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Abstract 

 
Low Noise, Low Power Cavity Optomechanical Oscillators 

 
by 
 

Alejandro Joaquin Grine 
 

Doctor of Philosophy in Electrical Engineering and Computer Sciences 
 

University of California, Berkeley 
 

Professor Ming C. Wu, Chair 
 
 

Cavity Optomechanical oscillators (OMOs) rely on photon radiation pressure to induce harmonic 
mechanical motion of a micron-scale light resonator. Unlike most oscillators, optomechanical 
oscillators require only CW input light without the need for electronic feedback and so hold 
promise for their novelty. In an optical cavity of sufficient quality factor, the transduction from 
photons to phonons can be quite efficient as we characterized optomechanical cavities which 
only required 17 microwatt input optical power to induce mechanical oscillation. The question 
then remains whether OMOs can be made low noise and of course better yet, low noise and low 
power.  
 
By characterizing various materials and designs, it is shown that indeed OMOs may be made low 
noise and low power through maximization of the mechanical quality factor – a common quest 
for MEMs designers. With an emphasis on wafer-scale processes on silicon substrates, OMOs 
constructed from reflowed phosphosilicate glass, silicon nitride, and silicon were characterized 
and modeled. Due to non-linear light-matter interactions, OMOs are also known to produce RF 
frequency combs with an optical carrier. These combs were investigated and a method to 
produce a frequency comb spanning more than 6GHz from a 52MHz carrier was found. As a 
demonstration for how an OMO may be utilized in a chip-scale atomic clock, the 9th harmonic of 
a voltage-tunable device was phase-locked to a low noise microwave reference resulting in an 
85dB reduction in phase noise at 1Hz offset from the carrier.  
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1 Motivation  
Cavity optomechanics has emerged as a diverse field which relies on the momentum of 

light particles stored in a cavity to alter the mechanical motion of the cavity boundary. 
Interestingly, by simply changing the wavelength of the light, energy may either be supplied or 
removed from the one of the cavity mechanical modes. We focus on the former effect where 
light momentum induces and subsequently amplifies mechanical motion in a self-sustained 
manner resulting in what is now termed, an optomechanical oscillator (OMO). Originating from 
the physics community first in the LIGO kilometer-sized cavities [1], followed by studies in 
glass microtorroids [2], cavity OMOs have now drawn the interest of engineers. Researchers 
have utilized micro and nano-fabrication to build optomechanical systems of all flavors from 
photonic crystals [3] and nanobeams [4] to more traditional microdisks [5]. Many of these 
systems have focused on damping (cooling) rather than amplification (heating) of a mechanical 
mode partly because initially, OMO’s lacked a killer application. Conversely, cooling a 
mechanical mode to its quantum ground state and quantum state transfer at micron scales have 
been recognized as grand challenges surmountable with optomechanics [5–7].  

However, applications for OMOs are gaining ground. As a simple, integrated, and low 
power source of photons modulated at microwave frequencies, OMO’s may find use in mobile 
optoelectronic applications were low power is a necessity. It is now well known that nonlinear 
mixing within the OMO results in a frequency comb at the cavity output with comb-lines 
occurring at harmonics of the mechanical frequency [9][10].  Such non-linear effects may bode 
well in potential OMO applications including mass sensing [11], microwave photonic 
downconverters [12], and our focus, as a local oscillator in chip-scale atomic clocks (CSAC). In 
principle, a high performance OMO stabilized by an atomic transition should yield a lower 
power CSAC than what is currently available commercially.  

First suggested by Rocheleau and Nguyen et al [13], the OMO-integrated atomic clock 
system is featured below. In the proposed system, the 3.4GHz harmonic of an optomechanically 
generated frequency comb is locked to the Rubidium hyperfine transition. The uniqueness of the 
OMO stems from its ability to simultaneously generate the 3.4GHz harmonic and a strong RF 
tone at tens of MHz comprising the clocks RF output. The OMO would thus replace a 
microwave synthesizer that is the power hog in the current CSAC clockwork [13]. A lower 
power CSAC could open up new possibilities in sensing and navigation which require a stable 
frequency reference.  
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Figure 1.1: Chip-Scale atomic clock with optomechanical local oscillator / frequency divider. 
The 3.4GHz harmonic of an OMO frequency comb is locked to a Rubidium hyperfine transition 
which stabilizes the entire OMO frequency comb. 

We note that though the given CSAC application may seem narrow in scope, frequency 
references are everywhere. For instance, the Global Positioning System (GPS) derives position 
from a measurement of time1 and all GPS satellites are synchronized to atomic clocks. One could 
only imagine the handy apps that would ensue if our cell phones contained a low power chip-
scale atomic clock. In order to compete with current technologies, OMO’s should consume little 
power, generate many harmonics, have a high signal to noise ratio, and be frequency tunable. 
This work focuses on the theory and characterization of OMO’s with the goal of meeting the 
given demands. In oscillators, rather than quoting signal to noise ratio, the most often quoted 
figure of merit, referred to as phase noise, resembles a noise to signal ratio. Phase noise is thus 
characterized and modeled in detail. Efforts were focused on whispering gallery mode (WGM), 
or ring resonator based devices because at the time this work began, they had produced both the 
lowest phase noise [14] and required the least amount of input power to oscillate [2] albeit, not 
both simultaneously. Advantageous for high coupling efficiency to fiber and long photon 
lifetimes, WGM cavity OMO’s have been fruitful in their characteristics during the time of this 
work. Through modeling and experiments it is shown that mechanical quality factor is a key to 
achieving both low threshold power and low phase noise, and the WGM design here achieves 
high mechanical quality factor through design and material choice. 

1.1 Organization 
The thesis begins with an overview of WGM cavities in chapter 2. Optical properties 

relevant to cavity optomechanics such as finesse free spectral range and Q are described 
qualitatively followed by the more quantitative coupled mode theory. Optical characterization 
methods are briefly described. In chapter 3, cavity optomechanics is introduced and the theory 

                                                 
1 The SI definition of a meter relies on the definition of a second. Formally one meter is defined as the distance light 
travels in 1/299,792,458 seconds. Meanwhile, one second is defined as the inverse of the Cesium hyperfine 
transition frequency assumed to be a constant of nature. 
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behind the relative figures of merit is derived. The coupled mode equations for WGM cavities 
are manipulated in the presence of a movable cavity boundary to derive the power contained in 
an arbitrary harmonic as well as the OMO carrier power, threshold power, and phase noise. Next, 
experimental techniques and results of batch fabricated single material phosphosilicate glass 
(PSG) and silicon nitride OMOs are presented in chapter 0. Silicon nitride is found to yield 
excellent phase noise spectrum while PSG OMOs demonstrate interesting phase noise 
characteristics not captured by the simplistic model. Additionally we characterize microwatt-
threshold power PSG OMOs fabricated alongside integrated waveguides. In chapter 5, silicon 
OMO’s are found to demonstrate low threshold power, high mechanical Q and strong phase 
noise characteristics. We integrate non-linear (self-phase modulation and two photon absorption) 
as well as free carrier effects into the threshold power model for silicon to reconcile large 
differences in theoretical and measured threshold powers. In chapter 5, experiments are 
performed on a multimaterial OMO which demonstrates excellent phase noise and threshold 
power along with voltage-controlled tuning. As a prelude to locking to an atomic reference, a 
high order harmonic is phase-locked to a microwave reference and the resulting performance is 
examined. A method for generating a broadband frequency comb with the multimaterial OMO is 
introduced. 
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2 Whispering Gallery Mode Optical Cavities 
Whispering gallery mode (WGM) cavities have utility in various areas of optics including 

integrated communication filters [15], optoelectronic oscillators [16], optical 
modulators/switches [17], cavity quantum electrodynamics (QED) [18], optical frequency comb 
generation [19] and the focus here, cavity optomechanics [20]. WGM cavities are unique in that 
they are a proven method to store a vast amount of optical power effectively serving as a 
passive amplifier for optics. Later, we’ll see that coupling to a WGM may be achieved with a 
thinned optical fiber or on-chip waveguide. Because many WGM properties are referred to 
throughout the rest of the thesis, the aspects of WGM resonators pertinent to optomechanics are 
reviewed.   

2.1 Properties of WGM Cavities 
 Light residing in a whispering gallery mode of an optical resonator has a repeating 
circular trajectory and is guided by successive reflections off the cavity outer periphery rather 
than an explicit two-dimensional transverse guiding structure. The conceptual ray optics 
viewpoint of Figure 2.1(a) illustrates light propagating in a whispering gallery mode by repeated 
bounces off the cavity wall. Light is typically coupled into a WGM using an optical waveguide 
with judiciously chosen position, dimensions and material. The waveguide optical mode is 
guided by repeated total internal reflection bounces in the transverse directions as it propagates 
along the waveguide as illustrated in Figure 2.1(a). Light within the waveguide possesses a non-
zero momentum in the lateral (x) direction and thus an evanescent field resides outside the 
waveguide which carries no time average power unless it couples into the optical cavity. Under 
the right conditions, the waveguide evanescent field may leak into the resonant WGM – a 
process known as evanescent coupling. Such a phenomenon is similar to quantum mechanical 
tunneling by a particle encountering a finite width potential barrier. In this case, the barrier is the 
low index air between the optical waveguide and resonator.  
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(a)                                                                                  (b) 

Figure 2.1: (a) Plan view ray optics illustration for coupling into a whispering gallery mode from 
a waveguide. (b) Cross-sectional view of the waveguide and WGM resonator at the point of 
minimum distance between the two. Drawn in red are the unperturbed normalized transverse 
optical field profiles of the waveguide and cavity.   

Several mathematical models and simulation tools exist which predict the coupling 
efficiency from the optical waveguide to the WGM and are well explained by other sources [6–
8]. Summarized below are the important results of the mathematical treatment: 

• Orthogonal TE and TM modes: The WGM cavity has natural cylindrical symmetry and 
thus can be solved with a cylindrical ( ˆ ˆ ˆr, ,zϕ ) set of Maxwell’s equations for the resonant 
(allowed) optical modes.  Assuming a dielectric cavity of height, h  constructed out of 
dielectric material with refractive index cavn , the modes can be approximately resolved 

into two orthogonal polarizations except in very thick cavities satisfying / 2 cavh nλ>> , 
where λ  is the wavelength of interest. In the “thin cavity” approximation, the z 
component of the field k-vector must then be small compared to the in-plane k-vector in 
order for total internal reflection to occur at the cavity top and bottom faces. The two 
orthogonal polarizations satisfying Maxwell’s equations with appropriate boundary 
conditions are then:  

o Quasi TE polarized modes having dominant { , ,r zE E Hϕ } field 
components and, 

o Quasi TM polarized modes having dominant { ,H ,Er zH ϕ } field 
components. 

Here, E and H are the electric and magnetic fields respectively. The optical waveguide in 
Figure 2.1 follows a similar convention with TE polarization having dominant {

, ,x y zE E H } components and TM polarization with dominant { ,H ,Ex y zH } components. 
In both waveguides and resonators, TE modes tend to be more confined, and thus occupy 
a smaller mode volume than TM modes.  
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• Resonant Wavelength: The cavity guided modes (eigen-modes) are categorized as either 

, ,p mTE


 or , ,p mTM


 where the subscripts p,m,  are integers representing the number of 
field antinodes in the radial ( r ), azimuthal (ϕ ), and vertical ( z ) directions respectively. 
Ring and disk-shaped cavities can support modes with a single antinode in the radial and 
vertical directions such that , 1,2...p =  while the periodic boundary condition in the 

azimuthal direction requires 2 1ik Re ϕ π
=  or,  

 k R mϕ =   (2.1) 

so that m  is also a non-zero integer counting the number of azimuthal node/antinode 
pairs.R  is the cavity radius, and kϕ  is the wave-vector magnitude in the ϕ̂  direction. 

Defining the effective index /eff o cn c kϕ ω≡ , as the ratio of the vacuum speed of light oc  

to the ϕ̂  phase velocity for the mode of interest, the cavity resonant frequency is found 
from (2.1), 

 
/o eff

c

c n
m

R
ω =  (2.2) 

Since cω  is assumed to be measured in free space, the corresponding free-space 
wavelength obeys the dispersion relation,  

 
2 o

c
c

cπ
ω

λ
=   (2.3) 

 Substitution into (2.2) gives, 

 2 /c effR m nπ λ=   (2.4) 

which is written to emphasize that at resonance, an integer number of effective 
wavelengths fit around the circumference. In general, larger m  implies more 
node/antinode pairs along ϕ̂ , larger (i.e. more glancing) reflection angle at the cavity 
wall and thus greater likelihood for total internal reflection. Typically 8m >  at 
telecommunication wavelengths even for very small cavities. For instance, a very small 

1R mµ=  AlGaAs cavity demonstrated a resonant wavelength of 1438nm for the 

1, 9, 1TEp m= = =  mode [24].    

• Free Spectral Range: The free spectral range (FSR) is the frequency or wavelength 
spacing between adjacent cavity modes with successive azimuthal mode numbers i.e. 

1m∆ = ± . Taking /dm dω  in equation (2.1), setting 1dm m≈ ∆ =  and solving for 

FSRdω ω= ∆  gives,  

 
/o g

FSR

c n
R

ω∆ =   (2.5) 
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The group index is defined as the ratio of the vacuum speed of light to the group velocity,

/g o gn c v≡  with ( ) 1
/gv dk dϕ ω

−
= . Again, the FSR is measured in free space so (2.3)

applies and thus 2/ 2 /
c

o cd d c
λ

ω λ π λ= . Substitution into (2.5) with d → ∆  gives, 

 
2

2
c

FSR
gRn

λ
λ

π
∆ =   (2.6) 

The FSR scales inversely with the cavity radius and refractive index. Since each mode 
has a different group index, the FSR is not the same for all modes. 

• Coupling Gap: To couple adequate optical power into the WGM, the evanescent portion 
of the transverse waveguide mode, ( , )guideU x z  must partially overlap the resonator as 
shown in Figure 2.1(b) where a small yet critical tail of the waveguide evanescent field 
penetrates the resonator material. The capability for efficient coupling is quantified in the 
coupling coefficient, mc  given by, 

 ( )*1/2
m guide cavc E E dV∝ ∫

 

  (2.7) 

which shows that the waveguide field must overlap the resonator field for coupling. Such 
a condition is met by careful placement of the waveguide with respect to the resonator, 
and by fabricating a waveguide with sufficiently small lateral width for an adequate 
evanescent field.  

• Critical Coupling: A smaller gap will lead to a larger single pass coupling coefficient, 

mc  (i.e. treating the resonator as a finite length waveguide over the interaction length) 
[21]. However, a smaller coupling gap and hence more evanescent field overlap doesn’t 
necessarily lead to the most resonant dropped power drop in outP P P= − when considering 
the phase shifted field the resonator returns back to the waveguide upon each round trip 
[21]. In fact, the most dropped power occurs at an intermediate gap distance referred to as 
the critical coupling point which will be treated in the upcoming section. Once the 
coupling gap exceeds the critical coupling point, the amount of coupled or dropped power 
is reduced exponentially as the gap increases.  

• Phase Matching: So far, we have seen that for efficient waveguide to resonator 
coupling, the light launched in the waveguide should closely (in the next section we will 
investigate how close) match the resonant wavelength, cλ   and the coupling gap should 
be carefully chosen.  A third condition deemed “phase matching” requires that the field in 
the waveguide remain in phase with the field in the resonator over the effective 
interaction region. Phase matching is accomplished by equating the respective waveguide 
and resonator propagation k-vectors in the effective index approximation.  

 2 /guide
guide eff onβ π λ=   (2.8) 

 2 /cav
cav eff cnβ π λ=   (2.9) 
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Here, guide
effn  and cav

effn  are the effective index of the waveguide and resonator respectively 

while oλ  is the vacuum wavelength of light launched into the waveguide. Phase matching 
is understood by expanding the electric fields in equation (2.7) to yield, 

 ( )1/2 ( , )U ( , ) .cav guidei y
m guide cavc U x z x z e dVβ β−

∝ ∫   (2.10) 

( , )guideU x z  and ( , )cavU x z  are the unperturbed transverse mode profiles of the 
waveguide and resonator. Due to the oscillatory nature of the integrand in equation (2.10)
, coupling is only possible if guide cavβ β≈ or assuming o cλ λ≈  in equations (2.8) and (2.9),

guide cav
eff effn n=  . A strategy for meeting the phase matching condition can be ascertained 

from the dispersion relations in the waveguide and resonator. 

 2 2 2 2 2
guide guide o x zn k k kβ = − −   (2.11) 

 2 2 2 2
cav cav on k kβ ⊥= −   (2.12) 

Where ok  is the free space wavenumber (2 / oπ λ ) while guiden  and cavn  are the 

refractive index of the bulk waveguide and resonator materials respectively. xk  and zk  
are the x, and z components of waveguide k-vector while k ⊥  is the transverse k-vector of 
the cavity effective waveguide in the interaction region consisting mostly of r̂  and ẑ  
components. Equating (2.11) and (2.12) leads to the conclusion that phase matching is 
readily achieved by designing the waveguide and resonator to have similar materials and 
transverse mode profiles.      

2.1.1 Optical Quality Factor and Finesse 
Light propagating in a cavity has a finite lifetime due to various loss mechanisms which 

couple the cavity to non-resonant modes. The capability of the cavity to store light is quantified 
in the optical quality factor defined for any resonant system as the number of cycles light is 
stored in the cavity, 

 
/

tot
diss cycle

UQ
U

=   (2.13) 

Where U is the total stored energy in the mode of interest and the denominator is the average 
energy dissipated per optical cycle having period 1( / 2 )cω π − . Assuming a total cavity photon 

lifetime, cτ  the rate of energy decay is / / cdU dt U τ= −  with units [Joules/s] so that the 

average energy dissipated in one cycle is 1
/ ( )diss cycle c cU Uω τ −=  and thus  

 c
tot c cQ

ω
ω τ

κ
= = .  (2.14) 
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The second relation in equation (2.14) is derived by taking a Fourier transform of the time 
dependent photon decay, ( )U t  yielding a spectrum ( )U ω  in radial frequency space having a 
value of κ  for the full width half max (FWHM) which equals the cavity photon decay rate.   
 Since the various photon loss mechanisms act in parallel, the total decay rate in cyclical 
frequency units [cycles/sec] is the additive sum of each loss source  

 rad abs scat ex o ex hotκ κ κ κ κ κ κ κ= + + + = + + .  (2.15) 

Where radκ , absκ , scatκ , exκ , oκ , and hotκ are the radiation, absorption, scattering, external, 
intrinsic, and “hot” decay rates respectively. Substitution of (2.15) into (2.13) allows one to 
explicitly write the total or “loaded” optical quality factor,  

 1 1 1 1 1 1 1 1
tot rad abs scat ex o ex hotQ Q Q Q Q Q Q Q− − − − − − − −= + + + = + +   (2.16) 

where the thi  component of the total optical quality factor originating from decay rate 
component, iκ  is /i c i c iQ ω τ ω κ= = . The various loss components in equation (2.16) are 
summarized below:  

• radQ : Radiation loss, also known as bending loss arises from non-total internal reflection 
(TIR) within the circular cavity. Radiation loss is more severe for small cavity radii and 
lower order (longer cλ ) azimuthal modes since these conditions reduce the chance for 
TIR.  

• absQ : Linear optical absorption arises from single photon loss events such a defect, free 
carrier or conventional inter-band absorption. Surface states due to residual etch 
byproducts [25], or chemical adsorption [26] can also contribute to single photon 
absorption. Multiphoton or nonlinear effects such as two photon absorption are captured 
in hotQ further explained later. The various absorption mechanisms are further studied for 
silicon micro-resonators in chapter 5.  

• scatQ : Rough surfaces due to imperfect etching as well as inhomogeneous bulk material 
contribute to the scattering decay rate which scales with the modal field overlap with an 
imperfect surface. Thus, higher radial order TE modes exhibit smaller surface scattering 
rates and larger scattering limited Q’s.  

• exQ : Often regarded as the coupling Q, exQ  accounts for deliberate loss to an externally 
coupled waveguide.  

• oQ : The intrinsic or “cold cavity” Q is limited to optical loss internal to the resonator that 

is independent of the circulating power. Loss rates included in oκ  are assumed to retain 
their same value regardless of the stored cavity photon number and are thus time 
independent. 

• hotQ : The third term in equation (2.15), hotκ accounts for nonlinear and time varying loss 
components such as two photon absorption which depends on the instantaneous photon 
number. Single photon absorption that depends on electrical carriers may also contribute 
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to hotκ  since the carrier number may depend on the photon number, especially if two 
photon absorption is relevant or the cavity is electrically pumped. This component will be 
ignored throughout the thesis and is only visited in the context of silicon resonators.  

The modal loss, Im{ }kα = −  can be written in terms of totQ  by noting the fraction of modal 

energy dissipated due to loss is, /
diss

dU dx Uα= − . Substituting gdx v dt=  where /g o gv c n=  

is the group velocity and use of (2.14) gives,  

 o

g c totdiss

cdU U UU U
dt n Q

α κ ω
τ

= − = − = − = −   (2.17) 

 1 2,
/

go c
tot

g o g c

nc
Q

n c n
ω πκ α

α α λ
→ = = =   (2.18) 

Routinely mentioned in the context of optical resonators is the cavity finesse defined as,  

 
/o gFSR

c n
R

ω
κ κ

∆
≡ =   (2.19) 

where equation (2.6) was utilized for FSRω∆ . Noting that the average number of cavity round 

trips a photon makes prior to decaying is given by the ratio of the distance traveled in time cτ  to 
the circumference we find, 

 
/ /1 1#

2 2 2
c o g o gc n c n

round trips
R R

τ
π π κ π

= = =    (2.20) 

The number of round trips which depends on both the cavity radius and quality factor is thus 
intimately related to the finesse.  

2.2 Coupled Mode Theory for Ring and Disk Resonators 
So far, the properties of WGM resonators have been summarized and important figures of 

merit such as the optical quality factor and finesse have been defined. It was mentioned in 
section 2.1 that the input light need not be exactly on resonance in order to couple power into the 
resonator. In this section we derive the transmission of a circularly shaped optical resonator as a 
function of the difference in frequency between the input light and cavity resonant frequency. 
Coupled mode theory [27] along with the intuitive nomenclature of [28] is utilized. 

We begin by assuming the resonator is pumped with coherent light such as that available 
from a laser with output radial frequency oω . The field within the cavity is then written in 

complex phasor notation, { }( , ) Re ( ) ( ) oi t
cav cavE r t u r a t e ω−=


 

 where ( )cavu r  accommodates the 
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fields spatial and polarization properties while the complex mode amplitude, ( )a t  tracks any 

temporal transients other than the assumed oi te ω−  dependence. It is convenient to normalize so 

that 
2

( )a t gives the number of photons occupying the mode of interest with stored energy, 
2

( )oU a tω=  . The field within the waveguide at the coupling junction is written, 

{ }( , ) Re ( ) ( ) oi t
guide guide inE r t u r s t e ω−=


 

 and is conveniently normalized such that 
2

( )ins t  is the 

photon arrival rate at the waveguide-cavity coupling junction. A similar notation is followed for 
( )outs t , the field exiting the waveguide-cavity coupling junction.   

The system described above is illustrated in Figure 2.2 which shows a fraction of the 
launched waveguide field at frequency oω  entering, and then exiting the cavity with external 

angular coupling rate, exκ . The cavity resonant frequency is cω  and the total cavity decay rate 
including deliberate loss to the waveguide, is κ . All rates are in angular units [rad/s]. 

 
Figure 2.2: Dynamical variables involved in the coupled mode theory and relation to the 
described time constants, decay rates, and frequencies of interest. 

The dynamical complex variables, ( )ins t , and ( )a t  then obey,   

 ( ) ( ) ( )e
2

oi t
c in exa t i a t s t ωκω κ− 

= − − + 
 

   (2.21) 

 ( ) ( )e ( )oi t
out in exs t s t a tω κ−= −   (2.22) 

Assuming a reference frame rotating at laser field angular rate oω  yields with 

( ) ( ) oi ta t a t e ω−→  and ( ) ( ) oi ts t s t e ω−→ , 

 ( ) ( ) ( )
2 in exa t i a t s tκ κ

 
= ∆ − + 

 
   (2.23) 

 ( ) ( ) ( )out in exs t s t a t κ= −   (2.24) 
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 o cω ω∆ ≡ −   (2.25) 

The detuning, defined in (2.25) is positive for input light blue shifted from resonance ( o cω ω>  ,

o cλ λ< ) and negative for red detuning ( o cω ω<  , o cλ λ> ). In contrast to Fabry-Perot resonators, 

( )outs t  was defined positive for output light propagating the same direction as ( )ins t .  

2.2.1 Steady State Solutions 
If ( )ins t  is constant in time, then ( ) 0a t = , and we can solve for the steady state version of the 
otherwise dynamical variables to yield, 

 
/ 2

ex
ina s

i
κ

κ
=

− ∆ +
  (2.26) 

 1
/ 2

ex
out in ex ins s a s

i
κ

κ
κ

 
= − = −  − ∆ + 

  (2.27) 

where the over-bars indicate steady state. The stored energy in the cavity is found from (2.26) 
and the previously assumed normalizations for ( )a t  and ( )s t , 

 
( )

2
22

| ( )|
/ 2

ex
o inU a t P

κ
ω

κ
= =

∆ +
   (2.28) 

A Lorentzian peak with FWHM given by κ  and energy on resonance of 2( 0) 4 /in exU P κ κ∆ = = .  
Equation (2.27) gives the steady state field transmission ( )T ∆  for a WGM cavity,  

 ( ) 1
/ 2

out ex

in

s
T

s i
κ

κ
∆ ≡ = −

− ∆ +
  (2.29) 

  

Likewise, the ratio of output to input power in the waveguide is the cavity optical power 
transmission, 

 
( )

( )

22 2
2

2 22

/ 2
( )

/ 2
exout

in

s
T

s

κ κ

κ

∆ + −
∆ = =

∆ +
  (2.30) 

Which is Lorentzian dip of FWHM width κ . Equation (2.30) shows that cavities with longer 
lifetime are less tolerant of input radiation away from resonance as these frequencies are not 
dropped by the cavity and are allowed to pass through the waveguide. Physically, the longer 
lifetime means light of a frequency not meeting the resonant condition of (2.2) survives long 
enough in the cavity to eventually destructively interfere with itself erasing the circulating power 
on a timescale of ~ 2/κ . Often, one is interested in measuring the intrinsic quality factor, oQ  
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from samples of the total quality factor totQ . Using equations (2.14) and (2.15) and ignoring hotQ
, we can eliminate exκ  to recast equations (2.28) and (2.30) in a more lab-specific form, 

 2
2 2 2

2

1 1
| |

2 2

c tot

tot o oin
o in

oc

tot o o

Q
Q Q P

U a P

Q

ω κ
κ

ω
κω κ

κ κ

   
− −   

   = = =
     ∆

∆ + +     
     

   (2.31) 

 

2 22 2

2

2

2 2 2

2

1 1
2 2

( ) .

2 2

c tot

tot o o o

c

tot o o

Q
Q Q

T

Q

ω κ
κ κ

ω κ
κ κ

       ∆
∆ + − + −       

       ∆ = =
     ∆

∆ + +     
     

  (2.32) 

The normalized detuning, / oκ∆  was introduced for graphing convenience. Both the Lorentzian 
stored cavity energy and inverse Lorentzian power transmission are plotted vs. normalized 
detuning in Figure 2.3. The stored cavity energy on resonance is proportional to in oP Q  and is 

greatest when the detuning, 0∆ = , and coupling ratio, / 2oκ κ = .  
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    (a)         (b)  

Figure 2.3: (a) Stored cavity energy multiplied by /o inPκ  plotted vs normalized detuning for 
different coupling ratios from equation (2.31). (b) Power transmission through a coupling 
waveguide vs normalized detuning parameterized by the coupling ratio from equation (2.32).  

Setting the derivative of (2.31) equal to zero shows that the stored energy is largest when 
/ 2tot oQ Q=  or 2 oκ κ=  which is defined as the critical coupling point. On resonance, and at 
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critical coupling, we find the maximum stored energy, max /in oU P κ=   and dividing by the round 

trip time, rtτ   the maximum circulating power is, 

 max
,

/
.o g

circ max in in
rt

c nU
P P P

Rτ π κ π
= = =

   (2.33) 

Equation (2.19) was substituted for the finesse. Note that , /circ max inP P  is a factor of two larger 
than the average round trips calculated in (2.20) which didn’t account for the constant supply of 
photons entering through the external waveguide. The probability for a circulating photon to 
eventually couple into the waveguide is /( )ex ex oκ κ κ+  which varies from zero to one and is 
exactly 1 / 2  at critical coupling. It is evident from the power transmission of equation  (2.32) 
and Figure 2.3(b) that on resonance at critical coupling, the transmitted power is zero. Hence, the 
probability for an input photon to couple into the cavity is 21 | ( 0)| 1T− ∆ = = . At critical 
coupling, one then concludes that twice as much power enters the cavity through the waveguide 
as leaves it through the waveguide. The ratio of circulating power to input power is then 
enhanced by a factor two due to waveguide coupling.   
 
Coupling Regimes 
Three distinct coupling regimes are apparent in Figure 2.3  

• Critically Coupled / 2tot oQ Q=  ( 2 ok κ= ) : We have already discussed critical coupling 
and its importance as the gap width which maximizes the intracavity power. Due to 
destructive interference between ins  and the phase shifted field leaking into the 
waveguide from the resonator, both the transmitted field and power are zero on resonance 
at critical coupling. In reality, due to noise and imperfect phase and polarization 
matching, the transmission never reaches exactly zero but extinction ratios on the order of 
20dB are readily achievable. The intrinsic Q is also conveniently measured at critical 
coupling since it can be calculated from the measured linewidth. i.e.

,2 / 2 /o c crit c FWHM critQ ω κ λ λ= = ∆ . To use this method, the coupling gap and polarization 
would be adjusted until the deepest transmission dip is obtained.  

• Overcoupled / 2tot oQ Q<  ( 2 oκ κ> ): When the coupling gap is smaller than the 
critically coupled point, the cavity loses energy to the waveguide at a rate that exceeds 
the intrinsic cavity loss rate, oκ . This overcoupled regime is handy for locating otherwise 
narrow lineshapes which are broadened for small coupling gaps as seen in Figure 2.3(b). 
At high enough coupling rates the transmission resonances are difficult to discern from 
the noise since the transmission dip is shallower. 

• Undercoupled / 2tot oQ Q> , ( 2 oκ κ< ): In this regime the external coupling rate is small 
resulting in the least amount of waveguide loading. The intrinsic Q is recovered in this 
regime since for large enough coupling distances, 0exκ   and thus the measured 

linewidth is oκ κ . As seen in Figure 2.3(b) when the resonant transmitted power is 
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about 70%  of the input power, the measured total Q is 90% of the intrinsic Q. Further 
retracting the waveguide, would produce 80% resonant power transmission when the 
measured Q is 95% of the intrinsic Q. Of course, in this regime, the lineshape is both 
narrow and shallow and may thus be difficult to resolve or discern from the noise. For 
this reason, it is typical to locate a resonance when overcoupled, increase the coupling 
gap, reduce the measurement bandwidth, and then extract the intrinsic Q while 
undercoupled. 

           

2.3 Characterization Methods 
Although the focus of this work is on cavity optomechanical oscillators, substantial effort 

was spent on characterizing the passive optical properties of various materials, cavity designs, 
and fabrication splits. In all, more than 300 devices of various shapes, sizes and materials were 
optically characterized. Over time, the optical Q measurement turnaround time and resolution 
improved and it is worth reviewing the characterization methods investigated in this work. 
Summarized in Figure 2.4 are the optoelectronic characterization setups for each characterization 
method and the expected measurement trace. Light can couple into the device from an integrated 
waveguide or tapered microfiber - a thinned fiberoptic cable further described in section 4.2. The 
tapered microfiber can be mounted on nano-positioning piezo stages to control the orientation 
and gap distance. In each method, the intrinsic Q can be ascertained from the undercoupled 
response, or by choosing a gap distance corresponding to critical coupling where the intrinsic Q 
is easily extracted from the total Q measurement. The coupling is controlled by either choosing 
an integrated waveguide with appropriate gap or in the tapered fiber case, by gradually moving 
the tapered microfiber until the desired coupling is achieved.   
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   (a)       (b) 
 

 
   (c)       (d) 

Figure 2.4: Methods and measurement setups for characterizing the optical properties of ring 
microresonators. (a) Swept laser technique. The tunable laser center frequency is chirped in time 
and the microresonator response is captured by an oscilloscope. (b) Ring down spectroscopy. A 
stationary or chirped tunable laser is intensity modulated while recording the time required for 
the cavity to dissipate energy on an oscilloscope. (c) Broadband or white light spectroscopy. 
Light from a broadband source is sent through the cavity and recorded with an optical spectrum 
analyzer or spectrometer. (d) Intensity Modulation Spectroscopy. Setup implemented in this 
work utilized an intensity modulated stationary tunable laser. A network analyzer sweeps the RF 
modulation frequency while recording the cavity response.  

Swept Laser Technique 
 Likely the most common technique for characterizing the optical Q and FSR, this 
technique relies on a tunable laser with continuous or well controlled discrete tuning capability. 
As illustrated in Figure 2.4(a), the laser wavelength is swept while a photocurrent captures the 
cavity transmission on an oscilloscope. We controlled polarization with a fiber bench 
incorporating a free space polarizer aligned to the laser followed by a half-wave plate. The free 
space system was more deterministic and repeatable than a paddle wheel polarization controller. 
Figure 2.5 gives representative measurements from a high finesse 52.5μm radius free standing 
phosphosilicate glass (PSG) ring resonator fabricated alongside integrated waveguides.  This 
device posted a Q of 4 million, an FSR of 5nm and thus a finesse of ~13k. Note that a separate 
group reported an integrated waveguide silica device smoothed by laser reflow exhibiting a 
similar Q of 3.2 million at 1550nm [29]. Though it wasn’t given for the particular highest Q 
device, a best case estimate for the FSR is 7.9nm which yields a similar finesse of 16 thousand. 
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In chapter 4, we will explore the characterization of optical resonators with integrated 
waveguides in more detail.     
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        (a)            (b) 

Figure 2.5: Measured spectra of 52.5μm Phosphosilicate glass ring resonator coupled to an 
integrated waveguide measured with a continuously swept laser. (a) Wide sweep covering the 
5nm FSR. To record such a wide span with adequate resolution three separate scans of 10,000 
points each were stitched together. (b) Zoom of resonance at 1550.7nm taken with a narrower 
wavelength sweep range.  

To convert from oscilloscope time stamps to wavelength, either the laser chirp rate must 
be calibrated, or an optical element of known frequency response may be measured 
simultaneously to map time to wavelength. A calibrated Mach Zender serves this purpose well 
[30]. We instead chose to validate the laser sweep rate by comparing the measured linewidth to 
that obtained from the intensity modulation method of Figure 2.4(d) described later.      

Early optical Q measurements utilized a LabVIEW-controlled discrete laser frequency 
sweep where the laser was stepped in intervals as small as 0.1pm – the limit of our HP 81682A 
laser module. An HP 8153A power meter was used to record the power at each step. However, 
once the optical Q exceeded 5 million ( 0.3pmFWHMλ∆ = ) in standalone devices, 0.1pm was not 
enough resolution. We then switched to a continuous laser sweep and connected the analog 
output of the 8153A power meter to an Agilent TDS 3054 oscilloscope. The oscilloscope trigger 
was provided by the tunable laser configured to output a pulse at the beginning of each sweep. 
Care was taken to avoid capturing artificial resonances caused by ringing of the laser during the 
backwards sweep at the termination of each cycle. Since the 8153A power meter changes 
sensitivity at predefined input powers, we chose to operate it in manual sensitivity mode and 
queried the operator for the input power prior to initiating a sweep. All operations were 
automated with LabVIEW. The continuous sweep proved significantly faster than discrete sweep 
since LabVIEW is only called at the beginning and end of each wavelength ramp.   

Though the swept source method is rapid, and has laser linewidth-limited resolution, 
deeply undercoupled cavities are difficult to detect in a large span because a small dip in power 
must be discerned from the background noise. To avoid thermal distortion of the measured 
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spectrum [31], the laser power must be kept  small, often in the 100nW range, hindering the 
signal to noise ratio. We observed the noise to be dominated by changes in the laser output 
power during the sweep. The RF Intensity modulation method doesn’t suffer the same drawback 
since the laser frequency is kept constant, and the laser threshold power to induce thermal 
distortion is larger. 

Cavity Ring Down 
 Cavity ring down has previously been applied to measure ultrahigh Q WGM resonators 
in various materials including a 5.5mm diameter CaF2 resonator with a Q of 6 x 1010 at 1064nm 
[32]. This method is particularly useful since it is not limited by the laser linewidth and is 
immune to thermal skewing of the Q [33]. In order to implement the method, a laser is tuned to 
the WGM then abruptly switched off to view the lifetime, /c tot cQτ ω=  of stored cavity energy. 
The thermorefractive effect typically aids in broadening the optical resonance (without affecting 
the cavity lifetime) to allow easy alignment with the laser. An exponential fit of the output power 
to the equation, /( ) ( ) ct

out oP t P P e Pτ−
∞ ∞= − +  yields totQ  as shown below for a 52.5μm PSG disk 

with fitted optical Q of 1.9M at critically coupled and thus an intrinsic Q of 3.8M. 
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Figure 2.6: Ring down measurement of a 52.5μm PSG disk resonator. The critically coupled 
decay trace (blue) was fitted (red) after the ~2ns fall time of the driving electronics (black). 

The data in Figure 2.6 was obtained by feeding a square wave to an intensity modulator 
whose optical output was launched into a critically coupled cavity. Ring down is impractical for 
low-Q cavities as the decay time becomes shorter than the fall time either producible or 
measurable from the associated electronics. We used an SRS DG535 pulse generator connected 
to an OPT-40B pulse inverter to produce signals with ~2ns fall time. The black curve in Figure 
2.6 shows the output transient when the laser is off resonance with the cavity reaching the 
baseline power after 2ns. To fit the curve when coupled to the cavity, we began the fit after 
2.25ns and enforced the voltage at t=0 to be 1.78 volts.  

 
Broadband Source 
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 Similar to using a swept laser, the broadband source technique of Figure 2.4(c) directly 
measures the power transmission spectrum of the optical cavity. A broadband source such as an 
amplified spontaneous emission (ASE) LED, Erbium Doped Fiber Amplifier (EDFA) or super 
continuum generator is launched through the coupling waveguide and the transmission is directly 
read with an optical spectrum analyzer (OSA) or in some cases a spectrometer. Figure 2.7 shows 
the measured spectrum of a 52.5μm radius PSG ring resonator with 5.3nm FSR.       
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Figure 2.7: Broadband spectrum of a 52.5μm radius PSG ring resonator. A free space half-wave 
plate was rotated 45 degrees to obtain the two perpendicular linear polarizations. The peaks 
above unity transmission are due to Fano resonances. 

 The spectrum above was obtained with a 35nm bandwidth ASE LED source and an Ando 
AQ6317B OSA. The two perpendicular polarizations were synthesized from the aforementioned 
fiber bench housing a linear polarizer and half wave plate polarization rotator. The peaks above 
unity transmission are due to well-known Fano resonances due to small reflections within the 
coupling fiber. Since the OSA has a minimum 0.01nm resolution bandwidth, only optical Q’s < 
100k could accurately be measured with this method. However, resonances with intrinsic Q as 
high as 11.7 million could be visually detected in the overcoupled regime, prior to a fine sweep 
with the tunable laser.   

2.3.1 RF Intensity Modulation Technique 
 The intensity modulation technique of Figure 2.4(d) was particularly useful for 
characterizing high Q integrated waveguide devices due to the high SNR and for verifying 
measurements taken with a swept laser due to the excellent frequency resolution. Since the laser 
wavelength is stationary during the measurement, this technique may also be helpful in cases 
where a high end electronically controlled tunable laser is not available for sweeping. Finally, 
only a small amount of power is present in the cavity, so it is less sensitive to thermal distortion 
of the resonance than a swept laser. Overall, the method follows the same vein as frequency 
modulation spectroscopy commonly used to deduce molecular lineshapes [34]. The 
implementation here is similar to [35] except in the present case locking the laser to the cavity is 
unnecessary as the laser is well within the coherence limit.  In our implementation, the laser is 
placed at a frequency just outside the cavity resonance, while an RF sideband produced by an 
intensity modulator is swept through the cavity resonance as illustrated below.  
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Figure 2.8: Frequency domain representation of the RF intensity modulation technique. The laser 
at angular frequency oω  is offset from the cavity resonance by a large detuning, 0∆ <  while an 
intensity modulated sideband at RF angular frequency, Ω  is swept through the cavity.   

The intensity modulator is driven by a network analyzer which also reads the 
photodetected RF cavity response to the intensity modulated light.  In appendix A, it is shown 
that when the intensity modulator is biased at quadrature, the S21 response magnitude as captured 
by network analyzer has the form,  

2

21 2

(1 )
( ) 1 ( )

1
q

q
q

iB
S A T for slope at Quadrature

B
±

Ω = + ∆ + Ω ±
+

  (2.34) 

Here, qA  and qB  are fitting parameters that depend on the laser power, and modulation depth. 
The cavity transmission experienced by an RF sideband displaced from the laser by Ω  in 
angular frequency is,  

 

1( )
2

( )
( ) / 2

oi
T

i

κ
κ

κ
κ

 
∆ + Ω − − 

 ∆ + Ω =
∆ + Ω −

  (2.35) 

which can be shown to be equal to (2.29) with ∆ → ∆ + Ω . This method was utilized to measure 
our highest Q device to date, a PSG disk resonator with 52.5μm radius and 2μm thickness. To 
measure the intrinsic Q of 11.7 million, a tapered microfiber was stepped further away from the 
disk until reaching the undercoupled regime as illustrated in Figure 2.9 below. 
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    (a)      (b) 

Figure 2.9: (a) RF intensity modulation measurement of melted disk resonator with modulator 
biased at quadrature. To deduce the intrinsic Q , curves were taken at varying absolute fiber 
positions. Inset: Zoom on highest Q  measurement corresponding to the largest fiber to device 
coupling gap. (b) SEM of measured device design. Data is for our highest oQ =11.7 million PSG 
disk resonator with 52.5μm radius and 2μm thickness.    

If the modulator is biased at the peak point, 21( )S Ω  is a simple function,  

 21( ) 1 ( )PS A T for bias at peakΩ = − ∆ − Ω   (2.36) 

Where pA is again a scaling parameter proportional to the laser power, modulation depth, totQ  

and oQ . Equation (2.36) is a peak in the RF domain rather than a dip. Detecting a peak is 
advantageous since it is generally easier to measure something out of nothing rather than the 
inverse situation typically encountered when directly measuring the cavity transmission in the 
optical domain. In fact, RF phase modulation has been combined with a swept laser to locate 
resonances with higher SNR than a swept laser alone [36]. The present setup benefits from the 
simplicity and fidelity of a network analyzer which performs both the modulation and 
demodulation. For comparison, the graphs in Figure 2.10 below demonstrate the RF modulation 
response of the same integrated waveguide device previously characterized with the swept laser 
technique in Figure 2.5. Excellent agreement is found in the measured Q between both 
techniques. When the response is measured on a dB scale, a peak to baseline noise level greater 
than 30dB is achieved with the intensity modulation technique as shown in Figure 2.10(b). 
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    (a)      (b) 

Figure 2.10: RF modulation technique with modulator biased at peak bias point. (a) RF spectrum 
(blue) and fit (red) of R=52.5μm PSG device with integrated waveguides. The fitted Q of 4 
million matches the optical transmission measurement of the same device. (b) Same device 
measured on a dB scale showing a >30dB peak to baseline noise ratio.  

Although it appears Lorentztian, the measured peak in the RF domain is in fact not Lorentzian. 
In appendix A the FWHM of equation (2.36) is derived,  

 3 c
FWHM

tot

for bias at peak
Q
ω

∆Ω =   (2.37) 

so that the FWHM directly gives totQ . Note, the present FWHM differs from that of the 
Lorentzian cavity power transmission curve of equation (2.32) which has a value of 

/ .c totQκ ω=  The difference in FWHM is due to the RF modulation technique being sensitive to 
the cavity field transmission which includes both magnitude and phase.   
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3 Cavity Optomechanics 
Thus far we have only focused on the optical properties of whispering gallery mode 

resonators. Namely, their ability to store a significant amount of circulating power. However, an 
optical resonator can also store mechanical energy especially when it is fabricated such that the 
boundaries are free to move. Although we perceive most solid objects to be perfectly rigid in 
shape and size, all solids are in fact pliable and thus can support mechanical energy even if for 
just a short time. An optical resonator is no exception. If subjected to a mechanical force, an 
optical resonator, like any other object is subject to vibrations like Jell-O that has just been 
agitated. Likewise, the optical resonator is prone to Brownian motion due to thermally induced 
motion of its constituent atoms.  

In addition to the thermal Brownian force, an optical resonator is also prone to radiation 
pressure – the force caused by non-zero momentum of light’s constituent particle, the photon. 
Radiation pressure is not a force normally encountered in everyday life because it is relatively 
weak. However, we have already seen that an optical WGM resonator effectively amplifies the 
power sourced to it by a factor as high as /π �where  is the cavity finesse so that the 
radiation pressure force may be quite large in a typical cavity. As an example, a glass cavity with 
50μm radius, modest Q of 100k, sourced with 10mW of 1550nm input light, can have up to 1W 
circulating power – a factor of 100 amplification. In fact, an optical interferometer of kilometer-
scale length provided the first vehicle for cavity optomechanics in the context of the LIGO 
project when it was found that a) Brownian motion placed a fundamental limit on an 
interferometers ability to detect displacement of a suspended mirror [1][37] and b) radiation 
pressure within the cavity could fundamentally alter the noise due to Brownian motion.  

In 2004, with the aid of modern day microfabrication and laser-induced glass melting, 
researchers in the Vahala group were able to produce a Q>100 million, free standing optical 
microtorroid cavity down to the micron scale [38]. Not long afterwards, radiation pressure 
induced self-sustained mechanical oscillation was reported for the first time by the same group 
[2] spawning the now diverse field of cavity optomechanics.  

In this chapter we will review the equations governing cavity optomechanics with a focus 
on optomechanical oscillators. Interestingly, the initial report of cavity optomechanics focused 
on heating of the mechanical mode by radiation pressure to form an oscillator. However, the 
mechanical mode may also be cooled by the radiation pressure force. The focus throughout this 
dissertation is on mechanical heating to produce an oscillator, specifically for chip-scale atomic 
clock purposes. First the basic physics will be overviewed followed by a detailed look at the 
equations governing important figures of merit such as threshold power, carrier power, and the 
oscillator phase noise spectrum. Through modeling it will be shown that though high optical Q is 
advantageous for a reduced threshold power, it is surprisingly not desired for low phase noise 
operation. Finally, since optomechanical oscillators are inherently non-linear in their 
displacement to circulating power relation, multiple harmonics of the fundamental mechanical 
oscillation frequency are present in the circulating lightwave. These harmonics will be analyzed 
and will be discussed as an added benefit of cavity optomechanical oscillators for use in a chip-
scale atomic clock.            
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3.1 Radiation Pressure and the Solar Sail 
We begin by analyzing the perfectly reflecting, lossless solar sail pictured in Figure 3.1. 

Such a scenario harkens to the earliest known idea of radiation pressure in the early 1600’s, in 
which Keplar postulated that rays from the sun were responsible for comet tails always pointing 
away from the sun.  The use of light to propel objects through space either by radiation pressure, 
or absorption followed by re-emission is an active area of research (Laser Propulsion).  

 
Figure 3.1: Perfectly reflecting mirror solar sail (grey) with impinging coherent light beam (red).    

A discussion on radiation pressure must begin with DeBroglie’s theorem proposed in his 
1924 thesis which helped unify the wave and particle viewpoints of light and matter, 

 h
p

λ =   (3.1) 

where p  is the particle momentum, λ  it’s wavelength and h  is Plank’s constant. Equation (3.1)
states that all particles with momentum have a wavelength, and are thus wave-like and even 
massless light waves have a momentum and are thus particle-like. Due to the scale of Plank’s 
constant, 346.6 10−× , everyday objects have exceedingly small wavelengths and lightwaves have 
relatively small momentum. Since the wavenumber is 2 /k π λ= , and / 2h π= , the 
momentum of each photon is, 

 .p k=    (3.2) 

As in section 2.2 the input light is assumed coherent with input photon arrival rate  
2

ins  so that 
the radiation pressure force on the mirror is, 

 
22 2rp in

dp kF k s
dt dt

= = =


   (3.3) 

The factor of two accounts for the force each photon exerts upon contacting the mirror and then 
reflecting off the mirror and is a direct result of momentum conservation. As an example, for a 
10mW light beam at 1550nm the radiation pressure force is 67pN. In the absence of the spring 
restoring force the solar sail will accelerate indefinitely - a case which is unphysical. Equating 

rpF  to the counteracting spring force, sF Kx= − , where K  is the spring constant and x  the 
mirror displacement yields a static displacement,  
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22

in
kx s

K
=
   (3.4) 

3.2 Cavity Enhanced Radiation Pressure 
Recall in the previous section the small amount of force radiation pressure exerts on a 

solar sail is on the order of pico-newtons for a 10mW input beam of light. A WGM cavity 
amplifies the input light and thus radiation pressure by as much as /π �. Also, inserting the 
movable elastic mirror in an optical cavity renders new physics because the intracavity power 
depends on the mirror displacement. This non-linear effect gives rise to heating and cooling of a 
mechanical mode depending on the phase relation between the light and mechanical mode of 
interest. We start by considering just the radiation pressure force in the cavity optomechanical 
system below. A Fabry- Perot cavity is terminated on one end by a moveable mirror with 
mechanical stiffness, K . Mechanical damping of the mirror at angular rate mΓ  is presently 
included to account for the various sources of mechanical energy dissipation.    

 
Figure 3.2: A an optical cavity with a moveable (green) mirror. The mirror experiences damping 
at rate mΓ  and elastic spring stiffness K .  Input light field ins  passes through a partially 
transmitting mirror and is built up within the cavity.  

 Similar to equation (3.3) the radiation pressure force acting on the mirror is, 

 
2

2 2( )
( ) 2 ( ) 2 2 ( )

2
o o

rp
rt o

a t c
F t k s t k a t

c L
ω

τ
= = =      

 
2

( ) ( ) .o
rpF t a t

L
ω

=    (3.5) 

A linear dispersion relation of the form /o ok n cω=  was assumed while the cavity round trip 

time, rtτ  was used to convert from the circulating photons/second in the cavity of the length L to 
the number of photons stored - similar to (2.33). Unlike equation  (3.3), the radiation pressure 
force in a cavity is time dependent since the stored cavity energy depends on the mirror 
displacement.  
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3.2.1 Optomechanical Coupling 
The quantity / /o cL Lω ω≅  in equation (3.5) bears special significance in cavity 

optomechanics and is the negative of the optomechanical coupling constant. 

     (Fabry Perot)c
omg

L
ω

= − − .  (3.6) 

The optomechanical coupling constant arises when considering the cavity resonant frequency in 
the presence of a moving boundary. That is, defining x  as the displacement of the mirror in 
Figure 3.2, then a first order expansion of the cavity resonance frequency yields, 

 0(x) ( )c c omg x tω ω≅ +   (3.7) 

Where coω  is the unperturbed cavity resonant frequency and, 

 
0

( )c
om

x

x
g

x
ω

=

∂
≡

∂
  (3.8) 

For WGM cavities, the expanding mirror is distributed about the resonator outer 
periphery. With each reflection, the circulating optical field exerts an outward radial force on the 
outer wall, forcing the entire cavity to expand. Thus, in the presence of radiation pressure, the 
radius obeys ( ) ( )R t R x t= + . Substituting equation (2.2)  into (3.8) yields for WGM cavities,  

 ( ).c
omg WGM

R
ω

= −   (3.9) 

In both types of resonators the radiation pressure force can be written from (3.5),  

 
2

( ) ( )rp omF t g a t= −   (3.10) 

An excellent proof of (3.10) is given in [39]. It is worth noting that both the optomechanical 
coupling and displacement x  are not uniquely defined for a particular resonator since each 
optical mode interacts differently with the moving cavity boundary [40]. For instance, the 0p =  
radial WGM mode experiences a larger frequency shift than higher order radial modes upon 
expansion of the radius since the 0p =  mode is more concentrated at the boundary. Also, the 
cavity doesn’t only expand radially but may also expand in the transverse dimension so that the 
un-normalized displacement field Q( )r





 as a function of position r  must be defined. The scalar 
value x  may be defined as the displacement at a single point, | ( )|ox Q r≡



 , or the maximum 

radial displacement, max
ˆ( ) rx Q r≡





   and there are other variants. The photon number is 
conserved in any lossless scattering event so that any change in electromagnetic energy upon 
displacement must be due to a change in resonant frequency. Thus, a unique value for the 
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relative resonant frequency shift can be found from the change in stored electromagnetic energy 
in the cavity, 2( ) | ( )|U t a tω=  . Perturbation theory yields [40], 

 
( )( ) ( )

( )

2 23 3

2 3

( ) ( ) ( )1
2 ( )

c

c

E r r Q r dr E r r drU
U E r r dr

ε εω
ω ε

⋅ + − ⋅∆ ∆
= =

⋅

∫ ∫
∫

 

    



 

  (3.11) 

where ε  is permittivity of the cavity material. The numerator is just the stored electric field 
energy upon displacement subtracted by the stored field energy in a fixed-size cavity. The factor 
of two in the denominator arises from the stored magnetic energy which is equal to the stored 
electric energy. The stored magnetic energy doesn’t change when the cavity expands and so 
cancels in the numerator of (3.11) but effectively doubles the electric energy in the denominator. 
In WGM resonators usually symmetry collapses (3.11) to a surface integral along the cavity 
boundary. Application of equation (3.11) to (3.7) thus gives the unique quantity for each optical 
mode, 

 0
( )( ) .om c c

U tg x t
U

ω ω∆
= = ∆   (3.12)  

In [41], a more rigorous perturbative treatment was applied to the case of a moving 
boundary which accounts for the discontinuity of the electric field at the moving cavity 
boundary. The result of the perturbative treatment for a cavity of permittivity ε   surrounded by 
air ( 1)ε =  yields, 
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0
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( 1) (1 )

2 ( )
c c

om

dh E E dAd dxg
dx E r dV
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ε

⊥
 − − −  = = −

∫

∫
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 





  (3.13) 

Where E




 is the unperturbed component of the electric field parallel to the moving surface and 

E ⊥



 is the unperturbed electric field component perpendicular to the moving surface. ( , )h h r x=
  

is defined as the surface with area element dA   which is being displaced. Thus, ( , )h r x can be 
written in terms of the un-normalized mechanical displacement field,   

 ˆ( , ) ( )h r x Q r n=


 

   (3.14) 

where n̂  is the unit vector normal to the surface of interest.  If x  is chosen to be the 
displacement of the point along the boundary with maximum radial change, then the 
displacement field may be normalized according to ( ) ( )Q r x q r= ⋅



  

. The normalized 
displacement field is then defined as, 

 (r)( ) .Qq r
x

≡




 

  (3.15) 

It then follows that ˆ/ ( )dh dx q r n=


  and substitution into (3.13) gives the optomechanical 
coupling constant,  
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  (3.16) 

The above process was applied to the case of a small GaAs disk resonator having a radius 
of 1μm, and omg =-485GHz/nm [23,24] with reasonable agreement between theory and 

experiment. Blindly applying (3.9) to the 1μm GaAs disk at 1550nm would yield omg ~-1,200 
GHz/nm which is off by a factor of 2.5 from the measured value. This is due to the smaller 
radius resulting in optical modes with less overlap with the moving boundary. A similar 
procedure was applied to a photonic crystal resonator with omg =-420GHz/nm.   

Recall that if a different definition for the scalar displacement x  is chosen such that 
x xα→  then using (3.15) and (3.16) gives  /om omg g α→   such that the product omg x  is 
preserved as mandated by (3.12). However, since the optomechanical coupling is not in itself 
unique, the vacuum optomechanical coupling rate  is often quoted in the literature [40],  

 vac om zpmg g x=   (3.17) 

 where zpmx  is zero point displacement of the mechanical mode.  

3.3  Dynamics of Cavity Optomechanics  
As stated before, when a WGM resonator is constructed such that its boundaries are free 

to move, the cavity wall acts as a distributed mirror. So far, just the time varying radiation 
pressure force has been considered in treating the free-standing cavity as a movable mirror. The 
dynamics of the cavity such as its response to a force have thus far been ignored. In treating the 
cavity as a harmonic oscillator with intrinsic damping and spring constant it will be shown that 
the dynamical nature of radiation pressure alters the intrinsic damping of the cavity and can even 
reverse its sign to produce gain. Likewise, the spring constant of the cavity may be altered by a 
time varying radiation pressure force, a phenomenon known as the optical spring effect.  

First, the dynamics of radiation pressure are considered from a qualitative viewpoint in 
the time domain. The steps below walk through the dynamics of radiation pressure and self-
oscillation when light is injected into a cavity with the aid of Figure 3.3.  

a) Initially, continuous wave coherent light assumed to be blue detuned by an amount +∆  is 
evanescently coupled into the cavity from a waveguide as shown at the top of Figure 
3.3(a). The bottom Figure 3.3(a) depicts the laser pump frequency superimposed with the 
time varying cavity transmission 2| ( )|T ∆  and the resulting output power as a function of 
time given by 2( ) | ( )|out inP t P T= ∆ .  

b) Radiation pressure acting on the resonator outer boundary induces a shift in the radius, 
dx  and using equation (3.12) a reduction in the cavity resonant frequency by omg dx  

(recall that omg  is negative) as depicted in Figure 3.3(b). The shift in cavity frequency is 

akin to an increased detuning such that omg dx∆ → ∆ −  resulting in a larger transmission, 
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2| ( )|omT g dx∆ −   and more power exiting the waveguide represented by thicker arrow 

for ( )outs t . For the case of blue detuning, an increased effective detuning results in a 
decline of circulating power in the cavity per equation (2.31) also represented by a 
thinner ( )a t  line at the top of the Figure 3.3(b). 

c) Due to a reduced circulating power in the cavity and the spring restoring force of the 
stretched resonator, the cavity returns to a value close to its original radius, and 
associated circulating power. As shown at the bottom of Figure 3.3(c), the power exiting 
the waveguide declines to close to the original value in a sinusoid-like manner. The 
output power is not a perfect sine wave since the laser is sampling a non-linear moving 
Lorentzian function, 2| ( )|omT g x∆ − . Positive feedback is initiated since the radiation 
pressure once again causes expansion of the resonator boundary. It will be shown later 
that the process will continue indefinitely provided that mechanical damping mechanisms 
don’t outweigh the positive feedback of the light-resonator interaction. If the light mainly 
interacts with a single mechanical mode, than the resonator will oscillate at the 
mechanical resonant frequency. A device where intrinsic damping is overcome by 
radiation pressure is referred to as an optomechanical oscillator (OMO).  
 

  
                (a)         (b)                   (c) 

Figure 3.3: Time dynamics of a movable cavity boundary (green) pumped by a laser (red) 
detuned from the cavity resonance by ∆ . Bottom of each figure shows the laser frequency 
superimposed on the cavity transmission curve 2| ( )|T ∆   and the resulting output power as a 
function of time given by 2| ( )|inP T ∆ . (a) Light is initially coupled into the cavity. (b) The cavity 
expands by an amount dx  due to radiation pressure resulting in a shift of the cavity resonant 
frequency by omg dx . (c) Due to reduced light in the cavity and the cavity spring restoring force 
the cavity shrinks back to its original size. The circulating power returns to its original state and 
the process may continue.   

 As previously mentioned, optomechanical self-oscillation, or optical heating can only 
occur for blue detuning. One can imagine a red detuned cavity in which case an increased cavity 
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radius enhances the intracavity power, further pushing the cavity outward. The mechanical 
spring stiffness may bring the cavity closer to its original size but this will be counteracted by the 
outward radiation pressure force and intrinsic mechanical damping. For the red detuned case, 
radiation pressure is in phase with mechanical damping (or friction): When x  is decreasing, 
radiation pressure decreases with it and when x  is increasing, radiation pressure is also 
increasing. The radiation pressure is thus in cohort with the frictional force proportional to m xΓ  . 
Eventually the system will reach a steady state in which the mechanical mode is further damped 
by radiation pressure, a process known as optical cooling. One can verify that the opposite is true 
for blue detuning, in which case radiation pressure is out of phase with the mechanical damping 
force and thus acts as mechanical gain. 
 The frequency domain view of cavity optomechanics in Figure 3.4 is also useful for 
understanding physically observed phenomena. The laser frequency is now superimposed upon 
the intracavity photon number 2| ( , )|a t ω  plotted vs input frequency similar to Figure 2.3(b). It is 
assumed that radiation pressure, ( )rpF t  interacts with only a single mechanical mode occurring 

at angular frequency mΩ . In both red and blue detuned cases, periodic expansion of the radius 
causes phase modulation of the circulating electric field, and thus phase modulation sidebands 
positioned at m±Ω  from the laser. Observing Figure 3.4(a) when the laser is blue detuned, the 
lower energy sideband at frequency o mω − Ω is preferentially amplified by the internal cavity 
response in comparison to the higher frequency sideband. By photon number conservation, the 
presence of additional low energy photons implies that there is less energy in the electromagnetic 
field when compared to the stationary cavity case. Energy conservation demands that energy 
must be flowing from the electromagnetic field to the mechanical resonator. Blue detuning thus 
leads to amplification of mechanical motion and is amenable to self-oscillation.  For red tuning 
depicted in Figure 3.4(b) the opposite is true as the higher energy sideband is preferred by the 
cavity response and so photon and energy conservation mandates that energy is funneled from 
the cavity mechanical degree of freedom to the electromagnetic field. This flow of energy from 
mechanical to electromagnetic forms, is the basis for optical cooling and the realization of 
cooling the resonator to the quantum mechanical ground state [7][8].   
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           (a)           (b) 

Figure 3.4: Frequency domain representation of cavity optomechanics. The laser centered at oω  

is detuned by ∆  and interacts with a single mechanical mode at mΩ . (a) In the blue detuned case 
the lower phase modulation sideband preferentially circulates in the cavity while in (b) red 
detuning amplifies the upper sideband. Mechanical motion is amplified in case (a) and is 
suppressed for case (b)  

 Observation of Figure 3.4 shows that exactly on resonance ( 0∆ = ), the optical field can 
neither cool nor heat the mechanical mode. Though not explicitly drawn, the lower frequency 
phase modulation sideband at o mω − Ω  is actually π  phase shifted with respect to the upper 
sideband and so should be pointing downwards in the figure. When the laser is exactly on 
resonance, the upper and lower sidebands are equally weighted by the cavity response and thus 
exactly cancel. No energy may be transferred from laser to the mechanical mode and vice versa, 
the system behaves as if the cavity position is fixed. 
 If turned on its side, Figure 3.4 may be viewed as a band diagram for photons – the active 
medium in a phonon laser. In the blue detuned case, upon interaction with a photon, light is more 
likely to fall from the laser frequency to a lower energy and release a phonon in the process. 
When blue detuned, the density of photon states is greater for smaller energy photons and the 
photon field may be viewed as a population inverted in analogy to a traditional laser except here 
photons replace the role of carriers and phonons replace the role of photons.   
 An astute reader may also realize that the laser samples a non-linear moving optical 
response and in order to accurately synthesize such a field (which isn’t a perfect  sinusoid), 
multiple harmonics of the phase modulation sidebands are necessary. These internal phase 
modulation harmonics combine with the field ins  within the waveguide to produce amplitude 
modulation harmonics in the waveguide output field. By measuring the waveguide output field 
with a high speed photodetector, we observed a frequency comb comprising 40 harmonics in a 
74MHz silicon nitride resonator as shown in the figure below. Other groups have studied the 
relative weight of such harmonics in more detail [10] and the power in each harmonic is derived 
later in this thesis.  
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Figure 3.5: Optomechanical frequency generated by an 2 74MHzm πΩ = ⋅ , 25μm outer radius 
SiN optomechanical oscillator pumped with a high optical power of 32mW at the coupling 
junction. Data was measured at 24Torr with a high speed 10GHz photodetector  with integrated 
transimpedance amplifier. 

Optomechanical RF frequency comb generation  may also be understood in the time 
domain in which cavity photons at phase modulation frequency o mω ± Ω  may undergo many 
round trips and thus be re-modulated by the mechanical mode to produce harmonics of frequency 

o mNω ± Ω  where N  is the harmonic number. Optomechanical RF frequency combs permit 
harmonic locking to a frequency reference demonstrated here for a multimaterial resonator in 
section 6.2 and by others in [44]. Applications such as chip-scale atomic clocks [13], mass 
sensing [11], and photonic communications [45] may also benefit from higher order harmonic 
generation. In section 3.5.1 the optomechanical frequency comb will be analyzed more 
quantitatively. 

3.4 Coupled Mode Equations for Cavity Optomechanics 
In the previous section, the dynamics of cavity optomechanics were analyzed 

qualitatively. Coupled mode theory in section 2.2 for rigid WGM resonators is particularly useful 
to quantitatively study radiation pressure dynamics in the case of a moving cavity boundary. We 
continue to adopt the notation and initial formulations in [28].  

Substituting equation (3.7) into (2.25) dictates that in the presence of optomechanics, the 
detuning becomes ( )omg x t∆ → ∆ − . Hence, equations (2.23)-(2.25) describing the dynamics of 
a rigid resonator are now,   

 ( )( ) ( ) ( ) ( )
2om in exa t i g x t a t s tκ κ

 
= ∆ − − + 

 
   (3.18) 

 ( ) ( ) ( )out in exs t s t a t κ= −   (3.19) 

 0o cω ω∆ ≡ −   (3.20) 
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where 0cω  is the cavity center frequency in the absence of radiation pressure. Treating the 
mechanical mode, parameterized by scalar position ( )x t , as a damped harmonic oscillator 
driven by rpF  completes the system of equations, 

 ( )2 2( ) ( ) ( ) ( ) .ex om eff m mF g a t m t t tx x x− = + Γ + Ω
    (3.21) 

In writing (3.21), an arbitrary external driving force, exF  is included along with radiation 
pressure from equation (3.10). The general relation between mechanical stiffness, K , resonant 
frequency, mΩ  and effective mass, effm  also applies,  

 m
eff

K
m

Ω =   (3.22) 

Equation (3.21) implies that the mechanical effective mass may be understood as the moving 
mass in the direction of ( )x t  such that the maximum energy stored in the mechanical mode is,  

 2 2
max

1 | |
2m eff mU m x= Ω   (3.23) 

which is the usual energy stored in a one dimensional harmonic oscillator. However, recall from 
section 3.2.1 that the definition of x  is arbitrary for three dimensional structures and thus, so is 

effm . If x  is scaled by α , effm  must be scaled by 2α −  to maintain the non-arbitrary mode 
energy of equation (3.23). Here, ( )x t  is defined as the radial movement of the point along the 
boundary with largest radial displacement. Since each mechanical mode experiences a different 
maximum displacement, each mechanical mode also has a different effective mass and 
optomechanical coupling.  
 An important figure of merit for the mechanical resonator is the intrinsic mechanical 
quality factor, 

 m
m

m

Q
Ω

=
Γ

  (3.24) 

which is derived analogous to equation (2.14). Replacing κ  in equation (2.14) is mΓ , the 
intrinsic mechanical damping rate and FWHM of the mechanical mode in angular frequency 
space. In our measurements, mQ  is determined from the FWHM of the mechanical displacement 
peak which is always driven by thermal Brownian motion at room temperature. i.e. the thermal 
force acts as a pervasive white driving source in the broadband measurement technique of 
section 2.3 
 As a first step, the coupled equations (3.18) and (3.21) are solved numerically using a 
standard differential equation solver. In Figure 3.6(a) the displacement is solved for in time for 
four different optical input powers using the stiffness switching method in Mathematica. A blue 
detuned PSG cavity was assumed for each case. In all cases, the displacement varies 
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harmonically at a frequency of / 2m πΩ = 18.3MHz and the displacement amplitude increases 
from 30fm to 3pm when the power is increased from 470μW to 47mW.  In this regime, the 
displacement amplitude is linear with input power. The output power shown in Figure 3.6(b) 
however behaves differently. In all three cases, it begins at the input power ( / 1out inP P = ), and 
then drops as the cavity charges to optical steady state. The output power then momentarily 
increases as the displacement momentarily increases to its steady state value, x . Once the 
displacement reaches steady state, the output power then behaves very differently depending on 
the input power. Evident in the plots is that somewhere between an input power of 2.4mW and 
9.4mW, the output power oscillates sinusoidally at the same frequency as the displacement, a 
signature of self-oscillation which was detailed qualitatively in the context of Figure 3.3. In 
section 3.6.1 the threshold power for self-oscillation will be analytically determined and trends 
with relevant figure of merits will be investigated.  
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Figure 3.6: a) Displacement and b) corresponding output power vs time for four different input 
powers. A blue detuned cavity with intrinsic optical Q of 1 million, mechanical Q of 1160, 

112.4 10 kgeffm −= × , R=52.5μm, /om cg Rω= − = -23GHz/nm  was assumed.  The detuning and 

loaded optical Q were / oκ∆ = 0.3 and  750k respectively.  

3.5 Large Signal Dynamics 
It was demonstrated in section 3.3 that in principle, a blue detuned laser may excite a 

mechanical mode into self-oscillation and that the output field may comprise an RF frequency 
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comb with optical carrier. One option to predict and study these dynamics is to solve equations 
(3.18)-(3.21) with a numerical differential equation solver such as Matlab or Mathematica as 
was performed in the previous section. However, numerical solutions are often slow and a more 
analytical solution is sought. As a first step, the equations may be simplified by assuming the 
displacement is sinusoidal thus replacing equation (3.21) with the relation, 

 ( ) sin( ).o mx t x x t= + Ω   (3.25) 

It was assumed in (3.25) that the displacement oscillates about some steady state value, x  with a 
magnitude of ox  as was observed in Figure 3.6(a). Switching to a fixed frame not rotating at the 
laser frequency makes the time dynamics more physical. Substituting (3.25) into (3.7), equation 
(2.21) becomes, 

( )( ) sin( ) ( ) ( )e .
2

oi t
c om om o m in exa t i g x g x t a t s t ωκω κ− 

= − + + Ω − + 
 

   (3.26) 

From the supplementary section of [46] the homogenous, ( )ha t   and particular, 
( ) ( ) ( )p ha t A t a t=  solutions of the differential equation above satisfy,    

 0( ) exp ( ) cos( )
2h c om ma t A i g x t i tκω β

  
= − + − − Ω  

  
  (3.27) 

 ( )( ) exp cos( )
2in ex c om m oA t s i g x t i t i tκκ ω β ω

  
= + + + Ω −  

  
   (3.28) 

where 0A  depends on the initial cavity condition. The modulation index,  

 o
om

m

x
gβ ≡ −

Ω
  (3.29) 

was also introduced. In contrast to [46], input field of the form oi t
ins e ω−  was assumed rather than 

oi t
ins e ω+  resulting in i i→ −  in the equation solutions. In the end, the convention doesn’t matter 

since computation of physically measured photocurrent eliminates the oi te ω±  dependence. 
Substitution of the common expansion,   

 cos( ) ( )m mi t in tn
nn

e i J eβ β+∞Ω − Ω

=−∞
= ∑   (3.30) 

where ( )nJ β  are Bessel function of the first kind, allows integration of (3.28) yielding,  

( ) cos( )0 ( )
( )

/ 2 ( )
o m m

n
i n t i tn

p in ex
n om m

i J
a t A s e

i g x n
ω ββ

κ
κ

+∞
− + Ω − Ω

=−∞

=
− ∆ − + Ω∑   (3.31) 



36 
 

Due to the / 2κ  dependence in ( )ha t  the general solution ( ) ( ) ( )h pa t a t a t= +  quickly 

converges to ( )pa t . We can then expand the cos( )mi te β− Ω  in (3.31) utilizing the Bessel expansion 
of (3.30) yet again to write ( )a t  after 2/κ  seconds, 

( )0

,

( ) ( )
( ) ( ) .

/ 2 ( )
o m

n m
i n m tn m

p in ex
n m m

i J J
a t a t A s e

i n
ωβ β

κ
κ

−+∞
 − + − Ω 

=−∞

= =
− ∆ + Ω∑   (3.32) 

In writing, (3.32), the relation, ( )m mi i −− =  was used and the effective detuning, 

 omg x∆ ≡ ∆ −   (3.33) 

 was introduced. Throughout this section we assume the initial condition that at 0t = , we have 
(0) (0) (0) | | i

p ha a a a e β−= + =  where a  is the steady state cavity mode amplitude similar to 

(2.26) with ∆ → ∆ . Substituting 0t =  into equations (3.27) and (3.31) then gives,  

 

( )

0

2

( )i

| |

1 | |
n

n
in ex

n
mi

J

aA

s
nκ

β
κ

∞

=−∞ −

=

+
∆ + Ω

∑

  (3.34) 

It was assumed that the phase of ins  was chosen so that when multiplied by the entire summation 

the product is real allowing for the absolute value of the product. For low Q cavities, 0 ~ 1A  but 
for high Q cavities it varies strongly with β . For brevity, 0A  is dropped in the following 
equations but is kept in all calculations.  

3.5.1 Frequency Comb Generation 
Observation of (3.32) shows that the field in the cavity consists of a comb of sidebands at 

frequencies ( ) mn m− Ω  offset from the optical carrier at oω . Since n m−  is either an integer or 

zero, the comb lines extend out from oω  and occur at integer multiples of mΩ  in both the 
positive and negative frequency directions. This frequency comb is usually detected at the output 
of the waveguide with a photodetector sensitive to the output optical power,  

 
2

( ) .out o outP s tω=    (3.35) 

Using (2.22) and assuming CW input field we find, 

 ( ) e ( )oi t
out in exs t s a tω κ−= −   (3.36) 
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{ }

2 2 2* *

2 2*

( ) ( ) ( ) ( )

2Re ( ) ( )

o o

o

i t i t
out in ex in ex in ex

i t
in ex in ex

s t s a t s e a t s e a t

s a t s e a t

ω ω

ω

κ κ κ

κ κ

−= − − +

= − +

  (3.37) 

consistent with reference [46] with i i→ −  as previously mentioned.  

3.5.2 Output Power in the hth Harmonic 
Applications utilizing an optomechanical frequency comb may require high RF power at 

the harmonic of interest. It is thus interesting to derive the optical power at a particular harmonic. 
Though it is suspected that such a derivation has been performed elsewhere, it hasn’t been found 
in the literature. In [10] an approximate solution for harmonic power was derived that 
approximates the optical cavity Lorentzian as a linear function for small oscillation amplitude. In 
[9], the authors elude to calculating the harmonic strength by Taylor expansion of equation 
(3.18) but no derivation was given. Since the oscillation amplitude may be large for high finesse 
cavities or for large pumping power, the following derivation is more general as it only assumes 
sinusoid displacement equation (3.25) and is valid even in the large amplitude regime. Such a 
derivation is also useful in understanding how the optomechanical oscillator converts RF power 
from one harmonic to the next. The derivation is even valid for converting DC power up to 
higher frequencies through internal frequency mixing.    
 The time varying terms in (3.37) are analyzed separately. From (3.32), the first term 
varying as a function of time in (3.37) may be written,  

 

{ } {
( )

( )

* 2

( )
2 2,

( )2

,

2Re ( ) 2| | Re

( ) ( ) / 2 ( )

/ 2 ( )

2| | Re ( )

o

m

m

i t
ex in in ex

n m
n m m i n m t

n m
m

i n m tn m
in ex n m

n m

a t s e s

i J J i n
e

n

s A J i e

ωκ κ

β β κ

κ

κ β

−+∞
− − Ω

=−∞

+∞
− − Ω−

=−∞

− = −
+ ∆ + Ω 

+ ∆ + Ω 

 = −  
 

∑

∑

  (3.38) 

Where nA  is defined as, 

 
( )

( )2 2

( ) / 2 ( )
.

/ 2 ( )
n m

n

m

J i n
A

n

β κ

κ

+ ∆ + Ω
≡

+ ∆ + Ω
  (3.39) 

The output optical power oscillating as mih te − Ω  is found by choosing only summation terms 
which satisfy,  

 n m h− = ±   (3.40) 

where not to be confused with planks constant, in this context h  is an integer for the thh  
harmonic. Keeping only these relevant terms eliminates the summation over m , 
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o m mi t ih t ih th h
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κ β β
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 
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∑

∑
  (3.41) 

with the definition, 

 .mih th
hB i e − Ω≡   (3.42) 

Now, using the general relation, *Re{a} ( )/ 2a a= +  gives,  

 

{ }

( ) ( )

{ } { }

* 2 * * * *

2 * * * *

2 *

2Re ( ) | |

| |

2| | Re Re
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ex in in ex n n h h n n h h n n h h n n h h
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n

in ex n h n h n h n h
n

a t s e s A J B A J B A J B A J B

s J A B A B J A B A B

s J A B J A B

ωκ κ

κ

κ

+∞
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=−∞

+∞

− +
=−∞

+∞

− +
=−∞

− = − + + +

= − + + +

= − +

∑

∑

∑

  (3.43) 

For now, the argument, β from the Bessel functions was dropped for brevity. To find the real 

part of each argument, first the handy relation 2
i

i e
π

=  is used to rewrite (3.42),  

 22 2
m

m m

h
ih ti ihih t ih t

hB e e e e e
ππ π  

− Ω − − Ω − Ω  
 

= = =  
 

.  (3.44) 

We find using (3.39),  
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2 2

( ) cos ( )sin
2 2 2
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/ 2 ( )

( ) cos ( )sin
2 2 2

Re
/ 2 ( )

n m m m

n h

m

n m m m

n h

m

J h t n h t
A B

n

J h t n h t
A B

n

κ π πβ

κ

κ π πβ

κ

       
Ω − + ∆ + Ω Ω −       

        =
+ ∆ + Ω

       
Ω − − ∆ + Ω Ω −       

        =
+ ∆ + Ω

  

Substitution into (3.43) finally gives, 
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sin) sin( )
2 2m h mt h C h t hπ π

+− + Ω −

  (3.45) 

Where the cosine and sine coefficients, cosC and sinC  were inserted and have obvious 
definitions from (3.45). Though it may seem like many terms contribute to the power at the thh  
harmonic, the contribution to the sum rapidly decreases as | | / 2mn κ∆ + Ω > . If the system is 
blue detuned  ( 0)∆ > , then only terms satisfying 

 

/ 2 ( 0)

( / 2 ) ( 0)

m

m

n for n

n for n

κ

κ

− ∆
< >

Ω

− + ∆
> <

Ω

  (3.46) 

need to be included in the sum over n . Physically, the thn term represents the power that the thn  
harmonic contributes back to the thh  harmonic after photon recycling and internal mixing within 
the cavity produces a cascade of sidebands from frequency mnΩ  to mhΩ . When the conditions 
of (3.46) are not met, the sideband is suppressed by the cavity Lorentzian response.  
 We now turn to the 2nd time varying term in (3.37), ( )a*(t)ex a tκ . It is easiest to begin 

with the form of ( )a t  in equation (3.31) and use the relation 
2 *

,n n mn n m
a a a=∑ ∑  along with 

(3.33) to find, 
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∑

∑

  (3.47) 
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 The coefficient, nA  has the same definition as (3.39). Once again, only terms satisfying 
(3.40) contribute to the thh  harmonic and keeping these terms gives, 
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  (3.48) 

where hB  retains the same definition of (3.42) and the new coefficients are, 
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  (3.49) 

Now, equation (3.48) would simplify nicely if ( )*n n h n n hA D A D− −=  but this is not the 
case. However, investigation of the definition for nA  in equation (3.39) and comparison to (3.49) 
reveals fortuitous circumstances:  
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n n h n h n

n n h n h n

A D A D

A D A D

∗

− −

∗

+ +

=

=
  (3.50) 

The above relations are motivated by knowledge that 2| ( )|ex a tκ  is real and we then seek 
coefficient pairs which are the complex conjugates of each other. Equation (3.50) shows that 

1Term  in (3.48) is added to its complex conjugate when n n h→ −  in 2Term . Likewise, 
2Term  eventually is added to its conjugate, 1Term  when  n n h→ + . i.e.  
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 1 2( )
2 1( )

Term Term n n h
Term Term n n h

∗

∗

= → −

= → +
   

By pre-emptively adding the complex conjugate partner to each term within the summation, the 
summation argument of (3.48) is reduced to sines and cosines,  
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 (3.51)  

Inserting the definitions, (3.39), (3.44), (3.49) and after some algebra,  
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∑

 

where ( ) ( )n h n h− → +  implies that everything in the square brackets is repeated except when 
( )n h−  appears it is replaced by ( )n h+ . The expression above is simplified somewhat by 
substitution of the relations,  
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to finally obtain,   
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  (3.52) 

The reader is reminded that modulation index argument of the Bessel functions defined by 
equation (3.29), was omitted in some instances for compactness. Since, the modulation index 
depends linearly on the displacement amplitude, ox , which is numerically determined through 
(3.21), many of the resonator mechanical properties are buried within the Bessel function 
arguments.  

The output optical power oscillating at RF angular frequency, mh tΩ  is the sum of  (3.45) 
and (3.52):  
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where the coefficients, hA  are the sum of all the ,n hC  coefficients. Also, for blue detuning, only 
the terms in (3.46) need to be kept in each sum. High optical Q cavities thus always have fewer 
terms contributing to the sum. The sine and cosine components of the output power at harmonic 
h  add in quadrature. Since the phase of each quadrature contains / 2hπ−  in the argument, the 
“in-phase” and “quadrature” components depend on the harmonic in question.  

Often, the frequency comb is monitored on a an electrical spectrum analyzer (ESA) 
which responds to the envelope of the incoming photodetected power [47],  

 ( ) ( )2 2cos sin
, ( )env opt m o h hP @h t A AωΩ = + .  (3.54) 
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Equation (3.54) is the optical power in the thh  harmonic exiting the device. Upon 
photodetection, the measured RF power is proportional to the RF voltage squared and thus (3.54) 
is used to find the RF power viewed on an ESA at frequency mh tΩ ,  
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sig rf m

load load

G R T A AV
P h

R R

ω  + 
 Ω = =



  (3.55) 

where vR  is the voltage responsivity [volts/watt] of the photodetector, loadR  is the input 

resistance of the ESA, RFG  is the RF gain between the photodetector and ESA, and oT  is the 
optical transmission between the coupling junction and photodetector.    

3.5.3 Carrier Power 
The amount of power in the first harmonic ( 1h = ), or “fundamental” is defined as the 

carrier power. In any oscillator it is imperative to have large carrier power with little degradation 
in noise for improved signal to noise ratio and performance. To find the carrier power, first 1h =  
is substituted into equations (3.45) and (3.52) to plot the coefficients cos cos sin, , ,h h hC C C+ − +  and sin

hC −  as 
a function of displacement amplitude, ox . Figure 3.7 shows an example of such a calculation for 
our typical spoked-ring PSG OMO device at atmosphere. The chosen device has a 52.5μm radius 

2 18.3m MHzπΩ = ⋅ , mQ =  1170, 112.4 10effm kg−= × , and /o cg Rω= − at 1550nm. The 
coefficients are plotted for four values of intrinsic optical Q  as shown in Figure 3.7. Intrinsic 

'Q s  ranging from a lower oQ  of  100,000 to a rather high oQ  of 100 million attained in laser-

reflowed microtorroids [38] are chosen. The effective detuning, ∆ ,   and loaded optical Q , totQ  
specified in each graph, are chosen to minimize the threshold power for self-oscillation - an 
optimization which will be detailed in section 3.6.1.    
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Figure 3.7: Coefficients to calculate carrier power plotted vs displacement amplitude, ox . The 

coefficients are each normalized by dividing by 2| | /in in os P ω=   .  

 In studying Figure 3.7 several trends are evident:. 1) The sin
hC ±  coefficients which multiply 

sin( / 2)mh t hπΩ −   are negligible for low oQ  devices, but become very significant for high oQ . 
We will see in section 3.6.1 that once the intrinsic linewidth is less than the mechanical 
frequency, the sideband resolved regime is attained which gives new dynamics such as higher 
component of optical power oscillating as sin( / 2)mh t hπΩ − . For 1h = , 
sin( / 2) cos( )m mh t h h tπΩ − = − Ω  so in comparing to (3.25) this represents the quadrature 
component of the oscillating field. 2) High oQ  devices have larger coefficients at small 
displacements, and the separate sums of the cosine and sine coefficients has a greater maximum 
when compared to low oQ  devices. This is evident by the scales of the four plots above. This 

shouldn’t be too surprising since a high oQ  device has a larger Lorentzian slope in frequency and 
so will modulate the stored laser field more for a given displacement. Note that the input optical 
power required to reach a given displacement has not been mentioned but it should be evident 
from previous discussions that high oQ  gives larger displacement amplitude for a given input 
power.   However, a consequence of the greater input power to radiation pressure force is that the 
carrier power of high oQ  will saturate at low input power since Figure 3.7 shows that 3) after a 
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given displacement, the coefficients contributing to carrier power begin to drop which results in 
a saturation of carrier power. As explained in [20] for a displacement amplitude satisfying 

om og x κ− > , the laser field spends more time outside the cavity resonance which reduces the 
pumping efficiency, and the transfer from CW optical power to RF carrier power begins to 
quench. Finally, 3) After reaching the peak displacement, devices in the unresolved sideband 
regime ( )o mκ > Ω , exhibit smooth carrier power coefficients while sideband resolved devices 
exhibit erratic behavior. Such behavior agrees with the numerical simulations in [48] and are 
explained by far fewer terms contributing to each sum as explained in equation (3.46). In low Q 
cavities the multitude of terms average out the optical response to an oscillating radius resulting 
in a smoothing effect.  In a high Q cavity, photons circulating many times are more sensitive to 
the mechanical deformation and thus the response greatly depends on the oscillation magnitude.  
 In Figure 3.8 the optical carrier power from equation (3.54) is plotted as a function of 
displacement for the same device and oQ  values above. Normalization is accomplished by 

plotting the factor cos 2 sin 2 1/2 2
1 1(( ) ( ) ) /| |inA A s+  so that only the transfer from optical input power 

to optical power oscillating at RF is graphed. Again, in the low Q cases there exists an optimal 
displacement which maximizes the carrier power. For the two highest Q devices within the 
sideband resolved regime the local optimal displacement occurs when om mg x− = Ω  or 1β =  
since we will see later that in the sideband resolved regime the optimal coupling occurs when 

mκ∆ Ω  . The erratic behavior in the high amplitude regime for the highest Q device was 
previously explained. 
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Figure 3.8: Output optical power in the mΩ  sideband normalized by input optical power plotted 
against the displacement amplitude. Four intrinsic optical Q values are plotted. The device 
characteristics were described prior to the previous figure. 

 It is also interesting that for the highest Q device, the optical power scattered into the 
sideband at frequency mΩ  exceeds the DC input power for large displacements. Such a case is 
partly a ramification of plotting for arbitrary displacement amplitude when in actuality, the 
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displacement amplitude begins to saturate upon reaching the value defined by omg x κ− =  due to 
inefficient pumping of the cavity [20]. However, in [48] it was shown that indeed the quantum 
efficiency for scattering photons into the first sideband may exceed unity for large displacement 
amplitudes and high Q cavities in the deeply sideband resolved regime. This is due to 
multiphoton emission as photons inside a cavity with large optical lifetime may make many 
round trips and contribute to several phonon creation events in the process. The quantum 
efficiency for such a process may actually greatly exceed one for cavities with large 
optomechanical coupling and high optical Q’s.  

Now, the amount of input power necessary to achieve a given displacement amplitude 
has not yet been mentioned. The displacement amplitude may be determined numerically for the 
given input power as was performed to generate Figure 3.6. From the amplitude, the normalized 
optical carrier power, cos 2 sin 1/2 2(( ) ( ) )/| |h h inA A s+  may then be calculated. In Figure 3.9 both the 
displacement (a) and corresponding optical carrier power (b) are plotted for the same intrinsic 
optical Q values previously described. To calculate the displacement, equations (3.18) and (3.21) 
were numerically integrated using the stiffness switching method in Mathematica. Once the 
displacement as a function of time was found, it was fitted to a sine wave. Since, the fitted 
displacement magnitude, ox  has a somewhat erratic dependence on input power, the RMS 
displacement is plotted as suggested in [48]. Once the RMS displacement is known, the 
normalized optical carrier power may be calculated using equations (3.54) and (3.53) with 1h =

and 2o RMSx x= .    
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Figure 3.9: (a) Calculated RMS displacement vs CW optical power present at the waveguide-
device coupling junction. Equations (3.18) and (3.21) were numerically evaluated for the four 
listed intrinsic optical Q values with totQ  and ∆  as listed in Figure 3.7. (b) Normalized optical 
carrier power for the corresponding displacements and input power from part a).  

 In viewing  Figure 3.9a) a knee in the displacement curve reduces the slope at the point 
/ox κ= − ∆  which is clearly visible in the two highest Qo devices, but the transition is smoother 

in the two lower Qo cases (they have a more gradual cavity Lorentzian). This is again due to a 
high photon sensitivity to a cavity frequency shift beyond the cavity linewidth which decreases 
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the laser pump efficiency in high Qo devices. Nonetheless, high Qo gives a greater maximum 
ratio of optical carrier power to input pump power as seen in Figure 3.9(b). The ratio even 
exceeds unity for some input powers again due to the possibility of multi-phonon emission [48]. 
In general, for small input power, the carrier power is larger for high Qo devices. However, it is 
important to remember that Figure 3.9 plots the normalized rather than the absolute carrier 
power which may be far greater for low Qo devices depending on the input power.  

For the idealized cases here, the input power at which the 1MoQ =  and  10MoQ =  
devices have equal ratio of carrier power to input power is at about 100mW but in actuality the 
crossover point is much sooner due to additional forces present in the system which we have 
observed to be very strong especially in Silicon OMO’s. These forces may include non-linear 
dissipative effects such as two-photon absorption or linear effects such as free carrier absorption 
and free carrier refractive index change. Such effects have been found to reduce measured 
threshold powers by up to 170 in silicon as we detail in section 5.3. In Silicon Nitride and PSG, a 
similar trend of lower than expected threshold power has been observed for low Qo resonances 
which may be attributable to surface traps which create free carrier effects or the electrostrictive 
effect which was found to be quite strong in suspended silicon waveguides [49].   

Usually, the un-normalized RF carrier power from (3.55) is desired. Plotting just the 

factor ( ) ( ) ( )2 22 cos sin
o h hA Aω  + 

 
  gives the following un-normalized plot. The RF carrier power 

actually never reaches the high levels predicted for low optical Q devices due to the extra force 
which causes saturation of the carrier power prematurely. This also reduces the threshold power 
dramatically. Note that while the carrier power abruptly saturates for low Q devices it steadily 
rises at ~10dB/decade for high Q devices. Prior to saturation the RF carrier power rises at about 
40dB/decade which matches our experiments later.  
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Figure 3.10: RF carrier power plotted vs input optical power at the coupling junction. 
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3.6 Small Signal Dynamics 
Thus far it has been assumed the device radius oscillates harmonically without regards to 

the input power necessary to achieve such a state. Per section 3.3, when the input light is blue 
detuned with respect to the cavity resonance, the force due to radiation pressure is out of phase 
with the mechanical frictional damping and self-oscillation is possible. In other words, radiation 
pressure exerts mechanical gain on the structure. This gain is due to the dynamical nature of 
radiation pressure. For blue detuning, the radiation pressure is reduced as the device expands, 
and vice versa for red detuning. The light and mechanical structure act as a dynamical system as 
each are affected by the dynamics of the other. The interplay of the time varying and 
interdependent optical and mechanical states is referred to as dynamical back-action. In this 
section, the previously introduced optomechanical coupled mode equations will be evaluated in 
the small signal limit to derive the damping (or gain) due to dynamical back action. From the 
optomechanical damping, the threshold power will be calculated and its behavior evaluated in 
certain regimes.  

Also, in the previous section, the sideband power oscillating at integer multiples of the 
mechanical frequency was calculated and it was assumed the resulting spectrum was a train of 
perfect delta functions with peak height given by the sideband power. In reality, noise perturbs 
the instantaneous mechanical frequency resulting in a broadening of each peak in the 
optomechanical frequency comb. Any oscillator should have large signal to noise ratio while 
consuming minimal power. The carrier power, or signal, has already been derived and analysis 
of the noise and minimum input power for oscillation is forthcoming.  

 
Steady State Solutions 

First, steady state solutions to the optomechanical coupled mode equations, (3.18)- (3.21) 
are sought. Substituting ( )a t a→ , ( )x t x→ , ( )in ins t s→  gives,  
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Re-arranging  gives,  
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  (3.57) 

The non-linear interdependence of a  and x  above gives rise to a well-known bistability and 
hysteresis when sweeping a laser through an optomechanical cavity in the absence of an external 
force, extF [50].  
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Small Signal Solutions 
The coupled optomechanical equations are linearized by assuming a small signal limit. 

All dynamical variables, are written as a sum of a static steady state (or average) value and a 
time varying (or small signal) component,  

 

( ) ( )
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in in in

out out out

a t a a t
x t x x t

s t s s t
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= +

  (3.58) 

In the small signal limit, it is assumed that ( )a t aδ   holds for all variables. While this 
assumption is perfectly valid for analyzing gain just prior to self-oscillation, and noise 
components which depend linearly on the dynamical variables, it would be invalid to apply the 
same assumption to harmonically oscillating variables during self-oscillation which may 
approach their steady state counterpart. Equations (3.58) are then substituted into (3.18) and 
(3.21) to obtain,  
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  (3.59) 

where (3.33) was substituted for the steady state detuning omg x∆ ≡ ∆ − . Next, equation (3.56) is 
substituted above to remove some of the steady state terms, then small signal products to second 
order such as 2| |aδ  and a xδ δ⋅  are ignored, followed by assuming the phase of ins  is adjusted 
to make a  real. Performing these operations leads to the linearized equations, 
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Performing a Fourier transform of the form { }x( ) ( ) i tt x t e dtΩ= ∫  on both equations renders 

them algebraically solvable. Recall that Fourier theory demands ( ) ( ) i tx t x e d− Ω= Ω Ω∫  so that

{ }( ) ( )t ix x Ω= − Ω⋅  and { } 2( ) ( )tx x Ω= −Ω . The property, { }( ) ( )x t x∗ ∗Ω= −  also 

holds. Integrating the time dependent coupled mode equations then gives the frequency domain 
equivalent, 
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where, 
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  (3.61) 

is the mechanical susceptibility [m/N]. Isolating aδ  in the top equation,  
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and substitution into the bottom equation of (3.60) gives,  
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Assuming real and symmetric radial disturbance, ( )xδ Ω  and a constant input drive such that 
0insδ = , then one obtains,  

 1( ) χ ( ) ( )ex effF xδ δ−Ω Ω Ω= ⋅   (3.64) 

where, 
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where χ ( )dba Ω , ( )
dba

K Ω , and ( )dba ΩΓ  are the susceptibility, spring constant, and damping 
induced by dynamical back action the latter two of which are explicitly, 

 { }1 2 2
2 2

2 2

( ) ( )( ) Re χ ( ) | |
( ) ( )

dba dba om

2 2

K g a
κ κ

−Ω Ω

 
 

∆ + Ω ∆ − Ω = = +     + ∆ + Ω + ∆ − Ω        

   (3.66) 

 

 
{ }1 2 2

2 2
2 2( ) ( )

Im χ ( ) | | 2 2( ) dba om
dba

eff eff

2 2

g a
m m κ κ

κ κ
−

+ ∆ + Ω ∆ − Ω

Ω
Ω

 
 
 Γ = − = − Ω Ω     +        



  (3.67) 

The stiffness induced by dynamical back action, dbaK  can thus tune the resonant 

frequency from the nominal value, mΩ  to ' /m m dba effK mΩ = Ω + . Tuning by dynamical back 
action has been utilized to lock an OMO to a microwave synthesizer [51].   

Equation (3.67) demonstrates the previously qualitative assertion that for blue ( 0)∆ >  
detuning, 0dbaΓ <  such that dynamical back action induces a negative damping (or positive 

gain) which counteracts the intrinsic damping, mΓ . Equation (3.67) also shows that the gain due 
to dynamical back-action, dba−Γ  is proportional to the stored cavity energy multiplied by the  
Lorentzian weight of the lower sideband subtracted from the upper sideband. This weighting 
may be qualitatively understood as the density of available photon states in the two sidebands. 
Because the noise properties of the OMO depend greatly on the behavior of dbaΓ around the 

mechanical resonance frequency, the optomechanical gain, dba dbaG = −Γ  is plotted below as a 

function of frequency offset from ' / 2m πΩ . The plot is parameterized by intrinsic optical Q with 
the same device, and assumed coupling, and detuning conditions as Figure 3.7. In this case, the 
input power for each intrinsic Q is set to the threshold power for optomechanical self-oscillation 
which will be derived in the next section. For the four values of optical Q studied, the calculated 
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threshold powers were 4.1μW, 16μW, 4.7mW, and a whopping 4.6W for intrinsic optical Q’s of 
108, 107, 106 and 105 respectively. Observation of the figure shows that high optical Q devices 
amplify external forces more(less) below(above) resonance than low optical Q devices. This 
means high optical Q devices are more sensitive to input disturbances such as noise just outside 
of resonance. While this property may be desirable if trying to sense the noise, it is undesirable 
when attempting to construct an oscillator that is impervious to input disturbances. The low Q 
devices exhibit relatively flat optomechanical gain around the resonant frequency but the inset 
reveals that even the lowest Q device has some response outside of resonance. In section 3.6.2 
the noise properties of OMO’s will be studied in more detail.  
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Figure 3.11: Optomechanical gain ( dba−Γ ) plotted vs temporal frequency offset from ' / 2m πΩ
for four intrinsic optical Q values. The device, coupling and detuning conditions are further 
described in the context of Figure 3.7. The input power for each device is set to the calculated 
threshold power for self-oscillation. Devices with lower optical Q exhibit larger fluctuation in 
optomechanical gain than low Q devices. For this device, the intrinsic Mechanical damping is 

96,000 rad/smΓ =      

3.6.1 Threshold Power 
It is worthwhile to analyze the behavior of dbaΓ  at the effective mechanical resonance 

frequency, '
mΩ  since the interesting behavior of χeff  is concentrated in this region. Plugging in 

(3.57) for a  and using omg x∆ ≡ ∆ − , equation (3.67) becomes,   
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  (3.68) 
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Threshold occurs when the mechanical mode experiences zero net damping, 
'( ) 0eff m dba mΩΓ = Γ + Γ =  as illustrated in Figure 3.12 where both mΓ  and dba−Γ  are plotted as a 

function of input power for the same device and coupling conditions used to generate Figure 3.6.  
At a threshold input power of 5.7mW in this case, gain due to radiation pressure cancels intrinsic 
mechanical damping. Although equation  (3.68) is plotted for input power greater than threshold, 
technically the small signal assumption (3.58) no longer holds on resonance after threshold. In 
reality, dbaΓ  asymptotically approaches but never surpasses mΓ  similar to gain clamping of a 
laser at threshold.  
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Figure 3.12: Optomechanical gain due to radiation pressure dynamical back action, dba−Γ  from 

equation (3.68) and intrinsic mechanical damping, mΓ  plotted against normalized input power. 
At threshold, m dbaΓ = −Γ .  

Solving for the threshold power from (3.68) gives,  
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  (3.69) 

From this point forward, we will use mΩ  in place of '
mΩ with the implicit assumption that 

the resonant frequency is shifted due to dynamical back-action.  
Obviously the threshold power depends on both the detuning and external quality factor 

exQ through exκ  and o exκ κ κ= +  . In the lab, the coupling waveguide position and laser 
wavelength must then be simultaneously optimized for optimal threshold power. In Figure 3.13 
both the optimal total optical damping rate, o exκ κ κ= +  and detuning ∆  are plotted as a function 
of the intrinsic quality factor.  Each data point was found by minimizing (3.69) for the given 
intrinsic Q. The device simulated is identical to the previous device used to generate Figure 3.7.  
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In Figure 3.13(a), it is evident that in the unresolved sideband regime, the waveguide gap 
should be chosen such that / ~ 1.3oκ κ   or / ~ 0.75tot oQ Q  for minimum threshold power. This 
slight undercoupling is to maximize the optical Q the light experiences while at the same time 
allowing enough light to enter the device. In the resolved sideband regime, the optimal device 
should be well overcoupled as the optimal coupling gives ~ mκ Ω  and it is evident that the 
coupling Q should be continually reduced as the intrinsic Q increases. The device must be 
overcoupled so that the 0 mω − Ω  phase modulation sideband is amplified by the cavity 

Lorentzian while the o mω + Ω  modulation sideband is highly attenuated. This asymmetry is 

crucial to produce net light at frequency mΩ .  The optimal detuning calculated in Figure 3.13(b) 
is ~ / 4κ  in the unresolved sideband regime which maximizes the Lorentzian slope the laser 
samples. In the resolve sideband regime, the optimum detuning equals the mechanical frequency, 

mΩ so that the lower modulation sideband is exactly on resonance with the cavity.         
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Figure 3.13: (a) Optimal total optical linewidth, κ  vs intrinsic optical quality factor. The optimal 
linewidth is normalized by the intrinsic linewidth (left axis) and mechanical angular frequency 
(right axis). (b) Optimal detuning vs intrinsic quality factor. Detuning is normalized by the total 
optical damping rate, κ (left axis), and angular mechanical frequency (right axis). Grey and 
green shaded areas of the graph delineate the unresolved and resolved sideband regimes. 
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 Once the optimum detuning and total quality factor are known, the threshold power is 
then calculated for the given oQ  as shown in Figure 3.14. In the unresolved sideband regime the 

minimum threshold power is proportional to 3
oQ . This is expected since in section 2.2.1 it was 

shown that the circulating power scales with oQ  and one can verify from equation (2.31) that the 

maximum Lorentzian slope scales with 2
oQ . Again, the Lorentzian slope is responsible for 

asymmetry in the upper and lower phase modulation sidebands which mediate phonon creation 
in the cavity [48]. In the resolved sideband regime, the threshold power is independent of 
intrinsic optical Q which isn’t surprising since it was already shown that the minimum threshold 
power occurs when the total Q is on the order of mΩ  regardless of the intrinsic Q. Also plotted in 
Figure 3.14 is the threshold power for different mechanical quality factor. As expected from the 

mΓ  dependence in (3.69), threshold power scales with 1
mQ −  regardless of oQ .  Thus, high 

mechanical Q structures are desired for low threshold power devices.    
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Figure 3.14: Threshold power using optimized external coupling Q and detuning plotted as a 
function of intrinsic optical quality factor. The plot is parameterized by the intrinsic mechanical 
quality factor. The threshold power trend with oQ  changes around the barrier between the 
resolved and unresolved sideband regimes.    

Approximate Behavior in the Unresolved Sideband Regime (USR)  
The approximate threshold power trend in the unresolved sideband regime may be 

derived by assuming mΩ << ∆ . A first order Taylor expansion of the first term in parenthesis in 
equation (3.68) for ( )dba mΓ Ω  gives,  
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Likewise, 
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 Substitution into (3.68) yields after simplification, 
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  (3.70) 

 It was already shown in Figure 3.13 that optimal ,exκ κ  and ∆  are all on the order of oκ  

in the unresolved sideband regime (USR) so equation (3.70) demonstrates that ( )dba mΩΓ  scales 

as 3
oκ −  or 3

oQ . This result is also important in noise contexts as it shows that the small signal gain 

( )dba−Γ   scales with 3
oQ  close to resonance for blue detuning. Higher oQ  devices in the 

unresolved sideband regime thus amplify external forces (such as noise) more than lower oQ  

devices. Also, equation (3.70) shows that for low oQ  devices the optomechanical gain is 
frequency independent for frequencies close to the resonance frequency thus confirming the 
observed trend in Figure 3.11.  

Assuming the device coupling and detuning are chosen to minimize threshold power, 
Figure 3.13 suggests that the following values should be substituted into (3.70):  / ~ 4 /3oκ κ , 

so / 1 /3ex oκ κ =  , and / 1 / 4 / 1 /3oκ κ∆ = → ∆ = .  Substitution gives, 
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  (3.71) 

Setting equation (3.71) equal to m /m mQ−Γ = Ω  and solving for 2| |in c inP sω≅   yields the 
approximate minimum threshold power,  
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g Q Q
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  (3.72) 

Equation (3.72) was verified to be in excellent agreement and within ~5% deviation from the 
data plotted in Figure 3.14 in the (USR). Quick inspection of equation (3.72) confirms both the 
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3
oQ −  and 1

mQ −  dependence of threshold power. The 2
omg −  dependence also reveals that large 

optomechanical coupling is an important metric in reducing threshold power. The threshold 
power also scales linearly with mechanical frequency. Finally since the mechanical stiffness is to 
first order independent of radius and 2

effm R∝ , then 1
m R −Ω ∝  (equation (3.22)). Inserting 

equation (3.9) for /om cg Rω≈ − , then means 3
threshP R∝ . Smaller devices still in the USR are 

expected to produce the smallest threshold power. Indeed, a 1μm silicon resonator exhibited a 
low threshold at a dropped power of 3.6μW [52]. Accounting for the cavity transmission of 96%, 
the corresponding threshold power is larger but cannot be discerned from the given parameters. 
Our group has fabricated a 20μm Silicon resonator with oQ =1 million having an ultralow 
threshold power of just 17μm. This device will be further explored in chapter 5.     

Approximate Behavior in the Resolved Sideband Regime (RSR) 
 Continuing with the resolved sideband regime, since the detuning, total Q and intrinsic Q 
are all on the same order, no convenient Taylor expansion of equation (3.68) is readily apparent.  
It was already shown that the optimal detuning is m∆ = Ω . One can then skip to the assumption 
that the device is excited by a laser set to the optimal detuning for low threshold power, m∆ = Ω  

found previously. Aided by Figure 3.13 we also assume that ~exκ κ  and 2 2 2( / 2) ~m mκ + Ω Ω  to 
find,  
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 The threshold power calculated from equation (3.74) matches the cases in Figure 3.14 
within 10% in the deeply RSR but is off by as much as a factor of 3 for intrinsic optical Q’s 
which are only moderately sideband resolved. Nonetheless, the general threshold power features 
are adequately captured by equation (3.74). Minimum threshold power is observed to be 
independent of oQ  and again inversely dependent on mQ . Thus, in both regimes, the threshold 
power is improved with larger mechanical quality factor. The circulating power and Lorentzian 
slope still scale as totQ  and 2

totQ  respectively but in the RSR regime, the optimal totQ  scales with 
1

m
−Ω   so threshP  scales with 3

mΩ  multiplied by an additional factor of mΩ  reflecting the mode 
stiffness similar to the case in the USR. Almost all devices tested in this thesis are either firmly 
in the unresolved regime, while in PSG we were able to approach the border of the two regimes.     

3.6.2 OMO Noise and Phase Noise Spectrum 
Now that the design space for low power and large signal OMO’s has been covered, the 

noise properties will be explored. In deriving the carrier power, it was assumed that the RF 
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power in the fundamental sideband was concentrated at a single angular frequency, mΩ . Thus, 
the  OMO output power would be a perfect sinusoid,  

 ( ) sin( )out o mP t P t= Ω   

possessing a Fourier transform consisting of delta functions at m±Ω  in frequency space. Of 
course this is not physically realizable since delta functions don’t normally occur in nature. In 
reality, noise perturbs the oscillating system momentarily changing its output phase from  tmΩ  
to t (t)m ϕΩ +  and its amplitude from oP  to (1 ( ))oP tα+  where ( )tϕ  and ( )tα  are random time 
varying signals with assumed amplitudes much smaller than unity [53]. The output of the OMO 
becomes,   

( )( ) (1 ( ))sin ( )out o mP t P t t tα ϕ= + Ω +   

where mΩ  now represents the average output frequency. Since the output frequency is the 
derivative of the instantaneous phase, the instantaneous frequency in the presence of noise 
becomes, 

 ( ) ( )o mt tϕΩ = Ω +    

It is now apparent that the output sideband power is no longer a delta function, but is spread out 
in frequency about the average frequency, mΩ .  Figure 3.15 demonstrates how slight phase slips 
affect the apparent zero crossings of a nominal sinusoid and alters the frequency spectrum 
interpreted from the spacing between zero crossings. Note that frequency noise rather than phase 
noise could have been tracked. Phase noise is more popular in oscillators where associated 
electronics depend on the short term phase characteristics, while frequency noise or jitter is 
important in clocks where the long term (>1s) frequency stability is relied upon.   
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            (a)     (b) 
Figure 3.15: (a) An ideal oscillator with perfect sine wave output and frequency spectrum given 
by a delta function centered at the stationary inverse angular period. (b) Real life oscillator 
output with jitter due to noise. The  period measuring at the zero crossing is no longer stationary 
and thus the frequency spectrum is spread out around the average frequency. This figure 
originates from the Nguyen group.  

In OMO’s, noise may originate from shot noise in the pumping photons (quantum noise), 
thermal noise (Brownian motion) of the mechanical resonator, relative intensity (RIN) and 
frequency noise of the laser, environmental noise such as table vibrations or temperature 
fluctuations, or thermal variation of the refractive index (thermorefractive noise) [54]. Dark 
current in the photodetector due to thermal (Johnson), and generation recombination noise 
(G&R) as well as input noise in any signal analyzers are typically lumped together as electronic 
noise. At frequencies far from resonance, electronic noise may dominate in low power systems 
where shot noise is negligible. If the detector is followed by an RF amplifier, the amplifier adds 
some noise to the signal quantified as the noise figure, /in outNF SNR SNR=  . An Erbium Doped 
Fiber Amplifier (EDFA) which may be utilized to boost the pump power will also contribute 
amplified spontaneous emission (ASE) noise. In optomechanics, shot noise in the cavity photons 
results in a fluctuating radiation pressure force resulting in an apparent noise in the displacement 
causes further photon number fluctuation. This noise is deemed quantum back action noise and 
together with Brownian motion noise sets a fundamental limit on the system noise [55]. There 
are undoubtedly other noise sources in OMO’s not mentioned here. Known noise sources in a 
typical characterization setup are summarized in Figure 3.16. A full model taking all these noise 
sources into account is beyond the scope here. We focus on Brownian noise since it dominates at 
certain frequency offsets from the carrier [56]  as well as shot noise and electronic noise.  
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Figure 3.16: Possible noise sources in a typical OMO characterization setup. EDFA= “Erbium 
Doped Fiber Amplifier.”  

 While in general, it is desirable to have minimal amplitude noise oscillator designers 
focus on phase noise for a couple reasons: 1) When an oscillator serves as a frequency reference, 
the phase of its output is usually relied upon rather than the amplitude. This is especially the case 
in a Phase-Locked Loop (PLL) where an electronic system is locked to the phase of an oscillator 
reference and the behavior of the system is rather impervious to small deviations in the oscillator 
amplitude. In section 6.2, the noise properties of phase-locked loops will be derived in the 
framework of locking a voltage tunable OMO to an RF frequency reference. 2) Typical 
oscillators have an amplitude limiting mechanism which quells any amplitude fluctuations in the 
system [57]. Equipartition theory of thermodynamics predicts that a thermal noise limited 
oscillator will produce equal amounts of noise in its phase and amplitude quadratures, however 
since the amplitude noise is highly suppressed, it is the phase noise which dominates in the 
resulting output waveform [57]. The phase noise is then simply half the total noise derived in the 
absence of amplitude noise attenuation.  

Output Noise Derivation 
 To derive the noise spectrum in the OMO output power, the small signal model of the 
previous section is utilized. While the small signal model doesn’t hold above threshold at 
resonance where the time varying components in (3.58) are large, small signal theory should 
hold quite well just offset from resonance. Recall that the oscillator effective 3dB linewidth is 
given by ( ) ( )eff m m dbaΓ Ω = Γ + Γ Ω  which is very close to zero at threshold. Since Figure 3.11 

showed that ( )dbaΓ Ω  is relatively flat around mΩ  especially in the USR, the effective linewidth 
is very close to zero such that just outside of resonance any time varying signals are small in 
comparison to their steady state value. Indeed we, along with other groups have measured above 
threshold OMO linewidths to be less than 10Hz and at times less than 1Hz [56], while [58] and 
[52] measured typical linewidths less than 1KHz. It is safe to assume that the theory presented 
here then should hold at frequency offsets of 1KHz or more and likely even smaller offsets for 
the high performance OMO’s characterized later in this thesis.  
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 The output field noise resulting from input noise sources begins by substituting equation 
(3.58) into (3.19), 

 ( )s ( ) ( ) ( )out out in in exs t s s t a a tδ δ δ κ+ = + − +   

After applying the steady state relation,  

 out in exs s a κ= −   

and a Fourier transform, the output field noise is,  

 s ( ) ( ) ( ) .out in exs aδ δ δ κΩ = Ω − Ω   (3.75) 

We now re-write the top equation in (3.60) but this time add a term, ( )qn os tδ κ   for the 
quantum field noise entering the cavity through its intrinsic loss port in addition to the already 
present term, ( )in exs tδ κ  for noise entering through the input terminal,  
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Substitution of (3.76) into (3.75) then gives,  
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In equation (3.64) the displacement noise was eff exx Fδ χ δ=  but this assumed a noiseless input 

field, ( )in ins t s= . Keeping the input field noises in equation (3.63) we now arrive at,    

 ( ) ( ) ( )eff ext eff dbax F Fδ χ δ χ δΩ = Ω + Ω   (3.78) 

A new force due to dynamical back action,  
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arises from photon fluctuation-induced noise in the cavity displacement. Writing the 
displacement noise, ( )xδ Ω  as a function of force into equation (3.77), we arrive at the output 
field noise,  
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The Fourier frequency, Ω  , was dropped from all the dynamical noise terms for brevity. The 
power exiting the cavity as a function of time is,  
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where the 2| |outsδ  term was assumed negligible in the small signal approximation. Applying a 
Fourier transform to the time varying terms  above gives the noise in the output photon power as 
a function of frequency [59], 

 ( )( )( ) s ( ) s ( )out o out out out outP s sδ ω δ δ
∗∗Ω = Ω + −Ω   (3.81) 

and corresponding power spectral density (PSD) for the special case of frequency independent 
noise components, 

 ( ) 22
s spp o out out out outS s sω δ δ∗ ∗= +   (3.82) 

However, equation (3.80) implies some frequency dependence due to the frequency dependent 
effective susceptibility, ( )effχ Ω  and the weak dependence on Ω  in the denominator which is 

negligible in the unresolved sideband regime but may be significant in high oQ  devices where 
the detuning is on the same footing as the mechanical frequency.  

Following the able lead of Fabre [59], the output single sided noise power spectral 
density ( )ppS Ω  [watts2/Hz] is formally determined from its correlator,  

 ( )'( ) ( ) 2 ( ') ( ).out ppP P Sδ δ πδ
∗

Ω Ω− = Ω − Ω Ω   (3.83) 

Integrating (3.83) would then provide the desired PSD provided the constituent correlators are 
known. For now, we consider shot noise, and the fluctuating thermal Brownian force with 
respective correlators,  
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where BK  is Boltzmann’s constant, and T is the temperature. Note that the white thermal force 
power spectral density ( ) 2FF m eff BS m K TΩ = Γ  [N2/Hz] applies in the classical limit of mT >> Ω
[60] which is easily satisfied at room temperature.  Application, of equation (3.64) to the bottom 
equation in (3.84) shows that the optomechanical resonator shapes the white thermal force 
through the effective susceptibility such that the displacement noise PSD in the absence of an 
optical field is [54],  
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By pumping at lower power, the laser samples the power spectral density with width mΓ
providing a convenient means for deducing the intrinsic mechanical quality factor. One can 
confirm that in the limit of 1mQ >> , ( )effχ Ω  is a Lorentzian as long as the resonator is operated 
below threshold  [61].   

To find the PSD of the output noise we integrate (3.83), in conjunction with (3.81), and 
(3.80). We assume that the quantum and thermal noise contributions are uncorrelated such that 
(3.84) represents the only non-zero correlators. We also assume that input noise from the 
waveguide and from the intrinsic loss are uncorrelated. There are many cross-terms in the 
evaluation of equation (3.83), but output noise due to quantum back-action can be assumed 
negligible when compared to Brownian motion noise at room temperature [37][54]. Keeping 
only the most dominant terms results in, 
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where the …( )*−Ω  implies that the equation is repeated with Ω → −Ω  and then conjugated. 
The first term in (3.86), o outPω , is recognized as the shot noise contribution while the term 

containing effχ  is the contribution from Brownian motion. For the effective susceptibility, it is 

assumed that ( )dbaΓ Ω clamps at its threshold value such that ( ) ( )
in thresh in thresh

eff effP P P P
χ χ

> =
Ω = Ω . 

The last two terms containing exκ  and oκ  are due to shot noise entering the cavity through the 
waveguide and intrinsic loss ports respectively which is then filtered by the cavity Lorentzian.  

From previous arguments, the output power contains equal phase and amplitude 
quadratures but above threshold only the phase quadrature remains. The output power at phase 
modulation sideband, Ω  is then,  
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The corresponding RF sideband PSD an ESA would see out of a photodetector  is, 
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With the same definitions for RFG , oT , VR , and LR  as equation (3.55).  

 To investigate the dependence of the output noise on oQ  and mQ , in Figure 3.17 the RF 
noise PSD as a function of offset frequency from resonance is plotted for various intrinsic optical 
and mechanical Q’s. This time the chosen device is a 25μm radius SiN OMO with 

122.6 10 kgeffm −= × . As we’ll see later, this particular device has produced some of the best 
noise properties of any OMO [13]. In (a), the mechanical Q is fixed at 10.5k (a value we have 
reached in SiN vacuum) while the intrinsic optical Q is parameterized from a value of 70k up to 
7M. For simplicity, the optical power was fixed at 2mW for all cases. It is evident that the output 
noise degrades as oQ  increases. This is due to greater transduction of Brownian motion to optical 

field noise. From equation (3.80), as oQ  increases the stored optical energy quantified in a  

increases which leads to a more efficient conversion from displacement noise, xδ , to outsδ . A 

second dependency comes from the /exκ κ  factor which steadily rises with oQ  for optimal 
threshold power. As the device approaches more sideband resolved this factor becomes fixed as 
does the circulating power since eventually κ  approaches mΩ  and the noise degrades less 
rapidly with increasing oQ . It is also interesting to notice that the point where the noise curve 

flattens occurs at a lower offset for lower oQ which is explained by smaller Brownian noise and 

thus white shot noise becomes dominant at smaller frequency offset. The two highest oQ  devices 
are Brownian noise limited for virtually all offsets with only a hint of shot noise appearing at 
~1MHz offset. Electronic noise has not been taken into account, but it also contributes a flat 
portion to the noise spectrum and could dominate in low power devices where shot noise is 
small. In the inset of (a), the raw 74MHz noise peak is shown for the 70oQ k=  case. As 
mentioned before, the small signal assumption breaks down and the curve is not accurate on, or 
close to resonance. Setting ( )~ 0meff ΩΓ  to produce the plots leads to a singularity at mΩ  in the 
effective susceptibility which makes the noise peak artificially ascend towards infinity.     

In Figure 3.17(b), the mechanical  Q is parameterized while oQ  is fixed at 70k and again 

the input power is 2mW. The output noise appears proportional to 1
mQ −  in the sloped 

20dB/decade portion of the spectrum. This is due to reduced Brownian noise mostly arising from 
the mΓ  factor in the thermal force PSD, FFS  (equation (3.84)). As the output RF noise is 
proportional to FFS  the noise drops off linearly with increasing mΓ . A higher mechanical Q 
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resonator stores mechanical energy longer and therefore acts as a better filter against off-
resonance thermal noise. Thus high mechanical Q devices are expected to produce lower output 
noise devices and in the previous section they simultaneously produced lower threshold power - 
a win-win for both noise and power.       
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Figure 3.17: Single sided oscillator output noise spectrum as a function of frequency offset from 
the carrier at 74MHz. (a) The intrinsic optical Q is parameterized and ranges from 70k to 7M. (b) 
Parameterized mechanical Q from 1k to 100k. In each case, κ  and ∆  were optimized for 
minimal threshold power.  

3.6.2.1 Phase Noise Spectrum    
In oscillators, the most quoted figure of merit pertains to the one-side power spectral 

density of the oscillator output phase, ( ) PSD of (t)Sϕϕ ϕΩ =  with units [radians2/Hz]. A log-log 
plot of this spectrum as function of frequency offset from resonance reveals rich information 
about the oscillator noise properties and is henceforth referred to as the phase noise spectrum 
[53], 

 ( ) ( ')
' 10

2
S f

f Log ϕϕ
 

=   
 

L   (3.89) 

where ' of f - f≡ is the offset frequency from carrier, of . The phase noise is quoted as [dBc/Hz] 
or decibels below the carrier in a one Hz bandwidth and may be specified at a particular 
frequency offset – 1kHz and 10kHz offset are convenient. It is important to point out that this is 
not the same as the noise in a sideband of the output power which was previously calculated and 
plotted for various cases above. Fluctuations in the oscillation phase lead to a perceived change 
in the oscillator output power - the spectrum of which is calculated in equation (3.87) in the 
optical domain and (3.88) in the RF domain. However, it can be shown that for small 
fluctuations in the phase, or equivalently short time scales where the phase doesn’t drift 
appreciably, the phase noise spectrum of (3.89) is approximately [53],   
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where ,sig RFP  is the carrier or signal power at fundamental frequency, mΩ  calculated in equation 

(3.55). vv, ( ')S fϕ  is the PSD of the output power due to phase fluctuations at frequency 'f away 
from the carrier given by equation (3.88). The validity of (3.90) is understood from Figure 3.18 
where a small perturbation in power Pδ  is added to the carrier signal ( )sigP t  rotating in the 

complex plane with noiseless amplitude and phase given by| |sigP  and tω respectively. In the 

presence of a noise source, the amplitude and phase become  | | | |sig sigP Pδ+  and tω ϕ+  

respectively. Imagine translating ( )sigP t  to the real axis momentarily: The component of Pδ  

due to the instantaneous shift in phase is approximately, | |sigP Pϕδ ϕ⋅  as long as ϕ  is small. 

We can thus express the PSD of the phase as ,/PP sig RFS S Pϕϕ =  reconciling equations (3.89) and 
(3.90). For thermally limited oscillators like OMO’s [56], any input noise induces equal 
amplitude and phase components to the output noise so that / 2P Pϕδ δ= . Equation (3.90) also 
presents the figure of merit intuitively as a noise to signal ratio – smaller is better. Unless noted 
otherwise, the noises are by convention, taken to be single-sided for phase noise purposes.  

 
Figure 3.18: Illustration of periodic carrier signal ( )sigP t  rotating in the complex plane at rate ω  
with perturbation Pδ  tacked on due to noise. The resulting change in power due to the noise 
induced phase shift, ϕ , is approximately | (t)|sigP Pϕδ ϕ⋅   

Since the phase noise spectrum constitutes a primary means of judging OMO quality, 
many spectra will be shown throughout the rest of this thesis. It is worthwhile to highlight the 
primary regions of a typical spectrum along with their physical significance. Figure 3.19 presents 
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the measured phase noise of a high performance 18.6MHz PSG resonator [62]. To acquire the 
spectrum below, light exiting the OMO was photodetected, amplified and analyzed with an 
Agilent E5500 phase noise measurement system. Saving some of the details of the phase noise 
measurement apparatus for later, we presently call attention to the various slopes in the spectrum. 
For frequencies above ~500kHz the spectrum is flat. Then it follows a 20dB/decade slope until 
about 1kHz offset at which point the spectrum rises 30dB/decade and even close to 40dB/decade 
slope at some points. The inset of the graph displays the strong 18.6MHz peak in the output 
spectrum captured simultaneously by an electrical spectrum analyzer (ESA). The phase noise 
spectrum may be crudely understood as a normalized plot of the carrier shoulder which would 
ideally be non-existent in the absence of noise.   
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Figure 3.19: Phase noise spectrum of a 52.5μm PSG OMO with oQ =520k, mQ =1160, 

2 18.6MHzm πΩ = ⋅ . Inset: RF spectrum of measured resonance in self-oscillation.    

   To gain some physical insight into the observed slopes in the measured phase noise 
spectrum, we turn to Figure 3.20 which includes several noise sources and their interaction with 
the oscillating system. Drawing intuition from equation (3.86) we see that input shot noise not 
entering the cavity is filtered by the relatively broad cavity transmission spectrum and  exits the 
cavity through the waveguide. Since shot noise is flat in frequency, this component contributes to 
the flat, red portion of the phase noise plot (red). Some shot noise enters the resonator through 
the coupling waveguide or its intrinsic loss port. Upon entering the resonator, this shot noise is 
filtered by optical system Lorentzian and may exert a noisy force on the mechanical resonator 
through dynamical back-action. The thermal Brownian force intrinsic to the mechanical 
resonator is also white but is filtered by the mechanical effective susceptibility which has very 
small linewidth close to resonance. Away from resonance the susceptibility has a 21 / f  slope 
and thus filtered Brownian motion contributes a 20dB/decade slope to the phase noise spectrum 
in blue below. The thermal Brownian noise is sampled by the cavity photons and is thus 
amplified by the photon number and filtered by the cavity Lorentzian before exiting the cavity. 
Usually the cavity Lorentzian is quite broad compared to the offsets considered and so has 
negligible filtering effect on the phase noise. Slow noise sources with an inherent 1 / f slope 
may also exert a force on the resonator and be filtered by the effective susceptibility thus 
contributing a 31 / f  or 30dB/decade slope to the phase noise spectrum shown in green. Though 
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1 / f  noise sources are concentrated at frequencies well below resonance (typically less than 
10kHz), they mix with the strong mechanical carrier at mΩ  and are up-converted to the carrier 
frequency. Slow noise sources may include thermal drift or temperature dependent refractive 
index (thermorefractive noise) [54].   

 
Figure 3.20: Noise sources, their interaction with the self-oscillating mechanical filter, and the 
corresponding regions in the phase noise spectrum.  

Leeson’s Equation 
A popular viewpoint for phase noise in electronic oscillators stems from Leeson’s 

equation, 

 '

2
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( ) 1
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eff oB

sig

fFK T
S f

P fϕϕ

  Γ = + ⋅     
  (3.91) 

which fits the general trend of phase noise as a function of frequency offset, 'f  from the carrier, 

of . Though Lesson’s equation is based off the physical argument that a generic oscillator with 

linewidth effΓ  imposes a 21 / f  filter on the incoming white noise with phase noise spectral 

density 2 /B sigK T P , it doesn’t explicitly give an expression for the oscillator excess noise factor, 
F . Without knowledge of F  and its dependencies, it isn’t immediately obvious on how to 
optimize the system. Researchers have fitted OMO’s with the Leeson model [63] and found that 
modeling follows the general trend [64] but no expression for F  was provided. The Leeson 
equation also doesn’t provide the carrier power, sigP  and thus is viewed as more of a fit method 
to OMO’s at the present time.  

Equation (3.91) does, however, provide valuable insight into the behavior of oscillators 
for changes in mQ  and of .  For instance it reveals that oscillator phase noise scales with the 
resonant frequency squared and it is typical to translate the measured phase noise to a common 
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frequency, sf   by subtracting 20log( / )o sf f  from the raw spectrum.  We also see that phase 

noise scales with 2
effΓ  so it is not surprising that smaller oscillation line-width is always desired. 

Usually, effΓ  is proportional to mΓ  and in [58] it was calculated that this is indeed the case in 
OMO’s at small frequency offset. Thus we would expect the OMO phase noise spectrum to scale 
with 2

mΓ  at small frequency offset. In Figure 3.17, the theoretical output noise was shown to 

scale with mΓ  but in our modeling we have seen some trends of phase noise scaling with 2
mΓ and 

some instances in which it scaled linearly with mΓ .  
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4 State of the Art Single Material OMO’s: Silicon 
Nitride and Doped Glass 

Optomechanical resonators have been built from many materials into diverse shapes and 
sizes. Initial high optical Q microtorroids consisting of laser-reflowed glass [20] spawned the 
cavity optomechanics field. Even though they lack excellent phase noise, glass microtorroids 
have served as a vehicle for OMO physics and applications [56][12][65]. New materials have 
also emerged including a micron-sized GHz frequency silicon disk [52] and a zero flicker noise 
silicon nitride ring [14]. High optomechanical coupling photonic crystal zipper OMO’s 
integrated with photodetectors have recently demonstrated harmonics to ~6.5GHz [66].  

In this chapter, we demonstrate low phase noise silicon nitride OMO frequency combs 
and highlight experiments which affirm some of the predicted trends of the previous chapter. We 
chose a hollow-disk mechanical resonator pioneered by the Nguyen group [67] for its high 
mechanical Q and ease of design and manufacturing. Since high optical Q’s are achievable in 
glass, glass OMOs are easily self-excited and serve as a great material for studying OMO 
behavior. Furnace reflowed glass was thus used for initial experiments and proof-of-concept 
work before transitioning to silicon nitride. Free standing OMO’s with integrated waveguides 
and low threshold power are also demonstrated in glass with optical Q’s rivaling, and in some 
cases, surpassing competing non-OMO technologies which incorporate integrated waveguides. 
Experimental methods for characterizing relevant figures of merit are also presented. Standalone 
silicon OMO’s have demonstrated interesting properties and are reserved for the next chapter.  

4.1 Hollow Disk Design and Fabrication 
In order to excite mechanical oscillations efficiently, the optical resonator boundary must 

be allowed to expand freely with minimal damping. Excess mechanical damping reduces the 
mechanical Q, degrading the resonator’s ability to filter thermal noise and transduce optical 
energy. Hence, we chose a hollow-disk design [67] shown schematically in Figure 4.1(a) below. 
The hollow-disk design achieves a high mechanical Q by attaching thin spokes to the inner edge 
of a free-standing ring WGM cavity. The spokes meet at a floating center point that is connected 
to anchors in a clover-leaf fashion. The floating center-point design decouples acoustic standing 
waves from the anchors as much as possible.  The optical ring is designed wide enough to 
prevent overlap of the peripheral circulating optical field with the spokes. A 15μm 
phosphosilicate glass hollow-disk resonator is demonstrated in the SEM micrograph of Figure 
4.1(b).  
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         (a)            (b) 

Figure 4.1: Hollow disk design (a) drawing and (b) SEM of a 15μm radius device fabricated with 
the SOI process described below.   

 OMO’s were fabricated with a wafer-scale process capable of producing a diverse set of 
devices all on a 6” silicon platform [68] . The two primary processes utilized to fabricate OMO’s 
are shown in Figure 4.2 for the specific case of reflowed phosphosilicate glass (PSG) resonators. 
In (a) the process begins by depositing approximately 1.9μm PSG by LPCVD onto a bare silicon 
substrate. A thickness of 1.9μm gave the highest optical Q as determined from swept laser and 
RF modulation characterization. The LPCVD process is similar to a typical deposition of silica 
except a small amount of phosphorous is flowed during the deposition. The device is then 
defined with 250nm resolution stepper-based lithography followed by dry etching with C4F8, H2, 
and He gases. An important property of PSG, is that its sidewalls may be smoothed by melting at 
temperatures significantly less than pure silica. For our Phosphorous concentration, the device 
melts at temperatures ~1000°C whereas glass softens at a much higher temperature of 1600°C. 
Several process splits were carried out to determine the optimal melting temperature and time 
and a 4 hr. reflow at 1050°C was settled upon. These conditions resulted in sidewall smoothing 
with minimal formation of bubble-like scattering centers within the bulk PSG. Karen Grutter 
investigated these bubble defects and eventually found that a combination of wet and dry 
oxidation after the initial deposition prevented bubble formation [21]. In contrast to laser reflow 
of silica which is more of a serial process, furnace reflow of PSG melts all devices on a chip 
simultaneously and is more practical from a large-scale manufacturing standpoint. Finally, the 
PSG is released in a XeF2 dry etcher which isotropically etches the underlying silicon substrate. 
As XeF2 etches Silicon with extremely high selectivity to oxide (~1000:1) it should have no 
measurable impact on the smoothed PSG.  
 A second, untimed release process shown in Figure 4.2 (b) was also used to manufacture 
OMO devices. This flow was used to fabricate the PSG device of Figure 4.1(b). Beginning with 
a silicon-on-insulator (SOI) wafer, anchor vias are defined and etched into the top silicon. PSG is 
then deposited and oxidized filling the vias and covering the top silicon. The PSG layer is then 
defined, dry etched and released as before. Since, the anchors are now defined by PSG-filled 
vias, the anchors are untouched by XeF2 and are well-defined lithographically. This process is 
handy for fabricating small devices which are more sensitive to release timing. For further details 
on the microfabrication one is referred to  [21].       



72 
 

    

 
         (a)              (b) 

Figure 4.2: PSG fabrication processes. (a) Timed release (b) Untimed release SOI process. 
Further details are in the text and in [21].  

4.2 Tapered Microfiber Pulling  
Usually, OMO’s were interrogated with a tapered microfiber consisting of a bare single 

mode fiber thinned down to a diameter of ~1μm [55,56]. Combined with a tunable laser, the 
tapered microfiber allows for a flexible coupling distance so that parameters such as threshold 
power and phase noise may be easily optimized during testing. In order to thin the fiber from its 
standard 125μm diameter down to 1μm, first a ~1cm portion of the protective jacket material is 
stripped either by hand or with a specialized tool. The fiber is then heated with a Propylene gas 
torch mounted on an electronically controlled translation stage. Simultaneously, the fiber is 
stretched on its long axis by two more counter-moving linear translation stages as shown in 
Figure 4.3(a).  During pulling, the core material is displaced away from the flame as it gradually 
disappears into the cladding. 1550nm laser light is continuously fed into one side of the fiber and 
sensed with a photodetector connected to an oscilloscope on the output side. As the core 
diameter contracts, light transitions from a relatively large and diffuse fundamental mode in the 
core to a much smaller mode confined purely by the slightly lower index cladding. The transition 
from thick to thin fiber excites multiple modes which interfere at the photodetector. The fiber-
length determines the relative phase of these modes and their superimposed power, so as the 
fiber is stretched, an oscillatory photocurrent appears on the oscilloscope. If the fiber pulling is 
prematurely stopped, the oscillatory signal disappears. When the minimum fiber diameter 
reaches ~1μm, only a single mode is supported at the fiber center, the oscillatory signal on the 
oscilloscope ceases, fiber pulling is immediately stopped by the operator, and the flame is 
retracted. All operations are controlled by a LabVIEW program originally written by Myung-Ki 
Kim. The fiber insertion loss after pulling is determined from the detector photocurrent before 
and after the process.  
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           (a)      (b) 

Figure 4.3: (a) Tapered microfiber pulling setup showing flame torch in the vicinity of the fiber 
and linear translation pulling stages on either side. The fiber is magnetically clamped to fiber-
launch platforms attached to the stages. (b) Transition from a traditional fiber-optical cable to a 
thinned microfiber. 

 To pull fibers with high transmission, the flame size was adjusted until most of the flame 
was blue in color except for the very tip closest to the fiber which possessed a small orange-
colored dome-shape. The flame to fiber distance was adjusted until the fiber appeared to have a 
blue glow in the flame-vicinity when the room lights were dimmed. If the flame-size was not hot 
enough (typically a pure blue flame) or it was too far from the fiber, the fiber pulling would 
complete in less time and often the fiber would break during pulling. In this case, the fiber melt 
rate was not sufficient for the rate at which it was being stretched. If the flame was too close or 
too hot (more orange colored flame), the fiber would pull but would not be taught after the 
pulling run. In this case, the fiber melting rate was too fast when compared to the rate at which it 
was being stretched and the fiber would gradually sag as a result. Fibers were pulled at a 
translation stage rate of 15μm/sec which gave more consistent transmission without breakage 
when compared to faster pull rates. At rates less than 15μm/sec it was more difficult to avoid 
fiber sagging. It was also important to gradually retract the flame a total of ~150μm after about 
10 seconds, likely because the fiber temperature needed to be hot to initialize melting, but once 
melting began, the same temperature melted the fiber too quickly. At the aforementioned 15μs 
pull rate (from both ends of the fiber), a typical run took three minutes, and the fiber was 
stretched by 4mm on each side. Transmission above 50% was readily attainable while we usually 
aimed for 60% transmission to deem the fiber adequate. A higher-end torch with larger flame 
size would likely yield higher transmission. With practice, a successful tapered microfiber could 
usually be manufactured in the span of a few hours. Reference [71] is an excellent resource for 
optimizing a tapered microfiber pulling apparatus.  

4.3 Measurement Setup  
After pulling, the tapered microfiber was connectorized with a fusion splicer, epoxied to 

a fixture incorporating single-axis tension-adjustment stages (Figure 4.4(b)) and transferred to 
the characterization setup. Wafers were diced into ~4mm wide die (Figure 4.4 (b)) so that the 
tapered fiber could approach the device plane without obstruction from the substrate. Test die 
were mounted on a metal finger holder and placed on a triple axis Thorlabs Nanomax piezo stage 
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incorporating an APT BPC203 piezo controller. Devices could also be tested in vacuum where 
the tapered fiber was mounted to a smaller form factor Attocube piezo stage with ANC350 10nm 
resolution controller. Figure 4.4(b) shows the tapered fiber while aligned to spoked hollow-disk 
resonator. Stiff, all-metal fixturing along with a plexi-glass enclosure proved critical to 
preventing drift of the fiber during testing. A typical tapered microfiber could last for months, 
but we found if continually kept in the atmospheric setup, its transmission slowly degraded with 
time. An IPA squirt followed by brief dry could bring the transmission closer to its original 
value. In our separate vacuum setup, the fiber transmission was stable over several months of 
usage even though the fiber was not in vacuum by default. It is believed that the smaller vacuum 
chamber is a cleaner environment that curtails microdust accumulation which has been observed 
on silica microspheres [36].     

 

 
  (a)     (b)    (c) 

Figure 4.4: (a) Atmospheric test setup with tapered fiber holder incorporating tension adjustment 
stages. (b) Up close view of tapered microfiber and diced die. The microfiber is excited by a red 
laser for demonstration purposes showing that the evanescent field leaks out at the center of the 
fiber. (c) Microscope image of tapered microfiber adjacent to a PSG hollow-disk. The rough 
background surface is typical of a silicon substrate after etching with XeF2 without an initial 
native oxide removal.  

 The tapered fiber was typically aligned to the device with the broadband source method 
described in in chapter 2. The longitudinal axis positioning of the tapered fiber with respect to 
the device was found important for maximizing the coupling efficiency to high oQ  modes. 
Thicker devices especially in PSG required a thicker portion of the fiber to be adjacent to the 
device for proper phase matching. In SiN, the thinnest portion of the fiber, which is readily 
identified by a red laser, gave the best coupling efficiency. Likewise, the vertical position of the 
fiber taper was also important especially in PSG disks which exhibited gently sloped sidewalls. 
In order to access the high Q modes, the tapered fiber was aligned along the sloped portion of the 
sidewall where less light interacts with the slightly rougher bottom corner. Figure 4.5 (a) 
illustrates this scenario along with the smooth PSG sidewalls. In SiN and silicon, the tapered 
fiber could be aligned at the device periphery since these materials are not reflowed.   

After coarse alignment with the broadband source, finer alignment ensued. High 
resolution swept laser scans with an Agilent 81682A tunable laser and 8153A light meter 
identified the highest Q modes. Optical Q was typically measured with the swept laser technique 
while RF modulation technique was utilized when necessary. The optical power was kept low, 
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typically ~15μW from the laser to minimize thermal broadening of the optical resonance. To 
determine the intrinsic Q, the tapered microfiber position was stepped away from the device in 
~20nm increments after each wavelength sweep until the far undercoupled regime was reached 
and ~tot oQ Q . Eventually, a LabVIEW program was written which automated the laser sweep, 
power readout, tapered fiber step-back and data fitting. At critical coupling, ideally the power on 
resonance drops to zero but noise and slight imperfections in the polarization, and fiber 
positioning limit the on-resonance extinction ratio. Thus, the extinction ratio at critical coupling 
is one way of quantifying the coupling quality. In Figure 4.5 an example set of tunable laser 
sweep curves with varying tapered microfiber position is shown. In this case, the extinction ratio 
is 16.3dB at around critical coupling. There is also a clear redshift in the resonant wavelength as 
the fiber draws nearer to the device. The redshift is due to effective index loading of the cavity 
by the tapered microfiber which increases the resonant wavelength via equation (2.4).   
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   (a)           (b) 

Figure 4.5: (a) Positioning of tapered fiber with respect to sloping device sidewall. Optical Q 
measurement using a tunable laser and tapered microfiber. At a piezo position of 22.45μm the 
device is overcoupled and becomes critically coupled when the fiber moves 20nm away. The 
extinction ratio is 16.3dB at critical coupling.  

 After optical Q characterization, the samples’ optomechanical properties were determined 
with the setup in Figure 4.6(a) below. A tunable laser was gradually aligned to the optical fringe 
from red to blue detuning until Brownian noise peaks appeared on the ESA. A fiber polarization 
bench controlled the detuning while an isolator prevented backscattered light from des-
stabilizing the laser. For high threshold power resonances, an EDFA boosted the optical input 
power while an attenuator was sometimes used to prevent saturation of the photodetector. 
Although not shown, an RF attenuator was usually placed after the photodetector to prevent 
additional nonlinearities through saturation of the RF amplifier. Finally, the power at the 
coupling junction was deduced from a 99:1 splitter connected just prior to the tapered microfiber 
input. Assuming loss in the microfiber is exponential with distance, the power at the coupling 
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junction is then, 1%100junction tfP P T=  where tfT  is the fractional power transmission of the 

tapered fiber and 1%P  is the power emanating from the 1% splitter arm [45]. A calibration was 
habitually performed to document the fractional transmission. Throughout this thesis we define 

in junctionP P≡ .  

 Figure 4.6 (b) presents representative ESA spectra of a 1.8MoQ =  PSG hollow-disk 
OMO with 52.5μm outer radius. At low input laser power, three Brownian noise-induced peaks 
at frequencies of 11, 18, and 80 MHz were visible. At 20 Torr, the peaks exhibited mechanical 
Q’s of 5500, 7000, and 2,300 respectively determined from a Lorentzian fit of the output noise 
peak. In each case, the peaks disappeared if the laser was turned off or moved outside of the 
optical resonance. The 11MHz peak is identified as a  flexural mode while the 18MHz peak is 
the radial breathing (RBM), or first contour mode which consists of outward radial 
displacements. The 80MHz peak, not visible in all devices is called a pinch mode since it results 
in out of phase movement of the outer and inner ring. i.e. when the outer ring is moving radially 
inward, the inner ring is moving radially outward similar to what would happen if one pinched 
the ring along it’s width.  Of the three modes observed, only the 18MHz mode could be self-
excited optomechanically. This is due to the large RBM displacement profile overlap with the 
circulating optical field resulting in higher optomechanical coupling and smaller effective mass. 
The 80MHz peak is also difficult to excite since it is stiffer and as we’ve seen, threshP  scales with 

mΩ .   
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   (a)       (b) 

Figure 4.6: (a) Optomechanical characterization setup and (b)Top: 52.5μm radius PSG 
Mechanical Brownian noise peaks at 11MHz, 18MHz, and 80MHz probed with low power input 
power at 15 Torr.  Lorentzian fitting yielded mQ  of 5500, 7000, and 2300 respectively. Bottom: 
Brownian noise of the dominant radial breathing mode at 58μW input power (orange) and self-
oscillation peak (blue) with 360μW input power.   
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 After characterizing Brownian motion, the input power was increased from 58μW to 
360μW which was just above the measured threshold power of 290μW in this particular case. At 
this power, the broad Brownian noise was amplified and the peak height, shown in blue above, 
was observed to rapidly increase - a signature of optomechanically-induced mechanical lasing, or 
self-oscillation. An increase in resonant frequency was also observed due to the optical spring 
effect quantified in dbaK . The theoretical threshold power for this device is 170μW with 

2eff om m=  where om  is the rest mass. The factor of two difference in measured and actual 

threshold power could be due to lower omg  than the simplistic assumption /om cg Rω= − , since 

a high oQ  PSG mode may reside closer to the center of the device.  It could also be due to the 
somewhat crude threshold power determination method used at the time the data was taken. 
Optimizing the coupling conditions for optimal threshold power and accurately determining the 
point where radiation pressure exceeds Brownian motion is a delicate process. In chapter 5, an 
improved characterization setup is introduced to more accurately characterize ultralow threshold 
silicon OMO’s. 
 
Phase Noise Measurement System 
 

To measure phase noise, the oscillating signal was inputted into an Agilent E5500 phase 
noise analyzer. A schematic of the phase noise analyzer is shown below. Both the device under 
test (DUT) RF output and a synthesizer reference are fed into a phase detector, in this case a 
double balanced mixer followed by a low pass filter. Recall that, 

 ( )1cos( ) cos( ) cos( ) cos( )
2o r o r o rϕ ϕ ϕ ϕ ϕ ϕ⋅ = − + +   

-the mixer output contains components at the sum and difference phase of the two oscillators. A 
low pass filter removes the sum term which oscillates at 2 mtΩ  and outputs the difference term, 
cos( )o rϕ ϕ ϕ− ∆  assuming the phase difference between the two oscillators is small. A perfect 
synthesizer reference will contribute negligible phase noise to the system and so ϕ∆  is a direct 
measurement of the OMO phase as a function of time. Either an external ESA or internal FFT 
then plots the spectrum of the OMO phase noise, Sϕϕ . In case the frequency of the DUT drifts 
slowly with time, it is locked to the synthesizer reference which acts as a voltage controlled 
oscillator (VCO) within a PLL loop internal to the phase noise measurement system.  
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Figure 4.7: Phase noise analyzer schematic. The OMO phase noise is compared against an 
assumed stable reference with the same average frequency. DUT=Device Under Test. LPF=Low 
Pass Filter. FFT=Fast Fourier Transform. PLL=Phase Locked loop.  

What follows are some subtleties with the phase noise measurement and some lessons learned: 

• The phase noise analyzer only measures the worst of the DUT and synthesizer reference 
phase noises. Our low-phase noise multimaterial OMO in chapter 6 actually 
outperformed some synthesizers in certain frequency offset bands. In these cases, the 
phase noise spectrum was limited by the measurement system.  

• We found that the OMO frequency comb presented issues with the phase noise system as 
some of the higher frequency components would mix with the synthesizer reference and 
cause discontinuous jumps in the measured spectrum. Adding a low pass filter with cutoff 
frequency just below the 2nd OMO harmonic eliminated this problem. 

• As with any instrument, the phase noise system is only as good as its settings. In 
particular the PLL tuning constant should be set as small as possible while still 
maintaining phase-lock with the DUT otherwise extraneous phase noise is added to the 
system by a PLL which is too slow.  

• The frequency synthesizer contains its own internal PLL which sets the synthesizer 
frequency output as some integer defined ratio of the clock frequency, / cm n f⋅ , where 

,m n  are integers and cf  is the synthesizer internal (usually Quartz) clock frequency [72]. 
If a very low phase noise DUT is being measured, sometimes this ratio is not of adequate 
accuracy ( ,m n  can’t be made arbitrarily high) to properly lock the DUT, and again the 
phase noise is limited by the reference. In such cases we had to utilize a separate mode of 
the phase noise system called Electronic Frequency Control (EFC). Suitable for 
measuring only very stable DUT’s, in EFC mode, the output of the phase noise  system 
PLL directly controls the quartz oscillator within the synthesizer reference rather than the 
integers m  and n . Since the quartz oscillator has limited tuning capability, the DUT 
center frequency cannot drift appreciably or else the system loses lock. Not all 
synthesizer VCO’s are able to be fine-tuned in this manner, but fortunately the two we 
most frequently used, an HP8663A and an HP8644B, did have such a capability. Figure 
4.8 demonstrates that EFC is vital for measuring a low phase noise DUT such as the 
SRS384 signal generator. The DUT was measured both with and without EFC and at 
frequency offsets below 200Hz, the benefit of EFC is evident. At a 10Hz offset there is a 
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40dB improvement in the measured phase noise. Also, note that the DUT outperformed 
the phase noise reference at >10kHz offsets.  

 
Figure 4.8: Measured phase noise of an SRS384 Signal generator with EFC (red) and without 
EFC (blue) superimposed on the SRS specification (grey). At offsets below 200Hz, EFC is vital 
to record an accurate phase noise spectrum of such a stable DUT.  

4.4 High Optical Q PSG OMO’s 
We have already seen that glass doped with phosphorous (PSG) may be reflowed to 

produce cavities with high optical Q on a wafer-scale. In PSG disks, our highest measured Q was 
11.7 million but disks suffer from very poor mQ . PSG is advantageous in that it is simple to 
define spokes prior to reflow to fabricate higher mQ  hollow-disk ring resonators with little 
degradation in optical Q. In hollow-disks we have attained Q’s of 8.0 million as evidenced in the 
RF intensity modulation curves in Figure 4.9 (a) for the 52.5μm radius ring shown in the SEM 
(b). The same device was also measured with the intensity modulator biased at quadrature 
yielding curves similar to Figure 2.9 (a). (fit)totQ  at quadrature bias was 7.8M in agreement with 
the value obtained from the peak bias point fit. An 18.3MHz resonator enters the sideband 
regime when 10.5oQ >  million, so the studied devices are very close to being sideband resolved.   
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    (a)          (b) 

Figure 4.9: (a) RF modulation measurement of optical Q in a reflowed PSG hollow-disk. A 
linear piezo controller stepped the fiber away from the device in-between each measurement 
until the device was undercoupled. Inset: Fitted peak when the tapered fiber was at its furthest 
from the device gave a total optical Q of 8 million. (b) SEM of 52.5μm radius device measured.  

The high optical Q of PSG makes it an excellent material for understanding 
optomechanical properties, especially since multiple optical resonances of widely varying Q in 
the same resonator may be characterized to discern trends with oQ . It is also easy to initiate self-
oscillation in reflowed PSG due to the high Q’s attainable. In this section, we used this property 
to purposefully reduce mQ  without destroying the possibility for self-oscillation and then 
measured the effect on phase noise. Later, a vacuum setup was constructed which could test the 
same effect. Even though studies were performed as part of this work, the goal was always to 
create and measure the best phase noise OMO device with the lowest threshold power. At the 
time initial measurements in PSG were being made, it immediately surpassed performance of 
microtorroids and was only bested by silicon nitride OMO’s which had been reported earlier 
[14]. 
 

4.4.1 Trends with optical Quality factor 
The devices tested in this section are all of the timed release variety and follow the 

fabrication flow in Figure 4.2 (a). To study phase noise dependence on oQ , three resonances 
within a free spectral range of the same resonator were measured in atmosphere. Each optical 
mode circulates at a slightly different location in the ring interacting differently with the sloped 
edges and thus has a different oQ . This method ensures that the mechanical quality factor, mQ  is 

conserved while isolating any effects on optical oQ . The measured device had a somewhat lower 
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mQ  of 680 in atmosphere but showed typical 2 18.4MHzm πΩ = ⋅  . Optical resonances chosen 
exhibited optical Q’s of 5.3M, 2.3M and 300k. Initially, the detuning, ∆ ,  and external tapered 
microfiber coupling, exQ , were optimized for minimum threshold power. The results of the 

threshold power measurement are presented in the table below. The highest oQ  again exhibits 
close to 2x higher threshold power than theory consistent with the data from Figure 4.6 (b) which 
is attributed to smaller optomechanical coupling. For 2.3MoQ = , theory and experiment match 

well, but at 300oQ k=  the theory of the previous chapter grossly overestimates the threshold 
power. Obviously another unknown force is acting in parallel with radiation pressure. In the next 
chapter we attempt to rectify some of the discrepancy for silicon OMO’s. It is possible that 
electrostrictive, nonlinear, or free carrier effects also play a significant role in reducing the 
threshold power in PSG, and nitride for that matter.   

 

 
Qo=5.3M Qo=2.3M Qo=300k 

Pthresh(measured) 170μW 780μW 5.6mW 
Pthresh(theoretical) 100μW 880μW 353mW 

 
Table 4.1: Measured and theoretical threshold power for 3 optical resonances with varying oQ .  

Phase noise was then measured for each resonance with ∆  and exQ  now adjusted for 
optimal phase noise. Input power was kept between 2-3 times threshold and set for optimal phase 
noise. The 300koQ = resonance required an EDFA to boost the laser power and excite the 
device. The best phase noise data as well as fits for each optical mode are shown in Figure 4.10 
with measured input optical power indicated in the legend. Interesting behavior is observed 
especially for the highest 5.3oQ M=  line. At offsets greater than ~100Hz it is clearly inferior to 
the 300k resonance especially at ' 100kHzf =  where there is a 20dB difference in the two. Such 
behavior could be expected given the modeling captured in Figure 3.17 where the noise alone 
scaled approximately with 2

oQ  in the USR. However, Figure 3.17 was generated under the 

condition of equal input power for each value of oQ  and coupling conditions optimized for 
lowest threshold power both of which are not the case here. Output power noise due to Brownian 
motion scales as 2 2

totinP Q  from equation (3.86) and (2.31), so based on Brownian motion alone, 

the 5.3M and 300K resonances should have about equal phase noises given the measured input 
powers and relative oQ . The 20dB difference in phase noise must then come from the carrier 

power. In Figure 3.9 it was shown that the carrier power scales roughly as 2
inP . The ratio of the 

two input powers squared is -24dB which is close to the difference in measured phase noise. 
Overcoupling the 5.3M resonance to reduce totQ  likely helped reduce the phase noise further. 

Indeed, in order to get the model to fit, a value of / 8oκ κ=  was required for the 5.3M 
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resonance. For frequency offsets below 20kHz, the 5.3MoQ =  actually outperforms the other two 
resonances and the phase noise slope even flattens out at ~10kHz. The source of this behavior is 
unknown, but it could be due to cavity filtering of input noise that exceeds the Brownian motion 
noise. The high oQ  resonance also displays no 1 / f  noise signature even down to 10Hz offset. 
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Figure 4.10: Measured phase noise for three optical resonances and superimposed fit. Inset: 
Broadband optical spectra with three measured optical resonances highlighted. Carrier frequency 
is 18.4MHz.   

 To arrive at the fitted curves in Figure 4.10, two primary parameters were necessary. The 
first accounts for the fact that insδ  is not quantum limited in our case and in order to fit the 
curves an extra amount of input noise had to be added to the system due to laser input noise - 
likely relative intensity (RIN) noise. For the oQ =300k resonator more noise was necessary since 
it was also driven by a noisy EDFA. The second parameter, is the electronic noise which 
dominates the flat portion of the curve for the two highest Q resonances. Later, it was found for 
silicon resonators that adding an EDFA immediately before the detector, reduced the phase noise 
in the flat portion of the curve for low threshold, low power devices. After studying PSG, we 
quickly moved on to other materials with higher mQ  and didn’t try the same procedure in high 

oQ  PSG resonators. As we’ve seen, the threshold power in low oQ  PSG is much smaller than 
expected and so the modeling cannot be performed a priori since the noise values depend on the 
input power. Thus, to fit the curves, the input power was set to the measured power but it was 
still assumed that ~ 0effΓ  as required by the threshold condition. In the modeling, the detuning 

and coupling were adjusted, and the displacement amplitude, ox , carrier power, sigP , and noise, 

( )ppS Ω  was calculated for each setting. The fitting parameter values are given in Table 4.2. 
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 Qo=5.3M Qo=2.3M Qo=300k 
κ (fit) κo/8  κo/2 3κo/4 
Δ (fit) κ/8 κ/8 κ/4 
δsin(fit) 7 7 600 
Psig (fit) 4.6nW 150nW 5.2mW 

Table 4.2: Parameters used to generate curve fits for Figure 4.10. 

4.4.2 Trends with Mechanical Quality factor 
To investigate how phase noise is affected by mechanical quality factor, we performed 

two independent tests. In the first, we purposefully reduced mQ  of a PSG resonator by adding a 
drop of epoxy to one of the spokes large enough to short it to the adjacent anchor. After applying 
epoxy, oQ  remain fixed at 850k but the mQ  dropped from 1160 to 440 resulting in a ~10-20dB 
degradation in phase noise as shown below. An 8.5dB phase noise increase is expected from 
Leeson’s equation. Also, the lower phase noise curve, taken prior to application of epoxy was 
acquired with almost half the input power as the curve with epoxy. This experiment thus 
confirms the results of the previous chapter that both phase noise and threshold power are 
improved by scaling mQ  to as high a value as possible. Following these measurements we were 
propelled into the hunt for maximal mQ , similar to successful efforts in traditional MEMS 
oscillators [73].      
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Figure 4.11: (a) Phase noise of 18.3MHz PSG device before (blue) and after (black) application 
of epoxy to one of the spokes. (b) Picture of device with epoxy glob on spoke. 

4.4.3 Vacuum Setup to Increase Qm  
Motivated by the promising results of Figure 4.11, means were sought to increase the 

mechanical quality factor in our OMO’s. A well-known method to increase mQ  in devices 
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limited by air damping is to place the sample in vacuum. If the intrinsic mQ  is limited by a 
dissipation method such as anchor loss, vacuum would have negligible effect. The hollow-disk 
minimizes anchor loss by design and thus evacuation of damping gas particles through vacuum 
was expected to raise the mQ  [13].  A custom vacuum setup designed by Tristan Rocheleau of 
the Nguyen group was constructed with this in mind. Small form factor Attocube piezo stages 
were used to control the tapered fiber position and vacuum fiber feedthroughs connected it to the 
external measurement setup. We found that to prevent tapered fiber breakage, the chamber 
should be evacuated slowly, and the optical power at the fiber input should be kept at ~50mW or 
less. A top view of the chamber and nanopositioning stages is shown in Figure 4.12 (a). 

In Figure 4.12 (b) we present phase noise results from testing a 1.8 millionoQ = , 

18.3MHzmf = , PSG device in atmosphere and at 25 Torr. At 25 Torr the mechanical Q was 
raised from 1200 to 7,200 and the measured phase noise was reduced accordingly this time by as 
much as 15dB. For offsets below ~300Hz the two phase noises are equal indicating that another 
noise source dominates in this region. Similar to the previous experiment, the required input to 
reach optimal phase noise was also reduced by more than a factor of two yet again confirming 
that mQ  is vital to achieving low noise, low power OMO operation. For comparison, the 
measured phase noise of a 52MHz microtorroid from [58] is superimposed in red. At 
atmosphere, the two phase noises are similar below 3kHz at which point the PSG OMO proves 
superior. The input power wasn’t specified for the microtorroid case but based on other data in 
the reference, it is likely in the 1mW range.   
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Figure 4.12: (a) Top view of Vacuum chamber with tapered microfiber loaded. (b) Phase noise 
of 18.3MHz PSG OMO in vacuum and atmosphere. Red curve is 52MHz Microtorroid OMO 
normalized to 18.3MHz for comparison [58]. 

 In summary reflowed glass, or PSG is capable of achieving low threshold power 
operation, we observed as low as 170μW in atmosphere. This value is expected to reduce by a 
factor of six in vacuum given the observed mQ  scaling. Threshold power as low as -83dBc/Hz 
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was shown here at 1kHz offset, and -110dBc/Hz at 10kHz offset with an 18.3MHz carrier. 
Further optimization of the reflow conditions, etching and release could lead to a sideband 
resolved OMO. High optical Q of 5.3 million was observed to flatten the phase noise at 
intermediate offsets and yielded no 1/f noise at small offset. In PSG, we have achieved optical Q 
as high as 11.7 million in disks and 8 million in hollow-disk OMO’s using a wafer-scale 
fabrication process.  

4.5 PSG with Integrated Waveguides for On-Chip, Low 
Power Oscillators and RF Combs 
4.5.1 Introduction 

Dense integration is always desired in electronics and photonics and an ideal device 
should have the ability to be integrated with other components on the same chip. OMO’s are no 
exception. A particular limitation in integration is power consumption since usually integration is 
prompted by the demand for a mobile platform. A bulky, power hungry oscillator would negate 
the advantage of a single chip performing multiple functions normally carried out by isolated 
instruments. Thus it is desired to integrate OMO’s with coupling waveguides using a wafer-scale 
process without negatively affecting the oscillator performance.  

Several groups have reported integrated optomechanical systems with on-chip 
waveguides [66],[71–74] and some have even integrated Germanium photodetectors, [78], [66]. 
However, of those mentioned, only [66] and  [77] have demonstrated self-oscillation . In  [66], a 
112MHz photonic crystal zipper cavity OMO was reported with an excellent phase noise of -
125dBc at 10KHz offset and -108dBc/Hz at 1kHz offset using  400μW dropped power. The 
reported optomechanical threshold occurred at 127μW dropped power. Since the coupling 
conditions were not given, it isn’t clear what the true threshold power is at the coupling junction. 
The reported mechanical Q of 480 was also quite low likely due to large anchor loss of the 
photonic crystal design. In [77], a 42MHz silicon nitride OMO with integrated waveguides was 
reported with phase noise of -108dBc/Hz at 10KHz offset and -93dBc/Hz at 1kHz offset using 
32mW of power from the laser (the power at the coupling junction was not specified). Since the 
material was SiN, it exhibited a good mQ  of 2000 at atmosphere. Given the reported integrated 
OMO’s, there is still room for improving the threshold power for self-oscillation which would 
reduce the demands for a high power laser.  

4.5.2 Integrated Waveguide Fabrication and Measurement 
Reflowed PSG Devices with integrated waveguides were designed and fabricated by 

Karen Grutter. The fabrication flow followed that of Figure 4.2 except a partial etch was added 
to define a ridge-like waveguide in a PSG slab patterned adjacent to the WGM resonator. In 
order to prevent light coupling into the silicon substrate, release holes were patterned into the 
slab to partially remove the sacrificial silicon from the underside of the waveguide. Only stepper 
lithography was utilized throughout the process including the coupling gap between the 
waveguide and device. Evident in the figure is a well-defined coupling gap. Microtorroids have 
been demonstrated with integrated waveguides, but it was difficult to control the coupling gap 
and the layer thickness had to accommodate changes in the gap-width during laser reflow [29]. 
We found the gap width to change by only 50nm during the present reflow step [79] and so the 
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fabrication process is indeed wafer-scale in that identical devices can be controllably fabricated 
in parallel.   

    

      
   (a)               (b) 

Figure 4.13: (a) Side view SEM of phosphosilicate glass OMO fabricated adjacent to an 
integrated waveguide. (b) Zoomed in view of the waveguide – ring coupling junction.  

Two design radii were primarily tested: The first was our standard 18.3MHzmf =   PSG 
ring-resonator with 52.5μm radius. The second was a 25μm radius device with mechanical 
frequency, 42MHzmf = . Each incorporated a 2μm thick device layer. After processing, samples 
were diced and characterized with lensed fibers procured from OZ-Optics. Both the optical swept 
laser and optomechanical characterization setup were similar to tapered microfiber 
characterization with the lensed fiber inserted in place of the tapered microfiber as shown in 
Figure 4.14 (a).  In order to deduce the intrinsic optical Q, identical designs with varying 
coupling gap were fabricated and tested on the same die. Typical insertion loss of the lensed 
fiber and integrated waveguides was 10dB while 7dB could be achieved when necessary with 
finer adjustments. Figure 4.14 (c) shows wavelength sweeps taken at three coupling gaps of a 
high oQ , 52.5μm radius device with 5.3nm FSR. The measured loaded Q’s indicate the sample is 

undercoupled for the three gaps chosen, and thus an intrinsic oQ of 4.2M is inferred from the 
loaded Q of the largest gap. This value was verified with the intensity modulation technique See 
Figure 2.10, where a loaded Q of 4.0M was measured for the same device in excellent agreement 
with the tunable laser spectrum. Due to high SNR, the intensity modulation technique proved 
handy for integrated waveguide samples where the coupling gap couldn’t continually be adjusted 
to locate high Q resonances as was the case with a piezo-mounted tapered fiber.  
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Figure 4.14: (a) Optical/Optomechanical lensed fiber characterization setup. Not shown are 99:1 
splitters placed immediately before and after the lensed fiber connectors used to monitor the 
fiber/waveguide insertion loss and deduce the optical power at the coupling junction. Lensed 
fiber + waveguide insertion loss was as low as 7dB. During optical characterization, the RF 
components were removed and photodetector replaced with a power meter connected to an 
oscilloscope. “ESA”=Electrical Spectrum Analyzer. (b) Top view picture of lensed fibers butt-
coupled to integrated waveguide with hollow-disk device adjacent to the waveguide. (c) High 
resolution optical spectra of oQ =4.0 million device measured at different coupling gaps.  

 The demonstrated oQ  of 4.0 million compares very favorably with literature on other 
high Q integrated systems especially given the smaller radius. In Table 4.3 we compare the 
optical Q and radius measured here, to that of the highest oQ  devices with integrated waveguides 
in the literature. A particular advantage in this work is that the device is free standing which 
allows new functionality – especially batch fabricated low power OMO’s for on-chip sensors and 
oscillators. 
 

Reference Device Material Qo  at 1550nm Radius  (μm) 
This Work hollow-disk PSG 4.0M 50 

[29] microtorroid SiO2 3.2M 20-100 
[80] thin ring SiN 7M 2000 
[81] ring SiN 7M 120 

Table 4.3: Demonstrated high Q technologies with integrated waveguides and relevant 
characteristics.  

4.5.3 Optomechanical Characterization 
Next, promising samples were characterized optomechanically. Of particular interest, 

especially for on-chip systems, is the threshold power. A larger threshold power demands more 
from the pumping system and could consume valuable power resources. To this end, a tunable 
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laser was swept through the optical resonance and the resulting RF peak height was recorded 
from the ESA. By increasing the optical power in-between each scan, the threshold power was 
deduced. More specifically, an integrated attenuator within the Agilent 81682A was stepped in 
increments of 2dB to set the power at the coupling junction. 

 Figure 4.15 demonstrates a threshold power measurement for an ultralow threshold , 
42MHz PSG resonator. The measured total Q for this device was 1.1 million and mechanical Q 
was 940. The designed coupling gap was 750nm. The high finesse cavity results in a very low 
threshold power of 25μW that is, to our knowledge, the best so far for an OMO with integrated 
waveguides.  
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Figure 4.15: Measured threshold power of 25μW for an R=25μm PSG, optomechanical oscillator 
with integrated waveguide. The oscillation frequency was 42MHz. Total optical Q was 1.1 
million and intrinsic mechanical mQ  was 940. All measurements were at atmosphere. Inset: RF 
spectrum at 570nW input power and well above threshold at 400μW. 

In [52] an ultralow threshold of 3.5μW was quoted for a small, 2μm silicon disk. 
However, the quoted value is the dropped power and not indicative of the power that would 
actually be needed to drive the device into self-oscillation in a system. The quoted loaded fiber 
transmission at threshold was 96.4%. The reference doesn’t state how the transmission was 
determined. Assuming that the 96.4% transmission was found simply by moving the laser far 
from the cavity resonance then taking the ratio of the coupled to uncoupled powers, the power at 
the fiber output is, 3.5µW/0.964=3.63µW . The threshold power at the coupling junction would 

then be 3.63µW /thresh tfP 1 T=  where tfT  is the unloaded fractional power transmission of the 
tapered fiber, and so the actually threshold power depends on the fiber transmission. A fiber 
transmission of 50% in [52] gives 5µWthreshP =  while 10% transmission gives 11.5µWthreshP = . 
We strongly caution against defining threshold as the dropped power since the dropped power 
may be made arbitrarily small simply by attenuating the light coming out of the fiber i.e. by 
using a tapered fiber with very low transmission. Also,  during self-oscillation, the transmission 
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is subject to the bistability of the cavity transmission and averaging of the laser power absorption 
[82]. Even if the dropped power is measured at low input power, the actual dropped power 
during self-oscillation may vary from this value due to heating of the cavity and the 
aforementioned bistability. For these reasons, it is better to define threshold power as the power 
just before the cavity rather than after such a dynamical system. For reference, the measured 
dropped power at threshold in the PSG case was just above 6μW. Thus, we conclude that PSG is 
capable of delivering ultralow threshold power with integrated waveguides.  

Also characterized, were the phase noise and higher order frequency harmonics taken at 
higher power. The phase noise was measured at 270μW, or 10 times the threshold power. 
Frequency comb data was acquired with 650μW at the coupling junction. Comb lines are visible 
to 756MHz even with such a modest input power. No EDFA was necessary to gather either 
curve. The measured performance at hundreds of microwatts or less bodes well for PSG as an 
integrated OMO or sensor. 
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Figure 4.16: (a) Phase noise of same OMO as previous figure. The input power in this case was 
270μW at the waveguide-device coupling junction. Inset: Zoom in on RF resonance with 10Hz  
resolution bandwidth (RBW). (b) Frequency comb generated by the same OMO , this time with 
650μW at the coupling junction. Inset: Zoom on 756MHz harmonic and further zoom on the 
same harmonic.  

4.6 Silicon Nitride as a Low Phase Noise OMO 
Even though PSG yielded promising results especially at very high oQ , it was recognized 

that mechanical  Q improved phase noise and threshold power for all frequency offsets. Silicon 
nitride is a material with known good mechanical Q. Additionally, silicon nitride has also 
demonstrated optical Q as high as 7 million [81]. Though high oQ  is not necessary for excellent 
phase noise, the promise of nitride as an OMO was evident. To this effect, hollow disk 
stoichiometric nitride OMO’s were fabricated by Karen Grutter using the lithographically 
defined anchor process flow similar to Figure 4.2 (b). To make devices, a 2μm layer of silica was 
deposited on a bare silicon wafer by LPCVD followed by anchor definition and etch. Next, 



90 
 

~370nm of stoichiometric nitride was deposited by LPCVD followed by lithography and dry 
etch in CHF3 chemistry. After dry etching, the sacrificial oxide layer was removed by chemical 
wet etch in HF. A typical SiN device exhibited ~ 100koQ , while the highest we measured was 

150k. At atmosphere, a typical mQ  was ~1700 while in vacuum it could increase to as high as 
10,000. We observed that scaling the radius had little effect on mQ  until the radius reached 15μm 
or less.  Figure 4.17 (a) displays an SEM of a 25μm radius silicon nitride OMO. A cross-
sectional drawing is included above the photo. Measured Brownian motion at 74MHz of the 
25μm sample conveys a fitted mechanical Q of 10,400 in vacuum (b).  
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Figure 4.17: (a) SEM of silicon nitride OMO with 25μm radius. Top: Cross section illustration of 
the device with nitride in green. (b) Measured Brownian noise of device. The fitted mechanical 
Q is 10,400.  

4.6.1 Low Phase Noise Nitride in Vacuum 
Fabricated silicon nitride devices were tested in vacuum with detuning, coupling and 

input power optimized for minimal phase noise. Phase noise spectrums of a 74MHz nitride OMO 
exhibiting 10,500mQ =  and 70koQ =  both in vacuum and at atmosphere are shown below.  At 
atmosphere the input power was 15mW while 7.5mW input power was necessary in vacuum. 
The silicon nitride OMO posts an impressive phase noise of -100dBc/Hz at 1kHz and exhibits no 
flicker noise up to 10Hz offset. At the time, the silicon nitride resonator below posted the best 
phase noise of any OMO in vacuum or atmosphere. It was later bested by the multimaterial 
OMO in chapter 6. Lowering the pressure from atmosphere increased the mechanical Q from 
1,800 (atmosphere) to 10,400 (vacuum) and subsequently reduced the phase noise by ~8dB. Also 
included are the model fits using theory from the previous section.     
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Figure 4.18: Phase noise of an 25 mR µ= SiN optomechanical oscillator operating at 74MHz. 
Input powers at atmosphere and vacuum were 15mW and 7.5mW respectively. 

4.6.2 Frequency Comb Generation 
We also considered the ability of the silicon nitride to produce broad RF frequency 

combs. An OMO comb generator  could be used as an RF/optical frequency downconverter in a 
communication platform [45] or serve as a high sensitivity mass sensor [11]. Frequency 
harmonics are also commonly used to translate a signal from one frequency to another in a phase 
coherent manner [72]. We focus on the use of an OMO as a frequency divider / local oscillator in 
a chip-scale atomic clock. In the atomic clock application, it is necessary that the OMO produce 
a harmonic at half the Rubidium hyperfine transition frequency, 3.4GHz. This means a 74MHz 
nitride oscillator must produce 46 comb lines. To determine whether such a feat was possible and 
to demonstrate harmonic generation in our low phase noise nitride OMO technology, we 
increased the input pump power until saturation in the harmonic number was observed. This data 
was shown in Figure 3.5, and is repeated in Figure 4.19 (a) where 40 comb lines spanning 
74MHz-3GHz are seen. To generate such a comb, 32mW of input power was required at the 
coupling junction. Care was taken to avoid saturation of any external components so that comb 
lines were only due to optomechanical transduction. An RF attenuator was placed ahead of the 
RF amplifier, and an optical attenuator was inserted prior to the photodetector.   

In Figure 4.19 (b) the phase noise of the 4th harmonic at 467MHz is plotted alongside 
that of the fundamental occurring at 117MHz for a 15μm nitride device. We would expect from 
Leeson’s equation a 12dB difference in phase noise and this is roughly the case until 

' 100kHzf >  at which point electronic noise dominates in the lower power 4th harmonic.  
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Figure 4.19: (a) Frequency Comb generated by a 25μm silicon nitride OMO with 32mW at the 
coupling junction. The fundamental frequency was 74MHz. (b) Phase noise comparison of the 
fundamental and 3rd harmonic from a 117MHz silicon nitride OMO with  

 Although, on its own, the above device could be used as light-induced comb, for the 
atomic clock application, more harmonics are desired. We saw in chapter 3 that the power 
contained in the thh  harmonic depends on the value of a Bessel function with displacement as its 
argument. In the USR, the displacement rises quickly at threshold but soon begins to level off 
(Figure 3.9) scaling close to inP . The power in the thh  harmonic also falls off rapidly once the 

harmonic falls outside the cavity Lorentzian, as the factor 2 2( / 2) ( )mhκ + ∆ ± Ω  in the 
denominator of (3.52) reduces the harmonic generation efficiency. So to generate large numbers 
of harmonics, large displacement is required and a relatively low optical Q cavity. Of course a 
low Q cavity results in larger threshold power prompting a tradeoff between comb-span and 
input power. Using an electromechanical OMO further described in chapter 6, we were 
successful in circumventing the above limitation in generating harmonics past 6GHz.  
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5 Very Low Threshold Silicon OMO’s 
Silicon photonics is currently a rapidly growing and exciting field. All the OMO’s 

covered here are batch fabricated on a silicon substrate, and could be technically considered 
silicon photonics even if the device itself is not silicon. Defining the device layer in silicon  
benefits from high mechanical Q, high refractive index, obvious compatibility with CMOS 
electronics, and a large microfabrication infrastructure already in place. Additionally, silicon 
exhibits various nonlinear effects such as self-phase modulation, two photon absorption, third 
harmonic generation, four wave mixing etc., which could add new functionality to a system [83].  

With these considerations in mind, silicon OMO’s were included on several standard 
silicon photonic device runs within the Wu group. These device runs were primarily meant to 
fabricate large-scale silicon MEMs optical switch arrays, so no specific optimization was 
performed for optomechanical devices [84]. Nonetheless, the fabricated devices exhibited 
ultralow threshold power of just 17μW for a 61 10oQ = × device. We also observed surprisingly  

low threshold power in lower oQ  devices which deviated from the theoretically prescribed values 
by more than a factor of 10. In the previous chapter we observed this same lower than expected 
threshold power in silicon nitride and PSG. Silicon is a well-studied material and so is amenable 
to calculations to remedy the discrepancy in measured and calculated threshold powers. Here we 
investigate non-linear and free carrier effects in silicon and their effect on threshold power. The 
chapter concludes with phase noise characterization of silicon devices.    

5.1 Fabrication and Improved Threshold Power Setup 
Samples were designed by Niels Quack and fabricated by Sangyoon Han with some 

backend work performed by Tristan Rocheleau and Jalal Naghsh. Using a timed release process 
similar to Figure 4.2 (a), we began with a 6” SOI wafer from SOITEC with a 220nm lightly 
doped p-type top silicon layer having 14 Ω-cm resistivity. Underneath the silicon device layer 
was a 3μm buried oxide sacrificial layer. The silicon was pattern and etched followed by a timed 
HF vapor release to free the ring resonator. Figure 5.1 (a) shows a top view SEM of the 
completed sample with 20μm radius. In silicon, we have achieved both high mechanical, and 
optical Q. A typical mQ  is 15,000 while oQ  of 1 million has been attained in the 20μm disk. The 
optical Q is very sensitive to the release conditions and has been as low as 40,000. We attribute 
this to surface states caused by varying native oxide quality with different release conditions. 
The same phenomenon was observed in [25]. 
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  (a)         (b)            (c) 

Figure 5.1: (a) Top-down SEM of 20μm silicon hollow-disk OMO. (b) Measured Brownian 
motion indicating a high mechanical quality factor of 15,000 at 13 Torr (c) Tunable laser sweep 
with high optical Q of 1 million at 1552.36nm.  

 In silicon, the measured threshold power was quite small and displayed interesting 
behavior upon scaling optical Q. A setup to efficiently characterize threshold power at ~1550nm 
was constructed. The optimal detuning and total Q were found by gradually sweeping a laser 
through the cavity resonance while recording the maximum RF spectrum peak for a given 
coupling Q and input power. After determining the largest RF peak, the optical power was 
adjusted with a computer-controlled variable attenuator and a new sweep would ensue. After 
determining the RF carrier power vs input power curve for a given fiber-coupling, the tapered 
fiber position was stepped and the process repeated. In case the tapered fiber position shifted 
during any of the sweeps, a broadband source was launched through the tapered fiber but in the 
opposite direction as the pump laser. The Lorentzian dip minimum from the broadband source 
was monitored on an OSA and maintained to within 5% in-between each wavelength scan. 
Fiber-circulators maintained separation between the pump laser and broadband source paths. For 
accurate threshold power determination, 99:1 splitters recorded optical power before and after 
the tapered fiber in the pump direction only. Backscattered light from the broadband source into 
either power meter was in the nW range - well below any measured threshold powers. Again, all 
operations were automated via LabVIEW.  
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Figure 5.2: Threshold power measurement setup. A tunable laser is swept through the cavity 
while the RF spectrum peak is monitored on an ESA. The largest peak is plotted for a given 
input power. Next, the input power is adjusted with a variable optical attenuator and a new peak 
found. Curves were taken at different coupling ratios. An ASE source launched opposite the 
pump was used to monitor the cavity Lorentzian in-between sweeps. (b) Curves for 17μW, low 
threshold silicon device.  

Threshold Power Behavior of High Optical Q Silicon 
 
 In Figure 5.3 (a) threshold power curves for a very low, 17μW device are shown. Each 
point represents the maximum RF power for a given coupling ratio and input power. A sharp 
increase in RF power is evident at threshold as the output signal suddenly jumps from a 
Brownian-noise dominated peak to one that is dominated by coherent oscillations of the cavity 
periphery. To our knowledge, the 17μW threshold power at the coupling junction is only bested 
by the aforementioned 2μm silicon disk OMO with 3.5μW dropped power. As mentioned 
previously, quoting dropped power comes with the caveat that the dropped power depends on the 
tapered microfiber loss and complicated dynamics of the cavity when pumped above threshold. 
Although our 17μW threshold power is low, small signal theory from chapter 3 predicts a 
threshold power of only 7μW assuming 2eff om m=  and /om cg Rω= − . Both of these 

assumptions have predicted values very close to measured threshold power in PSG for 610oQ > . 

We also tested a separate optical resonance having 230koQ =   within the same silicon device. 
As shown in Figure 5.2 (b) , this time the measured threshold power of 230μW matched closely 
with that predicted by small signal theory. In light of testing another resonance, it is likely that 
the high optical 1MoQ =  resonance is a 2p =  mode with smaller optomechanical coupling 
constant due to less interaction with the cavity periphery. From equation (3.69), threshold power 
scales with 2

omg −  so the discrepancy in measured and theoretical threshold powers could be 

explained by a factor of ~1.5 difference in omg  then the simplistic value.   
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Figure 5.3: Threshold power curves for two optical resonances within the same cavity. (a) 
Resonance at 1551.4nm with 1 millionoQ = exhibits a very low threshold power of just 17μW. 
Note that small signal theory predicts a 7μW threshold power. (b) Threshold power curve for 
lower oQ =  230k resonance at 1550.18nm in the same cavity as (a). This time the threshold 
power of 230μW agrees closely with the theoretical value of 200μW.   

 Threshold Power Behavior of Low Optical Q Silicon 
 In an attempt to further confirm the suspicion of smaller omg  than expected in the higher 

oQ  silicon device, we also tested threshold power of lower oQ  samples. These samples were 
processed identically to the previous devices, except they were exposed to an additional O2  
descum prior to releasing in HF vapor. Ideally, the descum should not affect the device, since the 
chemistry doesn’t etch silicon. However, we found it could drastically reduce the quality factor. 
Again, this behavior is attributed to surface states caused by trap formation during native oxide 
growth [25]. We characterized the same device design and optical mode as Figure 5.3 (a) only 
now the optical Q was a mere 52k and the mechanical Q was 9,300. With 

132 5 10 Kgeff om m −= = × , the predicted threshold power is quite large, 60mW. However, 
threshold was reached at only 350μW – a factor of 170 difference! This trend is consistent with 
our findings in low oQ  glass and nitride. More devices were measured in the hopes of finding 
some type of trend. A summary of the measurements is given below. Again, the only known 
difference between the initial high oQ  sample and those that followed was an oxygen descum 

was applied to all devices except the 1MoQ =  sample.   
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Table 5.1: Threshold power measurement results. Highlighted sample did not go through an 
oxygen descum prior to release. Resonances with a star are analyzed in more detail in the next 
section. *Indicates device is analyzed theoretically in the next section.  

 The 12.5r mµ=  sample with 50koQ =  is quite interesting since it achieves fairly low 
power operation without the need for a high optical Q and yet possesses high mechanical Q. The 
threshold power curve for it is shown below. We also characterized the sample in atmosphere 
rather than vacuum and the threshold power scaled appropriately with mechanical Q indicating 
that heat is likely not the source of threshold power discrepancy. The threshold power curve also 
exhibits a plateau in the carrier power fairly soon after threshold is reached. In the previous 
curves of Figure 5.3, this was not the case.  

Radius 
(μm)

Qo Qm
fm 

(MHz)

Pthresh 
Measured 

(W)

Pthresh 
Theoretical 

(W)
Notes

20 1M* 17μ 7μ

230k 225μ 430μ

52k* 9.3k 71 350μ 59m
Separate Device from 

above
17.5 114k 47μ 4.2m

77k
15 170k 40μ 600μ

44k 450μ 36m

115k 14.5k 104 230μ 2m
Separate device from 

above
12.5 104k* 500μ 1.5m Interior optical mode

68k 260μ 5.2m
50k* 250μ 13m
50k 1.7k 2.5mW 130m Tested at Atm

17k
127

No O2  descum15k 71

17k 87

14.5k 104
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Figure 5.4: Threshold power curves for a rather low oQ  silicon sample with small, 12.5μm radius 
and high mechanical Q. The measured threshold power was 250μW while conventional OMO 
small signal theory predicts a value that is 50 times the measured threshold.     

5.2 Free Carrier and Non-linear Effects 
Silicon is well known to exhibit a wealth of nonlinear phenomena [85][83] which could 

play a role in the optomechanical dynamics. For instance, any effective force which causes an 
increase in radiation pressure as the device radius shrinks, reduces the effective damping of the 
system and adds to the radiation pressure force. Likewise both the index of refraction, and 
absorption coefficient are dependent on the free carrier number in silicon and on a small signal 
level these effects could add or subtract from radiation pressure. As a first attempt in explaining 
the lower than expected radiation pressure in low oQ  silicon, we include these effects as part of 
the radiation pressure dynamical equations and analyze their effect on threshold power. We find 
that free carrier effects reduce the threshold power. If one allows for some carrier generation due 
to single photon absorption at the surface, the predicted threshold power matches the measured 
power closely.  

Several other phenomena not covered here could very well have a sizable effect on 
threshold power. Namely, a fluctuating cavity lifetime due to the cavity expansion causing a 
changing in exκ . This was found to play a sizeable role in small photonic crystal cavities [86] but 
aren’t expected to be relevant in the larger cavities here. Another plausible cause is the 
photoelastic effect or strain dependent refractive index. This effect plays a prominent role in 
altering the static optomechanical coupling coefficient in GaAs disks [39] and was on the same 
order as radiation pressure in suspended silicon beams [49]. Analysis of the photoelastic 
magnitude requires detailed FDTD simulations because the photoelastic coefficient is a tensor. In 
silicon rings the photoelastic effect may cancel in part because not all parts of the ring are 
oscillating with the same magnitude.  
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 Free carriers can alter both the index and absorption coefficient in silicon. The former is 
referred to as Free Carrier Index (FCI) effect while the latter is Free Carrier Absorption, FCA. 
Similarly, 2nd order non-linearities exist in silicon so that the refractive index and absorption are 
directly proportional to the electric field squared. The former effect is dubbed self-phase 
modulation (or Kerr effect) while the latter is called two photon absorption. Putting them 
together we have, 

 o FCI SPM

o FCA FCA

n n n n
α α α α

= + +
= + +

  (5.1) 

where 3.477on =  and oα  are the refractive index and loss coefficient 1[ ]m −  of the cold cavity. 

The free carrier and self-phase modulation contribution to the refractive index are FCIn  and SPMn   

respectively while FCAα  and TPAα  are the free carrier and two-photon contribution to the loss. The 
free carrier and nonlinear contributions are given by [87][88],  

 ( )0.84 3 3 18 27( , ) 8.8 10 [ ] 8.5 [ ] 10 1.73 10 ( )FCI e h e hn N N N cm N cm N t− − − = − × + × ≈ − × 
 
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Where ,e hN N  are the electron and hole carrier densities assumed to be equal for our material 

which is very close to intrinsic. ( ) e hN t N N= =  is the time varying carrier density, 2n  is the 

Kerr coefficient and 2α  is the TPA coefficient. I  is the intensity given by 2| ( )| /o rtI a tω τ= 

where the round trip time, rtτ  is 2 /g orn cπ  and gn  was defined in chapter 2. pV  is the optical 

modal volume. Note that in (5.2) we wrote, ( / ) ( )on(t) = n dn dN N t+ ⋅  and similar for the rest 
of the time varying corrections.  

5.3 Threshold Power with Free Carrier and Nonlinear 
Optical Effects 

In the presence of free carriers and the second order nonlinearities both the cavity 
resonant frequency and loaded quality factor must accommodate the changes.  

 cold FCA TPAκ κ κ κ= + +   (5.6) 
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Where coldκ  is the dissipation rate in the absence of pump light and includes any single photon 
absorption in the bulk (assumed negligible) or surface (possibly not negligible). Using (5.4), 
(5.5), and (2.18) gives, 

 ( )FCA gv N tκ σ=   (5.7) 

 
2| ( )|

TPA
TPA

a tκ
τ

=   (5.8) 

Where 1
2( / )TPA g o pv Vτ α ω −≡  . The cavity resonance frequency is altered in the presence of 

dispersion due to FCI and SPM. Equations (2.2) and (3.7) now become,  
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Substituting equations (5.2) and (5.3) we get,  
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  (5.10) 

It is seen that FCI imparts a change in cavity resonant frequency opposite in sign to that imparted 
by xδ . Although it may seem that FCI works against radiation pressure in fact the opposite is 
true. If x increases, the photon number is reduced and radiation pressure decreases, which then 
reduces the TPA carrier generation rate in the cavity causing a reduction in ( )N t  and thus cω . 
FCI then has the same phase with a changing cavity boundary as radiation pressure and works to 
reinforce any changes in the cavity radius imparted by radiation pressure. Figure 5.5 summarizes 
the various effects and their role in either adding or substracting from the photon field (radiation 
pressure) as the photon field increases.  
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Figure 5.5: Small signal illustration for effects considered in silicon. An increase in cavity 
photons results in more free carriers through two photon absorption and a subsequent increase in 
photons through free carrier index (FCI). Thus FCI acts in phase with the radiation pressure 
force. The opposite is true for self phase modulation and free carrier absorption.  

 
Substituting the modified detuning and cavity loss into the coupled equations for 

optomechanics ((3.18) and (3.21)) with a steady input power gives,  
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An equation for the carrier concentration may be derived similar to a laser medium. Carriers are 
lost to diffusion away from the mode volume and by trap, surface, and Auger recombination. All 
these rates are lumped into the electron lifetime, Nτ which is generally valid for short carrier 
lifetimes dominated by diffusion out of the active area [88] .  
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In writing the second equation, N  was assumed to be the total carrier concentration while oN  is 
the intrinsic carrier concentration. The two-photon absorption rate was cut in half since two 
photons are required to generate a single electron in TPA (each photon only contributes half an 
electron). A new term s coldκΓ , was added which accounts for the carriers that are generated at 

the surface due to surface defects or trap states: sΓ  is the fraction of the cold cavity loss due to 
single photon absorption at the surface. Being that silicon is indirect bandgap at 1550nm, bulk 
absorption in silicon is negligible and does not contribute carriers.  
 To solve for the threshold power, we follow the same procedure in chapter 3. If the 
dynamical variables are time invariant with steady state value written as an overbar we find,  
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It is assumed that the phase of ins  is adjusted to make a  real. Next, the dynamical variables are 
written as the sum of a steady state and small signal component. That is, 

( ) ( ), ( ) ( )N t N N t x t x x tδ δ= + → +  etc. Inserting the small signal relations into (5.11)-(5.13), 
throwing out all 2 ,a a Nδ δ δ  etc. and their permutations, and using (5.14) one arrives at, 
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Where,  
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Switching to the Fourier domain by integration and defining * ( ( ))*a aδ δ≡ −Ω  ,  
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Where ( )mχ Ω  was given in equation (3.61). The latter two equations are not explicitly 
dependent on each other but the free carriers may impart a force or respond to an external force 
when mediated by the small signal photon field, aδ . Solving for ( *)a a aδ δ+  in (5.19), and 
inserting into (5.18) and  (5.17)  one can then write both aδ  and Nδ  in terms of xδ  and exFδ . 

Eliminating Nδ  then gives a single equation for aδ  in terms of xδ  and exFδ . We get,  
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Substituting aδ  and ( )) ** (a aδ δ Ω≡ − back into (5.19) then allows one to Solve for the small 
signal force in terms of displacement, aka, the effective susceptibility,  

 ex
eff

xF δδ
χ

=   

Where, 

 
( )

( )

1 ( ) ( )
1

1 ( ) ( )

om ax ax
m

eff om aF aF

g a A A

g a A A
χ

χ

∗

∗

+ Ω + −Ω
=

− Ω + −Ω





  (5.22) 

And we used,  

 ( ) Aax aF exta x A Fδ δ δΩ = +   (5.23) 
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Note, the factor, ( )( ) ( )om ax axg a A A xδ∗Ω + −Ω  is recognized as the net small signal force 

acting on the boundary. The first term comes from radiation pressure while the rest of the terms 
may regarded as a dynamical back action force, dbaFδ  similar to (3.79), that now includes 
equivalent forces by free carriers and non-linear optics mediated by photons.  
 To find the threshold power one uses equation (3.67),  

 
( ){ }1

Im ( )
0     (at threshold)

eff m

eff
m effm

χ
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Ω
  (5.25) 

Formally, the cavity mode amplitude, a  is swept until 0effΓ = . Due to bistability there 
are often two possible solutions for which we take the lower value. There are also cases where 
there is no solution because excessive two-photon and carrier absorption limits the maximum 
number of cavity photons. This is illustrated in the two plots of Figure 5.5 below. In the first plot 
the imaginary part of the susceptibility is graphed as a function of the cavity mode amplitude, a   
with the detuning parameterized. In this case, sΓ  was set to 0.5 in equation (5.15) so that the 
cold cavity Q was assumed to be halfway limited by surface absorption. Evident in the plot is 
that for small detuning, the  effective damping never crosses zero due to inefficient pumping of 
the cavity. Many photons may be placed in the mode by increasing a  but the optomechanical 
gain is offset by other effects.  
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Figure 5.6: (a) Imaginary part of inverse susceptibility plotted vs. cavity mode amplitude a . For 
some detunings, the effective damping never reaches zero.  The optimum detuning is at ~0.45 
which is in line with experiments. (b) Threshold power plotted vs normalized detuning for 
different electron lifetimes. At some detunings the threshold power is infinite so the plot was cut-
off. In this case 910Nτ −=  gives 350µWthreshP = at a normalized detuning of 0.45.    

Because the threshold power depends on detuning and coupling, the detuning is swept 
while coupling is parameterized similar to how threshold is measured. In Figure 5.5 (b) the 
detuning is swept and threshold power determined for each detuning point. The electron lifetime 
is parameterized from 10ps to 1ns. For cases where the threshold power was infinite (no zero 
crossing in (a)), the plot was cut-off. Evidently, for the silicon device plotted in Figure 5.4, the 
optimal detuning is 0.45κ∆ = . Again the surface absorption Q was set to half the total Q in this 
case.    

Finally, the threshold power was calculated for devices marked with a star in Table 5.1. 
An electron lifetime of 910−  seconds was assumed [88]. Three fractional surface absorption Q’s 

/s surf coldκ κΓ =  were chosen and the results are given in the table below.  The total Q was kept 
at the experimentally measured value. Evident in Table 5.2, is the lower threshold powers 
predicted in low Q devices when free carrier “FC” and non-linear “NL” are accounted for. Even 
if the imperfect surface is assumed to not generate any free carriers ( 0)sΓ =  the predicted 
thresholds are smaller and may explain the discrepancy in measured and optomechanically 
predicted thresholds. In the 1oQ M=  sample, the additions of FC and NL effects don’t appear to 
change the threshold power. This is due to the high optical quality factor which promotes a 
dominant optomechanical force.  
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Table 5.2: Experimental and modeled threshold powers in low and high optical Q silicon 
resonators. Optomechanical radiation pressure does not explain the measured threshold powers 
while calculations incorporating free-carrier “FC” and non-linear “NL” may.  

 

5.4 Phase Noise Characterization 
Phase noise was also characterized in silicon. For instance, similar to PSG we measured 

the phase noise of two optical resonances within the same resonator. Threshold power for the 
two resonances was shown in Figure 5.3 where we measured a very small 17μW threshold in the 

1oQ M=  resonance. In this case, the phase noise followed the same trend observed in chapter 4 
with a higher optical Q having larger phase noise. When the two curves are scaled by the input 
power they are overlaid almost exactly indicating that the difference in optical power is 
attributed to the measured difference in phase noise mainly due to carrier power. However, when 
the optical power was raised in the case of the high oQ  device the phase noise degraded 
especially at lower offset indicating that 1/f noise is linked to the optical circulating power. For 
the high Q device the phase noise at large offset was dominated by electronic noise. To 
overcome this limit, that wouldn’t be the case in the optical domain, an EDFA was used at the 
tapered microfiber output to boost the output power above the electronic noise. In Figure 5.6 (b) 
the phase noise is shown with and without the EDFA and is observed to reduce by 12dB with an 
EDFA at the cavity output. It is believed that some high oQ  PSG devices in this thesis were also 
limited by electronic noise due to the small pumping power required. 

Radius 
(μm)

Qo Qm
fm 

(MHz)

Pthresh 
Measured 

(W)

Theory 
Optomech 
Only (W)

FC and NL 
Γs=1

FC and NL 
Γs=0.5

FC and NL 
Γs=0

Notes

20 1M* 15k 71 17μ 7μ 8μ 9μ 9μ No O2  descum

52k* 9.3k 71 350μ 59m 160μ 320μ 3.4mW Separate Device from 
above

12.5 104k* 500μ 1.5m 90μ 180μ 900μW Interior optical mode
50k* 250μ 13m 180μ 360μ 3m

17k 127



107 
 

101 102 103 104 105 106 107
-140

-120

-100

-80

-60

-40 Qm=15k
fm=71MHz

4-Spoke
Router=20µm
Rinner=15.5µm

Qo=230k, Qtot/Qo=0.6
Pjunction=910µW

Ph
as

e N
oi

se
 (d

Bc
/H

z)

Frequency Offset (Hz)

Qo=1M, Qtot/Qo=0.6
Pjunction=140µW

101 102 103 104 105 106
-120

-100

-80

-60

-40

-20

0  No EDFA after Tapered Fiber
 EDFA gain set for 600µW out

Ph
as

e N
oi

se
 (d

Bc
/H

z)

Frequency Offset (Hz)

12dB
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Figure 5.7: (a) Measured phase noise on same device from Figure 5.3. The higher optical Q 
resonance required lower power to achieve optimal phase noise.(b) Comparison of phase noise 
for oQ =1.0M resonance with and without an EDFA at the cavity output. The EDFA boosts the 
output noise above the electronic noise limit.     

 Shown below is phase noise for the  12.5μm device with threshold power measured in 
Figure 5.4. Recall that this sample had much lower than expected threshold power. The phase 
noise is also quite good and was taken with just 490μW at the coupling junction. Thus, silicon 
holds great promise for ultra-low power OMO’s with solid phase noise.  
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Figure 5.8: (a) Phase noise of small R=12.5μm radius silicon sample with previously 
characterized threshold power of 250μW. (b) Phase noise comparison between R=12.5μm and 
R=20μm samples. Data is normalized to a 71MHz carrier. 
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6 Multimaterial OMO Experiments 
6.1 Introduction 

Mechanical Q is a win-win for phase noise and threshold power. In the quest for ever-
higher mechanical Q and more device functionality, a multimaterial OMO comprising silicon 
nitride and polysilicon was constructed. From the previous chapters, both silicon and silicon 
nitride yield excellent mQ  while silicon nitride has been proven to be a low 1/f noise material 
[14][13]. Polysilicon is known to exhibit mQ  exceeding single crystalline silicon and may also be 
deposited with high conductivity for electrical contacts and tuning. The multimaterial OMO was 
designed and fabricated by Turker Beyazoglu, Tristan Rocheleau, and Karen Grutter. Some more 
details on the fabrication process are provided in [89].  

6.2 Harmonic Locking to a Microwave Reference 
Since the multimaterial OMO can be made tunable via electrostatic stiffness an initial 

demonstration was performed that parallels the atomic clock application. The OMO used here 
reaches threshold with only 1.7mW of optical power at the device input making it an attractive 
alternative to the microwave synthesizer currently inside of a CSAC. Similar to the proposed 
CSAC, we lock the ninth harmonic of the newly introduced multimaterial OMO [89] to an RF 
signal generator greatly improving the OMO’s long term drift while simultaneously retaining its 
excellent short term characteristics. In a previously reported demonstration of OMO third 
harmonic locking, an intensity modulator was necessary to tune the mechanical frequency 
through the optical spring effect [44]. Here, a voltage-controlled electrostatic stiffness common 
to MEMs oscillators [90] is used to tune the frequency thus forming an optomechanical voltage 
controlled oscillator (OMVCO) [89]. Voltage tuning eliminates the need for a separate intensity 
modulator and allows the optical power or detuning to be targeted for optimal phase noise, 
threshold power, or harmonic generation. 

The recently introduced Q-boosted multimaterial OMVCO [89] shown in Figure 6.1 
realizes the desired high mQ  and sufficient oQ  with added electrical tuning capability. Light 
propagates in the whispering gallery mode of a stoichiometric silicon nitride ring with intrinsic 
optical oQ =170,000. The mechanical quality factor of the silicon nitride ring is boosted by 
attaching it to a spoke-supported inner ring of polysilicon, a material with low mechanical loss. 
The mechanical radial breathing mode at mf =52MHz  pictured in the inset of Figure 6.1(a) 
exhibits the lowest threshold power due to strong interaction with the radially oriented radiation 
pressure force and is the focus here. The largest composite mQ  measured from such a device is 
22,300 [89] while this work utilizes a device with mQ =17,000 at 10Torr. Voltage controlled 
electrostatic stiffness tuning [90] of 100ppm is attained with electrodes placed adjacent to the 
conductive polysilicon ring via stepper-based photolithography. Since the tuning range varies as 

3/2g −  where g  is the gap width, further improvements in the tuning range can be made with 
smaller than the fitted 520nm gap. Both the electrodes and ring are electrically contacted to 
probe pads through a bottom polysilicon interconnect layer.  
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Figure 6.1: (a) Colorized SEM of Q-boosted Optomechanical voltage controlled Oscillator 
(OMVCO) consisting of a 2μm thick electrically conductive polysilicon spoke supported ring in 
contact with a 400nm thick silicon nitride outer ring. Electrical contact pads (not shown) are 
routed through an interconnect layer to tuning electrodes and structural anchors. Inset details 
displacement profile of the mechanical radial breathing mode. (b) Cross sectional illustration of 
the Q-boosted OMVCO. (c) Tuning data for the mf =52MHz OMVCO used in this work 
showing 100ppm range for a 110V input. The fitted gap width is 520nm 

 In Figure 6.2 the phase noise of the multimaterial OMO is compared to some single 
material devices measured in this work. All devices were measured in vacuum except for the 
PSG sample with integrated waveguides. The multimaterial OMO achieves the best phase noise 
with only 3.7mW of power and is ~10dB better phase noise then our best nitride sample. The 
phase noise peaks at ~200Hz offset are due to an unknown disturbance in the lab that occurred 
during the time the multimaterial OMO was being characterized. 
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Figure 6.2: Phase noise comparison of OMO’s measured in this work. The PSG device was 
measured at atmosphere while the rest were taken in vacuum.  

 
Owing to its low phase noise and voltage tunable frequency, the Q-boosted OMVCO is 

an excellent candidate for locking to a microwave reference and the eventual CSAC application. 
At long time scales, the locked OMVCO borrows the long term stability of the lock reference. 
However, at short time scales the locked system will inevitably retain the frequency stability of 
the free running OMO since the effective lock bandwidth is limited, or intentionally kept small in 
the CSAC system. Thus, it is imperative that the OMO exhibits excellent short term frequency 
stability, typically measured as phase noise at large frequency offset. The 52MHz Q-boosted 
OMVCO posts phase noise of -140dBc/Hz at greater than 50kHz offset besting the specification 
of a 10MHz CSAC [91]  and is a 20dB improvement over the previous harmonic lock 
demonstration [44]. As previously mentioned, voltage controlled tuning simplifies the feedback 
path and decouples the free running OMO performance from the locking mechanism. 
 
Measurement Setup 

The Q-boosted OMVCO is harmonically locked to a low noise reference by mixing 
photodetected light at the cavity output with an RF signal generator set near the ninth harmonic 
frequency of 466MHz as shown in Figure 6.3(a). Optomechanical self-oscillation is excited by a 
blue-detuned narrow linewidth New Focus TLB-6700 tunable laser launched into a tapered 
microfiber [25, 26] controlled in the x,y,z directions by linear piezo stages. A fiber bench adjusts 
the polarization state of light entering the microfiber to be maximally resonant with the optical 
cavity. Upon evanescent coupling, light exiting the tapered microfiber travels through a 
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circulator and is coupled into a photodetector + 500Ω  integrated transimpedance amplifier with 
10GHz bandwidth.  Imprinted on the photodetector output is the optomechanically generated 
frequency comb which is then amplified by 23dB. Figure 6.3(b) shows the frequency comb when 
pumped with 4.2mW (~2.5x threshold) at the fiber-device coupling junction where up to 14 
harmonics are visible. The frequency comb then passes through a phase shifter (not shown) and 
mixed with a low noise SRS SG384 RF signal generator. The open loop feedback electronics 
include a low pass filter followed by a proportional-integral (PI) controller and a 40X high 
voltage amplifier. The error signal appearing at the input of the PI controller is proportional to 
the difference in phase between the OMVCO 9th harmonic and the signal generator. After the 
feedback electronics, the final control voltage is fed back to the device tuning electrodes.  

Not shown in Figure 6.3 are variable optical and RF attenuators placed before and after 
the photodetector respectively. The attenuators are included to prevent saturation of the detector 
and RF amplifiers ensuring harmonics are only created through optomechanical transduction. 
The optical resonance is viewed in-situ on an optical spectrum analyzer which detects the output 
of a broadband source directed opposite the pump laser into the tapered microfiber. Air damping 
induced mQ  degradation is minimized by housing both OMVCO and tapered microfiber in a 
custom vacuum chamber held at 10Torr [13]. Note that a bandpass filter is not used to isolate the 
desired 466MHz harmonic because in the CSAC such a filter would have to exist in the optical 
domain which is impractical. The described test setup is similar to a typical Pound-Drever-Hall 
scheme for locking a laser to an optical cavity [93] except the OMVCO acts in place of a phase 
modulator and the error signal is fed back to OMVCO tuning electrodes rather than the tunable 
laser.  
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Figure 6.3: (a) Measurement setup for phase-locking the OMVCO 9th harmonic to an RF signal 
generator. Tunable laser light in the tapered microfiber is coupled into the device initiating self-
oscillation. Light exiting the fiber is mixed with an RF signal generator, filtered and fed back to 
tuning electrodes. An Optical Spectrum Analyzer (OSA) simultaneously monitors transmitted 
light from a broadband Amplified Spontaneous Emission (ASE) source to maintain the optical 
coupling. (b) Photodetected OMVCO frequency comb viewed on the electrical spectrum 
analyzer with 4.2mW of optical power at the tapered microfiber-OMVCO coupling junction. Red 
outline indicates 9th harmonic used for locking. 
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6.2.1 Locking Range 
The OMO acts as a voltage controlled oscillator (VCO) whose open loop Nth harmonic 
frequency varies to first order as /(2 )N o cf NK v π∆ =  where cv   is the applied control voltage 

and /o m cK f v= ∂ ∂  is the tuning constant for the fundamental. The expected closed-loop lock 
range is given by /(2 )L o df NPK K π∆ =  [72] where 3200P =  is the proportional gain of the PI 
controller multiplied by the 40X voltage amplifier. The phase detector constant, dK , is given by 

/ 2d m sg oNK K v v= . Here, sgv  and oNv are the voltage amplitudes at the mixer input of the signal 
generator and 9th harmonic which can be calculated from their separately measured RF powers 
of 5dBm and -28dBm respectively. The factor mK =1.2 accounts for a mixer conversion loss of 
7dBm. Using these values, and an average OMVCO tune constant, 90oK π= −  from Figure 6.1 
(c) an expected lock range of Lf∆ =27.5kHz is calculated.  

In the data that follows, the control voltage was restricted to 100V maximum to prevent 
pull-in, the condition where the capacitive gap is closed due to electrostatic attraction between 
the tuning electrodes and free-standing ring. The sample was excited with 4.2mW at the tapered 
microfiber-device coupling point calculated with a 99:1 splitter at the tapered microfiber input. 
The measured lock range for the ninth harmonic was ~28kHz in excellent agreement with the 
expected value of 27.5kHz. Figure 6.4(a) shows the spectrum of the ninth harmonic, and the 
signal generator when placed 27.5kHz below the harmonic before and after closing the loop. As 
expected, the OMVCO tracks the signal generator frequency within the 28kHz range. Figure 
6.4(b) shows the corresponding error signal in the time domain which is initially a sinusoid at the 
27.5kHz difference frequency between the two sources. Once the loop is closed, the two signal 
phases are gradually synced and the error signal stabilizes to ~0V upon final lock acquisition. 
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Figure 6.4: (a) RF spectrum of signal generator and the OMVCO 9th harmonic at 466.5MHz 
before (blue) and after closing the loop (red). (b) Error signal present at the input of the PI 
controller as viewed on an oscilloscope. Before locking, a 27.5kHz sine wave was observed a the 
difference frequency between the two sources, while after lock, the error signal was maintained 
to ~0V by the control network. 
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Phase Noise 
To measure phase noise, we again used a proportional gain of P=3200 and integral gain 

of I=1s-1 to produce the measured spectrums of Figure 6.5(a) taken at 52MHz. As evident in the 
figure, the free running OMVCO phase noise (blue) was reduced by ~85dB at 1Hz offset and 
~35dB at 10Hz offset when locked (red) to the signal generator (black). At frequencies above 
100Hz, the locked phase noise retained the intrinsic OMVCO spectrum emphasizing the need for 
low free running OMO phase noise at large offset. It is important to note that the phase noise 
measurement floor is set by the reference within the phase noise system. We verified, using a 
separate Agilent 8644B as a reference that the Q-boosted OMVCO posted better phase noise 
than the 8663A model for offsets between 10kHz and 1MHz (grey). In fact, the Q-boosted 
OMVCO reached a phase noise of -140dBc/Hz for offsets larger than 50kHz. At small frequency 
offsets, any free running OMO phase noise will be fundamentally limited by thermal Brownian 
motion, quantum backaction or input laser noise [15, 23]. These limits are circumvented by 
locking to the reference signal since the intrinsic phase fluctuations of the OMO are, in effect 
attenuated by a high pass filter further described below. 
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Figure 6.5: (a) Phase noise spectra of the signal generator (black) and OMVCO when unlocked 
(blue), and locked (red) using an Agilent 8663A phase noise measurement reference and an SRS 
SG384 lock reference. All curves were taken at 52MHz. Once locked, the OMVCO phase noise 
is suppressed by 85dB at 1Hz offset. Also shown is the OMVCO phase noise between 10kHz 
and 1MHz when using an Agilent 8644B phase noise measurement reference (grey) showing that 
within this range the OMVCO phase noise of -140dBc/Hz outperformed the 8663A reference. 
The modeled phase noise is shown in green. (b) Linearized model of the phase-lock electronics. 
The OMVCO and signal generator are modeled as perfect oscillators with time varying input 
phase disturbances. 

Model for Closed loop Phase noise reduction 
  

The locked OMVCO phase noise can be understood from the small signal circuit in 
Figure 6.5(b). Phase noise in the output signal arising from intrinsic OMVCO phase noise 
spectral density, noSθ , reference signal generator phase noise, nrSθ , and additive circuit voltage 
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noise, vncS , is assumed small in comparison to the carrier signal. The Nth harmonic locked 
OMVCO phase noise spectral density, oSθ , is a superposition of filtered input noise spectral 
densities [72],    
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where all phase noise terms are evaluated ω  from the carrier at 2 ofπ . vncS is the baseband power 
spectral density of additive circuit noise and ( )H jω  is the closed-loop transfer function given 
by,  
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where oK and dK  were described and calculated previously. As evident from equations, (6.1)-

(6.2), the intrinsic OMVCO phase noise, noSθ undergoes a high pass filter 
2

1 ( )H jω−  such that 
the output phase noise at small offset is either greatly suppressed, or given by the signal 

generator phase noise nsgSθ which experiences a low pass filter 
2

( )H jω .  
The model curve in Figure 6.5(a) was created by inputting the measured phase noises of the 
OMVCO and signal generator into equation (6.1) and calculating the resulting output phase 
noise. An integral gain of 100s-1 was necessary to match the measured data rather than the 
experimental set point of 1s-1. The additional integral gain could be caused by a reduced effective 
loop RC time constant caused by series a capacitance. Additive circuit noise within the feedback 
loop was assumed negligible. 
 

6.2.2 Long Term Stability Measurement 
Although the long term frequency stability of OMO’s have not previously been studied, it 

is likely affected by slow drifts in temperature, pressure, and the tapered microfiber position. In 
addition to reduced phase noise, it is important to verify that the long term frequency drift of the 
locked OMVCO emulates that of the microwave reference which houses a temperature 
controlled crystal oscillator. To this end, the output oscillation frequency was sampled at 10Hz 
with an Agilent 53230A frequency counter for a10 minute duration. Figure 6.6(a) shows the 
OMVCO instantaneous output frequency subtracted by the average frequency, o of f−  for the 
open loop (blue) and closed loop (red) cases. When unlocked, the OMVCO displayed a 
maximum frequency deviation of ~10Hz over the 10 minute span. Once locked, the frequency 
drift was dramatically improved and a maximum deviation of 150mHz from the average was 
observed matching that of the signal generator. The most common measure of frequency stability 
is the Allan deviation which is plotted in Figure 6.6(b) for the three oscillators in question. Once 
locked, the OMVCO Allan deviation was reduced by over two orders of magnitude and follows 
that of the signal generator. Combined with the previous phase noise data, it is evident that the 
composite oscillator made of the OMVCO locked to an oven-controlled crystal retains the long 
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term frequency stability of the signal generator with little to no degradation in the short term 
stability of the OMVCO. 
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Figure 6.6: (a) Oscillation frequency deviation o of f−  vs measurement time for the unlocked 
(blue) and locked (red) OMVCO. Once locked the frequency deviated by only ±150mHz from 
52MHz compared to a ±10Hz deviation in the unlocked case. (b) Allan deviation curves for the 
three oscillators. The locked OMVCO follows the signal generator for averaging times up to 100 
seconds and is more than 20dB better than the unlocked counterpart. 

Optomechanical oscillators have shown great potential as sensors and as references in 
communications. In each application, the ultimate performance hinges on an optomechanical 
oscillator with a precise output frequency. Owing to its high mechanical quality factor and 
voltage-tunable center frequency, the Q-boosted OMVCO has emerged as an excellent candidate 
for such applications. We have shown that by locking the ninth harmonic of an OMVCO to a 
microwave reference, the phase noise at low offset is suppressed by 85dB by a loop high pass 
filter. This coincides with more than a 20dB reduction in the measured Allan deviation. All the 
while, the excellent short term, high frequency offset phase noise of the intrinsic OMVCO is 
retained at a level of -140dBc/Hz. The observed lock acquisition range of 28kHz can be further 
increased with fabrication improvements to reduce the capacitive electrode gap. Even greater 
improvements in Allan deviation can be made by locking an OMVCO to an atomic transition, 
namely a Rubidium hyperfine transition in a new chip-scale atomic clock architecture void of an 
electronic frequency synthesizer. This work paves the way for such an endeavor in showing that 
indeed by locking to a relatively high harmonic number, the long term frequency stability of the 
phase-locked OMVCO still emulates the reference. 

6.3 High Frequency Harmonic Comb Generation 
One final experiment was performed on the multimaterial OMO. In chapter 3 it was 

observed that obtaining a visible 3.4GHz harmonic at half the Rubidium hyperfine frequency 
requires a fair amount of optical power for large nonlinearities and displacement magnitude. In 
deriving the output power in an arbitrary harmonic in chapter 3 it was observed that each 
harmonic is weighted by the cavity Lorentzian evaluated at the harmonic frequency. Also, as the 
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argument, /om mg xβ = − Ω   of the Bessel functions ( )nJ β  increases at high amplitudes, their 
strength is reduced. Eventually the power in the desired harmonic saturates. In this section we 
experimentally verify that through RF feedback, the multimaterial OMO can serve as a high 
order harmonic generator.  

A simple version of the setup is shown below. The Q-boosted OMVCO is driven into 
oscillation by the tunable laser. However, rather than running in open loop the optical output is 
photodetected by a 10GHz detector+500Ω TIA, amplified, phase shifted and fed back into the 
OMVCO through its electrical input port. In this configuration, an electrostatic force at the 
device center frequency and its harmonics is coherently applied during oscillation in addition to 
radiation pressure. Figure 6.7 (b) demonstrates harmonics well past 6GHz upon closing the 
feedback loop (blue) for the 52MHz OMVCO. When the feedback loop is open and the device is 
only driven by radiation pressure, harmonics are only visible to ~1.2GHz. In both cases, 7mW 
was present at the tapered microfiber-device coupling junction. This power was not optimized 
and its possible lower powers could generate sufficient harmonics with feedback. The 25dB RF 
amplifier was also not optimized and it is possible that smaller RF amplification would suffice. 
The opto-electromechanical setup presented below could be used, for example to excite the 
hyperfine transition frequency in a Rubidium CSAC. We also point out a prominent RF peak at 
2.5GHz that only appears when light is injected into the device and shows up even when the 
OMVCO is not self-oscillating. When the laser is detuned far away from resonance, the peak no 
longer appears (black curve). 
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Figure 6.7: (a) Opto-electromechanical test setup for exciting a high order frequency comb in the 
multimaterial OMVCO. (b) Harmonics visible past 6GHz when the feedback loop was closed 
(blue). With no feedback harmonics were only excited up to ~1.2GHz (red). When the laser was 
on resonance but not at an optimal detuning for oscillation a peak at 2.5GHz was visible but then 
disappeared when the laser was off resonance (black). 
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 In reference [66] a 6.5GHz optomechanical frequency comb was demonstrated in a 
photonic crystal nanobeam cavity. The quoted dropped power was 3.2mW. Since the 
transmission of the device was not given, it is unclear what the power was at the coupling 
junction. However, in the supplementary section the quoted input laser power was 23dBm which 
is well above our un-optimized input power of 13dBm. In the photonic crystal nanobeam, a large 
portion of the input optical power remains unused due to inefficient coupling from fiber to 
waveguide to small photonic crystal cavity. An advantage of the WGM device is the highly 
efficient coupling from a waveguide to the optical cavity.   

7 Conclusions and Outlook 
In this work, a suite of optomechanical oscillators were characterized and their behavior 

modeled. It was always the goal to build and test a low noise and low power optomechanical 
oscillator suitable for the CSAC or other integrated RF-optical oscillator system. To this end, a 
very low threshold 17μW, 71MHz silicon OMO was characterized exhibiting -85dBc/Hz phase 
noise at 1KHz offset. A 25μW, 42MHz OMO with integrated waveguides was also synthesized 
and the validity of PSG as a potential high optical Q material for integrated optics was verified. 
Optical Q’s as high as 11M were measured in wafer-scale, batch fabricated PSG, using optical 
and RF-optoelectronic characterization methods. Silicon nitride proved to be an excellent 
technology for low phase noise OMOs. A 74MHz device void of flicker noise 
boasted -102dBc/Hz phase noise at 1KHz offset. Finally, multimaterial OMO’s have 
demonstrated excellent oscillator qualities including threshold powers in the low ~1mW range, 
low phase noise, and tuning capability. To demonstrate the utility of such a device, the 9th 
harmonic of a multimaterial OMVCO was locked to a signal generator reducing its phase noise 
at 1Hz offset by >80dB and the long term frequency drift was stabilized. This setup could be 
used for improved sensing and provides a direct voltage readout of the oscillator phase. Using 
opto-electromechanical feedback, harmonics past 6.5GHz were excited in the OMVCO. 

 It is hoped that through modeling, and characterization, the path towards fabrication of 
low noise, low threshold OMO’s has been forged. It was shown that while high optical Q may be 
desired for low power applications, the phase noise of high optical Q OMOs is limited by high 
Brownian motion at intermediate offsets. We have observed in some devices a reduced phase 
noise slope at smaller frequency offsets for devices on the fringe of the sideband resolved 
regime. On the other hand, high mechanical quality factor was unequivocally shown to reduce 
phase noise and threshold power and should be the figure of merit to optimize.   

Threshold power has been characterized and we have confirmed the presence of an 
additional force acting in sync with radiation pressure which drastically reduced observed 
threshold power in low 3~ 100 10oQ < ×  samples by as much as a factor of 170. In silicon, 
nonlinear optical effects including two photon absorption and self-phase modulation combined 
with free-carrier absorption and index were included in the small signal optomechanical coupled 
mode equations. It was confirmed that reduced threshold power could be explained by 
dissipative and dispersive free carrier effects. Provided absorption on the surface of the sample 
generates free carriers, the predicted threshold powers match experiments well. 

The future of optomechanical oscillators is still unclear. The CSAC application has 
served as our guide for grading devices and the multimaterial OMVCO could fill this need.  
While the suggested applications could be a good fit, it is possible that the best application is yet 
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to come. For instance, optomechanics has been explored in Torque [86] , displacement [95], 
mass [11], and magnetic field [96] sensors. The already diverse set of optomechanical cavity 
structures and materials should make cavity optomechanics well poised to fill a niche. At the 
very least, hopefully this work helps a new researcher pick up an aspect of the field.  
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A. S21 Response of a WGM Cavity to Intensity 
Modulated Light  
 In this section, the setup below is considered. Here, the wavelength of the tunable laser is 
fixed outside the optical resonance (See Figure 2.8) and sent into an optical intensity modulator 
from EO Space. A network analyzer applies an RF sinusoid that is swept in frequency. One of 
the intensity modulation sidebands is then swept through the cavity photodetected and read by 
the network analyzer. A DC bias applied to the intensity modulator modifies its response to the 
modulation sideband. Common intensity modulator DC bias points used here are shown in 
Figure A.1(b)  below.  
   

 
    (a)      (b) 

Figure A.1: Measurement setup for RF frequency modulation spectroscopy of WGM resonator. 
A network analyzer feeds a frequency swept RF sine wave to an intensity modulator acting on a 
stationary laser which is detuned off the optical resonance. The signal is swept through the cavity 
and read by the network analyzer. (b) Intensity modulator output power as a function of bias 
voltage with bias points indicated.  
 At a fixed point in time the intensity modulator is fed a sinusoidal signal at angular 
frequency Ω  by the network analyzer. The output field can then be assumed to consist of the 
optical carrier at oω  and sidebands at ±Ω  which is true as long as the input voltage amplitude to 
the modulator is small compared to Vπ . The optical transmission to an arbitrary input field can 
be found by combining equations  (2.23)  and (2.24) to give: 
 
   

 ( )( ) ( ) (i / 2) ( ) ( ) ( )in out in out ex ins t s t s t s t s tκ κ− = ∆ − − +    (A.1) 

Since the output of the modulator is periodic, ( )ins t , is also periodic and since the system is 
linear, ( )outs t  is also periodic. The output then consists of signals at real integer values of Ω  
each weighted by the Fourier coefficient. Assuming a Fourier series expansion of the form,  
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Which can be shown to be exactly equal to (2.35) and is also equal to (2.29) with ∆ → ∆ + Ω . 
Next, the output of the modulator (input to the WGM) may be written,  
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  (A.3) 

Assuming the network analyzer outputs an instantaneous voltage signal of the form 
( ) ( )in ov t v cos t= Ω  and using equation (3.30) to expand (A.3) in terms of Bessel functions 

gives, 
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  (A.4) 

With modulation index defined as, 

ov
Vπ

β π≡   

Here, (0)ins  is the DC term located at the CW laser frequency while ( )ins +Ω  and ( )ins −Ω  are 
the components oscillating at Ω  and −Ω  with respect to the laser frequency. We used the 
property of the first order Bessel function, 1 1J J −= − . Only the lowest three terms were retained 
in the expansion which is valid for small modulation index. The output field is 

( ) ( ) ( )out ins s TΩ = Ω Ω  and the photodetected voltage is proportional to the output power or 
squared magnitude of the output power: 
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The network analyzer filters the photodetected output power and only retains the signal 
oscillating at t±Ω . Substituting (A.4) into (A.5) and only retaining terms with te ±Ω  dependence 
gives, 

 ( )2121( ) i t i t
out t

P t A e A e− Ω ∗ Ω

±Ω
= +   (A.6) 

where, 

 ( )21 (0) (0) ( 1)s ( 1) (0) (0) (1)s (1)o in in in inA T s T T s Tω ∗ ∗ ∗ ∗≡ − − +   (A.7) 

Writing 21 21
AiA A e ϕ−=  and expanding (A.6) in terms of sines and cosines we gather,  
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where VR  encompasses the voltage responsivity of the photodiode and any other subsequent 
electronics leading up to the network analyzer input. Now, a large red ( κ∆ −  ) detuning is 
assumed as in Figure 2.8 such that (0) (0) 1T T ∗≈ ≈  and ( 1) 1T ∗ − ≈ . This simplifies (A.7) to,  

 ( )* *
21 (0) ( 1) (0) (1) (1)      (for )o in in in inA s s s s Tω κ= − + ∆ −    (A.9) 

Note that the above equation is very similar to the output field obtained in [97]. 
 
Peak Bias Point 
 
When biased at the peak bias point, 0biasV =  and from (A.4) one obtains, 

(0) (0) /in in in os s P ω∗= =  , ( 1) (1)in ins s∗ − = − . Substitution into (A.9) and (A.8) yields,  



128 
 

 
21( ) 2 (0) ( 1) 1 (1)

1 (1)

o V in in

p

S R s s T

A T

ω ∗Ω = − −

= −


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Which is a peak in the RF domain and matches equation (2.36). pA  is a fitting parameter. Even 
though large red detuning κ∆ −  was assumed, an identically sized peak is obtained for large 
blue detuning. The FWHM of the peak may be found from (A.2) substituting 1n = , and Ω = −∆  
one obtains the maximum,  

 21(max) 2 ex
pS A

κ
κ

=   (A.11) 

Dividing (A.11) by 2, setting equal to (A.10) and solving for Ω  gives, 3
2
κ

±Ω = ± − ∆  so that  

 3FWHM κ+ −∆Ω = Ω − Ω =   (A.12) 

The FWHM of the 21S  signal is thus related to the width of the resonance in the optical domain 

by a factor of 3 .  
 
Quadrature Bias Point 

At quadrature, the modulator DC bias is / 2biasV Vπ=  (negative slope) and 3 / 2biasV Vπ=  

(positive slope). This gives, ( )(0) / 4 1 ( )in in o os P iJω β= ± , and

1( 1) / 4 ( ) i t
in in os P J eω β ± Ω± = ±   where the ± pre-factor is for negative/positive slope while the 

± argument in the exponent is for 1± Fourier coefficient in (A.4) .  Substituting into (A.9) results 
in, 
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  (A.13) 

matching equation (2.34). One can verify that in both peak and quadrature cases the largest 
signal is obtained when / 2ov Vπ= .   
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