2 follows a χ2-distribution with n degrees of freedom, we have

P
[
Ec
]
≤ 2e−c2n. Recalling the definition (6.20) of the matrix M , note that λmax

(
M
)
≤

ρ−1, whence conditioned on E , we have ‖MXj‖2 ≤ ‖Xj‖2 ≤ 2
√
n. Consequently,

conditioned on E , the variable
XT
j Mε

ρ
is a Gaussian random vector with variance at

most 4γ2/ρ2, and hence P[|Bj| > t | E ] ≤ 2e
− ρ

2t2

32γ2 .

Finally, by union bound, we have

P
[

max
j=1,...,d

|Bj| > t
]
≤ dP

[
|Bj| > t

]
≤ d

{
2e
− ρ

2t2

32γ2 + 2e−c2ρn
}
≤ c1e

−c2 ρ
2t2

γ2 +log d
,

as claimed.
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6.12.1.0.4 Proof of Lemma 32: We split the proof into two parts.

6.12.1.0.5 (1) Proof of the bound (6.58a): Note that

1

ρ
XT
SMXS = XT

S (ρIn +XSX
T
S )−1XS

We now write XS = UDV T for singular value decomposition of 1√
n
XS in compact

form. We thus have

1

ρ
XT
SMXS = V

(
ρIn + nD2

)−1
D2V T .

We will prove that for a fixed vector z, the following holds with high probability

‖
(

1
ρ
XT
SMXS − I

)
z‖∞

‖z‖∞
≤ ε. (6.59)

Applying the above bound to w∗S, which is a fixed vector we obtain

‖
(

1

ρ
XT
SMXS − I

)
w∗s‖∞ ≤ ε‖w∗s‖∞ (6.60)

Then by triangle inequality the above statement implies that

min
i∈S
|1
ρ
XT
SMXSw

∗
i | > (1− ε) min

i∈S
|w∗i |.

and setting ε = 3/4 yields the claim.

Next we let 1
ρ
XT
SMXS−I = V D̃V where we defined D̃ : = ((ρIn +D2)−1D2 − I).

By standard results on operator norm of Gaussian random matrices (e.g., see David-
son and Szarek [44]), the minimum singular valyue

σmin(
1√
n
XS) = min

i=1,...,k
Dii

of the matrix XS/
√
n can be bounded as

P
[ 1√

n
min
i=1,...,k

|Dii| ≤ 1−
√
k

n
− t
]
≤ 2e−c1nt

2

, (6.61)

where c1 is a numerical constant (independent of (n, k)).
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Now define Yi := eTi V D̃V
T z = ziviD̃vi + vTi D̃

∑
l 6=i zlvl. Then note that,

|Y1| ≤ ‖D̃‖2|z1|+ vT1 D̃
∑
l 6=i

zlvl

=
ρ

ρ+ mini=1,...,k |Dii|2
|z1|+ F (v1)

where we defined F (v1) : = vT1 D̃
∑

l 6=i zlvl and v1 is uniformly distributed over a
sphere in k−1 dimensions and hence EF (v1) = 0. Observe that F is a Lipschitz map
satisfying

|F (v1)− F (v′1)| ≤ ‖D̃‖∞
√∑

l 6=i

|z2
l |v1 − v′1‖2

=
ρ

ρ+ mini |Dii|2
|
√
k − 1‖z‖∞‖v1 − v′1‖2

Applying concentration of measure for Lipschitz functions on the sphere (e.g., see
[84]) the function F (v1) we get that for all t > 0 we have,

P
[
F (v1) > t‖z‖∞

]
≤ 2e

−c4(k−1) t2(
ρ

ρ+mini |Dii|2

)2

(k−1)

. (6.62)

Conditioning on the high probability event {mini |Dii|2 ≤ n
2
} and then applying the

tail bound (6.61) yields

P
[
F (v1) > t‖z‖∞

]
≤ 2 exp

(
−c4

n2t2

ρ2

)
+ 2e

−c2 nt
2

ρ2

≤ 4e
−c5 n

2t2

ρ2 . (6.63)

Combining the pieces in (6.63) and (6.62), we take a union bound over 2k coordinates,

P
[
min
j∈S
|Yj| > t‖z‖∞

]
≤ 2k 3 exp

(
−c5n

2t2/ρ2
)

≤ 2k 3 exp
(
−c5nt

2
)
.

where the final line follows from our choice ρ =
√
n. Finally setting t = ε we obtain

the statement in (6.59) and hence complete the proof.

6.12.1.0.6 Proof of the bound (6.58b): A similar calculation yields

Aj =
1

ρ
XT
ScMXSw

∗
S = XT

Sc

(
ρIn +XSX

T
S

)−1
Xsw

∗
S ,
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for each j ∈ Sc. Defining the event E = {λmax

(
XS

)
/ ≤ 2

√
n}, standard bounds in

random matrix theory [44] imply that P[Ec] ≤ 2e−c2n. Conditioned on E , we have

‖
(
ρIn +XSX

T
S

)−1
Xsw

∗
S‖2 ≤

2

ρ
‖w∗S‖2,

so that the variable Aj is conditionally Gaussian with variance at most 4
ρ2‖w∗S‖2

2.
Consequently, we have

P[|Aj| ≥ t] ≤ P[|Aj| ≥ t | E ] + P[Ec] = 2e
− ρ2t2

32‖w∗
S
‖22 + 2e−c2 ≤ c1e

−c2 ρ2t2

‖w∗
S
‖22 ,

Setting t = wmin

8
, ρ =

√
n and taking union bound over all d− k indices in Sc yields

the claim (6.58b).

6.12.2 Proof of Theorem 13

The vector ũ ∈ {0, 1}d consists of independent Bernoulli trials, and we have
E[
∑d

j=1 ũj] ≤ k. Consequently, by the Chernoff bound for Bernoulli sums, we have

P
[ d∑
j=1

ũj ≥ (1 + δ)k
]
≤ c1e

−c2kδ2

.

as claimed.

It remains to establish the high-probability bound on the optimal value. As shown
previously, the Boolean problem admits the saddle point representation

P ∗ = min
u∈{0,1}d,

∑d
i=1 ui≤k

{
max
α∈Rn

−1

ρ
αTXD(u)XTα− ‖α‖2

2 − 2αTy︸ ︷︷ ︸
G(u)

}
. (6.64)

Since the optimal value is non-negative, the optimal dual parameter α ∈ Rn must
have its `2-norm bounded as ‖α‖2 ≤ 2‖y‖2 ≤ 2. Using this fact, we have

G(û)−G(ũ) = max
‖α‖2≤2

{
− 1

ρ
αTXD(û)XTα− ‖α‖2

2 − 2αTy
}
− max
‖α‖2≤2

{
− 1

ρ
αTXD(ũ)XTα− ‖α‖2

2 − 2αTy
}

≤ max
‖α‖2≤2

{
− 1

ρ
αTX(D(û)−D(ũ))XTα

}
≤ 2

ρ
λmax

(
X(D(û)−D(ũ))XT

)
,

where λmax

(
·
)

denotes the maximum eigenvalue of a symmetric matrix.
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It remains to establish a high probability bound on this maximum eigenvalue.
Recall that R is the subset of indices associated with fractional elements of û, and
moreover that E[ũj] = ûj. Using these facts, we can write

X(D(ũ)−D(û))XT =
∑
j∈R

(
ũj − E[ũj]

)
XjX

T
j︸ ︷︷ ︸

Aj

where Xj ∈ Rn denotes the jth column of X. Since ‖Xj‖2 ≤ 1 by assumption
and ũj is Bernoulli, the matrix Aj has operator norm at most 1, and is zero mean.
Consequently, by the Ahlswede-Winter matrix bound [3, 109], we have

P
[
λmax

(∑
j∈R

Aj
)
≥ √rt

]
≤ 2 min{n, r}e−t2/16,

where r = |R| is the number of fractional components. Setting t2 = c log min{n, r}
for a sufficiently large constant c yields the claim.
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[30] P. Bühlmann and S. van de Geer, Statistics for high-dimensional data, ser.
Springer Series in Statistics. Springer, 2011.

[31] F. Bunea, Y. She, and M. Wegkamp, “Optimal selection of reduced rank esti-
mators of high-dimensional matrices,” vol. 39, no. 2, pp. 1282–1309, 2011.

[32] R. H. Byrd, G. M. Chin, M. Gillian, W. Neveitt, and J. Nocedal, “On the use of
stochastic Hessian information in optimization methods for machine learning,”
SIAM Journal on Optimization, vol. 21, no. 3, pp. 977–995, 2011.

[33] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-
Newton method for large-scale optimization,” arXiv preprint arXiv:1401.7020,
2014.

[34] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Info
Theory, vol. 51, no. 12, pp. 4203–4215, December 2005.

[35] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The convex
geometry of linear inverse problems,” Foundations of Computational Mathe-
matics, vol. 12, no. 6, pp. 805–849, 2012.

[36] S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM J. Sci. Computing, vol. 20, no. 1, pp. 33–61, 1998.

207



[37] K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M. W. Majoney, X. Meng, and
D. P. Woodruff, “The fast cauchy transform and faster robust linear regres-
sion,” in Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 2013, pp. 466–477.

[38] A. Cohen and A. Yeredor, “On the use of sparsity for recovering discrete proba-
bility distributions from their moments,” in Statistical Signal Processing Work-
shop (SSP), 2011 IEEE, 2011.

[39] T. Cover and J. Thomas, Elements of Information Theory. New York: John
Wiley and Sons, 1991.

[40] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines
(and other kernel based learning methods). Cambridge University Press, 2000.

[41] I. CVX Research, “CVX: Matlab software for disciplined convex programming,
version 2.0,” Aug. 2012.

[42] A. Dasgupta, R. Kumar, and T. Sarlós, “A sparse Johnson-Lindenstrauss trans-
form,” in Proceedings of the forty-second ACM symposium on Theory of com-
puting. ACM, 2010, pp. 341–350.

[43] A. d’Aspremont and L. E. Ghaoui, “Testing the nullspace property using
semidefinite programming,” Princeton, Tech. Rep., 2009.

[44] K. R. Davidson and S. J. Szarek, “Local operator theory, random matrices, and
Banach spaces,” in Handbook of Banach Spaces. Amsterdam, NL: Elsevier,
2001, vol. 1, pp. 317–336.
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