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Abstract

Continuous and Discrete Dynamics
For Online Learning and Convex Optimization

by
Walid Krichene

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
and the Designated Emphasis in
Communication, Computation and Statistics

University of California, Berkeley

Professor Alex M. Bayen, Chair

Online learning and convex optimization algorithms have become essential tools for solv-
ing problems in modern machine learning, statistics and engineering. Many algorithms for
online learning and convex optimization can be interpreted as a discretization of a continu-
ous time process, and studying the continuous time dynamics offers many advantages: the
analysis is often simpler and more elegant in continuous time, it provides insights and leads
to new interpretations of the discrete process, and streamlines the design of new algorithms,
obtained by deriving the dynamics in continuous time, then discretizing. In this thesis, we
apply this paradigm to two problems: the study of decision dynamics for online learning in
games, and the design and analysis of accelerated methods for convex optimization.

In the first part of the thesis, we study online learning dynamics for a class of games
called non-atomic convex potential games, which are used for example to model congestion
in transportation and communication networks. We make a connection between the discrete
Hedge algorithm for online learning, and an ODE on the simplex, known as the replicator
dynamics. We study the asymptotic properties of the ODE, then by discretizing the ODE
and using results from stochastic approximation theory, we derive a new class of online
learning algorithms with asymptotic convergence guarantees. We further give a more refined
analysis of these dynamics and their convergence rates. Then, using the Hedge algorithm
as a model of decision dynamics, we pose and study two related problems: the problem of
estimating the learning rates of the Hedge algorithm given observations on its sequence of
decisions, and the problem of optimal control under Hedge dynamics.

In the second part, we study first-order accelerated dynamics for constrained convex opti-
mization. We develop a method to design an ODE for the problem using an inverse Lyapunov
argument: we start from an energy function that encodes the constraints of the problem and
the desired convergence rate, then design an ODE tailored to that energy function. Then,
by carefully discretizing the ODE, we obtain a family of accelerated algorithms with opti-



mal rate of convergence. This results in a unified framework to derive and analyze most
known first-order methods, from gradient descent and mirror descent to their accelerated
versions. We give different interpretations of the ODE, inspired from physics and statistics.
In particular, we give an averaging interpretation of accelerated dynamics, and derive simple
sufficient conditions on the averaging scheme to guarantee a given rate of convergence. We
also develop an adaptive averaging heuristic that empirically speeds up the convergence, and
in many cases performs significantly better than popular heuristics such as restarting.



To my parents, Sami and Ibtisseme.
To my sister, Syrine.



Contents

Contents

[List of Figures|

[List of Algorithms|

(1 _Introduction|

(1.1  From continuous time ODEs to discrete time algorithms| . . . . . . . . . ..
(1.2 Online learning and games| . . . . . . . . . . ... ... ... ... ..
(1.3 Accelerated dynamics for convex optimization| . . . . . . .. . ... ... ..
(1.4 Bibliographic notes| . . . . . . . .. ...

I Online Learning Dynamics and Nonatomic Potential (Games|
2 Online Learning in Convex Potential Games|
RI Tntroduction] . . . . . . . . ...
2.2 Non atomic potential games and Nash equilibria . . . . . . . ... ... ...
[2.3  Congestion games| . . . . . . . . . . . ..
[2.4  The online learning model| . . . . . . . .. . ... ... ... ...
[2.5  Convergence of sublinear regret dynamics in the sense of Cesaro| . . . . . . .
2.6 The Hedge algorithm| . . . . . . .. .. ... ... ... ... ... .....
[3 Replicator dynamics in convex potential games|
[3.1  The replicator ODE as a continuous-time limit of the Hedge algorithm|
[3.2  Stationary points| . . . . . . ...
[3.3 Lyapunov tunctions and convergence to Nash equilibria] . . . . . . . . . . ..
[3.4  Linearizing the dynamics around stationary points/. . . . . . . . . . . . . ..
[3.5 Instability of non-Nash stationary points| . . . . . . . .. .. ... ... ...
[3.6  Exponential stability of Nash equilibriaf . . . . . . . ... .. ... ... ...
[3.7  Numerical example| . . . . . . ... oo
[4  Discretizing the Replicator Dynamics|

i

SOt =



iii

4.1 Euler discretization of the replicator ODE: the REP algorithm| . . . . . . . . 43

@.2  Results from the theory of stochastic approximation|. . . . . . . .. ... .. 48
[4.3 " The approximate replicator class (AREP | 51
M4 Convergence of AREP| . . . . . . . . . . .. ... ..., 52
[> Stochastic Mirror Descent Dynamics| 56
[p.1 Distributed Stochastic Mirror Descent (DSMD)| . . . .. ... ... ... .. 57
[5.2 A stochastic model of learning in nonatomic potential games| . . . . . . . . . 60
(5.3 Convergence in the sense of Cesaro| . . . . . . . . ... . .. ... .. .... 61
5.4 Convergence of heterogeneous DSMD| . . . . . . ... ... ... ... .... 62
[>.5 Convergence of homogeneous DSMD| . . . .. ... ... ... ... ..... 64
[>.6 Numerical examples|. . . . . . ... .. oo o 68
6 Estimation of Learning Dynamics: On Learning How Players Learn| 72
[6.1 Learning rate estimation in Hedge dynamics| . . . . . . . ... .. ... ... 73
[6.2  'The routing game web application|. . . . . . . ... ... ... ... ... .. 76
6.3 Experimental results . . . . . .. ... oo 80
[7  Optimal Control Under Hedge Dynamics 85
[[1 Problem formulationl . . . . ... ... ... ... ... ... 86
[7.2 A greedy method| . . . . . ... ..o 88
(7.3 'The adjoint method|. . . . . . . .. .. ... ... 89
[7.4  Optimal routing on the Pigou network| . . . . . .. ... . ... ... .... 92
[7.5 Numerical experiment on the Los Angeles highway network| . . . . . . . . .. 95
(7.6 Conclusion|. . . . . . . . . . 98

8 _Accelerated Mirror Descent in Continuous Timel 101
8.1 Introductionl . . . . . . . . . . 102
8.2 Nemirovski’s mirror descent and Nesterov’s accelerated methodl . . . . . . . 104
[8.3  Lyapunov design of the dynamics| . . . . . . .. ... ... ... ... ... . 108
[8.4  Existence, uniqueness and viability of the solution| . . . . . . . . .. .. ... 109
[8.5 Convergence rate] . . . . . . . . .. 113
[8.6  Averaging interpretation| . . . . . . .. ... 114
(8.7 Damped nonlinear oscillator interpretation| . . . . . . . . ... ... ... .. 115
[8.8  On extending the dynamics to non-differentiable objective functions| . . . . . 116

[9 Generalized and Adaptive Averaging] 123
[9.1  Accelerated mirror descent with generalized averaging/ . . . . . . . . . . . .. 123
9.2  Existence, uniqueness and viability of the solution| . . . . . . . . . ... ... 125

9.3 Convergence guarantees| . . . . . . . . . . . . ... 126




v

9.4  Energy of the system| . . . . . . . . .. ... oo 128
[9.5 Primal Representation| . . . . . . ... ... ... . 0000 129
[9.6 'The accelerated replicator dynamics|. . . . . . . . . .. ... ... ... ... 131
[9.7  Restarting the ODE in the strongly convex case| . . . . . . . . ... ... .. 133
[9.8 Adaptive averaging| . . . . . . . ... 135
(10 Discretizing the Accelerated Dynamics| 137
(10.1 Forward-backward Fuler discretizationl . . . . . ... .. ... ... ... .. 137
[10.2 Discrete-time accelerated mirror descent and adaptive averaging| . . . . . . . 140
{10.3 Consistency of the discretization|. . . . . . . . . . . .. ... ... ... ... 142
(10.4 Convergence guarantees| . . . . . . . . . . . . o v o 143
[10.5 Accelerated entropic descent| . . . . . . ... ..o 148
[10.6 Restarting in discrete time] . . . . . . . . . . ... . 148
(10.7 Numerical experiments| . . . . . . . . . .. .. ... oL 150
10.8 Conclusion|. . . . . . . . . . . 156
IIIIAppendices| 158
[A Results from convex analysis| 159
[A.1 Convex functions and convex conjugates . . . . . . . . . ... ... ..... 159
[A.2  Duality of subdifferentials| . . . . . .. ... ... ..o 000000 160
[A.3  Duality of strict convexity and differentiability| . . . . . . .. .. ... .. .. 161
[A.4 Strong convexity and smoothness| . . . . . . . ... ... Lo L. 161
(B Mirror Operators and Bregman divergences| 163
[B.1 Dual distance generating functions and the mirror operator Vo*[ . . . . . . . 163
[B.2 Bregman divergences| . . . . . . .. .. .. 165
[B.3  Mirror update and Bregman projection| . . . . . . . ... ... 169
[B.4 Entropy projection on the positive orthant| . . . . . . . ... ... ... ... 171
[B.5 Itakura-Saito divergence on the positive orthant| . . . . . . . ... .. .. .. 172
[B.6 Entropy projection on the simplex and the Hedge algorithm| . . . . . . . .. 173
[B.7 Csiszar potentials on the simplex{ . . . . . .. ... ... ... ... ..... 174
[B.8 Generalized entropy projection on the simplex and the smoothed KL divergence|l77
|C Efficient Bregman Pojections on the Simplex| 181
(C.1 Efficient approximate projection with Csiszar potentials|. . . . . . . . . . .. 182
(C.2  Efficient exact projection with exponential potentials| . . . . . . . . . .. .. 185
(C.3 A randomized pivot algorithm with expected linear time] . . . . . . . . . .. 187
[C.4  Numerical experiments| . . . . . .. ... ... ... ... L. 189

(Bibliography| 190




List of Figures

(1.1 Coupled sequential decision problems| . . . . . . . . ... ... .. ... .. ... 2
[3.1 Evolution of mass distributions and loss tunctions under replicator dynamics.|. . 41
[3.2  Solution trajectory of the replicator ODE in the simplex, and convergence to |
| Nash equilibria.| . . . . . . . . 41
4.1 A (0, T)-pseudo orbit for the flow & . . . . . ... ... ... ... L. 50
4.2 Routing game with two populations of players.|. . . . . . .. ... ... .. ... 54
4.3 Hedge dynamics in the routing game, and convergence to Nash equilibria.|. . . . 55
6.1 Mirror Descent iterationl . . . . . . . . . ... Lo 58
[>.2  Example routing game network, with a weakly convex Rosenthal potential.| . . . 68
[>.3 Convergence of heterogeneous DSMD dynamics| . . . . . .. .. ... ... ... 69
[b.4 Example routing game network, with a strongly convex Rosenthal potential| . . 70
5.5 Convergence of homogeneous DSMD dynamics in the strongly convex casef . . . 70
5.6 Distance to equilibrium Dyp (z*, 7)) . .. ... 71
[6.1 Architecture of the routing game web application| . . . . . . . . ... ... ... 7
6.2  Admin interfacel . . . . . . .. 78
6.3 Usernterfacel . . . . . . . . . . 79
[6.4 Network of the routing game experiment.|. . . . . . . . . . ... ... ... ... 80
[6.5 Distance to equilibrium in the routing game experiment|. . . . . . . . . . . ... 80
[6.6 Sample mass distributions.|. . . . . . .. ... 81
6.7 Estimation of mass distributions. . . . . . . ... ... o000 82
6.8 Average KL divergence between the prediction and actual distributions, as a |
| function of the prediction horizon| . . . . . . . . . . . . . ... L. 83
(6.9 Histogram of irrational updates in the routing game experiment|{ . . . . . . . .. 84
[7.1 Pigounetwork{. . . . . . . ... 92
[7.2  Control solutions on the Pigou network, computed using the greedy and the |
| adjoint method.| . . . . . . ... 94
[7.3 Profile of network delays, under the greedy and the adjoint solutions| . . . . .. 95
(7.4 Los Angeles highway network and its graph model| . . . . . . ... . ... ... 95




vi

7.5 Selected origins and destinations on the Los Angeles highway network| . . . . . . 96
7.6 Total delay J (2!, u!"), as a function of iteration numberd| . ... ... ... .. 97
BRI Mirror descent ODE] . . . . . . . ... . 106
(8.2 [llustration of the proof of viability| . . . . . . . .. ... ... ... . ... ... 112
[8.3 Damped nonlinear oscillator interpretation: Energy dissipation and eftect of the |
| parameter r.|. . . . .. L L 116
9.1 Accelerated mirror descent with generalized averaging, AMD,,,| . . . . ... .. 124
9.2 llustration of the role of the Hessian operator V**(Z(¢))| . . . . .. . .. . .. 132
[10.1 Accelerated mirror descent in discrete timel . . . . . . . .. ..o 141
[10.2 Accelerated mirror descent on the simplex, adaptive averaging, and restarting |
| heuristics) . . . . . . . 153
(10.3 Eftect of the parameter .| . . . . . . . . . . . ... oL 154
[10.4 Example with the solution on the relative boundary of the simplex.| . . . . . .. 154
[10.5 Adaptive averaging for accelerated mirror descent and cubic-regularized Newton |
Cmethodl . . . . o o 155
[B.1 Negative entropy function on the nonnegative orthant|. . . . . . . . . . ... .. 172
[B.2  Negative entropy tunction on the probability simplex and its conjugatel . . . . . 174
(B.3 Illustration of a Csiszar potential . . . . . . . ... ... ... ... ... .... 175
[B.4 Smoothed entropy| . . . . . ... 178
[B.5 Smoothness and strong convexity of the smoothed KL divergence| . . . . . . .. 178
(C.1 Run times of ExpProject and QuickExpProject on a synthetic example| . . . . . 189




vil

List of Algorithms

(1 Online learning problem with full feedback, on an action set A and with

sequence of losses (/7)) . . . ... 17
R Online learning in the nonatomic, convex potential game| . . . . . . . . . .. 19
3 Hedge algorithm with learning rates (n,).| . . . . . . ... ... ... .. ... 24
4 REP algorithm with learning rates (n:).|. . . . . . .. ... .. ... ... .. 44
5  Distributed Stochastic Mirror Descent (DSMD) with Bregman divergences
| Dy, and learning rates (77,(:)).| ........................... 60
|§ Distributed Hedge algorithm with learning rates (nét)_) ............ 74
[7 Greedy method for optimal control under Hedge dynamics| . . . . . . . . .. 88
(8 Adjoint method for optimal control under Hedge dynamics| . . . . . . . . .. 90
9 Accelerated mirror descent in discrete timel . . . . . .. ..o 142
(10 Accelerated mirror descent with adaptive averagingl . . . . . . . .. ... .. 143
(1T Accelerated mirror descent with restarting . . . . . . ... ... ... .. .. 149
[12  Mirror descent method with learning rates (1) and mirror operator Vy-| . . 170
M3 Primal form of the mirror descent method . . . . . . ... . ... ... ... 170
(14  Bisection method to approximate the Bregman projection with precision e[ . 183
(15  ExpProject: Sort based method to compute the Bregman projection with

| smoothed KL divergence Dyr, . . . . . . ... ... ... ... 186
[16  QuickExpProject: Randomized pivot based method to compute the Bregman
| projection with Dgy..| . . . . .. .. ... 188




viii

Acknowledgments

The five years of my graduate studies at Berkeley have been some of the happiest and most
intellectually gratifying years of my life, and this is due in large part to the professors and
friends I collaborated with during these years. There are too many people who had a positive
impact on my academic and personal life to list here, and I apologize in advance to anyone
whom I neglected to mention.

I must begin by thanking my Ph.D. advisors, Alex and Peter, for their guidance and
their support throughout the years. Alex has been an outstanding mentor and friend, and
he gave me a great deal of freedom in defining my research agenda and finding my own
interests. Without his encouragements, I would not have been able to work on such a
wide range of topics, from control theory and convex optimization to machine learning and
statistics. His vision kept me grounded and focused, and his patience and advice helped me
hone the different skills needed to navigate graduate school, from writing research papers
and giving talks, to teaching classes and organizing reading groups. I started working with
Peter during the third year of my Ph.D., after taking his phenomenal class on Learning in
Sequential Decision Problems. I have a great deal of admiration for Peter and his scientific
maturity, and the extent of his knowledge and technical ability is simply incredible. He has
been an unfailing source of inspiration, and I enjoyed every one of our discussions, which
never failed to give me new ideas to try. I felt immediately welcome in his research group,
and his reading group has given rise to some of the most fascinating discussions I have had
in the last few years.

Berkeley offered me a great environment to learn from the best, and do research alongside
the brightest professors and students in the field. And even though it might seem intimidating
to interact with the best and brightest, I always felt that my ideas were appreciated, even
as a starting Ph.D. student. There are many other faculty whom I interacted with, and
who had a great impact on my approach to research and teaching; it is their classes and
their teaching that maintained my sense of wonder and my desire to learn: Claire Tomlin,
Shankar Sastry and Murat Arcak, who taught the best control theory classes I ever took
and who made me feel appreciated in the control community; Laurent El Ghaoui, who was
extremely kind and helpful to me, and whose expertise in convex optimization is unmatched;
Satish Rao who taught one of the most fun classes I took during my graduate studies, and
who provided some very helpful pointers that were the starting point of much of my work on
online learning. I would also like to thank my mathematics professors, Michael Christ who
made me fall in love with topology and measure theory again, David Aldous for his amazing
probability theory class, and Nikhil Srivastava for some illuminating discussions on convex
analysis, and for being very kind to be on my dissertation committees, both for my M.A.
and Ph.D. theses.

I have also collaborated with some outstanding graduate students during my time at
Berkeley. I took all of my math classes with Roy, Jupiter and Max, who became some of
my dearest friends. I would not have enjoyed these classes nearly as much without them. I
will fondly remember the many weekends spent together going through notes and working



X

on homework problems. I will also miss our Rockafellar reading group with Roy and Dan,
who shared my excitement and passion for convex analysis. 1 also enjoyed working with
Max on learning on infinite action sets, and thank him for his dedication and his ability to
work through some intricate and subtle proofs. I have also supervised many undergraduate
researchers in the last few years, and I enjoyed collaborating with every one of them. I have
to thank Benjamin in particular, whose scientific maturity and mathematical insight were
quite impressive. His contributions appear in much of the first part of my thesis. I would
also like to thank Syrine for her outstanding work on stochastic optimization, and both Kiet
and Chedly for their meticulous work on the routing game web application.

I would like to thank my dear friends for sharing some great memories over the years:
Roy, Katie, Dan and Jerome for many fun board game nights, Sandra and Aaron for memo-
rable camping trips, Samy for fun tennis games and cooking experiments, Jupiter for sharing
his talent and passion for math, Marouen, Omar and Alan for being wonderful travel com-
panions.

Finally, I cannot thank my family enough for being there for me every step of the way,
and for believing in me. My parents, Sami and Ibtisseme, gave me their love and caring
and everything a child could hope for, and helped me develop and maintain my curiosity
and love for mathematics throughout the years, by helping me in school when I was young,
encouraging me to go to the math olympiads, and later to prépa school, and to pursue the
career that I truly wanted. It is their love and their encouragements that kept me going
during the difficult times. I also thank my sister, Syrine, for bringing me joy. Her optimism,
her curiosity and her kindness make her the best sister one could hope for. I am very proud
of her, and I love her dearly.



Chapter 1

Introduction

The most practical thing in the
world is a good theory.

H. von Helmholtz

1.1 From continuous time ODEs to discrete time
algorithms

Many discrete algorithms for online learning and convex optimization can be interpreted as
a discretization of a continuous-time dynamics. Perhaps the simplest and oldest example
is the gradient descent algorithm. If we seek to minimize a differentiable convex function
f on R", gradient descent can be written as a sequence of iterates (z®) satisfying z(+1) =
2® — 0,V f(x®), where 1, is a positive step size. This difference equation can be interpreted
as a discrete-time approximation of the ODE X (t) = —V f(X(t)), with discretization step
1;. While most algorithms are inherently discrete, studying the continuous-time process can
be useful for many reasons. The analysis is often simpler in continuous-time, and can benefit
from the well-established theory of differential equations and dynamical systems. It can
also provide intuition, and new insights into the discrete process, and can help guide the
design and analysis of new algorithms. For example, an important question in the analysis
of many discrete algorithms is the asymptotic behavior of the trajectories, and whether they
converge to a given set (this could be e.g. the set of minimizers of a convex function, or the
set of equilibria of a game). Convergence of solution trajectories is often simpler to prove
in continuous-time, and can be done for instance by exhibiting a Lyapunov function for the
invariant set, that is, a function that is non-increasing along solution trajectories, and that
is minimal on the invariant set. Once the convergence is established in continuous time,
one can then discretize the ODE, and attempt to prove convergence using a discrete-time
counterpart of the Lyapunov function. In this thesis, we explore some of these techniques
in the context of two classes of problems: online learning dynamics in games, studied in the
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first part of the thesis, and accelerated dynamics for convex optimization, studied in the
second part.

1.2 Online learning and games

Online learning theory studies sequential decision problems, in which a decision maker itera-
tively chooses an action and observes outcomes. This model of sequential decision is relevant
to many systems, from physical systems such as transportation networks and power networks
(the network users make decisions as new information becomes available), to online systems,
such as online advertising and auctions.

Many of these systems can be modeled as games, and one can study their Nash equi-
libria [95], which describe strategies for players such that no player has an incentive to
unilaterally deviate. However, the Nash equilibrium concept may not always offer a good
descriptive model of actual behavior of players. Besides the assumption of rationality, which
can be questioned [129], the Nash equilibrium usually assumes that players have a good
description of the game, of the other players, and of their utilities, which is not realistic for
many large-scale distributed systems.

One alternative model of player behavior is repeated play [92, 51, 90|, sometimes called
learning models [40] or adjustment models [54]. In such models, one assumes that each player
makes decisions iteratively (instead of playing a one-shot game), and uses the outcome of
each iteration to adjust their next decision. Formally, at every iteration ¢, player k£ makes a
decision :L‘,(f), then observes an outcome él(:) (e.g. a vector of losses of all the possible actions),
so from the perspective of each player, this is a sequential decision problem. These problems
are of course coupled through the outcomes, since ES) depends on x,(:) but also on x,(:,) for
k' # k. This is illustrated in Figure [1.1]

Environment
. . Other agents
learning algorithm outcome
.l'](:—i_l) =U (xg)7€](€t)) cht) = gk(xgt)7 s 7x§?)
Agent k

Figure 1.1: Coupled sequential decision problems. Each player faces an online learning
problem, and the decisions of the different players are coupled through their loss functions.

In such models, a natural question is whether the joint decision dynamics of the players
converge to some equilibrium set, for example to the Nash equilibrium of the game if it
were to be played as a one-shot game. This question has a long history in game theory
and mathematics, and dates back to the work of Hannan [57], who defined the regret,
and Blackwell [25] who defined approachability, and both concepts have become key in the
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design and analysis of online learning algorithms. For example, regret-based dynamics in
games have been studied in [5, 89], and by Hart and Mas-Colell, both in continuous [61]
and discrete time [60, [59, |58 62]. See also [40] and references therein. Regret is also
central in other classes of online learning problems, such as bandit problems [35, 34], and
online convex optimization [63, 126, [11]. Blackwell approachability has been used to study
learning in games, for example in [39], and many connections are made between regret and
approachability |1} [107].

Continuous-time dynamics have also been studied for several classes of games, see for
example [67] (135, 66| 123, 19|, in which different families of ODEs are used to describe the
time evolution of the decision dynamics of player populations. In [124], Sandholm studies
convergence for the class of potential games. He shows that dynamics which satisfy a positive
correlation condition with respect to the potential function of the game converge to the set of
stationary points of the vector field (usually, a superset of Nash equilibria). In [68], Hofbauer
and Sandholm study the convergence of a class of dynamics called excess payoff target
(EPT), for the class of stable games. In [51], Fox and Shamma extend these convergence
results to passive evolutionary dynamics, and give a dynamical systems interpretation. Some
approaches even generalize the class of dynamics and consider differential inclusions instead
of differential equations, see |21, [22].

Our contributions

In the first part of the thesis, we study learning dynamics in the class of nonatomic population
games that admit a convex potential (which will be formally defined in Chapter [2). This
class of games can be used to model the interaction of large populations of players, and have
a special structure due to the existence of the convex potential. This will allow us to apply
three different techniques to study learning dynamics:

1. First, we will analyze regret-based dynamics in Chapter 2]

2. Second, we study a continuous-time learning dynamics in Chapter [3| known as the
replicator dynamics, and study the asymptotic behavior of its solutions. Then building
on results from stochastic approximation theory [18], we show in Chapter 4| how the
replicator ODE can be discretized while preserving convergence. We call the resulting
algorithms approximate replicator (AREP).

3. Third, we use techniques from stochastic convex optimization, to analyze, in Chapter [5
the convergence properties of a class of dynamics based on the mirror descent method.

These convergence results are presented from the weakest to the strongest: Regret-based
dynamics have the weakest convergence guarantee, we show that the sequence of decisions
converges in the sense of Cesaro, i.e. that the weighted averages converge. For the approxi-
mate replicator dynamics, we show almost sure convergence. For mirror descent dynamics,
we derive explicit convergence rates.
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Hedge algorithm The Hedge algorithm will be central in our discussion. It is perhaps one
of the most well studied online learning algorithms, also known as the multiplicative weights
update [4] in the computer science literature, the exponentiated gradient algorithm [72]
or the entropic descent algorithm [15] in the optimization literature, as well as log-linear
learning [28, 91| in the economics and game theory literature. It is also known to be an
instance of the mirror descent family of methods due to Nemirovski and Yudin 98], which
we discuss in detail in Appendix [B]

Using the Hedge algorithm, we will see in particular that the connection between discrete
time and continuous time dynamics can be useful in both directions: In Chapter [3| we show
that the continuous-time replicator equation can be motivated as the continuous-time limit
of the Hedge algorithm. In Chapter [4] we show that by carefully discretizing the replicator
ODE, we can obtain a larger family of algorithms (which contains the Hedge algorithm),
while preserving convergence. This is achieved by ensuring that the discrete trajectory is
close, in a sense to be made precise in Chapter [} to the continuous solution trajectories of
the ODE. And since the latter are guaranteed to converge to the equilibrium set, we can
provide guarantees on the discrete process.

Routing games The routing game is a special case of a nonatomic population game, which
can be used to model congestion in many cyber physical systems in which non-cooperative
players compete for shared resources, such as transportation networks [16, |119] (the resources
being roads) and communication networks [106] (the resources being communication links).
Our study of nonatomic population games is motivated in particular by routing games, which
we will use in many of the numerical examples provided throughout the thesis.

Modeling decision dynamics Beyond the design and analysis of learning algorithms
and their convergence properties, we study the problem of modeling the decision dynamics
of players. As argued by Marden and Shamma in [92], online learning can be used not only
as a prescriptive tool, used to solve sequential decision problems, but also as a descriptive
tool, used to model the behavior of players. We explore the second point of view in Chapter[0]
and[7} First, we consider the problem of estimating the learning rates of a decision maker that
follows the Hedge algorithm. More precisely, we suppose that we can observe the sequence
of decisions that obey the Hedge dynamics, with unknown learning rates, and show how the
learning rates can be estimated. We consider the Hedge model in particular since it is both
an instance of the AREP class studied in Chapter [ and the mirror descent class studied in
Chapter

To apply this method on field data, we implement a web application that simulates a
routing game. Players can use the application to participate in a simultaneous, online version
of the game, and make sequential decisions on how to allocate their traffic on a shared
network (without directly interacting or observing the decisions of other players). We use
this experiment to study some qualitative aspects of decision dynamics, and test our learning
rate estimation approach. The results indicate that the Hedge algorithm can be descriptive
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of actual decision dynamics. In Chapter |7} we study the related problem of optimal control of
a population of online learners who follow the Hedge dynamics. Assuming we have estimated
the learning rates, we pose the problem of optimally controlling the game in order to minimize
a given objective. Due to the presence of the non-linear Hedge constraints, this problem
is non-convex, but we propose a method for finding a local minimizer, using the adjoint
method from optimal control theory [48,110]. We derive the adjoint equations associated to
the Hedge dynamics and apply the approach to routing game examples: both a toy network
to illustrate the qualitative behavior of the method, and a model of a real highway network
to show the potential impact of this approach.

1.3 Accelerated dynamics for convex optimization

Convex optimization is an essential tool in many engineering, statistics, machine learning
and economics problems, see for example [30] for a brief overview of some of these applica-
tions. First-order methods have seen a resurgence of interest due to the significant increase
in both size and dimensionality of the data sets typically encountered in machine learning
and other applications, which makes higher-order methods computationally intractable in
most cases |103} 69, 33]. Many of these algorithms can be interpreted as a discretization
of a continuous time ODE. For example, the mirror descent family for constrained convex
optimization was originally derived by Nemirovski and Yudin [98] as a discretization of an
ODE that was tailored to a specific Lyapunov function. Continuous-time dynamics for opti-
mization have been studied for a long time, e.g. [32, (64} |26], and proving convergence results
in continuous time often uses simple and elegant Lyapunov arguments. By discretizing the
continuous dynamics, one can then design discrete algorithms for convex optimization, and
to prove convergence in discrete time, one can attempt to use a discrete counterpart of the
original Lyapunov function. Although it is hard to guarantee that the discretization will pre-
serve the Lyapunov function, many such approaches have been successful. In particular, Su
et al. show in [130] that Nesterov’s accelerated method [102] can be obtained as a discretiza-
tion of a a second-order ODE, for which they exhibit a Lyapunov function, and Attouch et
al. [6] further study the properties of the its solutions trajectories and its convergence rates.
This continuous-time interpretation also allowed the design of restarting heuristics, which
empirically improve the speed of convergence, such as |105].

Our contributions

In the second part of this thesis, we study dynamics for constrained convex optimization, in
continuous and discrete time. We start by reviewing the continuous-time interpretations of
two important optimization methods: Nesterov’s accelerated method, proposed by Nesterov
in [102], and the mirror descent method, proposed by Nemirovski and Yudin [98]. We show
in Chapter [§ that these two ideas can be combined to derive a general family of accelerated
mirror descent dynamics for constrained optimization, using a simple Lyapunov argument.
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This family generalizes the ODE studied by [6l |130], which only applies to unconstrained
convex problems.

We show that the solution trajectories of the ODE converge to the set of minimizers of
the objective function at a quadratic rate. We also show that the dynamics can be naturally
described as a coupling of a dual variable that accumulates gradients with weights 7(t), and
a primal variable obtained as the weighted average of the mirrored trajectory, using weights
w(t). This interpretation motivates the study of generalized averaging schemes in Chapter |§|,
in which we give sufficient conditions on the weight functions n and w to achieve a desired
rate in continuous time. We also propose an adaptive averaging heuristic which adaptively
computes the weights (instead of using a predefined weight function of time), essentially by
reducing weights on portions of the trajectory that make the least progress, and show that
this heuristic preserves the Lyapunov function of the accelerated dynamics, making it the
first such heuristic with convergence guarantees.

In Chapter we propose a discretization of the accelerated mirror descent ODE which
has a quadratic convergence rate, and prove that a discrete version of the adaptive averaging
heuristic also preserves the quadratic rate. We show several numerical examples on simplex-
constrained problems to illustrate the qualitative behavior of these methods. In particular,
we compare adaptive averaging to the restarting heuristics developed in [105, 130], and show
that it compares favorably to restarting, with significant improvements in many cases.

1.4 Bibliographic notes

Most of the work reported in this thesis is adapted from previously published research.
Chapters and 4| on the replicator dynamics and approximate replicator algorithms are
based on [79, |80, 44]. Chapter |5 on stochastic mirror descent dynamics is based on [81,
76]. Chapter [6]on learning rate estimation is based on [84], Chapter [ on accelerated mirror
descent is based on [77], and portions of Chapter |§| and on generalized and adaptive
averaging are based on [78]. Finally, part of Appendix [Bfis base on [77] and Appendix |C|is
based on [82].



Part 1

Online Learning Dynamics and
Nonatomic Potential Games



Chapter 2

Online Learning in Convex Potential
Games

2.1 Introduction

Nonatomic potential games are games that model the interaction of populations of players,
and such that the set of players in each population is endowed with a measurable set structure
with a nonatomic measure [124} [123]. One of the most well-studied families of nonatomic
potential games are congestion games [73], [104], which motivate our results. These are non-
cooperative games that model the interaction of players who share resources. Each player
makes a decision on which resources to utilize. The individual decisions of players result in
a resource allocation at the population scale. Resources which are highly utilized become
congested, and the corresponding players incur higher losses. For example, the resources
can be edges in a transportation or a communication network, and each player has a source
vertex and a destination vertex on the graph, and needs to send traffic between the two.
Each player chooses a path, and the joint decision of all players determines the congestion
on each edge. The more a given edge is utilized, the more congested it is, creating delays for
those players using that edge.

Congestion games and their equilibria have been studied in the transportation literature
since the seminal work of Wardrop [134] and Beckman [16], and more recently in computer
science, see [119] for a comprehensive introduction and related work. The set of Nash
equilibria of the congestion game is known to coincide with the set of minimizers of a convex
potential function. This was proved by Rosenthal for the atomic congestion game in [118],
and later generalized. Thus computing the set of Nash equilibria can be done efficiently if
one is given the exact formulation of the game, including the congestion functions of every
resource, and the description of all populations. A natural generalization of the congestion
game is given by convex potential games, in which the Rosenthal potential is generalized to
any convex potential function.

Characterizing the Nash equilibria of potential games, and congestion games in particular,
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gives useful insights, such as the loss of efficiency due to selfishness of players. One popular
measure of inefficiency is the price of anarchy, introduced by Koutsoupias and Papadimitriou
in [75], and studied in the case of congestion games by Roughgarden et al. in [122] |121].
Many approaches have been proposed since to alleviate the inefficiency of equilibria, either
through incentivization [106] or by controlling a subset of the population [120].

Online learning dynamics While characterizing Nash equilibria of the game gives many
insights, it does not model how players arrive to the equilibrium. Studying the game in a
repeated setting can help answer this question. Additionally, most realistic scenarios do not
correspond to a one-shot game, but rather a repeated setting in which each player faces a
sequential decision problem, observes outcomes, and may update their strategies given the
previous outcomes. This motivates the study of the game and the population dynamics in
an online learning framework.

Arguably, a good model for learning should be distributed (no centralization between
players), and should have realistic information requirements. For example in congestion
games, one should not expect the players to have an accurate model of congestion of each
resource. Players should be able to learn simply by observing the outcomes of their previous
actions, and potentially those of other players. No-regret learning is of particular interest
here, as many regret-minimizing algorithms are easy to implement by individual players,
and only require the player losses to be revealed, see for example [40] and the references
therein. The Hedge algorithm (also known as the multiplicative weights algorithm [4], or the
exponentiated gradient method [72]) is a famous example of regret-minimizing algorithms.
It was applied to learning in games by Freund and Schapire in [53]. The Hedge algorithm will
be central in our discussion, as it will motivate the study of the continuous-time replicator
equation in the next chapter.

Organization of Part I In this chapter, we start by formally defining nonatomic potential
games and congestion games in Section 2.2l We give some preliminary results on the char-
acterization of Nash equilibria as the set of solutions to a convex problem. We then define
the online learning model in Section 2.4, We give a first convergence result in Section [2.5}
we show in Theorem [2] that if the regret is sublinear for all populations, then the sequence of
mass distributions converges, in the sense of Cesaro, to the set of Nash equilibria. We also
show that as a consequence, a dense subsequence converges to the set of Nash equilibria. In
Section we review the Hedge algorithm for online learning, and some of its properties.
While our learning model is inherently discrete, it can be helpful to study continuous-
time dynamics for learning, and to view discrete learning algorithms as a discretization of
the continuous-time dynamics. In Chapter [3| we show that by taking the continuous-time
limit of the Hedge algorithm, we obtain an ODE known as the replicator equation. We
study properties of its stationary points, and show that all Nash equilibria of the game are
stationary points (but the converse is not true in general), and show in Theorem [3| that
solution trajectories converge to the set of Nash equilibria and derive an explicit rate of



CHAPTER 2. ONLINE LEARNING IN CONVEX POTENTIAL GAMES 10

convergence. We further study stability of stationary points by linearizing the dynamics: we
show in Theorem [4] that all stable stationary points are Nash equilibria, and in Theorem [5]
that under a non-degeneracy assumption, all Nash equilibria are exponentially stable.

In Chapter [4] we go back to discrete algorithms for online learning, and study a family of
algorithms that can be obtained as a discretization of the replicator ODE. We first propose
a deterministic discretization and prove that it guarantees sublinear regret in Theorem [6]
Then using results from stochastic approximation theory, we show in Theorem [§| that a class
of approximate replicator algorithms converges almost surely to the set of Nash equilibria.

While this guarantees convergence of a large family of algorithms,; the stochastic approx-
imation analysis does not provide convergence rates. In Chapter [5, we consider a different
family of learning dynamics, obtained by applying the stochastic mirror descent method to
the problem of minimizing the potential function of the game. In particular, we propose a
heterogeneous formulation of the dynamics, in which different populations can use different
algorithms and learning rates, and show that under mild assumptions on their learning rates,
the sequence of their decisions is guaranteed to converge.

This defines a model of distributed learning, which enjoys several convergence guarantees.
In Chapters [6] and [7, we propose and explore the approach of using mirror descent as a
model of decision dynamics, in problems in which a coordinator interacts with a population
of online learners. In Chapter [6] we propose a simple method to estimate the unknown
learning rates of a decision maker who follows the Hedge dynamics, assuming that we can
observe the sequence of decisions generated by the algorithm. We test this method using a
web application, in which we simulate the routing game, and study the qualitative behavior of
decision makers. We conclude the first part in Chapter |7, where we study a control problem,
in which a coordinator can choose the decisions of a subset of the population, and the rest
of the population is assumed to follow Hedge dynamics. This defines an optimal control
problem under non-linear dynamics, which we propose to solve using different methods. In
particular, we derive the adjoint equations of the Hedge dynamics, and show how the method
can be applied to optimal routing on a transportation network.

2.2 Non atomic potential games and Nash equilibria

A nonatomic population game is given by a set S of players, endowed with a structure of
measure space, (S,%,m), where ¥ is a o-algebra of measurable subsets, and m is a finite
Lebesgue measure. The measure is non-atomic, in the sense that single-player sets are null-
sets for m. The player set is partitioned into K populations, S = &§; U --- U Sk, such that
the total mass m(Sy) is non-zero for all k. Each population is characterized by an action
set, Apg.

The joint actions of players in population k& can be represented by an action profile
Ay S — Ayg, that specifies the action of each player. The function s — Ag(s) is assumed
to be S-measurable (A, is equipped with the counting measure). Given a joint action profile
A = (Ay,...,Ak), a more concise, macroscopic description of the joint action of players is
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given by the mass distribution, i.e. the proportion of players choosing action a € Ay, which

we denote by
1

Thao = ——— 1a,(s)=adm(s). 2.1
o = 5 L, T @)

so that x, € A, the probability simplex over the action set

AN ={z eRY¥: Yz, =1}

a€ Ay

Note that z; depends on Ay, but we keep this dependence implicit to simplify the notation.
We denote by # = (x1,...,2x) € A5 x --- x ASK the product mass distribution of all
populations (which we also refer to as the joint mass distribution), and we will denote
A = A4 x ... x A4 the product of simplices.

The joint mass distribution x determines the losses of all players as follows: for all k, we
are given a vector valued function

Ek:A%R“Ak,

such that fy ,(z) is the loss of action a € Ay, incurred by any player in population k& who
chooses action a. Finally, we denote by ¢(z) the tuple ¢(z) = (¢1(x), ..., lx(x)).

Definition 1. A nonatomic game with action sets Ay and losses {y is a convexr potential
game if there exists a convexr function f, differentiable on A with Lipschitz gradient, and
positive reals ki, ..., Kk, such that for all x € A and all k,

Vo f(x) = kile(x), (2.2)
where V, f(x) denotes the gradient of f with respect to xy.

In other words, the loss functions of the game coincide (up to scaling by k) with the
gradient field of a convex function. In the remainder of the chapter, we will study such
games. First, we define and characterize the Nash equilibria of nonatomic convex potential
games.

Nash equilibria

Definition 2 (Nash equilibrium of a nonatomic convex potential game).

A product distribution x € A is a Nash equilibrium of the game if for all k, and all a € A,
such that xp, > 0, b o(x) > lpo(x) for all o' € Ay. The set of Nash equilibria will be
denoted by N

Definition [2] implies that, for a population Sk, all actions with non-zero mass have equal
losses, and actions with zero mass have greater losses. Therefore almost all players incur the
same loss.
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In finite player games, a Nash equilibrium is defined to be an action profile A : S — A
such that no player has an incentive to unilaterally deviate [95], that is, no player can strictly
decrease her loss by unilaterally changing her action. We show that this condition (referred
to as the Nash condition) holds for almost all players if and only if the mass distribution z
induced by A is a Nash equilibrium in the sense of Definition

Proposition 1. A distribution x is a Nash equilibrium if and only if for any joint action
profile A which induces the distribution x, almost all players have no incentive to unilaterally
deviate from A.

Proof. First, we observe that, given an action profile A = (Ay, ..., Ax), when a single player
s changes her strategy, this does not affect the distribution x. This follows from the definition
of the distribution, z , = #Sk) f S La(s)=adm(s). Changing the action profile A on a null-set
{s} does not affect the integral.

Now, assume that almost all players have no incentive to unilaterally deviate. That is,
for all k, for almost all s € Sy,

Ya' € Ak, fk,a/(l‘/) > EA(S) (I), (23)

where 2’ is the distribution obtained when s unilaterally changes her action from A(s)
to a/. By the previous observation, 2’ = x. As a consequence, condition ([2.3)) becomes:
for almost all s, and for all @', fq(x) > lpai)(z). Therefore, integrating over the set

{s € 8 : A(s) = a}, we have for all k,
Crar (2)Zq > lpo(T) T a0, Va'

which implies that z is a Nash equilibrium in the sense of Definition 2] Conversely, if A
is an action profile, inducing distribution x, such that the Nash condition does not hold
for a set of players with positive measure, then there exists ky and a subset S C S, with
m(S) > 0, such that every player in S can strictly decrease her loss by changing her action.
Let S, = {s € 5: A(s) = a}, then S is the disjoint union S = U,e 4, Sa, and there exists ag
such that m(S,,) > 0. Therefore

m({s € Sk, : A(s) =ap})
m(sko)

Lko,ao —

Let s € S,,. Since s can strictly decrease her loss by unilaterally changing her action, there
exists a; such that lp, 4, () < liy a(s)(2) = liga0(x). But since x4, q, > 0,  is not a Nash
equilibrium. O

Next, we give a characterization of Nash equilibria in terms of the minimizers of the
potential f.

Theorem 1. N is the set of minimizers of f on the product of simplices A. It is a non-empty
convexr compact set. We denote by f* the value of f on N
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Proof. First, observe that Definition [2|is equivalent to the following condition:
reN &V e A (l(x),x), —x) >0, Vk

1
& V' € A, — (Vo f(x),x), —x) >0, Vk
k

e V' e A(Vf(x), 2 —z) >0,

which corresponds to the first-order optimality conditions for minimizing the function f over
A, see for example Section 3.1.3 in [30]. O

This characterization of Nash equilibria is useful since it allows one to compute an equi-
librium by solving a convex optimization problem. It will also be useful in studying online
learning dynamics both in continuous and discrete time.

Mixed strategies

The Nash equilibria we have described so far are pure strategy equilibria, since each player
s deterministically plays a single action A(s). We now extend the model to allow mixed
strategies. That is, the action of a player s is a random variable A(s) with distribution 7(s).

We show that when players use mixed strategies, provided they randomize independently,
the resulting Nash equilibria are, in fact, the same as those given in Definition 2| The key
observation is that under independent randomization, the resulting mass distributions xy
are random variables with zero variance, thus they are essentially deterministic.

To formalize the probabilistic setting, let (€2, F,P) be a probability space. A mixed
strategy profile is given by the functions Ay : S — (2 — Ag), assumed 3 x F-measurable.
For all s € §; and a € Ay, let 1 4(s) = P[A(s) = a]. Similarly to the deterministic case,
the mixed strategy profile A determines the distributions x;, which are, in this case, random
variables, given by z;, = m fSk La(s)=adm(s).

Nevertheless, assuming players randomize independently, the mass distribution is almost
surely equal to its expectation, as stated in the following proposition. The assumption of
independent randomization is a reasonable one, since players are non-cooperative.

Proposition 2. Under independent randomization,

Vk, almost surely, x, = E[xy] = %/ mr(s)dm(s). (2.4)
miog Sk

Proof. Fix k and let a € A;. Since (s,w) +— 14()=a(w) is a non-negative bounded X x F-
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measurable function, we can apply Tonelli’s theorem and write:

E[xk,a]:E{m({Sk) /Sk La(s)=adm(s )]
=55 L B[] dm(s)

k Sk
1

= T o(8)dm(s).
Similarly,

m(Sy)? var [wy,.] = E (/ La(sy=adm(s ))2 — (/ T.a(s)dm(s )>2
[sk[skElA(s J=a;A(s")=adm(s)dm(s /Sk/Skaa T.a(8)dm(s)dm(s))

= / [A(s) = a; A(s") = a] = Tra(s)Tra(s') d(m x m)(s, s").
S XSk

3

3

Then observing that the diagonal D = {(s,s): s € S} is an (m x m)-nullset (this follows
for example from Proposition 2517T in [52]), we can restrict the integral to the set S, x S\
D, on which P[A(s) = a; A(s") = s] = Tpa(s)Tke(s"), by the independent randomization
assumption. This proves that var [zy,] = 0. Therefore z, = E 2} ,] almost surely. O

2.3 Congestion games

In this section, we give an example of a nonatomic population game with a convex potential.
To fully specify the game, we simply need to define the action set and the loss function of
each population.

In the congestion game, a finite set R of resources is shared by the players. For each
population k, the action set Ay, is given by a collection of non-empty subsets of R. Given a
mass distribution z € A, we define, for all r € R, the resource load to be the total mass of

players utilizing 7:
K
= Z m(Sk) Z Tk,a- (25)
k=1 acA:r€a

Note that the vector of resource loads ¢ is a linear function of the distribution z, and can
be written as

¢(r) = Mx
where M = ( m(S1) M ‘ ‘ m(Sk) Mg ), and for each k, M, is an incidence matrix

given by
1 ifr€a,
Mk,(r,a) - {

0 otherwise.
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The resource loads determine the losses of all players as follows: the loss associated to a
resource 1 is given by ¢,.(¢,.(x)), where ¢, are given congestion functions, assumed to satisfy
the following:

Assumption 1. The congestion functions ¢, are non-negative, non-decreasing, Lipschitz-
continuous functions.

Then the loss of an action a € A;, is the sum of the losses of resources in a, i.e.

lra(2) =) e(dn(2)) = Y er((Ma),) = (M Te(Mz))ya, (2.6)

rea rea

where M is the incidence matrix M = ( M;| ... |Mg ), and ¢(¢) is the vector (¢, (¢;)), cx-

A motivating example: the routing game

A routing game is a special case of a congestion game, studied for example in [119]. The game
has an underlying graph structure, G = (V, £), with vertex set V and edge set £ C V x V. In
this case, the resource set is equal to the edge set, R = £, and the actions are paths on the
graph. Routing games are used to model congestion on transportation or communication
networks. Each population Sy is characterized by a common origin vertex o € V and a
common destination vertex dp € V. In a transportation setting, players represent drivers
traveling from o, to di; in a communication setting, players send packets from o to di. The
action set Ay is a set of paths connecting o, to di. In other words, each player chooses a path
connecting his or her source and destination vertices. The mass of players zj, can then be
thought of as the total flow on path a, and the resource load ¢, (z) is the edge flow. Finally,
the congestion functions ¢, — ¢.(¢,) determine the delay (or latency) incurred by each
player. The assumption that the delay function is increasing simply describes the intuitive
fact that the more an edge is utilized, the more congested it becomes, and the more latency
the players who use that edge incur. Finally, by Definition [2, a Nash equilibrium corresponds
to a distribution z such that for each population Sy, all paths with non-zero mass have equal
losses, and paths with zero mass have higher losses.

The Rosenthal potential function

We now exhibit a convex potential function for the congestion game. Consider the function

( _x)r'
fRosenthal () :Z/OM ¢, (u)du, (2.7)

reR

defined on the product of simplices A = A4 x ... x AAx_~ fRosenthal jg called the Rosenthal
potential function, and was introduced in [118] for the congestion game with finitely many
players, and later generalized to the nonatomic case. It can be viewed as the composition of
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the functiong: ¢ € R} — 3 5 fo(m ¢r(u)du and the linear function o — Mx. Since for all r,
¢ is, by assumption, non-negative, g is differentiable, non-negative and Vg(¢) = (¢, (¢;)), -
And since ¢, are non-decreasing, g is convex. Therefore fRosenthal i convex as the composition
of a convex and a linear function.

A simple application of the chain rule gives V fRosenthal(z:) — N[ Te(Mz). Thus,

vk, mGfRosemhal(x) = m(Sp) M, " c(Mz) = m(Si) (),

where the last equality follows from Equation . Therefore fResenthal g 54 potential func-
tion for the congestion game, in the sense of Definition , with k; = m(Sk). By Theorem ,
the set of Nash equilibria of the congestion game (also called Wardrop equilibria in the trans-
portation literature, in reference to [134]), coincides with the set of minimizers of fRosenthal
over A.

We also observe that when the congestion functions ¢, are strictly increasing, the function
g is strictly convex, and the set of minimizers has the following simple structure: N = {z €
A : Mx = ¢*}, where ¢* is the unique solution to the problem

minimize  g(¢)
subject to ¢ = Mux
x €A,

where uniqueness follows by strict convexity of g. Beyond computing Nash equilibria, we
seek to study learning dynamics, which model how players arrive at the set N. This is
discussed in the next section.

2.4 The online learning model

We propose a model of repeated play, in which each player s € S faces an online learning
problem with full feedback, and applies an online learning algorithm, as defined below.

Online learning problem with full feedback

Given an action set A, the online learning problem with loss sequence (£{7)) consists in
choosing, at each iteration 7, a probability distribution 7(” € A4, sampling an action
A ~ 7(7) then observing the loss vector £(7). The loss incurred at iteration 7 is then ES()T),
and the expected loss is <€(7), 7T(T)>.

Definition 3 (Online learning algorithm). Given an online learning problem with full feed-
back, an online learning algorithm is a sequence of functions indexed by T, that we refer to
as the update rules, that map the current distribution and the current loss vector to the next
distribution

UMD AAXRA = A4
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Note that this definition can be generalized, by making the update rule depend on the
entire history of losses and previous distributions, but we refrain from making this gen-
eralization to simplify the discussion and the notation. The online learning framework is
summarized in Algorithm (1] below.

Algorithm 1 Online learning problem with full feedback, on an action set A and with
sequence of losses (£(7),

. Input: Initial distribution 7(®) € A4 and learning algorithm (U(").
: for each iteration 7 € N do

The player draws an action from A ~ (7).

A vector of losses ¢() is revealed to the player, who incurs loss ¢
The player updates

—_

()
A"

GUl Wy

AT — 0 () )y,

6: end for

A natural measure of performance of online learning algorithms is given by the regret,
which we define next. Since the game is played for infinitely many iterations, we may
assume that the losses are discounted over time. This is a common technique in infinite-
horizon optimal control for example, and can be motivated from an economic perspective by
considering that losses are devalued over time.

Let (7,)ren denote a sequence of discount factors (which can be constant, in which case
the losses are not discounted), and which satisfies the following assumption.

Assumption 2. The sequence of discount factors (7:)ren is assumed to be positive non-
increasing, and non-summable.

A note on monotonicity of the discount factors A similar definition of discounted
regret is used for example by Cesa-Bianchi and Lugosi in Section 3.2 of [40]. However, in
their definition, the sequence of discount factors is increasing. This can be motivated by the
following argument: present observations may provide better information than past, stale
observations. While this argument is accurate in many applications, it does not serve our
purpose of convergence of population strategies. In our discussion, the standing assumption
is that discount factors are non-increasing.

On iteration 7, the player draws A ~ 7(7) and incurs loss 7,
discounted loss up to iteration 7', is then defined to be

6(7—)

(- The cumulative

T
L0 = 30,0, 28)
=0
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which is a random variable, since the action A is random. Its expectation is

T T
=3 E [Ei(m} =3 7 (7, e
7=0 7=0

Similarly, we define the cumulative discounted loss for a fixed action a € Aj,

L ="y, (2.9)

We can now define the discounted regret.

Definition 4 (Regret) Consz’der an online learning algorithm on an action set A, with
sequence of losses (£7)), and let (7(7) be the sequence of decisions generated by the algorithm.
Then the discounted regret up to iteration T', is the random variable

RD =max ) (07 — ),
acA Z a0 (2.10)

= L") — min 2™
acA

Its expectation is given by

(7)
B{R &%ZV )

The algorithm U™ is said to have sublinear discounted regret if, for any sequence of losses
(0, and any initial strategy 7,

R
lim Q
T=e0 Z‘r 077'

where x denotes the positive part of x. If the condition holds for E [R(T)} , we say that the
algorithm has sublinear discounted regret in expectation.

= 0 almost surely. (2.11)

We observe that, in the definition of the regret, one can replace the minimum over
the set A by a minimum over the simplex A4, minge4 .,ZI(T) = min caa <7r,.,2” (T)>, since
the minimizers of a bounded linear function on a polytope lie on the set of its extremal
points. Therefore, the discounted regret compares the performance of the online learning
algorithm to the best constant strategy in hindsight. If the algorithm has sublinear regret, its
average performance is, asymptotically, as good as the performance of any constant strategy,
regardless of the sequence of losses (£(7)).
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Online learning in the nonatomic game

We assume that each player s € S, faces the online learning problem on Ay, with losses
given by £(2("), and follows an online learning algorithm (US(T)). In other words, each
player solves a sequential decision problem, and the problems are coupled through the mass
distribution 2(™), which is determined by the joint decision of all players.

The decision of all players can be represented, as defined above, by functions W,(f) S —

A% such that for each player s € Sy, W](CT)(S> is a probability distribution over A, and

players randomize independently by drawing an action A\ (s) from 7.”(s). As discussed

in Section this induces, at the level of each population S, a mass distribution :E,(;), a

random variable with zero variance and expectation given by the integral (2.4)),

93](67) _ m(gk)/s mi(s)dm(s), a.s.

These, in turn, determine losses £ (z(™), which are revealed to all players in population Sy,
and this marks the end of iteration 7. Players can then use this information to update their
strategies using the update rule of their learning algorithm. The online learning framework
is summarized in Algorithm

Algorithm 2 Online learning in the nonatomic, convex potential game
1: Input: For every player s € Ay, an initial mixed strategy W,(CO)(S) € A% and an online
learning algorithm (UL™).
2: for each iteration 7 € N do
3:  For all k, each player s € A independently draws an action from 7'(',(;—)(8). This
determines the mass distribution (7).
The vector of losses £ (x(7)) is revealed to players in Sj.

5:  Players update their mixed strategies:

T (s) = UD () (s), b (7).

6: end for

Population-wide regret

Let L) (s) and R™)(s) denote the discounted cumulative loss and regret of player s, respec-
tively. In order to analyze the population dynamics, we define a population-wide cumulative
discounted loss L;T), and discounted regret R,(gT) as follows:

1
L = —/ LD (s)dm(s), 2.12
O = sy L BTGt 212
1
R = / RD)(s)d = 1 — min 2. 2.13
= s [, B ) = 17— min £, (213)
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Since L(T)(s) is random, LECT) is also a random variable. However, it is, in fact, almost surely
equal to its expectation. Indeed, recalling that x,(ji is the proportion of players who chose

action a at iteration 7, we can write

L - Z AP / {ia(e ) (s)

aeA {s€8):A() (s)=a}
T
=27 D walhale
7=0 acAyg
Z <£L’k ,Ek ))> .

Thus, assuming players randomize independently, z(7 is almost surely deterministic by
Proposition , and so is L,(CT). The same holds for R,ET)

Next, we show that if the individual regrets are sublinear in expectation, then the popu-
lation regrets are sublinear. This relies on the following observation: By Definition (1] of the
potential game, the losses coincide with a gradient which is assumed to be Lipschitz. Thus
the losses are continuous functions on the compact set A, thus bounded. Let p > 0 such
that for all k, all a € Ay and all z € A, ¢, 4(x) € [0, p]. Then it is straightforward to show
the following.

L(T)(s)
Zf:o YT

Proposition 4. If almost every player s € Sy applies an online learning algorithm with
sublinear regret in expectation, then the population-wide regret R,ST) 18 also sublinear.

Proposition 3. For all k and all s € S,

Proof. By the previous observation, we have, almost surely,

RD —E [R,QT)] - @ / E [RD(s)] dm(s),

where the second equality follows from Tonelli’s theorem. Taking the positive part and using
Jensen’s inequality, we have

1 [ () 1 1 T
— R } < E [RD(s)]], dm(s).
Zfzo Y k T m(Sk) S ZZ:OPY [ [ H+
. [E[rTG)]] iy L
By assumption, T—Fy* converges to 0 for all s, and by Proposition [3|, it is bounded

uniformly in s. Thus the result follows by applying the dominated convergence theorem. [J

In the next section, we provide a first convergence guarantee of the sequence of mass
distributions, when the population regret is sublinear.
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2.5 Convergence of sublinear regret dynamics in the
sense of Cesaro

As discussed in Proposition [4] if almost every player applies an algorithm with sublinear
discounted regret in expectation, then the population-wide discounted regret is sublinear
(almost surely). We now show that under these conditions, the sequence of distributions
(z(7) converges in the sense of Cesaro. That is, > vz /> __. 7, converges to the set
of Nash equilibria. We also show that we have convergence of a dense subsequence, under
certain conditions on the discount sequence (v, ). First, we give some definitions.

Definition 5 (Convergence in the sense of Cesaro). Fiz a sequence of positive weights
(Yr)ren. A sequence (u7) of elements of a mormed vector space (F,|| - ||) converges to
u € F in the sense of Cesdaro with respect to (7y,) if

li ZTGNZTST VT,U’(T)
1m =U

T'—00 ZTGN:TgT Yr

We write u(™ (ii) U.

The Stolz-Cesaro theorem states that if (u(™), converges to u, then it converges in the
sense of Cesaro with respect to any non-summable sequence (7)., see for example [94].
The converse is not true in general. However, if a sequence converges absolutely in the

sense of Cesaro, i.e. [ul™ — ul O, 0, then we can show that a dense subsequence of
(u(™)), converges to u. To prove this, we first show that absolute Cesaro convergence implies
statistical convergence, in the sense defined below.

Definition 6 (Statistical convergence). Fiz a sequence of positive weights (y;),. A sequence
(u))en of elements of a normed vector space (F,||-||) converges to u € F statistically with
respect to () if for all € > 0, the set of indices . = {1 € N: ||u(™ — u|| > €} has zero
density with respect to (v;). The density of a subset of integers T C N, with respect to (7,),
1s defined to be the limit, if it exists

. ZTEIZTST ,}/’T
lim =—————.
T—=o0 ZTGNZTST Vr

Lemma 1. If (u7)), converges to u absolutely in the sense of Cesdro with respect to (7)),
then it converges to u statistically with respect to (7).

Proof. Let € > 0. We have for all T" € N,

ZTEZEZ T Vr€ < ZTGN:TST fYTHU(T) - u”

0< S
ZTEN: <<T Vr ZTENZTST Vr

Y

which converges to 0 since (u(™), converges to u absolutely in the sense of Cesaro. Therefore
7. has zero density for all e. O]



CHAPTER 2. ONLINE LEARNING IN CONVEX POTENTIAL GAMES 22

We can now show convergence of a dense subsequence.

Proposition 5. If (u(7)),cy converges to u absolutely in the sense of Cesaro with respect to
(7+), then there exists a subset of indices T C N of density one, such that the subsequence
(u) e converges to u.

Proof. By Lemma , for all € > 0, the set Z. = {7 € N: ||u{” —u]| > ¢} has zero density. We
will construct a set Z C N of zero density, such that the subsequence (u,),enz converges.

For all k € N*, let pp(T) = > .7, . r<p Vs Since Zp¢ converges to 0 as T' — oo,
107

T€EN: 7<T T

there exists Ty, > 0 such that for all T' > Ty, % < % Without loss of generality, we
T7EN: 7<T IT

can assume that (7;)ren- is increasing. Now, let Z = J, o (I% N {Tk, ..., Tpy1 — 1}). Then
we have for all k € N*, ZTn{0,...,Tpy1 — 1} = (Ulel';) NA{0,...,Tkr1 — 1}. But since

7, CZy C - CZi, we have ZTNA0, ..., Tpyq — 1} CI;.ﬂ{O,...,TkH—l}, thus for all T
2 k k
such that T, <T' < Tj11, we have

Z’TEI: <T Vr < ZTGI%: T=T T _ Pk (T) S

D ren: <Vt > ren: <17 V7 > ren: r<T VT
which proves that Z has zero density.

Let 7 =N\ Z. We have that 7 has density one, and it remains to prove that the sub-
sequence (u()),c7 converges to u. Since 7 has density one, it has infinitely many elements,
and for all k, there exists S, € T such that S, > T),. For all 7 € T with 7 > S}, there exists
k" > k such that Ty < 7 < Tjryq. Since 7 ¢ T and Ty < 7 < Tpry1, we must have 7 ¢ Iﬁ?

L
k./

Y

=

therefore ||u(™ — ul| < & < 1. This proves that (u{™),e7 converges to w. O

We now present the main result of this section, which concerns the convergence of a
subsequence of population distributions (z(7) to the set A" of Nash equilibria. We say that
(™) converges to N if d(x(™, N') — 0, where d(x, N') = inf,en ||z — V|-

Theorem 2. Consider a congestion game with discount factors (7,), satisfying Assump-
tion @ Assume that for oll k € {1,..., K}, population k has sublinear discounted regret.
Then the sequence of distributions (x(7)), converges to the set of Nash equilibria in the sense
of Cesaro with respect to (7,). Furthermore, there exists a dense subsequence (x;).e7 which
converges to N.

To prove the theorem, we will use the following fact:

Lemma 2. A sequence (V7)) in A converges to N only if (f(v\™)) converges to f*, the
value of f on N.

Proof. Indeed, suppose by contradiction that f(v(™) — f* but v(” A N. Then there
would exist € > 0 and a subsequence (7)., T C N such that d(v”,N') > eforall 7 € T.
Since A is compact, we can extract a further subsequence (™). which converges to some
v ¢ N. But by continuity of f, (f(v(7)),c7+ converges to f(v) > f*, a contradiction. O
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Proof of Theorem[3. Consider the potential function f. By convexity of f and the expres-
sion (2.2) of its gradient, we have for all 7 and for all z € A:

f@D) = fo) < (Vf(T),2" —z) = Zlik <fk —xka>,

then taking the weighted sum up to iteration T,

3 |30 () - (Y )

i~ 27

T

> (f(@) = fa)

7=0

MNIIM

e
Il

1

<> K R,ET),

Mx

i
1L

(T)

where for the last inequality, we use the fact that <93k, Z, @

> > mingeq, £, - In particular,

when z is a Nash equilibrium, by Theorem [1} f(z) = min caa; y...xnax f(x) = f*, thus

ZT 0'77—|f(
ZTZO'.YT Zﬁk T 077'

Since the population-wide regret R,(CT) is assumed to be sublinear for all k, we have | f(z(7) —

f*| —> 0. By Prop051t10n there exists 7 C N of density one, such that (f(z(™)),;er
converges to f*. And it follows that (2(™).c1 converges to N'. This proves the second part
of the theorem. To prove the first part, we observe that, by convexity of f,

ST <>) ST o f@™) ST (faD) = )
<t < = f + ,
< ST o ST o ST o

> cpyral™

and the upper bound converges to f*. Therefore < S

> converges to . O
T

2.6 The Hedge algorithm

We now present the Hedge algorithm, one example of online learning algorithms with sub-
linear regret. It is also known as the multiplicative weights algorithm [4], and as the expo-
nentiated gradient descent [72] or the entropic mirror descent algorithm |15 in the convex
optimization literature. It is also studied in the economics and game theory literature and
is usually referred to as log-linear learning [28 91]. We will use the Hedge algorithm to
motivate the study of the continuous time replicator equation in the next chapter.
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Definition 7 (Hedge algorithm). Consider an online learning problem on an action set
A with loss functions ((7). The Hedge algorithm with initial distribution 7© € A4 and
learning rates (1;)rcx is an online learning algorithm (U™) such that the T-th update function
15 given by

7T(T+1) — U(T) (71-(7—)’ 6(7—)) X (ﬂ-((zT) exp (—777_627—))) (2].4)

acA

Algorithm 3 Hedge algorithm with learning rates (1;).

1: Input: Initial distribution 7(® € A4,
2: for each iteration 7 € N do
3. Draw an action A ~ 7(7),
4:  Observe a vector of losses /(™) incur loss ZS()T).
5. Update
(T (WC(LT) exp (—nTK((;)))aeA
6: end for

Intuitively, the Hedge algorithm updates the distribution by computing, at each iteration,
a set of action weights, then normalizing the vector of weights. The weight of an action a
is obtained by multiplying its probability at the previous iteration m(f), by a term which
is exponentially decreasing in ¢;’, the loss of action a. Thus, the higher the loss of a at
iteration 7, the lower the probability of selecting a at the next iteration. The parameter 7,
can be interpreted as a learning rate. As n, — 0, 707"V tends to 7(7), and as n, — oo, 7(7+1)
puts all probability mass on arg min,c 4 &(f). The Hedge algorithm is discussed in more detail
in Appendix B} it is shown in Section to be an instance of the mirror descent method.

Remark 1. The sequence of distributions given by the Hedge algorithm also satisfies

7 <7TC(LO) exp — Z ntﬁgt)> (2.15)
=0

acA

This follows from the update equation (2.14)) and a simple induction on 7. In particular,
when 7, = ~,, the term ) | ntégt) coincides with the cumulative discounted loss .Z.”
defined in . This motivates using the discount factors ~, as learning rates. We discuss
this in the next proposition.

Proposition 6. Consider an online learning problem with a sequence of discount factors
(Vr)ren satisfying Assumption@ and suppose that the losses ({(7)) are in [0, p|, uniformly in
7. Then the Hedge algorithm with learning rates 1, = “/77 satisfies the following regret bound:

for any sequence of losses ((7)) and any initial strategy =,

T
E[R™)] < —plogmih, + g >
=0
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0 : 0
where ﬂfni)n = MiNgeq ¥,

Proof. Given an initial strategy (¥, define € : R* — R, u + log (ZaeA ¥ exp(— ua/p)>.

Recalling the expression of the cumulative action loss L = Yo %&(1 , we have for all
T>0:

7 exp (—fam / p)

acA Za’GA €xXp (_D%a(/T)/p

= log <Z 71—((17—4_1) exXp (_77+1£a<x(7—+1))/p))

L) — (L) = log

) exp (=1 l7 0 /p)

acA
T+1)) 72
T 1
< —Vri1 Z Ta Sk + T8+
acA

The last inequality follows from Hoeffding’s lemma, since 0 < o) /p < 1. Summing over
Te{-1,...,T — 1}, we have for all a:
5(7 ) T

(L) L) <=3 S A LY

7=0 acA T:0

where £(£(D) = £(0) = 0. By monotonicity of the log function, we have for all ay € A,
log(ly exp(—Za ' /p)) < &(LD), thus

(T) T

W <ge™) < Z%Zw Z%Q--

7=0 a€A T:O

Rearranging, we have for all a € A

T
Yoy w2 < log T+ p Z g

=0 acA

and we obtain the desired inequality by maximizing both sides over ag € A. O

The previous proposition provides an upper-bound on the expected regret of the Hedge
algorithm, of the form

Ll CL2N SN (0) 1 n P Y o<t V2
ZTST Vr B o ZTST VT 8 ZTST VT

gfq 7w = 0, this proves that the
<t

discounted regret is sub-linear. This also provides a bound on the convergence rate. For

In particular, if the discount factors (7,) satisfy limz_,q
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example, if v, = %, then the upper-bound is O <@), which converges to zero as T' — o0,
albeit slowly. A better bound can be obtained for sequences of discount factors which are

not square-summable, for example, taking v, ~ 10%, the upper-bound is O <\ / %)

We now have one example of an online learning algorithm with sublinear discounted
regret. In the next chapter, we will study a continuous-time limit of the Hedge algorithm,
and show that this results in an ODE, and study its stationary points, their stability, and
their relationship to the set of Nash equilibria of the game.
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Chapter 3

Replicator dynamics in convex
potential games

The replicator dynamics is a continuous-time ODE that describes the evolution of a proba-
bility distribution, and that has been used to model the dynamics of populations of players
in evolutionary game theory [67, (135, |66]. It has a long list of applications in biological and
ecological systems, see [128] for a survey, and has also been studied in the context of viability
theory [8], since it provides an elementary example of viability on the probability simplex.
We first show that the replicator ODE can be obtained as a continuous-time limit of
the Hedge learning algorithm applied to the potential game defined in the previous chapter.
Then we study the properties of its solution trajectories and its stationary points, and
exhibit, in Section [3.3] several Lyapunov functions for different invariant sets. In particular,
we prove in Theorem (3| that the solutions converge to the set of Nash equilibria of the game,
and give a rate of convergence. Then, by studying the spectrum of the linearized system
around stationary points, we show that any stationary point that is not a Nash equilibrium is
unstable (Theorem [4]), and under a strict monotonicity assumption, that Nash equilibria are
exponentially stable (Theorem . We illustrate these results on a congestion game example.
In the next chapter, we will go back to studying discrete-time learning algorithms, by
discretizing the solution trajectories of the replicator ODE. In particular, we will use the
properties of continuous-time solutions derived in this chapter, together with results from
stochastic approximation theory, to prove convergence of the discretized dynamics.

3.1 The replicator ODE as a continuous-time limit of
the Hedge algorithm

To motivate the study of the replicator dynamics from an online learning point of view,
we first derive the continuous-time replicator dynamics as a limit of the discrete Hedge
dynamics, as discussed below. Consider a nonatomic game with a convex potential f as in
Definition (1, and suppose that in each population Sy, all players start from the same initial
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distribution 7T,(€O) € A% and apply the Hedge algorithm with the same learning rates (1,).

As a result, the sequence of distributions (:v,(:)) satisfies the Hedge update rule (2.14)). That
is,

(7—+1) (T) —77731@ a(m(T))
Ik,a X xk,ae .

Now suppose the existence of an underlying C' function Xj(¢) defined on R, and suppose
that x,(f) corresponds to a discretization of this continuous trajectory, at times 7, 7 € N,
such that the time steps are given by a decreasing, vanishing, non-summable sequence (e, ),
ie. T, 1 —T, =€, and m,(;) = Xi(T;). Then we have for all k£ and all a € Ay, using Landau
notation:

( ) 6_777'216,04(55(7—))
= .’L' T
S A
a r Vka
) 1 —nlq(a) + o(n,)

“ I —n- Za’EAk xl(cﬁf()z’gk,a’ (I(T)) + 0(777)
= Xpa(TH) [1+ 17 (X (T2)), Xi(T2)) = 0elia(X(T,))] + 0(nr).

Thus, rearranging,

Fllet) = Soll) () (X)), X0(E2) — X)) + 01,

In particular, if we take the discretization time steps €, to be equal to the sequence of
learning rates 7)., the expression simplifies, and taking the limit as 7, — 0, we obtain the
following ODE system:

k, Va € A, Xia(t) = Xia(t) (G(X (1)), Xi(t)) = lra(X(2)))

X(0) e A (3.1)

Replicator {

Here ¢, : A — Rﬁ’“ coincides with the gradient of the potential, by Equation (2.2)).

This ODE is known as the replicator ODE, and is a common tool in evolutionary game
theory [135]. It has also been studied to model dynamics of populations in routing games,
see for example [49] and Chapter I11.29 in [104].

We will assume that the initial condition X (0) is taken in the relative interior of the
product of simplices,

A={reAM x .. x A% Vk Vae Ay, xp, > 0}

We require the initial distribution to have positive probability mass on all actions for the
following reason: whenever Xy ,(0) = 0, any solution trajectory will have X} ,(¢) = 0 identi-
cally. It is impossible for such trajectories to converge to the set of Nash equilibria N if the
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support of equilibria in N contains the action a. In other words, the replicator dynamics
cannot expand the support of the initial distribution, therefore we require that the initial
distribution be supported everywhere.
Equation can be written concisely as X (t) = F(X(t)), where F is a vector field
given by
F:A—H

T = Fio(®) = 24,0 ((G(2), 2) — Cra()).
Here, A is the product of simplices, and H is the product H = HA x --- x HAX, where

HA = {vk e R4 Z Vo = O}

a€Ag

is the hyperplane parallel to the simplex A4*. Indeed, we have for all k and all z;, € A%,

Y Fral@) =Y wra({lu(@), 1) — lea)

ac€ Ay a€Ay
= <€k($),l‘k> Z Tha — Z gk,a(x)xk@
a€A acAy
=0.

This ensures that the derivatives remain in the direction of the simplex, and will be used to
prove that the solution trajectory remains in the simplex.

Existence, uniqueness, and viability of the solution

Proposition 7. The ODE ({3.1) has a unique mazimal (i.e. defined on a maximal interval)
C' solution X (t) which remains in A and is defined on all of R, .

Proof. First, since V f is assumed to be Lipschitz continuous, so is the vector field F'. Thus
we have existence and uniqueness of a maximal C* solution by the Cauchy-Lipschitz theorem
(e.g. Theorem 2.5 in [132]).

To show that the solution remains in the relative interior of A, we observe that for all ¢

and for all k,
> Xialt) =) Fra(X(1) =0,

ac Ay a€Ag

since we observed that Fj, maps to Hy. Therefore, > Xj q(t) is constant and equal to 1
(since the initial point is in the simplex). To show that Xj ,(¢) > 0 for all ¢ in the solution
domain, assume by contradiction that there exists ¢y > 0 and ag € A, such that X, (t9) = 0.
Since the solution trajectories are continuous, we can assume, without loss of generality, that
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to is the infimum of all such times (thus for all ¢ < ¢y, X,,(t) > 0). Now consider the new
system given by

Xio = Xpa <<€k(X(t)), Xk> . ek,a(f()) Va # ag
X;@’a(to) = X, (to) Ya # ag

and X, (t) is constant equal to 0. Any solution of the new system, defined on (to — 9, %], is

also a solution of Equation (3.1]). Since X (t) = X(¢y), we have X = X by uniqueness of
the solution. This leads to a contradiction since by assumption, for all ¢ < ¢y, X, () > 0
but X,, () = 0.

This proves that X remains in A. Furthermore, since A is compact, we have by Theo-
rem 2.4 in [71] that the solution is defined on R, (otherwise it would eventually leave any
compact set). O

3.2 Stationary points

We now identify stationary points of the dynamics, i.e. points x € A such that F(x) = 0.
The set of all such stationary points is denoted RN .

Proposition 8. A product distribution x € A is a stationary point of the ODE (3.1) if
and only if for all k, the losses (yo(2),a € support(zy)) are equal. Furthermore, RN is
compact, and the potential function f takes finitely many values on RN .

Proof. From Equation (3.1]), we have

Fro(@) =0 w4 =0 or lq(x) = (), z1)
& Va € support(xy), lpq(z) = (Up(x), k), (3.2)

which proves the first part of the claim. To prove the second part, we observe that for any
stationary point zf € RN if we let Az be the support of xz, then the condition is
equivalent to the Nash equilibrium Definition [2| for the modified game played on the action
sets .AL. Since Nash equilibria are the minimizers of the potential f by Theorem |1} we have

P e NT= argmin f(x),
meAJ{x---XAJ}(

where AL is the set of distributions with support contained in AL. The set of minimizers N
is compact. Since there are finitely many possible supports, we have that RN is compact
as the finite union of the compact sets N7, and f takes finitely many values on RN/ . O

In particular, any Nash equilibrium satisfies this assumption, and is a stationary point
for the replicator dynamics. However, a stationary point is not necessarily a Nash equilib-
rium, since one may have a stationary point with zy ., = 0 and ¢y, (x) strictly lower than

(C(x), zp)-



CHAPTER 3. REPLICATOR DYNAMICS IN CONVEX POTENTIAL GAMES 31

A stationary point ' € RN given by Proposition |§] is also called restricted Nash equi-
librium (hence the notation RN), see e.g. |[49], since it is a Nash equilibrium for the game
if the action set is restricted to the support of 7.

3.3 Lyapunov functions and convergence to Nash
equilibria

In this section, we exhibit several Lyapunov functions for the invariant sets RA  and N, and
show that the solution trajectories converge to N, with an explicit convergence rate.

Lyapunov function

Given an invariant set I' for the ODE, we say that a differentiable function V' : A — R is
a Lyapunov function for I'; in reference to Aleksandr Mikhailovich Lyapunov [88], if along
solution trajectories X (t) of the ODE, V(X (t)) is constant on I', and decreasing outside of
I'. The time derivative of V(X (t)) is given by

d

V(X (1) = (VV(X(0), X (1)) = (VV(X (1), F(X (1)),

thus V' is a Lyapunov function for I' if and only if
(VV(x),F(z))=0 VYxel
(VV(z),F(z)) <0 VxgTl.

We start by showing that the potential function f is a Lyapunov function for the set of
stationary points RN

Proposition 9. The convex potential function f is a Lyapunov function for the set of sta-
tionary points RN under the replicator ODE.

Proof. Recall that by Equation (2.2]), we have that V,, f(z) = kilk(z). Taking the time
derivative of the Lyapunov function along the solution trajectory, we have

< rxm) = (V). Xm)

=33 Vi (X0 Xialt) (X (0), Xi() — bial X (1))

k=1 ac Ay
= > e [ 0), X0 — (B (0), Xu(0)] <0, 33)

where each term of the sum is non-positive by Jensen’s inequality, and equals zero if and
only if for all k, ¢x ,(X(t)) is constant on the support of X (¢). This condition is exactly the
condition of Proposition [§| characterizing stationary points. O]
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This proves that the solution trajectories of the replicator ODE converge to the set of its
stationary points. In fact, we can prove convergence to the set of Nash equilibria (a subset
of stationary points), using a second Lyapunov function defined as follows. Let z* € N be
a Nash equilibrium, and consider the function

K
VKL (LE) = Z K/kDKL ($Za xk)a (34)
k=1
where Dgrp, (2}, xx) is the Kullback-Leibler divergence, defined as follows

x‘k
Dxp(z*,z) = g z, In x—a
acA @

Note that along solution trajectories of the system, the function Vi, (X (t)) is finite for all ¢
since by Proposition [7} the solution remains in the relative interior of the simplex.

Proposition 10. Vi, is a Lyapunov function for the set of Nash equilibria N under the
replicator ODE.

Proof. Taking the time derivative of Dgy, along the solution trajectory, we have

; . Xpa(t)
7Dk (X0 (1) = - > ‘”mXZ,a(t)

acAyg

== 2 (X)), Xi(t) = lea(X (1))

a€Ay

= — (L(Xk (1)), Xi (1)) + (Ce(X (1)), 2}) -

Then, by Equation (2.2)), we have that V,,_f(z) = kil(z), thus

d

aVKL(X(t)) = % ; ki Dicr, (2, Xk (t))

= (Vf(X(#)), 2" = X (1))
< 1= FX(2), (3.5)

where the last inequality is by convexity of f. To conclude, we simply recall that the set of
Nash equilibria coincides with the set of minimizers of the convex potential f by Theorem T,
thus for all z € N, (Vf(z),2* —z) = 0 by first-order optimality, and for all z ¢ N,
(Vf(x),a* —x) < f*— f(z) <0, which concludes the proof. O

Next, by carefully combining the two Lyapunov functions f and Vkp,, we exhibit a time-
varying Lyapunov function, which will allow us to prove an explicit convergence rate. Con-
sider the function

Vi, t) == t(f(z) = ) + Viw(2), (3.6)
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and let
V(t) =V (X(t),t).

Since the set of Nash equilibria coincides with the set of minimizers of f on A, it suffices by
Lemma[2] in order to prove convergence of the solution to AV, to show that f(X (¢)) converges
to f*, the minimum of f on A.

Theorem 3. The unique solution X (t) of the replicator ODE ({3.1) satisfies, for allt > 0,

In particular, X (t) converges to the set of Nash equilibria N .
Proof. Using the bounds (3.3]) and (3.5 on the time-derivative of Vi, and f, we have

d . d d
EV(t) = F(X(0) - 17 + 12 FX () + 2V (X () <0

Therefore, V(t) is a non-increasing function of ¢. Finally,

. t V(0
rx) - < Y A0
since the KL divergence is non-negative, and V is non-increasing. [

The Lyapunov function used in this proof is a special case of the Lyapunov function
studied in Chapter [§] which we use to prove convergence of the mirror descent ODE. We will
further study the replicator ODE in Chapter [9]in the second part of the thesis, and show, in
particular, that it is an instance of the mirror descent ODE, and that it can be accelerated
by averaging (so that solution trajectories converge faster to the set of minimizers of the
potential).

In the remainder of the chapter, we will further study the stability of the stationary points
for a single population. In particular, we show that all stable stationary points are Nash
equilibria, then under an additional monotonicity assumption, we show that Nash equilibria
are, in fact, exponentially stable (a stronger result than Theorem .

3.4 Linearizing the dynamics around stationary
points

We now assume that K = 1, and we omit the subscripts k& to simplify notation. We also
assume that the potential function is twice differentiable, i.e. that the loss function ¢ = kV f
is differentiable. To study stability of the stationary points, we derive the eigenvalues & of the
Jacobian of the vector field at stationary points. Note that the vector field is continuously
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differentiable by assumption on f, so the Jacobian exists and is continuous. Define, for

T €A, B
Ux) = (l(z),z).

Then, we can rewrite the vector field F' as follows

F:A—Hy

x> —diag((x))z + zl(x) (3.7)

where diag : R4 — RA*4 is the operator which maps a vector to the diagonal matrix whose
diagonal elements are given by the the vector entries. Observing that ¢(z) = 1} diag(¢(z))x,
where 14 is a vector in R whose entries are all equal to one, we can write

F(r) = — diag(¢(x))x + 21 diag(¢(x))x
— [I4 — 21}] diag(¢(z))z
= —U(x)L(z)x (3.8)

where

U(z) =14 — 21}
L(x) = diag(((x))

are A x A matrices. This matrix form of F' will be useful to derive the linearized system.

As observed in the previous section, F is defined on A# and has values in Hu, the
hyperplane orthogonal to the unit vector 14. But F' can also be viewed as a function from
R4 to itself. We first derive the Jacobian of F viewed as function from R4 to R4, denoted
VF(x), and then consider its restriction to # to obtain & as the eigenvalues of the restriction
VF (l‘)m

Lemma 3. The Jacobian of F' is given by
VF(z) = ()[4 — V(z)diag(z)Vl(x) — ¥(z)L(x). (3.9)

Proof. Let DF(x) be the differential of F' at x, and let e, be a vector of the canonical basis.
Then DF(x)(e,) is the directional derivative of F' in the direction of e,. From the matrix
form of F' given in Equation (3.8)), and using the product rule of differentials, we have

DF(z)(ea) = =DV (x)(ea) L(z)x — W(2) DL(z)(ea)r — W(z)L(x)eq
= o1 L(2)r — ¥(z) diag(Vi(z)eqa)r — ¥(x)L(z)eq
= e.l(z) "2 — V(2) diag(z)Vl(2)e, — V() L(z)

: (3.10)
= (Uz) L4 — () diag(2) VL(x) — V(2)L(2)) €a

T)e,
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where we used the product rule in the first equality, we used the expression of the following
differentials in the second equality

DU (z)(ey) = —ealy
DL(x)(e,) = diag(Ve(z)e,),
and the fact that diag(u)v = diag(v)u in the third equality. This proves the claim. O

Now that we have the expression of the Jacobian, we are ready to prove the first stability
result.

3.5 Instability of non-Nash stationary points

Theorem 4. If x is a stationary point of system (3.1)) but not a Nash equilibrium, then x
s unstable.

Proof. Let x be a stationary point of ODE . Let A* be the support of z and A® =
A\ A*. Without loss of generality, we assume that in the vector representation of z, the
support corresponds to the first elements. Finally, for a vector v € R4, we write v* as a
shorthand for (vy)eeq~ and v° as a shorthand for (v,).c40. Finally, we write V., and V, the
gradients taken along x* and z°, respectively. Then we can calculate the different terms in
the expression (3.9) of the Jacobian. First, by simple algebraic manipulation,

U(z) = (IS‘ ]3*) - (%) (1. 1%)

(Y () —xrl),
=L o0 Ie )

o~ (45°1 ) (£58) $£1)

_ <diag(m*)v*£*(x) diag(x*)voé*(x))
0 0 ’

and

Thus, taking the product, we have

U (z) diag(z)Ve(z) = (‘1’*(1’*> diagéx*)%é*(x) U (2*) diagéx*)voé*(x)) |

Finally,
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where we used the fact that for a stationary point z, the losses are equal on the support of
x (Proposition , so that diag(¢*(x)) = €(x) 4.
Combining these terms in the expression of the Jacobian given in Lemma [3| we obtain

VF(x)=0z)]4 — V(x)diag(x)Vl(z) — ¥(z)L(x)
_ (—\I/*(x*) diag(z*)V.0*(z) + l(x)x*1 ). —U*(z*) diag(a*)Vol* () + ZE*€0<1’)T)
0 0(x)1 4o — diag(€®(x)).
(3.11)
Thus VF(z) is an upper block-triangular matrix of the form

VF(z) = (‘81 g)

with

A = {(2)2*1 ] — U*(2*) diag(z*) V.05 (z)

B = {(z)1 4o — diag(¢°(z))

C = (2*0°(x)" — U*(2*) diag(z*) Vo * ().

The stability of z is determined by the restriction of VF(z) to H4. Let a € H 4 and

write o = (ZQ). Then 1).a* +1}.a° = 0. Then we have

)6 5

B *) diag(z*)V.l* (z)a* + £(x)2*1 j.a* + Ca®
N Ba®
(=Y (@) diag(a*) VLl (z)a* — ((x)2*1 jea® + Ca®
N Ba®
(=Y (x d1ag IVl (z) —l(z)x* L) + C (o
N B a®

90

where we used the fact that 1}.a* = —1],a° in the third equality, and defined

A = —U*(z*) diag(z*)V..0* (2)
C=—l(x)z*1" + C.

Then the restriction of VF(z) to H.4 coincides with the restriction of VF(z) to H, where

VF(z) = (’3 g)
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The benefit of the latter formulation is that the range of VF(z) is a subset of H 4, since

1\ VF(z)

~ (1L 1%) —U* (%) diag(z*) V. 0*(z) —l(x)a* 1} + 2*0°(x)T — U*(2*) diag(a*) Vo l* (x)
ToATAr A 0 0(x) ] 40 — diag(l°(x))

= (0 1).[—l(z)z* 1) + 2*°(2) "] + 1] [0(2) Lao — diag(¢°(2))])

= (0 —l(2)1)e +(2)"T + l(z)1}e — °(z)7)

= (0 0),

where we used the fact that 1. 0*(z) = 0, and that 1}.2* = 1. Therefore, H4 is an
invariant subspace of VF(z), and the spectrum & is given by the spectrum of VF(x), from

which we remove one zero (corresponding to the eigenvector 14). Next, since VF(z) is block
upper-triangular, with diagonal blocks A and B, we have, using the expression of B,

Sp(VF(x)) = Sp(A) U {{(z) - £3(2)}acne
Therefore ) )
S = Sp(A) U{l(z) — £2(x) }acae
where A is the restriction of A to H 4 = 14%..
To conclude the proof, suppose that z is a stationary point but not a Nash equilibrium,
ie. £ € RA\ N. Then there exists a € A° such that ¢(x) — £2(x) > 0, and it follows that

S contains at least one strictly positive eigenvalue, therefore x is unstable (by Theorem 3.7
in |71] for example). O

3.6 Exponential stability of Nash equilibria

In order to prove the converse of Theorem , we need to study the eigenvalues of A, the
restriction to H 4+ of A = —U*(a*) diag(x*)V..0*(z).

Lemma 4. The matriz V*(z*) diag(z*) is symmetric positive semidefinite and its restriction
to Ha+ is positive definite.

Proof. We have U*(z*) diag(z*) = diag(z*) — 2*(z*)" is symmetric. We also have
1. U*(2%) diag(z*)14- = 0,
and for all y € H 4,

2
y U (a") diag(z )y = > ahyl — (Z nya)

acA* acA*

which, by Jensen’s inequality, is strictly positive except at y = 0. O
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Lemma 5. Let R and S be two symmetric matrices such that R is positive-definite and S is
positive-semidefinite. Then the product RS s diagonalizable, has non-negative eigenvalues
and has the same number of zero eigenvalues as S (with the same eigenvectors).

Proof. Since R is positive definite, there exists a positive definite matrix R such that R = R
Then we have B o
R'RSR = RSR

thus RS is similar to the symmetric matrix RSR, and is diagonalizable.
Consider the function h : z +— RSz and the inner product (x;y) = 2" R~'y. We have

(h(z);y) =2 " SRR 'y = 2" Sy.
Thus if X is an eigenvalue of h with eigenvector z, then

(h(x); ) = Mz; )

ie. A= xi;ﬁ’{x which is non-negative since S > 0 and R > 0. Furthermore, A = 0 if and
only if Sx = 0, which proves the claim. O]

We can now show a partial converse of Theorem [

Theorem 5. Assume that VI is symmetric, positive definite. Then x is a Nash equilibrium
only if x is a locally exponentially stable stationary point of the replicator dynamics (3.1)).

Proof. Suppose x is a Nash equilibrium. Then it is a stationary point of the system (3.1)).
To show that it is exponentially stable, recall that the eigenvalues of the Jacobian are given
by: A

S = Sp(A) U{l(z) — () }acao

where A is the restriction of —U*(z*) diag(2*)V.0*(x) to H4-. By Lemma , U*(z*) diag(z*)
has a positive definite restriction to H 4+, and V£*(z) is positive definite as a diagonal block
of V f(x), which is positive definite by assumption. Therefore, applying Lemma , we have
that all eigenvalues of A are negative. Therefore z is exponentially asymptotically stable
(for example by Theorem 4.7 of [71]). O

Application to congestion games

We now consider the special case of congestion games to illustrate the assumption that V{(x)
is positive definite. Consider the congestion game defined in Section [2.3] in which the loss
function is given by

((z) = M c(Mz)

where M is an incidence matrix, and ¢, are congestion functions assumed to be non-negative
non-decreasing by Assumption [I We further assume that ¢, are differentiable. Then we
have the following result.
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Lemma 6. For the congestion game with differentiable congestion functions, the gradient
V.05 (x) is a symmetric positive-semidefinite matriz. Furthermore, if the congestion functions
are strictly increasing and the incidence matriz M is injective, then V.0*(x) is positive-
definite.

Proof. We have (*(x) = M c(Mzx), where M, is the submatrix with columns a € A*, the
support of z, and M = m(S)M is the incidence matrix scaled by the total mass of the
population. Thus

V.05 =m(S)M, Ve(Mz)M,

where, by definition of ¢,
Ve(¢) = diag({c,(¢r) }rer).

Thus V,.0*(z) is symmetric, and since ¢, is non-increasing for all r, it is positive semidefinite.
If all congestion functions are strictly increasing and M is injective, then V,¢*(x) is positive
definite. u

Note that the incidence matrix may not be injective in general, since M € {0, 1}**#4 and
|A| = 2% in the worst case. The expression of the spectrum suggests that if we could find a
more concise representation of the game, by reducing the number of actions, the dynamics
may converge faster in the reduced game. This is discussed in the next section.

Reducing the size of the congestion game

We observe that if an action ag is a conic combination of other actions, then the congestion
game without ag is equivalent, in a sense defined below, to the original game, allowing us to
reduce the size of the action set A.

More precisely, consider a given action ag € A, and let A = A\ {ag}. Assume ay is a conic
combination of actions in A, that is, M,, = >, 1AM, for some non-negative coefficients
Ao First, we must have > ;A\, > 1: since qo is non-empty (by assumption, no action is
empty), there exists r such that M, ,, = 1. But

Mr,ao = Z )\aMr,a < Z )\a

acA acA
since M, , € {0,1}, which proves the claim.

Proposition 11. Let ag € A, denote A = A\ {ao}, and assume ay is a conic combination
of actions z'nﬁfl.

If y € A% is a Nash equilibrium for the game without ay, then the vector x (obtained by
augmenting y with a 0 on ag) is a Nash equilibrium for the original game.

Proof. We have for all a € support(y), the loss £,(y) is equal to £(y) the minimum loss across
all actions in A. Then if ¢, is the vector of resource congestions, the loss of action ay under
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distribution y is

acA acA
> Nally) = Uy)
acA
Thus y augmented by 0 on ag is an equilibrium of the original game. O]

Proposition 12. Let ag € A, denote A = A\ {ao}, and assume aq is a conic combination
of actions in A. i
If x € A% is a Nash equilibrium for the original game, then y € A4 defined by
Aa
—_—=
Za’ej )\‘1/ “

is a Nash equilibrium for the game without ag.

Yo = Ta +

Proof. First, y is, by definition, a distribution over A. To show that it is a Nash equilibrium of
the reduced game, we argue that y and x induce the same resource loads, that is, Mx = My.
To show this, we observe that if ag € support(z), we must have > _ 1A, = 1. Indeed, if
Zqe > 0, then by definition of a Nash equilibrium, ¢,,(x) < ¢,(x) for all a. But

log (7)) = Z Aala() 2 Z Aalag (7)

acA acA

therefore ) _ 1A, < 1, which, combined with the previous observation that ) .z As > 1,
proves the claim.

Now we consider two cases: if x,, = 0, then we have immediately My = Mx. If z,, > 0,
then we have > _ 1A, =1 and

My - Z yaMa
acA
= 2o M+ x4, Y N,
acA acA
= 2 M, + 24, M,
acA
= Mzx.

Therefore the distribution y induces the same resource loads as x, hence the same losses,
and y is a Nash equilibrium of the reduced game. O]

With the previous propositions, one can reduce the size of the game by removing ag from
the set of actions, and obtain an equivalent game. Applying this argument repeatedly, we
can reduce A to a minimal set A. One way to compute such a minimal set is to find a
Hilbert basis of the family {M,}aca, H = {Ma},c 4, and use A as the reduced action set.
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Figure 3.1: Trajectory of z(t) (left) and evolution of loss functions (right). We have conver-
gence to the set of Nash equilibria: on the support of the limit distribution, all action losses
are equal.

Figure 3.2: Solution trajectory X(t) in the simplex A“ (represented as a Tetrahedron).
Starting from different initial conditions in the interior of the simplex, we have convergence
to different points in N (represented by a red dashed line). Other stationary points are in
dashed green lines. In particular, the entire face {z : x; = x5 = 0} is stationary.

3.7 Numerical example

We illustrate the replicator dynamics on a congestion game example. Suppose we have three
resources R = {ry, 79,73}, with quadratic congestion functions

a6) = 51+ 6n)?
ca(d2) = (1+ ¢o)*

c3(¢r) = 2(1 + ¢3)?
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and consider the following actions

b = {r177ﬂ2}’p2 - {7"2,7’3},]?3 = {T3ar1}7p4 - {7”3,7"1}.

In particular, we have py = ps3. In particular, we do not have uniqueness of the Nash
equilibrium in this case. The set of Nash equilibria is given by

N ={z:x, =757, 29 = 0,25 + 14 = .2426}.

If we apply the replicator dynamics from the initial distribution zq = (.2 31 .4)T, we
obtain the trajectories shown in Figure (3.1

Starting from different initial conditions in the interior of the simplex, A, we have con-
vergence to different points in the set of Nash equilibria . This is illustrated in Figure [3.2]
If we start on the boundary of the simplex, we may have convergence to stationary points
which are not Nash equilibria. Any face of the simplex is invariant for the dynamics (and
so is any intersection of faces). Therefore a stationary point which is unstable in the entire
simplex may be stable if we restrict the dynamics to an invariant face.

In the next chapter, we will go back to studying discrete-time dynamics, and show that a
large family of online learning methods can be obtained by discretizing the replicator ODE,
and prove convergence of these methods.
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Chapter 4

Discretizing the Replicator Dynamics

In this chapter, we study online learning algorithms that can be obtained as a discretiza-
tion of the replicator ODE . We start with a simple forward Euler discretization in
Section with decreasing step sizes, and show that the resulting algorithm has sublinear
regret guarantees similar to the Hedge algorithm reviewed in Section [2.6] We then consider
a general family of discrete-time, stochastic algorithms, obtained as a stochastic discretiza-
tion of the ODE. More precisely, if the ODE is given by X (t) = F(X(t)), then a stochastic
discretization with step sizes (1,) is given by 21 = (") 4 (F () + U™, where U™ is
a sequence of stochastic perturbations that satisfy conditions which are detailed in Proposi-
tion [14 We call this family the AREP algorithms, for approximate replicator. The theory
of stochastic approximation exhibits links between the properties of solution trajectories of
the ODE (such as convergence to stable stationary points) and properties of its discretiza-
tion. In Section we review and illustrate some of these results, which are mostly lifted
from [18]. Then we show, in Theorem |8 that under AREP algorithms, the sequence of mass
distributions is guaranteed to converge to the set of Nash equilibria, almost surely. This is
a strong convergence result for a large class of algorithms, in particular, it is stronger than
the convergence in the sense of Cesaro for sublinear regret algorithms, which we proved in
Theorem 2] However, the stochastic approximation analysis does not allow us to characterize
convergence rates of the algorithms. In the next chapter, we consider a particular class of
learning dynamics, given by the stochastic mirror descent method, which we can analyze to
provide convergence rates.

4.1 Euler discretization of the replicator ODE: the
REP algorithm

Inspired by the continuous-time replicator dynamics, we propose a discrete-time update
rule for online learning, by discretizing the ODE (3.1)). The resulting algorithm guarantees
sublinear regret and is simple to implement. We call it the REP algorithm in reference to
the replicator ODE.
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Since we seek to provide guarantees on the regret of the algorithm for any sequence of
bounded loss vectors (not necessarily loss vectors of a potential game, ¢(z) = V f(z)), we
first decouple, in the ODE , the dependence on the mass distribution x and the loss /.
The vector field F' can be written in the following form: for all k, Fy.(z) = G (z, £(x)) where
for all a,

kaa(l’, 6) = Tk, (<ZL’k7 €k> - ékﬂ) .

Then suppose that we are given a C' function of time, 4(¢), and a distribution 7 (¢) that
obeys the dynamics

Tka(t) = Gra(m(t), (1)) = Tha(t) (me(t), (1)) = lra(t))- (4.1)

Using a forward Euler discretization (see e.g. Chapter 2 in [36]) with decreasing, non-
summable step sizes (7, ), we can define discrete times 7T, such that Ty = 0 and T 11 = T+,

and let 7(7) = 7(T}), and 6,(;) = ((T;). Then approximating the time derivative
(T, +n.) —n(T,) w+) — 7z

7(T,) ~ = :
Ui -

we propose the following update rule:

Definition 8 (Discrete Replicator algorithm). Consider an online learning problem with a
sequence of losses (7)) in [0, p| uniformly in 7. The REP algorithm with initial distribution
7@ € A4 and learning rates (0;)ren with n, < %, is an online learning algorithm (U(™)
such that the T-th update function is given by

7 = gD (7 g, = 7D 4 7D (<7r(7), g(7)> _ g(f)) ' (4.2)

a a

Algorithm 4 REP algorithm with learning rates (7;).

1: Input: Initial distribution 7(© € AA.
2: for each iteration 7 € N do
3. Draw an action A ~ 7(7),
4:  Observe a vector of losses /(7 incur loss ZX()ﬂ.
5. Update
7T = 2l 4 D) (20 (0 )
6: end for

Under the REP update, the sequence of distributions (™ remains in simplex A4, pro-
vided 7, < %: Indeed, for all 7 € N, we have

Sl = 7wl gl (60, 70) — ) = 370,

acA acA acA
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and if n, <1, then
L+, (00, 77) =€) > 1= pr >0,

which guarantees that 7(7 remains in A4,

We now show that when the losses are discounted by (7;), the REP update rule with
learning rates proportional to (7,) has sublinear regret. First, we prove the following lemma,
for general online learning problems with signed losses.

Lemma 7. Consider an online learning problem, with a finite action set A, and sequence of
losses, m'"), and suppose that the losses are bounded uniformly in [—1,1]. Suppose that the
losses are discounted by a sequence of discount factors (7y,), with v, < % for all 7. Then the
learning algorithm defined by the update rule

7D o (20(1 = m()) (4.3)

has the following regret bound: for all T and all a € A,

Y o (mD 7Yy < —log a4 D yemlD + Y7 2 m{?

o<r<T 0<r<T 0<r<T

(0) : (0)

where T = MiNgec 4 Ta .

Proof. We extend the proof of Theorem 2.1 in [4] to the discounted case. By a simple
induction, we have for all ¢, 7() is proportional to the vector w® defined by

wl = [] (1= m).

o<r<t

Define the function £&® =3~ w. Then 7" = and we have for all ¢:

i) — Z Wl (t+1)
= Zwat 1 - fytm((zt))
= €0, 3 (g

= €0 (1 — 3, (m®, 7))
< S(t)e,%<m(t)77r(t)>‘

§<t) )

Thus, by induction on t,

£ < eXP( >y (m, >) :

0<r<t
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We also have for all a,

g > w(t+1) > e H (1— %m((;))-

min
0<r<t

Combining the previous bounds on ¢ and taking logarithms, we have

> e (m 1) < —logml, — D log(1 — ,m7).

0<r<T 0<7<T

To obtain the desired bound, it suffices to observe that for all m € [—1,1] and v € [0, 5],
—log(1 —ym) < ym + ~*Im]. O

Theorem 6. Consider an online learning problem, with action set A, and sequence of uni-
formly bounded losses, {7 € [0, p|. Suppose that the losses are discounted by a sequence (7y;)
that satisfies Assumptz'on and is bounded by % Then the regret of the REP algorithm with
learning rates n, = %T satisfies the following bound

R (s) < —plogmim, +p D 72

0<r<T
R(T)

In particular, when Logrerdr 0, we have limy_, [ ]+ <0.
ZOSTST Y Z <T

Proof. Let

ri?) = (70 5@ )) = La(@D) € [=p, )
be the instantaneous regret of the player. Then the REP update can be viewed as a
multiplicative-weights algorithm with update rule (4.3), in which the vector of signed losses

is given by my”) = —"‘—:) € [—1,1], and discount factors (v,). Observing that (™, 7(") =0,
we have by Lemma [7] for all a € A:

5 Z o) < —logmm, + >
O<T<T 0<r<T

Rearranging and taking the maximum over a € A, we have

R (s) < —plogzln +p > 72

0<r<T
which proves the claim. O

Interestingly, we can show the the REP update rule corresponds to the solution to a
regularized version of the greedy update min,cax <7T, Z(T)>.
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Proposition 13. The REP update rule (4.2) with n, < /l) and 7 > 0 is solution to the
following problem:
{m™V} = argminy. (r, (7)) + D(xx'7),
S

2
where D(w||lv) =13 cava (Z—Z - 1> .

The regularization function D(7||v) is known as the X? divergence, and can be interpreted
as the f-divergence (or Csiszar divergence, in reference to Csiszar [42]), associated to the
convex function f(z) = (z — 1)>. Note that the Hedge algorithm has a similar interpretation
as the minimizer of a regularized linear function, in which the X? divergence is replace by
the KL divergence, see for example |15]. This will also be discussed in Chapter

Proof. Define the Lagrangian of the problem: for \ € ]Rj‘r1 and v € R,

1 . ?
L(W7/\7V) =T <7Ta7€(7)> + 527‘-5’—) (7:27) - 1> -V (Z Ta — 1) - </\77T> )

acA a acA

where v € R is the dual variable for the constraint ) _, 7, = 1 and A is the dual variable
for the constraint = > 0. The gradient of £ with respect to 7 is given by

0 M
— n 07 a — N\ —
Va € A, 87TaL(7r, A\ v) =L + ( o) 1) Ag — V.

Ta
Then (7%, \*,v*) are primal-dual optimal if and only if they satisfy the following KKT

conditions:

W_Z_1+)\2+V*_77T€((1T)

ol

ZaeA 7T2 =1
7 > 0.

Multiplying by 7¢” and taking the sum over a € A, we have
1=1—n A7 0O) + (7D ) + 07,
ie. v =mn; <7T(T), K(T)> — <)\*, 6(7)>. Plugging in the expression of 7*,
mr =7 + e (700 — 60 4 7D — (77, A). (4.4)
To conclude, it suffices to show that A* = 0. Note that since the losses are in [0, p|, we have
for all a, (7(™, (™)) — ¢ > —p. and since n, < %, 1+ n, (7™, 00 — 12&”) > 0.
Now, we have for all a € support A*, by the complementary slackness condition, 7} = 0,

thus

N (2D XY = —p (2,60 — (7)) <.
Suppose by contradiction that A\* has a nonempty support, then multiplying the last in-
equality by W,ST) and summing over a € support A\*, we would have <7T(T), )\*> < <7T(T), )\*>, a
contradiction. Therefore \* = 0 and the expression (4.4) of 7* reduces to the REP update

rule (4.2)). ]
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4.2 Results from the theory of stochastic
approximation

In the remainder of the chapter, our goal will be to define a family of discrete-time learning
algorithms which guarantee the convergence of the mass distributions (z(7)). The idea is to
show that the discrete process (z(7),.cy, approaches, in a certain sense that we will make
precise in this section, the solution trajectories of the continuous-time replicator ODE. Then
one can show, using a Lyapunov function, that any limit point of the discrete process must
lie in the set of stationary points RN. With an additional argument, we show that, in fact,
limit points lie in the set N of Nash equilibria.

We start by reviewing results from the theory of stochastic approximation. The results
of this section are adapted from [18], due to Benaim. Let D be a bounded subset of R", and
consider a dynamical system given by the ODE

X(t) = F(X(t)) (4.5)

where F' : D — R" is a continuous globally integrable vector field, with unique integral
curves which remain in D. Let ® be the associated flow function such that t — ®,(z(®) is
the solution trajectory of (4.5)) with initial condition X (0) = z(©.

Discrete-time approximation and asymptotic pseudo trajectory

Let (2(7), be a discrete-time (stochastic) process with values in D, and (7,), a sequence of
positive real numbers (step sizes) such that ) __ 7. = oo and lim,_, 7, = 0. We say that
(z(7), is a discrete-time approximation of the dynamical system (4.5 with step sizes (1,)
and perturbations (U™) if it satisfies, V7,

2T — 2 = (F(z) + U (4.6)

Note that it is always possible to define a sequence of perturbations U(” such that Equa-
tion (4.6, simply by defining U +1) = 22D g (7). However, in order to relate the

nr

asymptotic behavior of the discrete process (7 to the solution trajectories of the ODE (4.5)),

one needs to impose additional assumptions on the perturbations U™, as we discuss next.
Given such a discrete-time approximation, we can define the affine interpolated process

of (z(M): let T, = >°]_,n; as in Section .

Definition 9 (Affine interpolated process). The continuous time affine interpolated process
of the discrete process (') ey is the function M : Ry — R" defined as

D) ()
M(T. +s) =27 +s5=——— VYreNandVs € [0,n,).
Nr
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We now define what it means for a discrete process to approach the trajectories of the
system . A continuous function X is said to be an asymptotic pseudo trajectory for the
flow @ if for all T,

lim sup || X(t+h) —Pn(X(t))]| =0.

t—o00 0<h<T
Asymptotic pseudo trajectories (APT) have been introduced by Benaim and Hirsch in [20],
and further studied in [17]. They are useful in relating the asymptotic behavior of discrete
processes to the solutions of the ODE. The next proposition gives sufficient conditions for
an affine interpolated process to be an APT.

Proposition 14 (Proposition 4.1 in [18]). Let M be the affine interpolated process of the
discrete-time approzimation (x7)), and assume that for all T > 0

TZ2 T]TU(T+1)

lim  max = 0. (4.7)
T1—00 72
T2 >, N <T ||T=71
T=T1

Then M is an APT of the flow ® induced by the vector field F.
Furthermore, we have the following sufficient condition for property (4.7) to hold:

Proposition 15. Let (2(7),en be a discrete time approzimation of the system (&.5). Let
(Q, F,P) be a probability space and (F,)ren a filtration of F. Suppose that the perturbations
satisfy the Robbins-Monro conditions: for all T € N,

i) U7 is measurable with respect to F
i) E[UTTV|F,] =0

Furthermore, suppose that there exists ¢ > 2 such that

sup, ey E[| U] < 0o
1 2
ZTGN n"'+q/ < 0.

Then, condition (4.7) of Propositz’on holds with probability one.

Chain transitivity

Next, Theorem [7| gives an important property of limit points of bounded asymptotic pseudo-
trajectories.

Definition 10 (Pseudo-orbit and chain transitivity). A (§,7T)-pesudo-orbit from a € D
to b € D is a finite sequence of partial trajectories. It is given by a sequence of points
(T, 2,7 € {0,...,m — 1} (with T, > T for all 7) and the corresponding sequence of
partial trajectories

(B 0<t<T,}; 7=0,...,m—1,
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such that d(x9,a) < §, d(®r, (), 20V) < § for all 7, and ™ =b.

The conditions are illustrated in Figure [§.1. We write a <5 b if there exists a (6,T)-
pesudo-orbit from a to b. We write a = b if a =57 b for all 0, T > 0. The flow ® is said to
be chain transitive if a — b for all a,b € D.

Figure 4.1: A (4, T)-pseudo-orbit for the flow ®, from a to b.

In the remainder of this section, let I' C D be a compact invariant set for ®, that is,
¢, (') CTforallteR,.

Definition 11 (Internally chain transitive set). The compact invariant set I' is internally
chain transitive if the restriction of ® to I' is chain transitive.

Theorem 7 (Theorem 5.7 in [18]). Let M be a bounded APT of (4.5)). Then the limit set
L(M) =) el{M(s): s >t}
£>0
1s internally chain transitive. Here cl denotes the closure of a set.

Finally, we give the following property of internally chain transitive sets:

Proposition 16 (Proposition 6.4 in [18]). Let I C D be a compact invariant set and suppose
that there exists a Lyapunov function V. : D — R for T' (that is, V is continuous and the
time derivative (VV (z), F(z)) < 0 for all x ¢ T') such that V(') has empty interior. Then
every internally chain transitive set L is contained in I' and V is constant on L.
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Proposition [I6], combined with Theorem [7] provides a powerful tool for proving conver-
gence of a discrete time approximation (2(7)) of the ODE: if I' is an invariant set for the
ODE, and we can exhibit a Lyapunov function for I', then we know by Theorem [7| and
Proposition |16 that the limit set L(M) of any APT M is contained in I'. This is true in
particular for the affine interpolated process of (z(7)) if the discretization satisfies the condi-
tions of Proposition . But any limit point of the sequence (z(™) is also a limit point of its
affine interpolated process, which proves that all limit points of (7)) lie inside the compact
set I, i.e. that (z(™) converges to T'.

4.3 The approximate replicator class (AREP)

Now, we are ready to define a class of online learning algorithms which we call AREP for
approximate replicator. An AREP online algorithm is simply a discrete time approximation,
in the sense of (4.6)), of the replicator ODE ({4.1]), with perturbations that satisfy the condition
of Proposition [14]

Definition 12 (AREP algorithm). Consider an online learning problem with action set A
and loss sequence ({7), such that the losses are uniformly bounded in [0,p]. An online
learning algorithm with output sequence (W(T))TGN, 1 said to be an approximate replicator
(AREP) algorithm if its update equation can be written as

7 — 70 =, (7O (7D 0y — ) + U) (4.8)

a a

where (U™).en is a sequence of stochastic perturbations with values in RA, and which sat-

isfies condition (4.7) a.s.

In particular, the REP algorithm given in Definition |8 is an AREP algorithm in which
the perturbations are identically zero. It turns out that the Hedge algorithm also belongs to
the AREP class, as shown in the following proposition.

Proposition 17. The Hedge algorithm with non-increasing, non-summable learning rates
(n;) is an AREP algorithm.

Proof. Let (7(™).cn be the sequence of strategies, and let (£(7)) be any sequence of losses.
By definition of the Hedge algorithm, we have

7 = 7 exp (— Z 77 exp ( 6(7)>

a’eA
which we can write in the form of Equation (4.8)), with perturbation terms

e

Ul — UL [exp (—T]T(ﬂg) — ))> + (05 — 1) — } + 7D (0 — 1)

e
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where

Letting 0(x) = e* —x — 1, we have for all @ € A:
) ) o
U = Ty <_77T(g((17) _ gm) 4 — gy,
Nr

The first term is a O(n,) as 6(z) is equivalent to x?/2 as = tends to 0. To bound the second
term, we have by concavity of the logarithm

E(T)———logZW,eXp< > Zﬂ' , M = ),

N a'cA a'eA

And by Hoeffding’s lemma,

log Z Tqr €XP (— ) < —-n, Z W(T)E

a’'eA a’'eA

Rearranging, we have 0 < /(") — /(1) < 1= L, therefore U, (r+l) = = O(n,), and

f: U™ | =0 (i nf) .
T=T1

T=T1
Finally, since n, | 0, for any fixed T', max,,.s-m ,7T<TZ n? converges to 0 as 7, — 00,
therefore condition (4.7) is verified. O

4.4 Convergence of AREP

We now give the main convergence result of this chapter.

Theorem 8. Consider the online learning model in nonatomic, convexr potential games,
defined in Section and suppose that the mass distributions (7)), have sublinear regret,

and obey an AREP update rule, where, for each population k the loss function E,(CT) 18 given
by the congestion game loss €, (z\™)). That is, for all k and all a € Ay,

=l = e (o2 (o1, 600 )) = tiata) + UL

where U,gT) are sequences of stochastic perturbations that satisfy condition ([£.7). Then (z(7)
converges to the set of Nash equilibria N, almost surely.
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Proof. By Proposition , the affine interpolated process M of (z(™). is an APT of the
continuous-time replicator ODE, X = F(X). Thus by Theorem [7| the limit set L(M) is
internally chain transitive.

Consider the set of stationary points RN, which is invariant by definition, and by Propo-
sition [8, it is compact and the potential function f takes finitely many values on RN.
Additionally, f is a Lyapunov function for RN by Proposition [9 therefore we can apply
Proposition [16] to conclude that the set of limit points L(M) is contained in RN and f is
constant over L(M). Let v* be this constant value.

Next, we show that f(z(7)) converges to v*. Let © be a limit point of f(2(™). Then by
Lemma , d = f(#) where # is a limit point of (#(”). But # € L(M), thus ¢ = f(&) =
v*. This shows that the bounded sequence (f(z(™)) has a unique limit point v*, therefore
it converges to v*. To conclude, it suffices to show that v* = f*, the minimum of the
potential function f. To show that v* = f*, observe that since f(2(”) — v*, we also have

f(z) % v*. But since the populations have sublinear discounted regret, by Theorem ,
f(z) ﬂ) f*. By uniqueness of the limit, we must have v* = f*. n
Note that Theorem [§| assumes that the AREP update rule is applied to the population

dynamics (2(7), not to individual strategies 7(7)(s). One sufficient condition for z(™) to

satisfy an AREP update is that for each k, all players in S start from a common initial

distribution WI(CO) = x,&o), and apply the same update rule. This guarantees that for all 7 and

for all s € Sy, 2\ = ") (s).

Convergence of the REP and Hedge algorithms
We apply Theorem [§ to show convergence of the REP and Hedge algorithms.

Corollary 1. In nonatomic, convex potential games, if (x7) obeys the REP update rule with
non-increasing, non-summable learning rates (n,) and such that n, < 2%), then (W — N

Proof. The REP update rule is a discounted no-regret algorithm by Theorem [6] and it is an
AREP algorithm with zero perturbations, so we can apply Theorem [§| O

Corollary 2. In nonatomic, convex potential games, if (x7)) obeys the Hedge update rule
with non-increasing, non-summable learning rates n,, then (7 — N

Proof. By Proposition [6] Hedge has sublinear regret, and by Proposition Hedge is an
AREP algorithm, and we can apply Theorem [§| O

A numerical example

We illustrate this convergence result with a routing game example, as defined in Sec-
tion 2.2 Consider the network given in Figure 4.2 In this example, two populations of
players share the network, the first population sends packets from vy to v1, and the second
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population from vy to vwz. The paths (actions) available to each population are given by
Ay = {(vo,v1), (vo, V4, V5, V1), (Vo, 5, v1) }, Az = {(v2,v3), (V2, V4, Us, U3), (Va, V4, V3) }.

Figure 4.2: Routing game with two populations of players.

We simulate the population dynamics under the discounted Hedge algorithm with a
harmonic sequence of learning rates, 7, = % The results are shown in Figure .

Conclusion

Starting from the replicator ODE and the properties of its solution trajectories, we showed
that a family of discrete time algorithms can be obtained by taking a discretization of the
ODE, with perturbations. We showed that under suitable conditions on the perturbations
(Proposition , the sequence of distributions is guaranteed to converge to the set of Nash
equilibria, almost surely. However, the stochastic approximation analysis done in this chapter
does not allow us to characterize convergence rates of the discrete dynamics. In the next
chapter, we will study a second class of dynamics for which we can derive explicit convergence
rates.
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Figure 4.3: Simulation of the population dynamics under the discounted Hedge algorithm,
initialized at the uniform distribution. The trajectories of the population strategies :L‘,(;—) are
shown in the simplex for each population (bottom). The path losses ¢, (™) (top) converge
to a common value on the support of the Nash equilibrium. The sequences of discounted

(RY]4

regrets (middle) confirm that the population regret is sub-linear, i.e. limsup,_, ., ST 0
<t T
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Chapter 5

Stochastic Mirror Descent Dynamics

In this chapter, we seek to design learning algorithms for the convex potential games, that
are robust to measurement noise and other stochastic perturbations, and for which we can
provide convergence rates. More precisely, we extend the previous learning model defined in
Chapter [2| by assuming that, at each iteration, instead of observing the exact loss vector, the
player rather observes a stochastic vector, the conditional expectation of which is (almost
surely) equal to the true loss. This is a natural extension for two reasons: the losses can
be inherently stochastic, or the observation or measurement of the loss can be noisy. For
example, in the routing game, which models congestion in transportation and communication
networks, the loss corresponds to delays on the network, which may be hard to measure
exactly, and which may depend on external, stochastic variables such as weather.

Stochastic learning models have been studied in online learning theory, e.g. Bubeck and
Cesa-Bianchi [34], adaptive control theory, e.g. Kumar and Varaiya [83], as well as convex
optimization, e.g. Nemirovski et al. |96], [70]. Adapting ideas from these works, we propose
a family of stochastic distributed learning algorithms and study their convergence.

Since convergence of the mass distributions (2(7) is equivalent to convergence of the
potential values f(2(™) to the minimum f* over A, we can use tools and methods from
stochastic convex optimization to study learning dynamics. In particular, we will use mirror
descent, a general method for first-order optimization, which we will review in this chapter,
and further study in the second part of the thesis. In our model, we assume that every
population k follows a stochastic mirror descent algorithm, with different learning rates
('r],f)) for different populations.

Contributions

There are two aspects of the learning model that we will particularly care about. First, we
consider models in which different populations follow different dynamics, and in particular,
different learning rates. We refer to such models as heterogeneous, and their analysis can
be more challenging. Second, we seek to prove strong convergence of the sequence of mass
distributions (z(7)), rather than a weaker notion of convergence such as convergence in the
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sense of Cesaro, which is also more challenging for stochastic methods, as most convergence
proofs consider a sequence of averages, see for example [111} (96| 113|. In [127], Shamir and
Zhang prove that for stochastic gradient descent with step size n¥) = 1 / Vt, the sequence
of iterates (") converges at a rate O(Int/+/t). Using a similar technique, we extend their
result to stochastic mirror descent, and show that for heterogeneous learning dynamics, with
learning rates of the form n,(f) = 0yt~ the sequence of iterates 2(7) converges in expectation
to the set of equilibria, at a O(Int/t™n(@minl=amax)) rate (the fastest corresponding rate is
O(Int/Vi)).

In the homogeneous case (all populations use the same learning rates, but not necessarily
the same Bregman divergences), we show that the mass distributions converge almost surely
to the set of equilibria, without additional assumptions on regularity or strong convexity. In
particular, convergence holds even when the equilibrium is not unique, an assumption which
is usually made when proving almost sure convergence of stochastic methods, e.g. [29], and
which we manage to relax. Finally, for strongly convex potential functions, we show that
the distance to equilibrium converges to 0 in expectation.

5.1 Distributed Stochastic Mirror Descent (DSMD)

We start by giving a brief review of the mirror descent method, and define the stochastic
mirror descent dynamics that we will study in the chapter.

Mirror descent

Mirror descent is a general method for constrained convex optimization, proposed by Ne-
mirovsky and Yudin [98]. Consider the problem

minimize  f(x)
subject to x e X

where f : R" — R is a convex function defined on a convex, compact set X C R", and call
f* the minimum value of f on X.

There are many interpretations of mirror descent, discussed for example in [98, |15, |10],
and many others. We discuss these interpretations in more detail in Appendix [B] In this
chapter, we take the following point of view: mirror descent can be interpreted, as observed
by Beck and Teboulle [15], as minimizing, at each iteration ¢, a local approximation of the
objective function around the current iterate, as follows:

1
2 = arg min <Vf(x(t)), x> + = Dy(x, x(t))
TEX 77( )
1
= argmin f(2) + (Vf(2"),2 —2) + @ v, z"), (5.1)
S
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— f(=)
=== fz®) + (Vf(z®), 2 — 2®)
o 7f(x(t)) + (Vf(a:(t)),x - m(t)> + ﬁDTP(‘%x(t))

I

Figure 5.1: Mirror Descent iteration

where D, (z, x®), is the Bregman divergence associated to a strongly convex function 1 :
X — R, and defined as follows:

Dy(z,y) = ¥(z) —¥(y) — (VU(y), 7 —y).

Here, we assume that v is differentiable on X to simplify the discussion, but this can be
relaxed, see Appendix [B| By convexity of v, the Bregman divergence is non-negative and
convex in its first argument. The function v is said to be p-strongly convex w.r.t. a reference
norm || - || (not necessarily the Euclidean norm) if for all z,y € X, Dy(z,y) > &z — y*.

In the minimization problem (5.I), the first term, f(z") + (Vf(z®"),z —2®) is the
first-order Taylor approximation of the function around the current iterate, and the Bregman
divergence term Dy (z, x(t)) penalizes deviations from z®. The parameter n® is a step size
or learning rate, which determines the tradeoff between the two terms. Thus, mirror descent
minimizes, at each iteration, a local approximation of the function, penalized by a Bregman
divergence term. This is illustrated in Figure [5.1}

One special case of mirror descent is projected gradient descent, which can be obtained
by taking ¢(z) = 1||z||3, in which case the Bregman divergence is the squared Euclidean
distance, Dy (z,y) = 3|lz — yl|3, see Section in the appendix. For more examples, and a
detailed discussion on the properties of Bregman divergences, see Appendix [B]

Stochastic optimization

To allow for stochastic perturbation in the learning model, we consider the stochastic opti-
mization setting, given as follows: suppose that at iteration ¢, we have access to a stochastic
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vector /) such that the conditional expectation /&) = E[(®W|F,_] is equal to V f(z®) almost
surely, where (F;) is the natural filtration of the stochastic process (£®)).

This stochastic optimization framework is motivated by our study of learning dynam-
ics, but it is also useful in solving problems in which computing the exact gradient can
be prohibitively expensive, such as large-scale convex optimization, where the objective
function is a sum of individual convex loss terms over a large set of samples, that is,
flz) = ﬁziezf(:p,zi). A cheap estimate of the gradient of f can then be obtained

by randomly drawing a small subset of samples Z) C Z, and defining ¢®) to be (®) =
ﬁ Zz’eI(t) vzg(x(t)7 Zi)'

The stochastic version of mirror descent is simply obtained by replacing, in the update
equation (5.1]), the gradient term V f(z) with its stochastic counterpart ¢® . Thus the algo-
rithm generates a random sequence of iterates z(?), such that ® is F,_;-measurable (since
at each iteration, ® is determined by 21 and ¢(—1)). We will assume that the first iterate
(M is deterministic, i.e. Fy is trivial.

Distributed optimization on a cartesian product

We will assume that the feasible set X' can be written as the cartesian product X = A} x
-+ X Xg. This is motivated by our problem of learning in the nonatomic convex potential
game, since the feasible set is the product of simplices A = A4 x ... x A% When the
feasible set is a cartesian product, we can take the distance generating function ¢ to be the

suim
K

U(x) = tnlan), (5.2)
k=1
in which case the Bregman divergence Dy(z,y) is the sum of divergences Dy, (z,yx), and
the mirror descent update problem (5.1]) decomposes

t+1)

- 1
2 = argmin <€(t), a:> + WDQZ,(J:, z)
n

zekX

K
. 1
= arg;er/rvlinkz:; <€,(f), Ik> + WD% (g, x,(:)),
thus 1Y can be obtained by solving K mirror updates, one on each feasible set X;. In
order to allow more flexibility in our model, we will further assume that we can use different
learning rates 77,(:) for different updates. Finally, the distributed stochastic mirror descent
model is summarized in Algorithm [5] We call the algorithm homogeneous if the K updates
use the same sequence of learning rates (but not necessarily the same Bregman divergence),
and heterogeneous otherwise.

Assumption 3. Throughout the chapter, we make the following assumptions:
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Algorithm 5 Distributed Stochastic Mirror Descent (DSMD) with Bregman divergences
Dy, and learning rates (nl(:)).

1: for t € Ndo

2:  foreach ke {l,...,K} do

3: Observe lf,(f) with (0 = E[{O|F,_] = V f(z®).

4: Update
- 1
2" = arg min <€,(:), :rk> + — D (, ) (5.3)
$kEXk T}k

5. end for
6: end for

(i) For each k, the distance generating function 1y is strongly conver w.r.t. a reference
norm || - ||, and the corresponding Bregman divergence is bounded on Xy, that is, there
exists ju, > 0 and Dy, > 0 such that for all x,y € Xy, & ||z — y||* < Dy, (z,y) < Dy,

(i) The noisy gradient vectors are uniformly square integrable in the dual norm, that is,
there exists G > 0 such that for all t, E [H@(UHE] < G?.

5.2 A stochastic model of learning in nonatomic
potential games

In this section, we show how the distributed optimization model of Algorithm [5| applies to
our problem of learning in nonatomic convex potential games.

By Definition [T}, there exists a convex potential function f and scalars j, such that for all
k and all z € A gl (x) = V,, f(z). We extend the learning model of Chapter [2] to allow
stochastic perturbations of the loss vectors. That is, we now suppose that at iteration t,
population k observes a stochastic vector é,gt), which is unbiased in the sense that

E [g,gt)|]§_1} = mkfk(x(t)) = kaf(x(t)).

Then we assume that each population updates its mass distribution x,(:) by applying a mirror
descent algorithm on its feasible set &, = A“* and with learning rates (nl(;)). Note that
we scaled the loss vector by kg, so that the conditional expectation of /@ is the gradient of
the potential. The learning model is then a special case of Algorithm [5 with feasible sets
X, = A4k,

Although the dynamics is motivated by the learning problem in potential games, we will
analyze it in the general case, since the convergence results are of interest in the broader
context of first-order, stochastic optimization.
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5.3 Convergence in the sense of Cesaro

A fundamental lemma

The following lemma is an essential step in proving the convergence results of this chapter.
It is a straightforward generalization of Lemma 2.1 in Nemirovski et al. [96].

Proposition 18. Consider the DSMD algorithm with Bregman divergences Dy, and de-

creasing learning rates (77,(~C )) and let () be the resulting stochastic process. Then for all k,

all for all 7, and all F._1 measurable xy,
(r+1) SOV 0 () ) (D)2 5 2
Dy, (zr, ) 7) < Dy, (g, 27) = ' (47 27 — oy ) + Q—MH& [t (5.4)
additionally, for all to >t > 1, and all F;,_1-measurable xy,

E [Dw (x m(tl))}
/) w Tk, T, 1 1
ZE K oy ’“ﬂ = @) + Dy ORI Z’?k :
k

—h Ui k T=t1

This bound can be interpreted as a regret bound when the feasible set is a simplex:
o,

Taking the supremum over x;, € A%, SUDy, e AR ZT 4 :1:,(;) — :ck> is the cumulative
regret of population k, as defined in Definition [4] Even when X, is a general convex set, this
quantity is also defined to be the regret in the context of online convex optimization, see for
example [137} 63].

We begin by proving convergence in the sense of Cesaro, and show that if the algorithm

. : . t ()
has a sublinear regret in expectation, then f (E [a‘c(t)]) converges to f*, where z(*) = ZT%

This can be guaranteed when (77,(:)) have appropriate decay rates, as in the following Corol-
lary.

Theorem 9. Consider the DSMD method with 77,(:) = Okt~ with 0, > 0 and oy € (0,1).

Then
0, G* 1
< E — .
f ( f <9kt1 %k 1 — 2/Jk tak>

The bound is O (t_ min(Qmin, 1= O‘m"”‘)), where Qmin and uay are, respectively, the smallest and
largest rate ay.

Proof. Let x* be a minimizer of f over X. We have by convexity of f and the fact that
() =V f(20),

FEEY]) - < SEE [f(txm) _—
T B[ - o1)]

Z

k=
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Then by Proposition , and since x* is Fp-measurable (deterministic),

: &
i 't D) 2t
t
.
— t
=1 tnl(c) 2t

® is a decreasing function over Rt S 77,(;) < 6, fg u”%dy =

- U _¢l=ak wwhich concludes the proof. O

Finally, since u — u~

1

5.4 Convergence of heterogeneous DSMD

We now analyze the convergence of E [ f (x(t))} under the heterogeneous DSMD model with

learning rates 77,(:) = Okt~ oy € (0,1). Shamir and Zhang [127] prove the convergence of
the last iterate in the case of stochastic gradient descent (a special case of SMD) for a = 3.
Our analysis uses their technique and extends it to the mirror descent method, heterogeneous

learning rates, and general oy, € (0,1).

Theorem 10. Consider the DSMD method with learning rates 77,(:) = Oit=*. Then for all
t>1,

E[f(=)] - f* <Z (SIS WP (5.6)
Qk tl Ok 2/L]g(1 — Oék> tak ’
This bound is a O(t~ mm(amm’l_amax) Int).
Proof. Let t be fixed. Adapting the proof of Shamir and Zhang [127], we define S,, to be

1

Sm=——7 E[f(z™)].

T=t—m

We have by convexity of f,

Z E[f () f(x(t_m))] < Z E [<€(T),x(7) _x(t—m)>]

T=t—m T=t—m
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and applying Proposition with ¢ty =t —m, to = ¢, and x = :r;g*m), which is F; - 1-
measurable, we have

t 2 t
(r) ) (=) ! ! G0
ZE% Tk T T >§Dk<<t>_W> > T

T=t—m nk: k T=t—m
< Dx (% — (t — m)>*) QkG2(t1 W — (t—m — 1))
- Hk Q[Lk(l — Ozk) ’

where we used the integral bound Zi:t_m T < ftt_m_1 u~*du. To simplify this bound,
we can use the fact that —(t —m — 1)~ < —t~* and write

t—(t-m—1) m+1

o ot

tl—ak _ (t - m — 1)1_0% S

Similarly, t* — (t —m)** < Therefore

tl ak
t

Hk tl—ak Q/Lk(l—Oék) 1%

T=t—m k=1

Dividing by m + 1, we have

K
0,.G? 1
—E x(t_m) < i —) :
iy kz O, tl % QMk(l — o) 1%
Therefore
1 —m
Spn E(( m+1)S,, ]E[f(t )
K
0G? 1)1
< Sm —. 5.8
kg ( Qk tl Ok 2/,Lk<1 — Oék) to‘k) ( )
We seek to derive a bound on E | f [ ( )] — f*, thus, we can sum inequality .
for m € {1,...,t}, and obtain
1 1
So— f* < S — f* +Z(6kt1 ak+2uk1_&k tak>zﬁ (5.9)

and from Theorem [9] we have

K
st_l—f*sZ( D O i)' (5.10)

1 thl Ok Q,Mk(l — ozk) 1%

Finally, combining the inequalities (5.9) and ([5.10]) and using the fact that Zf;:ll + < 1+Int,
gives the desired bound. O]

In particular, for ¢ (z) = 3||z||3, which is strongly convex with respect to the Euclidean
norm with constant p = 1, the algorithm reduces to stochastic gradient descent. Then,
taking o = 3 yields the bound of Theorem 2 in [127].
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5.5 Convergence of homogeneous DSMD

In this section, we study convergence properties of the DSMD model when all the updates
use the same sequence of learning rates, 77,(:) = n® for all k. The Bregman divergence, can

however, be different for different £. Observe that by scaling the Bregman divergence D,

and the learning rate 77,(:) by the same constant, the mirror update (5.3)) is unchanged, thus
the learning rate sequences only have to be equal up to constant scaling.

Almost sure convergence

First, we show almost sure convergence to the set of minimizers of f. Let us denote the
set of minimizers by A* : =argmin, ., f(x). We say that a sequence z® converges to
X*, and write ) — X if d(z®, X*) — 0 as t — oo where d is the distance to the set
d(z, X*) =inf cx ||z — y.

Theorem 11. Consider the homogeneous DSMD method, and suppose that .~ n® = oo
and Y52 (n)? < co. Then
z® L2

Note that a similar almost sure convergence result is known in the stochastic optimization
literature, see for example [29]. However, such results assume uniqueness of the minimizer.
We relax this uniqueness assumption by analyzing the Bregman divergence to A*. In the
proof, we will use the following result of convergence of almost super martingales, due to Rob-
bins and Siegmund [116].

Theorem 12 ([116]). A stochastic process d\™) adapted to the filtration F is an almost super
martingale if there exist non-negative adapted processes €7, () such that

E[d(TJrl)] <dD 4 ¢,
If Y. €7 < oo a.s., then almost surely, lim, d7) exists, is finite, and Y (7 < occ.

Proof. Recall that we can define a distance generating function on the product X, by taking
P(z) = % r(zg) as in (5.2), and the corresponding Bregman divergence is the sum of
Bregman divergences. Now let Dy (X*, z) = inf ey Dy(2*, ). Since D, is continuous and
X* is compact (it is a closed subset of the compact set X), we have that the infimum is
attained and Dy (X™, ) is continuous. By continuity of D, (X*,-) and compactness of X, we
have () — X* if and only if Dy (X*, 2®) — 0.

We start by showing that D, (X™*, ™) converges almost surely, using a semi martingale
convergence theorem. From inequality in Proposition , summing over k£ and letting
i be the harmonic mean of (), we have

. ™2
D¢(:z:,x(T+1)) < D¢(m,x(7)) — (") <g(7)7x(r) _ x> + (772_)||€(T)H3
7
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In particular, taking  to be equal to z*(7) : = arg min,.. y. Dy(z*, (7)), we have

Dw(‘)(*? ZE(T+1)) < Dq/,(ZL‘*(T), x(T-‘rl))

Y

) =)
< Dyfa™,a) ) (10,20 ) 4 LD (77 ) 1002
= DX 2 ) = ) (10,20 0 4 %Hf“)!ﬁ-

Then we take conditional expectations with respect to F,_;, and observe that since (™) and
2 are F,_4- -measurable,

E W(T),J;(T) _ x*<7>> ‘fﬂ] _ <E [gm,fﬂ} 2 x*m>

Therefore, we have a.s.

(1))2 R
B [Du(0", 2] < Do) (1) - )+ DL B [l

By the previous inequality, and the fact that
(i) 7 (f(=7) — f*) >0, and
(i) $

||€(T)||2 is a.s. finite, since (n®) is square summable and E[[|[/(|2] is finite,

the process (D¢(X *795('5))) is an almost super-martingale. Therefore, by the Robbins and
Siegmund [116] convergence theorem, Dy,(X*, #(7)) converges a.s., and the sum

S0P — 7)< o0 as.
T=1

To show that the limit of D,,(X*, ) is a.s. 0, suppose that for some realization, D (X*, z®)
converges to d > 0, then there exists T > 0 such that for all t > T, Dy (X*, 2®) > d/2. Let

52 inf,cv.p, (e >4 f(z) — f*. By continuity of f, we have that § > 0, thus

Zn >5277 —

t>T

since (7)) is assumed summable. Therefore the event lim; o, Dy, (X*,2®) > 0 is a subset

of the event Y- 1™ (f (™) — f*) = oo, which proves that Dy (X*,z(7) =5 0. O
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Strongly convex case

In this section, we assume that f is ps-strongly convex with respect to D, in the following
sense: for all z,y € X,

We show that under this assumption, the variance of the iterates converges to 0. First,
we observe that by strong convexity of ¢, we have E[||z — z*|]*] < %E [Dy(z*, )], thus it
suffices to show the convergence of E [D¢ (x*, x(t))]. First, we show the following Lemma.

Lemma 8. Suppose f is jip-strongly convex with respect to Dy, and let * be the minimizer
of f over X. Then for ally € X, (Vf(y),y —x*) > 2usDy(z*,y).

Proof. By strong convexity of f, we have

f@*) = fy) +(Vf(y), 2" —y) + ps Dy, y)
f(y) > f(@*) + Dy (2", y),

and we conclude by summing the two inequalities. O

Proposition 19. Suppose that f is pg-strongly convex with respect to Dy, where 1 is defined
as the sum of Yy, as in Equation (5.2). Then the homogeneous DSMD algorithm with
homogeneous learning rates (n9) guarantees

G2

E [Dy(a*, 2] < (1= 2un®) E [Dy(a*, )] + 7 ()
1

Proof. We start from inequality (5.4)) in Proposition Taking expectation with z;, = 7},
and summing over k, it follows that

oy 1 EIEOL

E[Dy(*, 24)] < E[Dy (2, 20)] — pOE[({D, 20 — 2,

2
and since E [lf(t)|}},1] = Vf(x®) a.s., we have by Lemma
—E [(é(t),x(t) - x*)] < =244 E [Dy (2, m(t))} :
Combining the two inequalities, we have the claim. O

Theorem 13 (Convergence of variance for n¥) = ©(t%)). Suppose that f is py strongly
convex with respect to Dy, and consider the homogeneous DSMD with learning rates n® =

2uit‘17 a € (0,1). Then for all t >ty

E [Dy(2*,2")] < tga (5.11)

where ty = “%‘l)ﬁ-‘ and C' = max(Dt§, %).
7
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Proof. We show the claim by induction on ¢ > t,. For ¢ = ty, we have by assumption on D,

E [Dy(z*,2%)] < D < t%
0

Now suppose by induction that E [D¢(x*, x(t))} < t% Then by Proposition ,

6 262 1
E [Dw(x*,x(t“ (1 - —) E [Dy(a*  al )} + el

8/11/130 #2c
] 0 C G260 1
te 8,u,u {2

. c N, L, GO
C(t+ 1) t te 8u3C
< ¢ ex ng 1 G -0
=re P 8uC '

To conclude, it sufﬁces to prove that the exponential term is less than one. By definition of
1
C, % — 6 < —£, thus the exponential term is less than one if 2 — 2% <0, ie. t > (%),
My t
which is true if ¢ 2 to. Therefore we have

C
(t+ 1)’

E [Dy (2", :E(Hl)ﬂ <

which completes the induction. O

We observe that when o = 1, the inequality % — % < 0 holds whenever # > 2. in which
case tg = 1, and we recover the O(}) bound of Shamir and Zhang [127] for the Euclidean
case with n® = /%ft

In fact, we can show that E [D¢(x*,x(t))] converges to 0 for any sequence of learning
rates such that n® — 0 and Y, n™ = oo

Lemma 9. Let (dY) be a sequence of non-negative numbers that satisfy the following in-
equality

dD < (1 = 1,)d® + T2,

for some I' > 0 and a positive decreasing sequence v, with ), v, = co. Then for all T with
vr <1, and allt > T,

dD < vl 4 dDem Sremrvr,
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Proof. Let T be fixed in N, and such that vy < 1. Then

A" _Twp < (1= 1)d® +Tv? — Ty
<(1- I/t)d(t) + Tvryy — Top since v; < vp

= (1 — ) (dY —Twp)
And since (1 — ;) > 0 for all ¢ > T', we have by induction on ¢t > T
dY —Tvp <TZL(1 = v)(dTD) — vpT)

And we conclude by bounding the product IT*_4(1 — v,) < Iihe ™ = ¢~ Xrrvr O

Combining Proposition |19/ and Lemma H we can take v, = fn(t) and [' = 2552 to obtain
z

2

E [Dy(a*,50)] <~y 4 De Eirurn®,

2pupey
for any ¢ > T such that u;m™) < 1. In particular, this proves that E [Dw(x*, x(t))} — 0.

5.6 Numerical examples

Figure 5.2: Example routing game network, with a weakly convex Rosenthal potential.

To illustrate the convergence results of this chapter, we consider a routing game example,
as defined in Section [2.3] on the network given in Figure [5.2] The game involves two popu-
lations of players, with origin nodes vy and v, respectively, and a common destination node
vy. The resulting Rosenthal potential function f (as defined in (2.7))) is not strongly convex.
To simulate the stochastic learning model, we add, to each path, a centered Gaussian noise
with standard deviation o, which results in stochastic loss vectors with a bounded second
moment. For the population dynamics, we implement the DSMD given by Algorithm 5 with
the smoothed KL divergence defined in Section in the appendix, and given by

T, + €
ya‘i‘e.

Dgr(x,y) = Z(ma +¢)ln

a
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Figure 5.3: Potential values f(x(")) — f*, averaged across 100 simulations (with a 1 standard
deviation in dotted lines), for different choices of learning rate sequences. The dashed lines
show the (¢~ minsmin(ak,1=ax) In ¢) rate predicted by Theorem

for a positive parameter ¢ > 0. When ¢ = 0, this reduces to the KL divergence, and the
mirror descent method reduces to the Hedge algorithm, as discussed in Section [B.6] However,
the KL divergence is not bounded on the simplex (Dky,(x,y) diverges when y, vanishes for a
in the support of x), which violates condition (i) in Assumption[3} Taking € > 0 ensures that
the Bregman divergence remains bounded on the simplex by Proposition 25 And although
the mirror descent update does not have a closed form solution, it can be computed
efficiently using the algorithms developed in Appendix |C| If the action set has size |A| = n,
then the solution can be computed in O(nlnn) time using a deterministic sorting method,
given in Algorithm [15] and in expected linear time using a randomized sorting method given
in Algorithm

The results of the simulations are given in Figure [5.3] in which we show, in log-log scale,
the potential values averaged over 100 realizations, for two different choices of (heteroge-
neous) learning rates. The empirical convergence rates observed in simulation are consistent
with those predicted by Theorem [10]
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Figure 5.4: Example routing game network, with a strongly convex Rosenthal potential.
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Figure 5.5: Sequences of mass distributions x,(:) (top) and noisy loss functions EA,(CT), averaged

across 100 simulations.

In addition to the convergence of E [ f(z")], Theoremprovides abound on E [Dy(z*, 2V)]
if the potential f is strongly convex and the learning rates are homogeneous. To illustrate
this result, we simulate the stochastic routing game on a second network, given in Figure[5.4]
for which the Rosenthal potential is strongly convex. We show in Figure the sequence
of mass distributions (z(™)) and noisy losses () averaged across 100 simulations. In expec-
tation z(7) converges to a Nash equilibrium, such that for each population, all paths with
positive mass have the same loss (see Definition . Finally, we show the sequence of Breg-
man divergence Dy (z*, 2®) in Figure . The empirical convergence rate is consistent with
the O(1/t) bound predicted by Theorem [13|
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Figure 5.6: Bregman divergence to equilibrium , averaged across 100 simulations. The dashed
line shows the O(¢t!) convergence rate predicted by Theorem .

Conclusion

The stochastic mirror descent method provides a broad family of methods for convex op-
timization and online learning in convex potential games. We showed that we can provide
convergence guarantees on the sequence of iterates (z(™), even in the heterogeneous model
in which different learning rates are used in the different subproblems in the mirror update.
This provides a powerful and flexible model of distributed learning, which is not only useful
for solving distributed learning problems, but can also be used as a tool to model, and per-

haps alter the decision dynamics of players who face an online learning problem, as we will
see in the final two chapters of this first part.



72

Chapter 6

Estimation of Learning Dynamics: On
Learning How Players Learn

The mirror descent dynamics developed in Chapter |5| provides a family of distributed algo-
rithms for solving convex optimization problems, as well as coupled online learning problems
in nonatomic convex potential games, as defined in Chapter 2 They provide convergence
guarantees even in the heterogeneous case in which different players use different sequences
of learning rates (77,(:) ), as long as these sequences have appropriate decay rates.

Besides prescribing dynamics for learning, the mirror descent method can be used as
a model to describe the behavior of a decision maker who faces an online learning problem.
Many cyber-physical systems have human decision makers who face online learning problems,
such as in transportation networks (drivers who make decisions on which path to take to
drive from their origin to their destination) and communication networks (routers who make
decisions on which path to route packets). In such systems, a central coordinator can be
responsible for actuating the system, for example by setting tolls or incentives to reduce
congestion [106], by allocating capacity on the network [74], or by routing a fraction of
the flow in order to reduce the total delay [120]. Thus, it is necessary for the system
coordinator to have a model of the player decisions. Such problems are usually solved by
assuming that the selfish players respond to the action of the coordinator by playing a Nash
equilibrium, and there is an extensive literature on mechanism design (see, e.g. [104] and
the references therein) and Stackelberg games (see [12] and the references therein), that
studies such problems, which in many cases are hard to solve (e.g., the Stackleberg routing
problem [120] is proved to be NP-hard).

In this chapter, we propose a different approach: We consider an online learning setting,
in which each player (or population) faces a sequential decision problem, and is assumed to
follow an online learning algorithm with unknown parameters. By observing the sequence of
decisions, the central coordinator can estimate these parameters to fit the model of decision
dynamics to the observations. More precisely, we will assume that each population follows the
distributed mirror descent dynamics of Algorithm |5, with a known Bregman divergence (the
KL divergence), but with unknown learning rates. We pose a simple problem of estimating
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the learning rates from observations from the model, and show that the estimation problem
is convex in the case of the KL divergence.

In order to demonstrate our approach, and to evaluate whether the mirror descent dy-
namics are descriptive of actual decision dynamics, we developed a web application that
allows players to participate in a distributed, online routing game, as defined in Section [2.3]
When players log in, they are assigned an origin and destination on a shared network. They
can choose, at each iteration, a distribution over their available routes, and each player seeks
to minimize her own cost. We collect a data set using this platform, then apply the proposed
method to estimate the learning rates of each player. We observe in particular that after
an exploration phase, the joint decision of the players remains within a small distance of
the set of Nash equilibria. We also use the estimated model parameters to predict future
mass distributions, and compare our predictions to the actual distributions, showing that
the online learning model can be used as a predictive model over short horizons.

6.1 Learning rate estimation in Hedge dynamics

Consider the distributed mirror descent model proposed in Algorithm [5 in which K pop-
ulations of players face an online learning problem. At iteration ¢, population k£ has mass
distribution m,(f) € A“% observes a loss vector Kl(f), and updates its mass distribution by
following the mirror descent update . We assume that we can observe the sequence
of decisions (x,(ct)) and the sequence of loss functions (ég)). These quantities are effectively
measured in our experimental setting using the routing game web application, and can be
measured on transportation networks using many existing traffic monitoring and forecasting
systems, such as the Mobile Millennium system [13] or the Grenoble Traffic Lab [37].

(t)
k

Given the current mass distribution x;’ and the current loss vector E,(f), the mirror descent

model prescribes that the next distribution ZL‘EJ—H) is given by the update equation (/5.3).
We assume that the Bregman divergence D, is given by the KL divergence, but that the
sequence of learning rates (77,(:)) is an unknown, positive decreasing sequence. The learning
model under Hedge dynamics is summarized in Algorithm [6] below.

Therefore, we can define a predictive model igﬂ)(n), parameterized by a non-negative

learning rate 7, defined as follows:

1
:i“,(fﬂ)(n) = arg min <€§:), .CEk> + EDKL(:U;C, xg)). (6.1)

wkEAAk

The solution of the mirror descent update (6.1]) is given by the Hedge update rule (see

Section in the appendix),
(t)
et
e g = T T (62

t
Z ()
® —ne,

where Z,Ef)(n) is the normalization constant Z,ff') (1) =D 0 Tp e
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Algorithm 6 Distributed Hedge algorithm with learning rates (nl(f)).

1: fort € N do
2:  foreach k€ {1,...,K} do

3: Observe E,(f)
4: Update
1
x,(:H) = arg min <€§:), xk> + WDKL(JC;“ x,(f))
xkEA'Ak nk
o0
- 0,0
Za’ I’(:,)a’e T ekﬂ/ a€Ay
5. end for
6: end for
Given the next mass distribution :E,(:H), we can measure the discrepancy between the

model prediction and the observation using the KL divergence between :c,(:H) and 21 (n).
Thus, let
di(n) = D (™, 3V () (6.3)

Estimating a single term of the learning rates sequence

Fix ¢, and suppose that we are given the tuple of observations (x,(f), K,Ef), :L’,(f+1)). We define

the estimate of the learning rate ﬁ,(:) to be the minimizer of the KL divergence,

771(:) = arg min dg) (n). (6.4)
720

Note that we impose the constraint that » > 0. This is an assumption of the model,
and in our experiments, this turns out to be an important constraint, as we will see that
d,gt) (n) can, in some rare cases, be minimal for negative values of 7 if the problem were
solved without the non-negativity constraint. This corresponds to rare instances in which
the players exhibit irrational behavior, by shifting probability mass to actions with higher
losses, and will be further discussed in Section [6.3] In the next theorem, we show that the
minimization problem is convex.

Theorem 14. d,(f) (n) :== DKL(:(:,(:H),:?:,(:H)(U)) is a convex function of n, and its gradient
with respect to n is given by

d

t t t+1 ~(t+1
= (60 ).
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Proof. Given the expression (6.2) of & Hl)(n), we can explicitly compute

di(n) = DKL<x,$“>, #(m)

(t+1)
(t+1 Ly,
- Z Tk t+1)
ac Ay ka (77)
(t+1)
t+1) Ly,
= Z :E( ( () ka ( ))
a€A Ty, ,a
— Dy (““)“U+n@“ )+ z (), (6.5)

where we used the explicit form of = 1t+1)(n) in the third equality, and the fact that
> 2" = 1 in the last equality. In thls expression, the first term does not depend on 7, the

a“k,a

®
second term is linear in 7, and the last term is the function n — In Z ,i )( )=In), x(t) "k

which is known to be convex in 7 (see for example Section 3.1.5 in [30]). Therefore d,i)( ) is
convex, and its gradient can be obtained by differentiating each term

d (1)
4 4o 0 e\ a1
od () = (G0 )
g Zy"(n)
® ) —nelh
_ [0 ) >a U aTr e e
=\G%hme )t ®
Zy,"(n)
({00 - (10,70,
which proves the claim. O

On the support of the distributions

According to the entropy update and its explicit solution , the support of :%,(:H) (n) always
coincides with the support of x kt (due to the multiplicative form of the Hedge solution). As a

consequence, if we observe a tuple (xk), Ké), (t+1)) such that some a is in the support of z,, (t+1)
but not in the support of xk , the KL divergence Dy (z (tﬂ), y?:,(fﬂ)(n)) is infinite for all 7,

since support(z*1)) ¢ support (&} pl )( )). This is problematic, as the estimation problem is
ill-posed in such cases (which did occur in the routing game experiment). However, observe
that from Equation (6.5)), the KL divergence can be decomposed into two terms:

d () = D (o, 0) 0 (00 2 ) + 0 20 (),
where the first term, Dgp(x ,(f+ ) x,(:)) may be infinite (if support(z(+1) ¢ support(x,(f))),
but does not depend on 7, while the second term, n <€( ) (t+1)> +InZ; (t )(77) is finite for all
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values of 7 > 0, regardless of the supports of the observations. Thus, instead of minimizing
dl(f) (1), we can minimize

@) =0 (40, 2™+ 2" (),

and the problem becomes well-posed regardless of the supports.

Estimating the decay rate of the learning rate sequence

In the previous section, we proposed a method to estimate a single term of the learning
rate sequence. One can of course repeat this procedure at every iteration, thus generating a
sequence of estimated learning rates. However, the resulting sequence may not be decreasing.
In order to be consistent with the assumptions of the mirror descent model, we can assume
a parameterized sequence of learning rates, 7],(:) = Ot~ %, with parameters 6, > 0 and
ay € (0,1). This polynomial decay rate is motivated by the convergence guarantees provided
in Chapter [5] in Theorem [I3] and Theorem [10}
Given the observations (x,(c)) and (E )) we can define the cumulative divergence,

DY (a, 0) : Zd (Bp7%),

where each term of the sum is as defined in Equation (6.3), then estimate (ay, 6;) by solving
the problem
(ag,0;) = argmin D,(:)(ozk, Or). (6.6)
ar€(0,1),05>0
This problem is non-convex in general, however, since it is low-dimensional (two parameters
to estimate), it can be solved approximately using non-convex optimization techniques.

6.2 The routing game web application

We have implemented a web application based on the routing game, using the Python Django
Framework. The code is available on Github: www.github.com/walidk/routing. The ap-
plication has been deployed on the Heroku service at the url: routing-game.herokuapp.com.
In this section, we will describe the architecture of the web application.

Web Application Architecture

The web application implements the repeated routing game described in Section 2.3} In
our implementation, each player represents a population k, and chooses a mass distribution
xff) € A% at each iteration.

The general architecture of the system is summarized in Figure [6.1 It consists of two

different client interfaces, that are used respectively by the administrator of the game and
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Figure 6.1: General architecture of the system. The administrator sets up the game. During
iteration t, the clients input the current values of the distributions :c,(f) and send them to the
server. At the end of the iteration, the server uses these values to compute the loss functions
E,(:) and sends them back to the clients.

the players, shown in Figures [6.2] and [6.3, and a backend server that is responsible for
collecting inputs from the clients, updating the state of the game, then broadcasting current
information to each player.

Admin Interface

The administrator can set up the game using the admin interface shown in Figure by:

1. Creating a graph and defining the cost functions on each edge.

2. Creating player models. A player model is defined by its origin, destination and total
mass. When a player connects to the game, she is randomly assigned to one of the
player models (note that multiple players can have the same player model).

3. Setting additional parameters of the game, such as the total number of iterations and
the duration of each iteration.

Once the game is set up, players can log in to the client interface. During the game, the
administrator can monitor, for each player, her expected cost and the learning rate estimates,
computed as described in Section [6.3]
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Figure 6.2: Admin interface

Player Interface

Figure [6.3] shows a screenshot of the client interface for the players. The table is the main
element of the graphical user interface, and can be used by the player to set weights on
the different paths, using the sliders. The weights determine the mass distribution x,(f) for

the current iteration. The table also shows the previous mass distribution (a:,(:_l)), and the
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Figure 6.3: User interface

previous costs (6,(571)). Clicking a path on the table will also highlight that path on the
graph. The bottom charts show the full history of distributions x,(f), costs K,(CT), and expected

](CT)’ g](c‘r)

costs given by the inner product <x >, for 7 < t. The top navigation bar shows the

time left until the end of the current iteration, and the number of iterations left until the
end of the game.

At the end of the iteration, the server uses the values of x,(f) for all players k € {1,..., K}
to compute the costs £ (z), then sends this information to the clients, which then update
the charts and the table with the last value of the cost.



CHAPTER 6. ESTIMATION OF LEARNING DYNAMICS: ON LEARNING HOW
PLAYERS LEARN 80

6.3 Experimental results
To illustrate the methods proposed in this chapter, we ran the experiment on the example

network (shown in Figure , with 10 anonymous players. The game is played over a
horizon of 25 iterations. The edge cost functions are taken to be linear increasing.

Figure 6.4: Network of the routing game experiment.
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Figure 6.5: Exploration and convergence to equilibrium. The left figure shows the distance

to equilibrium, measured by the Rosenthal potential f(z¥) — f* as a function of itera-
tion t. The right figure shows the costs of each player, normalized by the equilibrium costs

(2. 40) / (a3, ).

Convergence to equilibrium

First, we evaluate whether the distributed decisions of the players converge to the set of
Nash equilibria of the game. The distance to equilibrium can be measured simply by the
Rosenthal potential defined in (2.7)). Figure|6.5/shows the potential f(z*)) — f* as a function
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Figure 6.6: Sample mass distributions (x,(:) ) for two different players.

of iteration ¢, as well as the corresponding costs <x,(f), E,(f)> of the players, normalized by the

to one). Figure shows the mass distributions x,(f) for two different players. We can
observe that at the beginning of the game, there is an exploration phase in which players
tend to make aggressive adjustments in their distributions (observe the oscillations in the
early iterations on Figure , while during later turns, the joint distribution z® remains
close to equilibrium (as measured by the potential function f on Figure . However,
joint distribution moves away from equilibrium close to the end of the game, on iteration 22
(due to a player performing an aggressive update), which results in a sharp increase in
the potential value, and we can observe that the players react to this sudden change by
significantly changing their distribution during the next iteration.

equilibrium costs ﬁ;,ﬁk(x*» (so that, close to equilibrium, the normalized costs are close

Learning rate estimation

We now apply the methods proposed in Section to estimate the learning rates of each
player, then use the estimated rates to predict the decision of the players over a short horizon.

First, we solve Problem to estimate the learning rate sequence one term at a time.
Figure|6.7|compares the estimated distributions i,(fﬂ) (77,8)), to the actual distributions x,(fﬂ)
for one of the players. The figure shows that the estimated distributions are close to the
actual distributions, which indicates that the mirror descent model is expressive enough to
describe the observed behavior of the players.

In addition to estimating one term of the learning rate sequence at a time, we also use

the parameterized form 77,(:) = Ot~ and estimate 0 and «y by solving problem ([6.6)).

’
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Figure 6.7: Comparison of the distributions @S) of the estimated model to the actual distri-
butions x,(f), for player k£ = 2. Each subplot corresponds to a path.

Predicting future mass distributions

We discuss one possible application of the proposed estimation problem. Once we have
computed an estimate of the learning rate sequence, we can propagate the model forward in
order to predict the distributions of the players for the next time step. More precisely, if we
have computed, at iteration ¢y, an estimate of the learning rate sequence given by (ﬁkt)), the
mirror descent model predicts that the mass distributions obey the update rule

#tot+) — argmin <xk,gk<93(to+i))> + DKL(!Ek,fc,(fOH)).
IkEAAk

So starting from the current observation () = z(0) we can propagate the model forward,
over a horizon h, by inductively applying the update rule.

Here, we assume that we have an estimate of the entire sequence of learning rates, not
just terms up to ¢y (we need the future terms ﬁ,(:()“) to be able to propagate the model). To

obtain such an estimate in our experiment, we tested the following simple methods:

1. For the single term estimates (obtained by solving problem (6.4))), we use a stationary

sequence, 7720“, either equal to the last estimate 77,(:0) , or the average of the last NV

. 1 N—1 ~(to—n)
estimates 5 > . o 7, -
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2. For the parameterized model (obtained by solving problem (6.6])), we can simply use
the current estimate of 0, oy, and set ﬁ,(:(’ﬂ) = Or(to + 7).

We numerically test these methods to predict the mass distributions of the players over a
short horizon h € {1,...,7}. We evaluate each method by computing the average Bregman

divergence (per player and per iteration) between the predicted distribution a%,(fﬁh) and the
(to+h)

actual distribution x,, , l.e.
| X 1 tmax—1
h) a(to+h
T >, D),
k=1 max — ‘min t0=tmin

where ty,;, is taken to be equal to 5 (so that there is always a minimal history of observations
to estimate the parameters). The results are given in Figure . One can observe that
for all methods, as the horizon h increases, the average divergence tends to increase, since
the modeling errors propagate and the quality of the predictions degrade. The best overall
performance is obtained with the parameterized model 77,(:) = 6t~ although for h = 1,
the best prediction is achieved using the single term estimates (since this model has as many
parameters as time steps, it allows for a much better fit of the observed data, but has poor
generalization performance, i.e. its prediction quickly degrades beyond the first iteration).

0.06

I
*—e moving average
— parameterized
0.05 4 — lastterm i

______________

0.04

0.03

0.02

Average Divergence

0.01

0.00 I I I I I

Horizon

Figure 6.8: Average Bregman divergence per player and per iteration, between the predicted
distributions i:,gt“h) and the actual distributions x,(fﬁh), as a function of the prediction

horizon h.

Irrational updates

It was interesting and perhaps surprising to observe that when estimating learning rates one
term at a time, in some rare instances, the objective d,(f)(n), as defined in Equation ([6.4)),



CHAPTER 6. ESTIMATION OF LEARNING DYNAMICS: ON LEARNING HOW
PLAYERS LEARN 84

Path x(t) g(t) x(t+1)
P1 0.197 | 2.349 | 0.251
P2 0.314 | 1.856 | 0.285

2 | ps | 0.266 | 2.435 | 0.242
' I 1 ps | 0.223 | 2.575 | 0.222

irrational updates

players

Figure 6.9: Histogram of irrational updates (left), corresponding to iterations ¢ such that the

inner product <€,(f), x,(fﬂ) — x,(:)> > 0, which means that the player shifts probability mass

to paths with higher costs, which is hard to predict by the model. Example of an irrational
update (right), corresponding to iteration ¢t = 2 for one of the players. In particular, this
player decreased the mass on path py even though this is the best path).

is minimal at a negative 7 (if we ignore the constraint > 0), which means that the player
shifted the probability mass towards paths with higher costs. Fig. shows the histogram
of the number of irrational updates. In particular, 50% of the players performed at least
one irrational update, and a total of 10 irrational updates were observed across all players
(corresponding to 4.17% of the total number of updates).

Such behavior is hard to interpret or justify (at least within our framework which models
players as sequential decision makers). A negative learning rate does not make sense in
our model, since the mirror descent update , would encourage shifting mass towards
paths with higher cost. Thus we add the constraint 7 > 0 when solving the estimation

problem (6.4)).

Conclusion

We proposed a problem of learning rate estimation in the mirror descent model, given a
sequence of observations of player decisions, and we tested this method on data collected
from our routing game experiment. The experimental results suggest that the mirror descent
model can be a good descriptive model of player behavior, although in some rare cases, a
player decision can be hard to model (e.g. when a player increases the probability mass on
previously bad routes).
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Chapter 7

Optimal Control Under Hedge
Dynamics

As we discussed in the previous chapter, if we consider a system with decision makers who
face an online learning problem, we can model their decision dynamics using the mirror
descent method studied in Chapter We considered in particular the Hedge dynamics
(i.e. mirror descent with the KL divergence) with unknown learning rates, and showed that
given a sequence of observations of the player decisions and their losses, we can estimate the
learning rates, and tested the method experimentally.

In this chapter, we consider the online learning model of the nonatomic potential game
defined in Chapter[2] We suppose that a central authority can control a fraction of the popu-
lation mass, by deciding their mass distributions, and seeks to improve an objective function
over a given horizon, while the remaining mass obeys an online learning algorithm, given by
the Hedge dynamics, with known learning rates (these learning rates can be estimated using
the methods discussed in the previous chapter).

This results in a non convex, optimal control problem under Hedge dynamics, defined in
Section We propose two different methods for approximately solving this problem: The
first method, presented in Section is a greedy algorithm, which sequentially minimizes
one term of the objective at a time. In the second method, presented in Section [7.3] we
use the adjoint method [87] 56] to perform a local search using the gradient of the objective
function by locally linearizing the Hedge constraints. In particular, we derive the adjoint
system equations of the Hedge dynamics and show that they can be solved efficiently.

We illustrate these methods on the routing game example from Chapter We first
present a simple example on a parallel network in Section [7.4], and discuss the qualitative
behavior of each method. Finally, we perform a test on a model of the Los Angeles highway
network in Section [7.5, and show the improvement in the total travel time that could be
achieved, for various proportions of controlled traffic.
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Optimal control problems in routing and transportation

In the one-shot routing game, the partial control problem (controlling a fraction of the flow
while the remaining flow responds selfishly), is known as the Stackelberg routing problem,
and was proved to be NP-hard even in the simple case of parallel networks with linear
latencies [120]. Stackelberg equilibria provide a theoretical framework for understanding the
inefficiencies of a network and how much they can be alleviated, but they do not capture
route choice dynamics.

In other approaches, e.g. [31, 109, [114], one can model and control the dynamics of
traffic, by using a macroscopic model based on conservation laws, such as the cell transmission
model, that can be obtained as a Godunov discretization of a PDE modeling traffic dynamics
known as the Lighthill-Whitham-Richards equation, due to [86,|115], and studied for example
in [55]. Our approach is different in that we do not explicitly model the flow dynamics (time
scale of minutes or seconds). Instead, we model route choice dynamics (time scale of days),
by modeling the players as sequential decision makers. We consider the Hedge dynamics in
particular, since it is an instance of both the AREP class and the mirror descent class for
which we provided convergence guarantees, and since we have a method for estimating the
learning rates for the Hedge algorithm, as discussed in Chapter [0]

7.1 Problem formulation

Consider the model of nonatomic, convex potential games defined in Chapter [2, given by K

populations, Sy, ..., Sk, such that each population Sy has an action set Ay. The loss vector
of population &y is given by a loss function

gk A — R'Ak',
which is a function of the joint mass distribution z € A = A4 x ... x A% defined in

Equation (2.1).

Suppose that a central controller has the task of assigning the actions of a subset of
the population Sk, and the rest follows an online learning algorithm given by the Hedge
dynamics described in Algorithm [6] with known learning rates. In other words, we partition
S = U, U X, where U, is the subset of the population controlled by the coordinator, and X},
is the subset which follows the Hedge dynamics. Let u;, € A% denote the mass distribution
of sub-population U, and z;, € A“** the mass distribution of sub-population Xj. Then the
total mass distribution of & is simply

P m(Z/{k)uk + m(?(k)xk
’ m(S)

and letting & = (1, ..., Tx), we can redefine the loss vector as a function of (x,u) as follows:
Ot A X A — RA
(2, 1) — O ().

c A
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Now suppose that the coordinator seeks to minimize an objective function over a fixed
horizon T', given by

J: AT x AT 5 R
. . ‘ ‘ (7.1)
(x(l.T)’u(l.T)) s J(:L‘(l'T), u(l.T)) _ Z J(t) (x(t),u(t)).
t=1

where (!T) denotes the tuple (z(V);<;<7, and similarly for «*?). Each function J® is
assumed to be jointly convex on A x A.

The Hedge dynamics for populations X, ..., Xk is given by Algorithm [ with a known
initial distribution (" = 2™ and known learning rat (1) ()

= : g rates (1, ~’). The loss vectors ¢, are

given by the loss functions defined above

E,(:) = L (2, u®).

This defines an optimal control problem, in which one seeks to minimize the objective
function subject to the Hedge dynamics, summarized below:

T
pinimize 310150, o
t=1
subject to u® € AV1 <t <T, (7.3)
x(l) — minit,
(t+1) :E](j)ae*m(f)@k,a(u(ﬂ,x(t))
e 2 ’x(t) o=l () 2®) (7.5)
a’' €A, Vk,a s ’

We refer to u® as the control vectors or control distributions, and () as the selfish distri-
butions (since they correspond to the mass distributions of selfish online learners).

This problem is non-convex in general, due to the equality constraints corresponding
to the Hedge dynamics. However, we propose two methods for efficiently finding approximate
solutions to this optimal control problem.

Example: Minimizing total delay in the routing game

Although the proposed methods apply to general cost functions J®, we will focus, in our
numerical examples, on minimizing total delay in the routing game defined in Section [2.3]
In this example, the action set of each population is a set of paths connecting a common
origin o; to a common destination d; on a given graph. The loss vector corresponds to the
delays on the paths, and are given by Equation (2.6)). The total delay on the network is

JO (2, u) = Z <m(LI;€)u;C + m( Xy ) xy, ng)> , (7.6)
k=1

where m(Uy,)ug, + m(Xy )z is the vector of total mass along paths.
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7.2 A greedy method

Optimizing terms successively in the cost function

In this method, we minimize the objective function one term at a time, given the state on the
previous time steps. That is, we minimize J® (2 u®) given the state and control vectors
(2, u™) <<, 1. Since the state at time ¢ — 1 completely determines *® by the Hedge
update equation , the subproblem becomes

minimize,ea JOH (20 ). (7.7)

In words, the controller anticipates the move of the selfish players and myopically optimizes
the objective on the next iteration. This is a convex optimization problem since J® is convex
by assumption, so it can be solved using mirror descent on the product of simplices A. The
greedy algorithm can then be summarized as follows:

Algorithm 7 Greedy method for optimal control under Hedge dynamics

1: Input: 2™ and n,(glzT) are given.

9. .I'(l) — lL'init.

3: for each time step 1 <t < T do

4: Solve u®® = argmin, o J® (2, u).

5. Compute zt1) according to Equation (7.5).
6: end for

7. return u("7),

Computational complexity

Since the optimal control problem is non-convex in general, we cannot provide guarantees
on convergence to a desired precision. However, studying the computational complexity of
a single iteration, as a function of the problem size, can be useful in evaluating how well the
method scales. Therefore, in analyzing the computational complexity of the two proposed
methods, we will only consider the dependence on the size of the problem |A|, and not on
the desired precision e.

The greedy method solves T convex optimization problems on the product of simplices A,
where each problem is followed by a Hedge update of the mass distribution. Each iteration
of mirror descent requires computing the gradient of the objective J® then updating the
distribution u® which has a linear cost O(|.Ay|). Thus the total complexity of each problem
is O(|Ax|), and the total complexity of the greedy method is O(T S, | Ax|).
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7.3 The adjoint method

In this section, we propose to use the adjoint method to find a local minimum of the non-
convex problem ([7.2)). First, we can reformulate problem ([7.2)) as follows:

minimize J(x,u)
subject to H(z,u) =0 (7.8)
TE X A u€ XA

where we used z to denote the entire tuple 2(*7) (we drop the time indices to simplify
notation), and we define a function H on RNT x RN with values in RNT, to encode the
constraints on the selfish distributions x, where N = ™% | A, ] is the total number of actions.
The constraint function H can be obtained simply from the initial condition constraint
and the Hedge update equation , as follows: Vk,Va € Ay,

Hyo(w,u) = il — oy, (7.9)
t t xgctil)e_n’(ﬁtil)gk,a(x(tfl)7u(t—1))
oo w) = 230y = = for2<t<T.  (7.10)
s ’ e A {L‘](gt_/l)e*nk' Zk,a/(m(t_l)m(t—l))
@ k “k,a

The adjoint method is a general local search method for solving optimal control problems
under non-linear constraints, of the form given in problem ([7.8]). It is derived using the sta-
tionarity conditions of Pontryagin’s maximum principle. For an introduction to the adjoint
method in optimal control, see for example [48| 110] and references therein. A complete
exposition of the adjoint method is beyond the scope of this chapter, but we give below a
formal derivation and intuitive interpretation of the adjoint system equations.

Since the control distributions v entirely determine the selfish distributions z(*7), let
us assume, for the sake of discussion, that z(!'7) can be written as 27 = X (u¥")) for some
differentiable function X : xZ_ A — xL,A. The optimal control problem would then be
equivalent to minimizing the function J(X (u(*T)), u*1)) over the feasible set xZ_; A, and
we can use the mirror descent algorithm to solve this problem, since the constraint set is a
product of simplices. To apply mirror descent, we need to compute, at each iteration, the
gradient of the function u — J(X(u),u), which we denote V,J(z,u). Using the chain rule,
we have the following expression of the gradient

VuJ(z,u) = g—i(x,u)VuX(u) + g—i(x, u), (7.11)

where the Jacobian term V, X (u), which represents the dependence of ) on the control
uT) can be expensive to compute. The adjoint method provides a different approach to
computing the gradient (7.11)) without explicitly computing the Jacobian V, X (u): Since
H(X(u),u) =0, we have, taking derivatives,

0OH

—(z,u)V, X (u) + 8—H

e 50 (x,u) =0. (7.12)
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Algorithm 8 Adjoint method for optimal control under Hedge dynamics
1: Initialize i = 0, ul”) € x| A%(a, F), and z[% by solving H ([, u[?) = 0.

: while stopping criterion not satisfied do

3:  Solve the adjoint system

[%H( il H)]T)\[i} :_{‘”( il m)r‘

T ozl

[\

4:  Compute the gradient

AT iy MHZJ( 0N

li] — J [l]
g Vau ( ) w w

5. Perform one mirror descent step in the direction —gll: Vk, ¥t € {1,...,T}, Va € Ay,

u,(;)a[”” x u,(m exp(—Lig, t)[z ).

Update zl"*1 by solving H (z+1, 4li+1) = 0.
Update 7 < i + 1.

end while

return Control solution ulest]

Therefore if we let A be a solution to the system

OH g aJ g
[8x (z, u)] A= — L‘)—I(x,u)} , (7.13)
called the adjoint system, then
0H OH aJ
T _ T
A au( u) = —\ e — (2, u)V X (u) = e —(z,u) VX (u),

where we used ([7.12) in the first equality and ([7.13)) in the second. Plugging this expression
in , we obtain the following expression of the gradient

0H aJ
Vod(z,u) = AT =——(z,u) + —(z,u). 7.14
(,0) = N5 0, 0) + (2, ) (714

We apply the adjoint method as follows: at each iteration i, we solves the adjoint system
equations ([7.13) and compute the gradient using (7.14), then perform one mirror descent
step in the direction of the gradient. This is summarized in Algorithm [§, where we use

the superscript [i] to denote step i in the algorithm, not to be confused with superscript



CHAPTER 7. OPTIMAL CONTROL UNDER HEDGE DYNAMICS 91

(t), which denotes time ¢ (corresponding to one term of the objective function).

In the

experiments, we can run the method from multiple random initial points u/¥ and keep the

best local minimum.

Derivation of the adjoint system equations for the Hedge

dynamics

In this section, we explicitly derive, for the Hedge learning dynamics, the adjoint system
equations (7.13)). First, since H® only depends on #®, (=1 and u~Y, we have for all

k:a k:/a ac Ak) a € Ak’;

oH"
o (@

u) =0
axk’,a’

=0

Then, to simplify the derivation, let A¢~1 B{-
(=1 with respect to z(¢—1 (respectlvely u( -1

8€k,a (l'(t_

Vs & {t —1,t},

Vs #t—1.

) denote the Jacobian of the loss function
)) so that

Dy t-D)

(t=1)  _
Ak:,k:’,a,a’ -

aﬁm ($(t_

83:5,_;)

D, =)

Y

(t-1)  _
Bk,k/,a,a’ -

and let

(t—1)
wk,a

W}gt 1)

= exp(—1),

Zw(tl.

a€Ag

8u,(€t/_ap

)

(Dl (a0, ),

Using this notation, and the Kronecker delta 6f = 1 if k = k&’ and 0 otherwise, we have

t (t—1) _1). (t=1) 4(t=1)
6ng,21 . w(t—l) [x(t—l)n(t—l) (Ak,k/,a,a/ ZbeAk xk,b(t l)wkz,b Ak,k/,b,a/>
t—1)  Vka ka 'k t—1) t—1
ozl ) Wi (W12
(t-1)
/ Wy o 1
o gl —5a7a,—t_1]. (7.15)
W
And
t t—1 t 1 t—1
8H,£3L _ (t-1) (-1) (t—1) Blg,k’,g,a’ ZbeA xkb ) I(cb )Bl(c,k',zz,a' 716
gD ka Tha =1 (t=1)y2 ' (7.16)
Up af Wy W)
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Complexity analysis

The method performs a mirror descent on the product of simplices x_;A. Now, each gra-
dient evaluation requires solving the adjoint system (7.13]) then using the expression (|7.14])
to compute the full gradient. One gradient evaluation thus requires calculating the partial

derivatives 2L (z,u), 22 (z,u) € R"", and 22 (z,u), 2 (z,u) € RVTNT then solving the ad-

joint system for A € RNT. Since the cost function J® at time-step ¢ only depends on
2 and u", the matrix 22 (z, u) is banded lower-triangular, and contains O(T'N*?) non-zero
terms. Therefore solving the adjoint system can be done in O(T'N?) using Gaussian elimi-
nation, as discussed for example in [30] Appendix C-2. Therefore, the total computational
complexity of the adjoint method scales as O (T'N?). It is linear in T similarly to the greedy

method, but scales quadratically in the number of actions, V.

7.4 Optimal routing on the Pigou network

ci(p1) =1

&) (¢2) = 2¢

Figure 7.1: Pigou network used in the numerical experiment.

To illustrate the qualitative difference between the greedy and the adjoint solutions, we
consider a simple example known as the Pigou network, given in Figure Consider a
single population of players &;, with total mass m(S;) = 1, and with two paths connecting
the origin to the destination, each consisting of a single edge. The congestion function on the
top edge is constant, ¢;(¢1) = 1, and the congestion function on the second edge is linear,
02(¢2) = 2¢s.

This routing game has a unique Nash equilibrium, given by zN*" = (1 1) (under this
equilibrium, both edges have the same loss). It can be obtained by minimizing the Rosenthal
potential function defined in (2.7]), which in this case is given by

flx) = /Oxl c1(u)du + /:2 o) = 7y + 22 = 21 + (1 — 1),

which is minimal at #; = 5. The total delay of the network is

(x,l(z)) = 21 + 2953 =z +2(1 — xl)z,
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which is minimal at z(°¢ia) = Gp %), usually referred to as the social optimum of the routing
game, since it minimizes the total (social) cost across the entire population (but z*°9? is
clearly not a Nash equilibrium).

Now suppose that a coordinator controls a fraction « of the total mass, and let u be the
mass distribution of the controlled population, and x that of the selfish mass. Then the total

delay of the network, defined in (7.6)), is given by
J(u,z) = auy + (1 — a)zy + 2[aug + (1 — a)zs).

The particularity of this network is that if we consider the Stackelberg game, in which
the controller chooses u, and the rest of the population plays a Nash equilibrium z induced
by u, no Stackelberg strategy can improve the total delay if o < % Indeed, any allocation
u will induce the same total mass distribution au + (1 — «)z, equal to (3,3). So for the
one-shot game, the total delay at equilibrium cannot be improved. However, in our online
learning model, one may take advantage of the learning dynamics of the selfish population
to reduce the cost on a finite horizon.

We assume that the selfish population obeys the Hedge dynamics, starting from the

uniform distribution, and with learning rates nlt) = \/% Without control (i.e. o = 0), the
selfish distribution is stationary, () = (%, %) for all £, since it starts at the Nash equilibrium.
We simulate the greedy method and the adjoint method on a horizon 1" = 300, with o = %
The value of the total delay obtained for each solution is given in the table below, where we
compare the solutions of the greedy method and the adjoint method to the selfish solution
(obtained by setting o = 0, i.e. we simply let the selfish population follow the Hedge
dynamics), and the social optimum, obtained by setting & = 1, (i.e. we control the entire

population).

Jsocial Jgreedy Jad joint Jselﬁsh

262.5 | 291.7 | 283.0 | 300.0

The greedy and the adjoint solutions are illustrated in Figure and are quite different
qualitatively: The greedy solution assigns all the controlled flow u® to the upper path for
all £, since this is the best myopic decision at any time (while the selfish mass keeps shifting
to the second path). The adjoint solution, however, first allocates mass u® to the lower
path, which results in a decrease of the selfish mass on that path. Then, u® is moved to the
upper path, which results in decreasing the cost on the lower path.

The per-time-step costs J® for both solutions are given in Figure , where we can
observe that the adjoint solution sacrifices the cost on the first few time-steps for a better
cost on later time steps. In particular, this example illustrates the limitations of the greedy
approach, since, by definition, it does not anticipate the dynamics of the selfish population
over several time steps.
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(b) Adjoint solution.

Figure 7.2: Control solution on the Pigou network. Controlled mass u®) (top), selfish mass
+® (middle) and corresponding path losses £ = ¢(au® + (1 — a)z®) (bottom). The green
lines correspond to the top path, and the blue lines to the bottom path. The dashed lines

show the social optimum z%°%! = (1, 3).
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Figure 7.3: Profile of network delays J® over time, induced by adjoint solution (left) and
the greedy solution (right). The dashed line shows the cost of the social optimum.
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Figure 7.4: Los Angeles highway network and its graph model.

7.5 Numerical experiment on the Los Angeles
highway network

In this section, we consider a model of the Los Angeles highway road network, used in [133],
and illustrated in Figure [7.4l The network topology is obtained from OpenStreetMap data,
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by keeping highways that contain five lanes or more. We consider K = 42 origin-destination
pairs, illustrated in Figure , for the following destinations: Hollywood (node 5), Santa
Monica (node 20), Central L.A. (node 22). The congestion functions are those estimated by
the Bureau of Public Roads for a network in quasi-static equilibrium [133]. More precisely,
the congestion function is assumed to be of the form c.(¢e) = d.D(¢e/E.), where D(x) =
1+0.152*, ¢, is the edge mass, d, a minimal delay on the edge, and &, is called the capacity
on edge e. The simulations are run with a time horizon 7" = 20, learning rates 77](:) = \/%, with
values of o € {.1,.3,.5,.7,.9,1}. The results are given in Figure [7.6] and discussed bellow.
In addition to the adjoint method described in Section [7.3] which uses mirror descent with
a fixed sequence of learning rates (3;), we also implement a version of the adjoint method
with backtracking line search, which uses the Armijo rule to set (;.

Destination: 20

Destination: 5 Destination: 22

Figure 7.5: Selected origins (blue) and destinations (red) on the Los Angeles highway net-
work.

Effect of increasing control

First, we observe that increasing the control parameter « results in a decrease in the total
delay, and for higher values of «, the value of the objective becomes close to that of the
social optimum. Although intuitive, this cannot be guaranteed in general, since the problem
is non-convex for all « strictly between 0 and 1, so the problem may converge to a worse
local minimum for a lower value of a.
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Figure 7.6: Total delay J (a:[i],u[i}), as a function of iteration number i, for the proposed
methods, with different control proportion a. The red solid and dotted lines represent,
respectively, the social optimum (o = 1) and the selfish response without control (o = 0).

Numerical Results for a = 0.1

We now have a more detailed look at the performance of each method with a fixed a = 0.1.
The values of the objective function for each method are reported in the following table,
and the average delay per vehicle per day is reported as a function of iteration number in

Figure
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Jsocial Jgreedy Jadjoint Jad joint_ls Jselﬁsh

254 | 29.0 28.7 32.0 36.7

We observe that most of the methods do not guarantee a decrease in the value of the
objective from one iteration to the next, except the adjoint method with line search, which,
by definition, searches for a step size which guarantees a descent (by Armijo’s rule). Nev-
ertheless, the adjoint method without line search performs best, and converges to a local
minimum with lower objective value than that with line search. This may be a result of line
search being too conservative: Requiring the Armijo rule to be satisfied at each iteration
may prevent the method from exploring the search space. The greedy method performs
surprisingly well, and is within 3% of the (normalized) objective value of the best method.
The convex penalization is the worst performing among all methods, although it still results
in a 38% decrease in the distance to social optimum. Finally, it is worth observing that even
when controlling a fraction of the population as small as o = 0.1, the improvement in the
total delay can be significant (70% reduction in the distance to social optimum).

7.6 Conclusion

In the first part of the thesis, we studied decision dynamics for online learning in nonatomic
convex potential games. We studied several classes of dynamics using different techniques,
each leading to different convergence guarantees of the sequence of mass distributions (z(7))
to the set of Nash equilibria, i.e. the set of minimizers of the potential function. We first
showed that algorithms with sublinear regret guarantee convergence in the sense of Cesaro.
Then we showed that approximate replicator (AREP) algorithms, obtained by taking a dis-
crete time approximation of the replicator ODE, guarantee almost sure convergence. Then
using results from stochastic optimization, we gave a more detailed analysis of stochastic
mirror descent dynamics, and derived convergence rates, both in the homogeneous and het-
erogeneous models of learning. In particular, we used connections between discrete and
continuous time dynamics both to motivate the study of the replicator ODE (by showing
that it can be obtained as a continuous-time limit of the Hedge algorithm), and to relate the
asymptotic properties of the discrete process to the those of the solution trajectories of the
ODE (by using the notion of asymptotic pseudo trajectories).

We showed that the Hedge algorithm is both an instance of approximate replicator algo-
rithms, studied in Chapter [} and of mirror descent algorithms, studied in Chapter [5] Using
Hedge as a model of decision dynamics, we studied an estimation problem in Chapter [6]
and an optimal control problem in Chapter [7] First, assuming we can observe a sequence
of decisions of a player who follows the Hedge dynamics with unknown learning rates, we
proposed a method to estimate the learning rates to fit the model to the observations. We
demonstrated this approach on field data collected using a web application that simulates
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the routing game, and showed that the model of Hedge dynamics is descriptive of actual
player decisions, and can even be used to predict future decisions over short horizons. Sec-
ond, assuming that players follow Hedge dynamics, we posed an optimal control problem in
which we control the decisions of a small fraction of players. We used the adjoint method
to compute a local minimizer of the problem, and demonstrated this approach on different
examples of the routing game, showing that in a realistic model of congestion in transporta-
tion networks, control over a small fraction of traffic could potentially lead to significant
improvements of the network-wide efficiency.

While we focused on the routing game as an application of our estimation and optimal
control problem, there are several additional examples of systems which involve sequential
decision makers (either humans or automated computer systems), and in which a central
coordinator has control over a fraction of the players, or over some parameters of the system,
e.g. through pricing or tolling. This is for example the case in power networks, and auction
platforms for online advertising. In such systems, the dynamics of the decision makers can
be similarly modeled using the Hedge algorithm or other instances of the mirror descent
family, and one can use the approach proposed in Chapters [0 and [7] respectively to estimate
the learning rates, and to optimally control the system.
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Part 11

Accelerated Dynamics for
Constrained Convex Optimization
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Chapter 8

Accelerated Mirror Descent 1n
Continuous Time

In the second part of the thesis, we study dynamics for constrained convex optimization.
Similarly to the first part, we will exhibit connections between discrete and continuous-time
dynamics, by first designing dynamics in the continuous-time domain, using a Lyapunov
approach, then discretizing the resulting ODE to obtain a discrete algorithm. We start
from two important families of methods: the mirror descent method, due to Nemirovski
and Yudin [98], and Nesterov’s original accelerated method for unconstrained convex opti-
mization [102]. Both methods can be interpreted as a discretization of a continuous-time
dynamics, and their continuous-time ODE can be analyzed using simple Lyapunov functions.
Combining ideas from both methods, we show that for constrained convex problems, one
can define a natural energy function which encodes the constraints and the desired conver-
gence rate, then design the dynamics to make that function a Lyapunov function. This is
different from the usual approach in which one starts from a given dynamics then looks for
an appropriate Lyapunov function.

We give different interpretations of the resulting dynamics. In particular, we show that
it can be interpreted as the equations of motion of a particle in a potential field with viscous
friction, with a time-varying friction coefficient, which sheds light on some of the qualitative
behavior typically observed in accelerated descent methods. We also show that the dynamics
can be interpreted as coupled ODEs of a dual variable Z(t) cumulating gradients at a rate
n(t), and a primal variable X (¢) obtained as the weighted average of the mirror of the dual
trajectory, with weights w(t). This interpretation makes a rigorous connection between
acceleration and averaging, which was previously observed in the special case of quadratic
functions in [50]. As an example, we show that the replicator dynamics studied in Part I
can be accelerated using averaging.

This also motivates the study of a more general averaging scheme in Chapter [9] in which
we give sufficient conditions on the primal and dual weight functions w and n to guarantee
a given convergence rate. We also propose an adaptive averaging heuristic, which intuitively
works by increasing weights on portions of the trajectory which make the most progress.
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This heuristic empirically gives faster convergence and alleviates the oscillations typically
observed in accelerated methods. It also compares favorably to other popular heuristics,
such as restarting, and gives significant improvements in many cases. All these heuristics
(adaptive averaging and the different restarting conditions) have been developed as a result of
the different continuous-time interpretations, which shows some of the advantages of studying
the continuous-time dynamics. This not only helps simplify and guide the analysis (although
the discrete-time analysis is usually more involved than its continuous-time counterpart, as
discussed in Chapter , but it also results in new insights and interpretations, which can
lead to a better understanding of the dynamics, and to heuristics to adaptively improve the
speed of convergence.

8.1 Introduction

We consider a constrained convex optimization problem,

minimize  f(x)

subject to z € X,

where X C R" is the feasible set, assumed to be convex and closed, f is a C! convex function,
and its gradient, V f is assumed to be L ;-Lipschitz with respect to a pair of dual norms (||-|], |-
4), ie. |VF(2)=V ()|« < Lgllx—y| for all z,y € X. Let S C & be the set of minimizers
of f on X, and suppose that S is non-empty. Let f* be the value of f on S. Many convex
optimization methods can be interpreted as the discretization of an ordinary differential
equation, the solutions of which are guaranteed to converge to S. Perhaps the simplest such
method is gradient descent for the unconstrained problem (when X is all of R"), given by
the iteration z**1) = 2®) — sV f(2®) for some step size s > 0, which can be interpreted
as the discretization of the ODE X (t) = —V f(X(t)), with discretization step s. The well-
established theory of ordinary differential equations can provide guidance in the design and
analysis of optimization algorithms, and has been used for unconstrained optimization |32,
26, 64], constrained optimization [125] and stochastic optimization [112]. It has also been
applied to second-order methods, for example the Hessian-driven damping method in [7], and
to more general problems, such as finding a zero of a monotone operator [3|. In particular,
proving convergence of the solution trajectories of an ODE can often be achieved using
simple and elegant Lyapunov arguments. The ODE can then be carefully discretized to
obtain an optimization algorithm for which the convergence rate can be analyzed by using
an analogous Lyapunov argument in discrete time.

In this chapter, we focus on two families of first-order methods: Nesterov’s accelerated
method [102], and Nemirovski’s mirror descent method [98]. First-order methods have be-
come increasingly important for large-scale optimization problems that arise in machine
learning applications. Nesterov’s accelerated method [102] has been applied to many prob-
lems and extended in a number of ways, see for example [103, |01} 100, 14]. The mirror
descent method also provides an important generalization of the gradient descent method
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to constrained, non-Euclidean geometries, as discussed in [98, 47, (131} |15], and has many
applications in convex optimization [24, 23| 43| 70|, as well as online learning |34} |40]. An
intuitive understanding of these methods is of particular importance for the design and anal-
ysis of optimization algorithms. Although Nesterov’s method has been notoriously hard to
explain intuitively [69], progress has been made recently: in [130], Su et al. give an ODE
interpretation of Nesterov’s method. However, this interpretation is restricted to the original
method [102], and does not apply to constrained, non-Euclidean geometries. In [2], Allen-
Zhu and Orecchia give another interpretation of Nesterov’s method, as performing, at each
iteration, a convex combination of a mirror step and a gradient step. Although it covers a
broader family of algorithms (including non-Euclidean geometries), this interpretation still
requires an involved analysis, and lacks the simplicity and elegance of ODEs. We provide a
new interpretation which has the benefits of both approaches: we show that a broad family
of accelerated methods (which includes those studied in [130] and [2]) can be obtained as a
discretization of a simple ODE, which is guaranteed to converge in O(1/¢?).

The continuous-time analysis of Nesterov’s method [130] and that of mirror descent [9§]
both rely on a Lyapunov argument. They are reviewed in Section By combining these
ideas, we propose, in Section [8.3] a candidate Lyapunov function V(t) := V(X (t), Z(t),t)
that depends on two state variables: X (), which evolves in the primal space ¥ = R" (more
precisely, X (t) evolves in the feasible set X C E), and Z(t), which evolves in the dual space
E*, and we design coupled dynamics of (X, Z) to guarantee that £V (t) < 0. Such a function
is said to be a Lyapunov function in reference to Aleksandr Mikhailovich Lyapunov [88]; see
also [71] for an introduction to Lyapunov theory in the context of modern control theory.
This derivation leads us to a new family of ODE systems, given by

Z = —;Vf(X)
AMD QX = 2(vi(2) - X) &1
X(0) =z, Z(0) = 2o with V)™ (z0) = xo

where r is a positive parameter, and ¥* is a distance generating function on E* with Lipschitz
gradient, and such that its gradient, V¢*, is a mapping from the dual space E* to the feasible
set X'; it is usually referred to as the mirror operator, and such a function can be constructed
using standard results from convex analysis, by taking the convex conjugate of a strongly
convex function ¢ with effective domain X’; see Chapter |B|in the appendix for a brief review
of the definition and basic properties of mirror operators.

We prove the existence and uniqueness of the solution to in Theorem , and Sec-
tion is dedicated to proving the theorem. In Section [8.5 we prove, using the Lyapunov
function V, that the solution trajectories are such that f(X(¢)) — f* = O(1/t*). In Sec-
tion[8.6] we derive an equivalent formulation of the ODE: we show that the second equation is
equivalent, in integral form, to X (t) = [ w(r)Vy*(Z(7))dr/ [, w(r)dr, where w(r) = 771,
so that the primal variable X can be interpreted as a weighted average of the mirrored dual
trajectory Vy*(Z(1)), 7 € [0,t]. Motivated by this averaging interpretation, we will study,
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in the next chapter, the ODE with generalized averaging and give sufficient conditions on the
weight function to achieve a given convergence rate. We close this chapter with a discussion
of possible extensions to non-differentiable objective functions in Section [8.8|

8.2 Nemirovski’s mirror descent and Nesterov’s
accelerated method

Proving convergence of the solution trajectories of an ODE often involves a Lyapunov ar-
gument. For example, to prove convergence of the solutions of the unconstrained gradient
descent ODE, X (t) = —V f(X(t)), consider the candidate Lyapunov function D(z*, X) =
|| X — 2*||3 for some minimizer z* € S (such a minimizer exists since S is supposed
nonempty). Then the time derivative of D(x*, X(t)) along a solution trajectory X(t) is
given by

D X)) = (X(0), X(0) ")
(=Vf(X({2)), X() — %)
< —(f(X () = f),
where the last inequality is by convexity of f. Integrating the inequality, we have D(z*, X (t))—
D(z*, X(O < tfF - fo ))dr, thus by Jensen’s inequality, f (l fOtX(T)dT> — <

1 fo )dr — f* < %, which proves that f < fo d7‘> converges to the op-

timum at a (9(1 /t) rate. Additionally, if the set of minimizers S is compact, then we can
prove that X (t) converges to S. Indeed, let us define the distance to the set of minimizers,
D(S,z) = inf,«cs D(2*, z) (this is a continuous function of z since S is compact). We have
shown that D(x*, X (t)) is a nonincreasing function of ¢ for all * € S. Since ¢t — D(S, X (1))
is the pointwise infimum of non-negative, nonincreasing functions, it is also non-negative non-
increasing, therefore it has a limit as ¢ — oo, and its limit is necessarily 0: By contradiction,
suppose that its limit is strictly positive. Then there exists d > 0 and T" > 0 such that for all
t>T, D(S,X(t)) > d, and by continuity of f and D(S,-), § = inf .. p(s.2)>ay f(x) — f* > 0.
Thus for all t > T, and for all z* € S,

9D X(0) < 1~ F(X(0) < b

Integrating, we would have D(x*, X(t)) < D(2*, X(T)) — (t — T)¢ for all t > T, which
contradicts the fact that D is non-negative. This proves that D(S, X (¢)) converges to 0.

Mirror descent ODE

The previous argument was extended by Nemirovski and Yudin in [98] to a family of methods
called mirror descent, to solve general constrained convex optimization problems. The idea
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is to start from a non-negative function, then to design dynamics for which that function
is a Lyapunov function. Nemirovski and Yudin argue that one can replace the Lyapunov
function D(z*, X(t)) = 3| X (¢) — 2*||3 (used in gradient descent) by a function defined on
the dual space, Dy-(Z(t), z*), where Z(t) € E* is a dual variable for which we will design the
dynamics, and the corresponding trajectory in the primal space is X (t) = V¢*(Z(t)) and
x* = Viy*(z*). Here, E* is the dual space, i.e. the space of linear functionals on E (in our
case, since £ = R", E* can also be identified with R", but we make this distinction since,
conceptually, the spaces E and E* are different), and ¢* is a convex function assumed to be
finite and differentiable on all of E*, and such that V¢* is a Lipschitz function that maps
from E* to X. We will refer to ¢)* as the distance generating function on £*, and to Vi* as
the mirror operator. Such a function 1* can be obtained by taking the convex conjugate of
a strongly convex function ¢ with effective domain X (hence our choice of notation for 1)*);
See Chapter [B|in the appendix for a more detailed discussion on the duality properties of ¢
and v¢*, and the operator Vi*.

The function Dy-(-,-) is the Bregman divergence associated with ¢*, given as follows:
for all z,y € E*,

Dy (2,y) = " (2) = ¥*(y) — (VY™ (y), 2 — y) .

By definition of the Bregman divergence, we have

Dy (2(0), ) = & (6 (Z(1) — ¥ () — (V4 (), Z(1) — )

dt
= (V' (2(1) - V' (), Z(1))
- <X(t) — Z(t)> .
Therefore, if the dual variable Z obeys the dynamics Z = —V f (X), then

%Dw*(z(t), 27) = —(VF(X(#), X(t) — ") < =(f(X(t)) = [")

and by the same argument as in the gradient descent ODE, Dy« (Z(t),2*) is a Lyapunov
function and f <% fOtX(T)dT) — f* converges to 0 at a O(1/t) rate. The mirror descent

ODE system can be summarized by

X = vy (2)
MD<{  Z = -Vf(X) (8.2)
X(O) = Xog, Z(O) = 20 with Viﬂ*(Z()) = To
This is illustrated in Figure [8.1] .
Note that ODE (8.2]) can be rewritten as Z = —V f(V4*(Z)), and since by assumption,

V[ and Vi¢* are Lipschitz functions, we can invoke the Cauchy-Lipschitz theorem (Theo-
rem 2.5 in [132]) to prove existence and uniqueness of a solution Z(t) defined on [0, +00). In
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E o E*
X

Vi~

Figure 8.1: TIllustration of the mirror descent ODE. The dual variable Z evolves in the
(unconstrained) dual space E*, and follows the flow of —V f(X(¢)). The primal trajectory
X (t) is obtained by applying the mirror operator Vi¢* to the dual trajectory Z(t).

addition to the convergence of the time average f(7 fot X(1)dr), one can show the following
stronger convergence result under the additional assumption that ¢* is twice differentiable:
Consider the energy function

VMP(X, Z ) i=t(f(X) — f*) + Dy (Z,2%). (8.3)
and let VMP(t) := VMP(X(t), Z(t),t). Taking the time derivative of VMP(#), we have that

d MD _ d MD
VIR (E) = SV (), Z(0). 0

FX(8) =+ (VFX0), X ) + (2(8), VO (2(8) = V" (%))
FX(0) = f* = (VX (1), VU (ZW)V (X (0)) + {Z(8), X (8) - 2*)
1

0

X(0) = f7 = (VA(X(1)), X(t) — 27)

)

<
<

where we used the fact that X () = £Vy*(Z(t)) = V2*(Z (1) Z(t) = —V**(Z(t)) V(X (1))
in the second equality (here V2y*(Z) is the Hessian of ¥* at Z); the fact that V**(Z) is
positive semi-definite (by convexity of 1*) in the third inequality; and convexity of f in the
last inequality.

This proves that the energy VMP is a nonincreasing function of time, thus

L V) VIP(0) _ Dy(z0,2%)
JXW) - f < < ——— ==

which proves that f(X(¢)) converges to f* at a O(1/t) rate.
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Note that since X = V¢*(Z), and the mirror operator V¢* maps into X by assumption,
the solution trajectory X (¢) remains in X'. Therefore, the mirror descent ODE is a natural
generalization of gradient descent to constrained optimization problems: if one can construct
a mirror operator V¢* which maps into X', the solution is guaranteed to remain in X'. We
also observe that the unconstrained gradient descent ODE can be obtained as a special case
of the mirror descent ODE by taking ¢*(z) = £||z[|3, for which V¢* is the identity, in
which case X and Z coincide.

The family of mirror descent methods can then be obtained by discretizing the ODE ,
and can be analyzed by using an analogous Lyapunov function in discrete time [98]. The mir-
ror descent method is of particular importance in convex optimization, since the appropriate
choice of Bregman divergence Dy« can lead to improving the dependence of the convergence
rate on the dimension of the space, see for example Chapter 3 in [98] and [24].

ODE interpretation of Nesterov’s accelerated method

In [130], Su et al. show that Nesterov’s accelerated method [102] can be interpreted as a

discretization of a second-order differential equation, given by
1.

——X+Vf(x) =0,

X(0) =z, X(0) = 0.

X +

(8.4)

The analysis of the ODE uses the following candidate Lyapunov function (up to reparame-

terization)
pseso () = (00— )+ S L =
72 2 r ’
which is proved to be a Lyapunov function for the ODE whenever r > 2. This can be
viewed by taking the time derivative of YNestrov(¢) and plugging in the dynamics:

B < 2 5100) < ) 5 (0700, 8) + (04 L T LY
= %(f(X) -+ i—z <Vf(X),X> - <X + ;X — a7, —;Vf(X)>

= U0~ ) = X — 2%, V(X))

<(Z-Huw-,

rz

where we used convexity of f in the last inequality.
Since YNesterov ig a4 non-increasing function of time, it follows that for all ¢ > 0,
2 2

r Nesterov r
gy

VNesterov(()) < T_Q ||(L’0 - ‘T*H2

X)) = f <
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which proves that f(X(¢)) converges to f* at a O(1/t?) rate.

One should note in particular that the dynamics is unconstrained, and the Euclidean
distance is used in the definition of the Lyapunov function. As a consequence, discretizing
the ODE leads to a family of unconstrained, Euclidean accelerated methods. In the
next section, we show that by combining elements from the Lyapunov analysis of Nesterov’s
accelerated method and Nemirovski’s mirror descent, we can construct a much more general
family of ODE systems which have the same O(1/t?) convergence guarantee, and which
apply to constrained optimization with non-Euclidean geometries.

8.3 Lyapunov design of the dynamics

Let || - ||« be a reference norm on the dual space E*, and let ¢)* be a distance generating
function on E*, assumed to be Ly--smooth with respect to || - ||.. Consider the function
t2 * *

where Z is a dual variable for which we will design the dynamics, and z* is its value at
equilibrium. Given a C' trajectory (X(t), Z(t)), let

V() = V(X (), Z(t), 1).

This function combines the Bregman divergence term of the mirror descent Lyapunov func-
tion VMP (which encodes the constraint set) and the first term of the Nesterov Lyapunov
function WNesterov (which encodes the desired quadratic convergence rate). We will now de-
sign the dynamics of (X, Z) to make this candidate function a Lyapunov function. Taking
the time-derivative of V(t), we have

d d
Ly - Lvxa. 2.0
= 2500 - 1)+ G (V0. ) 4 (2.90(2) - Ve ()

”
Assume that Z = —tV f(X). Then, the time-derivative becomes

r

V0O = 5000 - 1) = L (V00 - X 4+ 90(2) - V() ).

Therefore, if X satisfies X + %X = Vi*(Z), and Vio*(z*) = x*, then,

SV = Z(00) = 1) = V0, X — o)
< ZUE) = 1) = 2((X) = )
= 0 - ) (5.6

r
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and it follows that V is a Lyapunov function whenever r > 2. The proposed ODE system is
then given by the system ({8.11]), copied below:

X = H(Vyr(2) - X),
X(0) =z, Z(0) = 29, with Vo (2g) = .

In the Euclidean case, taking 1*(z) = £|z[|3, we have Vi*(z) = z, thus Z = X+£X, and

the ODE system is equivalent to % X+ fX) = —fo(X), ie. §X+ %X—k %Vf(X) =0,
which is equivalent to the ODE (8.4]) studied in [130], which we recover as a special case.

It is also important to observe that since V¢* maps into X, then any primal solution
X (t) is viable (i.e. remains in the feasible set X). Intuitively, since X = (VY (Z) - X),
then X (t) always points inside the feasible set X'. In particular, whenever X (t) is on the
boundary of E, X(t) towards the interior of X, thus guaranteeing that X remains in X.
This argument is made more precise in the proof of Theorem [15|in the next section.

8.4 Existence, uniqueness and viability of the solution

First, we prove existence and uniqueness of a solution to the ODE system , defined
for all ¢ > 0. By assumption, both V f and Vi* are Lipschitz-continuous functions. Unfor-
tunately, due to the 7 term in the expression of X, the function (X, Z,t) — (X7 Z) is not
Lipschitz at ¢ = 0. However, one can work around this by considering a sequence of approx-
imating ODEs, similarly to the argument used in [130]. We observe that, alternatively, we
could have instead initialized the ODE at a positive time ¢y, which avoids the degeneracy at
t = 0. This will be indeed our approach for proving existence and uniqueness of the solution
for the more general ODE studied in Chapter [9] see Theorem [I8 We present this more elab-
orate proof in this section merely to satisfy mathematical curiosity of the interested reader,

since for practical purposes, it does not matter at which time the ODE is initialized.

Theorem 15. Suppose f is C', V[ is Ly-Lipschitz and Vy* is Ly«-Lipschitz. Let xg € X
and zg € E* such that Vi*(z9) = xo. Then the accelerated mirror descent ODE sys-
tem (8.11)) with initial condition (o, 20) has a unique mazximal solution (X, Z) (i.e. defined

on a mazimal interval) in C1([0,00), R™). Furthermore, the primal solution X is viable, that
is X(t) € X for allt > 0.

By a solution to (8.11]), we mean a pair of functions (X, Z) that are C* on [0, 00), and
which satisfy the differential equations for all ¢ > 0. We first show existence and uniqueness
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of a solution on any given interval [0, T]. Let 6 > 0, and consider the smoothed ODE system

AMD’ ¢ X — m(w*@) ~X), (8.7)

X(0) =z, Z(0) = zo with Vo™ (zy) = zo.

Since the functions (X, Z) — —LV f(X) and (X, Z) — mm (VU (Z2)—X) are LlpSChItZ
for all t € [0, T, by the Cauchy-Lipschitz theorem (Theorem 2.5 in [132]), the system (8
has a unique solution (X, Zs) in C'([0,T]). In order to show the existence of a solution to
the original ODE, we use the following property of the solution to the smoothed ODE. The
proof of Lemma [10]is deferred to the end of the chapter.

Lemma 10. Let ty = \/LiTw* Then the family of solutions ((X(;,Z(;)|[0,to])
Lipschitz-continuous and uniformly bounded. More precisely,

s<t, 15 equi-

I12s6) < 219 F o),
1%s(0)] < w

IV f(@o)ll-

Proof of existence. Consider the family of solutions ((Xs,, Zs,),d; = t927"),.y restricted to
[0, ¢9]. By Lemma [10] this family is equi-Lipschitz-continuous and uniformly bounded, thus
by the Arzela-Ascoli theorem, there exists a subsequence ((Xs,, Zs,)),c7 that converges uni-
formly on [0, ). Let (X, Z) be its limit. Then we prove that (X, Z) is a solution to the
original ODE on [0, to].

First, since for all i €T, Xs,(0) =z and Zs,(0) = 2o, it follows that

X0) =, lim, X6.(0) = oo

Z(0)= lim Zs(0) = zo,

i—00,i€L

thus (X, Z) satisfies the initial conditions. Next, let t; € (0, ), and let (X, Z) be the solution
of the ODE (8.11)) on t > ¢, with initial condition (X (¢,), Z(t,)). Since (X5, (t1), Zs,(t1))icz —
(X (t1), Z(t1)) as i — oo, then by continuity of the solution w.r.t. initial conditions, we have
that for some ¢ > 0, X5, — X uniformly on [t;,t; + €). But we also have X;, — X uni-
formly on [0, o], therefore X and X coincide on [t1,t; + €), therefore X satisfies the ODE
on [t1,t1 + €). And since t; is arbitrary in (0, ¢), this concludes the proof of existence. [

Proof of uniqueness. It suffices to prove uniqueness on an open neighborhood of 0, since
away from 0, uniqueness is guaranteed by the Cauchy-Lipschitz theorem.
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Z) and (X, Z) be two solutions of the ODE (8.11)), and let Ay = Z — Z and

et (X,
Ax X X. Then Ax, Ay are C', and we have
Az —— (VF(X) - V(X))
Vi*(Z) = Vi(Z) - Ax)

Let A(t) = sup,e(y MZ%, and B(t) = sup,ejoq [[Ax(u)]|. Note that B(t) is finite since
Ax is continuous on [0, ¢]. The finiteness of A(t) will be established below. We have

. t . Lyt Lt
A7) = S|V FCX@) = VA @) < “Llax@) < LB,
Dividing by ¢ and taking the supremum, we have
Ly
A(t) < —B(t). (8.8)

.
Next, since t"Ax + 7" 1Ay = rt"~1 (Vi*(Z) — V*(Z)), we have

d

dt(trAX)_rf" (Vo (2) - VR (2)).

Therefore, integrating and taking norms

t"f|Ax (@) S/O rr" IVt (Z(7)) = Vit (Z(7))|ldr

t
<t / Ly
0

t 7_2
< Lyrt" TA(t) / —dr
o 2

Ay (T)||dr

Lyt R A(t)
— ; :

where we used the fact that |Az(7)|| = || [y Az(u)dul| < [] uA(t)du = A(t)S . Dividing by
t" and taking the supremum,

Lw* Tt2

B(t) < A(t). (8.9)

Combining ) and (8.9), we have A(t) < #WA(t). It follows that A(t) = 0 for 0 <

t < , Wthh in turn implies that B(¢) = 0 on the same interval. This concludes the

LfLw
proof. O
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Figure 8.2: Illustration of the proof of viability.

Proof of viability. We now prove that the primal solution X remains in X for all ¢. Intu-
itively, since X = 2(VY*(Z) — X), the derivative X will point towards X, keeping X (1)
inside the feasible set.

Suppose by contradiction that there exists t; > 0 such that z; = X(¢;) ¢ X. Let
D = sup,e(o 41 [IVY*(Z(2)) || (finite by continuity of the solution), and consider the restriction
of the feasible set to the ball of radius D, X = X N {z : ||z|| < D}. Then X is convex and
compact and does not contain x1, so by the separation theorem, there exists a hyperplane that
strictly separates z; and X'. That is, there exists an affine functional £(-) = (u,-) —a, u € R,
a € R, such that £(x;) > 0 and ¢(z) < 0 for all z € X'. Since the solution trajectory X (t) is

CY, ¢t — (X (t)) is also C, and its time-derivative is (X (t)) = £ (u, X (1)) —a = <u, X(t)>

We have £(X(0)) < 0 (since 7gp € X) and £(X(¢;)) > 0, thus there exists t, such that
(X (tp)) = 0 and ¢(X(t)) > 0 for all t € (t,t1], that is, ¢y is the last time X (t) crosses
the separating hyperplane (¢y is simply sup{t < ¢; : ¢(X(¢)) < 0}). Then by definition,
(X (t1)) — £(X(to)) > 0, but by the mean value theorem, there exists ty € [to, t1] such that

UX (1)) = (X (t))
t1 — to

.

(X(t)) = (u, X (t2))
(u, V' (Z(t2) = X (£2))
LV (Z(1)) — (X (1)) < 0

+ | I3

since Vi*(Z(ty)) € X. This is a contradiction, which concludes the proof. O
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8.5 Convergence rate

Now that we have proved the existence and uniqueness of the solution, it becomes straight-
forward to establish the convergence rate of the function values, using the Lyapunov function
which motivated the dynamics.

Theorem 16. Suppose that V f and V* are Lipschitz. Let (X (t),Z(t)) be the solution to
the accelerated mirror descent ODE (8.11)) with r > 2. Then for all t > 0,

72Dy (20, 2*)

fX(1) = f* < v (8.10)

Furthermore, if r > 2, then [~ t(f(X(t)) — f*)dt < %DW(ZU, 2%).
Proof. By construction of the ODE, we have V(X (t), Z(t),t) = %(f(X(t))—f*)—FDW (Z(t), 2*)
is a Lyapunov function. It follows that for all ¢ > 0,

t2
=

(f(X(@) = ") SV(X(1), Z(t),t) < V(x0,20,0) = Dy (20, 27),

which proves the first inequality. Furthermore, we have that

d r—2
SVIX(), 2000 < -

LX) = 1),

thus, integrating from 0 to 7" and rearranging, we have

7"2 7,2

T_QV(%,ZO,O) = r_29

Dw* (Zo, Z*),

| ey - rar <

which proves the second part of the claim. O

Remark 2. The second part of the theorem indicates that the convergence rate is in fact better
than Q(1/t%). Indeed, if f(X(t)) — f* > & for some positive constant c, then fth(f(X(t)) -
fH)dt > cInT, which would contradict the theorem. We also observe that, although it seems
from the bound that smaller values of the parameter r are better, the upper bound
on the integral diverges as r approaches 2, which indicates that smaller values of r are not
necessarily better. In Section we will give another interpretation of the parameter r as
a damping coefficient, and we will further discuss its effect on convergence.

Remark 3 (On scaling time). Note that in continuous time, a faster convergence rate can
be obtained by rescaling time. In other words, if X (t) converges to the set of minimizers at
the rate r1(t) in the sense that f(X(t))— f* = O(1/ri(t)) (where 1 is an increasing function
on Ry ), then given am increasing function h : Ry — R, such that h(t) > t, the trajectory
X(t) := X(h(t)) satisfies f(X(t)) — f* = O(1/ro(t)) where r5 =11 0 h is a faster rate (i.e.
ro(t) > r(t) for all t). Of course the spatial trajectories {X(t),t € Ry} and {X(t),t € R}
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coincide, but rescaling time seems to lead to faster convergence. Such a transformation is
not possible in discrete time, as scaling time by a superlinear function would correspond
to scaling up the step sizes, which would eventually violate the upper bounds on step sizes.
Thus convergence rates do not have the same interpretation in continuous and discrete time.
Since the quadratic rate of convergence is the optimal rate for first-order methods for convex
optimization (according the to the lower bounds derived by Nemirovski and Yudin [98]), it is
natural to consider continuous dynamics with a time scale that gives a quadratic convergence
rate, and to seek a discretization which preserves this rate.

8.6 Averaging interpretation

Starting from the equation X = L(Vy*(Z(t)) — X(t)), we can multiply both sides by &
and rearrange to obtain %X(t) + ¢ 1X(t) = " 'Vy*(Z(t)). Integrating from 0 to ¢, and
observing that %X(t) + "1 X (t) is the time derivative of £ X (t), we have

tr !
—X(t) = / TN (Z(7))dr
r 0

Finally, dividing by %, we have

r

T Sy (Z(r))dr
tr '

X(t
() fot Tr=tdr

/0 T (Z()dr =

Therefore the primal variable X (¢) can be interpreted as a weighted average of the trajectory
Vy*(Z(1)), T € [0, 1], with time-varying weights w(7) = 777!, This interpretation formalizes
a connection between acceleration and averaging, as observed in [50] for the unconstrained
quadratic case. This also provides an intuitive interpretation of the parameter r: it controls
the weights in the expression of X. A higher value of r puts larger weights on the recent
points V*(Z(t)).

The accelerated mirror descent ODE can then be written in the equivalent form:

(2= VX)) =

) X(t) = fgw(T)ti*(Z(T)ﬁh" w(r) = el (8.11)
Jo w(T)dr

L X(O) = T, Z(O) =20 with VQ/J*(Z()) =X

Here Z is a dual variable which accumulates the negative gradient of f, at a rate n(t) = £,

and X is a weighted average of the “mirrored” dual trajectory Vy*(Z(r)), 7 € [0,¢], Witrh
weight function w(7) = 7771, We also note that since V¢*(Z(7)) remains in X for all 7, so
does X, by convexity of the feasible set X'. This provides an alternate, simple proof of the
viability of the solution (last part of Theorem [L5).
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8.7 Damped nonlinear oscillator interpretation

In this section, we will assume that ¢* is twice differentiable on all of E*, and we will

. . . * 2, /% 2, /% R ?9*(2) 1
denote its Hessian at a point z € E* by V*i*(z), defined as V*9*(z);; 5.5, Lhis
i0Z;j

assumption is not particularly restrictive, see Chapter [B| in the Appendix for examples.
Writing £X + X = V¢*(Z) and taking the time-derivative, we have

A ) )
;X + ;X + X =VH(2)Z = ——v2 V(Z)Vf(X).
Multiplying both sides by 7, we have
3} 1
X+T+<X+Vw()VﬂXﬁﬂl (8.12)

The initial condition for X is X (0) = 0. To prove this, one can argue that for all § > 0, the
solution to the smoothed ODE satisfies X;(0) = (VY™ (z) — o) = 0, thus X(0) is also
equal to zero since the solution X is a limit point of the equi-Lipschitz family of solutions
(Xs).

The ODE can be interpreted as a generalization of a damped nonlinear oscillator:
In the unconstrained Euclidean case, we can take 1*(z) = 3|23, in which case V2*(2)
is the identity, then the ODE becomes X + THX + Vf(X) = 0, and we recover ODE |8 .
studied in [130]. It can be interpreted as descrlblng the evolution of a particle with position
X, velocity X and acceleration X = —Vf(X) — ’”HX The first term is a conservative force
due to the scalar potential f, and the second term is a dissipative force proportional to the
velocity, which can be thought of as a viscous friction term. Some properties of this system
have been recently studied in [6]. Note that the damping constant 7’“ is time-dependent, and
vanishes as time tends to infinity. The parameter r can then be 1nterpreted as a damping
coefficient. Intuitively, the larger r, the more energy is dissipated. This is illustrated in
Figure which shows the solution trajectory of the ODE on a finite time interval, in a
simplex-constrained example, with different values of r. In this case, a natural measure of
the energy of the system is given by the mechanical energy, the sum of the potential energy
f(X) and the kinetic energy %||X||§,

1 .
E(t) = [(X(0) + 31X D13 (8.13)
Taking the time-derivative of the energy, we have

Ce(n) = (VAX0) + X(0).X(0)

:<—T+1X@%X@O

t
()13
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which proves that the energy is non-increasing (and strictly decreasing as long as the particle
is not at rest), as expected due to the presence of the dissipative friction term. In the next
chapter, we will define a generalization of this energy function that is suited to the constrained
case, see Section [9.4]

In the constrained case, the Hessian term V?¢*(Z) which appears in ODE is a
non-linear transformation that applies to the gradient, in order to keep the trajectory in
the feasible set. Remarkably, this transformation is not static, it depends on the value of
the dual variable, hence varies with time. Intuitively, whenever V¢*(Z) approaches the
(relative) boundary of the feasible set, the term V?¢*(Z) should transform the gradient so
that it points inside the feasible set. The role of the Hessian term will be further discussed
in Section [0.5]in the next chapter.

(a) r=2 (b) r=20 (¢) =200

Figure 8.3: Solution trajectories of the accelerated mirror descent ODE on a finite time
interval ¢ € [0,T], for simplex-constrained quadratic minimization, with different values
of the parameter r. Larger values of r result in more energy dissipation, and suppress
oscillations, but because the time-horizon is finite, too much energy dissipation means that
the trajectory does not make enough progress within [0, 7], as can be seen in plot (c). This
example shows that the “best damping” is not necessarily obtained for smaller values of r,
as one could think from the bound of Theorem .

8.8 On extending the dynamics to non-differentiable
objective functions

In this section, we consider the case in which the objective function is non-differentiable. One
such case of particular interest is composite optimization, in which the objective function can
be decomposed into the sum of two terms f = f;+ fo where f; is differentiable with Lipschitz
gradient, and fs is a general convex function; this model covers many problems in machine
learning, such as ¢;-regularized regression, and many algorithms have been developed for
composite optimization in discrete time, for example [100], as well as continuous time, for
example [7]. In this section, we discuss how the Lyapunov argument can be extended to
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non-differentiable functions. More precisely, assume that f is a closed and proper convex
function (not necessarily differentiable), and denote by df(x) the subdifferential of f at = (a
closed and convex set). A natural way to extend the ODE to this non-differentiable
case is to replace the dual differential equation Z(t) = —IVf(X(t)) by the differential
inclusion Z(t) € —t0f(X(t)). As we will see, this may not suffice to guarantee that the
energy function V' decreases along continuous solution trajectories. As observed by [130],
the directional derivative f'(X; e ) plays a central role in deriving the correct dynamics in
the non-differentiable case.
The (one-sided) directional derivative of f at z in the direction y is defined by

Flag) =t JETD I

where the limit can be 4+o00. It exists at any point x in the domain of f (i.e. where f is
finite), and is a positively homogeneous convex function of y, see Theorem 23.1 in [117].
Additionally, we have the following connection between the directional derivative and the
subdifferential: By Theorem 23.4 in [117] we have that for all z in the interior of the domain
of f (denoted intdom f), df(x) is a non-empty compact set, and

fl(z;y) = sup (g,9). (8.14)
g€ f(x)

Thus we can associate to f’'(z;y) the set of subgradients which achieve the maximum (the
supremum is attained since df(x) is a compact set in this case). We will denote this set

d(z;y) = argmax (g, y) .
g€0f ()

Theorem 17. Consider the energy function t — V(X (t), Z(t),t) = j—z(f(X(t)) — )+
Dy«(Z(t), z*) where f is a proper closed convex function, and suppose that (X (t), Z(t)) is a
continuous and differentiable solution trajectory of the ODE

7€ —2d(X, X)
X = 2(V'(2) - X),

such that X (t) remains in the relative interior of the domain of f. Then the energy function

is differentiable and £V (X (t),Z(t),t) < 0.

Since the energy function is decreasing, any continuous and differentiable solution will
satisfy f(X(t)) — f* = O(1/t?) by a similar argument to Theorem [16] Note however that
we do not discuss existence of such solutions in this case.
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Proof. To prove that the energy function is differentiable, consider the difference quotient,
defined for € > 0,

V(t+e)—V(t)

At(€) = p

L PHKH ) = JXW) | ke o DerlZ(49,2) = Der(200.27)

r € r2 ¢

Using the fact that a convex function is locally Lipschitz on the relative interior of its domain
(so that f(z+ o(€)) = f(x) + o(€)), and that Dy«(Z(t), z*) is differentiable, we have

2 € ‘ o\€e) — €
ay(e) = HHFOF X 1old XD | 2’1‘5 (FOX0) +o(1) — 1) + 5 Dys (2(0),2%) + o(1)
2 € ¥ _

The derivative of the Bregman divergence in ({8.15)) is

D (210).2) = (20,90°(2(0) - V0 () = (20, X(0) + 2X() ~a* ),

The first term in (8.15) converges, as € — 0, to f'(X; X). Combining the two limits, we have
that the limit of A;(e) exists and

i, Au(0) = S X0 X0) + 5X0) - 1)+ (20, X0+ 2x0) - o),

e—0, >0 r2 r2

and if we let Z(t) = —1g(t), then

fm_ A < 5 (7560~ (0. X)) + L0 - - tex —e). 20

e—0, e>0

where we used the assumption that » > 2. Note that if Z satisfies the differential inclusion
Z(t) € —L9f(X(t)) (in other words, g(t) is a subgradient of f at X(t)), then the second
term in inequality (8.16) m is non-positive by definition of a subgradient, but the first term

(X X) - < g, X > is non-negative by (8.14]), and one cannot conclude that the energy is

decreasing. This motivates our choice of the subgradient. Indeed, when Z(t) € —Ld(X; X)
(in other words, ¢(t) is a subgradient of f at X(t) that mazimizes the linear functional
(-, X (1)), the first term in inequality (8.16) is non-positive, therefore lim, o =0 A(e) < 0,
which concludes the proof. O
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Proof of Lemma [10
Let us rewrite the smoothed accelerated mirror descent ODE system
. t
Z = —-Vf(X)
,
AMD’ ¢ x = " (wyr(z)- X
max(t75)( VH(Z) = X)

X(0) = zg, Z(0) = zy with Vi*(29) = wo.

By the Cauchy-Lipschitz theorem, there exists a unique solution (X, Zs) defined on [0, c0),
and the solution is C*. Define, for ¢ > 0,

Z
As(t)— sup 1Z5t0)]
u€l0,t] Uu
X _
Ba(t) — sup 15300) =0l
u€l0,t] Uu

Cs(t) = sup || Xs(u)|

u€(0,t]
These quantities are finite for the following reasons:
o MM = || X5(0)|| 4 o(1) near 0, thus Bj is finite.
e ||X5]| is continuous thus bounded on [0, 1], thus Cj is finite.
e Finiteness of As is a consequence of the following lemma.

To prove Lemma [10] we first need the auxiliary lemma below, that provides bounds on
As, Bs, Cs.

Lemma 11. For all t,

rAs(t) < [V f(xo)|l + LytBs(1), (8.17)
Bs(t) < 2o a0, (8.18)
Cs(t) <r (M%A(g(t) + Bg(t)) . (8.19)

Proof. By definition of As and Bjs, we have

125(6) = all < [ 1260 o < Aste) [ oo = 50, (8.20)
1X5() — oll < tBs(h).
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Now, from the first equation in , we have for all 0 <t <ty

SZsl = IV Xl

(
< IV f (o)l + IV (Xs(1)) = Vf (o)l

< |V (o)l + Lyl| X5(t) — ol V f is Ls-Lipschitz
< |V f(@o)ll + Lyt Bs(t).

Thus,
rAs(t) < |V f(zo)|l + LstBs(t).
To prove inequality (8.18), we show that || Xs(t) — xo| < ma+(5t)f(f VY™ (Zs(s)) —
Vip*(z0)|lds. We consider the two cases t < ¢ and ¢t > 4.

e Let t <. From the second equation in , we have
Tt . T T rt
¥ (%o + S0 - 7o) = <o (V" (25) = Vi (20)),

ie.,

C(00(0) — wo)e ) = LeF (Ve (25(1)) — T (z0)),

thus integrating

rt

(X500 = an)e? = % [ eH (V0 (2i(s) = 90 o)

dividing by e’ and taking norms we obtain the desired inequality.

e Let t > 0. From the second equation in , we have
; r
t <X5 + (X5 - xo)) = " (VY (Zs) — Vb (20)),

% (t"(Xs(t) — o)) = rt" " (V" (Zs) — VY™ (20)),

thus integrating

(X5(t) — o) = / rs" (VU (Za(s)) — Vi (z0))ds

dividing by ¢" and taking norms, we obtain the desired inequality.
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Now we have

10 =0l < L [ IV (Za(0) = V) s

Lysr
<l / 1Z5(5) — zo]lds Vo s Ly Lipschitz
max(J, t)
< ﬂ/ = As(t)ds by (8:20)
= max(6,¢) J, 277 y e
LTZJ*T t3
= VA (t)—
max(d, t) ol )6

Dividing by ¢ and taking the supremum, we have (8.18)).
Finally, to bound Cj, we have from the second equation in (8.7)), for all 0 < t < ¢,

r

1601l = s 9 (Z0) = %0
< o (199 (Z6(0) = Vo (o)l + 1X(6) = wol)
< oy Lo 16(8) = 20l 1X5(0) = ol

7"( 5 <t2LWA5( )+tBa(7f))
<r (LTAa(t) +Bi(0)).

which conclude the proof. O

Proof of Lemma[I(. First, we show that Ag, Bs, Cs are bounded on [0, %], uniformly in 4.
Combining (8.17)) and (8.18)), we have

Lw*’f’t
6

rAs(t) < IV f(zo)ll + Lyt Bs(t) < |V f(zo)|| + Lyt As(t).

Thus Ajs(t) ( Lw Ls t2> < M And when t < 1-— %ﬂ > %, thus

LfL’ll’*

As(t) < 21V S (o)l (5:21)
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Next, we have

tL *
oe) < r (L aste) + B0 by ET9)
t Ly Lyt
9(%%@% e A5<t>) by (B18)
3+ 1)Lyt
< Bt g i) by (E21)

To conclude, we have for all t € [0, ¢,]

125001 < tA5(6) < 21V £ o)l

(3 + T’)Ld;*t

1 X5()]| < Cs(t) < 5

IV f (o)l

which are bounded uniformly in 6 on [0, #], thus the family is equi-Lipschitz-continuous on
[0,t0). It also follows that it is uniformly bounded on the same interval. ]
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Chapter 9

Generalized and Adaptive Averaging

9.1 Accelerated mirror descent with generalized
averaging

In Chapter [§, we proposed an accelerated mirror descent ODE for constrained, smooth
convex optimization, which was motivated by a simple Lyapunov argument. In particular,
we showed in Section that the ODE can be interpreted as coupled dynamics of a dual
variable Z(t) which evolves in the dual space E*, and a primal variable X () which is obtained
as the weighted average of a non-linear transformation of the dual trajectory. More precisely,

(

2(1) = ~n(®)V FX0). (1) =

| X(0) = Vo (Z(0)) = o,
where r > 2 is a fixed parameter, the initial condition xg is a point in the feasible set X', and
V* is a Lipschitz function, called the mirror operator, that maps from the dual space E*
to the feasible set X. We showed in Theorem [16| that the solution trajectories of this ODE
exhibit a quadratic convergence rate, i.e. if f* is the minimum of f over the feasible set,
then f(X(t)) — f* < C/t* for a constant C' which depends on the initial conditions. This
formalized an interesting connection between acceleration and averaging, which had been
observed in [50] in the special case of unconstrained quadratic minimization.

A natural question that arises is whether different averaging schemes can be used to
achieve the same rate, or perhaps faster rates. In this chapter, we provide a positive answer.
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We study a broader family of accelerated mirror descent dynamics, given by

[ Z(t) = =)V (X (1))

X (o)W (to) + [, w(r)Vy*(Z(r))dr
W(t)

(- X(to) = VY (Z(to)) = o,

AMD,, Q0 X(t) = , with W(t):/tw(T)dT (9.1)

parameterized by two positive, continuous weight functions w and 7, where w is used in the
averaging and 7 determines the rate at which Z accumulates gradients. This is illustrated
in Figure 9.1 In this generalization, we choose to initialize the ODE at ¢, > 0 instead of 0
(to guarantee existence and uniqueness of a solution, as discussed in Section |9.2]).

Figure 9.1: Illustration of AMD,,,,. The dual variable Z (red dashed line) evolves in the dual
space E*, and accumulates negative gradients at a rate n(t¢), and the primal variable X ()
(green solid line) is obtained by averaging the mirrored trajectory Vo*(Z(7)), 7 € [to, 1]
(green dashed line), with weights w(7).

We give a unified study of this ODE using a parameterized Lyapunov function given by
Vi(X, Z,t) = r(t)(f(X) = J7) + Dy (%, 27), (9-2)

where D, is the Bregman divergence associated with *, and r(t) is a desired convergence
rate (a non-negative function defined on R, ). This function is a generalization of the Lya-
punov function used in Chapter |8l We give in Section [9.3|a sufficient condition on 7, w and r
for V. to be a Lyapunov function for AMD,, ,,. As an immediate consequence, we obtain that
f(X(¢)) converges to f* at the rate 1/r(t) (Theorem [L9), since whenever V; is a Lyapunov
function,

fla(t) — f < —=Vi(X(t), Z(1),t) < mW@ano,tO)-

1 1
t
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In Section 0.4 we exhibit a natural energy function of the system and show that under the
same conditions on w,n and 7, the energy is decreasing (Theorem . This provides further
physical intuition on the dynamics. In Section [9.5] we give an equivalent formulation of
AMD,,, written purely in the primal space. We give several examples of these dynamics
for simple constraint sets. In particular, when the feasible set is the probability simplex, we
derive in Section an accelerated version of the replicator dynamics, an ODE that plays
an important role in evolutionary game theory [135], viability theory [8], and has many
applications including traffic systems [49], as discussed in Chapters .

Many heuristics have been developed to speed up the convergence of accelerated methods.
Most of these heuristics consist in restarting the ODE (or the algorithm in discrete time)
whenever a simple condition is met. When the function is strongly convex, and the strong
convexity constant is known, then restarting the ODE at fixed intervals (which depend on the
parameters of the function) can provably lead to exponential convergence. This is discussed in
Section [9.7] For general, non-strongly convex functions, some heuristics have been proposed
based on restarting. For example, a gradient restart heuristic is proposed in [105], in which
the algorithm is restarted whenever the trajectory forms an acute angle with the gradient
(which intuitively indicates that the trajectory is not making progress), and a speed restarting
heuristic is proposed in [130], in which the ODE is restarted whenever the speed || X (t)]|
decreases (which intuitively indicates that progress is slowing). These heuristics are known to
empirically improve the speed of convergence, but provide few guarantees. For example, the
gradient restart in [105] is only studied for unconstrained quadratic problems, and the speed
restart in [130] is only studied for unconstrained strongly convex problems. In particular, it
is not guaranteed (to our knowledge) that these heuristics preserve the original convergence
rate of the non-restarted method, when the objective function is not strongly convex. In
Section [9.8] we propose a new heuristic that provides such guarantees, and that is based on
a simple idea for adaptively computing the weights w(t) along the solution trajectories (thus
the weights become effectively a function of X and ¢, and not a predefined function of time).
The heuristic simply decreases the time derivative of the Lyapunov function L,(X(t), Z(t),t)
whenever possible. Thus it preserves the 1/r(t) convergence rate.

In the next chapter, we will derive a discretization of the accelerated mirror descent
dynamics and of our adaptive averaging heuristic which guarantees a quadratic rate of con-
vergence. We will also give numerical experiments in which we compare the performance of
these heuristics. The experiments indicate that adaptive averaging compares favorably to
the restarting heuristics in all of the examples, and gives a significant improvement in many
cases.

9.2 Existence, uniqueness and viability of the solution

We start by giving an equivalent form of AMD,, ,,, which we use to briefly discuss existence
and uniqueness of the solution. Writing the second equation as X (t)W(t) — X (to)W (to) =
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¢ . . . —
fto w(T)VY*(Z(1))dr, then taking the time-derivative, we have

X)W () + X (tw(t) = w(t) Vo (Z(t).
Thus the ODE is equivalent to

AMD, 3 X(0) = (VU (2(0) - X(0) 9.3)

The following theorem guarantees existence, uniqueness and viability of the solution.

\

Theorem 18. Suppose that V f and Vi* are Lipschitz, and that w,n are continuous func-
tions. Furthermore suppose that W (ty) > 0. Then AMD,,, has a unique mazimal solution
(i.e. defined on a mazimal interval) (X (t), Z(t)) in C*([ty, +00)). Furthermore, the solution
is viable, i.e. for all t > ty, X(t) belongs to the feasible set X.

Proof. By assumption, V f and V¢* are both Lipschitz, and w,n are continuous. Further-
more, W(t) is non-decreasing and continuous, as the integral of a non-negative function,
thus w(t)/W(t) < w(t)/W(ty). This guarantees that on any finite interval [ty, T'), the func-
tions n(t) and w(t)/W (t) are bounded. Therefore, —n(t)V f(X) and %(Vl/}*(Z) — X) are
Lipschitz functions of (X, Z), uniformly in ¢ € [tg,T). By the Cauchy-Lipschitz theorem
(e.g. Theorem 2.5 in [132]), there exists a unique C" solution defined on [ty, T'). Since T is
arbitrary, this defines a unique solution on all of [ty, +00). Indeed, any two solutions defined
on [tg,T1) and [tg, T») with Ty > T} coincide on [ty,T}). Finally, viability of the solution
follows from the fact that X is convex and X (t) is the weighted average of points in X,
specifically, zo and the set {Vy*(Z(1)), T € [to, t]}. O

Note that in general, it is important to initialize the ODE at t; and not at 0, since
W(0) = 0 and w(t)/W(t) can diverge at 0, in which case one cannot apply the Cauchy-
Lipschitz theorem. It is possible however to prove existence and uniqueness with ¢, = 0 for
some choices of w, by taking a sequence of Lipschitz ODEs that approximate the original
one, as is done in the proof of Theorem [I5] This is a technicality and does not matter for
practical purposes, since the ODE can be initialized at any point in time.

9.3 Convergence guarantees

We now move to our main convergence result. Suppose that r is an increasing, positive
differentiable function on [ty, +00), and consider the candidate Lyapunov function V,. defined
in (9.2), where the Bregman divergence term is given by

Dy+(z,y) =" (2) =¥ (y) — (VU (), 2 — v),
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and z* is a point in the dual space such that Vi¢*(2*) = 2* belongs to the set of minimizers S.
Let (X (¢), Z(t)) be the unique maximal solution trajectory of AMD,,,, and let

Vi(t) == V(X (2), Z(1),t) = r() (f(X(2)) = f7) + Dy (Z(t), 27).
Taking the time-derivative of V,.(t), we have

d d
—V,(t) = —
dtv() dt

= (O X®) = 1)+ (@) (VX ), X)) + (Z(0), Vo (2(8) = T4 () )
=r%wquwﬂ»—ﬁ>+mn<Vﬂxu»pmﬂ>+<—mefuxwxX@w+ZT?Xa»—ﬁ>

V(X (1), Z(t), 1)

IN

(FXO) = @)~ 00+ (Trx o), 20} (v - TOEL). (9.4)

where we used the expressions for Z and Vy*(Z) from AMD;M77 in the second equality, and
convexity of f in the last inequality. Equipped with this bound, it becomes straightforward
to give sufficient conditions for V,. to be a Lyapunov function.

Theorem 19. Suppose that for all t € [ty, +00),

1. n(t) > r'(t) and
2 (VFX(0), X)) (r(t) - 1250 <0,
Then V, is a Lyapunov function for AMD,, ,, and for all t > %,

Vi (X (to), Z(to), to)
r(t) '
Proof. The two conditions, combined with inequality (9.4), imply that £V,(X(t), Z(t),t) <

0, thus V; is a Lyapunov function. Finally, since Dy- is non-negative, and the Lyapunov
function is decreasing, we have

FX(@) -1 <

V(X (to), Z(to), to)
r(t) .

which proves the claim. O

<

Vo(X(#), Z(t), 1)
)

Note that the second condition depends on the solution trajectory X(¢), and may be
hard to check a priori. However, we give one special case in which the condition trivially
holds.

Corollary 3. Suppose that for all t € [ty, +00), n(t) = CLOLORY () > ((t)). Then V, is

t r
a Lyapunov function for AMD,,,, and for all t > to, f(X(t)) — f* < w
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Next, we describe a method to construct weight functions w, n that satisfy the conditions
of Corollary Bl given a desired rate r. Of course, it suffices to construct w that satisfies

w((tt)) (t) for all ¢, then to set n(t) = wg,)&()t). We can reparameterize the weight function
by writing W((t)) = a(t). We will refer to a(t) as the normalized weight function. Then
integrating from ¢y to t, we have V‘I//VT% — et o and
(l(t) ft a(t)dr
w(t) = w(ty) ——~e’ . 9.5
() = wlto) (9.5

Therefore the conditions of the corollary are satisfied whenever w(t) is of the form and

a: Ry — R, is a continuous, positive function with a(t) > T((t))

Note that the expression
of w is defined up to the constant w(ty), which reflects the fact that the condition of the

corollary is scale-invariant (if the condition holds for a function w, then it holds for aw for
all a > 0).

Example 1. Let r(t) = ﬁ—z for some positive constant r. Then r'(t)/r(t) = 2/t, and we

can take a(t) = £ with B > 2. Then w(t) = (to) el e _ /f/—ﬁ)eﬁln(t/to) = (t/t)’"! and

n(t) = a(t)r(t) = Tﬁt, and for B = r, we recover the weighting scheme used in Chapter @

Example 2. More generally, if r(t) = & for some positive constant r, then r'(t)/r(t) = p/t,

and we can take a(t) = £ with 8 > p. Then w(t) = (t/to)’~L, and n(t) = a(t)r(t) = Ltr=L,

9.4 Energy of the system

In this section, we exhibit a second energy function that is guaranteed to decrease under the
same conditions of Theorem This energy function, unlike the Lyapunov function V,., does
not guarantee a specific convergence rate. However, it captures a natural measure of energy
in the system, and generalizes the mechanical energy in the damped oscillator interpretation
of Section B.7]

To define this energy function, we will use the following characterization of the inverse
mirror map: By duality of the subdifferentials (e.g. Theorem 23.5 in [117]), we have for a
pair of convex conjugate functions ¢ and ¢* that = € 9y*(«*) if and only if z* € 9y (x). To
simplify the discussion, we will assume that 1) is also differentiable, so that (Vy*)™1 = Vi)
(this assumption can be relaxed). In what follows, we will denote by X = V¢(X) and
Z =NyY*(2).

Theorem 20. Let (X (t), Z(t)) be the unique mazimal solution of AMD,,,, and let X =
Vi(X). Consider the energy function

1

E.(X,Zt)= f(X)+ @

Dy (Z,X), (9.6)
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and let E.(t) == E.(X(t), Z(t),t). Then if w,n satisfy condition (2) of Theorem[19, E, is a

decreasing function of time.

Proof. To make the notation more concise, we omit the @Xplicit dependence on time in this
proof. We have Dy (Z, X) = ¢*(Z) —¢*(X) — (X, Z — X ). Taking the time-derivative , we
have

%Dw(z, X) = <v¢*(2), Z> - <v¢*(X),f<> - <X Z - X> - <X, 7 - X>
= (VW2 -x,2) - (X,2-X)

Using the second equation in AMD!, | we have V¢*(Z) — X = 1X, and <X, 7 — X> =

w,m T a
a(Vy*(Z) — Vy*(X), Z — X)) > 0 by monotonicity of V¢/*. Combining, we have
d . n /¢
—Dy (4, X) < —=(X X
S0 (2.%) < =1(X,V1(0)).
and we can finally bound the derivative of E,: since r is increasing, r’/r? is positive, and
d - 1d . r’ .
Yt :< X ,X> 8Dy (2. X) = LDy (2, X
L6.(t) = (VF(X), X) 4 14D (2,X) ~ 53Dy(2,X)
< (vix).X) (1-1).
ar
Therefore condition (2) of Theorem |19 implies that £ E, (¢) < 0. O

This energy function can be interpreted, loosely speaking, as the sum of a potential

energy given by f(X), and a generalization of the kinetic energy, given by %Dw*(Z L X).
Indeed, when the problem is unconstrained, then one can take 1*(z) = %||z||?

2
Vi* = Vi = I, the identity, and

1 o > 2 _ 1 ]2
mpw(z,X) = 1Z - X||? = 2T(t)ag(t)llXH ,

a quantity proportional to the kinetic energy (in the quadratic case given in Example , we
2 .
have r(t) = & and we can take a(t) = %, so that m = 3, and the energy function

reduces to the mechanical energy (8.13)) studied in the oscillator interpretation in Chapter .

, in which case

2(t)

9.5 Primal Representation

An equivalent primal representation of the ODE AMD,, ,, can be obtained by rewriting the
equations in terms of Z = V¢*(Z) and its derivatives (Z is a primal variable that remains
in X, since V¢* maps into X’). Taking the time derivative of Z(t) = Vy*(Z(t)), we have

Z(t) = VA (Z(0) Z(t) = —n(t) V0" o V(Z(H)V (X (2)),
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where V2¢*(2) is the Hessian of ¢* at z, defined as V2¢*(z);; = 202 - Then using the

0z;0z;

averaging expression for X, we can write AMD,, ,, in the following primal form

zoW (to) + f;;w(T)Z(T)dT>
(9.7)

o, 2(t) = —n(t)V5" o VU(Z()V ( o

Z(ty) = xo.

A similar derivation can be made for the mirror descent ODE without acceleration, which
can be written as follows (see Section[8.2, and the original derivation of Nemirovski and Yudin
in Chapter 3 in [98]) .

Z(t) = =V f(X(1))
MD ¢ X(1) = Vi (Z(1))
X(to) = xo.

Note that this can be interpreted as a limit case of AMD,,, with n(f) = 1 and w(t) a
Dirac function at t. Taking the time derivative of X (t) = V¢*(Z(t)), we have X (t) =

V2*(Z(t))Z(t), which leads to the primal form of the mirror descent ODE

D { X(t) = V20" o V(X (1)) VF(X(2))

For some choices of 1, V2¢* o Vi has a simple expression. We give some examples
below. The operator V2* o Vi) appears in both primal representations and , and
multiplies the gradient of f. It can be thought of as a transformation of the gradient which
ensures that the primal trajectory remains in the feasible set, which will be illustrated in the
examples below.

We also observe that in its primal form, AMDy, , is a generalization of the ODE family
studied by Wibisono et al. in [136], which can be written as £V (X (t) + e VX (t)) =
—e*WHBV f(X (t)), for which they prove the convergence rate O(e™#®). This corresponds
to setting, in our notation, a(t) = e*® r(t) = €% and taking n(t) = a(t)r(t) (which
corresponds to the condition of Corollary . The ODE studied in this section, AMD,, ,,, is
more general in that it does not assume the condition of Corollary [3, which will be essential
in deriving the adaptive averagin heuristic in Section [9.8

Positive-orthant-constrained dynamics Suppose that X is the positive orthant R,
and consider the negative entropy function ¢ (z) = > " | z;Inz;. Then its dual is ¢¥*(z) =
S e#! and we have Vip(x); = 1+ Inw; and V2*(2);; = 6/e* 1, where &7 is 1if i = j
and 0 otherwise (see Section in the appendix). Thus for all z € R,

V2* o V(z) = diag(x).



CHAPTER 9. GENERALIZED AND ADAPTIVE AVERAGING 131

Therefore, the primal forms and , reduce to, respectively,
{w, X = - X;Vf(X);

X(O) = X
Vi, Zi = —n(t)ZiV (X (2)):
Z(to) = xo

where for the second ODE we write X (Z ) compactly to denote the weighted average given
by the second equation of AMD,, ,,

X (to)W (to) + [, w(r)Z(7)dr
W(t)
When f is affine, the mirror descent ODE lead to Lotka-Volterra equation which has ap-

plications in economics and ecology. For the mirror descent ODE, one can verify that the
solution remains in the positive orthant since X tends to 0 as X; approaches the boundary

X(Z) =

of the feasible set. Similarly for the accelerated version, Z tends to 0 as Z approaches the
boundary, thus Z remains feasible, and so does X by convexity.

9.6 The accelerated replicator dynamics

Now suppose that X is the n-simplex, X = A = {z € R? : Y} ", 2; = 1}. Consider
the distance-generating function ¢(z) = > 1"  x;Inxz; + dx(z), where dx(-) is the convex
indicator function of the feasible set (see Section in the appendix). Then its conjugate

is ¥*(z) =In (>, €*), defined on E*, and we have Vi(z); = 1 + Inz;, Vi*(2); = %,

and V2" (z);; = ZW:M B (zek:i i Then it is simple to calculate

Yk (Dgwn)
Therefore, the primal forms and reduce to, respectively,

Vi, Xi+ X (V(X); — (X, Vf(X))) =0
X(O) =X

V2’¢* @) VQ/J(I)ZJ

Vi, Zi 4+ () 2 (VF(X)s — (2, V(X)) =0

The first ODE is the replicator dynamics analyzed in Chapter [3| for the congestion game.
It has been studied for a long time, see [12§] for a survey, and has many applications rang-
ing from evolutionary game theory [135] and viability theory [§] to traffic networks and
routing [49].
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(b) Vector field V2¢*(Z(t2))V f(-).

Figure 9.2: Vector field X — V2*(Z(t))V f(X) for different values of Z(t) (taken along a
solution trajectory for an example problem with solution on the relative boundary of the
simplex). As V¢*(Z(t)) approaches the relative boundary, the vector field changes in such
a way that the component that is orthogonal to the boundary vanishes.

It is used to study large population dynamics, where one considers a population of players
and a finite action set {1,...,n}, such that at time ¢, X;(¢) is the proportion of players who
adopt action i. Then Vf;(X) is the cost (or the negative fitness) of action ¢ given the
distribution X. The ODE is called replicator as it can be obtained using a simple model
of adaptive play as follows: at time t, players are randomly matched in pairs, and if their
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current actions are, respectively, ¢ and j, then the first player will switch to j (i.e. replicate
the action of the second player) with a rate proportional to V; f(X) —V, f(X), and similarly
for the second player. As a consequence, the rate of increase of X; is simply the sum over all
actions j of X;X; (the probability of the match (7, 7)) multiplied by the difference in costs
Vi/(X) — Vif(X), ie.

Xi =) XiX;(Vif(X) = Vif (X))

Jj=1

= X, (Z X;(V;f(X) - Vz‘f(X>>>

j=1

= X; (X, Vf(X)) = Vif(X)).

This example shows that the replicator dynamics can be accelerated simply by performing
the original replicator update on the variable Z, in which (i) the gradient of the objective
function is scaled by n(t) at time ¢, and (ii) the gradient is evaluated at X (t), the weighted
average of the Z trajectory.

Illustration of the operator V2y* o Vi)(Z2)

Consider the accelerated replicator dynamics given above. This example can be used to
illustrate the role of the Hessian term in Equation (9.7)). Suppose that V¢*(Z) approaches
the relative boundary of the feasible set, say eZio approaches 0. Then (V2*(Z)V f(X));, =

Z,L-0

ﬁ (VZ-O f(X) — <V f(X), ZB—ZZ>), also approaches 0. Figure 9.2/ displays the vector field
k€ eZk
V2*(Z)V f(X) for different values of Z, to illustrate this phenomenon.

9.7 Restarting the ODE in the strongly convex case

When the objective function is strongly convex with a known parameter, faster convergence
can be obtained by restarting the ODE at fixed intervals. That is, for some period T" which
depends on the function parameters, if we call Ty = ty + kT, we can define a trajectory
(X, Z) to be the union of the solutions, on each interval [T}, Tj+1), of the ODE

Z(t) = —n(t = TV F(X (1))
X(T)W (to) + [, w(r — KT)VY*(Z(7))dr
X(t) = kT (9.9)

X(Ty) = Vy*(Z(1})) = xqy,, where g, = X(1})).

That is, we solve a sequence of ODESs, one on each interval, and choose the initial conditions
at the start of each interval so that the primal trajectory is continuous. The dual variable
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Z is reinitialized at T} in order to satisfy Viy*(Z(T})) = X (T}, ). Since X (t) is the weighted
average of the V¢*(Z(7)) on the interval [T%,t], setting Vy*(Z(T;)) = X (1) ) ensures
continuity of the primal trajectory (but the dual trajectory is in general, discontinuous at
Tx). We now present a simple restarting strategy in the strongly convex case.

Theorem 21. Suppose that the objective function f is £s-strongly convex, and that the dis-
tance generating function ¢* is ly«-strongly convex. Let r(t) be a positive increasing rate
function, and consider the ODE AMD,,,, with w,n,r satisfying the conditions of Theo-

rem . Then the restarted ODE with period T = r~* (c <r(t0) + m)), with ¢ > 1,
guarantees that for all k >0 and all t € [Ty, + 1, Tj11],

FX(@) = £ < (D) T (fwo) — f5).

In other words, f(X(t)) converges exponentially to f*, at a rate 7. Note, however, that
this method requires previous knowledge of the strong convexity parameter ;.

Proof. By Theorem [19] we have for all t € [Ty, Tj41],

1
FX@) =< MV(X(T]C>’ Z(Tx), to)
1
= m(r(tO)(f(X(Tk)) — )+ Dy (Z(Ti), 27))-
But since ¢* is strongly convex,
Dy (Z(Ty), 2*) < él IVY*(Z(T})) — Vb (1) |? by Proposition
-
= 7 n -
< ! (f(Xk) = f) by strong convexity of f.
(ool

Therefore,
FXW) = 1* < s (v + 2 ) UK @) - 1)

Thus using a restarting interval 7' = r—! <c <r(t0) + ﬁ) ), and evaluating the last inequal-
ity at t = Tj.1, we have
v JX (D)) — 1~
fX(Ter)) — [ < ,

Cc
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so by induction f(X(Ty)) — f* < W, and for T}, + 1 <t < Tj41, we have

r(T)

JX(@®) -1 < (f(X () = [7)

t
T
This concludes the proof. O

= r(T)e 7 (f(x0) — f*) since k +1>

9.8 Adaptive averaging

In this section, we propose an adaptive averaging heuristic for adaptively computing the
weights w. Note that in Corollary We simply set a(t) = % so that

is identically zero (thus trivially satisfying condition (2) of Theorem . However, from the
bound , if this term is negative, then this helps further decrease the Lyapunov function
V,. (as well as the energy function E,.). A simple strategy is then to adaptively define a(t)
as follows.

Definition 13. Consider the accelerated mirror descent ODE with generalized averaging
AMD,,,,, and suppose the weight function w is given by Equation (9.5). We say that the
averaging 1s adaptive if the following conditions hold:

alt) = 128 if (VAX(0). X (1)) >0,
a(t) > —=  otherwise.

If we further suppose that n(t) > r’(t), then the conditions of Theorem [19|and Theorem [20]
are satisfied, which guarantees the decrease of the Lyapunov function V, and the energy
function F,.

Theorem 22. Let r(t) be a positive increasing rate function, and consider accelerated mirror
descent AMD,,,, with adaptive averaging. Suppose that n(t) > r'(t). Then V, is a Lyapunov
function and the energy E,. is non-increasing. In particular, we have for all t > t

V;«(X(to), Z(tﬂ)v tO)

FE (D) - < T

and adaptive averaging preserves the rate r(t).
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In the next chapter, we will propose a discretization of the accelerated mirror descent
ODE, both for adaptive and non-adaptive averaging schemes, which results in a family of
accelerated first-order methods. We show that when r(¢) is a quadratic, the discretization
preserves the Lyapunov function, and as a consequence, it preserves the convergence rate. We
also find that empirically, adaptive averaging significantly improves the speed of convergence.

Example 3 (Adaptive averaging for quadratic rates). Let r(t) = % for some positive con-

stant r, and let n(t) = % so that n(t) > :/((f)). Then a(t) is adaptive if

a(t) =

a(t) >

if (VX (). X(0) >0,

otherwise.

This defines an adaptive version of Example |1, the discrete version of which will be stud-

ied in further detail in the next chapter. One limiting example is to set a(t) = % if

<Vf(X(t)),X(t)> > 0 and set a(t) to be constant otherwise (this is a limit case because
it would violate continuity of a). It is worth observing that a constant a(t) over an interval
corresponds to an exponential increase in the weight w(t) by Equation (9.5), while a(t) = g
corresponds to the polynomial increase w(t) = w(ty)(t/to)?~t. In other words, the adap-
tive averaging scheme would increase the weights polynomially by default, and exponentially
whenever the trajectory is moving in a good direction, i.e. <Vf(X),X> <0.
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Chapter 10

Discretizing the Accelerated
Dynamics

In this chapter, we show that with a careful discretization of the continuous-time accelerated
mirror descent dynamics developed in Chapters [§ and [, we can obtain a general family of
accelerated first-order methods for constrained optimization, which have a quadratic rate of
convergence. We start with a naive discretization using a forward-backward Euler scheme
in Section and discuss why such a discretization does not, in general, preserve the
Lyapunov function associated to the ODE. In Section [10.2] we give a modification of the
discretization, and prove in Section that the modified scheme is consistent with the
ODE (i.e. the continuous-time limit of the discrete difference equations still correspond to
the original ODE). In Section [10.4} we prove that the proposed family of accelerated mirror
descent (as well as adaptive averaging) preserve the Lyapunov function associated to the
ODE, and as a consequence, these methods are guaranteed to have a quadratic convergence
rate. We give a detailed example in Section [10.5] which corresponds to the discretization of
the accelerated replicator dynamics studied in the previous chapter. We review and discuss
different restarting heuristics in Section [I0.6] and test these different methods on several
numerical examples in Section [I0.7] In particular, we compare the performance of restarting
and adaptive averaging. The results indicate that adaptive averaging compares favorably to
the best known heuristics, with significant improvements in some cases. Finally, we conclude
this part of the thesis in Section with a summary and discussion of our results, and with
directions for future research.

10.1 Forward-backward Euler discretization

Using a mixed Euler scheme (forward in the Z variable, and backward in the X variable),
see e.g. Chapter 2 in [36], we can discretize the ODE system (8.11)) using a step size /s
as follows (the choice of the step size as /s instead of s will become clear in Section [10.2)).
Given a solution (X, Z) of the ODE (8.11)), consider the correspondence between discrete
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and continuous time, t;, = k+/s, and let

e®) = X () = X (kv/s).
Starting from the second form of the accelerated mirror descent ODE with generalized av-

eraging ,
Z(t) = —n()V F(X(2))
AMD;,, ¢ X(t) = ( )(V¢ (Z(t)) = X(1))
X(to) = Vi (Z(to)) = o,
and approximating X (t,) with M, and, similarly, Z(t;,) with W, con-
sider the Euler discretization, forwarci[in X and backward in Z,

LB+ _ ()
NG

LD
NG

where we have defined 7y, := n(k+/s) and a; := a(k+/s). The second equation can be rewritten

as
LB+ 2 ®) 4 apr sV (z0HD)
1+ apr1v/s .

In other words, z(**1) is a convex combination of V1*(2®)) and z*) with coefficients \y4; =

112;1‘1[\8/; and 1 — M\ = m Note that since Vi)* maps into X, starting from z(® € X

guarantees that 2 remains in X for all k. To summarize, our first discrete scheme can be
written as

- _nkvf(x(k))v

Y (10.1)

= Qk+1 (V¢*(Z(k+l)) - x(kﬂ)) )

A =2 5V f (W),
(10.2)
2™ = N VO () + (1= A )a ™, N = Vs

1—|—ak\/§'

An equivalent form of the mirror descent update

When the primal distance generating function can be written as the restriction to X of
a differentiable function ¥ (Assumption [5in the appendix), the mirror update z*+1 =
2®) — . /sV f (™) can be written in terms of the primal variable 2*) = V¢*(2(®)), see the
discussion in Section in the appendix.

In this case, the discretization can be written purely in terms of the primal variables z(*)
and 2 as follows

3 a S
2D = N 2D (1= Ny)a™, A = #\Z/} (10.3)
(k1) _ arg min n,/s <Vf(x(k+1)), x> + Dy (z, é(k')).
TEX
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We will eventually modify this scheme in order to be able to prove the quadratic convergence
rate. However, we start by analyzing this version of the discretization to show that, in
general, it fails to preserve the Lyapunov function from continuous time.

A candidate Lyapunov sequence

Motivated by the continuous-time Lyapunov function (9.2]), and using the correspondence
t;, = k+/s, consider the candidate Lyapunov sequence, defined for k > 1,

o = V(g 2, t) = r(f@®7D) = ) 4 Dy (21, 2).
where 7 := r(ky/s). Then we have
ot = o = (F(a™) = £) = (P @0 = )+ Dy (2570, 2%) = Dy (21, 27)
= ri(f(a®™) = f@) 4 (rier = 1) (f(@®) = F5) + Dy (2 27) = Dy (20, 27).
The difference of the Bregman divergences in the last equality can be bounded as follows
Dy (25D 2%) — Dy (2 2%)
= Dy (25D 20) 4 (Vg (20) — Ty (), 20D — 20

1
= Dw*(z(’f“),z(k)) + <_<$(k) _ x(k—l)) + 20 _ ¥, —Uk\/gvf(fﬂ(k))>
ak\/g
< Dw* (Z(k'H), Z(k)) + nk\/g(f* B f(ZL‘(k))) + %(f(w(k—1)> - f(l‘(k)))
ay
where the first equality follows from the Bregman identity in Lemma [I5] the second equality

is by the discretization ((10.1)), and the last inequality is by convexity of f. Combining the

last inequality with the expression of vﬁkﬂ) — vﬁk), we have

Py ) <

VafE) - £ (T_ - ”‘f) T (f@®) — f(a®)) ( - "—) Dy (204D, 2,
(10.4)

Let us compare this expression with the bound (9.4) on £V,(X(t), Z(t),t) in the continuous-
time case, copied below.

SVLXW), 2(0)1) < (FOXW) — P00 — n0) + (70, X (1)) (’”“) ) %> |

We see that we obtain an analogous bound (where r/(t) is approximated by T’“*\l/;’“ ), except

for the additional Bregman divergence term D, (z+1) 20 Using a discrete counterpart of
the conditions of Theorem we can guarantee that the first two terms in the bound
are non-positive, but due to the additional Bregman divergence term, we cannot immediately
conclude that v®) is a Lyapunov sequence. This can be remedied by a modification of the
discretization, described next.
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10.2 Discrete-time accelerated mirror descent and
adaptive averaging

In this section, we propose a modification of the Euler discretization, which preserves
quadratic convergence rates, both for adaptive and non-adaptive averaging schemes. This
results in a family of accelerated first-order methods, that generalizes Nesterov’s accelerated
proximal method [101]. For faster rates r(t) = t?, p > 2, it is also possible to discretize
the ODE and preserve the convergence rate, as proposed by Wibisono et al. [136], at the
expense of using higher-order methods. For example, for cubic convergence rates, their dis-
cretization results in Nesterov’s acceleration of regularized Newton method [99]. We focus
on first-order methods since they are better suited to large-scale optimization, given the size
and dimensionality of the data sets typically encountered in machine learning and modern
data analysis applications.

First, we specialize the Euler discretization to the quadratic case. Following Example
and Example (for the adaptive and non-adaptive version of the ODE), let r(t) = % for
some positive parameter r, and let n(t) = % with 8 > 2, so that n(t) > /() to satisfy the
first condition of Theorem . We will keep a general normalized weight function a(t), to be
able to analyze both the adaptive and non-adaptive versions of the algorithm. As a result,
we have

k?s
Ty = T(k\/g) = 2
Bk+/s
me = 1(ky/'s) = r;f
and the discretization (10.2)) becomes

(10.5)

?

. a S
a® D = N 250D 4 (1= Nr)2®),) Ny = HkT\/:/E’
k

k
(D — arg min 6—28 <Vf(x(k+1)), z) + Dy(z, 20,
reX r

Next, in the expression of z**1) = N\, Vo*(z**+D) + (1 — \p)z®) | we propose to replace
" with 2*+1) obtained as the solution to the minimization problem

) = arg min s <Vf(x(k)), z) + R(z, z k),
reX

where 7 is a positive constant that scales the step size (the appropriate conditions on ~
will be derived in Theorem , and R is regularization function that satisfies the following
assumption:

Assumption 4. There ezist 0 < (g < Lg such that for all z,2' € E, Z|z — 2/|* <
R(z,2') < &z — o'||*.
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In the Euclidean case, one can take R to be the squared Euclidean distance, R(x,z’) =
w, in which case g = Lr = 1 and the £ update becomes a prox-update. In the general
case, one can take R(x,2') = Dy(z,2") for some distance generating function ¢ which is
(g-strongly convex and Lg-smooth, in which case the  update becomes a mirror update.

The resulting method is illustrated in Figure [10.1. This algorithm is a generalization of
Allen-Zhu and Orecchia’s interpretation of Nesterov’s method in 2], where 2**1) is a convex

combination of a mirror descent update and a gradient descent update.

Figure 10.1: Tllustration of the accelerated mirror descent method in discrete time. The dual
variable z(*) is updated by taking a step in the direction of the negative gradient —V f(z(*),
with a rate ng+/s. The corresponding primal variable is #k+Y) = V¢)*(2(#*1)). The variable
#*+1) is obtained by performing a prox update from z®, then z**+Y is updated by taking
a convex combination of 2*+1) and 1. The weights used in the convex combination can
be adaptive, depending on which averaging scheme is used.

Adaptive and non-adaptive averaging

In order to fully specify the algorithm, we need to define the sequence of normalized weights
ax. In the non-adaptive version, using a discrete counterpart of Example (1{in which a(t) = %,

we simply use the correspondance t = kv/s and set

B
ky/s’
In the adaptive version, we propose a rule which is based on the continuous-time adaptive
averaging heuristic in Example |3| Let

ay € {k\/_ min (ak 1 i?) }, with f(z*FD) — £(2™) > 0 only if a; = kﬁ\/g (10.7)

This rule should be interpreted as follows: At iteration k, we try setting a, = min <ak_1, %\Z) ,

(10.6)

ap —

compute z¥)| then evaluate f(z*+1) — f(z®)). If this quantity is non-positive, we move to
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the next iteration, otherwise we set a, = % then recompute z® and move to the next it-
eration. This guarantees the following properties, which will be essential in proving that the
discretization preserves the Lyapunov function in Lemma and the quadratic convergence
rate in Theorem 23]

Lemma 12. The sequences ay, defined following the non-adaptive and the adaptive schemes (10.6|)
and (10.7), both satisfy the following properties:

% <ap < %;
2. For all k, Lz (/(E4) — f@H) < A7) — 7@0)).

The resulting methods are summarized below, in Algorithm [0 and Algorithm [I0} To
simplify the presentation, we chose to write all of the updates in the primal space. In both
algorithms, the mirror descent update line 3 can be equivalently written in the dual space as

1. For all k,

b)) ) _ 5’23 Fa®)
T

k:+1 V’l?b ( k+1)

Algorithm 9 Accelerated mirror descent with non-adaptive averaging
Parameters: Distance generating function ¢*,

Regularizer R,
Step size s,

Initial point xg,
Weight rate 5 > 2.
Initialize (@ = 3

= Xy.
for £ € N do
k1) — arg mlnze)( <Vf ), 2) + Dy(%, 2%))
(k)

)

_ sa, B

Z,
* ) = argmingp vs (V£ ( x(k ) x> + R(z, 2
Ak 1++/sa4, B+k"

D) = N 2EFD (1 — Ay )2 with
end for

10.3 Consistency of the discretization
One can show that given our assumptions on R, Z**1) = 2*) + O(s). Indeed, we have

14
QRH (k+1) (k)H2 < R(;i-(kﬂ), ) R( ) + s <Vf ) NON i'(k+1)>
< ||V f(@®)] | z* — x(k)”
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Algorithm 10 Accelerated mirror descent with adaptive averaging
Parameters: Distance generating function ¥*,
Regularizer R,
Step size s,
Initial point z,
Weight rates g™ > g > 2.
1: Initialize 2 = 20, 2O = 20, a; = %
2: for k € N do

3.z = argmmzeX <Vf( ) z) + Dw(é 2( )).

4 #*HY = argming s (Vf(z®), &) + R(z, z*

5. att) = D (1 — )‘k—H) ( 1) with )\k = 1-?—/\5/?;,6

6: ap€ {k—\/g,min (ak,l, %)} with f(z+1) — f(z®) > 0 only if aj, = ki\/g
7: end for

therefore ||z++1) — 20| < sw, which proves the claim. Using this observation, we
can show that the modified discretization scheme is consistent with the original ODE (8.11)),
that is, the difference equations defining z®*) and 2 converge, as s tends to 0, to the
ordinary differential equations of the continuous-time system . The difference equations
of Algorithm |§| are equivalent to in which ) is replaced by #*+Y i.e.

S(k1) _ (k)

-V (k)

7 neV f (')

LB+ _ (k1)
NG

Now suppose there exist C'! functions (X, Z), defined on RT, such that X (tz) ~ x*)
and Z(t;) =~ 2 for t;, = ky/s. Then, using the fact that 2% = z(® + O(s), we have
r““”\;g““” _ x“f*”\/g—w“” +O(/5) ~ —X“H@*XW +0(/5) = X(tx) + O(y/s), and similarly,
A0 7 (tx) + o(1), therefore the difference equation system can be written as

Vs
{ Z(tr) + o(1) = =n(te) VF(X (1))
X(te) + O(Vs) = alty + V) (VU (Z(tr + V5)) — X (ts + V5))
which converges to the ODE (8.11)) as s — 0.

_ ak+1(V¢ ( (k+1) ) x(kJrl))'

10.4 Convergence guarantees

To prove convergence of the discrete accelerated mirror descent algorithms, we will show
that the following sequence is a Lyapunov sequence,

~ ~ kQ ~, * *
ok — Vr(x(k) (k) k) = o (f(x(k)) — M)+ Dw(z(k),z ).
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In the following, we will suppose that ™* > 8 > 2, that 1* is Ly- smooth, and that R is
(g strongly convex and Lz smooth.

Lemma 13. Consider the sequence of iterates generated by Algorithm[9 or Algorithm[10. If
BﬁmaxLRLw
V> ——5—— and s < 57, then

2k+1—k
s+ _ g < +r2 B)s

FEED — ),

It follows that if B >3, %) is non-increasing for k > 1.

As a consequence, we can prove that the discrete accelerated mirror descent algorithms
exhibit a quadratic convergence rate.

Theorem 23. Accelerated mirror descent with adaptive and non-adaptive averaging, given in

Algom'thm and Algom'thm with weight rate f™ > 5 > 3, and step sizes vy > %
and s < 57 =, guarantees that for all k > 0,
25(1)
(k) _ pr TV
z .
FE) - s

Additionally, we can bound 0V in terms of the initial conditions of the algorithm as follows:

~ * S *
o < Dy (20, 2) + S(£®) - 1)

Proof. Since 9®) is a Lyapunov sequence for k > 1 by Lemma we have

2
~(k * ™k ~(1
f(z )) — < @U( ) < @v( )

It remains to prove the bound on #. By Lemma we have

To conclude, it suffices to show that f(#(1)) < f(z(?). By definition, we have

1 = argmin s <Vf(:p(0)), )+ R(z, ),
Fex

thus

vs (Vf(z®), 21 + Rz ) < s (Vf(z),2©). (10.8)
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Therefore,
F@EW) - f(x(o))
< <Vf (0)> + = Ls Hx — 202 by Lemma
<V (@), 50 — 2O + fR( Lz by assumption on R
R

< <Vf A (0)> +— R( ) 2©) using that Ly < L

S lp — s
<0 by (10.8).

This concludes the proof.
Proof of Lemma[I3 The difference 9%+ — 5(*) is given by

kD) _ 5k)

= B o) - ) = B9 < 1) 4 D (2 - D (0,2

r2

and we start by bounding the difference in Bregman divergences.

D¢* (Z(k+1), Z*) — Dw(z(k), Z*)
= — Dy (2™, 20D 4 (W () — W (%), 27D — 2 by Lemma

1 k
< - ST —— ||z — B2 ¢ <2(k+1) — ", —@Vf( )> by Lemma [T6] (10.9)

Now using the step from z® to z#*1, we have

F* = argminys (Vf(2™), ) + R(z, 2®)
TEX

with & ||z —y||? < R(x,y) < L& ||z — y||>. Therefore, for any =, R(xz, z®) > R(z*+D 2®) 1
2 2
vs (V f(x®), 2k — 2). We can write

S1) () Ai (A2 1 (1= A )E® — 2 ®) = Ai (D — z09)
k k
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where we have defined d**Y in the obvious way. Thus

HZV, (k+1) 3 k)HQ

1
_ d(k—H) . I(k)||2
)\2 ||
> ——R(d(k“), :):(k))
(R(j?(kJrl), (k )) +’78 <Vf< ) ~(k+1) (k+1)>)

2 é

M BkL R
2yr2

Thus, multiplying by

2yr?

BECr 1) w2, [ PBkS py L~ 3 L= s
S _ VF(e®)), —gktl) _ xkt1) 27 PRAR) N (10,10
- 2)\14577”2HI T+ r? J( ),/\kx : Ak ! ( )

Subtracting ((10.10)) from ((10.9)),
Dw* (Z(k+1), Z*)_D¢* (Z(k), Z*>
< a2+ — 202 — TER e g2

2\ yr?
n —%Vf( 9, —a 4 gl L= M)
N Ak
where
1 BkA. LR
ap = — .
F 2L 2~yr?
Defining D™ = |70+ — 2®))12 and D™ = ||(:+1) — 5|2 we can rewrite the last
inequality as
DTP* (Z(k+1)a Z*)_Diﬁ* (Z(k)v Z*)
k¢
< oDV _ Bklr D+
2)\k’yr2
5ks< VF(e®), 3040 ) 4 )\k; 5163 = F00) _ 3069
By Lemma |14, we can bound the inner products as follows
. N s Ly
<w(k+1) ~Vf(x k) >< #( (k> f(l,(k+1))+7fD§ +1)7

L
<j(k+1) — —Vf(:v(k))> < fr o f(j(k+1)) 4 Tngk—H).



CHAPTER 10. DISCRETIZING THE ACCELERATED DYNAMICS 147

Combining the last inequalities,
Dw*(z(k—&-l)’z*) — Dy (2 20 )
kt ks ~ L
< _akDék-i-l) Bklg D (k+1) + 67=_2 (f* _ f(x(k-l—l)) + _fD§k+1))

22 9
Bks1 — A\ - (k) sy L Lr )
2 - —D
- r2 )\k f(ZL' ) f(:B ) + 9 1
BkS 1— A B N 61{;5 . )
=5 " k (f(x(k)) _ f(x(kJrl))) + — (f _ f(x(kJrl))) _ oszng) _ BkDEkH)’
where
8, = Bklr  BksL; PBksLyl—Ne _ Bk g——Ls
T 2 2 N 2 4

Next, observe that % =
f(@®))), therefore
1— X
Ak

s and by Lemma 12 ﬁ(f(x(’““))—f(i(’“))) < 5/ ) -

(F@™D) — f(@EW)) < 2 (f@E*D) — fz0)).

™| T

Combining with the previous inequality, we have
Dw*(z(kJrl)’Z*) . Dw ( (k) *)
]{228 - 6]68 . 3
=T 72 (f<x(k)) — f@E* )) (f = f(x(Hl))) - OékDék“) — 5kD§kH)7

Finally, we obtain a bound on the difference o1 — §(*).
S _ 5(k)
= B LS patn) = B2 (a0) - ) 4 Dye (204, 2) = Dy (29, )
= o gy - a0y + CEED (a0e0) - ) Dy (o9, 20) - Dy (00, 2)
< (2k + 12— mf)s(f(:z(kﬂ)) — ) — DU _ g, piky

For the desired inequality to hold, it suffices that as, B > 0, i.e.

1 BkM\iLg
2Lw* 2'y7'2 > 0

I (2 —1ys) =0,

2r2, \ v

ie. -
kLR Lyx*
V2

s
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To simplify the condition on =, we observe that A\, = H;l’ and since a, < iL\/a; by
Vsay
Lemma [12] we have
k
Bin < —22— < g,
1 + Bmax

So it is sufficient that BgmaxL, 1,
{7 > %,

‘R
S Iy

which concludes the proof. O]

10.5 Accelerated entropic descent

We give an instance of Algorithms [9] and Algorithm [10] for simplex-constrained problems,
which corresponds to a discretization of the accelerated replicator dynamics studied in Sec-
tion Suppose that X = A" = {z € R} : " | x; = 1} is the probability simplex in R".
Taking 1) to be the negative entropy on A, we have for x € X, z € E*,

e

Z?:l =

The resulting mirror descent update is a simple entropy projection and can be computed
exactly in O(n) operations (since the projection is given in closed form by the expression of
Vi*), and 1* can be shown to be 1-smooth w.r.t. || - ||, see for example [15] 24]. For the
second update, we take R(z,y) = Dy(x,y) where ¢ is a smoothed negative entropy function
defined as follows: let € > 0, and let

() = Xn:xz Inz;, ¥*(z) =In (Zn: ezi> , Vi(x);=1+Inzx;, VY (z),=
i=1 i=1

n

o(r) =€ Z(wz +€)In(z; +€) + da(x).

=1

Although no simple expression is known for the mirror operator V¢*(z) = argmax, (z, ) —
o(z), it can be solved efficiently, in O(nlogn) time using a deterministic algorithm, or O(n)
expected time using a randomized algorithm, see Appendix [C| Additionally, Dy satisfies our
assumptions: ¢ is =5—-strongly convex w.r.t. ||-||1, and 1-smooth w.r.t. [||le. The resulting
accelerated mirror descent method on the simplex can then be implemented efficiently, and

by Theorem , it is guaranteed to converge in O(1/k?) whenever v > 1 and s < m

10.6 Restarting in discrete time

In this section, we adapt the restarting heuristics proposed by O’Donoghue and Candes
in [105], and Su et al. in [130]. In Section [0.7, we motivated restarting in continuous time
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for strongly convex functions, by observing that restarting at fixed intervals (determined by
the strong convexity parameter of the objective), allows us to recover linear convergence.
Even when the function is not strongly convex, restarting can be intuitively motivated by
the observation that because of the “memory” in the solution (both in the dual variable
Z(t) = Z(0) + fg —7V f(X (7)), which accumulates gradients, and the primal variable due
to averaging), the trajectory may point in a bad direction at a given time ¢. Thus, one can
restart the ODE whenever a given condition is met, by resetting time to zero and reinitializing
it at the current point, effectively wiping the memory of the solution.

Recall that in continuous-time, the algorithm is restarted at a given time T}, by solving a
new ODE given by (9.9), in which time is shifted by —7T}, and the dual variable is reinitialized
to have Vy*(Z(T})) = X (T}, ) (to ensure continuity of the primal trajectory).

We define restarting in discrete time similarly to the continuous time: The algorithm is
restarted at time K simply by shifting future time by —K, and setting the dual variable
2+ such that V¢*(2#+1)) coincides with the current iterate z(**1). This is summarized
in Algorithm [11], where we give a general template for the restarted version of Algorithm [0}
specific restarting conditions are discussed below.

Algorithm 11 Accelerated mirror descent with restarting
Parameters: Distance generating function *,
Regularizer R,
Step size s,
Initial point xg,
Weight rate 5 > 2.
1: Initialize K =0, 20 = (0 = g,.
2: for £ € Ndo
3. 20D = argmin, w (Vf(@®),2) + Dy(z, %)
)

4: %D = argmin;, vs <Vf(a:(k)), §:> + R(&, 2™

5r oD = N\ e 20D (1 — Nl )ERHD ) with A, = 1{5/%’2,@ — %_
6: if Restart condition then

7 K+« k

8: S(H1) (k1)

9: end if

10: end for

Many restarting conditions have been proposed in recent literature, motivated by uncon-
strained continuous-time optimization. We review some of these conditions below.

(i) Gradient restart condition [105]: (z*™) —z®) ¥ f(z®)) > 0. Intuitively, the algo-
rithm is restarted whenever the trajectory makes an acute angle with the gradient, i.e.
the trajectory is moving in a bad direction.
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(i)

(iii)

Function restart condition [105]: f(z®*V) > f(x®). This Condition is similar to
the gradient condition, since one has f(z¥*V) > f(z®) 4 (V f(x®), s+ — 2B By
convexity of f, thus the second condition is implied by the first.

Speed restart condition [130]: [z 1) — z®)|| < ||z — x*=Y|. This condition was
proposed by Su et al. in [130], and is motivated by the unconstrained Euclidean
case: intuitively, the speed starts to decrease whenever the trajectory points in a bad
direction.

We test these restarting heuristics numerically in the next section, compare them to our
adaptive averaging heuristic, and discuss their empirical performance and qualitative differ-
ences.

10.7 Numerical experiments

To illustrate our results, we implement the accelerated mirror descent methods developed in
this chapter, in Algorithms [9] and [I1] on simplex-constrained problems in R", first for
n = 3, to be able to visualize the probability simplex and the solution trajectories, then in
higher dimension to better evaluate the performance of the method. We run the algorithm
on the following objective functions:

1.
2.

3.

A quadratic f(z) = (x — 2*, Q(z — x*)) for a random positive definite matrix Q.

A weakly convex function given by f(z) = g(z; — x7)* + (22 — x3)?, where g(z) =
min(z + «, max(0,x — «)). The set of minimizers of the second problem is the segment
given by {x € A : zy € [27—a,27+a] and x9 = z3}. In the plots, the set of minimizers
is visualized as a solid black segment.

A linear function f(x) = (c, ).

We compare the following methods:

1.
2.

3.
4.

The mirror descent method without acceleration.

The accelerated mirror descent method with non-adaptive weights given in Algorithm [9]

(in which the normalized weights follow a predetermined schedule given by a; = Z: =

vl

Accelerated mirror descent with adaptive averaging, given in Algorithm [10]

The gradient restarting heuristic in [105], in which the algorithm is restarted from the
current point whenever (V f(z®)), 2D — z®)) > 0,

The speed restarting heuristic in [130], in which the algorithm is restarted from the
current point whenever [|2*+) — 20| < ||z®) — z*=1)||.
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We omit the function restarting heuristic, since in practice, it has a very similar behavior
and performance to the gradient restarting heuristic. We implement the accelerated entropic
descent algorithm proposed in Section [10.5] with parameter § = r, so the Lyapunov rate
and the dual weight function are given by rp = %, N = %, according to Equation .
The corresponding code and videos are available at the following url: http://www.github.
com/walidk/AcceleratedMirrorDescent.

The results are shown in Figures [10.2, [10.3| and [10.4] for the experiments in R3. Each
subfigure is divided into four plots: Clockwise from the top left, we show the value of the
objective function f(#*)), the trajectory on the simplex, viewed as a subset of R?, the value

of the energy function e = E, (2", 20 k\/s), and the value of the Lyapunov function

o = V(%) 2% k\/s). They are given by the following expressions:

e® — B, (39 2® k5)

2
- r ~ .

o) = V(3" 2 ky/s)
k%S ooty g (k) (k)
:?(f(x ) — f*) + Dgr (™, 2").

Effect of acceleration

The accelerated mirror descent method exhibits a polynomial convergence rate, which is
empirically faster than the O(1/k?) rate predicted by Theorem , both in the strongly and
weakly convex cases. The experiments confirm that the Lyapunov function is decreasing for
the accelerated method, but not for the original mirror descent method.

The method also exhibits oscillations around the set of minimizers. We observe that
increasing the parameter r seems to reduce the period of the oscillations, and results in
a trajectory that is initially slower, but faster for large k, see Figure [10.3] The restarting
heuristics and the adaptive averaging heuristic alleviate the oscillation and empirically speed
up the convergence. This observation also holds when the solution is on the boundary of the
feasible set, see Figure for an example.


http://www.github.com/walidk/AcceleratedMirrorDescent
http://www.github.com/walidk/AcceleratedMirrorDescent
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Figure 10.2: Accelerated mirror descent on the simplex, adaptive averaging, and restarting
heuristics. Each figure is divided into four subplots. Clockwise from the top right: function
values f(x®)), trajectory of the simplex, Lyapunov values o™ = V(W) 2Rk /5), and
energy values el = E,(2®, 2® \/5).

Effect of adaptive averaging and restarting heuristics

The results in Figure show that adaptive averaging compares favorably to the restarting
heuristics on all these examples, with a significant improvement in the strongly convex
case. Additionally, the experiments confirm that under the adaptive averaging heuristic, the
Lyapunov function is decreasing. This is not the case for the restarting heuristics as can be
seen on the weakly convex example. It is interesting to observe, however, that the energy
function F, is non-increasing for all the methods in our experiments. If we interpret the
energy as the sum of a potential and a kinetic term, then this could be explained intuitively
by the fact that restarting preserves the potential energy and can only decrease the kinetic
energy. It is also worth observing that even though the Lyapunov function is non-decreasing,
it will not necessarily converge to 0 when there is more than one minimizer (in particular,
its limit will depend on the choice of z* in the definition of V}.).

Finally, we observe that these heuristics have a different qualitative behavior. The accel-
erated method exhibits oscillations around the set of minimizers, and the heuristics alleviate
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these oscillations in different ways: Intuitively, the adaptive averaging acts by increasing the
weights on portions of the trajectory which make the most progress, while the restarting
heuristics reset the velocity of the solution trajectory to zero whenever the algorithm detects
that the trajectory is moving in a bad direction. The speed restarting heuristic seems to be
more conservative in that it restarts more frequently.
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Figure 10.5: Adaptive averaging for accelerated mirror descent and cubic-regularized Newton
method.

Adaptive averaging in higher-order methods

In this section, we implement a discrete version of adaptive averaging for Nesterov’s cubic-
regularized Newton method [99]. Wibisono et al. show in [136] that this method can be



CHAPTER 10. DISCRETIZING THE ACCELERATED DYNAMICS 156

interpreted as a discretization of the ODE with cubic rate r(t) = t*. Although we do not
provide convergence guarantees in the cubic case for the discrete adaptive averaging, the
continuous-time version is guaranteed to converge by Theorem 22 In order to implement
adaptive averaging in discrete time, we can take, following Example , r(t) = f;—i and n(t) =
ﬁ—f, with g > 3, i.e.

k33/2
T = 3
Bk?s
e = —3—-
T

Like in the quadratic case, we have that n/r, = %, so we use the same adaptive rule ((10.7])
for setting the normalized weights ay.

We provide additional numerical experiments in higher dimension n = 100, to illustrate
the performance of the adaptive averaging compared to the restarting heuristics, both in the
quadratic and the cubic case. We test the algorithm on simplex-constrained problems, with
quadratic objective functions f(z) = (z — s)T A(z — s) with a positive definite matrix A in
the first example, and a positive semidefinite matrix in the second example (with rank 10),
and use a linear function in the last example. The results are reported in Figure Each
subfigure has three plots: From left to right, we show the value of objective function, the
Lyapunov function and the energy function. We observe similar results to those in dimension
3. Adaptive averaging speeds up the convergence, both in the quadratic and cubic case, and
performs as well as the restarting heuristics, with a significant improvement in one of the
examples (in this case the linear example).

10.8 Conclusion

By combining the Lyapunov argument that motivated mirror descent, and a recent ODE
interpretation [130] of Nesterov’s method, we proposed a method to construct an energy
function tailored to a given constrained convex optimization problem. The energy function
combines a term that encodes the desired convergence rate, and a term that encodes the
constraints (the Bregman divergence term). We then derived an ODE which is tailored to
that energy function, and showed existence, uniqueness and viability of its solutions. It turns
out that this ODE also has a simple interpretation as a coupling between a dual variable
Z(t) which cumulates gradients (similar to the original mirror descent method, but with
an increasing rate n(t)), and a primal variable X (¢) obtained by averaging the mirrored
dual trajectory Vo*(Z(7)), 7 € [0,t] with weights w(t). Motivated by this averaging in-
terpretation, we studied a family of ODEs with a generalized averaging scheme, and gave
sufficient conditions on the weight functions w,n to guarantee a given convergence rate in
continuous time. We showed as an example how the replicator ODE can be accelerated by
averaging. Our adaptive averaging heuristic preserves the convergence rate in continuous
time (since it preserves the Lyapunov function). We proved that a careful discretization of
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the ODE gives a quadratic convergence rate, both for adaptive and non-adaptive averaging.
Empirically, adaptive averaging performs at least as well as other known heuristics for accel-
erated first-order methods, and in some cases considerably better. This encourages further
investigation into the performance of adaptive averaging, both theoretically (by attempting
to prove faster rates, e.g. for strongly convex functions), and numerically, by testing it on
other, higher-order accelerated methods.

This approach can also be extended to more general classes of problems, such as maximal
monotone operators. Continuous and discrete dynamics for finding a zero of a maximal
monotone operator are derived for example in [108], and a promising direction is to develop
a Lyapunov approach to these classes of dynamics, and extend them to the constrained case
using the formalism of mirror descent and Bregman divergences, such as in [131} 97].

The main tool we used for proving the convergence of the accelerated methods obtained
after discretization is to use a discrete counterpart of the continuous-time Lyapunov function.
A promising avenue for research is to use the theory of variational time integrators, which
studies the question of discretizing continuous dynamics while preserving natural quantities,
such as the mechanical energy in mechanical systems, see e.g. [93, |85] and the references
therein. The idea of the method is to discretize Hamilton’s principle of critical action,
associated to the system, rather than the ODE of the dynamics. And while these methods
have been designed mainly for conservative mechanical systems, they are known to have
good empirical performance for dissipative systems. This is important since the accelerated
mirror descent dynamics are dissipative by design (otherwise the trajectories would not
settle at the bottom of the potential field). In [136], Wibisono et al. give a Lagrangian
interpretation (and its dual Hamiltonian interpretation) of the family of accelerated mirror
descent dynamics. Starting from this interpretation and applying variational time integrators
can lead to numerical methods to discretize the continuous-time dynamics, while preserving
the Lyapunov function, hence the convergence rates.
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Appendix A

Results from convex analysis

In this chapter, we review some standard definitions and results from convex analysis which
are used throughout the thesis. Most standard results are given without proof, but proofs
can be found for example in [117].

A.1 Convex functions and convex conjugates

A function f: E — RU {400} defined on £ = R™ is said to be a proper convex function if
and only if it satisfies, for all z,y and all A € [0, 1],

Jz1 + (1= Nxg) < Af(z1) + (1= A) f(x2).

It is strictly convex if the inequality is strict for all x # y and A € (0, 1).
The effective domain of f is the set of points where f is finite,

domf={z € FE: f(zr) < oo}

The effective domain is a convex set, and one can define its relative interior, denoted by
ridom f, as its interior relative to the smallest affine set containing it. The relative boundary
is defined similarly.

A proper convex function is said to be closed if its epigraph is closed. We will mainly
consider closed proper convex functions, since they have nicer properties in general than
functions that are not closed, and taking the closure of a convex function f (i.e. the infimum
of all closed functions that dominate f) only changes f on the relative boundary of its
effective domain.

Convex conjugate

Most duality results in convex analysis stem from the following simple idea: that a closed
convex function can be described either as a locus of points (x, f(x)), or as the supremum
of linear functions that lower-bound f (the same idea applies to a closed convex set, which
can be described as the intersection of all half-spaces that contain it). More precisely:
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Definition 14 (Convex conjugate). Given a convex function f, the convex conjugate of f
is given by: for all x* € E* (the dual space of E),

fH(@") = sup (¢", ) — f(x).

zel

As a consequence of the definition, we have

f(x) = (a7, ) — f*(2%) Va,

and this defines a linear function x — (x*, z) — f*(z*) that lower-bounds f. Fenchel’s duality
theorem simply states that when f is closed and convex, it is the supremum of all these linear
functions. In other words,

f(x) = Ssup <I*,JZ> - f*(l’*),

z*eR”

which is, by definition, the conjugate of f*.

Theorem 24 (Fenchel’s duality theorem). If f is a closed proper convex function, then

f** — f‘

A.2 Duality of subdifferentials

Definition 15 (Subgradient and subdifferential). A vector z* € E* is called a subgradient
of f at x if

fy) = fx) + {2y —x) Vy,
that is, if the linear function y — f(x) + (z*,y — x) lower-bounds f. The set of all such
vectors x* is called the subdifferential of f at x and denoted Of(x).

By definition of the subgradient, we have the following characterization in terms of the
convex conjugate of f,

ot € df(x) & (% x) — f(x) = (2%,y) — fly)Vy € E

& r € argmax (x*,y) — f(y)
yer

& [M(a") = (27, 2) — f(x)

and switching the roles of f and f* (and using the fact that f** = f), we have the following
theorem (which can be obtained as a special case of Theorem 23.5 in [117])
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Theorem 25. Given a proper convex closed function f, we have the following equivalence
for all (z,z*) € E x E*,

@) + flz) = («",2) & 2" € Of(x)
S x e dff(zh)

& x € argmax (2, y) — f(y)
yeE

& x* € argmax (y*, z) — f*(y").
y*EE*

In particular, this proves that 0f and 0f* are inverses of each other.

A.3 Duality of strict convexity and differentiability

Definition 16 (Essential smoothness). A convexr function f is essentially smooth if it is
differentiable on the interior of its domain, and |V f(x)|| — oo as x tends to the boundary
of the domain.

Definition 17 (Essential strict convexity). A convex function f is essentially strictly convex
if it is strictly convex on all convex subsets where it is subdifferentiable.

By Theorem 25.3 in [117], we have the following duality result:

Theorem 26. Let f be closed proper conver. Then f is essentially strictly convex if and
only if f* is essentially smooth.

A.4 Strong convexity and smoothness

Definition 18 (Smoothness). A convex function is L-smooth with respect to the norm || - ||
if it is differentiable and for all x,y € F

F(&) < F0) + (V@) x—9)+ 5y — 2]

Definition 19 (Strong convexity). A convez function is {-strongly convex with respect to
the norm || - || if it is differentiable and for all x,y € E

l
f(@) = ) + (V) z —y) + 5lly — =
Next, we prove some properties which are used throughout the thesis.

Lemma 14. Let f be an convex function, and suppose that f is L-smooth w.r.t. || -||. Then
for all z,x', x™,
f@®) < f(a') +(Vf(2),a" —a) + 52t — zf?
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Proof. Since f is L-smooth, we have

f@®) < fla) +(Vf(x),2" —z) + Z|la* — 2|

and by convexity of f,
f(@') = f(z) + (Vf(z),2" - z)

Summing the two inequalities, we obtain the result. O
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Appendix B

Mirror Operators and Bregman
divergences

B.1 Dual distance generating functions and the
mirror operator Viy*

The dynamics studied in Part II of the thesis rely on the construction of a mirror operator
V* which satisfies a certain number of properties. Consider a constrained optimization
problem

zeX
where X is a closed, convex subset of £ = R", and f is a differentiable, closed proper convex
function. We defined Nemirovski’s mirror descent dynamics (8.2)) following Chapter III in [9§]
as follows: ‘

Z(t) = =V f(X(t))

MD ¢ X(t) = Vo (Z(1))

Vip*(Z(0)) = o
where X € F is a primal variable, and Z € E* is a dual variable, which are related using the
mirror operator X = V¢*(Z). For the dynamics to be well-posed, we require the following
properties:

1. ¢* is differentiable on all of £* = R™.
2. V" maps to X.

This ensures that the dual variable Z can evolve in the unconstrained dual space, and that
X = V¢*(Z) is well-defined, and remains in the primal feasible set X

We now discuss how to obtain such an operator Vi*. Consider a pair of conjugate convex
functions ¢, ¥* such that v is closed and proper, and the effective domain of ¢ is X. We
denote X* the effective domain of 1*. Since v and ¥* are proper convex functions, each is
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subdifferentiable on the relative interior of its effective domain (Theorem 23.4 in [117]). And

if we denote 0v(x) the subdifferential of ¢ at z, then we have, by Theorem

0Y*(z) = argmax (z,x) — P(z),
zeR”
and since dom¢) = X', we have that 9¢*(z) C X. Thus we have a set-valued function 0¢y*(-)
which maps E* into X', and whenever 0v*(x*) contains a single point, it reduces to Vi *(z*).
Thus, to satisfy the mirror operator properties, it is sufficient for ¢* to be differentiable on
all of E*. The following proposition gives a necessary and sufficient condition in terms of
properties of .

Definition 20. A convex function v is cofinite if its epigraph does not contain any non-
vertical half-line.

Proposition 20. Let ¢, 19* be a pair of proper convex closed functions which are conjugates
of each other. Then 1* is finite and differentiable on all of E* if and only if 1 is essentially
strictly convex and cofinite.

Proof. By Theorem 13.3 in [117], dom¢* = E* if and only if ¢ is cofinite. And by The-
orem [20] ¢* is essentially smooth if and only if ¢ is essentially strictly convex. But when
domy* = E*, essential smoothness and differentiability are equivalent. Therefore,

®* is finite and differentiable on EF* < dom¢* = E* and ¥* is essentially smooth

< 1) is cofinite and 1) is essentially strictly convex.

]

This defines a general way to construct mirror operators which satisfy the desired prop-
erties: given a closed convex set X', choose a function 1 that is essentially strictly convex
and cofinite, and take ¥* to be its convex conjugate. Then ¢* is differentiable and we have
an explicit characterization of the mirror operator: for all z € E*,

Vy*(z) = argmax (z, ) — (x). (B.1)

zeX

Note that the conditions of Proposition |20 are satisfied whenever v is strongly convex,
or when 1 is strictly convex and X is bounded. In general, 1) need not be differentiable,
even though this assumption is often made to simplify the discussion (for example in Chap-
ter 4 in [33], Chapter 11 in [40], and Section 2.7 in [126]). In fact, differentiability of 1
is restrictive: By definition, v is differentiable at x if and only if there exists z such that
limyjp— g -0 1/,(3;/)71‘1‘,:9)7;‘(‘2,35/73;) = 0; in particular, ¥ can only be differentiable on the interior
of X since 1 needs to be finite in a neighborhood of z for the limit to be 0. Therefore,
if X has empty interior, 1 is nowhere differentiable. This was previously observed for ex-
ample by |126], who argues that the negative entropy function restricted to the simplex is
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non-differentiable, and that the usual mirror descent analysis does not apply to this case.
We will see that differentiability of ¢ is not required, and that one can define Bregman
divergences for non-differentiable .

Finally, note that we required ¥* to be differentiable on all of E* since in the general
case, the dynamics of the dual variable Z = —V f(X) can evolve anywhere in E*. However,
for some problems, one may have a particular structure of V f which guarantees that Z
remains in a subset of E*. For example, suppose that there exists a convex cone K such that
Vf(x) € K for all z € X. Then Z remains in —/C, and it suffices that ¢* is differentiable on
—IC, not necessarily all of £*.

B.2 Bregman divergences

Next, we define the Bregman divergences generated by the functions ¢ and ¥*. Suppose
that ¢* is differentiable on E*. Then for (z,2) € E* x E*, let

Dy-(z,2") = "(2) = ¢"(2") = (VY"(¢),2 = &) .

In words, Dy« (z,2") measures the distance between the convex function ¢*(z) and its linear
approximation around z’, given by ¢*(2) + (V¢*(2'), z — 2’), and by convexity of ¢*, the
Bregman divergence is non-negative, and convex in its first argument.

One can similarly define Dy (z,2") for x € E and points 2’ at which 1) is differentiable.
However, as noted in the previous section, if X (the effective domain of ) has empty
interior, ¢ is, strictly speaking, nowhere differentiable. However, as we will see in the next
proposition, if ¢ can be written as the restriction to X of a function that is differentiable on
ri X', then the Bregman divergence can still be unambiguously defined whenever ' € ri X.
Recall that the convex indicator of a convex set X, denoted by dy, is defined as follows:

5 (x) 0 ifxe X,
€Tr) =
& +00 otherwise.

In what follows, we will make the following assumption:

Assumption 5. ¥ can be written as ¥ = VU + 0y, where dx is the convex indicator of X,
and U 1s convexr and differentiable on ri X .

We will denote A the affine hull of X' (i.e. the smallest affine space containing X’), and
N the subspace of normal vectors to A.

N={ne€FE:(nz—2)=0Vras €A}

Proposition 21 (Characterization of 9v). Suppose that i is of the form given in Assump-
tion[d Then 1 is subdifferentiable on ri X, and Vx € ri X,

OY(x) = VU(x)+ N.
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Furthermore, for all (z,2") € X xriX and all z € OY(x'),
(') = ¥(z) = (2,2 —z) = ¢(a') —P(z) = (V¥(2), 2" — z), (B.2)

Since the expression (B.2]) does not depend on the choice of z € 9y ('), we can define
the Bregman divergence for all (z,2') € X xri&X as

Dy(z, ') = ¢(a') — () — (0Y(a'), 2" — x) ,
which is defined unambiguously.
Proof. First, by additivity of the subdifferentials (Theorem 23.8 in [117]), we have for x €
ri X,
0Y(z) = 0V (x) + 0dx(x)
= VU(z) 4+ dx(x),

since V¥ is differentiable on ri X'. The subdifferential of dy at x € ri X' is simply the subspace
N of vectors that are normal to the affine hull of X', which proves the claim.

To prove that the Bregman divergence is defined unambiguously, let z € 9y (z). Then
Ju € N such that z = V¥(z) + u, and

(') = () = (2,2 = x) = P(2') = P(x) = (V¥(2) + u, 2" — )
=P(@’) = ¥(x) = (V¥(z), 2" — x)
since u is normal to the affine hull of X. O]
Next, we have the following characterization of the subdifferential of )*.

Proposition 22 (Characterization of V¢* and V?y*). Suppose that 1 satisfies Assump-
tion[d, and that * is differentiable on E*. Then for all z € E*, and for allu € N,

V™ (z +u) = V' (2).
Furthermore, if ¥* is twice differentiable on E*, then for all x € ri X and all z € OY(x),
VA (z2) = V2 (VI()).

As a consequence, it follows that * is linear in directions that are normal to the affine
hull of X. And if ¢* is twice differentiable, then the operator V2i* o d¢(z) is defined
unambiguously for x € ri X and does not depend on the choice of z € 9y (x).

Proof. To prove the first part, let z € E* and ©v € N. Then

r=Vy'(z) &z € 0Y(x) by Theorem
S zedyP(r)—u since Oy (z) = V¥(z) + N

& z+u € 0Y(x)
S x =0 (z+u) by Theorem [25] again.
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If ¥* is twice differentiable, and z € 9¥(z), then z = V¥(z) + u for some u € N, and
VA (2) = V3 (VE(2) + u) = VA" (VE(2)),

where the last equality follows simply from the fact that Viy*(VU(z) + u) coincides with
Vi*(VU(z)), thus so do their differentials. O

Finally, we have the following identity that relates the dual Bregman divergences.

Proposition 23 (Duality of Bregman divergences). Suppose that 1 satisfies Assumption @
and that ¢* s differentiable on E*. Then for all u,v € E*, we have

Dy (u,v) = Dy(0, )
where @ = V¢*(u) and v = Vip*(v).
Proof. Using the characterization of subdifferentials in Theorem [25] we have
i e VY (u) & u e dp(a) < P(a) + 9" (u) = (u,a),

so that

where the last inequality uses the definition of the primal Bregman divergence and the fact
that u € oy (a). O

Lemma 15 (Bregman identity). For all u, v, w
Dy« (u,v) — Dy« (w,v) = =Dy~ (w,u) + (VY (u) — VY™ (v),u — w) .

Proof. By definition of the Bregman divergence, we have



APPENDIX B. MIRROR OPERATORS AND BREGMAN DIVERGENCES 168

Lemma 16 (Bounds on a smooth Bregman divergence). Suppose that 1¥* is a dual distance
generating function that is differentiable on E*, and such that V¢* is Ly« Lipschitz. Then

for all u,v € E*,
1

2L,¢,*
where & = V¢*(u) and 0 = Vi*(v).

o - Lw*
i = 51 < Dy (,0) <~ — v

Proof. We have
Dy (u,v) = ¢ (u) — ¢ (v) = (V¢"(v),u = v)
= /0 V@ (v+tlu—v)) — V*(v),u — v) dt

1
< Ju — ||« / | (v +t(u —v)) — Vy*(v)||dt by the Cauchy-Schwartz inequality
0

< Ly

1
u— v||*/ |lv+t(u —v) — vl|.dt since ¥* is Ly Lipschitz
0

1
u— UHE/ tdt
0

which proves the second inequality. The first inequality will be proved by dualizing this
inequality. Fix v € E* and define

h(u) = Dy (u,v) = 9" (u) = " (v) = (V" (v),u — v),

= Lw*

Then by the previous inequality, h(u) < d(u) for all u € E*, and taking duals, we have
h*(u*) > d*(u*) for all u*. We now derive the duals. Let v = ¢*(v). Then,

=*(v) — (v, 0) + sgp (u* +v,u) — P (u)

=P (v) = (v,0) + Y(u" + ),



APPENDIX B. MIRROR OPERATORS AND BREGMAN DIVERGENCES 169

and

d*(u*) = sup (u*, u) — d(u)

u

* Ly
— sup ) — 5 u— o
i

L *
= sup (u’, v+ w) = =" |2
w 2
Ly
= (u’,v) + sup (u”, w) — = |

= (0", 0) + o[ P,

where the last equality uses Cauchy-Schwartz. Therefore combining the two inequalities,

¥ (v) = (v, u" +0) + P(u" +0) > [l

2L,

In particular, for all uw € E*| if we call & = Vi¢*(u), and take u* = @ — v, then

V() = (0.8) + 000) 2 =,

which proves the claim. O

B.3 Mirror update and Bregman projection

In this section, we draw a connection between the mirror operator and the Bregman diver-
gence. Many first-order methods for convex optimization and online learning can be formu-
lated as a sequence of mirror updates, which maintains a dual variable z(®) that accumulates
dual vectors £%) (in convex optimization, £*) is a subgradient of the objective function at
the current point, and in online learning, /*) is the loss function at the current iteration),
and a primal variable z(*) = Vw*(z(k)), obtained by applying the mirror operator to the dual
variable. Consider for example the constrained convex minimization problem, mingcy f(x).
By discretizing the mirror descent dynamics given in ODE (8.2), using a sequence of step
sizes (M), we obtain the discrete mirror descent method proposed by Nemirovski and Yudin
in [98] (see also [47, |41} 23]) summarized in Algorithm [12]
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Algorithm 12 Mirror descent method with learning rates (7)) and mirror operator V.
1: for 7 € N do
2. Query a dual vector ()
3:  Perform a mirror update

{Zam) = 20— p k) (B3)

g = Wo*(2(k+1),

4: end for

And using the characterization of Vi*, given in (B.1]), we can write the primal update
as follows:

x(k+l V'l/) ( (k+1>

L)
= argmin () — <z(k) — nel™, x>

rzeX

= argminn; (M, 2) + (x) — (zW) z — 2®)
TEX

where in the last equality, we only added constant terms which do not depend on z. As a
result, we see that the primal update can be written as a minimization problem involving
a Bregman divergence. Indeed, if v is differentiable, then x*) = V¢*(2(®) if and only
2 = Vop(z®), thus

(@) — Pa®) — Wz — 2®) = Dy(z, ™).

More generally, if the primal distance generating function can be written in the form of
Assumption , as the restriction to X of a differentiable function ¥, then 2*) = V*(2(®)

if and only if 2 € (™), and we have by Proposition [21] that the Bregman divergence
is unambiguously defined, and

() —P(@®) = Wz — 2@y = Dy (z, 2®).

In both cases, the mirror descent method can be written equivalently in Algorithm

Algorithm 13 Primal form of the mirror descent method
1: for 7 € N do
2. Query a dual vector ¢
3:  Perform a mirror update (in the primal space only)

«®D = argmin g (60, 2) + Dy(z, 2®). (B.4)
reX

4: end for
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This primal form of the mirror descent update can be interpreted as performing a Breg-
man projection, since it minimizes the sum of a linear function and a Bregman divergence.
In the case of convex optimization problems, ¢*) is a subgradient of f at *), and the mirror
update can be interpreted, as observed by Beck and Teboulle in [15], as minimizing a
local approximation of the function around the current point, since

arg min 7 <€(k), z) 4+ Dy(z, ® = argmin g (f(z®) + <€(k), xr — x(k)>) + Dy (x, z),
reX

reX

where the first term f(x®*)) + <€(k), xr — x(’“)> is a linear approximation of the function around
the current iterate, and the Bregman divergence term Dy (z, x*)) penalizes deviations from
the current iterate. The step size 7 trades-off the two terms.

Example: projected gradient descent

Projected gradient descent can be obtained as a special case of mirror descent: Let W(z) =
1||lz||3, and suppose that 1 is the restriction of ¥ to the feasible set X, i.e. ¢(z) = U(x) +
dx(z). The Bregman divergence associated to 1 is

Dy(z,y) = ¥(x) —(y) — (V¥(y), z —y)

1 1

= §Hl’||§ - §||y||§ —(y, 7 —y)
1

— Lo -

and the mirror descent update (B.4)) becomes

1
™) = argminn, ((P, ) + §Hx — ™))

reX
!
= arg min §||x — (a® — <£(k)7 z)|?
TeX

which is the projection, in the Euclidean norm, of the vector 2 — 1, ¢®) which corresponds
to the projected gradient descent update.

B.4 Entropy projection on the positive orthant

Let X be the positive orthant X = R, and consider the negative (generalized) entropy

P(x) = —H(x) = > x;lnz;. Then ¢ is differentiable on the interior of X, Vi (x) =

(1+Inz;),, and a simple calculation shows that Dy(z,2') = """ | z;1In i Yory (= b)),
the generalized I-divergence of x to z’.

Writing the definition of ¢*, we have

Y*(z) = sup (z,x) — Zx, In ;.

z€RT
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The maximization can be solved explicitly by writing the Lagrangian of the problem: for
A€ Ry, let L(z,A\) = (2,2) — >, xilnx; + > ;. Its gradient with respect to x is
z—(1+1Inz;),+ . Then by the KKT optimality conditions, z is optimal if and only if there
exist A € R’} such that

z—(1+Inz;),+A=0

x>0,
The first condition is equivalent to x; = e***~! and since any solution of this form is strictly
positive, the complementary slackness condition requires that A\ = 0, thus the solution is
simply

Vi*(z) =z = (ezi_l)i

and ¢*(z) = (z,z) —¥(z) = >, e*~ !, which is finite and differentiable on all of E*.

XXX

X2

& W(@) = ¥ 2 Ina 29

Figure B.1: Illustration of the generalized negative entropy function ¢ (x) = —H (z), and its
conjugate ¥*(z) = Y r et

B.5 Itakura-Saito divergence on the positive orthant

Ty

Let X be the positive orthant X = R’} and let ¢(z) = — > | Inz;. Then Vi)(z) = (—i> R

and a simple calculation shows that Dy(z,y) = > 1, (% — ln% — 1), the Itakura-Saito
divergence of x and y.

Writing the expression of ¥*, we have

*(z) = sup (z,x) + ilnxi,

n
z€RY i—1
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it is finite on A* = R™. The maximization can be solved using the same approach as in
the previous example. Define the Lagrangian, for A\ € R, L(z,\) = (z,z) + Y. Inz; +
S A, Its gradient with respect to x is z + (%) + A, and z is optimal if and only if
there exists A € R’} such that l
z+ <$i) H+A=0
x>0 Z
Aix; =0,
1

and the first condition can be rewritten as x; = ;—5-. Since any solution of this form is
non-zero, the complementary slackness condition requires that A = 0, and the first condition

becomes x; = —Zl Therefore
y 1
o= (=),

and simple calculation shows that ¢*(z) = (z,z)+> . Inz; = — > [1+1In(—2;)], defined
on X* =R".

B.6 Entropy projection on the simplex and the
Hedge algorithm

Let X be the probability simplex on R", i.e. X = A= {2z € R} : Y " z; = 1}, and let ¢
be the negative entropy —H restricted to A. Formally, ¢ (z) = —H(z) + da(z).
We have —VH (z) = (1 + Inx;);, and by Proposition 21} for all z,2’ € A x ri A,

Dy(,9) = b(x) = ¥ly) — (VU(y - Y

i.e. the Kullback Leibler divergence between the distribution vectors z, z’. Similarly to the
previous section, we can write the definition of ¢*,

TEA

Y*(z) = max (x, z) — Z z;lnx;,
i=1

and solve the maximization problem by writing the Lagrangian: for 4 € R and A € R7, let
L(z,v,p) = (x,2) = > 0 wilna, +v(O 7 o — 1) + >, Ny Its gradient with respect to
is z— (1 +1Inx;); — v+ A. Then by the KKT optimality conditions, x is optimal if and only
if there exist A € R"} and v such that

z—(1+Inz),—v+A=0
x>0, >0 x=1
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The first condition can be rewritten z; = e+ /e*™! Thus the third condition (comple-
mentary slackness), requires A; to be 0, and the expression of z simplifies to z; = e /e "1
Finally, the primal feasibility condition Y , @; = 1 requires that Y ' , e /e"*! = 1. There-
fore, the unique solution of the maximization problem is

e~

= _Zj ezj )

and simple algebra shows that ¢*(z) = (z,2) —¢¥(xz) = In) | €%, differentiable on all of
E* = R™. Note that we can verify the invariance of V¢* in Proposition 22} if u is a normal
vector to the affine hull of A, i.e. u = al for some scalar «, then Vy*(2) = Vi*(z + u).

V¢*(2)i =T

® .- In(; e%)

epi 22

— (@) =X, ziInz; +0a(x)

Figure B.2: Illustration of the negative entropy function restricted to the simplex ¥ (z) =
—H(z) + 0a(z), and its conjugate ¢*(z) = In(> ., €*). The function ¢ is subdifferentiable
on the interior of A, but nowhere differentiable. The figure illustrates this fact by showing
two supporting hyperplanes at the same point. The conjugate function * is linear in the
direction normal to the simplex (shown in dashed lines on the right).

B.7 Csiszar potentials on the simplex

Let X be the probability simplex on R™. We define a class of distance generating functions
which exhibit a certain symmetry, as follows:

Definition 21 (Csiszar potential). Let w < 0. An increasing, C*-diffeomorphism ¢ : R —
(w, +00) such that fﬂl ¢~ (u)du < oo is called a Csiszar potential.

Note that Audibert et al. ﬂgﬂ introduce a similar definition, which they call w-potential,
in which the domain of ¢ could be a subset of R. We require, in our definition, that ¢ be
defined on all of R to ensure that ¢* is differentiable, as discussed below.
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Figure B.3: Illustration of a Csiszar potential

Definition 22 (Csiszar distance generating function). Let ¢ be a Csiszar potential. The
distance generating function associated to ¢ is the function defined on the simplex

P(x) = V(x) + oa(x)

where
U:RY - R

T Z/ ¢ (u)du.
i=1 71

This can be viewed as a generalization of the entropy function of the previous section. The
entropy can be obtained as a special case by taking the exponential potential ¢(u) = e*~ !,
then W(z) =>", [["14+Inudu=3" z;Inz;.

By definition, W is finite (in particular, the condition f1 (u)du < oo on the potential
ensures that ¥ is finite on the boundary of the simplex), differentiable on R”} ., and its
gradient is given by

V¥ R} — R"
x5 VU(z) = (¢~ (25))iz1,...n-

Since ¢! in strictly increasing, v is strictly convex. We have by Proposition 21} for all
x, ' € AXTiA,

Dy(x,y) = (x) = ¢(y) — (V¥(y),z - y)

— i /I ¢~ (u)du — / ¢! — &7 (i) (@i — i)
_ Z / 1 (i) (B:5)

By definition of *,

¢ () = max (z, 2) Z/¢
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Unlike in the previous example, there is no closed-form solution in general. However, we can
give a simple necessary and sufficient condition of optimality.

Proposition 24 (Optimality conditions for Csiszar mirror operators). Let 1) be the distance
generating function associated to a Csiszar potential ¢. Then ¢* is differentiable on R™, and
for all z € E*,

W eR: Vi, z;=(d(z + V)4
D=1

Proof. Since ¢~ is strictly increasing, 1 is strictly convex. And since A, the effective domain
of ¢ is bounded, the epigraph of ) does not contain any non-vertical half-lines, thus 1 is
cofinite. Therefore, by Proposition 1* is differentiable on all of E*.

Let z € E*. Recall from equationthat Vip*(z) = argmax,en (@, 2)— >y [ ¢ u)du.
First, define the Lagrangian of the problem: for ;€ R and A € R?}, let

L(z,v,pn) = (x,2) — Z/lx ¢ (u)du — v (Z T — 1) + Z/\’xl

Its gradient with respect to z is z — (¢~ *(2;)); — ¥ + A. Then by the KKT optimality
conditions (together with Slater’s condition for constraint qualification), = is optimal if and
only if there exist A € R" and v such that

r=Vy'(z) & { (B.6)

z— (o7 (ay), — v+ A=0,
x>0, Y x =1,

The first condition is equivalent to z; = ¢(z; + \; — v). Let Z = {i : x; > 0} be the support
of an optimal point. Then by the complementary slackness condition x;\; = 0, we have for
alli € Z, \; =0, thus z; = ¢(z; + v), and for all i ¢ T,

O(zi+v)<olzi+tv+N) since ¢ is increasing
Therefore z; can be simply written x; = (¢(2; + v*)), which proves the claim. O

The optimality conditions of Proposition will be useful in developing efficient algo-
rithms for computing approximate and exact Bregman projections, as discussed in the next
chapter. Next, we give one family of Csiszar potentials which lead to a generalization of the
entropy projection that enjoys some desirable properties.
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B.8 Generalized entropy projection on the simplex
and the smoothed KL divergence

Definition 23 (Exponential potential). Let € > 0. We call the function

¢ : R — (—€,+00)

u—1

ure €,
the exponential potential with parameter €. It is a Csiszar potential.

The distance generating function induced by ¢, is given by

b() = Z [ ot
:Zn:/lxi1+1n(u+e)du

- Z(IZ +e)In(z; +€) — (1+¢e)In(1 +¢)

=H(x+e€)— H(1+e),

where € is the vector whose entries are all equal to €, and H is the negative entropy function
H(z) =", z;lnz; The corresponding Bregman divergence is

Dy(z,y)=H(z+€)— H(y+e€) —(VH(y +€),x —y)
= Dxp(x+ €,y +€)

=S (@i I
i=1

yi + €’

and will be denoted Dy, (x,y). It corresponds to the KL divergence between the vectors
r + € and y + €, and can be thought of as a regularized KL divergence. In particular, when
€ > 0, Dgr, is finite for all z,y € A, unlike the KL divergence which is infinite if the support
of y is not a subset of the support of . We show some additional properties below.

Properties of the generalized KL divergence

Proposition 25. For all € > 0, Dy, is 1-strongly conver and ¢-smooth w.r.t. || - |;.
Furthermore, it is bounded on the simplex by In %
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0 21
elne+ (1+¢€)In(l+€) ,

Figure B.4: Illustration of the distance generating function induced by exponential potentials
with parameter €, for n = 2: H(x) = z;In(xy) + (1 — zq) In(1 — x4).

--- Dgr(z, yo)
7DKL,6(I»?/O) ,
- Slle - wl? .

Lol — gl C

Figure B.5: Illustration of Proposition , when d = 2. The distributions z and y are
parameterized as follows: © = (p,1 — p) and y = (¢,1 — ¢). The surface plot (left) shows
the generalized KL divergence for ¢ = .1, with, in dashed lines, the quadratic upper and
lower bounds, |y — z||? and L¢||z — y[|2. The second plot (right) compares Dxr, 1(z,yo)
and Dxgp(z,yo) for a fixed yo = (.35, .65).

Proof. First, we show strong convexity and smoothness. Let x,y € A. By Taylor’s theorem,
Jz € (z + €,y + €) such that

Dxrc(x,y) =H(xr+€)—H(y+e€)—(VH(y+e€),z—y)

= 3 o~y VH()(x — y)
1 — T; — i2
:izﬂ

where we used the fact that the Hessian of the negative entropy function is V2H(z) =
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diag(+). And since Vi, z; > € (z belongs to the segment (z + €,y + €)), it follows that

n

1 1
KLe(2,y) < 26;{;(x vi)” < 5o lle =l

which proves smoothness. Next, by the Cauchy-Schwartz inequality, we have

n 2 n o 2

thus )
Tz —yllf 1 1

2 |zl 21+de

To compute the upper bound on Dkp., we observe that Dk (x,y) is jointly-convex
in (z,y) (by joint-convexity of the KL divergence), therefore, its maximum on A? x A? is
attained on a vertex of the feasible set, that is, for (z,y) = (6%, §%°), for some (ig, jo), where
§% is the Dirac distribution on iy. Finally, simple calculation shows that

Dy, e(z,y) > |z — ylli-

0 if 79 = Jjo,
In % otherwise.

DKL,s(ai()) 5j0) = {

O

Projecting on the simplex with the KL divergence plays a central role in many applica-
tions in online learning and convex optimization [34, |40, [126]. Some applications include
non-parametric statistical estimation, e.g. Section 7.2 in [30], multi-commodity flow prob-
lems, e.g. Chapter 12 in [38|, tomography image reconstruction [24] and learning dynamics
in repeated games as discussed in Chapter [5] However, some variants of mirror descent re-
quire the Bregman divergence to be bounded on the simplex in order to have guarantees on
the convergence rate, see for example |45], as well as in Chapter . The accelerated mirror
descent algorithm that we develop in Chapter also uses a mirror update using a Breg-
man divergence which is required to be both strongly convex and smooth. These examples
motivate the use of the smoothed KL divergence.

Although the mirror operator V¢* has no closed-form solution, we will develop, in the
next chapter, efficient algorithms for computing the exact projection in O(nlnn) time using
a deterministic sorting method, given in Algorithm [I5] and in expected linear time using a
randomized sorting method given in Algorithm [16]
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Appendix C

Efficient Bregman Pojections on the
Simplex

In Section [B.3] we discussed that many algorithms for online learning and convex optimiza-
tion involve repeatedly solving the mirror update equation of Algorithm [13|on the simplex,
ie.

2% = argmin ({,z) + Dy(z,Z). (C.1)

TEA
where A is the probability simplex on R", D, is the Bregman divergence associated to a
distance generating function 1, Z is the current iterate in the primal space, and ¢ is a given
dual vector, which can be either a loss function (in online learning problems) or a subgradient
of the objective function at the current point (in convex optimization), scaled by a step size.
We refer to problem as the Bregman projection or the mirror update on the simplex.

Some instances of Bregman projections on the simplex are known to have an exact solu-
tion which can be computed efficiently. For example, the solution of the KL divergence pro-
jection on the simplex is given by the exponential weights update [98] [15], and the Euclidean
projection on the simplex can be computed efficiently either by sorting and thresholding in
O(nlogn), or by using a randomized pivot method in O(n), see [46].

In this chapter, we show that for the Csiszar potentials defined in Section [B.7] the
solution of the Bregman projection on the simplex can be approximated efficiently: an
e-approximate solution can be computed in O(nlog %) operations. Finally, we show that
for the exponential potentials defined in Section the exact solution can be computed
using a deterministic algorithm with O(nlogn) complexity, or a randomized algorithm with
expected linear complexity.
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C.1 Efficient approximate projection with Csiszar
potentials

First, we consider the problem of projecting on a simplex with a Csiszar potential, as defined
in Section . We derive optimality conditions for the Bregman projection problem (C.1J),
similar to Proposition Using the expression of the Bregman divergence, we can
rewrite the problem as

a* = argmin ((,z) 4+ Dy(z, T)

TzEA
= argmin (/,z) + Z /$i(¢_1(u) — ¢~ (7)) du
TEA i=1 Y T

Proposition 26. Let i) be a Bregman divergence associated to Csiszdr potential ¢p. Consider
the Bregman projection onto the simplex given in Problem (B.7)). Then z* is a solution if
and only if there exists v* € R such that

i, af = (6(67M (@) — b+ ),
Zx: =1,
=1

where x denotes the positive part of x, x4 = max(zx,0).

Proof. Define the Lagrangian of the problem: for 4 € R and A € R, let

L(z,v,p) = (z,0) + Z /xl(qzﬁl(u) — ¢ H(7))du — v (Z T; — 1) — Z i

Its gradient with respect to x is {— (¢! (z;) — ¢~1(2;)),—v—A. Then by the KKT optimality
conditions (together with Slater’s condition for constraint qualification), z* is optimal if and
only if there exist \* € R” and v* such that

O+ (o7 (a)) — ¢~ (@), —v" = X" =0,
z* >0, Z:'Lzl zy =1,
rfAf =0 Vi.
The first condition is equivalent to 7 = ¢(¢~1(Z;) — l; + \f + v*). Let T = {i : 27 > 0} be
the support of 2*. Then by the complementary slackness condition, we have for all i € Z,
A =0, thus 27 = ¢(¢ ' (Z;) + {; + v), and for all i ¢ Z,
H(oH(T) — b+ v*) < d(d M (Ti) — b + v + X)) since ¢ is increasing

— p*
=uz; =0.

Therefore z} can be simply written 2} = (¢(¢~'(Z;) — ; + v*)) _ which proves the claim. [
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Next, we make the following observation regarding the support of the solution:

Proposition 27. Let x* be the solution to the pmjectwn problem (C.1)), and let T be its
support. Then for alli,j, if i € T and ¢~1(z;) — €; < ¢~ Y(&;) — {;, then j € L.

Proof. Follows from Proposition 26| and the fact that ¢ is increasing. O

As a consequence of the previous propositions, computing the projection reduces to com-
puting the optimal dual variable v*, and since the potential is increasing, one can iteratively
approximate v* using a bisection method, given in Algorithm [I4} we start by defining a
bound on the optimal v*, v < v* < v, then we iteratively halve the size of the interval by
inspecting the value of a carefully defined criterion function.

Algorithm 14 Bisection method to approximate the Bregman projection with precision e.

1: Input: 7,4, €.
2: Initialize
7 = 6 (1) — max, 6 (3) —
v =67 (1/n) — max; 71z e
Define z(v) = (¢p(¢~4(z;) — & —i—y) )
while ||Z(7) — Z(v)||; > € do
Let v+ « 22X
if " Z;(r") > 1 then
v vt
else
Vvt
10:  end if
11: end while
12: Return z(v)

i=1,...,n

Theorem 27. Consider the Bregman projection onto the simplex given in Problem (C.1),
with Csiszar potential ¢. Let € > 0, and consider the bisection method given in Algorithm[I14)
Then the Algorithm terminates after T' = O(log %) steps, and its output (01 is such that

12(7") — 2" < e
FEach step of the algorithm has complezity O(n), thus the total complezity is O (d log %)
Proof. Define, as in Algorithm [I4] the function
#0) = (667 @)~ B+ v)s),,

Since ¢ is, by assumption, increasing, so is v — Z;(v), which is the key fact that allows us
to use a bisection.

We will denote by a superscript (¢) the value of each variable at iteration ¢ of the loop.
To prove the claim, we show the following invariant for ¢:
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7(0)_(0)
ot )

(i) 0< ot Z(t) <
(ii) Vi, 0 < &) <&(") <1,

(i) o7, #:(e) <1< 300, &)
We first prove the invariant for ¢ = 0. Let iy = argmax; ¢ '(Z;) — ¢;. By definition of 7%
and v, we have

¢ (1/n) —v= ¢71(57¢o) - () - (C.2)
and it follows that Z;, (1¥) = L and z;, (vV) = 1. By . 1/(0)— =¢'(1)—¢1(1/n) >
0 (since ¢! is increasing), which proves (i ) Next, since v +— Z;(v ) is increasing, we have

0< #Hw?) < (0" < i, (7)) =1,

which proves (ii). Finally, we have

Zx O < ng, (1) =1,

S () 2 (7)< 1
i=1

which proves (iii). This proves the invariant for ¢ = 0. Now suppose it holds at iteration
t, and let us prove it still holds at ¢t + 1. By definition of the bisection (lines 5-10), we

immediately have
) _ @)
g+ _ e _ Y . L
which proves (i). We also have that v® < p(t+1) < plt+h) < 5 which proves (ii) since
v — Z;(v) is increasing. Finally, (iii) follows from the condition of the bisection (line 6).

To conclude the proof, we simply observe that since the distance |7 — v| decreases expo-
nentially, the algorithm will terminate after a number of steps logarithmic in 1/e. Indeed,
since ¢ is C, it is Lipschitz-continuous on [¢~! (0), ¢~ !(1)]. Let L be its Lipschitz constant,
then

N | —
|

[\

o~

12(?) — 2@l = Z |Z:() = &:(7")]

< nL|y(t) —

nLy©® — 5O

- by (i),

\,,( ) (0 )\

—— iterations, and the last iterate satisfies

thus the algorithm terminates after 7' = log,

|l2(v*) — ()

< |#@™) — #(@Y)|; by (iii) and since #; are increasing
<,
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which concludes the proof. O

C.2 Efficient exact projection with exponential
potentials

We now consider a special case of Csiszar potentials, given by the exponential potentials
defined in Section [B.§| and show that the exact solution can be computed using a sorting
algorithm. We first apply the optimality conditions of Proposition [26| to this special class,
and show that the solution is entirely determined by its support.

Proposition 28. Consider the Bregman projection onto the simplex given in Problem ((C.1]),
with Bregman divergence Dgyp .. Let x* be the solution and I = {i : x}f > 0} its support.
Then

Z oz (C.3)
. ZieI(fi + 6)6_&
B 1+ |Zle

Proof. Applying Proposition 26/ with the expression ¢(u) = e *+¢ and ¢~ (u) = 1+In(u+e),

x* is a solution if and only if there exists v* € R such that Vi, x} = (—e +(Z; + e)elie”) |

+
and ), 27 = 1. Thus, if Z is the support of 2*, then these optimality conditions are equivalent
to

VieI, azf=—e+ (T;+ee e,

7

Z —e+ (Ti+ e)e lie” =1,

i€

and the second equation can be rewritten as

1+ €eZ| = e~ Z(ftz +e)e

i€
which proves the claim, with Z* = e™*". O]

Proposition [28| shows that solving the Bregman projection with smoothed KL divergence
reduces to finding the support of the solution. Next, we show that the support has a simple

characterization. To this end, we associate to (Z, ¢) the vector ¢ defined as follows

Vi, Yi = (j:l + 6)67@7

and we denote by ¥,(;) the i-th largest element of 7.
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Algorithm 15 ExpProject: Sort based method to compute the Bregman projection with
smoothed KL divergence Dk, .

1: Input: z, ¢

2: Output: z* )

3: Form the vector ; = (Z; + €)e "

4: Sort y, let 9,(;) be the i-th smallest element of y.

5: Let j* be the smallest index for which ¢(j) := (1 +€(n — j +1))¥o(j) — €5 Yo(i) > 0.
6: Set

Sy 2uizg* Yol
20") = T

— Yi
= (—e+ L=
i tzm),

Lemma 17. The function
e(j) = (L4 e(n = j + 1))ots) = € Toti)
(2]
is increasing, and the support of x* is {o(5*),...,0(n)}, where 7* = min{j : ¢(j) > 0}.
Proof. First, straightforward algebra shows that

c(j+1) =) = A +e(n =) Fo+1) = Uo(i) = 0.
Thus c is increasing. To prove the second part of the claim, we know by Proposition [27] that
the support is {o(i*),...,0(n)} for some i*, and to show that * = j* = min{j : ¢(j) > 0},
it suffices to show that ¢(i*) > 0 and ¢(j) < 0 for all j < ¢*. First, by the expression (C.3|)
of x*, we have

. Yo(i*)

xg(i*) = —€+ 5 > 0,

i>i* Yo (i)
T+e(n—i*+1)
which is equivalent to c¢(i*) > 0. And if j < ¢* (i.e. o(j) is outside the support), then by the

expression (C.3)) again,

- B Yo (i)
0= 'TU(j) Z €+ 21‘21‘* Yo (4)
14+€e(n—i*+1)
which is equivalent to
(1t e(n =i = D)oty — € Y oty < 0,
i>i*
but ¢(j) is smaller than the LHS, since
c(j) = (L+e(n =i =)o) — €D _Toty =€ D, Totj) — Yoty < 0,
i>i* j<i<ir

which concludes the proof. O
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Theorem 28. The ExpProject Algom'thm terminates after O(nlogn) iterations and out-
puts the solution x* to the Bregman projection problem (C.1|) with smoothed KL divergence

DKL,6~

Proof. Correctness of the algorithm follows from the characterization of the support of x* in
Lemma (17| and the expression of x* in Proposition The complexity of the sort operation
(step 4) is O(nlogn), and finding j* (step 5) can be done in linear time since the criterion
function c(+) is such that c(j + 1) — c(j) = (1 + €(n — 7)) (Uo(+1) — Fo(j)), SO €ach criterion
evaluation costs O(1). Therefore, the overall complexity of Algorithm [15(is O(nlogn). O

C.3 A randomized pivot algorithm with expected
linear time

We now propose a randomized version of Algorithm [15] which selects a random pivot at
each iteration, instead of sorting the full vector. The resulting algorithm, which we call
QuickProject, is an extension of the QuickSelect algorithm due to Hoare [65]. A similar idea
is used in the randomized version of the f5 projection on the simplex in [46].

Theorem 29. In expectation, the QuickProject Algorithm terminates after O(n) operations,
and outputs the solution x* of the Bregman projection problem (C.1|) with the smoothed KL
divergence Dk, .

Proof. First, we prove that the algorithm has expected linear complexity. Let T'(n) be the
expected complexity of the while loop when | 7| = n.

The partition and compute step (7) takes 3n operations, then we recursively apply the
loop to J~ or J*, which have sizes (m,n — m) for any m € {1,...,n}, with uniform
probability. Thus we can bound T'(n) as follows

T(n) <3n+ % Z T (max(m,n —m))

2 n
<3n+—
<3n+ - Z T(m),
m=z
and we can show by induction that 7'(n) < 12n, since 7'(0) = 0 and

2 — 3n
3 — 12m < 3 12— = 12n.
n—l—nzn m < an + 1 n

m=3g

To prove the correctness of the algorithm, we will prove that once the while loop termi-
nates, s* = o(j*), and S,C are respectively the sum and the cardinality of {7,u : ¢ > j*},
then by Proposition we have the correct expression of z*. We start by showing the
following invariants:
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Algorithm 16 QuickExpProject: Randomized pivot based method to compute the Bregman
projection with Dki, ..

1: Input: z, ¢

2: Output: z* )

3: Form the vector ; = (Z; + €)e "

4: Initialize 7 ={1,...,n}, S=0,C=0,s"=n+1
5: while 7 # () do

6:  Select a random pivot index j € J

7. Partition J into ST ={ie J:p >y} and T ={i € T : 4 < g}
8:  Compute ST =3, 7 and C* = |J*|.

9.0 Lety=(1+¢C+CT))y; —e(S+ST)
10:  if v > 0 then
11: J—J ,s5=3
12: S+ S+858T,C«+~C+C*
13:  else
14: J j+
15:  end if
16: end while
17: Set

Z_1+eC’ ~
xi _( 6+%)+

(1) If Yo(my), is the largest element in J®, then o(m, + 1) = (s*)®.
(ii) J® contains o(j*) or o(j* — 1).
(iii) S and C are the sum and cardinality of {i: (i) > s*}.
(iv) v = ¢(j®), where c is the criterion function defined in Lemma

The invariant holds for the first iteration since 7 = {1,...,n}, m; = d, and S = CV) =
0. Suppose the invariant is true at iteration ¢ of the loop. Then two cases are possible:

1. If y® <0, then J+Y = (FM)* and m+Y = m® and the invariant still holds.
2. If v > 0, then JHY = (F®)~ and (s*)V) = ;@ thus

{i:0() > ()Y ={i:0() > (VYU {iz () <ali) < (s =1}
={i:o()) > (s U (T,

and by the update step (lines 10-11), the invariant still holds.
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To finish the proof, suppose the while loop terminates after T iterations, i.e. JT+) = (.
We claim that (s*)?*1) = ¢(j*). During the last update, two cases are possible:

1. If ) > 0, then g;r) is the smallest element of J@). In this case, since ¢(i) < 0 for
i < j*, and J) contains o(j*) or o(j* — 1), it must be that j*) = ¢(5*), thus

() =1 =a(5).
2. If v < 0, then y;r 1s the largest element of JT) | in this case, since c(j*) > 0, it
must be that j™) = o(j* — 1), so m® = j* — 1 and
(s = () = o(m +1) = o (j7).

This concludes the proof. O

This proves that the Bregman projection problem with smoothed KL divergence
can be solved exactly in expected O(n) time. A question which remains open is whether it
can be solved in O(n) time using a deterministic algorithm, akin to the “median of medians”
algorithm due to Blum et al. [27] which solves the selection problem in deterministic linear
time.

C.4 Numerical experiments

T T T
2 [ LRI LSRRI T T T ‘t .
10 - [— ExpProject £ ——ExpPrOJect .
— 10! [|— QuickExpProject | 1 = 4 +H—— QuickExpProject N
T b <
2 10 i
=101 1=
e I g 2
—2 4 2
2 |2
g1073 4 g
< <
104 .
105 N RO ST R R RS
102 10 10* 105 105 107
n n -10°

Figure C.1: Run time as a function of the dimension n, with € = .1, in log-log scale (left).
The highlighted region is zoomed-in in linear scale on the right.

We provide a simple python implementation of the projection algorithms at github.
com/walidk/BregmanProjection. The implementation of Algorithm [14]is generic and can
be instantiated for any Csiszar potential by providing the function ¢ and its inverse. The
implementation of Algorithm |15 and QuickProject are specific to the exponential potential.
Finally, we report in Figure the run times of both algorithms as the dimension n grows,
averaged over 50 runs, for randomly generated, normally distributed vectors z and g. The
numerical simulations are also available on the same repository.


github.com/walidk/BregmanProjection
github.com/walidk/BregmanProjection
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