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Abstract
Numbers of indoor positioning techniques have been pro-

posed, but none of them is generally deployable in most
buildings, in spite of their acceptable accuracy in experi-
ments. The primary reason is that, to work properly, all of
them have specific assumptions about context, like infras-
tructure, environment, and user behaviors. However, as-
sumptions of them are almost mutually independent, and
their working context are actually detectable. In this paper,
we propose a indoor positioning system framework to com-
bine location estimations from multiple positioning systems.
Each system is encouraged to implement its own context-
awareness mechanism, and needs to provide a confidence
about its estimation. The framework maintains credit history
for all participating positioning system entities, and fuses
their estimations based on their credits and confidences. Our
preliminary deployment shows that it is not hard to provide a
highly reliable confidence, and using data fusion techniques
like Kalman Filter can further reduce errors in the frame-
work’s decision.

1 Introduction
Indoor localization is one of essential technologies for

many applications, such as energy-efficient buildings, dis-
aster rescue, and indoor navigation. Numbers of Indoor
Positioning System (IPS) has been proposed and imple-
mented. One group of them are built upon the idea of fin-
gerprint, which means a signature of environment features
consistently and strongly depending on the physical loca-
tion. Examples include WiFi Received Signal Strength In-
dicator (RSSI) from all Access Point (AP) in the building
[3], FM radio signal features (RSSI, SNR, multi-path, etc.)
[5], acoustic background spectrum [16]. Another group of
systems look into installing extra infrastructures as beacons
in building, where users carry receiver of the signal sent by

beacons to form fingerprints. The technologies used by bea-
cons include ultrasound [14, 18], infrared [17], magnetic in-
duction [10], RFID [12], Doppler effect on radio signals [4].
Moreover, rich sensors available on smartphones stimulates
researchers to bring the idea of dead reckoning into trajectory
estimation and localization [15, 11]. Basically, they use In-
ertial Measurement Sensors (IMU) embedded in commercial
smartphones (e.g. accelerometer, gyroscope, compass, mag-
netometers) to estimate the velocity and direction of users,
and in turn estimate the trajectory and the location given the
known start point.

However, no agreement has been made on a general solu-
tion as Global Positioning System (GPS) in outdoor localiza-
tions [9], which doesn’t work well for indoor environments
because of the signal attenuation inside buildings. Almost
all indoor localization techniques have specific assumptions,
which in turn become limitations that thwart their large scale
real-world deployments. Firstly, there are general problems
for different types of techniques. IMU performs for spo-
radic movements and suffers from cumulative drift errors.
Fingerprint-based methods require the signature at each po-
sition to be consistent by time, and the interference should
not low as well. But at this stage there is no universal con-
sistent signal. Moreover, beaconing techniques need extra
infrastructures that are not common in buildings, which will
bring lots of cost on devices, setup, and maintenance. Sec-
ondly, some IPSs are designed for specific scenarios. As an
example, SurroundSense [2] is designed for shopping mall,
where there are always distinguishable features for all adja-
cent stores and similar types of stores in terms of light, color,
and sound.

We argue that their limitations don’t mean these systems
are useless, because of following points. First, the limita-
tions don’t always happen at the same time, and some of
them have actually been proven to be almost mutually in-
dependent. Liu et al. [5] look at the consistency of finger-
print of WiFi signal and FM signal, and found for most lo-
cations, there are at least one consistent signal. Second, it is
not hard to detect whether the context satisfies the assump-
tions. For example, we can regard accelerometer data with
very large variance as uncommon or too complex movement
from users. The signal consistency can be checked when
smartphone detects little movement from accelerometer (i.e.
the phone is staying at one location). Third, crowdsourcing
from user inputs is also a good ways to determine the con-



text, especially when proceeded in a motivating manner, like
games or competitions.

Another reason for the absence of consensus on indoor
localization solution is their heterogeneous goals. Some sys-
tems pay attentions on the physical precision of the estimated
location, such as some Simultaneous Localization And Map-
ping (SLAM) application employed by robots that aspire
very fine grained positioning results. Some other systems
only care about the specific locations relevant to the appli-
cation. A building energy tracking system [6] only cares
about the zones around electronic devices. In addition, in-
stead of accurate physical location estimation, some appli-
cations need fine-grained room level positioning, which we
call as semantic localization. Semantic localization differs
from physical localization in the sense that two physically
nearby points could locate in two different (and maybe ad-
jacent) rooms, imaging two locations against the same wall
form each side; and two points in one room can be apart from
each other at meter level, imaging two points locating at two
diagonal corners. A consumer behavior analytics system in
mall [2, 19] needs accurate estimations of the stores the con-
sumer visited.

In this paper, we propose an IPS Framework, to combine
different indoor localization techniques accordingly based
on their limitations and context, as well as the requirements
of the application. The key point is to assign higher credits
and weights to more possibly accurate results, and combine
them using appropriate data fusion methods. Each IPS is re-
quired to implement its own way of predicting the accuracy
of its result, which we call as confidence. The overhead for
existing IPSs to be integrated is independent of existing im-
plementation, but depends on how accurate they want to the
confidence to be. The algorithms to calculate the confidence
vary between different techniques, and how well the design-
ers and developers understand the localization methods. As
we described above, one important point is many IPSs can be
implemented to be context-aware. For example, fingerprint-
based confidence could be more confident if the signal is
consistent. Based on their confidences and the history per-
formance (i.e. the credit), the framework assigns weight to
each of them. IPSs with more accurate confidences in his-
tory gain higher credits. The idea is to recognize the best
results by conservatively trusting their confidence. With dif-
ferent results assigned different weights, we look into how
to combine their data to provide more precise and smooth
trajectory estimations. Note we are neither trying to denoise
the raw sensor data nor improving accuracy for any IPS.

To depict our ideas, we implemented WiFi RSSI-based
fingerprint localization and Acoustic Background Spectrum
(ABS) fingerprint localization [16] 1 and the prototype of our
framework. Both of them are embedded with their own con-
fidence calculation mechanisms. We also implement linear
weighted average and Kalman Filter [1] to combine the es-
timations from WiFiLoc and ABSLoc. Based on the finger-
print database we build for a university building, we evalu-
ate our confidence algorithms and framework with three tra-

1For ease of discussion, “WiFiLoc” and “WiFi RSSI-based fingerprint
localization” are used interchangeably in this paper, so as “ABSLoc” and
“Acoustic Background Spectrum fingerprint localization”.

jectories, along which both WiFi and ABS fingerprints are
sampled. The results show that the framework can trust the
confidence, and hence yield results no worse than the best
estimations among WiFiLoc and ABSLoc.

In summary, our contributions are:
• We point out that most IPS can do context-awareness,

and hence provide an accurate confidence of their local-
ization results.

• Given each IPS can predict their result accuracy, we
propose the idea of IPS framework that accordingly ad-
justs and uses appropriate IPSs under different circum-
stances.

• With real implementations, we prove the correctness
and feasibility of the confidence algorithms and frame-
work.

The rest parts of this paper are organized as follows: in
Section 2, we introduce some IPSs briefly, and talk about re-
lated works in combining IPSs. The system architecture is
described in Section 3. We discuss the ideas of calculating
confidences with detailed examples in WiFiLoc and ABSLoc
in Section 4, and data fusion methods to combine multiple
sources of estimated locations in Section 5. The evaluations
are described and analyzed in Section 6. We talk about our
future work and conclude the paper in Section 7 and 8 re-
spectively.

2 Related Work
Some former work of combing multiple indoor localiza-

tion techniques resulted to significant performance improve-
ments. Azizyan et al. take WiFi, sound, light, and color fea-
tures from mobile phone sensors as signatures, and sequen-
tially and gradually filter estimated position candidates with
multiple signature-based techniques, each of which uses the
output candidates set of the former one as input [2]. The im-
provement brought about by this cascaded methodology is
proved to increase with the number of available sensors in-
creases in general. However, they also observe sound filter
sometimes rule out the correct positions, which gives more
motivation for us to look into the determinability of the in-
termediate accuracy before blindly combing them.

Chen et al. [5] combine WiFi and FM signal indicators
as one signature. They found the interferences to WiFi and
FM signals causing erroneous results happen independently.
Thus, using integrated signature almost remove all the errors,
drastically increasing the localization accuracy from around
80% up to 98%. We believe this phenomenon is also appli-
cable to other localization techniques, and will bring more
benefits if more appropriate intelligence are introduced.

However, no comprehensive and general study has been
done for combing multiple IPSs. Rai et al. [15] build
an fully-automated indoor localization system called Zee,
which features no training phase, and the system converge
pretty neatly by combining IMU-based dead-reckoning and
WiFi signature-based localizations. Zee uses estimated tra-
jectory to determine the positions on the map, and records
the WiFi signatures simultaneously to build the signature
database from zero. WiFi signatures in history are used to
calibrate the localization methods. This is a good example of



combining different techniques, but they don’t have in-depth
investigation on general combinations.

Paiidya et al. [13] introduce the idea of combining differ-
ent wireless IPSs because they are not avaliable everywhere,
and the coverage of collection will provide a more pervasive
services. However, they only use averaging without weights
and have no discussions about the rationale. Experiments
show that improvements of midpoint of results from K Near-
est Neighbor (KNN) and triangulation of Bluetooth signal
range from 2%−52%.

In [8], Gwon et al. propose a Selective Fusion Location
Estimation (SELFLOC) algorithm and Region of Confidence
(RoC) algorithm. Both of them are data fusion methods of
IPSs. SELFLOC is essentially a linear weighted averaging
calculation. However, they consider little about the nature
of the mechanism of IPSs, and therefore don’t discuss how
and what weights should be assigned to each IPS, let alone
the context awareness, which we will describe in this paper.
On the other hand, RoC can only be used for location deter-
mination during triangulations, which is just a little portion
among all IPSs. Similar to SELFLOC, they didn’t dive into
how to eliminate the erroneous IPSs in triangulations using
context awareness. Another problem of triangulations is that
universal obstacles in commercial buildings almost preclude
accurate line-of-sight distance measurements, which is cru-
cial in triangulations. This is also the primary reason that we
don’t use triangulations in our WiFiLoc.

David et al. [1] developed a decentralized multi-sensor
target tracking system with a distributed information flow
and data fusion among the participating the platforms. They
analyzed three data fusion techniques associated measure-
ment fusion, tracklet fusion and track to track fusion. Of
these techniques, the track to track fusion is of great interest
to us. Track to track data fusion technique is used to combine
the data from multiple sensors assuming trackers on all plat-
forms use the same information to start with at same time t0.
We use similar approach to indoor localization however with
a centralized server for combining data for multiple tracks.

3 System Architecture

Phone Server
Sensor Modules

WiFi chip

Microphone

Compass

Accelerometer

Gyroscope

Others...

Indoor Localization Systems

[Timestamp, Value]

WiFiLoc

ABSLoc

Dead Reckoning
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System 
Framework

[Location List, Confidence]

[Final Location]

Figure 1. System Architecture

In this Section, we describe the system architecture of the
IPS framework in detail. The point is to design a system with
both efficiency and extensibility. The efficiency comes from
various aspects including hardware, algorithm, data trans-
mission, etc. We leave the efficiency as issues to each of

these elements, and emphasize on the extensibility. As a
framework, it should require as little overhead as possible for
a new module who wants to plug in. Fig. 1 shows the overall
architecture of our systems. We have sensor modules that are
available on most off-the-shelf smartphones. All data from
the smartphones are pushed to or pulled by different IPSs.
And all IPSs provide their list of most possible locations and
their confidences to the IPS framework. The framework de-
termine and return the final results back to smartphone.

3.1 Sensor Modules
Sensors in Fig. 1 are most commonly available in com-

mercial smartphones. But we don’t limit the range of sensors
or devices we can use. They are just data sources of spe-
cific IPSs, and have little to do with the framework that only
looks at the output from IPSs. For example, one can install
magnetic signal beacons and have user carry a pre-registered
magnetic receiver [10]. One important idea here is to iso-
late the sensor modules from IPSs. IPSs can get raw data,
but don’t need to get into details of sensor module imple-
mentations. Some protocols have been proposed to abstract
heterogeneous stream/time-series data [7]. But these are out
of the range of this paper.

Same type of sensors from different manufactures may
have significant differences with respect to performance,
such as consistency, accuracy, speed, and durability. But this
is not the worry of the framework either. As we will discuss
later, the framework maintains a history of performance of
different IPS systems, so the error-prone sensors or devices
will lose the credits and have little impact on the final results.

3.2 Indoor Positioning Systems
In spite that IPSs are depicted as running on server in Fig.

1, practically there should be no restrictions on the imple-
mentations. Currently we implemented WiFiLoc and AB-
SLoc in Matlab on server. But we can totally distribute
them. In particular, we may put the database of fingerprints
on other servers if the size of database increases. Smart-
phone can also do preliminary computations to refine the
data before sending them to server for fine grained finger-
print matching, and hence reduce the network throughput.
For example, it can use last outdoor GPS readings to decide
the part of building it should be, and only look at the finger-
prints around that area.

WiFiLoc takes the set of RSSI values from all WiFi APs
as a signature.2 Signatures on selected locations, which
we call fingerprints, are collected in advance and stored in
database. When a user or application query the estimated lo-
cation, WiFiLoc grabs the current signature, and calculates
distances between it and fingerprints in database. The dis-
tances could be any appropriate distances that can be applied
to an array of values3, such as Euclidean distance or Man-
hattan distance. Basically, the corresponding location of the
most similar fingerprint will be regarded as the estimated lo-
cation. Alternatives may take the list of near fingerprints and
their locations, and use the mean value of the location list as

2There are other IPSs that use signal attenuation to estimate distances
from user and APs, and perform triangulation on the map to do positioning

3Depending on the nature of the array of values, it can, but not restricted
to, be a vector in a vector space.



final estimation. This process is called KNN averaging, and
is commonly used in fingerprint-based IPS.

ABSLoc [16] is also a fingerprint-based IPS. The differ-
ence between ABSLoc and WiFiLoc is the nature of finger-
print. Based on the idea that each room in a building has its
unique pattern of background noise, thanks to the uniqueness
of environment and sound attenuation through walls. AB-
SLoc extract the frequency spectrum of background noise
as the fingerprint for each room. In our prototype, we pro-
duced fingerprints for points rather than rooms, because it
will not reduce room-level localization accuracy and it sim-
plifies data fusion. We will come back to this in Section 6.

Dead-reckoning is to estimate current position based on
the known start point and the velocity, time, direction along
past trajectory. With richer availability and better perfor-
mance of IMU on smartphones, we can measure the speed
and orientation of the user, and perform a dead reckoning
calculation. The downside of dead reckoning is that it sub-
jects to cumulative errors. So the calibrations with help from
other IPSs appears very important. In our system, the cali-
brations happen when the framework returns the final loca-
tion to all plugged-in IPSs.

In addition to the original designs of these IPSs, we pro-
pose each of them to implement a confidence calculation
mechanism, in which they can use sensor data to learn the
context and analyze the intermediate or ultimate results, to
indicate their confidences about the accuracy of their estima-
tions. More details will be discussed in Section 4.

Similar to sensor modules, IPSs are isolated from the
framework. In particular, IPS framework use one generic
interface with all IPS and obtain estimated location list and
confidence from each of them. Hence, any detail of IPS is
hidden from framework. However, the manifestations of lo-
cations varies. They can be room numbers, or coordinates
based on the map. The framework needs to understand both
of them and handle the differences. The details will be dis-
cussed in Section 5.1.3.
3.3 Indoor Positioning System Framework

IPS framework is in charge of 1) collecting estimations
and confidences from IPSs, 2) maintaining a credit based on
the history performance of each entity of IPSs, and 3) fig-
uring out a good way to fuse data from multiple sources to
generate a final estimated location. We discuss each of them
as follows.

Estimation and confidence collections could be either
event-driven or command-driven, which means IPSs can re-
port to framework on locations updates, or framework can
retrieve these information from IPS on demand. We imple-
mented out prototype as the latter case, so estimations from
both IPSs have the same timestamp, and in turn simplify the
comparisons between them in Section 6.

To reduce the impacts from ill-performed entities of IPS
resulted from various reasons, including malfunctioning sen-
sors, nasty implementation, or coarse nature of the algo-
rithms, the framework log the performance and evaluate the
credits of them. With different requirements for framework,
each entity may have a credit for each zone in a building, or
even for each time span in a day or a week. The reason is that
some IPSs may perform well under specific circumstances.

For example, ABSLoc tends to perform better among phys-
ically separated rooms than open areas. And WiFiLoc may
perform better during early morning when there are less in-
terferences.

There are a bunch of techniques to execute data fusion
on multiple locations. The most simple one could be linear
weighted average values of each dimension of coordinates.
Nevertheless, we can bring more intelligence into this step.
For example, Kalman Filter [1] could be used to iteratively
eliminate the errors along the trajectory, considering restric-
tions like pedestrian speed. Moreover, other information,
such as physical obstacles and user movement pattern, can
also be integrated into the framework. After combing differ-
ent locations, the framework sends the final decision back to
all IPSs as feedback and smartphone as query result.

4 Confidence
Aside from typical localization mechanisms, we advocate

all IPSs also implement their mechanisms to estimate their
result accuracy, which is the confidence we talked about. We
look into confidence in this Section. Because the confidences
depend on IPSs themselves, to deliver our ideas, we discuss
possible confidence calculation algorithms for the IPS in-
volved in our prototype, namely WiFiLoc and ABSLoc, and
extend the discussion a little in other IPSs. To generalize, we
require all confidences Ci (i = 1,2,3, ...,n) to be real num-
bers in [0,1].

4.1 WiFiLoc
As a fingerprint-based IPS, WiFiLoc can employ generic

ideas of confidence calculation for fingerprint-based IPS.
One of them is to see the signature distance between the sam-
pled signature and nearest fingerprint in database. Smaller
nearest distances ought to yield higher confidence gener-
ally. Furthermore, many fingerprint-based IPSs average
more than one locations with near enough fingerprints to
avoid extreme errors in estimation. Hence, the sparsity, or
the variances of each dimensions in the location list, also
imply the potential accuracy of the estimations. It could be
more confident if its location list converge on the map.

On the other hand, IPS will potentially provide more pre-
cise confidence if it takes relevant context into consideration.
For WiFiLoc, one can determine whether the signal is consis-
tent at one position by recording multiple signatures. It can
be done during the the database building phase, in which the
system administrator collects takes charge. But a more ef-
fortless way is to have the users’ application check the signal
consistency when little movement in IMU is detected (i.e. the
smartphone is halting at one point). Other indicators of con-
fidence include the background noise or interferences, and
the network delay, and numbers of users for each AP. These
information are all observable with existing infrastructure,
but how exactly they influence the accuracy of the estima-
tions require more in-depth research.

Moreover, if the designer and implementer go further,
and make WiFiLoc maintain a history of the consistency
of each AP, or even their performances under different cir-
cumstances (e.g. numbers of clients, interferences, network
throughput), it may perform better context awareness, and
provide much more accurate confidences. These details is



hard to be considered in the framework, therefore the respon-
sibility is on each IPS.
4.2 ABSLoc

ABSLoc is also a fingerprint-based IPS, therefore the
generic ideas described for fingerprint-based IPS before are
applicable as well for ABSLoc.

Apparently, ABSLoc can also take context information as
input to confidence calculation. If it can identify open ar-
eas and separated rooms areas in the building, which may
require input from users or administrator, it can be less con-
fident if most of the nearest fingerprints are located among
open areas. ABSLoc can also log its performances based on
the feedbacks from the framework at each positions, and tag
the positions where it always yield inaccurate estimations as
open areas. One point to emphasize here is that, the idea
for history performances in framework and in each IPS are
different. For framework, it has not idea about the reasons
that cause the coarse estimations in IPS, which could be ei-
ther bad hardware or software, especially if the framework
doesn’t have history with fine enough granularity in terms of
time and space. However, if these inaccuracy could be iden-
tified by IPSs themselves by low confidences before sending
to framework, it avoids them harming their credits, and pre-
serves their opportunities to contribute to the whole system.

According to the evaluation part in [16], ABSLoc only
work properly in relative quiet environments. Fortunately,
we can determine whether the audio record is noisy by audio
signal processing features, such as its variances and mean
value. Based on the noisiness of the record, ABSLoc can
definitely indicate higher confidence if the sound is quieter,
compared to a preset performance threshold.
4.3 Other Indoor Positioning Systems

Aside from incomplete confidence calculation methods
above, other IPSs also have great potential in predicting there
result accuracy using confidence. Take Dead Reckoning as
an example, we can infer from [15, 11] that their IMU-based
trajectory estimations only work with “normal” movements
of phones, which is a limited set of pre-defined patterns to
which all movements have to be matched. But we actually
cannot guarantee that all users will use phone “normally”.
It is possible that the user swings her or his phone during
gaming, or have weird movements when they are shooting a
video using phone. Those anomalies could actually be de-
tected. Fortunately, most IMU-based IPS have a possibility
of their estimation accuracy, which tends to be low with “ab-
normal” situations, but few systems make use of that.

Potentially there are numerous ways to compute a con-
fidence. Theoretically, the better we understand the nature
of the IPS and related hardware and software, the more ac-
curate confidence calculation algorithm we could come up
with. However, perfect confidence calculation is not our
goal. Our key point is we can make the most of the infor-
mation we gain, and provide a better positioning results with
cooperated efforts from multiple IPSs.

5 Data Fusion
With multiple sources of estimated location list and con-

fidences, the framework takes charge of combing them and
generating a final decision of location. Too achieve this, it

needs to judge and weight between multiple proposes from
IPSs. Unfortunately the confidences provided along with lo-
cation lists by IPSs can only act as clues rather than determi-
nants, because of different understandings, implementations,
and natures among IPSs. We propose an empirical method,
which keeps a credit based on performance history for each
IPS entity. After that, we look into ideas of fusing multiple
location estimations, to finalize more practical results in the
sense of reasonable human movements. We use Kalman Fil-
ter as our key solution for data fusion, which is proved to
fulfill our expectations as we will describe in Section 6.
5.1 Preparation
5.1.1 Performance History and Credit

The framework keeps track of all plugged-in IPSs, and
logs their performances to build their credits. Basically, if
one IPS always provides accurate estimations, which means
the estimations have small distances to the final decision
of the framework, when they meanwhile gives high confi-
dences, it gains credits. Low confidences don’t help gain or
loss credits. And erroneous estimations with high confidence
will harm the credits. Note that a bad estimation coming with
high confidence will not determinably ruin the final decision,
because the framework will not only look at on confidences,
but other parameters like credits and human movement re-
strictions.

One important functionality that the framework has is to
figure out what granularity each credit should represent in
terms of time and space. As we described in Section 3.3, one
IPS entity may perform quite differently at different places
and time, because of their specific assumptions on indoor en-
vironments. For instance, ABSLoc assumes separated rooms
in buildings, but open areas like cubicles are actually not un-
common. To make sure the bad performances of an IPS un-
der inappropriate circumstances don’t prevent it from con-
tributing in their adept scenarios, the framework can use
clustering techniques, such as k-means, to divide an entity
into several ones with several credit records.
5.1.2 Weight Assignment

Weights represent to what extent the framework trust the
estimations from an IPS. As weights are directly used for es-
timations combination, so we require them to be normalized,
which means all weights Wi (i = 1,2,3, ...,n) for n IPSs meet
the condition:

n

∑
i=0

Wi = 1, Wi > 0 (1)

There are also several ideas to assign weights. Most sim-
ple one should be multiplying credit and the confidence, and
normalizing the results as weight for each IPS. Moreover, as
the purpose of weights is to highlight the most possibly accu-
rate result, and reduce the impact from erroneous ones, when
the framework detects large sparsity among estimated loca-
tions, it may consider amplifying the differences between all
weights, to potentially reduce the effects from less-trusted
IPS.
5.1.3 Unify Location Granularities

Another issue faced by the framework is that different
IPSs actually provide location estimations at different gran-



ularities. In particular, some IPSs like ABSLoc aim at room-
level semantic estimations, but dissimilarly, WiFiLoc only
produce coordinates as locations. First of all, the framework
has to understand both semantic and physical representatives
on the map. We don’t dive into the details of map imple-
mentation in this paper. As far as we are concerned, the in-
congruity of location manifestations forces the framework
to compromise if it wants to use dominant data fusion tech-
niques. We propose two ways to unify the granularity as
follows.

• Location Granularities Boost: To convert estimated
room from semantic estimations to coordinates, frame-
work can uniformly select points in a room at a proper
granularity. However, it is not a good idea to choose the
mean value of these points as estimation from one IPS,
because it always leads to the central point of the room.
Instead, the framework divides these points and regards
each of them as estimation from one IPS entity with the
same confidence as the original one.

• Location Granularities Reduction: Conversely, the
framework can also semantically use room where the
mean value of the coordinate list from one IPS to rep-
resent its estimation. However, combing semantic lo-
cations requires different data fusion techniques. We
leave this as our future work.

5.2 Fusion Methods
With weights and locations prepared, the framework can

combine them and give the final decision of the estimation.
We only talk about data fusion methods after using “Location
Granularities Boost”, which generates coordinates as inputs
rather than semantic representatives.
5.2.1 Linear Combination

The most simple fusion is linear weighted average. We
denote Li (i = 1,2,3, ...,n) as the mean location of loca-
tion list from the ith IPS using KNN averaging, and Wi (i =
1,2,3, ...,n) as its weight. Then the final estimated location
L is

L =

n
∑

i=0
(Wi ·Li)

n
(2)

, where Wi (i = 1,2,3, ...,n) are normalized as we de-
scribed before. However, this combination only follows the
mathematical principles without any consideration of human
movement restrictions, leaving us plenty rooms for improve-
ments.
5.2.2 Kalman Filter

Compared to linear weighted average, Kalman Filter con-
siders the rationality in the trajectory. We used a simple
form of Kalman Filter to combine the data. Kalman Filter
provides Bayesian recursive estimate of state space Xk using
knowledge of previous state [X1,X2,X3, ...,Xk−1] in a linear
state space system with Gaussian noise. Since the project fo-
cus was on building the framework rather than Kalman Filter
itself we used a basic form of Kalman Filter with certain as-
sumptions. Firstly, a persons movement in a building is a
linear system where he is moving with a constant velocity.

Figure 2. Database Points and Ground Truth Paths

This is a simplest case of a persons movement in building.
So a simple variation of Kalman filter would suffice for data
fusion. Secondly, the measurements are taken from right top
corner of the floor map. Position of both sensors are consid-
ered to be fixed at (0,0) position.

Each sensor module feeds the Kalman Filter with loca-
tion list and confidence value. Another important assump-
tion is that the sensors are synched meaning they provide
measurement of target state at same time interval. Using the
linear system equations for position estimation and the mea-
surements from sensors Kalman Filter corrects the errors in
sensor measurements. We combine the data using weighted
average after the estimation. Weights are calculated based
on the confidence value supplied to the framework. We plan
to extend this work using non-linear Kalman Filters variants
such as Extended Kalman Filter (EKF) or Unscented Kalman
Filter (UKF).

6 Evaluation
We evaluate our system based on 3 trajectories in uni-

versity building. Particularly, we firstly look into confi-
dences about the results for each technique, namely WiFiLoc
and ABSLoc. Results shows that each technique can pro-
vide fairly accurate confidence on their estimation accuracy.
Thereafter, we analyze the accuracy improvements of dif-
ferent combination methods given the estimated points and



confidences. We employ simple weighted average method as
well as Kalman Filter. Thanks to the error deduction feature
of Kalman Filter, it can remove erroneous spikes in all esti-
mated paths. Note that we emphasize on the error reduction
ability of our framework, rather than accuracy improvement,
which may be the goal for each technique themselves. In
other words, the framework are trying to avoid trusting and
using, but not able to reduce, the errors that inherently exist
in sensor data and localization techniques.

6.1 Experiment Setup
We implemented WiFiloc and ABSLoc, both of which are

comprised of a training phase and a localizing phase. All
training and localizing data are collected in advance, and
post-processed in MATLAB 2012b.

In our WiFiLoc, we wrote an application for LG Revolu-
tion VS910 with Android 2.3.4 to collect WiFi RSSI. Every
entry in raw data is a < MAC address,RSSI > tuple. Each
WiFi signature is a list of tuples. And the application collects
RSSIs for each available AP around every 800 milliseconds,
which in turn forms a signature. In WiFiLoc database, every
fingerprint is combined with a coordinate on the map. And
new signature are compared wit all fingerprints, and in turn
result to a most-possible coordinate list.

For ABSLoc, we used the default sound recorder in Ap-
ple iPhone 5 with iOS 6.01, which yields .m4a audio files.
The record files last more than 60 seconds for each point. To
make the audio file easy to analyze, each of them is converted
to .wav files in Audacity (Specifically, the file type is “WAV
(Microsoft) signed 16 bit PCM”). However, instead of room-
level semantic localization, we also bind a ABS fingerprint
in ABS database to a coordinate for two reasons. First, us-
ing fine-grained doesn’t harm the accuracy at room level, be-
cause accurate estimated location based on coordinates can
also be converted to accurate room estimation. Second, using
coordinates for both WiFiLoc and ABSLoc greatly simplifies
and reduces our data fusion efforts.

6.1.1 Training
In training phase, we collects both WiFi and ABS signa-

tures at specific points in RADLab. The 98 red cross mark-
ers in Fig. 2 indicate the locations of training data. For every
point, we record more than 60 seconds audio signal and WiFi
RSSI values. The binding between WiFi or ABS fingerprint
and coordinate on the map are stored in WiFiLoc database
and ABSLoc database respectively. The time spent on col-
lecting all data in database spans one week.

6.1.2 Localizing
Fig. 2 depicts the 3 paths we conducted for evaluation.

Every marker on the path indicates both a sampled WiFi
and a sampled ABS signature. There may be signature sam-
pling happened between two consequent markers. The size
of marker represents the time the user spent at that point.
Both path 1 and path 2 start from the bottom part of the map,
whereas path 3 starts from the top part. Start points are tags
as S1, S2, and S3 in Fig. 2 respectively. To help discus-
sions in Section 6.2 about how the environments influence
ABSLoc’s performances, we also mark blocked rooms and
open areas on the map.

With the signatures sampled along the path, WiFiLoc and
ABSLoc start positioning these signatures as we described in
Section 3.2. We use Euclidean distance as signature distance.
In WiFiLoc, the default value for RSSI is set as −150 dBm
if it is missing in either signatures compared. Among the co-
ordinates sorted by their corresponding signature distances,
WiFiLoc and ABSLoc set a threshold

T = α ·Dmin (3)

, where Dmin denotes the minimal signature distance, and se-
lect all coordinates whose corresponding signature distances
are less than T as estimated location list. Currently, we only
use the sparsity of this location list to determine the confi-
dence for both WiFiLoc and ABSLoc. The more the location
list converges, the higher the confidence goes. In particular,
the confidence Ci is

Ci =
1

2 · e
Stdx

StdBaselinex

+
1

2 · e
Stdy

StdBaseliney

(4)

, in which Stdx and Stdy denote the standard deviations
on each dimension of coordinates, and StdBaselinex =
100 (inch) and StdBaseliney = 100 (inch). Those numbers
are empirically set, and are possible to be tuned for a bet-
ter performance. However, that is not our emphasis in this
paper.

The framework obtains their location lists and confi-
dences, and assigns normalized weighted Wk based on Ci (i=
1,2,3, ...,n) using following formula,

Wk =
(Ck)

3

n
∑

i=0
(Ci)3

(5)

The purpose of using 3rd power computation is to enlarge
the differences between IPSs with relatively large differences
in confidences. In other words, it is used for highlight-
ing the higher confidences between WiFiLoc and ABSLoc.
With weights assigned, the framework applies both linear
weighted average and Kalman Filter to the mean coordinates
of both location lists from WiFiLoc and ABSLoc.

We thereby evaluate this prototype with respect to the
confidence accuracy, data fusion methods, and other selected
parameters, such as fingerprint number at each point, and to-
tal points number in database.
6.2 Confidence Accuracy

Empirically, we select 3 WiFi fingerprints and 1 ABS fin-
gerprint at each position in database. And we choose α= 1.3
for both WiFiLoc and ABSLoc.

Fig. 3 depicts the confidences and errors, which is the
physical distance from estimated location to the ground truth
location, for WiFiLoc and ABSLoc in all 3 paths. The x-axis
is the timeline along the path, and every marker corresponds
to a marker in Fig. 1. For path 1, it samples a WiFi and ABS
signature nearly every 4 seconds, and path 2 and 3 sample
every 1 or 2 seconds. We eliminate the samples between ad-
jacent markers along the curve, to ensure the results clear as
well as representative.

According to Fig. 3, in most cases when the confidence
is high, the errors are low, with only one exception in AB-



0 100 200 300 400 500 600 7000
200
400
600
800

1000

Er
ro

r (
in

ch
)

Time (second)

WiFi Confidence for Path 1

0 100 200 300 400 500 600 7000
0.2
0.4
0.6
0.8
1

C
on

fid
en

ce

0 20 40 60 80 100 120 140 160 1800
200
400
600
800

1000

Er
ro

r (
in

ch
)

Time (second)

WiFi Confidence for Path 2

0 20 40 60 80 100 120 140 160 1800
0.2
0.4
0.6
0.8
1

C
on

fid
en

ce

0 20 40 60 80 100 120 140 160 180 2000
200
400
600
800

1000

Er
ro

r (
in

ch
)

Time (second)

WiFi Confidence for Path 3

0 20 40 60 80 100 120 140 160 180 2000
0.2
0.4
0.6
0.8
1

C
on

fid
en

ce

(a) WiFiLoc Confidence

0 100 200 300 400 500 600 7000
200
400
600
800

1000

Er
ro

r (
in

ch
)

Time (second)

ABS Confidence for Path 1

0 100 200 300 400 500 600 7000
0.2
0.4
0.6
0.8
1

C
on

fid
en

ce

0 20 40 60 80 100 120 140 160 1800
200
400
600
800

1000

Er
ro

r (
in

ch
)

Time (second)

ABS Confidence for Path 2

0 20 40 60 80 100 120 140 160 1800
0.2
0.4
0.6
0.8
1

C
on

fid
en

ce

0 20 40 60 80 100 120 140 160 180 2000
200
400
600
800

1000

Er
ro

r (
in

ch
)

Time (second)

ABS Confidence for Path 3

0 20 40 60 80 100 120 140 160 180 2000
0.2
0.4
0.6
0.8
1

C
on

fid
en

ce

(b) ABSLoc Confidence

Figure 3. Confidence Accuracy of WiFiLoc and ABSLoc
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Figure 4. Performance Improvements after Using Linear Weighted Combination and Kalman Filter

SLoc at the end of path 1. Hence, the framework should
trust high confidence, and lean the final decision to the very
confident IPS. However, high confidences don’t happen fre-
quently, but fortunately they happen independently, which
means we can potentially have at least one confident IPS ev-
ery time if there are enough number of them. We can hardly
prove theoretically their independence, but intuitively WiFi
signal should have nothing to do with acoustic background
noise. Experiments can be conducted to empirically prove
the mutual independence, such as [5].

Another importance observation from path 1 in Fig. 3(b)
is that ABS works well among blocked rooms, which ends
around 470 seconds after the start of the trajectory, and sud-
denly varies drastically after the user entering the open area.
Meanwhile, the confidences of ABSLoc are also generally
relatively higher in separated rooms than in open area. This
phenomenon is not obvious in path 2 and 3 because they are
almost always in open area. If the open areas and blocked
areas are tagged on the map, by either crowdsourcing from
users or manual operations from administrator, we can give
ABS a better confidence computation compared to only us-
ing location list sparsity.

6.3 Data Fusion Methods
We depicts the performance of linear weighted average

and Kalman Filter in all 3 paths in Fig. 4. The same as Fig. 3,

the x-axis is the timeline of paths, but the y-axis only shows
the errors. On the right part of each small summary figure is
the mean value and standard deviation of WiFiLoc, ABSLoc
and the final location from data fusion method.

We firstly look at the small summary figures in Fig. 4. As
we can see, ABSLoc is more accurate than WiFiLoc in path
1, because path 1 is mostly in separated rooms, but performs
worse in path 2 and 3, where the users are mostly in open
areas. So it is more clear here that the environment impacts
IPS as we suppose in theory. Most importantly, no matter
which IPS performs better, and no matter what combination
data fusion method is employed, the framework can almost
give final results that have similar accuracy as the better one
among WiFiLoc and ABSLoc. The final nearly 200-inch er-
rors result from the inaccuracy of each IPS themselves, for
which the framework has no responsibility to improve.

If we go into more details, we can see both linear
weighted average and Kalman Filter tend to have final deci-
sions with errors near the more accurate one among IPSs, es-
pecially in the first half part of path 1. However, at the end of
path 1, because ABSLoc has both high error and high confi-
dence, the linear weighted average method generates a sharp
spike at that point. But as Kalman Filter takes the human
movement patterns into consideration, we can see it reduces
the spike by 50%. Moreover, Kalman Filter eliminates most
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(b) ABSLoc Fingerprint Number

Figure 5. Error Trends by the Number of Signatures for Every Point in Database

spikes existing in linear weighted average results. Therefore,
we can conclude that Kalman Filter ties linear weighted aver-
age in average accuracy improvements, and performs better
in terms of spike avoidance.
6.4 Fingerprint Number Per Point

For any one of the 98 locations in database, we collected
multiple fingerprints. In WiFiLoc, 60-second log generally
contains more than 70 signatures. And a 60-second acous-
tic record in ABSLoc can also be divided to several small
frames. Because we collect the ABS data all in quiet envi-
ronments, the background noise can also be extracted from
a even 5-second frame. However, using all fingerprints for
every location appeared to be a bad idea on account of the
unbearable response time. For example, if we use 10 WiFi
fingerprints at each location, it will take WiFiLoc up to 10
seconds to localize one signature. So we vary the number of
fingerprints per point, and generate Fig. 5.

In Fig. 5, the x-axis is the number of fingerprints at each
location in database, and y-axis is estimation errors. The
mean value and standard deviation of errors of WiFiLoc, AB-
SLoc, and results of Kalman Filter are all shown for each
x-axis value. In Fig. 5(a), the ABS fingerprints number per
point is 1. And in Fig. 5(b), the WiFi fingerprints number per
point is 3. These are just empirical values.

Based on Fig. 5, neither WiFi nor ABS fingerprints num-
bers has obvious influence on the performances. Some sub-
tle exceptions happen when WiFi signatures number changes
from 2 to 3 in path 1 in Fig. 5(a), and when ABS signatures
number changes from 1 to 2 in path 3 in Fig. 5(b). However,
on the whole we cannot see any trend at least in our deploy-
ment. So it actually doesn’t matter how many fingerprints
we have for each point, let alone that the framework is not
focusing on improving the accuracy for each IPS.
6.5 Points Number in Database

To figure out how many location do we need to build
a sufficient database forRADLab, we remove data from
database, and plot the trends of errors in Fig. 6. Note that
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Figure 6. Error Trends by the Number of Database
Points

we only change signature number per point for either IPS in
Fig. 5, but we change the database point number for both of
them every time in Fig. 6. The reason is that we don’t want to
observe the trends influenced by each IPS in the former case,
but removing one point in database leads to removing both
WiFiLoc and ABSLoc records at the same time. When re-
moving points from database, we make sure removed points
are physically evenly distributed on the map.

In Fig. 6, we can see that number of database points influ-
ence the performance when it is less than a threshold, which
is 58 in this case. In other words, we over-sampled finger-
prints in RADLab by nearly (98−58)/58 ≈ 69%.

7 Future Work
Based on our current prototype, we plan to go steps fur-

ther and build a complete and easily deployable indoor lo-



calization system. To fulfill this, we plan to add more IPSs
to our system, such as dead-reckoning, and infrastructure-
based beaconing system like infrared and ultrasound. For
most IPSs, there are still many details we can look at that
contains huge rooms of improvements. For example, among
all points and their fingerprints stored in database, we can
look at how to choose the least and optimized ones based on
features of signature themselves, like signature distance over
real distance, to provide both fast and accurate fingerprint-
based localization system.

Another important functionality we should primarily fo-
cus on is how to implement room-level semantic localization,
and how to do data fusion on semantic level. One informa-
tion that should be considered is physical restrictions of hu-
man movements, such as wall, to understand the data with
more intelligence.

After all systems working well, we may consider imple-
menting automatic database building, which has been pro-
posed and implemented in [15]. Currently, there are still
insufficient work on this, which is crucial to the system de-
ployability in a building, especially those without skilled ad-
ministrator.

To go further, automatic building generation is also inter-
esting and promising. [15] requires users to input a build-
ing map, which may be a huge adversary for users to use
the system. Crowdsourcing techniques can be investigated
to achieve this goal.
8 Conclusions

With more and more indoor positioning techniques
springing up, there are still no consensus on a generic so-
lution. There is a huge gap between this fact and that all pro-
posed IPSs are proven to work acceptably well with appro-
priate assumptions or under specific circumstances. How-
ever, their assumptions and circumstances vary a lot, and
mostly independent with each other. On the other hand,
plenty sensors are involved in each IPS, which actually can
be used not only for localization, but for context awareness.

In this paper, we propose an IPS framework, which com-
bines multiple localization systems, and takes charge of de-
ciding a final estimated location. Each IPS are responsible
for providing a confidence about their estimation as accurate
as possible. The framework manages all plugged-in IPSs,
builds credit history for them, assigns weights to each pro-
posed estimation, and uses proper data fusion techniques to
make the decision.

We deployed the prototype in a university building, which
contains WiFiLoc, ABSLoc, and a framework. Experiment
results show that IPSs can generate trustable confidences,
which in turn benefits the data fusion. The framework can al-
ways generate decision with nearly same errors as the better
IPS. Compared to simple linear weighted averaging method,
Kalman Filter outperform in the sense of reducing drastic er-
rors. In summary, there are still huge potential in the old in-
door localization area. As future work, we plan to go deeper
into a bunch of dominant IPSs, and build a plug-and-play
indoor positioning system that is applicable in any building.
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