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Abstract

Data-Driven Cyber-Physical Systems via Real-Time Stream Analytics and Machine
Learning

by

Ilge Akkaya
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Edward A. Lee, Chair

Emerging distributed cyber-physical systems (CPSs) integrate a wide range
of heterogeneous components that need to be orchestrated in a dynamic environ-
ment. While model-based techniques are commonly used in CPS design, they be-
come inadequate in capturing the complexity as systems become larger and extremely
dynamic. The adaptive nature of the systems makes data-driven approaches highly
desirable, if not necessary.

Traditionally, data-driven systems utilize large volumes of static data sets to
extract models and predictions of physical processes. However, in emerging CPS,
networked sensors provide continually streaming data, creating an essentially infinite
source of information. Processing data in batches is no longer a viable option: streams
are most valuable when processed on-line, allowing actionable information to be gath-
ered just as the data becomes available. This fundamental shift from big data to
infinite data, while having great potential to enable smarter systems, also poses
unique challenges. Computation models that capture the integration of streaming
data into CPS design become a key requirement for systems to learn, adapt, and
evolve in real-time.

This thesis explores methodologies for developing data-driven CPSs that integrate
model-based design and real-time stream analytics in a modular way. The key
modeling framework to be introduced is the aspect-oriented modeling (AOM) para-
digm, which leverages the principle of separation-of-concerns in actor-oriented de-
sign. Aspects are useful for representing cross-cutting concerns in complex system
architectures, as first introduced by the aspect-oriented programming paradigm in
object-oriented design. AOM applies this idea to actor-oriented design, creating as-
pects that enable representation of modular concerns in a complex system model. In
data-driven CPS, the introduced aspects can be leveraged to process streaming data,
extract actionable information, and incorporate these into the system workflow in a
way that preserves model semantics and modularity. To address information extrac-
tion from streaming data, we propose the use of aspects that implement Dynamic
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Bayesian Network based algorithms for machine learning and optimization. Specifi-
cally, we introduce an actor-oriented toolkit that enables dynamics and sensing models
to be composed with inference, Bayesian learning, and optimization algorithms, and
present comprehensive case studies on cooperative mobile robot control. We addi-
tionally study the use of streaming data for control of dynamic networked CPS in the
context of home automation, and present an overview of the use cases of aspects in
actor-oriented CPS development.
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Chapter 1

Introduction

Cyber-Physical Systems (CPSs) is a term that defines an orchestration of phys-
ical components and computational processes, where ‘cyber’ and ‘physical’ parts are
tightly coupled in a feedback relation, continuously affecting one another. This prop-
erty of CPSs renders the separate understanding of the physical and the cyber in-
sufficient, and requires CPS research to focus on the intersection of the two rather
than the union by developing formalisms that require a complete understanding of
the cyber-physical interaction [83, 78]. Advancements in this domain have recently
enabled disruptive applications, most notably in industrial automation, manufactur-
ing, transportation, wearable technologies, and energy systems. Multiple research
directions have emerged to realize systems sharing the theme of connecting billions
of devices to humans and their environment, realizing large-scale “smart” systems.
One such direction that has been receiving significant attention from researchers and
investors is the Internet-of-Things (IoT).

IoT systems, by definition, are a realization of CPSs, where the concept of inten-
sively networked components is highly emphasized. IoT envisions leveraging Internet
technology to connect and unprecedented number of devices, yielding a “swarm” of
heterogeneous sensors and actuators that can interact with the physical environment
and can be used to enable dynamic decision making in many different domains [79, 80].
Of course, the resulting device swarms are envisioned to be “smart,” continuously
learning from behavioral patterns of humans and other devices, then autonomously
adapting to changes at run time. This ability builds upon the implicit assumption
that systems will be able to make real-time decisions on streaming data. While the
meaningful interpretation of this specification is exceedingly context-dependent, for
the purposes of the IoT, the implied requirement is the ability of a system to contin-
ually process streams of data in order to extract actionable information.

This concept fundamentally differs from traditional computation models, where
actions (as outputs of computation) are either based on a priori information alone,
therefore require no streaming data, or on batch data collected over time, that can be
processed as a whole and in an off-line manner. The fundamental shift in the infor-
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mation source has promoted novel approaches in retrieval, storage, and processing of
data, all of which can be summarized under the term stream analytics. Forrester, Inc.
has coined the term perishable insights to refer to information that must be acted
upon fast, as insights obtained from streaming data (such as market data, sensors,
clickstream, and transactions) quickly lose their value if they were to be processed
in ‘batch mode’ [49]. The concept of perishable insights has a much more intuitive
interpretation for cyber-physical systems. In a CPS, data streams are most beneficial
at the time they are produced, as any change reported by the data ( e.g. a sensor
anomaly, a fault in the physical process being sensed, or a change of system state)
should be detected as soon as possible, and be acted upon, for example, via a change
in control policy or an output action. Furthermore, as opposed to stream analytics
for purely software systems, in CPS, the insight being revealed by data will often be
tied to a safety-critical action that must be performed to ensure the health of the
CPS itself.

As an example, consider the electric power grid, which is an extremely large-scale
distributed cyber-physical energy system spanning hundreds of generators, loads, and
regulatory units that are interconnected with distributed computation and monitor-
ing nodes. Traditionally, the health of this complex CPS has relied on local circuits
at generators as well as state estimation algorithms that operate on extremely low fi-
delity data delivered by the supervisory control and data acquisition (SCADA) system
[22]. The physical components making up grids have to operate in close synchrony
to avoid physical damage to loads and generators. The North American grid, for
example, operates at 60 Hz nominally with a ±0.5 Hz daily oscillation range. Fig-
ure 1.1 depicts a snapshot of the real-time grid frequency over the North American
Interconnections (Western, Texas, Eastern, and Quebec regions), that are frequency-
independent islands operating in precise synchrony within themselves, connected via
load-balancers that ensure healthy transfer between interconnected areas. Note that
each interconnection has to maintain a common local frequency with a maximum
frequency deviation of only several mHz [6]. This real-time mapping technology is
made possible only recently, with the addition of high-throughput time-synchronized
sensors — known as synchrophasors — installed at thousands of grid nodes [87].
Real-time snapshots of grid frequency and many more types of streaming data are
made available. One example obtained by the web interface of the FNET/GridEye
synchrophasor deployment is presented in Figure 1.1. An out-of-phase generator in
the grid is easy to detect (and also predict) given a real-time map of grid frequency as
this one, realized by stream processing of synchrophasor data. Using streaming data
in batch mode in many scenarios including this one would not go beyond postmortem
analysis of a catastrophic system-wide failure [34].

Naturally, emerging IoT applications typically require much more complex com-
putations on data streams, including analyzing multiple seemingly unrelated data
streams via statistical inference to estimate state or to detect events, when direct
observation is not possible.
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Figure 1.1: FNET/GridEye real-time frequency gradient map

This paradigm shift is becoming apparent in the design of modern control sys-
tems. In classical control, sensor data provide a direct measurement of a physical
quantity to be controlled. For example, an encoder measures the position of a ro-
tating shaft, or an accelerometer measures the tilt of an object to be balanced. In
modern control systems, the data provided by sensors is more indirect. Consider, for
example, a robot that is trying to track a target. It may use a combination of sensors,
including cameras, laser or ultrasonic rangefinders, power measurements of radio sig-
nals, microphones, etc. None of these sources present data that directly measures any
controllable quantity. First, these data must be converted to actionable information,
e.g., a concise summary of the estimated location and trajectory of the target. Then,
given the summary, a trade-off between often conflicting objectives must be computed
and translated into action. To be effective, the data summarization and optimization
must be performed in real time on streaming data.

Although many novel applications have been proposed that aim to use data for
such purposes, there remain significant barriers to progress towards the realization
of dependable data-driven CPSs that can replace or enhance existing infrastructure.
Despite the existence of a plethora of proof of concept implementations of smart cities,
smart homes, robot swarms, and many other intelligent systems and infrastructure
[71, 47, 55, 74, 24], it remains difficult to build reliable applications that utilize data
streams. Traditional design and analysis tools in many domains become unable to
cope with the level of complexity required to realize swarm systems at scale. Con-
sequently, it becomes impossible to conceptualize the implications of adaptive appli-
cations that operate on streaming data to manipulate the physical world in response
[11]. Moreover, despite the envisioned benefits of using continually streaming sensor
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data for this purpose, concerns about ensuring privacy, security, and meeting adequate
data storage requirements quickly overwhelm the potential positive outcomes.

A key hurdle against enabling reliable real-time decision making on streaming
data is the lack of new computation models that can handle the new relationships
that arise between data streams and physical components. Novel software models
that redefine computations on streaming data, tie data-driven insights to actions on
continuous system dynamics, verify safety, and evaluate uncertainty on feedback in-
teractions between the ‘cyber’ and the ‘physical’ become a necessity. Additionally, the
models should address the heterogeneous and often conflicting concerns that govern
complex CPS operation, ideally maintaining “separation-of-concerns.” Specifically,
design patterns should ensure modularity and detangling of implementation details
from the functionality being realized, while making it easy to explicitly model how
data affects system models and dynamics [80].

A family of approaches that has proven extremely useful in providing this encap-
sulation for reliable CPS design over decades are known as model-based design (MBD)
techniques. MBD focuses on building accurate models of devices and their operating
environment, then providing strong guarantees on correctness and safety under given
assumptions. MBD is being used intensively in many safety-critical domains includ-
ing automotive, aerospace, and energy systems [45, 30, 93]. While MBD provides
desirable results in provable and scalable development, it often requires a complex set
of a priori assumptions about systems, making it difficult to adapt. Obtaining faithful
models, as well as adapting models to changing operational conditions are processes
that can benefit greatly from operational data. When data collected from system
operation becomes relevant to modeling the system-level properties, data-driven ap-
proaches gain importance over a priori models. Data-driven modeling leverages large
volumes of data collected by sensors, devices, web applications, etc., and lead to adap-
tive probabilistic or deterministic models about the operation of the sensed systems.
By using mathematical optimization and machine learning workflows, such data can
be utilized to build better system models during system operation. For development
of extremely complex CPSs, both model-based, and data-driven techniques will be
necessary, especially for those systems expected to operate under uncertain and highly
varying conditions, which renders precomputation of control and operation models
extremely impractical, and oftentimes impossible.

1.1 Contributions and Overview
This thesis studies an actor-oriented design pattern for streaming data to be

effectively utilized in real-time decision making, while ensuring rigorous separation of
concerns in CPS design. The goal is to synthesize continually evolving systems that
can adapt to environmental changes sensed via streams of data.

The contributions of this work are in introducing the aspect-oriented modeling
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approach to CPS design and developing a toolkit that presents a collection of infer-
ence and machine learning algorithms implemented in the form of aspect-oriented
components. The concept of aspects, first introduced for object-oriented design
with aspect-oriented programming, aim to provide separation-of-concerns in com-
plex system architectures. Although aspects present significant limitations in object-
oriented programs, they are promising when combined with actor-oriented design
and used for modular processing of infinite data streams to enable data-driven CPS.
The aspect-oriented modeling framework introduced in this thesis enables modeling
system-specific concerns such as dynamics, measurement models, noise distributions,
and environmental constraints as aspects. This abstraction leads to a novel design
paradigm that enables inference and learning components that operate on streaming
data to share and update information related to the CPS. The novel framework is de-
veloped towards the goal of enabling design of smart networked CPSs with modeling
formalisms that lead to analyzable, predictable systems, while promoting learning
and analysis on streaming data. To achieve this goal, several aspects of CPS design
will be visited throughout the text:

• Software architectures for data-driven models - We detail the design process
of modular learning and inference techniques within an actor-oriented frame-
work. We study how data-driven workflows can efficiently be integrated with
the model-based design process to enable modular design of complex CPS ap-
plications.

• Managing complexity in heterogeneous design - An essential feature of models,
which renders MBD extremely effective for systems engineering is being ana-
lyzable and easy to understand. Any platform that enables use of streaming
data in model-based design should ensure that these properties are not lost.
To maintain modularity and analyzability in models that we introduce, we pro-
pose the paradigm of aspects. Aspect-oriented modeling is a design pattern for
actor-oriented languages, which provides reusable, compositional interfaces to
cross-cutting design concerns.

• Real-time decision making on streaming data - Domain-specific data-driven con-
trol applications, as enabled by the introduced modeling methodologies will be
discussed in detail. The primary domains of interest are information-seeking
control of mobile robot swarms and smart building applications. Instead of fo-
cusing on results on algorithmic accuracy and optimization, we study in detail a
general framework that enables domain experts to fine-tune application specific
workflows that can benefit from streaming data, while preserving fundamentals
of model-based design.

This dissertation consists of seven chapters. Chapter 2 introduces preliminary
material on concurrency, distributed computation and an overview of programming
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paradigms for data-driven design. In Chapter 3, we introduce the paradigm of Aspect-
Oriented Modeling (AOM) and present a complete description of the formalism and
its applications. This chapter is based on joint work with Patricia Derler, Shuhei
Emoto and Edward A. Lee [19]. Chapter 4 presents preliminary material on Dynamic
Bayesian Network, limiting the discussion to the statistical analysis of DBNs to the
scope of this thesis. Chapter 5 studies the design of data-driven CPS applications
using the previously introduced modeling formalisms that are combined with Dynamic
Bayesian Networks in the form of an actor-oriented toolkit. Sections 5.2 and 5.4 are
based on joint work with Shuhei Emoto and Edward A. Lee [20]. Chapter 6 focuses
on the topic of data-driven control of IoT systems, introducing preliminary material
on the formalism of control improvisation (CI) and extending the concept with an
application scenario in the domain of home automation. The chapter is based on
joint work with Daniel Fremont, Rafael Valle, Alexandre Donzé, Edward A Lee, and
Sanjit A. Seshia [21]. The final Chapter describes the application areas of the AOM
formalism focusing on the multi-robot control domain and concludes the thesis.

The research presented in this thesis has been supported in part by the Multiscale
Systems Center (MuSyC) and the TerraSwarm Research Center, centers supported by
the STARnet phase of the Focus Center Research Program (FCRP) a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.
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Chapter 2

Background

2.1 Concurrency and Distributed Computation
The promise of emerging IoT systems heavily depends on the ability to make

decisions on streaming data. This requirement poses a fundamental conflict between
the traditional data-driven computation models, and the paradigm of streaming data.
The fundamental shift in the information source has given rise to numerous develop-
ments to support stream analytics.

2.1.1 Concurrency Patterns
In traditional software engineering practice, threads have been the dominating

concurrency model in computing. However, due to the changing needs of software
architecture of emerging complex web and IoT applications, threads have become
infeasible for handling many instances of concurrent applications. Threads exhibit
highly undesirable consequences including shared mutable state that leads to nonde-
terminism, deadlocks, and added complexity (e.g., as imposed by resource manage-
ment requirements of thread pool implementations). Moreover, the nature of shared
resources and explicit synchronization management couples the functional code with
the implementation, making a threaded program difficult to scale and reason about
[75, 94].

As an alternative to multi-threading, event-driven programming paradigms have
gained popularity for handling emerging distributed applications. A general concur-
rency pattern for event-driven architectures is the Reactor pattern, which provides a
single-threaded model for synchronous and sequential processing of concurrent events
[102]. By avoiding many layers of complexity and nondeterminism caused by multi-
threading, the Reactor pattern enables event-handling in a more scalable way, which
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proves beneficial in implementing highly concurrent services such as web servers. A
prominent example of a framework that leverages the Reactor pattern is Node.js [10],
in which events are handled via asynchronous callbacks, while the single-threaded
implementation remains idle when there is no event to trigger a callback.

Modern programming languages including Scala, Java, Erlang, and many others
offer more than one concurrency model to serve the changing concurrency needs of
applications. These patterns include threads, futures/promises, actors, etc., some of
which will be discussed in detail in the upcoming sections.

2.1.2 Frameworks for Stream Analytics
Another key programming paradigm that is evolving due to the changing appli-

cation requirements is the representation of data in computer programs. Data flow
from sensors, devices, and web applications is increasingly being modeled as streams,
and as a result, more frameworks and libraries are providing capabilities to manage
data as such. Many programming languages provide entities to represent (potentially
infinite) data streams and operations on streams of data, which include Scala and
Java, while specialized programming languages for implementing streaming systems
such as StreamIt [109] have also been introduced.

Moreover, with the adoption of cloud based computing and data storage systems,
research on higher level frameworks that support computations on data streams has
gained momentum. These platforms support operations on streaming data at all
levels, from providing distributed messaging systems that also provide some stream
processing and storage capabilities (e.g. Apache Kafka [2]) to large scale stream
processing frameworks. Notable streaming platforms that support stream processing
include open-source platforms such as Apache Storm [5], Apache Spark Streaming
[4], Apache Samza [3] and fully-managed solutions including Amazon Kinesis [1], and
Microsoft Azure [8].

Apache Samza is a framework that builds upon the core concepts of streams and
partitions. Samza streams are a sequence of immutable messages of a similar type
that can have any number of consumers. Streams consist of partitions, which are
totally ordered sequences of messages. In terms of data processing, Samza utilizes
computational processes called jobs that operate on streams and process streams.
Jobs are parallelizable via tasks, where each task in a job can process a partition
of an incoming stream. Eventually, dataflow graphs can be formed using a directed
graph of Samza jobs. Figure 2.1 illustrates the stream processing workflow in Samza.

The core abstraction in Apache Storm, similarly, are data streams. Storm intro-
duces the concept of Tuples, that are individual events that sequentially add up to
potentially unbounded streams. One differentiating factor of the Storm architecture
is the concept of a spout, which is essentially a source for a data stream. This ab-
straction makes it easy to integrate multiple sources of data into the framework, and
additionally, the notion of reliable and unreliable spouts makes it simple to declare
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Figure 2.1: Stream processing in Apache Samza

whether spouts provide resilience in the event of a tuple failing to be processed. Sim-
ilarly to Samza, Storm introduces processing units called Bolts, that are responsible
for performing stream transformations. Storm also supports dataflow graphs that
incorporate sources (spouts) and bolts, connected in a directed graph [104].

The main contrast of Spark Streaming from the previously explained platforms is
that the stream processing is not done on a per-event basis in Spark Streaming, but on
micro batches of data. A live stream is divided into micro-batches called discretized
streams (DStreams), preprocessed by the Spark Streaming engine and sent to the
Spark engine for further computations.

Investigating the stream processing of notable frameworks reveals that modern
streaming computation builds upon a number of common concepts. The abstraction
of streams and processes that operate on streams will be of key interest for the
formalisms to be introduced as part of this thesis.

2.2 Programming Paradigms for Data-Driven De-
sign

2.2.1 Object-Oriented Programming
Object-oriented programming (OOP) has been one of the most widely-used pro-

gramming paradigms since its introduction with the language Simula 67 [35], and has
been supported by many programming languages ever since. In OOP, programs are
built out of objects with well-defined interfaces that interact via procedure calls. This
paradigm replaced the early programming languages, which relied upon many small
modules that are controlled via global variables, that are accessible by the entire pro-
gram, with vague scoping rules. Using objects created an extremely desirable layer
of abstraction that separated external code that consists of function calls to object
methods from internal code (object’s internal definition), and eliminated the need
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for global variables in most cases [56]. In OOP, data and functions to access data
are encapsulated within the object, and the internal implementation is hidden. Code
duplication is reduced by inheritance, which enables common code reuse in related
objects. OOP enables breaking down a complex problem into simpler sub-problems
in terms of abstract data types and their interactions .

Despite being a great advancement towards scalable and less error-prone software
development, OOP still suffers from fundamental limitations. We will discuss some
of these problems, specifically in the context of CPS development.

Although OOP provides abstraction and modularity in design, it does not con-
tribute to representing concurrency. Using a call-return semantics does not provide
a structured means of modeling concurrent computation, and modeling concurrency
in OOP often resorts to multi-threaded code with ambiguous semantics.

Another essential programming challenge arises when building complex object-
oriented systems with multiple cross-cutting concerns, which often need to be imple-
mented in a modular and reusable way as to provide understandability and ease of
maintenance. The issue of modeling cross-cutting concerns is amplified by the object
abstraction, since objects are optimized to be self-contained units isolated from their
environments, revealing only a subset of their functionality via available public proce-
dures. This model falls short of expressing design aspects that possibly extend beyond
a single object’s functionality, such as logging, policy enforcement, and optimization.

2.2.2 Actor-oriented Modeling

A modularization technique that complements objects is actor-oriented design,
which is a high-level design paradigm that aims at providing concurrency and scala-
bility [60, 17, 81]. Actors are components that execute concurrently and communicate
via messages sent and received through ports, in contrast to the procedure calls com-
monly used in OOP. The actor model provides a clear abstraction against shared
mutable state, since all state mutation is done via messages passed between actors.
By doing so, actors provide better scalability, avoiding threads and locks, and exhibits
many other desirable properties to be discussed throughout the text.

Actors are components -that, in fact, can also be objects- which execute con-
currently and communicate via messages. Many of the model-based design tools
including Ptolemy II [96], Simulink [14] and NI LabVIEW [9], as well as application
frameworks such as the Vert.x framework [15] and the Akka library [122] support
actor-oriented development.

The semantics of actors and the communication between them can vary widely
across domains. A concurrency model and communication strategy for actors form
a concurrent Model of Computation (MoC), and distinct MoCs can be combined to
create heterogeneous models [96].

Based on the actor model, components called accessors have been introduced.
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The accessor model is based an abstraction where sensors, actuators and (typically re-
mote) services are be wrapped by an actor interface [74]. Accessors leverage an event-
driven architecture, where events are internally handled via atomic asynchronous
callbacks.
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Chapter 3

Aspect-Oriented Modeling

In this chapter, we introduce the aspect-oriented modeling paradigm that en-
riches the actor model by introducing mechanisms to handle cross-cutting concerns
in CPS design.

One of the biggest challenges in cyber-physical system (CPS) design is their in-
trinsic complexity, heterogeneity, and multidisciplinary nature. Emerging distributed
CPS integrate a wide range of heterogeneous aspects such as physical dynamics, con-
trol, machine learning, and error handling. Furthermore, system components are often
distributed over multiple physical locations, hardware platforms and communication
networks. As the level of complexity and heterogeneous concerns to be considered
in design time increase, no single design pattern succeeds in simultaneously handling
the many aspects of complex systems. While model-based design (MBD) has tremen-
dously improved the design process, CPS design remains a difficult task. Models are
meant to improve understanding of a system, yet this quality is often lost when models
become too complicated.

In the previous chapter, we introduced OOP, discussed some important design
concerns that arise when modeling complex CPS using OOP, and proposed actor-
oriented design as a solution to modeling concurrency between components. Despite
the tremendous improvements introduced by the actor model, the issue of addressing
cross-cutting concerns into the design process has not been resolved.

We show how to use aspect-oriented (AO) modeling techniques in MBD as a
systematic way to segregate domains of expertise and cross-cutting concerns within
the model. As a motivating example throughout the thesis, we will discuss several
design concerns that arise when building multi-robot sensing and control applica-
tions. We will illustrate the use of AO modeling techniques to manage complexity,
while introducing modular design components to handle streaming data for adaptive
development and design-space exploration for these complex CPSs.
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3.1 Design Paradigms for CPSs
Cyber-physical system design integrates a wide variety of heterogeneous dis-

ciplines, including control engineering, mechanics, thermodynamics, sensors, elec-
tronics, networking, and software engineering [76]. Engineers use domain-specific
tools and techniques in each of these disciplines, but integration of the diverse tools
and techniques remains challenging [48]. MBD [67] has proven successful in sev-
eral of these domains, including, for example, modeling and simulation of physi-
cal dynamics using Modelica [111], design, simulation, and code generation of con-
trol systems using Simulink R© (by MathWorks), and design of instrumentation sys-
tems using LabVIEW R© (from National Instruments). In network simulation, MBD
is adopted in modeling and simulation of communication networks using OPNET
Modeler R© (by Riverbed) and ns-3 (http://www.nsnam.org/). Moreover, architec-
tural system modeling benefits from MBD, as exemplified by the unified modeling
language (UML), the architecture analysis and design language (AADL), and OMG
SysML [62].

Despite the domain-specific benefits of MBD, integrating these tools and tech-
niques, remains a daunting challenge [18, 66]. Accidental complexities such as in-
compatible data representation, lack of open-source APIs, and vague or unspecified
semantics dominate, so that it uncommon to achieve effective integration.System
integration ends up happening late in the design process, when prototypes of all com-
ponents are available, and problems that emerge at that stage can be very expensive
to fix. As industrial CPS systems get more complex, it becomes necessary to provide
greater assurance of safety, scalability, and reliability from the early design stages.
This demands interoperable, verifiable, modular, and open interfaces that simplify
the task of integration. In this chapter, we describe an approach that focuses on
integration in the layer of modeling methodologies. As opposed to the usual meaning
of integration in the level of tool integration, we will focus on adapting actor-oriented
abstractions of design aspects, which can later be composed as domain-specific tools.

In section 2.2.1, we discussed that OOP often suffers from expressing cross-
cutting concerns in design. This problem fundamentally arises from the object en-
capsulation, which isolates objects from the context it is created in, and intentionally
limits the environment’s access to the object’s internal mechanism other than what
the object reveals by its access methods. Despite providing better data encapsulation
and an explicit semantics for concurrency, actor-oriented design still suffers from the
same issue. Many requirements of reliable CPS, including safety, security, verifia-
bility, adaptability, and platform independence are usually very difficult to address
using a monolithic actor model.

Even in the case when actor-oriented design is used to address many design
concerns, the models often end up tangling many cross-cutting functionality, unin-
tentionally modeled in a way that can not be easily factored out. Although CPS are
intrinsically complex, the models need not be equally complex to successfully capture

http://www.nsnam.org/
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essential aspects of the systems. The goal of the following formalism is to improve
the degree to which a model can accurately reflect the complexity in system design,
without making the models themselves so complex as to degrade their utility.

3.2 Aspect-Oriented Programming
In the late 1990s, Kiczales et al. introduced aspect-oriented programming [70] to

resolve OOP’s inability to express the aforementioned issues relating to cross-cutting
functionality. Some common concerns, which are defined to be a functionality or
specification to be ensured throughout the system design, can be implemented in a
modular way using the aspect paradigm.

Aspects have been embedded in programming frameworks such as AspectJ [69]
and Spring [64], which extend Java and other OOPs with specific syntax supporting
aspects.

AO programming has some clear benefits. Code tangling, code duplication, and
scattered code can be reduced through abstraction and modularization. However, the
adoption of AO programming has been slow. Studies on fault-proneness of aspect-
oriented programs [46] show that the obliviousness property in AO programming
causes faults due to lack of awareness among base code and aspects. Moreover,
debugging aspects can be difficult [123].

An aspect-oriented program identifies cross-cutting concerns in the software de-
sign and defines modular aspects to implement these in a way that is separated from
the core functionality. Figure 3.1 illustrates the conceptual differences between an
object and an aspect-oriented implementation of an aspect. Consider, for example,
a logging aspect. Monitoring and recording certain execution details of a program
is clearly not part of the core functionality, and in fact, a typical logger would be
subject to change as the core functionality evolves.

An aspect-oriented program consists of several entities. We will briefly explain
the terminology relating to these entities and will make analogies with aspects in
actor-oriented models in the following sections.

• Weaving is the process of linking aspects with the application, which can either
happen at compile time or at run time.

• Crosscutting is the implementation of the weaving rules. This is performed by
the compiler in object-oriented aspect implementations. The crosscutting can
either be static or dynamic. A static crosscutting is an aspect implementation
that relates to a class, interface, or another aspect, and does not directly modify
the execution. A dynamic crosscutting is essentially the weaving of new behavior
into the program with the help of an aspect. A crosscutting consists of multiple
elements
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Figure 3.1: Implementation of a cross-cutting concern in OOP and AOP

– Join point is a point during the execution where the program interacts with
an aspect. In AO programming languages, this often refers to a method
execution, which weaves the crosscutting actions into core functionality.

– Pointcut is a program construct that identifies join points and builds con-
text around these. Pointcuts can be thought of as specifiers of weaving
rules, where join points are instances that satisfy these rules.

– Advice is an action taken by an aspect at a particular join point. An advice
can be configured before, after, or around the join point.

– Introduction is a static crosscutting, that introduces changes to the entities
being affected. An example introduction can be a method that is added
to a class by the aspect.

• Aspect is the basic building block of aspect-oriented code, which contains the
code that specifies rules to weave the cross-cutting concern with the code func-
tionality [73].

3.3 Types of Aspects in CPS Design
The separation of the core functionality from the cross-cutting ones by design

paradigms is not specific to OOP, but a more general paradigm that in fact becomes
much more essential for developing cyber-physical systems. The following sections
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will discuss how the ideas introduced by AO programming can be applied not only to
OO design, but also to actor-oriented models. We focus on models in the CPS domain
that are highly heterogeneous in nature, causing them to become hard to validate and
verify due to the inherent complexity and added peripheral requirements.

It is common to use the term “functional model” for a model that describes the
core intended behavior of a system. For example, a functional model of a coopera-
tive cruise control system may describe the feedback control laws and the physical
dynamics of a car. So called “non-functional” aspects might include properties of
an implementation such as communication latencies, faults, and energy consumption.
Of course, what is viewed as “core intended behavior” will depend on who is building
the model. But generally, when an engineer builds a model, that engineer has some
view of a “core intended behavior” and some notion of other concerns that may be
important, but are distinct from the core functionality. Our goal is to treat these
“non-functional” concerns as aspects, specifically to be able to model these without
entangling them with the core intended behavior. Examples of such concerns that
arise in CPS are as follows.

Communication. CPS applications are often distributed, sometimes widely.
Communication infrastructure is important, and communication artifacts such as
delay and losses must be taken into account during system validation. Resource
contention and communication delays can lead to sub-optimal system behavior that
is hard to predict and is not reflected in a purely functional model. Modeling of
networks, however, is itself a sophisticated domain, therefore, entangling network
models with core models is undesirable. Aspect-oriented modeling of networks in
cyber-physical energy systems is discussed in [23].

Execution time. A model of “core intended behavior” will typically not include
execution time of software components. At early stages of a design, this cannot be
known, as it requires considerable implementation detail. Even at later design stages,
complexity of the underlying architecture can make it difficult to precisely account
for execution time [117]. Modeling execution time is again a sophisticated domain,
and such models should not be entangled with core intended behavior.

Architecture. Design choices such as hardware architecture (multicore comput-
ers, centralized triple-redundant machines, distributed microcontrollers, etc.), schedul-
ing strategies (time triggered, earliest deadline first (EDF), etc.), and mapping of
software functions onto hardware resources can profoundly affect system cost and be-
havior. If we can avoid entangling architecture models with core intended behavior,
then we can facilitate design space exploration at different levels of abstraction [101].

Error handling. Error handling is necessary in real systems, but the additional
logic can clutter the core model. Aspect-oriented modeling helps in separating error
handling logic from the core model. In addition, proper error handling requires fault
models, and testing the system under fault conditions can also be handled through
aspects.

Logging and debugging. Logging and debugging features are often heavily
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used during development and less in a deployed system. Factoring out the logging
and debugging infrastructure makes it easier to include or exclude.

Verification. Checking correctness of the intended system behavior is an es-
sential aspect of safety-critical CPS. Aspects can be used to automatically check
compliance with formal requirements during system development, and to detect fault
conditions that result in specification violations in a deployed system. Recent work
on design contracts [93] formalizes high-level system requirements, that can be im-
plemented as design aspects.

Fault modeling and anomaly detection. System modeling primarily aims
at representing the nominal behavior of a system. In many CPS domains such as au-
tomotive, aerospace, and manufacturing, fault models are an essential part of system
development. Faults and anomalies that could occur in a system can be factored as
aspects. This naturally segregates faulty behavior from the nominal system workflow,
and enables efficient modeling of cascading faults.

Security concerns. Wasicek et. al. [115] present aspect-oriented modeling as
a model-based design technique to assess the security of CPS. By associating attack
models with the CPS in an aspect-oriented manner, the designer can gain insights
into the behavior of the CPS under attack.

Dynamics and sensing models. The foundation of many CPS aspects such
as control, machine learning, and optimization build upon mathematical models of a
physical process. Consistency of the common mathematical models across the system
becomes prone to errors due to the composition of components from different areas of
expertise. Using aspects enables these shared mathematical models to be explicitly
factored out, and reused by multiple parts of the CPS model.

Environmental Constraints. While the functional system model aims at
representing the core intended behavior of a system under a set of environmental
conditions, additional constraints can be enforced on system operation in run time.
For example, considering a CPS that consists of mobile robots, the physical space
( often represented by a ‘map’ model) in which the system operates is a type of
environmental constraint that can be thought of as an aspect. A map becomes a
cross-cutting concern for many parts of the functional model, potentially affecting
communication, dynamics, control, as well as noise models.

In the next section, we will describe in detail an infrastructure for aspect-oriented
modeling (AOM) that we have realized in the Ptolemy II framework [96]. The tech-
niques presented in this chapter should be easily applicable to many commonly used
actor-oriented design tools.

3.4 Motivating Example
Design of industrial cyber-physical systems is a complex task due to the intrinsic

complexity and timing constraints of these systems. To date, distributed system
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design has been prone to errors due to concurrency, timing and heterogeneity of
system components.

Emerging industrial CPS are increasingly using autonomous robotic systems.
Design of cooperative behavior given application constraints such as dynamic capa-
bilities of robots, resource conflicts, and environmental constraints is an active field
of research.

Industrial applications, including factory automation, assembly, monitoring, and
disaster response rely on cooperative behavior of humans and machines. Robotic
swarms, which extend the concept of cooperative machine intelligence, fit well into this
framework. “Swarm intelligence” is defined as a system property that arises from the
interaction of non-intelligent mechanical robots to collectively form an “intelligent”
system [31].

One example in an industrial setting is a disaster response scenario, where the
consequences of a disaster may have rendered a physical space hazardous for humans
to explore. In addition, parts of the site may not have ground access at all, due to
debris caused by the disaster. Collaborative mapping of earthquake-damaged build-
ings is an example of this, where ground and aerial robots need to work together to
create a map of the hazardous site [90].

In addition to exploration and risk assessment, robots can also perform mechan-
ical tasks in sites that are inaccessible to humans. The Fukushima Daiichi nuclear
reactor cleanup and investigation effort Japan provides such a scenario. Robots are
currently being deployed inside the reactors to collect critical information on radia-
tion levels, as well as on safe paths to be taken in subsequent missions [113]. Larger
robots are being employed to carry out mechanical tasks within the reactor, such as
to deploy vacuum and filtration systems that reduce nuclear contamination and allow
human operators to safely enter the site [112].

Motivated by such scenarios, we illustrate the concept of aspect-oriented modeling
on the design of such robotic swarms. A simplified top-level model is shown in Figure
3.2, where two sets of robots are deployed: (i) a team of lightweight observation robots
that are equipped with sensors whose task is to cooperate to assess an environment
in order to locate a target in the presence of potential hazards, and (ii) a heavy-duty
main robot, with limited maneuvering abilities, whose task is to retrieve a target from
an unfamiliar environment.

In the model, a hierarchical control strategy is being deployed to fully enable
swarm intelligence. First, an observation-optimizing controller receives sensor mea-
surements from observation robots, estimates the position of the target based on
the robot dynamics and sensor readings, and steers the observation robots, subject
to dynamics and safety constraints, to reduce uncertainty in target position in the
subsequent control steps. Meanwhile, a higher level controller receives the estimated
target position, and steers the main robot towards the target. The sensors, of course,
have limited sensing capability. For example, in our model, we assume that they can
only make imperfect measurements of their distance from the target.
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Figure 3.2: A model of a robotic swarm, cooperating to carry out a target retrieval
task within an unfamiliar environment

The modeling environment used here is Ptolemy II [96], which is a framework for
building and simulating actor-oriented models of heterogeneous systems. A Ptolemy
model consists of actors that communicate via ports. The semantics of the commu-
nication, also referred to as the model of computation, is given by so-called directors.
Different MoCs can be combined hierarchically to represent heterogeneous systems.

The robots and controllers are composite components, where a single icon rep-
resents a potentially complex submodel. The components communicate via time-
stamped events, using the discrete-event MoC, represented in the model by the DE
Director.

Such a model, which captures component interactions alone, is often created
by a system designer for evaluation of functional behavior and timing analysis of the
application. Once the behavior has been evaluated and deemed suitable, the next step
is deployment, during which the timing behavior of the application might change. For
example, in deployment, the communication between controller and the robots will
be subject to context-dependent latency, packet losses, and re-ordering of messages.

One possible model that includes the communication aspects is given in Figure
3.3. In this model, the Network actor represents the shared communication resource.
It is a hierarchical component that can include delays, losses, and re-ordering. Such
a hierarchical component could include sophisticated models of specific networking
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Figure 3.3: A poor model of a robotic swarm with network specifications.
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technologies, including, for example, WiFi interference and MAC (media access) pro-
tocols.

The model in Figure 3.3, however, is awkward. In order for the communication
aspects to affect all relevant communication paths, the model builder is forced to
model the construction of packets that include addressing information and to multi-
plex these packets through a single model of the communication fabric. The designer
is often not interested in such low level modeling details but only in the high-level
effect of the network on application behavior. Moreover, the logical communication
paths of the original models have been lost, eliminating many of the advantages of a
visual modeling syntax.

Nevertheless, a Monte Carlo simulation, yielding results such as that in Figure
3.4, can be used to study the behavior of the system with and without network models.
These results illustrate the detrimental effects of packet losses and latency, and an
engineer can determine thresholds on networking behavior that would put the target
retrieval mission at risk.
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Figure 3.4: Simulated effect of network aspects on main robot trajectory.

It is important to observe that the network fabric used to enable communica-
tion between components is not an intrinsic part of the system design; it is only an
implementation choice. Therefore, the communication via a shared resource can be
considered an aspect of the system and can be modeled as such. An aspect-oriented
alternative that uses our Ptolemy II extensions is shown in Figure 3.5. The network
aspect, represented by an icon at the top, models the delay and resource contention
of communication; connections that use the network, namely, the channels between
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robots and controllers, are annotated with textual parameters that bind those com-
munication links to the network model. This preserves the benefits of the visual
syntax, in that, the new model still visually represents logical communication paths.
But more importantly, it abstracts away the low-level details of the network imple-
mentation, such as packet structure and addressing. These were needed in Figure 3.3
as an accident of the modeling technique, whereas in the aspect-oriented alternative,
the low-level routing functionality is handled internally by the aspect. The aspect
illustrated here is a communication aspect. There are many additional aspects that
can be modularly incorporated into a model in a similar way, as will be explained
next.

Figure 3.5: A model of a robotic swarm with network specifications modeled as
aspects

3.5 Aspect-Oriented Modeling (AOM)
The basic ideas of actor-oriented programming have been introduced in sec-

tion 2.2.2, and presented in [19]. In analogy to aspect-oriented programming, which
separates aspects to be encapsulated portions of code that interact with the core func-
tionality using procedure calls, an actor model can also be annotated with additional
information that is orthogonal to the information in the model. This information
can be used to statically evaluate the model or to modify execution. An example
would be evaluation of the cost of implementing a system. By annotating each model
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element with a price, the cost of the entire system can be computed in design time,
and updated dynamically when subcomponent prices change. The cost can also be
continuously monitored and compared to a constraint, for instance, an upper bound
on cost, raising a flag when the upper bound has been exceeded.

With aspect-oriented modeling, we will go a step further than open-loop moni-
toring. We will annotate models with information that is evaluated dynamically and
can in turn change the system behavior. An example is the communication aspect
described in the previous section.

AOM aims at providing a mechanism to better represent orthogonal concerns
in actor-oriented models the same way aspect-oriented programming does in object-
oriented programs. The four modeling paradigms are conceptualized in Figure 3.6.
We will now formally tie concepts from aspect-oriented programming and explain how
they differ from their object-oriented counterparts.

An advice, in the scope of this work, represents an actor that implements the
cross-cutting concern. In the previous example, the advice is the Network actor.

A join point is the execution of an actor or the transmission of a token. While
advice actors do not encode any information about the model they are used in, they
encode information regarding at which join points they can be used. For instance,
the Network aspect can only be associated with connections between actors. We
generalize this to input ports on actors, meaning that if the Network is associated
with an input port, the incoming connection is enhanced by the advice. The fact
that advice actors can only be used on certain join points can be utilized to guide
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the model builder. In Ptolemy II, upon instantiating an advice actor in a model,
parameters are added to all the possible join points in the model, at which the use of
the advice can either be enabled or disabled by the model builder.

A pointcut is a join point where the use of the advice is enabled. An aspect is
then all enabled join points together with the advice.

Ptolemy II handles the weaving at run time. A simulation framework where code
is generated before simulation would need to include the weaving in the generated
code.

In many aspect-oriented programming languages, pointcuts rely on naming con-
ventions to find the points in the program where aspects should be executed. Thus,
changes to the program may easily break the aspect integration, a consequence often
referred to as the fragile pointcut problem [106]. In the newly introduced paradigm
of aspect-oriented modeling, advices need not be aware of the model and pointcuts
that are defined. Due to the actor-oriented nature of programs, removing an advice
from the model automatically results in a deletion of all pointcuts, overcoming the
unintended consequences originally introduced by aspect-oriented programming.

In this chapter, we investigate aspects with two types of pointcuts: on input
ports of actors and on actor executions. An aspect with a pointcut on an input port
of an actor executes the advice whenever a token is sent to this input port. The advice
can modify the token (e.g., probabilistically dropping it) or perform other operations.
In the previous example, the Network advice implements resource contention and
packet drops on tokens.

Figure 3.7 illustrates the concepts introduced on an abstract example. The
model contains 5 actors, A1, A2, A3, c and e, where c and e are advice actors. Actors
A1 and A2 communicate as illustrated by their connections. The advice c can be
enabled on communications between actors, thus the communication between A1 and
A2 as well as the communication between A1 and A3 form join points. In the example,
the advice is only enabled on the communication between A1 and A2, which describes
a pointcut. Advice actor e can be enabled on actor executions, so its join points are
actors. In this example, e is enabled on actor A1 and actor A3, but not on A2. In the
figure, enabled join points are illustrated by highlighting.

3.6 Aspect-oriented modeling in Ptolemy II
To implement join points and pointcuts in Ptolemy II, we use the decorator

pattern [54], which allows adding behavior to an individual object without affecting
the behavior of other objects of the same class. We implement advices as decorators
that decorate join points with additional attributes.

Figure 3.8 illustrates the implementation of advices that decorate communication
and execution between actors in Ptolemy. A communication advice decorates all input
ports in the model with a boolean attribute enable. If this enable flag is true, the
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advice not
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Figure 3.7: Aspects in actor-oriented models.

receiver of the port is wrapped by an intermediate receiver, which intervenes in the
communication and coordinates with the aspect actor. Communication advices can be
composed serially. In this case, the original receiver is wrapped by multiple cascaded
intermediate receivers, providing associations with multiple advices. The order in
which communication aspects are enabled can be controlled by the model builder. In
the figure, the weaving of a communication actor is performed in the following steps:

1. A source actor (A1) intends to send a token to the destination actor (A2), where
the token is originally destined to the input port of the destination actor.

2. Token is initially delivered to the intermediate receiver.

3. The intermediate receiver delegates the token to the input port of the actor that
implements the communication advice.

4. Upon being processed by the aspect implementation logic contained in the ad-
vice, the token is routed back to the original port it was destined to.

5. The input port delivers the token to the destination actor to be further pro-
cessed.

The implementation of an execution advice (vs. a communication advice) is
also illustrated in Figure 3.8. In contrast to the communication aspect, an execution
aspect decorates actors (vs. ports) in a model with an enable flag. If this flag is
set to true, the advice actor will be consulted each time the actor is executed. In
Figure 3.8, the Actor that has been associated with the ExecutionAspect by setting
this flag is highlighted in blue. This association is implemented by modifying the
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Figure 3.8: Execution and communication aspect semantics

director. The director, in absence of an execution aspect, (a) selects the next actor
to be executed and (b) executes the actor by calling its fire function. Association
of an execution aspect adds an intermediate step to this two-step operation between
steps (a) and (b). Here, a call to the advice is inserted upon selection of an actor
that is decorated by an execution advice. In case the advice decides that the actor
cannot be executed, the director can choose another actor to be fired. Note that
if the Director implements a timed MoC, the authorization for actor execution may
become a function of the time step. Consider, for example, an execution aspect that
implements an architectural concern. If the architectural resource that is emulated
to be processing the actor execution is busy at the requested time step, the execution
aspect will continue to reject this actor’s execution until resources become free at a
future time.

Weaving, the process of linking aspects with the application, is performed by
the Ptolemy II runtime. Part of the weaving is implemented by the director that
executes the model. Note that neither communication nor execution aspects have
physical connections in the graphical actor model. This feature, by design, enables
aspects to remain orthogonal to actor execution visually, as they intend to represent
logically orthogonal concepts.

3.6.1 Atomic and Composite Aspects
An aspect is an actor that implements the decorator interface. Atomic aspect

actors contain the entire implementation in a single body of source code. Composite
aspect actors are models themselves. A composite aspect contains a director and
special actors that receive requests and produce responses. Composite aspects enable
much more sophisticated models, for example of communication networks. A model
element that is decorated by a composite aspect receives an additional parameter, the
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request port. This is the name of the actor contained in the composite aspect that
receives the request. When the request port actor receives the request, it produces a
token that contains the request actor or receiver together with other attributes that
are specified on the port. For instance, additional attributes could be execution times
of actors.

3.7 Related Frameworks
Since AO programming is often considered an extension to OOP, various AOM

extensions to object-oriented languages have been proposed. Naturally, UML-based
AOM design approaches have been developed [120]. While some approaches provide
general-purpose AOM languages, others only focus on specific aspects. Our approach
is a general purpose AOM language in that it allows the definition of arbitrary aspects.
Some work on UML AOM extensions is related in that they focus on CPS aspects
that we also explore here. For instance, Liu and Zhang [86] present an aspect-oriented
framework that combines UML profiles and real-time logic (RTL) for specifying QoS
properties such as timing, reliability, and safety. Recent work on using AO modeling
for automation systems is presented by Wehrmeister et al. in [116]. Espinoza et al.
[44] describe annotations of schedulability and performance analysis data in UML
models. Mechanisms similar to the ones used to weave aspects in model-based design
environments are introduced in Gray et al. [57], where AOM is used for domain
specific, cross-cutting constraints.

The main differentiating factor between the presented AOM formalism and UML
based AOM extensions is the purpose of the models. This chapter focuses on the
design of executable models, i.e. models have a clear, deterministic, and concurrent
semantics, whereas UML models usually do not have execution semantics.

In relation to system design, the closest concept that have been introduced
in literature is part of the framework Metropolis [27, 125]. The Metropolis plat-
form focuses on separating the behavior and the performance aspects of architectural
models. Here, so-called quantity managers (QMs) are used to assign quantities to
events, which in turn are scheduled by the framework. The concept is similar to
the introduced AOM mechanism in that common aspects are abstracted away from
the functional model and added later via quantity managers and schedulers. The
Metropolis project facilitates platform-based design [101], which enables co-design of
functional and architecture models that are evaluated as a whole. QMs in this con-
text have been applied to modeling execution costs, timing, energy constraints, and
scheduling policies. Data-driven modeling using QMs have not been explored to date.

AADL, the architecture analysis and design language (formerly known as avion-
ics architecture description language) [45] aims at modeling and analyzing complex
architecture models. Architectural descriptions can be extended with annexes, such
as the behavior annex that allows a state machine description of component imple-
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mentations, or the error annex, which supports fault modeling. De Niz et al. discuss
different aspects and the separation of concerns, in particular nonfunctional concerns,
in AADL [36]. AO4AADL [88] is an aspect-oriented extension to AADL to master
complexity and ensure scalability.

3.8 Conclusion
This chapter introduces a modeling paradigm called aspect-oriented modeling

(AOM) and discusses how AOM facilitates managing the complexity of actor-oriented
CPS models by enabling development of composable models for cross-cutting con-
cerns. In this chapter, the execution semantics of aspects with an emphasis on their
prototyped implementation in the Ptolemy II framework has been highlighted. Chap-
ter 7 will further explore the application areas of AOMs that include fault modeling,
monitoring, as well as contract and execution models. Additionally, a more compre-
hensive case study which illustrates the use of aspects in an industry scale smart grid
application has been presented in [23].
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Chapter 4

Dynamic Bayesian Networks

4.1 Statistical Models for Data Sequences
The previous chapter discussed design patterns that enable structured devel-

opment of data-driven systems given heterogeneous cross-cutting concerns. Having
proposed a software architecture for modeling such concerns, we now focus on the
algorithmic side of implementing aspects for data-driven system design. The focus of
this chapter will be to introduce a family of algorithms that synthesize observed data
and statistical models of underlying processes to enable dynamic decision making.

Sequential data has been of interest to many fields of science and engineering. A
very common scenario for data sequences is to consider data that has been obtained
at different points in time from the same source. Such sequences are often referred
to as time-series data. A very rich literature on statistical modeling and inference on
such sequences exist, which focuses on answering questions on how samples within
the sequence relate to each other.

The classical approach to time-series analysis is centered around capturing the
correlation between samples of data that have been collected at adjacent steps in time,
with the assumption that a particular time-series sequence is a sample realization of a
stochastic process. For this purpose techniques that model the current value of a time-
series as a parametric function of past and present samples have been developed. One
specific approach in this family of techniques are autoregressive integrated moving
average (ARIMA) models [29], that prove very effective in capturing seasonality and
trends in time-series data, and have been used extensively in forecasting applications
[105].

When working with datasets alone, that is, batches of data that present some
observed quantities as a function of a dependent variable (usually a physical quan-
tity such as time, location, or an enumeration over a finite set) these models prove
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extremely useful. Despite being very effective in modeling data as a function of its
own (past and present) samples, time-series models lack the crucial ability of tying
a data sequence to a physical process that generated the data in the first place. For
instance, a historical dataset such as yearly average global temperature deviations
collected over several decades can effectively be modeled as a time-series, and an
ARIMA model fit can be obtained to explain trend, seasonality and a residual noise
component in the data. In such a model, it is irrelevant to consider a physical model
of earth’s surface and investigate how the data relates to the physical system, the
focus is on capturing the variations in the data itself, and how they relate to the
previously collected samples.

Many applications that depend on data collected from a sensor in a CPS nat-
urally extend far beyond such time-series analysis. It is often of interest to incorpo-
rate prior information about physical processes, keep track of several quantities that
might be affecting each other, as well as the statistical characteristics of observed
data. Specifically, when reasoning about what a data stream implies about a sys-
tem, the formalism should focus on the underlying cause of the observed data, with
the eventual goal of inferring a change in the indirectly observed process. Prediction
follows a similar pattern; instead of trying to predict future samples of data given a
window of previous ones, the focus is on predicting future states of the system given
data, by first inferring the most likely underlying states of the system that may have
produced the observed data samples, and using this inference to predict future states.

A more contemporary way of modeling data streams is to use a family of models
known as Bayesian Networks. Bayesian networks are a class of probabilistic graphi-
cal models that allow modeling random variables and their conditional dependencies,
enabling inference and learning tasks to be parameterized over random variables as
opposed to just over data samples. The subclass of Bayesian Networks in which se-
quences of random variables are expressed ( often as a function of time) is known
as Dynamic Bayesian Networks (DBNs). Due to the ability to associate an observed
data sequence to a graph of hidden random variables, DBNs are not subject to lim-
its on expressing relationships between variables, which classical time-series models
suffer from. Additionally, DBNs are not subject to finite-window effects, and can
incorporate prior information, as well as multivariate relationships between inputs
and outputs [91].

One of the most widely used tools for inference and prediction on streaming data
streams are Kalman Filter models, used in many control and estimation applications
in the domains of linear system theory and signal processing. Another popular model
that can efficiently model changing statistical nature of data sequences are Hidden
Markov Models (HMMs), which assume a hidden state space that evolves according
to a Markov model. In an HMM, The Markovian dynamics of state transition is
only observable through measurements that are a function of the hidden state. Both
Kalman Filter models and HMM variants are special cases of DBNs. An incomplete
list of subclasses of DBNs that are of interest to this thesis have been illustrated in
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Figure 4.1: A subset of Dynamic Bayesian Networks

Figure 4.1.

4.2 Dynamic Bayesian Networks for Data-Driven
CPS Design

In this section, we will focus on a subset of DBNs that are especially relevant to
modeling data streams in the context of CPS. A large subset of applications on sensor
data focus on measuring a quantity that is either intrinsic to a system, or is related
to the environment in which the system operates. Naturally, it is a common scenario
to assume an underlying dynamic system. The system would often be equipped with
sensors, delivering data regarding to certain quantities within the operating system.
Consider, for example, a terrestrial mobile robot, operating in an indoor environment.
The robot will be subject to a dynamics model,

4.2.1 State-Space Model (SSM)

We have discussed in the previous section that the expressive power of DBNs
in modeling system dynamics and establishing relationships between quantities in
system design is based on the explicit modeling of state. A state-space model is the
most general form of a DBN. This model considers a system state, which is observable
via a set of noisy observations. State dynamics are modeled to be first order Markov,
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and a prior distribution on state is defined.

x1 . . . xt−1 xt . . . xT

z1 . . . zt−1 zt . . . zT

πx
f(·)

g(·)

Figure 4.2: Graphical model representation of an SSM

A formal representation of a state-space model is given by

x1 ∼ πX(x1) (4.2)
xt+1|xt ∼ f(xt, ut, t) (4.3)

zt|xt ∼ g(xt, ut, t) (4.4)

where xt ∈ RK corresponds to the system state, zt ∈ RL is an L-dimensional ob-
servation of the K-dimensional state vector x, both collected at time t. πX(·) is the
prior distribution over state x, g(·) expresses the stochastic measurement model as a
function of state xt, control inputs ut ∈ U , where U is the domain of the control input.
f(·) is the random function specifying the discrete state dynamics. We use the symbol
∼ to denote a distributed according to relation. A graphical model representation of
a generic SSM is shown in Figure 4.2.

The SSM structure is encountered in many CPS applications, where it is of in-
terest to track and control the physical state of a plant, however, the state is only
observable via noisy measurements, that can often be modeled accurately as a para-
metric function of state with additive noise. One of the most widely used subset of
SSMs are Kalman Filter models, which assume linear-Gaussian dynamics for π(·),
f(·), g(·). In the following chapters, we will focus on the more general definition of
an SSM, which encapsulates the subclass of well-known Kalman Filter models.

4.2.2 Hidden Markov Model (HMM)
A special case of SSMs, where the hidden state x takes values in a discrete set,

is known as a Hidden Markov Model (HMM). Formally, an HMM is given by

x1 ∼ πX(x1) (4.6)
xt+1|xt ∼ Axt,xt+1 (4.7)

zt|xt ∼ g(xt) (4.8)

where xt ∈ {1, . . . , K} corresponds to the discrete hidden system state, A is a K×K
state transition matrix, where Ai,j , P (xt+1 = j|xt = i), and g(·) , P (zt|xt = i)
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is the so-called emission distribution, that can either be a continuous or a discrete
distribution conditioned on the true state. Finally, πX(·) denotes the multinomial
prior distribution over the state space. A graphical model representation of a generic
HMM is shown in Figure 4.3.

The discretization of state space poses a fundamental difference towards the
problems that can be modeled and solved by HMMs. Essentially, HMMs are very
successful in modelingmodel system behavior, where each different mode of the system
emits observations with distinct probabilistic properties.

x1 . . . xt−1 xt . . . xT

z1 . . . zt−1 zt . . . zT

πx
Axt−1,xt

g(·)

Figure 4.3: Graphical model representation of an HMM

4.2.3 Explicit-Duration Hidden Markov Model (EDHMM)
In data-driven modeling of systems, it is essential that the learning model cap-

tures relevant properties of the underlying system based on observed data. For prob-
abilistic inference in dynamical systems whose state is only observable via state-
dependent data, HMMs have been a widely used tool. However, in many CPS ap-
plications, especially for those of interest to human-in-the-loop systems, explicitly
modeling event durations gain importance. In such a setting, simple HMMs often
become too simplistic as they do not allow explicit parameterization of state dura-
tions, but only probabilities of one-step state transitions. An extension of HMMs that
can significantly improve model fidelity for duration modeling are Explicit-Duration
Hidden Markov Models (EDHMMs) [98]. These models, in addition to modeling
the hidden state space as a Markov chain, also introduce the duration spent within
each state as an additional hidden variable of the dynamic Bayesian network. The
graphical model representation of a generic EDHMM is shown in Figure 4.4.

d1 . . . dt−1 dt . . . dT

x1 . . . xt−1 xt . . . xT

y1 . . . yt−1 yt . . . yT

πd

πx

Figure 4.4: Graphical model representation of an EDHMM
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The standard definition of an EDHMM models hidden state and its duration to
be discrete hidden variables. The state dependent observations can be drawn from
either a discrete or continuous emission distribution.

4.2.4 Common Tasks on DBNs
4.2.4.1 Inference

In relation to modeling system dynamics, perhaps the most relevant inference
problem on DBNs is the so-called filtering or state estimation problem. Here, the goal
is to infer xt, the system state at time t, given noisy observations collected over a
window in time. Formally, the goal is to compute the posterior probability P (xt|z1:t)
given all observations made up to time t. Here, z1:t , {z1, . . . , zt}. Note that based
on the SSM given by (4.2)-(4.4), the complete probability distribution of the SSM up
to time t can be factored out as

p(x1:t, z1:t) = p(x1)
t∏
i=1

p(zt|xt)
t∏
i=2

p(xt|xt−1) (4.9)

= πX
t∏
i=1

g(xt)
t∏
i=2

f(xt−1) . (4.10)

This form of the probabilistic model proves useful in many inference applications.
Specifically, it is possible to compute the state estimate xt by using the recursive
relation

p(xt, z1:t) , α(xt)

=
∫
xt−1

p(xt, xt−1, z1:t)dxt−1

=
∫
xt−1

p(zt|xt, xt−1, z1:t−1)p(xt|xt−1, z1:t−1)p(xt−1|z1:t−1)dxt−1

=
∫
xt−1

p(zt|xt)p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

= g(xt)
∫
xt−1

f(xt−1)α(xt−1)dxt−1 ,

from which the estimate p(xt|z1:t) simply follows by normalizing this recursive quan-
tity by p(z1:t).

For a subset of the SSMs, in which f(·) and g(·) are linear functions with Gaus-
sian noise assumptions, the estimation problem can be delegated to a Kalman filter,
which yields the optimal solution in the minimum mean-square error sense [40]. Vari-
ants of the Kalman filter for nonlinear state transition and measurement models exist,
although these methods rely on local linearizations of the nonlinear quantities, as in
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the Extended Kalman Filter (EKF), or on sampling techniques such as in the Un-
scented Kalman Filter (UKF). Although these variants enable efficient computation,
the need for linear approximations of measurement models, Gaussian assumption,
and a requirement for a point guess for the initial state severely limit Kalman Filter
models’ advantages for a general SSM. Besides the suboptimality of results, these
methods also suffer from underestimated variance, bias, and consequent deviation
from the true state estimate [95, 99].

A more general Bayesian filtering approach, known as particle filtering, fits to
a much wider set of noise and measurement models, and outperforms Kalman Filter
variants in handling multi-modal distributions.

4.2.4.2 Particle Filtering for State Estimation

Particle filtering is a sequential Monte Carlo method that approximates the
posterior distribution p(xt|z1:t) with a weighted particle set, where each particle is a
candidate state estimate, its weight being proportional to its likelihood. The filter
approximates the posterior state with a probability mass function estimate, p̂(·), given
by

p̂(xt) = p(xt|z1:t) =
N∑
i=1

witδ(xt − x̃it) (4.11)

where x̃it denotes the i’th particle for the state estimate at time t, δ(·) is the Dirac delta
function and wit is the weight associated with the particle i such that ∑N

i=1w
i
t = 1,

where N is the total number of particles. This approximate probability mass can be
used to approximate the MMSE estimate of xt as

x̂MMSE
t = E[xt] ≈

N∑
i=1

witx̃
i
t (4.12)

This provides a state estimate at time t as a weighted mean of the set of particles
present at this time step. At this point, it is important to highlight that the choice
of a particle filter over parametric estimation methods like Kalman filters in actor-
oriented settings is that downstream actors have direct access to particles, and would
have direct control over tuning the subset of particles used in approximate algorithms.
The ability to do so is important in a ubiquitous computing scenario, for which varying
computational resources may require on-line algorithms to adapt their resources to
compromise accuracy for better real-time performance.

Furthermore, the particle representation can be used to approximate the marginal
measurement density by
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p(zt) =
∫
X
p(zt|xt)p(xt)dX (4.13)

≈
∫
X
p(zt|xt)p̂(xt)dX (4.14)

=
N∑
i=1

witp(zt|x̃it) (4.15)

where we have replaced p(xt) with p̂(xt), which is given by (4.11).
The particle filter formulations that are of interest to the tools discussed in this

thesis have been presented in Appendix A. A more comprehensive formulation of
sequential Monte Carlo methods along with specific particle filtering algorithms are
presented in [40].

4.2.4.3 Parameter Estimation (Model Learning)

The previously introduced problem of inference relies on the assumption that a
SSM is already at hand, i.e., the model parameters are known. A dual problem in the
domain of DBNs is to estimate model parameters, given a sequence of observations.
Specifically, the problem is to find the optimal parameter set λ∗ such that

λ∗ = arg max
λ

p(y1, . . . , yT | λ) .

Here, optimality criterion is defined in the maximum-likelihood sense.

4.2.4.4 Classification

A common problem, that applies to DBNs with a discrete state space is known
as the classification problem. This is often analogous to the state inference problem
explained for continuous state-space models. Formally, the goal is to find the most
likely sequence of true state, given observations up to time t:

C∗(yt) = arg max
C

p(y1:t|C)P (C) , (4.16)

where p(y1:t|C) is the likelihood of the model considering a certain class sequence
C := {c1, . . . , ct}, ci ∈ X, and P (C) are the class priors.
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Chapter 5

Modular Design of Data-Driven
CPS

In the previous chapters, the need for modeling formalisms that enable modular
development of complex CPSs and introduced aspect-oriented modeling as a tool for
handling cross-cutting concerns in complex CPS have been discussed. Then, Dynamic
Bayesian Networks were introduced as a well-suited family of algorithms to infer and
learn controllable quantities in system design, given streaming data. An outstanding
concern is to define the interface between inference and learning algorithms, and the
system model itself. While the methodology will be widely applicable across domains,
we will adapt the domain of cooperative mobile robot control throughout the chapter
to demonstrate the applied value of the defined interfaces.

Many cooperative multi-robot applications require the co-design of dynamics,
control, and data-driven machine learning techniques to enable adaptive and resilient
workflows that can adapt to environmental constraints. One such application has
been described in section 3.4, where have discussed the use of a simple communi-
cation aspect for better encapsulation of implementation details of inter-robot com-
munication. In industrial-scale applications, the extent of cross-cutting concerns in
such complex systems go far beyond communication models. Consider, for instance,
a target tracking robot, whose purpose is to estimate the state of a target in an in-
doors environment. Here, the target state is often defined to include a position in
Euclidean space, as well as the target’s velocity and acceleration in this space. We
have discussed in chapter 4.2.1 that state-space models are especially useful for rep-
resenting dynamical systems and estimation problems for these systems. The search
robot would typically be equipped with sensors such as laser range-finders, cameras,
and other wireless sensors such as BLE transmitters, that let it map its environment
and the target in it. The heterogeneity of the sensors that enable robot perception
is in fact very valuable for the purposes of localization and mapping tasks, however,
they also introduce many challenges in correctly interpreting the streaming data re-
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ceived from each source. In many applications, it is not uncommon for the statistics
of data received from a sensor to significantly vary as a function of its environment
[32]. Such variation may be due to factors such as line-of-sight between sensor and
target, material composition of the environment, as well as wireless interference. This
would require the system model to interpret data differently according to the esti-
mated environmental conditions, in order to converge to a meaningful estimate of the
target state. For even the seemingly simple task of interpreting sensor data for tar-
get state estimation, it becomes essential for inference algorithms to receive faithful
measurement models, as well as estimated environmental conditions.

The need for defining interfaces between learning algorithms and state-space
models is not limited to state estimation applications alone. In fact, they are also
essential for control tasks, where awareness of the robot dynamics, as well as inter-
preting environmental conditions from streaming data becomes key to enabling safe
and optimal data-driven control. Considering the increasing need for an interface
between system models and advanced learning and optimization algorithms, we will
next discuss implementation of such interfaces in the form of an actor-oriented toolkit,
which will build upon the aforementioned key enablers of Aspect-Oriented Modeling
and DBNs.

5.1 Motivation
A fundamental challenge in distributed CPS design is the gap between compu-

tation requirements and existing design tools for adaptive real-time simulation and
deployment. Numerous closed-loop CPS applications depend on on-line optimization
of quantities that may include estimation error, trajectories, and information theoretic
quantities such as entropy. Although there exists a wealth of tools to build models
and perform machine learning tasks on the data, most of these tools are designed
for batch processing and off-line data classification. Closed-loop data intensive CPS
applications bring about unique requirements for such tools:
• Unlike off-line classification, estimation, and inference problems, swarm appli-

cations are subject to variable availability of sensor data and network resources,
due to the cyber-physical setting they operate in. Effects such as imperfect com-
munication channels, anomalies, and latency, which may also require dynamic
adaptations of learning, models must be considered.

• Sensor network applications often rely on optimization of quantities that are
either non-convex, hard to express analytically, or intractable in closed form.
This renders data-driven approximations of these cost functions desirable in
being tractable and fast.

• In swarm applications, especially for a ubiquitous computing scenario, available
computation resources may widely vary. This creates a demand for possibly
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adaptive approximations to optimization problems, in which algorithmic accu-
racy can be traded off for better real-time performance, without requiring a
reprogramming of the sensor network.

These novel challenges introduced by the large scale design and control of dis-
tributed CPS suggests that a shift in the formalisms used traditionally to design
dynamics, coordination, and control aspects of theses systems can tremendously ben-
efit the programmability and interpretability of systems.

5.1.1 Related Work
Recent advancements in cooperative multi-agent applications have enabled ad-

vanced robotic hardware to be combined with efficient control algorithms to perform
safety-critical tasks using cooperative robot teams in real-time [61, 33, 42, 52, 103]. As
these systems get more complex, especially in mobile scenarios that require a num-
ber of independent robots to cooperate towards a common goal, reusable modules
for managing dynamics and control becomes an immediate necessity. Moreover, since
most robot hardware is custom-built, engineers often need to develop custom software
to enable hardware interaction, which ends up being time consuming and error prone.
Therefore, libraries that create an abstraction between hardware and software become
essential for modularity. The Robotic Operating System (ROS) [97], an open-source
framework that aims at providing reusable robot code for mediating communication,
perception and control tasks of generic robotic systems, has been tremendously suc-
cessful and has become a universal platform for robotic development.

ROS owes its success to the goal of rapid prototyping of reliable heterogeneous
robotic systems and enabling researchers to focus more on novel aspects of robotics
challenges including adaptive, data-driven, resilient applications without repeating in-
frastructure, monitoring, and visualization work. In the same vein, other frameworks
for rapid prototyping of specialized platforms that leverage development of pattern
recognition tasks on interactive devices have also been proposed [59, 84]. One other
related framework in this area is presented in [28], which introduces a high-level
programming language for robotic applications based on ROS.

Most of these frameworks rely on libraries based on imperative code for unifying
control algorithms, robot kinematics, sensor models and environmental constraints.
Because of this, the limitations of monolithic code in representing cross cutting con-
cerns and capturing timing persist in resulting frameworks.

The multidisciplinary field of CPS design has triggered intensive research on pro-
gramming foundations of distributed heterogeneous systems that focus on eliminating
these fundamental challenges in modeling [38, 77]. Researchers have investigated a
collection of programming paradigms to be able to correctly express CPS behavior
and be able to perform model-based design, synthesis, and verification. Frameworks
such as Simulink, LabVIEW and Ptolemy II [96] have adopted actor-oriented design
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methodologies and are widely used for design of embedded systems. Actor-oriented
design in Ptolemy II has been studied in the context of several CPS domains including
smart grid, aircraft, and automotive systems [38].

Although these actor-oriented tools present general-purpose frameworks for het-
erogeneous design of CPS, some already offer domain-specific toolkits. For example,
MATLAB provides a Robotics System Toolbox for developing autonomous mobile
robotics applications [13] that also supports ROS integration. Adapting a similar ap-
proach, we will develop a domain-specific aspect-oriented library that builds upon the
Ptolemy II framework. The goal is to benefit from the available programming founda-
tions presented by Ptolemy II to build correct-by-construction data-driven programs.
We will also explain how the presented framework will be integrable with mature
tools such as ROS.

5.2 PILOT: An Actor-oriented Learning and Op-
timization Toolkit

PILOT (Ptolemy Inference, Learning, and Optimization Toolkit) is a library of
aspect-oriented components that is built upon the Ptolemy II core library [20]. The
main purpose of PILOT is to enable Bayesian inference, actor-oriented optimization,
and state-space modeling in actor models. The precise implementation is based on the
philosophy that implementation, environment and hardware-specific concerns of CPSs
should be aspects of a system design. Moreover, the meaning and operation of specific
learning and inference tasks should be configurable by these aspects. PILOT utilizes
the aspect mechanism presented in Chapter 3 to implement state-space models and
sensor models that decorate inference and optimization actors to give them operational
meaning.

A system architecture diagram of PILOT is given by Figure 5.7, that conceptu-
ally demonstrates the role of modular state-space models as aspects in the design of
estimation and control tasks. To consolidate the meaning of aspect-oriented develop-
ment of these algorithms as hinted by Figure 5.8, we continue with specific aspects
and their implementation in PILOT.

5.2.1 DBN-Based Parameter Estimation and Classification
in PILOT

Before focusing on dynamics and sensing models in the context of cooperative
mobile-robot applications, we will introduce a broad set of learning actors available
as part of PILOT. Specifically, we will introduce several Dynamic Bayesian Network
types as PILOT actors and aspects, and how parameter estimation and classification
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tasks are represented. Table 5.1 summarizes the customized DBNs that are made
available as part of the PILOT library. Although those listed constitute a small subset
of all available DBNs, we believe they cover the most widely-used set of DBNs for
CPS applications and facilitate development of any custom DBNs if needed. Also, it
is possible to obtain special cases of widely used Bayesian Networks such as Gaussian
Mixture Models (GMMs) by omitting the state-transition parameters of the dynamic
variants of these models.

5.2.1.1 Hidden Markov Models in PILOT

Chapter 4 provides a detailed definition of DBNs of interest to PILOT. In this
section, we will demonstrate the implementation of an HMM in PILOT. We will keep
the aspect associations generic, as they will apply for any other type of emission
distribution and DBN that will be represented in PILOT.

An HMM is given by

x1 ∼ πX(x1)
xt+1|xt ∼ Axt,xt+1 (5.2)

zt|xt ∼ g(xt)

where xt ∈ {1, . . . , K} is the discrete state, A is a state transition matrix, where
Ai,j , P (xt+1 = j|xt = i) is the state transition matrix, and g(·) , P (zt|xt = i) is the
state-dependent emission distribution. PILOT offers two inference actors for tasks
on HMMs, namely, a ParameterEstimator, and an ObservationClassifier. While
these tasks have been formally defined in Chapter 4, the interpretation of the tasks in
the context of a cyber-physical system application is considerably different. Often, for
an HMM that is operating on streaming data, for instance, collected from a sensor,
the state will correspond to a discrete state of operation, in which the sensor data is
expected to follow a state-dependent distribution. By modeling it so, transitions of
state will be visible through changes in the statistics of the sensor data.

In line with this definition, PILOT implements an aspect interface called
TrainableModel, which specifies an abstract emission distribution that can be asso-
ciated with a specific state of operation in the system model. A specific parametric
emission distribution, e.g., Gaussian, Poisson, etc., implements the TrainableModel
interface and defines distribution-specific parameters that can be learned via a
ParameterEstimator. Conversely, given an instance of TrainableModel with speci-
fied parameters, an ObservationClassifier can refer to these parameters to classify
an observation using maximum-likelihood estimation based on the emission parame-
ters. This aspect association is demonstrated in Figure 5.1, where an HMM parameter
estimator is automatically decorated by all instances of TrainableModel that exist
within the scope of the model. If enabled, the parameters of these models will be
approximated by the ParameterEstimator.
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Figure 5.1: A PILOT HMM Parameter Estimator that defines Emission Distributions
via Aspect Associations

Figure 5.2: A communication aspect describing a wireless communication channel
between two devices

As a concrete example, consider a communication aspect representing the wire-
less communication channel between two devices, a Sensor and a Receiver, as given
by Figure 5.2 (a similar scenario was also discussed in Section 3.4). Here, we will as-
sume the common case of multiple states of communication to be available for trans-
mitting each packet between the source and the destination, each having a distinct
latency profile. For simplicity, assume that the available means of communication
are a reliable WiFi network, a reliable LTE network, and a collection of unreliable
higher latency communication sources. It is a common scenario for mobile devices
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to switch their modes of communication on a per-packet bases, given a multitude of
available networks for transmitting information. We will also assume periodic data
transmission where one packet is transmitted at each time step.

We are interested in designing an anomaly detection application at the Receiver
node given in Figure 5.2. Assume that the receiver node would like to infer which
means of communications was used to transfer each packet that has been delivered
to this node, and if many packets are thought to be transmitted through a high
latency link, an alert should be triggered. Omitting any clock drift between the
Sensor and the Receiver, the communication latency can be measured at the receiver
node, and based on the latency statistics of communication channels, one can classify
each latency observation to one of the available states of communication. A Hidden
Markov Model would be a good fit for such a problem setting, where the observed
data sequence is the packet transmission latency for each packet being delivered,
the hidden state is the actual means of communication used for the transmission of
each packet, and the switching between the networks is following a Markov process.
Such a model assumes the form in (5.2), with X := {S0, S1, S2}, where Si are the
WiFi, LTE, and high-latency network states respectively, and g(Si) = p(zt|xt = Si) ∼
Rice(νi, σi) ≈ N (µi, σi) is the latency distribution of each communication state. The
state transition matrix A is a 3× 3 matrix, and πX is a 3× 1 prior vector.

HMMs as Generative Models in PILOT: An HMM can be defined as a
generative model in Ptolemy using modal models [96]. Here, the finite state machine
given by Figure 5.3 represents the hidden states of the HMM, and the emissions are
implemented as state refinements of the modal model. The state transition probabili-
ties are implemented via a built-in function probability(·) for state-machines that has
been implemented as part of PILOT (see the implementation of the FSMActor class
for details). In this example, each transition label defines a transition that is taken
with probability p(xt+1 = j|xt = i) := Ai,j. By simulating this state machine for
multiple iterations, a histogram of latencies can be obtained as given by Figure 5.4.
Here, each sample is labeled by the hidden state it was generated by for demonstra-
tion purposes. In a real application, this label is considered to be an unobserved
variable.

Such generation capabilities is often useful for emulating a multi-modal stochas-
tic system, where it is of interest to simulate the behavior of a dynamic Bayesian
network in advance and model a system based on the simulation, eventually replac-
ing the simulated data source with the real data streams, and expecting the behavior
to remain faithful to the modeled one.

Parameter Estimation and Classification on HMMs:
Given an HMM model of the communication link, one task would be training the

parameters of the model to best represent the actual behavior of the system. Here,
the parameters of the model to be trained are λ = {πX , A, {µi, σi}}. The second, and
perhaps main task to be defined is the actual anomaly detection task, carried out via
classifying incoming data points into the most likely state of communication, where
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Figure 5.3: PILOT implementation of the HMM representing the three-state com-
munication link
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Figure 5.4: Simulated latency histograms per channel

classifications into the highLatencyLink state (S2) would be considered anomalies.
Figure 5.6 depicts two PILOT actors for parameter estimation and observation

classification on HMMs, respectively. Note that the emission distribution parameters
{µi, σi} are contained in the TrainableGaussianModel aspect for each state, and can
be altered by the HMMGaussianEstimator as the model is trained given input data.
Even though the trainable aspects are kept abstract for the sake of this example,
they would often refer to aspects that indeed affect other parts of the system design,
therefore, updating model parameters via training would automatically update the
effect of these aspects in the different parts of the design. This propagation will be
exemplified further in the upcoming sections, particularly in Chapter 7.

Finally, the HMMGaussianClassifier actor classifies each incoming latency ob-
servation into either one of the aspects it is decorated by. The classification labels
reference the classified state by name. Figure 5.5 displays an example classification
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trace of true vs. classified state of latency samples, obtained by simulating this model.
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WiFi

observation index

Figure 5.5: True vs classified state sequences for the communication anomaly detec-
tion classification example
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Figure 5.6: Aspect-oriented parameter estimation and classification on HMMs

5.2.2 Aspect-Oriented Sensor Models and Robot Dynamics
In industrial settings, mathematical models of component dynamics, kinematics,

as well as models of uncertainty and noise are key to building complex systems.
Moreover, these mathematical models are often shared between different pieces of
the functional model. In a cooperative robotics scenario, robot dynamics are often
given by a state-space model (SSM), and is used to model the behavior of robots in a
physical environment. Also, noise characteristics of on-board sensors are required for
accurate quantification of the information content of sensor measurements. Clearly,
these dynamics models need to interact with one another for cooperative inference
and control algorithms.



CHAPTER 5. MODULAR DESIGN OF DATA-DRIVEN CPS 46

Model Supported Emission
Distributions

Aspect Association

Hidden Markov Model (HMM)

Gaussian

TrainableModel*Exponential
Multinomial
Poisson

Hidden Semi-Markov Model (HSMM)

Gaussian

TrainableModel*Exponential
Multinomial
Poisson

* indicates that actor supports multi-aspect association

Table 5.1: Summary of PILOT Bayesian Network Library Components
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Figure 5.7: State-space aware system architecture in PILOT

For maintaining modularity in design, the SSM can be refactored into two parts:
dynamics and sensing. State-Space Dynamics represent motion in a state-space,
which often has deterministic and stochastic elements to it. The deterministic model
often explains a motion model for a physical component, which is affected by process
noise. Also, the dynamics model can include an initial condition, which can be given
as a deterministic state in the state-space, or as a prior distribution over it. Formally,
the state-space dynamics are given by
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Figure 5.8: Aspect-oriented application design in PILOT

x1 ∼ πX(x1) (5.4)
xt+1|xt ∼ f(xt, ut, t) , (5.5)

where xt ∈ RK corresponds to the system state, πX(·) is the prior distribution over
state, and f(·) is the random function specifying the discrete state dynamics. The
dynamics is often affected by the control inputs ut ∈ U , where U is the domain of the
control. We use the symbol ∼ to denote a distributed according to relation.

The aspect representation of the state-space dynamics encapsulates (5.4)-(5.5)
as an aspect that can give semantic meaning to downstream inference actors that
depend on a state-space dynamics to function. Figure 5.9 illustrates the PILOT
implementation of a state-space dynamics model, which has the following state-space
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Figure 5.9: A State Space Dynamics aspect

model:

x =
[
xx

xy

]
(5.6)

x1 ∼ U([−25, 25], [−25, 25]) (5.8)

xt+1|xt = xt + νt, νt ∼ N (
[
0
0

]
,

[
1 0
0 1

]
) . (5.9)

Here, the represented state is a point in 2-D Euclidean space with x and y
components, represented by xx and xy respectively. The prior state is unknown, and
has a uniform distribution in a 50× 50 square, centered at the axis origin. The state
dynamics is given by a random walk, where process noise is distributed according to
a standard bivariate Gaussian.

The second component of the SSM is the measurement model, which describes
how the state is perceived, often via noisy sensors. If the state is observed by more
than one sensor as in the example in the introduction, the measurement model can
include an array of models, each for one physical sensor. Similar to the dynamics, the
measurement model often consists of a deterministic description of the measurement
as a function of state, as well as stochastic noise. Formally, the measurement model
is described by

zt|xt ∼ g(xt, ut, t) , (5.10)

where zt ∈ RL is an L-dimensional observation of the K-dimensional state vector
x, and g(·) expresses the stochastic measurement model as a function of state xt.
A measurement model aspect in PILOT is given by Figure 5.10, which implements
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Figure 5.10: A Measurement Model aspect

a Line-of-Sight (LOS) range measurement of the state, which typically follows an
analytical model given by

zt|xt = r + ωt , (5.11)
r , ‖xt −Rt‖, (5.12)
ωt ∼ N (−b0 − br, r ∗ σ2

r) . (5.13)

Here, r represents the true range between two points in 2-D space, xt being the
controlled state, and Rt being an uncontrolled state. The measurement noise is a
Gaussian with a covariance that increases linearly with true distance. The measure-
ment noise also has a positive bias that increases linearly with true distance (b0, b < 0,
and has an offset (The positive measurement bias in LOS conditions arise from the
time difference of arrival (TDoA) approximation of the true distance, which tends to
over-estimate the distance when no LOS is present[32]).

Note that the controlled state x that is being observed by the sensor, whose
measurements are given by the measurement model in Figure 5.10 is not re-defined
as part of the measurement. Instead, the Measurement Model aspect is decorated
by the State-Space Dynamics aspect, which provides operational meaning to the
measurement. This association is specified as can be seen by a tab in the user interface.
The State-Space Dynamics aspect automatically decorates the Measurement Model,
according to rules specified by the PILOT engine, and is enabled by the designer
as shown in the view illustrated by Figure 5.11. Notice that a change in the state-
space model and dynamics thereby automatically affects how the measurement model
utilizes state. This principal will apply to all aspect-oriented actors developed by
PILOT and is the core of the modular representation of cross-cutting concerns.
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Figure 5.11: Aspect association for State Space Dynamics

Algorithm Aspect Association Supported Tasks
Particle Filter StateSpaceModel,

MeasurementModel*
State Estimation

Unscented Kalman Filter (UKF) StateSpaceModel,
MeasurementModel*

State Estimation

State Space Simulator StateSpaceModel Simulation
State Predictor StateSpaceModel Prediction
Composite Optimizer StateSpaceModel,

MeasurementModel*
Convex Optimization,
Gradient Descent

* indicates that actor supports multi-aspect association

Table 5.2: Summary of PILOT aspect library components

5.2.3 Multi-Modal Measurement Aspects and Dynamic Model
Association

The separation of state-space dynamics and measurement models enables modal
representations of sensors that refer to the same underlying state-space, but exhibit
different behaviors under different conditions. As a widely encountered example in
robotics applications, we will demonstrate the use of this mechanism for handling
conditional measurement models for range-only sensing.

Empirical and theoretical analyses support that range-only sensing models be-
have significantly differently under line-of-sight (LOS) and no line-of-sight (NLOS)
conditions [33]. Considering an application where mobile robots detect targets using
range-only sensors (e.g., as quantified by TDoA in RF signals or Received Signal
Strength(RSS) in Bluetooth Low-Energy sensors), the target’s location to be esti-
mated given sensor data will depend highly on the fidelity of the measurement model.
Given that the LOS condition between the sensor and the target will continuously
be subject to change in a way that can’t be directly anticipated or observed by the
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sensing platform, the sensing robot will need to infer the LOS condition to be able to
interpret any measurement made in an accurate way.

The described problem requires one sensor model for each line-of-sight condition
to be present in the system model to be able to represent the modality of the sensor
models, as well as to consider the LOS condition estimate while interpreting the
measurements. Both these concerns are successfully addressed by PILOT’s aspect
mechanism.

5.2.3.1 Representing LOS/NLOS Conditions via Measurement Aspects

Sensing applications that rely on range-only measurements of target locations
tend to model LOS and NLOS measurement statistics separately as to accurately in-
terpret observed measurements. Typically, a range measurement model is represented
by

zt|xt ∼

N (α0 + rα, rσ2
LOS) (LOS)

N (β0 + rβ, rσ2
NLOS) (NLOS)

, (5.14)

where r is the true distance being measured, α0 and β0 represent range offsets and
α, β represent parameters that quantify the distance dependent noise bias of the
measurement. Typically, the variance is modeled to have a linear dependence to true
distance. The four parameters of the modal measurement model are often obtained
using supervised training techniques. Although the true LOS/NLOS noise distri-
butions may not be unimodal and model fidelity can be improved using higher level
models, several studies have reported little to no improvement when using higher level
models [33, 37]. Such modal dependence is easily represented by the aspect mecha-
nism, where multiple measurement models that are decorated by the same state-space
can be present in the model. Figure 5.12 illustrates modeling of such scenario for a
single range sensor.

5.2.3.2 Aspects as Decorations of DBNs

Given a modular representation of multi-modal measurements, it is often not
possible to know deterministically which mode the sensor is operating in when a
mobile robot system is in operation. The aforementioned example of inferring line-
of-sight conditions is one example where different measurement statistics need to be
leveraged for a statistical inference of the mode of operation. Although geometric
LOS could be considered as a deterministic solution, doing so becomes tremendously
inefficient in real-time. Furthermore, since geometric LOS is different from RF LOS,
using this method requires higher-fidelity computations of actual RF LOS, which
becomes intractable in most scenarios [32].
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Figure 5.12: Multi-Modal Aspect Association

-6 -4 -2 0 2 4 6 8

Bias (m)

0

1

2

3

4

5

F
re
q
u
en

cy

×10
4 r = 1 m

LOS

NLOS

-6 -4 -2 0 2 4 6 8

Bias (m)

0

1

2

3

4

5

F
re
q
u
en

cy

×10
4 r = 2 m

LOS

NLOS

-10 -5 0 5 10 15

Bias (m)

0

1

2

3

4

5

F
re
q
u
en

cy

×10
4 r = 5 m

LOS

NLOS

-15 -10 -5 0 5 10 15 20

Bias (m)

0

1

2

3

4

F
re
q
u
en

cy

×10
4 r = 12 m

LOS

NLOS

Figure 5.13: Simulated histograms for range measurement bias under LOS and NLOS
conditions

As suggested by the structure of the LOS and NLOS noise distributions given
by (5.14) and Figure 5.13, the use of Hidden Markov Models (HMMs) for infer-
ence of the line-of-sight condition becomes a viable option. The purpose of the
HMM is to yield a sequence of classification labels ci, ci ∈ {NLOS,LOS}, given
raw noisy range measurements. In the example given by Figure 5.13, the Bayesian
Network model is a so-called binary HMM that has two states, which are specified
by two Gaussian distributions, provided by the Measurement Model aspects called
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Figure 5.14: HMM classification results for an NLOS-to-LOS experiment

NLOSMeasurement and LOSMeasurement, respectively. Note that these actors imple-
ment the TrainableGaussianModel interface as described in the previous section.
The DBN actors are implemented to return the name of the decorator as the classi-
fication label, which can be processed by downstream actors to decide on the valid
aspect association at a given simulation step.

An example trace is given by Figure 5.14, which illustrates the true vs. classified
sensing state, as well as the raw range measurement provided to the HMM. In the
experiment, sensing state changes from no-line-of-sight (NLOS) to line-of-sight (LOS)
at simulation step t = 41, as observed by the change of statistics of the measurements.
The HMM classification is able to correctly track the true state after a transient
period.

5.2.3.3 Aspects for Modeling Environmental Constraints

A widely used dynamic environmental constraint in robotics applications are
Map constraints. Maps of the environment in multi-robot systems are often built via
sensors on board mobile robots, and are constantly subject to change. The changes
may be due to mobile obstacles in the environments, noisy sensor readings, tracking
errors in robot’s motion, and sensors’ operating conditions. We consider representing
the sensed map of the environment as a Map aspect. Any relevant downstream actor
decorated by a Map aspect can therefore be subject to dynamic Map constraints in its
operation. As an example, a State Space Simulator in PILOT that is decorated by a
Map aspect will constrain the simulated state to remain within the current map area.
Similarly, a Particle Filter decorated by a Map aspect will limit particle generation in
a valid area and avoid spurious state estimates that are outside the map.

5.3 Aspect-Oriented Inference on SSMs
The aspect representation of dynamics and measurement models ensure modu-

larity in state-space representation, as well as provides operational meaning to learn-
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Figure 5.15: Example geometric LOS on a sensed map of the DOP Center [green:
line-of-sight, red: no line-of-sight]

ing and classification tasks on DBNs. Next, we will discuss how these aspects are used
in conjunction with executable quantities, especially with state inference and opti-
mization actors. Table 5.2 summarizes the current aspect library with the respective
aspect associations that they support. We will next focus on a subset of these tasks
in detail and explain their use in robotics applications.

5.3.1 Particle Filtering
Even though dynamics and sensing can be modeled quite accurately using deter-

ministic, and even linear or piecewise linear models, many other problems in robotics
are often too complex to fully represent via deterministic models. As an example,
planning and control problems that assume complete deterministic models of robots
together with their environment quickly become infeasible, as the applications in-
volve more agents that operate at higher sampling rate, with strict timing and safety
requirements [110]. A widely adopted alternative to this approach is probabilistic
models, which have become popular for perception and decision making in robotics
applications.

Particle filtering is a widely used tool for probabilistic inference in robotics,
mainly due to its power of modeling nonparametric, multi-modal distributions of
state, nonlinear dynamics, as well as successfully imposing arbitrary constraints on
state and state transition during estimation. Also, representation of state with a set
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of particles is desirable for those applications that are subject to limited availability of
computational resources, since the accuracy of the estimation can easily be traded off
for real-time performance. The algorithmic derivation of a particle filter is been pre-
sented in section 4.2.4.2. In this section, we will focus on the PILOT implementation
and its interaction with state-space aspects.

In cooperative robotics, estimating locations of objects, devices, and other robots
is a commonly encountered problem. Moreover, the task is often carried out in envi-
ronments that are sensed via imperfect sensors on board the robots, where sensor data
is subject to interpretation as in the line-of-sight example discussed earlier. In such
scenario with multiple sources of uncertainty, estimation of state becomes highly de-
pendent on interpreting available data in the most accurate way possible. The particle
filter actor in PILOT is designed in a way to accommodate multiple models of un-
certainty at once. For this purpose, it supports association with a StateSpaceModel,
which describes the state-space of the target to be localized via state estimation,
multiple MeasurementModels, that can either represent sensors on board multiple
robots, or can refer to different modes of the same sensor. Moreover, environmental
constraints can be associated with the filter via Map aspects. Note that many of these
aspects can be subject to change at run time, as have been demonstrated with sen-
sor models that can be switched according to operating conditions or trained using
HMMs, and with Map actors, which can be updated as robots gather more information
about their environment. By the help of the aspect-oriented modeling mechanism,
these aspects can remain separated from the functional implementation of the particle
filter, yet keep affecting the operation of the state estimation task by the help of the
aspect association. While infinite streams of sensor data are processed by aspects to
extract information that is only relevant to the behavior of the rest of the system, the
functional model can be executed in a modular way. Figure 5.16 describes available
aspect associations for a particle filter in PILOT.

Figure 5.16: Aspect-oriented state estimation via particle filtering
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5.3.1.1 Application-Specific Configurations of Particle Filtering Methods

Due to being a Sequential Monte Carlo method often representing multi-modal
distributions, the accuracy of the particle filter depends highly on the number of
particles, particle sampling methods, and on how well the configuration suits to the
domain of application. To accommodate these sources of variability, we have built
multiple configurations as part of the particle filter implementation. The application
designer is able to specify the following configurations of the particle filter:

• Resampling Algorithm. The resampling step of the particle filter determines
which particles will propagate to the next iteration step, as well as their im-
portance weights. We chose to implement the two most widely used sampling
methods for robot localization as part of the toolkit: Low-variance resampling
and the Bootstrap Particle Filter [40].

• Estimation mode. In some applications, the particle with the highest weight
can be more meaningful than the minimum-mean square error estimate. As an
example, in Figure 5.18, two particle filtering schemes on range measurements
is presented. Here, considering the MMSE estimate of state is not useful, as
the weighted average of the particle set yields a state estimate that is not rep-
resentative of the particle set, while the maximum-weight particle has a very
intuitive interpretation, in being the most-likely location of the target on the
map.

– Maximum Likelihood: The state estimate is given by a weighted sum of
all particles x̂MMSE

t ∼ ∑N
i=1w

i
tx̃
i
t

– Maximum Weight: x̂MW
t = x̃i∗t , where i∗ = arg max

i=1...N
wit

• Particle Count.

– Internal particle count (N)
– External particle count (Nout ≤ N)

It is also key to consider the usefulness of multi-modal sensor association in the
context of particle filtering. Consider the LOS/NLOS sensor models discussed earlier.
Figure 5.17 plots three scenarios of state estimation via particle filtering given range-
only measurements of the target. In all three cases, the particle filter is associated
with a measurement model of the sensor under NLOS and LOS conditions. Given
the ground-truth information about the sensing state, and using a single range-sensor,
the particle filter is able to estimate the target with a MSE of 4 meters under 26 time
steps. With no knowledge of true state, the MSE always remains above 9 meters.
With the use of an unsupervised classification method based on HMM inference, the
filter is able to achieve a best MSE of 5.6 meters in 45 time steps.
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Figure 5.17: The effect of accurate sensor models on MSE of the state estimate

5.3.2 Constrained Optimization for Streaming Applications
Sensing and estimation in IoT systems is a key data-driven process. However,

it is crucial for the estimated quantities to be utilized to close the feedback loop
by employing meaningful control strategies. Towards achieving this goal in PILOT,
we next present an actor-oriented approach to performing optimization on streaming
data. Consider the general optimization problem

minimize
x∈Rn

f(x,Q)

subject to g(x,Q) ≥ 0 (5.15)

where f(·) is the objective function, g(·) is a vector-valued constraint function, and
Q is a vector of function parameters.

As part of PILOT, we introduce an actor interface called CompositeOptimizer
which enables f(·) and g(·) to be defined as actors that operate on input tokens and
upon firing, produce a scalar value for the objective function and a constraint vec-
tor evaluated at x. The operational semantics of the actor is given by Algorithm 1.
CompositeOptimizer is a specialized actor whose internal execution semantics is gov-
erned by the OptimizerDirector. This director wraps an optimization solver to be
used in the optimization loop. Currently, an unconstrained optimization solver that
implements a direct method algorithm named Constrained Optimization By Linear
Approximation (COBYLA), and a convex solver that implements the interior-point
algorithm [89]. COBYLA is a well-suited framework for generic optimization tasks,
since it requires no smoothness guarantees on f(·) and accepts nonlinear constraint
specifications. However, when the analytical expression for the cost and constraints
function is available, convex solvers would perform much faster in practice. The
methods getNextX() and getOptimalX() in Algorithm 1 are implemented by the
designated solver.

The CompositeOptimizer instance given in Figure 5.20 presents an example
realization of the actor that performs the stream optimization problem given by



CHAPTER 5. MODULAR DESIGN OF DATA-DRIVEN CPS 58

**

*

True target state
State estimate
Particles
Search robot location

*+

Figure 5.18: Different estimation modes for the PILOT particle filter. MMSE state
estimate [top], maximum weight particle estimate [bottom]
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Figure 5.19: The Observation-Optimizing Controller demonstrates AO modeling
of sensors and robot dynamics

x∗ = arg min
x∈Rn

f(x, q1, q2)

subject to g(x, q1, q2) ≥ 0 (5.16)

where specific evexecutingaluations of f(·) and g(·) are computed by actors f(x) and
g(x) with inputs {x(k), q1(i), q2(i)}, where the value of optimization variable x at
each optimization step is indexed by k, and is determined internally by the solver.

5.4 Case Study: Cooperative Mobile Robot Con-
trol

We have discussed each component of PILOT in detail. Next, we present a
comprehensive application scenario that utilizes many aspects of the PILOT toolkit in
modular design of cooperative robotic applications using information seeking methods
for on-line decision making.
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5.4.1 Problem Statement
Emerging application scenarios on robotic sensor networks include cooperative

target localization and tracking, Simultaneous Localization and Mapping (SLAM),
and obstacle avoidance. The use of information theoretic objectives for sensor network
management has been a recent area of interest. See [119] for a complete overview of
information theoretic metrics for control purposes.

In this section, we consider a cooperative multi-robot target localization scenario
using robots equipped with range-only sensors. A particle filtering algorithm is used
to perform target state estimation. The goal of the mobile sensor network is to
successfully locate and track target position, and future goals will include pursuit
objectives.

Note that in previous sections, we focused on application-specific implementa-
tions of aspect-oriented environmental constraints, multi-modal state-space models,
and the combinations of these concerns for modular development of applications. In
this section, we instead focus on the CPS perspective, implementing the feedback
loop that obtains streaming data from mobile sensors that is used for estimation of
physical quantities (i.e., robot state), which eventually is used to obtain an optimal
control input to the physical system.

The target search problem can be structured with the following state-space
model

x0 ∼ πX(x0) (5.18)
zjt = ‖Rjt − xt‖+ νt (5.19)

xt+1 = xt + ωt (5.20)

Algorithm 1 CompositeOptimizer Operational Semantics
Input: Q ⇐ Qi
Output: x∗ that is a local optimum of f(·)
define P: An actor that implements SDF semantics and has inputs: x,Q and out-
puts: f, g
while k < kMAX &

!CompositeOptimizer.converged() do
x(k) ⇐ OptimizerDirector.getNextX();
P.readInputs(x⇐ x(k), Q ⇐ Qi);
P.execute();
P.writeOutput(f(x(k),Qi)⇒ f (k),
g(x(k),Qi)⇒ g(k));
OptimizerDirector.computeNextX(f (k),g(k));
end while
x∗ ⇐ CompositeOptimizer.getOptimalX();
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Figure 5.20: Operational semantics of CompositeOptimizer

where (5.19) corresponds to a range measurement made by robot j, zjt denotes the
observation made by the j’th sensor at time t, Rjt is the true position of robot j at
time t and νt is a random variable defining measurement noise.

The unknown state x is the target position in R2, for our case study. The
state dynamics of the uncooperative mobile target is assumed to be unknown to the
application, and is characterized by a random walk with process noise defined by ωt.
State estimation of the unknown target will be performed given measurements from
a set of robots, and will be represented as a set of particles, {wit, x̃it}Ni=1.

5.4.2 State-Space Aware Application Design
The traditional approach to implementing an end-to-end system for designing a

target tracking application is given by (5.18)-(5.20) follows the monolithic approach
of implementing a state estimator, followed by a controller, which are both implicitly
dependent on the state-space of the problem.
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PILOT’s approach to designing such application differs from the traditional ap-
proach as it exploits the dependence of algorithmic blocks on the underlying problem
state-space by defining explicit interfaces to the system dynamics. The target dynam-
ics as given by (5.18) and (5.20) are contained by the TargetDynamics actor. The
range sensors defined by (5.19)) are implemented by the RangeSensor actor, which
is decorated by the TargetDynamics state-space model and therefore, can utilize the
state-space parameters defined by the target and provide an imperfect measurement
based on its parameters.

5.4.3 Simulation Setup
The case study assumes a network of robots equipped with range-only sensors.

Simulation parameters are summarized in Table 5.3.

Simulation Parameter Value
Size of Robot Team (M) 4
Search space 200x200 units
Sensor measurement noise νt ∼ N (0, 5.0)
Maximum Robot Speed 20 units/s
Iteration Frequency 10 Hz
Target Dynamics Circular Motion with ω = π/5
Target Position Prior (πX) Uniform over search space
Initial Target Position I|t=0 =

[
−50 50

]
Robot Control Inputs u

(i)
t =

[
vx vy

]
, i ∈ {0, 1, 2, 3}

Robot Dynamics
Rit+1 = Rit + u

(i)
t ∆t, i ∈

{0, 1, 2, 3}

Table 5.3: Simulation Parameters

Figure 5.21: Model of the robot equipped with range sensor

The robot model is given in Figure 5.21. Note that in this model, Robot actors
include models of range sensors with additive noise, making measurements to a target
and delivering this data to a centralized computation unit. The refinement of the
Target State Estimation and Control actor is depicted in Figure 5.23, which is an
end-to-end PILOT model that includes state-space models of robot sensors, target
dynamics, state estimation and trajectory optimization.
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5.4.4 Actor-Oriented Implementation of Control Policies

Mutual information between target state and robot measurements can be used
to derive a control rule to maximize the expected future mutual information, i.e.,
to minimize the expected future uncertainty in the target location estimate. The
observers in this case are mobile robots with navigation, that expect velocity inputs
from a centralized controller. The proposed objective function is given by

u∗ = arg max
uτ

I(zτ ;xτ ) (5.21)

s.t. ||u(i)
t || ≤ Vmax, i = 1, 2, ...,M (5.22)

I(zτ ;xτ ) : = H(zτ )−H(zτ |xτ ) , (5.23)

where I(·; ·) is the mutual information (MI) defined between two random variables
that are its arguments, H(zτ ) is the entropy of the measurement set zτ , H(zτ |xτ ) is
the conditional entropy of the measurements given the state belief, τ = [t+1, ..., t+T ],
where T is the time horizon of the control problem, and u is the array of control inputs
to the mobile sensors. We will focus on the T=1 case for this case study. The exact
mutual information metric given by (5.23) is not scalable for large teams of robots, an
issue addressed by previous work [32, 61], which offer several approximations to the
problem. A summary of potential approximations of this quantity is discussed in Ap-
pendix B. In this case study, we use a Gaussian Mixture-Model based approximation
of the mutual information as a cost function.

We now illustrate how PILOT enables efficient exploration of a variety of control
policies. Figure 5.23 describes a CompositeOptimizer interface that is configured to
compute MI, given a set of particles and robot positions. The Mutual Information
Approximation actor computes an approximate MI between a particle set and robot
trajectories, where the state-space of the robot is established via an association with
the RobotDynamics state-space aspect, which implements the search robot dynamics,
as illustrated by Figure 5.19. A subset of common control policies for robotic path
planning will be discussed next, as also summarized by Table 5.4. These policies have
been implemented using PILOT via the same aspect mechanism discussed earlier.

5.4.4.1 Mutual-Information Maximization

As explained in section 5.4.4, minimizing uncertainty in a particle filter target
location estimate with as few iteration steps as possible (or often analogously, in the
smallest possible time frame) can be achieved by a control policy that uses information
based utility functions. Figure 5.24a demonstrates that when the control objective,
as defined in (5.24), is to maximize MI between the set of range measurements and
the particle filter target estimate, the robots tend to follow a trajectory that spreads
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them apart, such that the uncertainty in the collective target estimation problem is
minimized.

ut
∗ = arg max

ut∈UM
I(zt+1;xt+1)

s.t ||u(i)
t || ≤ Vmax, i = 1, 2, ...,M (5.24)

5.4.4.2 MI Maximization with Single Pursuer

Upon successful tracking of the target, pursuit will be a common follow-up sce-
nario in mobile robot swarm applications. Equation (5.25) presents a control policy
for a robot swarm that steers the robot team to maximize MI, equivalently, to mini-
mize uncertainty in the target position estimate, while assigning the robot closest to
the target estimate to be the pursuer.

ut(i)
∗ =


arg min

ut(i)
‖Rt+1 − xt+1‖ if ‖Rit − xt‖ ≤ ‖Rjt − xt‖ ∀j 6= i

arg max
ut(i)

I(z(i)
t+1, xt+1) otherwise

s.t ||u(i)
t || ≤ Vmax, i = 1, 2, ...,M (5.25)

5.4.4.3 Direct Target Pursuit

The final pursuit scenario considers a direct-pursuit policy, where the controller
optimizes robot control signals to minimize the Euclidean norm between the robot
positions and the target state estimate in the next time step.

ut
∗ = arg min

ut
||Rt+1 − xt+1||

s.t ||u(i)
t || ≤ Vmax, i = 1, 2, ...,M (5.26)

Execution traces from each of these control policies are given in Figure 5.24,
which assume the parameter space given by Table 5.3. Note that the path planning
problem defined by the PILOT model is solely parameterized the choice of the objec-
tive function and constraints, and requires no modification to the state-space model
itself.

5.4.5 Imperfect Communication of Sensor Data
In addition to facilitating exploration of control policies, PILOT enables explo-

ration of the effects of implementation realities. We illustrate this by considering
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Figure 5.22: Top-level model for range-only target localization

Control Policy Optimization Problem

MI Maximization
ut
∗ =arg max

ut∈UM
I(zt+1;xt+1)

s.t (B.2) holds

MI Maximization with Single Pursuer
ut(i)∗=



arg min
ut

(i)∈U
‖Rt+1 − xt+1‖

s.t (B.2) holds if dt(i) < dt
(j),

∀j 6= i

arg max
ut

(i)∈U
I(z(i)

t+1;xt+1)

s.t (B.2) holds otherwise

dt
(i) := ‖Rit − xt‖, i ∈ {1, 2, ...,M}

Direct Target Pursuit
ut
∗ =arg min

ut∈UM
||Rt+1 − xt+1||

s.t (B.2) holds

Table 5.4: Summary of control policies for path planning

network packet loss. Consider a communication channel that exhibits a probabilistic
packet drop behavior, where the packet drop probability is defined by a Bernoulli
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Figure 5.23: PILOT model for target state estimation and trajectory optimization

random variable with parameter p. Such a communication channel is often referred
to as a packet erasure channel. For each packet transmitted through the channel,
p(packetDropped) = p.

In the PILOT application described in Figure 5.22, we configure the NetworkModel
actor to exhibit this probabilistic channel loss behavior, where packets from each robot
are transmitted through an individual dedicated link. Under the mutual-information
maximization control policy presented in section 5.4.4.1, which is considered to yield
the least average MSE in target position, the effect of probabilistic loss of measure-
ments is analyzed. The results are given in Figure 5.25. Notice that even with a 50%
loss from each robot, target state estimation can be performed effectively, nearly as
accurately as the no loss case.

Figure 5.24a will help explain why a team of 4 robots are able to tolerate a 50%
loss and still maintain a state estimate with error close to the single-sensor standard
deviation level. Notice that robots, under the mutual-information maximization con-
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trol policy, are moving in pairs, with very similar trajectories. A probabilistic loss
of half the messages at each time step still enables the particle filter to receive one
range measurement from each robot pair that is traveling relatively close together.
The channel loss example demonstrates that spatial redundancy of sensors can com-
pensate for a highly unreliable communication channel.

We finally investigate the robustness of the considered control policies in the
presence of imperfect communication channels. Figure 5.26 illustrates the effect of
probabilistic channel loss on the average steady-state MSE of three control policies.
It is observed that trajectories obtained for MI maximization and MI-maximization
with single pursuer remain marginally affected for

5.5 Conclusion
In this chapter, we present PILOT, a novel toolkit for modular, data-driven,

actor-oriented design of machine learning and optimization algorithms for robotic
sensor network applications. We develop an actor interface to a collection of algo-
rithms, explain how separation of concerns and modular design can be ensured by the
use of aspect-oriented modeling. In particular, we introduce parameter estimation,
classification, sensor and dynamics modeling capabilities in PILOT, and also describe
implementation of estimation and optimization algorithms using the toolkit.

We illustrate use of the toolkit with a robot swarm target localization exam-
ple that requires on-line target state estimation with a variable set of sensor inputs.
Additional case studies that extend the work presented in this chapter are available,
which in particular analyze the aspects of resiliency of the robot swarms in the pres-
ence of uncertainty [42, 43] and introduce Unscented Kalman Filter based extensions
to the proposed techniques.
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(a) Sample robot trajectory for the MI Maximization control policy
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(b) Sample robot trajectory for MI Maximization with Single Pursuer
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(c) Sample robot trajectory for Direct Target Pursuit

Figure 5.24: Simulation Traces for Different Trajectory Control Policies
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Figure 5.25: Cooperative localization error of the Mutual-Information Maximization
Policy in the presence of probabilistic channel loss
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Chapter 6

Data-Driven Controller Design via
Control Improvisation

We have previously discussed that significant barriers exist towards dependable
and reliable data-driven techniques. In particular, data-driven methods are difficult to
verify and validate in design time, rendering them unfit for safety-critical applications.
In this chapter, we will present a recent formalism and its application to data-driven
home automation, where we show how data-driven controllers can be combined with
formal methods for reliable data-driven control.

We consider the problem of generating randomized control sequences for com-
plex networked systems typically actuated by human agents. Our approach leverages
a concept known as control improvisation, which is based on a combination of data-
driven learning and controller synthesis from formal specifications [50, 51]. We learn
a generative model from streaming sensor data (for instance, an explicit-duration
hidden Markov model, or EDHMM), and then restrict the learned model in order
to guarantee that the generated sequences satisfy some desirable specifications given
in Probabilistic Computation Tree Logic (PCTL). We present an implementation of
our approach and apply it to the problem of mimicking the use of lighting appli-
ances in a residential unit, with potential applications to home security and resource
management. We present experimental results showing that our approach produces
realistic control sequences, similar to recorded data based on human actuation, while
satisfying suitable formal requirements.

6.1 Introduction
The promise of the emerging Internet of Things (IoT) is to leverage the pro-

grammability of connected devices to enable applications such as connected smart
vehicles, occupancy-based automated HVAC control, autonomous robotic surveil-
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lance, and much more. However, this promise cannot be realized without better
tools for the automated programming and control of a network of devices — com-
putational platforms, sensors, and actuators. Traditionally, this problem has been
approached from two different angles. The first approach is to be data-driven, lever-
aging the ability of devices and sensors to collect vast amounts of data about their
operation and environments, and using learning algorithms to adjust the working of
these devices to optimize desired objectives. This approach, exemplified by devices
such as smart learning thermostats, can be very effective in many settings, but typi-
cally cannot give any guarantees of correct operation. The second approach is to be
model-driven, where accurate models of the devices and their operating environment
are used to define a suitable control problem. A controller is then synthesized to
guarantee correct operation under specified environment conditions. However, such
an approach is difficult in settings where such accurate models are hard to come by.
Moreover, strong correctness guarantees may not be needed in all cases.

Consider, for instance, the application domain of home automation. More specif-
ically, consider a scenario where one is designing the controller for a home security
system that controls the lighting (and possibly other appliances) in a home when the
occupants are away. One might want to program the system to mimic typical human
behavior in terms of turning lights on and off. As human behavior is somewhat ran-
dom, varying day to day, one might want the controller to exhibit random behavior.
However, completely random control may be undesirable, since the system must obey
certain time-of-day behavioral patterns, and respect correlations between devices. For
these requirements, a data-driven approach where one learns a randomized controller
mimicking human behavior seems like a good fit. It is important to note, though,
that such an application may also have constraints for which provable guarantees are
needed, such as limits on energy consumption being obeyed with high probability,
or that multiple appliances never be turned on simultaneously. A model-based ap-
proach is desirable for these. Thus, the overall need is to blend data and models to
synthesize a control strategy that obeys certain hard constraints (that must always
be satisfied), certain soft constraints (that must be “mostly satisfied”) and certain
randomness requirements on system behavior.

This setting has important differences from typical control problems. For ex-
ample, in traditional supervisory control, the goal is typically to synthesize a control
strategy ensuring that certain mathematically-specified (formal) requirements hold on
the entity being controlled (the “plant”). Moreover, the generated sequence of control
inputs is typically completely determined by the state of the plant. Predictability and
correctness guarantees are important concerns. In contrast, in the home automation
application sketched above, predictability is not that important. Indeed, the system’s
behavior must be random, within constraints. Moreover, the source of randomness
(behavior of human occupants) differs from home to home, and so this cannot be
pre-programmed.

This form of randomized control is suitable for human-in-the-loop systems or
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applications where randomness is desirable for reasons of security, privacy, or diver-
sity. Application domains other than the home automation setting described above
include microgrid scheduling [107, 53] and robotic art [25]. In the former, randomness
can provide some diversity of load behavior, hence making the grid more efficient in
terms of peak power shaving and more resilient to correlated faults or attacks on
deterministic behavior. For the latter case, there is growing interest in augmenting
human performances with computational aids, such as in automatic synthesis and im-
provisation of music [39]. All these applications share the property of requiring some
randomness while maintaining behavior within specified constraints. Additionally,
the human-in-the-loop applications can benefit from data-driven methods. Streams
of time-stamped data from devices can be used to learn semantic models capturing
behavioral correlations amongst them for further use in programming and control.

In this chapter, we present how a recently-proposed formalism termed control
improvisation [51] can be suitably adapted to address the problem of randomized
control for IoT systems. We consider the specific setting of a system whose compo-
nents can be controlled either by humans or automatically. Human control of devices
generates data comprising streams of time-stamped events. From such data, we show
how one can learn a nominal randomized controller respecting certain constraints
present in the data including correlations between behavior of interacting compo-
nents. We also show how additional constraints can be enforced on the output of
the controller using temporal logic specifications and verification methods based on
model checking [26, 72]. We apply our approach to the problem of randomized con-
trol of home appliances described above. We present simulated experimental results
for the problem of lighting control based on data from the UK Domestic Appliance-
Level Electricity (UK-DALE) dataset [68]. Our approach produces realistic control
sequences, similar to recorded data based on human actuation, while also satisfying
suitable formal requirements.

6.2 Background
We introduce relevant background material that the present work builds upon

and establish notation for use in the rest of the chapter.

6.2.1 Discrete-Event Systems with Hidden States
Our work focuses on control of systems whose behavior can be described by a

sequence of timestamped events. An event e is a tuple 〈τ, v〉 ∈ T × V , where T is a
totally ordered set of time stamps and V is a finite set of values. We define a signal
to be a set of events, where T imposes an ordering relation on the events occurring
within the signal [82].

We define the state of such a system to take values from a finite set of distinct
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Figure 6.1: Sample appliance power trace

states, where events are emitted by state transitions. In many systems, the underlying
events and states are hidden, and all that can be observed is some function of the state.
We term this the observation. This function can be time-dependent and probabilistic,
so that a single state can produce many different observations. We assume that the
number of possible observation values is finite (this can be enforced in continuous
systems by discretization), and that observations are made at discrete time steps. A
sequence of observations over time generated by a behavior of the system is called a
trace.

An example of such a trace that captures the power consumption of three appli-
ances is given in Figure 6.1. The events related to each appliance, which can either be
an “ON” or an “OFF” event in this case, are annotated on the sub-traces. Each state
change of the system triggers an event. Consider, for example, that the hidden state
in this scenario captures the current status of a set of physical appliances and that
all appliances are initially turned off. The kitchen appliance being turned on at 19:50
pm causes an “ON” event to be emitted, and triggers a state change in the system,
where in the new state, the kitchen appliance is on, and the other two appliances are
off. The system stays in this state until any appliance triggers a state transition. In
such a scenario, it may be that the only information available from the system are
traces of the instantaneous appliance power consumptions. Given these traces, one
can infer the state of the system and which events may have happened at particular
times.

6.2.2 Control Improvisation
The control improvisation problem, defined formally in [51], can be seen as the

problem of generating a random sequence of control actions subject to hard and soft
constraints, while satisfying a randomness requirement. The hard constraints may,
for example, encode safety requirements on the system that must always be obeyed.
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The soft constraints can encode requirements that may occasionally be violated. The
randomness requirement ensures that no control sequence occurs with too high prob-
ability.

This problem is a natural fit to the applications of interest in this thesis, as
our end goal is to randomize the control of discrete-event systems subject to both
constraints enforcing the presence of certain learned behaviors (hard constraints),
and probabilistic requirements upper bounding the observations (soft constraints).
In the lighting control scenario we consider later, for example, we effectively learn
a hard constraint preventing multiple appliances from being toggled at exactly the
same time, since this never occurs in the training data. We also use soft constraints
to limit the probability that the hourly power consumption exceeds desired bounds.

More formally, the control improvisation problem is defined as follows. This is
generalized from the definition in [51] to allow multiple soft constraints with different
probabilities.

Definition 1 An instance of the control improvisation (CI) problem is composed of
(i) a language I of improvisations that are strings over a finite alphabet Σ, i.e.,
I ⊆ Σ∗, and (ii) finitely many subsets Ai ⊆ I for i ∈ {1, . . . , n}. These sets can be
presented, for example, as finite automata (see [51] for a thorough discussion).

Given error probability bounds ε = (ε1, . . . , εn) with εi ∈ [0, 1], and a probability
bound ρ ∈ (0, 1], a distribution D : Σ∗ → [0, 1] with support set S is an (ε, ρ)-
improvising distribution if

(a) S ⊆ I (hard constraints),
(b) ∀w ∈ S, D(w) ≤ ρ (randomness),
(c) ∀i, P [w ∈ Ai | w ← D] ≥ 1− εi (soft constraints),

where w ← D indicates that w is drawn from the distribution D. An (ε, ρ)-improviser,
or simply an improviser, is a probabilistic algorithm generating strings in Σ∗ whose
output distribution is an (ε, ρ)-improvising distribution. For example, this algorithm
could be a Markov chain generating random strings in Σ∗. The control improvisation
problem is, given the tuple (I, {Ai}, ε, ρ), to generate such an improviser.

6.2.3 Explicit-Duration Hidden Markov Models
We have introduced the structure of an EDHMM and discussed its use cases in

section 4.2.3. We will now discuss a specific construction of an EDHMM model for
the domain of home automation and explain inference problems we intend to solve
using this dynamic Bayesian network.

An EDHMM with discrete emissions observed for T time steps is characterized
by a partially observed set of variables (x,d,y) = (x1, . . . , xT , d1, . . . , dT , y1, . . . , yT ).
Each xi indicates the hidden state of the model at time i from a finite state space
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X , which for notational convenience we assume to be the set {1, . . . , N}. The value
di ∈ {1, . . . , D} denotes the remaining duration in the hidden state, where D is the
maximum possible state duration. Finally, each yi is an observation drawn from a
discrete alphabet Σ = {v1, . . . , vM}. The joint probability distribution imposed by
the EDHMM over these variables can be written as

P (x,d,y) = p(x1)p(d1)
T∏
t=2

p(xt|xt−1, dt−1)p(dt|dt−1, xt)
T∏
t=1

p(yt|xt)

= πxπd
T∏
t=2

p(xt|xt−1, dt−1)p(dt|dt−1, xt)
T∏
t=1

p(yt|xt),

where p(x1) , πx and p(d1) , πd are the priors on the hidden state and duration
distributions, respectively. The conditional state and duration dynamics are given by

p(xt|xt−1, dt−1) ,

p(xt|xt−1) if dt−1 = 1
δ(xt, xt−1) otherwise

(6.1)

p(dt|dt−1, xt) ,

p(dt|xt) if dt−1 = 1
δ(dt, dt−1 − 1) otherwise

, (6.2)

where δ(·, ·) is the Kronecker delta function. Equations (6.1) and (6.2) specify the
current state xt and the remaining duration dt for that state as a function of the
previous state and its remaining duration. Unless the remaining duration at the
previous state is equal to 1, the state will remain unchanged across time steps, while
at each step within the state, the remaining duration is decremented by 1. When
the remaining duration is 1, the next state is sampled from a transition probability
distribution p(xt|xt−1), while the remaining duration at xt is sampled from a state-
dependent duration distribution p(dt|xt). All self-transition probabilities are set to
zero: p(xt|xt−1) = 0 if xt = xt−1. For compactness of notation, for all xt, xt−1 ∈
{1, . . . , N}, dt ∈ {1, . . . , D}, and yt ∈ {v1, . . . , vM} we define probabilities axt−1,xt ,
bxt,yt , and cxt,dt so that

p(xt|xt−1) =

axt−1,xt if xt 6= xt−1

0 otherwise
,

p(yt|xt) = bxt,yt ,

p(dt|xt) = cxt,dt .

We consolidate these probabilities into an N × N state transition matrix A , (aij),
an N ×M emission probability matrix B , (bij), and an N ×D duration probability
matrix C , (cij).
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The procedure to obtain the EDHMM parameter set λ = {πx, πd, A,B,C},
given the observed sequence y, is often referred to as the parameter estimation prob-
lem, which in the general Bayesian inference setting seeks to assign the parameters
of a model so that it best explains given training data. More precisely, given a trace
(y1, . . . , yT ), parameter estimation approximates the optimal parameter set λ∗ such
that

λ∗ = arg max
λ

p(y1, . . . , yT | λ) .

This procedure can be extended to estimate parameters from multiple traces, provided
that the traces are aligned so that the first observation of each trace corresponds to
the same initial state. This ensures that the state prior will be correctly captured
[98]. In the case of the EDHMM, parameter estimation can be done with a variant of
the well-known Expectation-Maximization (EM) algorithm for HMM. The detailed
formulation is presented in [124].

6.2.3.1 EDHMM with Non-homogeneous Hidden Dynamics

The general definition of an EDHMM is useful in modeling hidden state dynamics
encoded with explicit duration information. However, in many applications where
the state dynamics model behaviors that exhibit seasonality, it can be useful to train
separate state transition and duration distributions for different time intervals. As
an example, we consider the case where the dynamics exhibit a dependence on the
hour of the day, so that for each hour h ∈ {1, . . . , 24} we have different probability
matrices Ah and Ch.

Estimating the parameters of an EDHMM with hourly dynamics requires an
additional input sequence {h1, . . . , hT}, where each hi ∈ {1, ..., 24} labels at which
hour of the day the observation yi was collected. Given the observation and hour
label streams, training follows the same EM-based estimation procedure as in [124],
with the difference that parameters Ah and Ch are estimated using the training data
subsequences collected within hour h.

The EDHMM with hourly dynamics will be given by a parameter set λ =
{πx, πd, {Ah}, B, {Ch}}, where {Ah} and {Ch} are the transition and duration distri-
bution matrices valid for hour h ∈ {1, ..., 24} such that

ali,j , p(xt = j|xt−1 = i, dt−1 = 1, ht−1 = l)
cli,d , p(dt = d|xt = i, dt−1 = 1, ht = l)

where Al = (alij) and Cl = (cli,d) are the hourly transition and duration probability
matrices for hour l.
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6.2.4 Probabilistic Model Checking
Our approach relies on the use of a verification method known as probabilistic

model checking, which determines if a probabilistic model (such as a Markov chain or
Markov decision process) satisfies a formal specification expressed in a probabilistic
temporal logic. We give here a high-level overview of the relevant concepts. The
reader is referred to the book by Baier and Katoen [26] for further details. For our
application, we employ probabilistic computation tree logic (PCTL). The syntax of
this logic is as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | Ponp [ψ] state formulas
ψ ::= Xφ | φ1 U≤kφ2 | φ1 Uφ2 path formulas

where ω ∈ Ω is an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1] and k ∈ N. State
formulas are interpreted at states of a probabilistic model; if not specified explicitly,
this is assumed to be the initial state of the model. Path formulas ψ use the Next
(X ), Bounded Until

(
U≤k

)
and Unbounded Until (U) operators. These formulas are

evaluated over computations (paths) and are only allowed as parameters to the Ponp [ψ]
operator. Additional temporal operators, G, denoting “globally”, and F denoting
“finally”, are defined as follows: Fφ , TrueU φ and Gφ , ¬F ¬φ.

We describe the semantics informally; the formal details are available in [26]. A
path formula of the form Xφ holds on a path if state formula φ holds on the second
state of that path. A path formula of the form φ1 U≤kφ2 holds on a path if the state
formula φ2 holds eventually at some state on that path within k steps of the first state,
with φ1 holding at every preceding state. The semantics of φ1 Uφ2 is similar without
the “within k steps” requirement. The semantics of state formulas is standard for
all propositional formulas. The only case worth elaborating involves the probabilistic
operator: Ponp [ψ] holds at a state s if the probability q that path formula ψ holds for
any execution beginning at s satisfies the relation q on p.

A probabilistic model checker, such as PRISM [72], can check whether a prob-
abilistic model satisfies a specification in PCTL. Moreover, it can also compute the
probability that a temporal logic formula holds in a model, as well as synthesize miss-
ing model parameters so as to satisfy a specification. We show in Sec. 6.3.5 how an
EDHMM can be encoded as a Markov chain and thereby as a suitable input model
to PRISM.
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6.3 Control Improvisation with Probabilistic Tem-
poral Specifications

6.3.1 Problem Definition and Solution Approach
We begin with a set of traces of a discrete-event system whose set of events is

known, but whose dynamics are not. Our goal is to randomly generate new traces
with similar characteristics to the given ones. Furthermore, we want to be able to
enforce two kinds of constraints:

• Hard constraints that the traces must always satisfy, forbidding transitions be-
tween states that never occur in the input traces. For example, if no part of the
input traces can be explained as a particular state transition t, then we want
to assume that t is impossible and not generate any string that is only possible
using it.

• Soft constraints that need only be satisfied with some given probability. We
focus on systems whose observations are costs, for example power consumption,
and assume soft constraints which put upper bounds on the cost at a particular
time, or accumulated over a time period.

In the next section, we will formalize this problem as an instance of control improvi-
sation. First, however, we summarize our solution approach, which consists of three
main steps:

1. Data-Driven Modeling: From the given traces, learn an EDHMM representing
the time-dependent dynamics of the underlying system. The EDHMM effec-
tively applies hard constraints on our generation procedure by eliminating all
strings assigned zero probability.

2. Probabilistic Model Checking: Using a probabilistic model checker, we compute
the probability that a behavior of the candidate improviser obtained in the
previous step will satisfy the soft constraints. If this is sufficiently high, we
return the EDHMM as our generative model.

3. Scenario-Based Model Calibration: Otherwise, we apply heuristics that increase
the probability by modifying the EDHMM parameters, and return to step (2).

A high level algorithmic workflow is given by Figure 6.2. We elaborate on each
of the steps in subsequent sections.

6.3.2 Formalization as a Control Improvisation Problem
We can formalize the intuitive description above as an instance of the control

improvisation (CI) problem described in Section 6.2.2. To do so, we need to specify
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Figure 6.2: Algorithmic Workflow

the alphabet Σ, languages I and Ai, and parameters εi and ρ that make up a CI
instance.

Σ Since we are learning from and want to generate traces, which are sequences of ob-
servations, we let Σ be the set of all observations (i.e. those occurring anywhere
in the input traces).

I We let I consist of all traces that are assigned nonzero probability by the EDHMM1.
Since the CI problem requires any improviser to output only strings in I, this
will ensure the hard constraints are always satisfied.

Ai, εi We let Ai consist of all traces that satisfy the i-th soft constraint. For instance
in the lighting example, Ai could only contain traces whose total power con-
sumption within hour i ∈ {1, . . . , 24} of the day never exceeds a given bound.
Then in the CI problem, εi is the greatest probability we are willing to tolerate
of the improviser generating a trace violating the bound.

ρ We can ensure that many different traces can be generated, and that no trace is
generated too frequently, by picking a small value for ρ: the CI problem requires
that no improvisation be generated with probability greater than ρ, and so that
at least 1/ρ improvisations can be generated.

This CI problem captures the informal requirements we described earlier. Now
we need to show that our generation procedure is actually an improviser solving this
problem according to the three conditions given in Definition 1. We consider each in
turn.

1The definition of the CI problem given in [51] requires that I be described by a finite automaton.
It is straightforward to build a nondeterministic finite automaton that accepts precisely those strings
assigned nonzero probability by the EDHMM, but we will not describe the construction here since
it is not needed for the technique used in this section.



CHAPTER 6. CONTROL IMPROVISATION 80

6.3.2.1 Hard Constraints

By definition, any string that we generate has nonzero probability according to
the EDHMM and so is in I.

6.3.2.2 Randomness Requirement

As long as the EDHMM is ergodic (when converted to an ordinary Markov chain;
see Section 6.3.5), the probability of generating any particular string w ∈ Σ∗ goes to
zero as its length goes to infinity. So for any ρ ∈ (0, 1], we can satisfy the randomness
requirement by generating sufficiently long strings. We can efficiently detect when
the EDHMM is not ergodic using standard graph algorithms, but this is unlikely to
be necessary in practice for applications as lighting control.

6.3.2.3 Soft Constraints

Our procedure checks whether this requirement is satisfied using probabilistic
model checking. This requires encoding the sets Ai as PCTL formulas, and the
EDHMM as a Markov chain (explained in Sections 6.3.4 and 6.3.5 respectively).
Once this has been done, the model checker computes the probability that a string
generated by the EDHMM will be in Ai. If this probability is at least 1− εi, then the
EDHMM satisfies the soft constraint, and if this is true for each i, it is a valid impro-
viser. Otherwise, our procedure applies heuristics to modify the EDHMM, detailed
in Section 6.3.6. As shown in that section, the heuristics decrease the expected ac-
cumulated cost, so that after sufficiently many applications the EDHMM will satisfy
the soft constraints2.

Therefore, our generation procedure yields a valid improviser solving the CI
problem we defined above. We note that our technique has some further useful
properties not captured by the CI problem. In particular, we can easily disable
particular transitions between hidden states by setting their probabilities to zero and
normalizing remaining transition probabilities appropriately. This could be useful, for
example, when controlling an IoT system with unreliable components: if a component
drops off the network or becomes otherwise unusable, we can disable all transitions
to states in which that component is active.

6.3.3 Learning an EDHMM from Traces
The first step in our procedure is to learn an EDHMM from the input traces.

Since as explained in Section 4.2.3 we use an EDHMM with different transition ma-
trices for each hour, every input trace {y1,y2, . . . ,yT} is augmented with a corre-

2Obviously, some soft constraints cannot be satisfied, for example one requiring that the cost at
the first time step be less than the smallest possible cost of any state. See Section 6.3.6 for a precise
statement.
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sponding stream of labels {τ1, . . . , τT} indicating the hour of the day each observa-
tion was recorded. Note that the observations need not be scalar costs, but could
be vectors: for example, in our lighting experiments each observation was a K-tuple
yi = [yi,1, . . . , yi,K ]T containing instantaneous power readings from each of K different
appliances.

Given this training data, we perform EDHMM parameter estimation as de-
scribed in Section 4.2.3. This yields a parameter set λ = ({Ah}, {Ch}, B, π) where
the matrices {Ah} and {Ch} give state transition and duration probabilities respec-
tively for each hour h ∈ {1, . . . , 24}. The distribution of observations for each state
is given by B, and π is the prior on the state space. In this work we use categorical
distributions for B and {Ch}, although in other applications it may be appropriate
to use parametric distributions.

Note that the parameter estimation process based on the EM algorithm is an
iterative method; thus obtaining a reasonable parameter set depends on model con-
vergence, which in turn requires sufficient training data. In the case of an EDHMM
with hourly transition matrices, if few events happen at certain hours it may not
be possible to estimate some of the state transition and duration probabilities for
those hours. Many application-specific heuristics exist for handling such scenarios, as
outlined in [98]. The particular technique we used in our experiments is detailed in
Section 6.4.1.

6.3.4 Encoding Soft Constraints as PCTL Formulas
As mentioned earlier, we consider soft constraints which put upper bounds on the

cost observed at a particular time or accumulated over a time period. We illustrate
how to encode upper bounds on the hourly cost — other time periods are handled
analogously.

Recall that our traces take the form {y1,y2, . . . ,yT} where each yi is an obser-
vation, generally a vector [yi,1, . . . , yi,K ]T of costs. Define Yi ,

∑K
k=1 yi,k, the total

cost at time step i. Considering that the data is sampled at the rate of Ns samples
per hour, the total hourly cost accumulated up to time step t is

∆ =
∑

Ns(dt/Nse−1)+1≤i≤t
Yi.

In the next section, we show how a simple monitor added to the encoding of the
EDHMM can maintain the value ∆.

In order to be able to impose a different upper bound ∆h
max on ∆ for each hour

h of the day, we need to compute the current hour of the day as a function of the
time step:

h(t) = mod(dt/Nse − 1, 24) + 1 ,
which holds if t = 1 corresponds to the time step of the first sample collected within
hour 1. Then we can write the soft constraint for hour h as the following PCTL
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formula:

P≥1−εh G
[
(h(t) = h)⇒ (∆ ≤ ∆h

max)
]
. (6.3)

This simply asserts that with probability at least 1 − εh, at every time step during
hour h the corresponding upper bound on ∆ holds. In practice we can omit the
quantifier P≥1−εh and ask the probabilistic model checker to compute the probability
that the rest of the formula holds, instead of having to specify a particular εh ahead
of time.

6.3.5 Encoding the EDHMM as a Markov Chain
In this section, we discuss how the EDHMM can be represented as a Markov

chain, so that the soft constraints can be verified using probabilistic model checking.
Ignoring the soft constraints for now, the interpretation of the EDHMM as a

Markov chain follows the outline in Section 4.2.3: we expand the state space with a
new state variable d ∈ {1, . . . , D} which keeps track of the remaining duration in the
current hidden state x ∈ {1, . . . , N}. When d > 1, we stay in x for another time step,
decrementing d. Only when d = 1 do we transition to a new hidden state, picking
the new value of d from the corresponding duration distribution.

Since we use an extension of the EDHMM where state transition and duration
probabilities depend on the current hour, we need to expand the state space further
to keep track of time. The state variable t ∈ {0, . . . , T} indicates the current time
step, with t = 0 being an initialization step in which the state is sampled from a
state prior π. Note that the domain of t need not grow unboundedly with T : in our
example where we use different transition probabilities for each of the 24 hours, we
only need to track the time within a single day.

Finally, in order to detect when the soft constraints are violated, we need to
monitor the total hourly cost ∆ defined in the previous section. We add the state
variable ∆ ∈ {0, . . . ,∆max+1}, where ∆max is the largest of the hourly upper bounds
∆h
max imposed by the soft constraints. This range of values for ∆ is clearly sufficient

to detect when the total cost exceeds any of these bounds. Maintaining the correct
value of ∆ is simple: at each time step we increase it by a cost sampled from the
appropriate emission distribution, except when a new hour is starting, in which case
we first reset it to zero.

Putting this all together, we obtain a Markov chain whose states are 4-tuples
(x, d, t,∆) with the state variables as described above. The initial state is (0, 1, 0, 0).
Given the current state, the next state (x′, d′, t′,∆′) is determined as follows:

EDHMM:

(t = 0)→ x′ ∼ πx ∧ d′ ∼ Ch(t)(x′) ∧ t′ = t+ 1
(t > 0) ∧ (d > 1)→ x′ = x ∧ d′ = d− 1 ∧ t′ = t+ 1
(t > 0) ∧ (d = 1)→ x′ ∼ Ah(t)(x) ∧ d′ ∼ Ch(t)(x′) ∧ t′ = t+ 1
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Cost Monitor:

(t = 0)→ ∆′ = 0

(t > 0) ∧ (h(t′) = h(t))→ ∆′ = ∆ +
K∑
i=1

pi, p ∼ B(x)

(t > 0) ∧ (h(t′) 6= h(t))→ ∆′ =
K∑
i=1

pi, p ∼ B(x) ,

where h(t) = mod(dt/Nse − 1, 24) + 1.

6.3.6 Scenario-Based Model Calibration
The procedure described so far provides a way to obtain a generative model

that captures the probabilistic nature of events and their duration characteristics in a
physical system, and to verify that the model satisfies desired soft constraints. How-
ever, the model may not satisfy these constraints with sufficiently high probability,
particularly if the constraints are not always satisfied by the training data. In terms of
control improvisation, the error probability of our improviser for some soft constraint
i is greater than the desired εi. We now describe two general heuristics for calibrating
the EDHMM to decrease the error probability while preserving the faithfulness of
the improviser to the original data. In particular, these heuristics do not introduce
new behaviors: any trace that can be generated by the calibrated improviser could
already be generated before calibration. Since the soft constraints we consider place
upper bounds on the observed costs, both heuristics seek to decrease the costs of some
behavior of the improviser.

6.3.6.1 Duration Calibration

The duration distributions of the trained EDHMM, {Ch}, assume a maximum
state duration D that is enforced during the training process. One simple way to
decrease cost is to further restrict the duration distributions by truncating them
beyond some threshold for some or all states. An effective strategy in practice is to
eliminate outliers in the duration distributions of states with high expected cost.

This heuristic has the advantage of leaving the transition probabilities of the
model completely unchanged, and so is a relatively minor modification. On the other
hand, it cannot reduce the duration of a state below 1 time step. So although it can
eliminate some high-cost behaviors from the model, it is not guaranteed to eventually
yield an improviser satisfying the soft constraints.

6.3.6.2 Transition Calibration

A different approach is to modify the state transition probabilities, making the
model less likely to transition to a high cost state during certain hours of the day.
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Specifically, we can limit the probability of transitioning from any state i to a par-
ticular state xr during hour hr to be at most some value pir. We shift the removed
probability mass to the transition leading to the state xmin with least expected cost,
which we assume is strictly less than that of xr. Writing the original transition proba-
bility matrix Ahr as (aij), we replace it in the EDHMM with a new matrix Ãhr = (ãij)
defined by

ãij =


min(pir, aij) if j = xr

aij + (aixr −min(pir, aij)) if j = xmin

aij otherwise.

Note that the second case ensures that the transition probabilities from any state
i ∈ X are properly normalized. Provided that the limits pir are chosen such that
ãixr < aixr for some i ∈ X , the heuristic will decrease the expected cost of a behavior
generated by the improviser.

Applying the heuristic iteratively for every choice of xr 6= xmin and hour hr ∈
{1, . . . , 24} will eventually result in an improviser that remains at the xmin state for
all time steps (assuming xmin is the starting state). Thus for any soft constraints
which are true for behaviors that only stay at xmin, our procedure will eventually
terminate and yield a valid improviser. This over-simplified improviser is unlikely
to model the original data well, but it is only attained as the limit of this heuristic:
in practice, judicious choices of the state xr and limits pir can improve the error
probability significantly in a few iterations without drastically changing the model.

6.4 Experimental Results and Analysis

6.4.1 Experimental Setup
To demonstrate the control improvisation approach we have described in Sec. 6.3,

we use the UK Domestic Appliance-Level Electricity (UK-DALE) dataset [68], which
contains disaggregated time series data representing instantaneous power consump-
tions of residential appliances from 5 homes over a period of 3 years.

We consider a lighting improvisation scenario over the three most-used lighting
appliances in a single residence, each from a separate room of the house. The data
is presented as a vector-valued power consumption sequence y with a corresponding
sequence of time stamps τ . The input stream y = {y1,y2, . . . ,yT} consists of 3-tuples

yi =

yi,1yi,2
yi,3

 , i = 1, . . . , T ,
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where the values yi,1, yi,2, and yi,3 are instantaneous power readings with time stamp
τi from the main kitchen light, a dimmable living room light, and the bedroom light
respectively. The power readings were sampled with a period of 1 minute and are
measured in watts.

In our experiments, we synthesized three improvisers from this data: one using
an unmodified EDHMM, and two that were calibrated using the different kinds of
heuristics described in Section 6.3.6 to enforce soft constraints on hourly power con-
sumption. Below, we describe the specific choices that were made when implementing
each of the three main steps of our procedure.

6.4.1.1 Data-Driven Modeling

We assume there are three sources of hidden events, corresponding to each of
the three appliances being turned on or off. This yields a hidden state space X with
8 states, one for each combination of active appliances. Based on inspection of the
dataset, we chose the maximum state duration to be 720 time steps (12 hours, suffi-
cient to allow long periods when all appliances are off). Since we used disaggregated
data, our observations are 3-tuples of power consumptions (quantized to integer values
as part of the dataset), which we assume fall in the alphabet Σ = Σ1×Σ2×Σ3 where
Σ1 = {0, 1, . . . , 350}, Σ2 = {0, 1, . . . , 20}, and Σ3 = {0, 1, . . . , 30} (the maximum con-
sumptions for each appliance were again obtained by inspecting the dataset). Having
fixed these parameters (summarized in Table 6.1), an EDHMM was trained from a
100-day subset of the data from one residence. Several portions of this training data
(for one appliance) are shown at the top of Figure 6.8.

Note that for the specific case of lighting improvisation, since the power emission
distributions of each appliance are independent, B , p(yt|xt), the learned emission
probability matrix over vector-valued observations, can be written as

B = p(yt|xt) =
K∏
k=1

p(yt,k|xt) .

It should also be noted that following the training process, some of the state
transition probabilities {Ah} may remain unlearned, i.e., we may have

N∑
j=1

ahi,j = 0

for some state i ∈ {1, ..., N}. This can occur, for example, when no state transitions
from state i happen during the hour h in any of the input traces. Since it is key
to capture the observed appliance behavior, we treat these incomplete distributions
that are unobserved in the training data as behaviors that should also be absent from
the set of improvised behaviors. Consequently, we use a completion strategy that
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Parameter ID Value
Data Source UK DALE Dataset
House ID house_1

Appliance IDs
kitchen_lights
livingroom_s_lamp
bedroom_ds_lamp

Training Duration 100 days
Training Start Date 30 Jul 2013 19:07:56 GMT
Sampling Period (Ts) 60 s
Training Sequence Length (T ) 144000
Maximum State Duration (D) 720
Appliance 1 Costs (Σ1) {0, 1, . . . , 350}
Appliance 2 Costs (Σ2) {0, 1, . . . , 20}
Appliance 3 Costs (Σ3) {0, 1, . . . , 30}

State Labels

OFF: All appliances off
K: Kitchen on
L: Living room on
B: Bedroom on
KL: Kitchen and living room on
KB: Kitchen and bedroom on
LB: Living room and bedroom on
KLB: All appliances on

Table 6.1: Parameters of the training dataset for EDHMM learning

forces transitions to the state xmin with the least expected cost (i.e. the state with
all appliances off) in this scenario:

∀ahi,j , where
N∑
j=1

ahi,j = 0,

i, j ∈ {1, ..., N}, h ∈ {1, ..., 24},

ãhi,j =

1 if j = xmin

0 otherwise

where ãhi,j is the adjusted state transition probability of switching from state i to j
in hour h. Note that in this case study, such incomplete parameter estimates arose
only for early morning hours in which few state transitions were recorded (typically
hours h ∈ {1, . . . , 5}). Having completed the transition probability matrices in this
way, we obtain a fully specified EDHMM.

6.4.1.2 Probabilistic Model Checking

We experimented with soft constraints upper bounding the total power con-
sumed during each hour. Figure 6.3 depicts the hourly energy consumptions of each
appliance, as well as the aggregated consumption, averaged across each day in the
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Figure 6.3: Hourly usage patterns of main lighting appliances. Solid curve represents
average consumption and shaded area represents one standard deviation above mean

training data. The maximum hourly consumptions occurring in the training data are
not ideal bounds to use as soft constraints, since they tend to be trivially satisfied
by the improviser. Instead, for each hour h we imposed a tighter bound ∆h

max on
the aggregate power consumption during that hour, where ∆h

max was one standard
deviation above the mean consumption in hour h in the training data. Note that
89.2% of the training samples were within this bound. The values ∆h

max are plotted
as the shaded curve at the bottom of Figure 6.3.

To compute the probability of satisfying these constraints, we used the PRISM
model checker [72]. As detailed in Section 6.3.5, the EDHMM and a monitor track-
ing hourly power consumption can be written as a discrete-time Markov chain. This
description translates more or less directly into the PRISM modeling language. Hav-
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ing done this, the soft constraints can be put directly into PRISM using the PCTL
formulation explained in Section 6.3.4 to obtain the hourly satisfaction probabilities
1− εi, i = 1, . . . , 24.

6.4.1.3 Scenario-Based Model Calibration

As mentioned above, we tested three types of improvisers:

• Scenario I: Uncalibrated Improviser. This improviser uses the learned
EDHMM with no model calibration.

• Scenario II: Duration-Calibrated Improviser. This improviser uses the
duration calibration heuristic described in Section 6.3.6. From the aggregate
power profile given in Figure 6.3, we identified peak power consumption as
occurring during hours 7, 8, 9, 17, 18, 19, 20, and 21. For these hours, the
probabilities of event durations greater than 60 minutes were set to zero and
the distributions re-normalized. Figure 6.4 shows a sample set of original and
calibrated event duration distributions for the 19th hour of the day.

• Scenario III: Transition-Calibrated Improviser. This improviser extends
the previous one by also applying the transition calibration heuristic described in
Section 6.3.6. The set of hours for which transition probabilities were calibrated
includes the peak hours considered in the previous section, with the addition
of hours 4 and 5, for which very few events were recorded in the training data.
As Figure 6.3 indicates, the significant sources of power consumption are the
kitchen and the living room lighting appliances. Therefore, we choose xr to
include states K, L, KL, and KLB (see Table 6.1 for label descriptions).
Figure 6.5 depicts some hourly transition probability matrices before and after
calibration. Each circle indicates a nonzero transition probability from state xt
to xt+1, where its area is proportional to the probability. The blue circles show
the original learned probabilities, and the green circles show the probabilities
decreased by calibration. For clarity, we do not show the corresponding increases
in the probabilities of transitioning to the OFF state.

6.4.2 Experimental Results
Our focus in this section is to evaluate the performance of synthesized improvis-

ers using probabilistic model checking and to compare them based on their fidelity
to soft constraints. It is also of interest to study the power profile characteristics of
improvised traces to ensure scenario-based calibrations do not impact the similarity
of improvisations to recorded data based on human actuation.

Figure 6.6 summarizes model checking results for the original EDHMM and
for the two calibrated models with constrained power consumption properties. We
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Figure 6.4: Sample learned and calibrated duration distributions for h=19

additionally provide the empirical probability of soft constraints being satisfied by
training data, mainly for visual comparison. Model checking results suggest that the
improviser based on the learned EDHMM behaves comparably to the empirical satis-
faction probabilities, however, since the soft constraints are not explicitly enforced by
the EDHMM, some hourly probabilities significantly deviate from empirical values.
When we investigate model checking results for the two calibrated improvisers, which
aim to improve the probability of satisfying soft constraints, we observe that the
transition-calibrated improviser yields highest satisfaction probabilities on the soft
constraints for all hours of the day. The duration-constrained improviser performs
better than the learned model, for all hours except for hours 9, 21 and 22. As ex-
plained in Section 6.3.6, the duration heuristic does not guarantee an improvement
in the probability of satisfying the soft constraints. This can be explained in this
particular case by the phenomenon that at these particular hours, the state transi-
tion matrix tends to make transitions to high-consumption states more probable, and
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skewing the duration distribution towards zero causes more state transitions to be
made during peak hours.

Figure 6.7 compares the aggregate hourly power consumption profiles obtained
from the training data, with ones obtained from 100 20-day long improvisations gen-
erated by a particular lighting improviser. For all three improviser profiles, the hourly
mean power trend matches that of the original data. Moreover, for calibrated im-
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Figure 6.5: Learned vs. calibrated state transition probabilities for selected hours.
(Blue: Learned Ah, Green: Probabilities adjusted by Scenario III, See Table 6.1 for
label descriptions)

Hour-of-day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
(G

[(
h
o
u
r
(t
)
=

h
)
⇒

(e
h
≤

∆
h m
a
x
)]
)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Improviser based on Learned Model
Duration-Calibrated Improviser
Transition-Calibrated Improviser
Empirical Satisfaction Probability

Figure 6.6: Model checking results on the satisfaction probabilities of hourly soft
constraints



CHAPTER 6. CONTROL IMPROVISATION 91

provisers, the one standard deviation curve above mean mostly remains within the
same bound for the original data. Even though the duration-calibrated improviser
has eliminated most of the highly variable power consumption trend exhibited by the
uncalibrated improviser, it still demonstrates high variability in power for the hour
range h = 9, . . . , 12 compared to the training data. This behavior is successfully miti-
gated by the transition-calibrated improviser, which is shown to satisfy the one sigma
power constraint more strictly than the duration-calibrated improviser as expected.

Finally, in Figure 6.8, we show several day-long traces from the three impro-
visers together with time-aligned excerpts from the training data. Note that the
uncalibrated improvisations are visually quite similar to the training data, illustrat-
ing the quality of the EDHMM as a model. The calibrated improvisations are also
qualitatively similar to the training data, but somewhat sparser as we would expect
from enforcing constraints on power consumption. This demonstrates how our model
calibration techniques are effective at enforcing soft constraints without drastically
changing system behavior.

Overall, experimental results suggest that, given a suitable learning model, it
is possible to synthesize a control improviser, which produces randomized control

Figure 6.7: Comparison of aggregate hourly energy profiles (Blue: Training data,
Green: Improvisations. Solid curves represent mean energy, shaded region represents
one standard deviation from mean)
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Figure 6.8: Appliance 1 activation patterns over day-long intervals

sequences that are faithful to observed system behavior. More importantly, scenario-
based model calibration methods can be applied to systematically constrain the nature
of randomness, which is quantifiable via probabilistic model checking. Our experi-
ments have shown significant improvements on the satisfaction probabilities of soft
constraints after applying heuristic calibrations, while preserving desired qualitative
characteristics in improvised control sequences.

6.5 Related Work
Control improvisation is an automata-theoretic problem that was formally de-

fined and analyzed in [51]. CI was applied to machine improvisation of music in [39],
where a symbolic reference melody was used to synthesize an automaton that was
composed with a specification automaton (capturing user-specified musical proper-
ties) to produce a control improviser. In this work, we consider a case study in the
field of home automation, which enables us to learn a more general Bayesian model.
We represent training data by modeling temporal progression and the stochastic char-
acteristics of underlying events given noisy sensor data. Moreover, as an extension
of our previous work, we learn specifications from user-generated data directly, and
perform scenario-based calibrations on the learned model to enforce formal statistical
properties.

Appliance modeling in residential settings has several proposed benefits, includ-
ing reduced power consumption, automated actuation of smart appliances subject to
energy pricing, microgrid load balancing, and home security [108]. Additionally, per-
sonalized advisory tools have gained popularity to provide adaptive demand-response
prediction [7, 85]. Bayesian modeling techniques for home appliance load modeling
has been an emerging topic of interest [65], and EDHMM-based models have previ-
ously been proposed for load disaggregation [58]. Markov modeling of uncertainties in
demand and energy pricing has been studied in [92], which presents a reinforcement
learning based approach to optimal load scheduling.

The related subjects of data-driven occupancy prediction [16] and user behavior
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modeling for energy demand predictions have also been studied in recent years. In
[118], a stochastic model to predict time-dependent user activity was presented.

In contrast to these studies, we focused on building appliance models that re-
quire no prior modeling of appliances or their users, but build solely on streaming
sensor data from home appliances. To achieve this goal, instead of building a con-
text model for user behavior, we considered a context-agnostic Bayesian model that
captures time-dependent appliance duration and power consumption distributions, as
well as time-dependent transition probabilities for appliance activation. Integration
of suitable occupancy and user prediction techniques with ours is a clear direction for
future work.

Our approach in this application shares the vision of data-driven modeling of
human-actuated systems, however, instead of synthesizing a Markov model of an un-
derlying human behavior, we are interested in capturing the temporal progression of
distributions associated with a semi-Markov pattern, as captured by the EDHMM.
Our control objectives also vary, in that, we are interested in synthesizing a random-
ized controller that captures the probabilistic nature of a learned set of behaviors, as
opposed to synthesizing optimal control traces based on hard specifications.

6.6 Conclusion
In this chapter, we address the problem of randomized control for IoT systems,

with a particular focus on systems whose components can be controlled either by
humans or automatically. From streams of time-stamped system events, we learn
models that are assumed to vary as a function of an underlying state space governed
by events with durations. We leverage the recently-proposed technique of control im-
provisation [51, 50] to generate randomized control sequences, which are similar to an
observed set of behaviors, and moreover, always satisfy some desired hard constraints
and mostly satisfy soft constraints, while exhibiting variability. We presented an
implementation of the end-to-end control improvisation workflow using the PRISM
tool to enforce soft constraints on the improviser. We evaluated our technique in
the domain of home appliance control by synthesizing improvisers to control a group
of lighting appliances based on learned usage patterns and subject to probabilistic
constraints on power consumption. The results of our experiments showed that our
methods can effectively enforce soft constraints while largely maintaining qualitative
and quantitative properties of the original system’s behavior.

For future work, we plan to investigate new applications of this framework in
the IoT space. We also plan to investigate techniques to improve the efficiency of our
scheme, as well as its implementation on real hardware.
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Chapter 7

Other Application Areas of AOM

The paradigm of Aspect-Oriented Modeling (AOM) is introduced in Chapter 3,
where we describe the semantics of aspects, introducing the implementation of as-
pects for modeling communication and network fabrics between components. In this
chapter, we take the discussion one step further by presenting a set of additional es-
sential modeling concerns addressed by aspect in the scope of cyber-physical system
design.

7.1 Execution
In many embedded control applications, execution time of software influences

the behavior of the application. Design space exploration is necessary to evaluate the
behavior of different implementations. To this day, tool support for this activity is
very limited. In this next example, we illustrate how one could build simple models
of CPUs as advices, and associate actor executions with these advices using AOM.

In cooperative control applications, an execution bottleneck is often caused by
on-line control algorithms. In the running example, it would be of interest to model
execution times for the two controller models to ensure that application requirements
are met at runtime. As an example, suppose we want to evaluate two alternative
architectural designs. In the model depicted in Figure 7.1, two execution advices
are implemented as composite actors. In the figure, the two advices represent two
alternative architectures, one with a single core and one with two cores. In the figure,
the 1Processor advice is enabled on the Observation-Optimizing Controller and
the Main Robot Control actors. The 1-processor model merges incoming execution
requests and schedules them on a server that delays the actors for a specified amount
of time, emulating execution time. A more elaborate model could include a scheduling
policy such as EDF. In addition to the enable flag, an execution time parameter is
added to all join points by an execution advice. As a result, every actor can be
simulated to have a different execution time. As this parameter is read every time
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actor1

actor2

actor1

actor2

executedActor

executedActor1

executedActor2

Figure 7.1: Mapping of functional models onto architecture models using aspects
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the actor is executed, it is possible to provide execution times that differ in between
iterations. The join points are also extended with an execution request port, which
is a special actor inside the advice that receives execution request tokens when the
actor is scheduled to be fired. In the example, these execution request ports are
actor1 and actor2. The execution request token contains an object reference of the
actor to be fired and the execution time for the current firing. Before firing an actor
that is decorated with a processor advice, the director triggers a firing of the advice
and generates an execution request token for the actor in the appropriate execution
request port.

Figure 7.2 shows an execution of the main robot controller and the observation-
optimizing controller in the single and two processor cases, respectively. The il-
lustrated execution monitor is part of the advice implementation. The execution
simulations are obtained with a global sampling period of 250 ms, and worst-case ex-
ecution times for Observation-OptimizingController and MainRobotController
set to 250 and 50 ms, respectively. It is seen that this particular execution model
is not schedulable on the single core architecture for the given execution time and
sampling period parameters.

2.0

0.0 0.2 0.4 0.6 0.8 1.0

2Processors2.0

0.0 0.2 0.4 0.6 0.8 1.0

Observation-
Optimizing
Controller

MainRobot
Controller

1Processor

platform time platform time

Figure 7.2: Controller execution times on different architectures

To keep the illustration simple, the model shown here is naïve. Execution times
of the components are difficult to know precisely, and may need to be modeled prob-
abilistically or to rely on sophisticated program analysis tools. Similarly, models of
scheduling policies can get quite sophisticated, and the effects of resource contention
in the processor architecture can get complex. But because of the effective separa-
tion of concerns, an expert on modeling and simulation of real-time software systems
can focus on the design of the aspect model, while the expert on machine learning
and optimization focuses on the control design. Very little coordination is required
between the two.

To further demonstrate the interaction of an enabled execution aspect with the
functional model, consider Figure 7.3, which illustrates the impact of a slow processor
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Figure 7.3: Effect of processor architecture on target estimation timing and function-
ality

on the target-estimation accuracy, as obtained by the Observation-Optimizing Con-
troller. Although information from the observation team is still processed in order,
the processing delay causes a slower convergence to the true target state, impacting
the real-time performance, which, by an execution aspect, has been detected before
deployment.

7.2 Fault Modeling
Fault models are among the most natural aspects in a multi-view system. By def-

inition, faults are not part of the system specification itself. An orthogonal modeling
paradigm helps fault models to be integrated with the system design in a way that
preserves separation of concerns. In many standardized architecture description lan-
guages, error models are part of the native system specification. For instance, AADL
features an error annex describing numerous fault models [114].

Faults are orthogonal concerns that can be modeled as aspects. Figure 7.4
demonstrates the top-level model of our running example, which has been decorated
by two fault models: (i) a stuck-at component fault model that affects the range
sensor readings of one of the observation robots, (ii) a packet drop fault model that
affects the controller-to-robot communication for one of the observation robots.

Figure 7.5 illustrates the implementation of the StuckAtFault aspect shown to
affect the output values of the RangeSensor component. A stuck-at fault occurs when
the individual signals and pins are stuck at a fixed value on an integrated circuit. As
an abstraction, such faults can be modeled to occur on a single input or output of a
component. With the addition of this aspect to the functional model of Observation
Robot 2, the sensor output values produced on board this robot will get stuck at a
fixed value with some probability during execution.

A packet-drop fault, as the name suggests, models a dropped packet over a net-
work link, often mimicking a packet erasure channel with an assigned packet erasure
probability, applying independently to each transmitted packet. The PacketDropFault
aspect that affects transmission of control inputs to Observation Robot 2 is shown
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Figure 7.4: Aspect-oriented component and communication fault models
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in Figure 7.6.

Figure 7.5: Fault model of a stuck signal.

7.3 Fault and error handling
Errors can occur due to software and hardware failures. While most software

errors are eliminated through validation and verification, hardware errors cannot be
eliminated easily, thus precautions have to be taken. Error handling code must be
inserted to catch possible failure situations. Because errors can occur in many different
places, mixing error handling functionality with the system functionality can make
the model difficult to understand. Also, error handling strategies might depend on
the operating conditions, and therefore might need to exhibit modal behavior.
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Figure 7.6: A packet drop fault model
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Figure 7.7: Aspect-oriented heartbeat detection

Figure 7.7 shows a model of a heartbeat detector which implements a mechanism
for detecting a missed sensor reading. It uses a state machine that expects time
stamped sensor readings at its input. In our running example, this input is connected
to the robotMeasurements port. The clock input reads time stamped inputs from
a local clock. The state machine keeps track of whether the most recent event was
a sensor message or a message from the local clock. It issues a missed event if
two consecutive local clock messages were received. See also [41] for a use of the
HeartBeatDetector in a power plant control system. This heartbeat detector can be
used on signals that come from unreliable sources.

7.4 Contract Modeling
Formal contracts [100] can be useful in CPS design to clarify interfaces and

enforce documented interaction behavior between components. In such contracts,
high-level system specifications are formalized as assume-guarantee formulas. Some
work has been dedicated to correct-by-construction synthesis of control protocols
based on temporal logic formalization of these contracts [121]. In cases where such a
controller design is not possible due to complexity, when dealing with legacy systems,
or to detect runtime faults that cause contract violations, one might want runtime
components that monitor contract compliance. Aspect-oriented modeling enables
addition of design contracts to an existing system model. If design requirements are
violated in runtime, this can be detected by an aspect-oriented contract monitor.

Consider, as part of our running example, a collision avoidance contract defined
on the main robot to ensure that the robot does not collide with a detected target
or obstacle on the map. The informal contract specification is that “whenever a
proximity alert flag has been raised, the robot must come to a full stop within X
seconds, and wait for the resolved signal from the operator before proceeding with
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Figure 7.8: A collision avoidance contract defined as an aspect on the main robot
controller

its mission.”1 This contract needs to be monitored on the the main robot controller.
Figure 7.8 implements a contract monitor that, upon detecting a violation, raises a
flag. This aspect can be easily and unobtrusively woven with a model of this robot
system.

7.5 Logging and Debugging
Logging is a common example for aspect-oriented programming. Adding logging

code to functional code or models can unnecessarily make the model more complex.
Also, at different stages of the design, different information is logged. For deployment,
logging is usually completely removed or disabled. Using aspects to perform logging
and plotting signals is a much cleaner way to evaluate simulation results. We can
modify the previously introduced network model to just log incoming messages and
forward them immediately, thus implementing a message logger. An execution logger
can be implemented by modifying the 1 or 2 processor models by adding a logging
component and removing time delays.

With similar mechanisms as used for logging, breakpoints can be inserted into
the execution of a model by using a special actor that pauses the execution (see Figure
7.9 for a potential collision-avoidance breakpoint).

1This contract can formally be represented by the Signal Temporal Logic (STL) formula:
G(proximityAlert→ F[0,Xs]G(idle U resolved)).
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Figure 7.9: Model breakpoints as aspects

7.6 Conclusion
This chapter introduces application areas of the aspect-oriented modeling (AOM)

paradigm, which is introduced in Chapter 3. The previously introduced applica-
tion areas of modeling communication, dynamics, sensing, and environmental con-
straints are extended in this chapter by the discussion on modeling architecture as-
pects for component execution, fault modeling and detection, aspect-oriented con-
tract modeling, and logging and debugging. While this is not an exhaustive list of
the application areas of AOM, the discussed formalisms are widely applicable to other
cross-cutting concerns that are relevant to developing modular CPS.

During this work, we have built up a library of aspects for common cross-cutting
concerns in industrial cyber-physical system designs. These models all available for
download at http://ptolemy.org..

http://ptolemy.org
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Appendix A

Particle Filter Formulations

A.1 Inference on SSMs via Forward Computations
Consider the State-space model (SSM)

x1 ∼ πx(x1) (A.1)
zt|xt ∼ g(xt, ut, t) (A.2)

xt+1|xt ∼ f(xt, ut, t) (A.3)

As explained in section 4, inference on SSMs is a widely encountered problem,
which tries to solve for an estimate of state at time t, xt, given all observations of the
system made up to (and including) time t, denoted as z1:t. Assuming a generic SSM
and using Bayes rule, we can factor out the state estimate as

p(xt|z1:t) = p(xt|zt, z1:t−1) = p(zt|xt, z1:t−1)p(xt|z1:t−1)
p(zt|z1:t−1)

= g(zt|xt)p(xt|z1:t−1)
p(zt|z1:t−1) . (A.4)

In (A.4), the posterior state distribution p(xt|z1:t) is factored out into a form that
can be computed recursively, if we use p(xt|z1:t−1) obtained at the previous step. We
write this term as a marginalization over the state at time t− 1 (xt−1) as:
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p(xt|z1:t−1) =
∫
p(xt, xt−1|z1:t−1)dxt−1

=
∫
p(xt|xt−1, z1:t−1)p(xt−1|z1:t−1)dxt−1

=
∫
f(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (A.5)

To summarize:

p(xt|z1:t) =

measurement︷ ︸︸ ︷
g(zt|xt)

prediction︷ ︸︸ ︷
p(xt|z1:t−1)

p(zt|z1:t−1) (Measurement Update)

(A.6)

p(xt|z1:t−1) =
∫
f(xt|xt−1)︸ ︷︷ ︸

dynamics

p(xt−1|z1:t−1)︸ ︷︷ ︸
previous estimate

dxt−1 (Prediction Step (Time Update))

(A.7)

Note that if p(xtt |z1:t−1) is a proposal distribution for f(xt|xt−1), this integral actually
yields the expectation E[xt|xt−1], a point estimate or the state at time t.

A.1.1 T-step Prediction

p(xt+T |z1:t) =
∫ t+T∏

l=t
f(xl + 1|xl)p(xt:t+T |z1:t)dt:t+T−1 (A.8)

=
∫ t+T∏

l=t
f(xl + 1|xl)p(xt|z1:t)dt:t+T−1 (A.9)

A.2 The Monte-Carlo Approximation
The expectation of a random function f(y) f : Y ⇒ Rnf , where x is distributed

according to p(x) can be written as

I[f(x)] := Ep[f(x)] =
∫
f(x)p(x)dx (A.10)

Assume we generate i.i.d. samples from p(·) and represent the empirical density
as:
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p̂MC(x) = 1
N

N∑
i=1

δix(x) ,

where δix(.) is the Dirac point mass located at x ∈ X . Inserting this approximation
into A.10 yields the expression:

I[f(x)] ≈ Î[f(x)] =
∫
f(x) 1

N

N∑
i=1

δix(x)dx . (A.11)

= 1
N

N∑
i=1

f(xi) (A.12)

By the strong law of large numbers,

Î[f(x)] a.s.−−→ I[f(x)], N →∞

A.3 Importance Sampling
One problem handled by Monte Carlo methods is to approximate an expectation

Ep[f(x)] =
∫
f(x)p(x)dx, using samples of p(·). However, in many applications, p(x) is

generally a complex distribution, hard to directly sample from. Instead, we consider:

∫
f(x)(p(x)

q(x))q(x)dx , (A.13)

where q(x) is easy to sample from. Define the weight function as the ratio:

w(x) , p(x)
q(x)

Now, consider the Monte Carlo sum sampled from q(x):

1
N

N∑
i=1

f(x(i))w(x(i)) = 1
N

N∑
i=1

f(x(i))p(x
(i))

q(x(i))
a.s.−−→ (A.14)

∫
f(x)p(x)

q(x)q(x)dx =
∫
f(x)p(x)dx

by the Strong Law of Large Numbers. Here, q(x) is often referred to as an importance
density, or equivalently, a proposal distribution. To avoid sampling from a complicated
distribution p(x), one can sample instead from a simpler q(x), and compute the ratio
of probabilities of the two distributions at a given sample to compute an equivalent
Monte Carlo approximation.
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A.4 Particle Filtering for State Estimation
Consider the State-Space model given by A.1. Estimating the posterior state

distribution p(xt|z1:t) at time t analytically may become overly complex, especially
for non-linear dynamics f(·), g(·), and under non-Gaussian disturbances. The idea is
to use a Monte Carlo sampling approach to approximate the posterior distribution,
using a procedure called Sequential Importance Resampling (SIR) [40].

The operation of the particle filter is based on the alternate form of the posterior
state estimate obtained by combining A.6-A.7 as:

p(xt|z1:t) = 1
p(zt|z1:t−1)p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (A.15)

= θg(zt|xt)
∫
f(xt|xt−1)p(xt−1|z1:t−1)dxt−1︸ ︷︷ ︸

prior predictive density

(A.16)

Note that the first term of A.15 is only a normalization constant, the second term
is the measurement equation, and the third term is the dynamics equation specified
by the SSM. The final term is the posterior state distribution from the previous time
step, t− 1. The working principle of the particle filter is to recursively compute pos-
terior state densities by using these four pieces of information. Using the importance
sampling idea, where the posterior is too complex to directly sample from, the pro-
posal density q(x) is often chosen to be the prior information (that is, the probability
distribution available before a measurement at time t has been observed). Then, the
importance weight assigned to the particle w(t) = p(x)

q(x) , would become proportional
to the ratio of the measurement likelihood to the prior.

Assume that the state distribution at time t is already approximated as a mass
function consisting of N particles given by {x̃ti, wti}, i = 1, 2, ..., N , where x̃ti is the i’th
particle sampled at time t, and wi is the associated particle weight. Then, choosing
the proposal density q(x) proportional to this distribution becomes efficient both due
to ease of computation, and because in most cases, the state estimate at the previous
time step is intuitively the most reasonable guess to start estimating state at time t
[12]. The steps of the particle filter operation can be summarized as follows:

1. Sample from the prior distribution - First, a particle set {x̃i}, i = 1, . . . , N
is sampled from the prior state distribution πx(x1).

2. Assign importance weights - Next step is to assign wi to particles, based
on a proposal distribution. The weight function is often chosen to be w(xt) =
g(zt|xt), the measurement equation.

3. Resampling - The weighted samples drawn from the proposal distribution do
not directly approximate a distribution. In order to obtain a probability mass
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function that can be used as an approximate posterior at time t, a resampling
procedure is required. Here, N new particles are chosen from the set {x̃ti, wti}, i =
1, 2, ..., N , with probabilities proportional to the weights of each particle, and
uniform weights of 1

N
are reassigned to each resampled particle. Namely, this

process ensures each particle to survive in proportion to its weight, and enables
the resulting particle set {x̄ti, 1

N
}, i = 1, 2, ..., N to be a direct approximation of

the posterior at time t, p(xt|z1:t).

4. Time Update (Propagation) - The final step of the process is to obtain the
new proposal distribution. For all t > 1, this step requires the state dynamics
to be taken into consideration. For this purpose, the equally weighted particle
set obtained at time t is evolved according to the state dynamics given by A.3
to yield the new proposal distribution at time t+1. The process continues with
step 2.

Following this sequential process, at each time step t, a particle set is obtained
that can approximate the posterior state distribution at time t as follows

p(xt|z1:t) ≈ p̂(x) =
N∑
i=1

wtiδ(xt − x̃ti) . (A.17)
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Appendix B

Approximate Algorithms for
Particle-Based Mutual-Information
Computations

Mutual information between target state and robot measurements can be used
to derive a control rule to maximize the expected future mutual information, i.e.,
to minimize the expected future uncertainty in the target location estimate. The
observers in this case are mobile robots with navigation, that expect velocity inputs
from a centralized controller. The proposed objective function is given by

u∗ = arg max
uτ

I(zτ ;xτ ) (B.1)

s.t. ||u(i)
t || ≤ Vmax, i = 1, 2, ...,M (B.2)

I(zτ ;xτ ) : = H(zτ )−H(zτ |xτ ) , (B.3)

where I(·; ·) is the mutual information (MI) defined between two random variables
that are its arguments, H(zτ ) is the entropy of the measurement set zτ , H(zτ |xτ ) is
the conditional entropy of the measurements given the state belief, τ = [t+1, ..., t+T ],
where T is the time horizon of the control problem, and u is the array of control inputs
to the mobile sensors. We will focus on the T=1 case for this case study. Note that
(B.3) is not trivial to solve, since it involves integrations over the entire measurement
and state space, which can exponentially grow in size. As a first step, the particle
filter representation will be used to simplify the problem into feasible approximations.
By (4.15), the entropy terms given by (B.3) can be formulated as

H(zt) = −
∫
Z
p(zt) log p(zt)dZ

≈ −
∫
Z

[
N∑
i=1

witp(zt|x̃it) log(
N∑
i=1

witp(zt|x̃it))
]
dZ (B.4)
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Mutual Information Algorithm Time Complexity
MI Based on a Particle Set† O(λ−MDM2N)∗
Single-Node Approximation† [61] O(λ−DM2N)∗
Pairwise-Node Approximation† [61] O(λ−2DM2N)∗
GMM Approximation on M robots [32] O(MN2)
GMM Approximation on a Time Horizon [32] O(MN2T )

† Requires Numerical Integration
∗ Assuming a fixed step-size numerical integrator with step size λ
D: Dimension of measurement space
M: Number of robots
N: Number of particles
T: Length of time horizon

Table B.1: Computational complexity associated with information based control
methods

H(zt|xt) = −
∫
Z
p(zt|xt) log p(zt|xt)dZ

≈ −
∫
Z

[
N∑
i=1

witp(zt|x̃it)) log p(zt|x̃it))
]
dZ (B.5)

Note that this formulation requires a particle set {wit, x̃it}, i = 1, ..., N and a numer-
ical integration tool for computing the entropy integral over the entire measurement
space, where the dimension grows linearly in the number of observers. The exact
mutual information metric given by (B.3) is not scalable for large teams of robots, an
issue addressed by previous work [32, 61], which offers several approximations to the
problem.

The first family of approximations of the MI quantity relies of simplifying the
integrations over the entire measurement space by optimizing for only a single robot
node or a pair of nodes at a time. The exact MI cost can be approximated at a single-
node, which eliminates many dimensions of integration in approximating the quantity.
This method presented in [61] can be used on board each robot node to yield a local
optimum control input, and a global consensus is not required. The pairwise-node
approximation [61] can be used to only consider the pairwise interactions between
the robots, keeping all other state variables constant during optimization of control
inputs for a pair of robots.

The second set of approximation models focus on the form of the problem in-
stead, focusing on approximating the conditional measurement density as a Gaussian
mixture, for which the integral is greatly simplified [32].

We will discuss the Gaussian Mixture Approximation in the following section,
and present the computational complexities of other methods that have been intro-
duced in the literature.
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B.1 Gaussian-Mixture Approximation
A Gaussian Mixture approximation [32] uses a zeroth-order Taylor series expan-

sion for approximating the differential entropy, H(zt). The Taylor series approxima-
tion relies on a Gaussian Mixture Model approximation of the density p(zt|x̃t) and
provides an approximation to differential entropy over the entire measurement space
at a low computational cost (see Table B.1). The approximate Mutual Information
is given by

ÎGMM(zt, xt) = Î(zt, xt+1) = HGMM(zt)−HGMM(zt|xt) (B.6)

where

HGMM(zt) ≈ −
N∑
n=1

wn
N∑
m=1

wmN (µn;µm,Σm) (B.7)

and

HGMM(zt|xt) ≈ −
N∑
n=1

wnH̃(z(j)
t |xt = x̃

(j)
t,n)

=
N∑
n=1

wn
(
log((2πe)M |Σn|)

)
(B.8)

where µi = x̃it and M is the number of robots. The formulation of (B.7) and (B.8)
follow from (B.4) and (B.5) respectively, by a zeroth order approximation to differ-
ential entropy for Gaussian Mixture Models (GMM), as developed by Huber et al. in
[63] and applied to the information based control problem in [32]. Note that a higher
order analytic approximation can similarly be used for obtaining tighter bounds.
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