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Abstract

BeaverDam: Video Annotation Tool for Computer Vision Training Labels
by

Anting Shen

Master of Science in Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Research Advisor

We present our annotation tool for frame-by-frame bounding box annotation in videos. The
tool has been used in conjunction with Amazon Mechanical Turk as well as standalone, to
annotate datasets for Berkeley Deep Drive, BMW, DeepScale, and XYSense. Building
upon ideas from previous works in this area, we present our improvements and optimiza-
tions on their user interfaces. We also introduce the idea of tuning such an annotation
tool to reduce researcher’s friction, which we argue is just as important as streamlining
a worker’s workflow due to the high cost of researcher time. We share our experiences
with existing tools, and our ideas (and code) for how to make the experience better for
researchers. We hope our findings and contributions reduce the cost of producing a labeled

video dataset, and introduce ideas that will improve such annotation software in the future.
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Research Advisor
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Chapter 1

Introduction

Deep learning has been enabling a variety of computer vision applications from object
detection on roads [1] to identify logos [2]. But these applications often require rapidly
growing amounts of labeled training data. Often, accuracies can be boosted by adding data
as much as by spending years on algorithmic development. For example, on the VOCO7
benchmark, Faster-RCNN [3] with VGG-16 was able to eliminate 27.5% of errors in the much
older R-CNN [4] backed by an equally old neural network architecture (mAP improved from
58.5 t0 69.9). However, simply by including additional data from VOC12 and COCO, 29.5%

of the remaining error was eliminated (mAP improved from 69.9 to 78.8).

Therefore, for real-world application development, data can be cheaper and more effec-
tive than scientists, especially as new tools such as FireCaffe [5] allow researchers rapidly
train on huge datasets. This is especially true given the rise of crowdsourcing platforms
such as Amazon Mechanical Turk (MTurk) reduces the cost of labor from up to $20/hr of
in-house annotators down to around $6. While many existing tools support image classi-
fication, like MTurk itself, and some tools support bounding box labeling in images, few
tools exist for frame-by-frame labeling in videos. VATIC [6] stands out as being one of the
best, as it not only makes high quality annotations one of its main goals, but also cost and

scalability.

My work borrows and improves upon many concepts and results from VATIC’s user
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Figure 1.1. Improvement of error as data increases, compared to error improvements due
to algorithm improvements. As we can see by comparing the drop from RCNN to Faster-
RCNN on VOCO07 only, and the drop from adding training data to Faster-RCNN, increasing
data contributes significantly to error reduction.

studies, but I focus on an additional goal that is extremely important in creating datasets
for real applications. That goal is researcher happiness. Although VATIC extensively tested
its “User Interfaces”, I argue in chapter 2 that both the annotators and the experimenters

are users, and the interfaces should be smooth for both when creating a tool.

In chapter 3, I discuss my take on VATIC’s User Interface principles for the annotator,

and improvements upon them.

I also release all related code for BeaverDam, my video labeling platform, on Github.!
At time of writing, the library has been used by Berkeley Deep Drive, DeepScale, BMW,
and XYSense.

"http://github.com/antingshen /beaverdam
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Related Work

There are a large number of static image annotators available, used to create the large
number of publicly available image datasets. [7] [8] [9] [10] These cannot be used for videos.
For most computer vision applications that only require images instead of videos, these
simpler alternatives should be used. For bounding box annotations, crowdsourcing sites
such as Mechanical Turk or Crowdflower may have templates providing static image labeling
functionality. For more complicated labels, tools such as LabelMe [8] provide many features
for tasks such as image segmentation. However, these tools were not designed for videos,
so annotating a video using these tools would require each frame to be individually labeled,

which fails to take advantage of similarity between frames.

There exists some public datasets of labeled videos that use static image annotators.
The YouTube-8M dataset [11] has millions of annotated videos, but they are annotated
using the Inception V3 model trained on ImageNet. The KITTI dataset [12], as well as a
dataset being built at Berkeley Deep Drive, have labeled videos. But these videos are not
labeled every frame, instead an image is sampled every few seconds. Those images are then
labeled using static image annotators. While these types of sampled image datasets are still
useful, they don’t allow research on supervised learning using nearby frames of a video, such
as using an LSTM that uses each frame as input. Furthermore, for applications such as
ADAS where every frame will be available and need to be labeled at inference time, machine
learning intuition tells us that having a training dataset to match test time produces better

results.

BeaverDam is designed to create frame-by-frame bounding box labeled video datasets.
Existing tools that handle videos include LabelMe video [13], which does arbitrary polygonal
annotations using homography preserving linear interpolation. Another tool, ViPER, [14],
annotates videos but is optimized for spatial labeling. Few other tools have tackled video
annotation [15] [16] [17] [18] [19]. All of these tools are effective at building large datasets
with high quality labels, but they are not necessarily economical and often require high

worker [20]. Some inefficiencies come from being too specific to a single type labeling
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problem and failing to generalize, while others result from inefficiencies in implementation
and design. The best tool we found for our task of labeling bounding boxes in videos is
VATIC [6], which was created as a better alternative to the other tools cited above, and

was used to create a large video dataset [21].

However, labeling videos with VATIC is still difficult and expensive, either due to in-
efficiencies within the tools. Even setting up the first job is often a week-long project,
consuming valuable researcher time. Once set up, workers spend a long time labeling ob-
jects in the videos due to rough edges in the toolkit. Modifying them for each dataset’s
custom specifications is also difficult. We created BeaverDam to address these problems,

while keeping in mind the valuable insights contributed by VATIC.
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Chapter 2

Experimenter Interface

During our investigation, we had many frustrating experiences with existing research
tools in this area. These included installation issues, configuration issues, and dealing with
unintuitive and undocumented interfaces. For example, there are dozens of open issues
without solutions on the VATIC GitHub, and its installation script fails at multiple points
on a brand new Ubuntu box. No job management interface exists, and turkers are managed
through a poorly documented command-line interface. Due to preciousness of researcher
time, we believe the ability for researchers to test and iterate quickly is just as important
as worker speeds when it comes to video annotation. Therefore we have placed improving

the experimenter’s experience as one of the main goals of this work.

2.1 Interface for researcher

BeaverDam provides a streamlined interface for a basic user creating a crowdsourced
video dataset using the default configurations we provide. We provide a setup script that
is tested on clean installs of Ubuntu 14.04 and Ubuntu 16.04. In comparison, VATIC was
tested on an unspecified Ubuntu installation with exact Apache and MySQL installs, and
while the install script claims that it should work on any operating system in theory, instal-

lation is difficult in reality. Additionally, our install script configures everything from Nginx
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and TLS to database config and backups. The user only needs to place their credentials
in the locations specified in our documentation. While a containerization system such as
Docker would have also solved VATIC’s issues and ensure future compatibility, we felt that
the additional complexity is not worth it, as many of our users in the research community

are unfamiliar with Docker.

To use BeaverDam after installation, we provide a web interface for researchers to
easily add and view videos and jobs. We feel that this is superior to VATIC’s command
line based approach, as the number of flags needed to specify various configurations was
overwhelming. However, to allow experimenters to load large number of videos or perform
other tasks programmatically, BeaverDam also provides a Python shell interface, backed by
Django, to expose every functionality through Python.

Video 1 HIT status page

HIT's
Type HIT ID HIT Group Completed Paid
Full Video 3YLTXLH3DF32QMRC107EUCJDWZWHPO 3I3MQQJ31 TFEPRBIYQ4QQXALBNI1J1 No No
Full Video No No
@ Full Video No No
Y Full Video No No
Full Video No No
Full Video No No
Full Video No No

HIT Tools

Figure 2.1. One of many menus in BeaverDam’s browser based management interface for
researchers. In this menu, one can create, track, and publish tasks to MTurk. Python
APIs are available to perform all actions through scripts as well. It is our improvement to
VATIC’s clunky command line interface.

Lastly, as BeaverDam is HTML5 video based, no frame extraction step is necessary.
H.264 encoded videos will work without preprocessing. However, we do provide scripts to
convert these videos to images with matching annotations to feed into machine learning

tools if desired.
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2.2 Decoupled modules

As the users of BeaverDam will most likely need to modify BeaverDam to fit their
needs, we’ve emphasized modularity in our designs. Since modularity is something VATIC
did well with their turkic, vatic, and pyvision splits, we’ve taken a similar approach. Our
infrastructure is split between a crowdsourcing module, an annotation module, and a CV-
based tracking module. But we decided to go a step further and make other parts of our

platform replaceable as well.

To serve videos, we’ve provided Nginx to allow VATIC users to continue serving videos
efficiently on the same server as their application. But to allow for scalability, users can use
AWS S3 or any other CDN, or even a mix, by specifying so when creating jobs. Similarly,
our setup pipeline is done through Ansible, a configuration management tool popular in

industry. This allows users to deploy on their own servers, or in the cloud.

We also understand that not everyone wants to use Amazon Mechanical Turk. While
past research has proven Mturk to be efficient and reliable, companies in industry seeking
training data may prefer alternatives such as CrowdFlower, or may even choose to label
in-house, or outsource to contractors. BeaverDam is designed with this flexibility in mind as
it carries its own authentication and works independently of Mturk. This allows companies
to use BeaverDam as a platform for their workers, no matter the source of labor, and track

progress and pay without the need for Amazon Mechanical Turk, which carries a 20% fee.

2.3 Patterns

To facilitate modification of our code, we adopted the Django framework because it sets
fairly strict conventions on how a project is structured. Someone familiar with Django will
immediate know where to find the files responsible for each function of the backend. As
there is a fair bit of frontend logic to video annotation, we’ve organized the code respon-
sible according to well defined patterns as well. Under Our Pattern Language [22], the

frontend follows the Model-View-Controller structure, and each of the three components

Doc ID: e00511f046{59d77b0d82fe792048d29322d01e2



BeaverDam

Crowdsourcing : .
crowdsourcin
platform e g

p @> nginx web BeaverDam
g proxy (4) core logic

e app files (3) 9 D @
< < O

% Sqlite DB
videos video

server
CDN (5)

Figure 2.2. BeaverDam’s backend server logic. The annotation app is sent in (3). Workers
can either be hired through a crowdsourcing platform (1), or hired in-house and use Beaver-
Dam directly (2). The web proxy (4) smoothly handles many requests and forwards static
files, and performs HTTPS authentication with HSTS to meet Mturk security requirements.
A video server or cloud provider CDN (5) is used to reduce worker download waiting times,
a problem of other video labeling tools.

is event-based. While using events to communicate within an application may seem like
additional complexity at first, it enables decoupling and extends the existing events from

user interaction.

2.4 Dependencies

The number one problem we encountered during our installations of VATIC was broken
dependencies. Its GitHub issues point to problems users are having due to MySQL, cython,
ipinfodb, and gcc versioning. BeaverDam addresses this problem in two ways. First, we
greatly reduce the number of dependencies. Python 3 and two python packages installed
through pip are the only dependencies required to run BeaverDam. Three other dependen-
cies, Nginx, supervisor, and uwsgi, are recommended for efficient deployment. And to avoid

the burdensome installation and configuration of a database that VATIC required, we use
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sqlite3, which is a Python standard library. In this case, it proves to be enough to handle
even a fairly large amount of annotations, and can be swapped out easily if needed. Second,
we version each dependency. This ensures that newer versions of dependencies in the future
cannot break compatibility. For front-end libraries, we check-in the required files directly

instead of using a package manager, avoiding extra complexity.

Another problem we encountered with VATIC’s dependencies was its system-wide in-
stallation and configurations. Different users sharing a server would often leave bad state
for others, causing hard-to-track bugs. We enclose the project in a virtual environment, and
we include an idempotent script that verifies all required state, and fixing them if neces-
sary. Our system is designed to be quickly set up on new VM instances, so one can perform

upgrades and fixes by discarding the entire server VM and starting from scratch.

When choosing our dependencies, we strived to use the latest versions of mature tech-
nologies. We use Python 3.5 and Django 1.10, the latest versions available at the time. We
also use the ES6 version of JavaScript, which includes many features to enhance readability
and programmer happiness. While alternatives such as TypeScript provides additional fea-
tures, ES6 is supported without a transpiler and avoids complexity. Browser compatibility
of ES6 was a small issue with workers, but we expect this to improve as browsers fully adopt

the standard and workers update to the latest version of their browsers.

2.5 Security

As BeaverDam aims to be industry quality software instead of research quality, security
considerations are important. While one would not expect malicious users, it’s important
to follow security best practices as a preventative measure. Furthermore, having a full set
of security tools allows the app to perform its own authentication, adding to modularity by

allowing it to function as a standalone app without Mechanical Turk, unlike VATIC.

The first and best line of defense is regular backups. To back up data and configuration
in VATIC, one had to perform a MySQL database dump and ensure all config files around

the server are duplicated. In BeaverDam, configuration is checked into version control, and
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the database is in a single file for easy backup and restore thanks to Sqlite. Our setup tool
automatically sets a daily backup to Amazon S3 if the app is configured with access keys.
We also implemented other critical security features, such as TLS, HSTS, CSRF protection,
and clickjacking protection. These features are automatically installed and activated by our

setup script, with the user only needing to provide TLS certificates for their domain. !

2.6 Summary

In this chapter, we identified several pain points of tools such as VATIC, including lack
of modularization, extensibility, and ease of installation & use. We improved on each of
these areas as well as others such as application security and speedy video distribution,
all with scalable real world deployment in mind. Next, we will look at the design of the

annotation tool itself, and present our contributions that improve worker productivity.

"We recommend letsencrypt for easy and free TLS certificates.

10
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Chapter 3

Annotator Interface

Car O Pedestrian ® ' Bicycle ® Traffic Light L Instructions & Requirements Save  Verified

annﬁ

Figure 3.1. BeaverDam’s expert verification interface with user keyframe scheduling en-
abled, border buffer disabled. Workers see a similar interface. Note the keyframe schedul-
ing interface integrated with the video player, the single-click multiple-create interface, and
objects being allowed to move partially or wholly off-screen in the bottom left corner.

11

Doc ID: e00511f046{59d77b0d82fe792048d29322d01e2



The productivity of annotators is the focus of most of the prior works in this area.
During the development and deployment of BeaverDam, we’ve gathered extensive feedback
from our turkers and testers, who reported several pain points they found for us to improve,
as well as features that they enjoyed. We also implemented features suggested by past works
such as VATIC, and introduced several new ones to address issues found during the testing

of VATIC.!

Previously, annotating a 10 second video with many objects or objects moving off-frame
would take 15-25 minutes with an expert annotator. While a precise quantification of our
improvement would require more comprehensive user studies, we estimate that BeaverDam
is 30%-50% more efficient for workers than VATIC on videos in our datasets (driving videos

with mostly cars often moving in and out of frame).

3.1 Keyframe scheduling

A big decision for a keyframe-based video annotation tool is whether the worker or the
tool chooses the keyframe schedule. From past user studies, we know that human workers
don’t always choose the best keyframes, leading to inefficiencies. In fact, VATIC showed
that by switching to a fixed keyframe schedule, workers were able to label faster. However,
in our studies we found it to not always be the case. Since our videos contain a varied
mix of stationary objects, slow & linearly moving objects, and fast objects with irregular
motion, it makes sense to use fewer keyframes for easier objects. While a flexible keyframe
schedule could potentially be automated using tracking, we instead optimized the interface

for user created keyframes.

We added a keyframe viewer bar that displays all keyframes and keyframes for the
currently selected object. The user can click on these keyframes to edit them, or insert new
keyframes by editing the boxes when on a frame that’s not a keyframe. We also included

keyboard shortcuts to jump between keyframes for experts who need fine-grained editing.

1Sceenshots of select issues in this chapter are taken from the demo video on VATIC’s website, and are
representative of what we encountered.

12
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3.2 Video playback for maintaining identity

VATIC’s video player was a rudimentary image changer as its purpose was to give work-
ers context when tracking objects. As we wanted more flexibility and power for more ad-
vanced labelers, we incorporated a full fledged video player over VATIC’s usage of JavaScript

to advance images of frames.

One huge issue we solved with this setup was video loading times. When deploying
VATIC, we found users complaining about load times, and sometimes jobs would time out
before the video loaded, especially when using high resolution images for frames. When
seeking in the video, the images would flash to white if it’s not loaded from cache quickly
enough. The interruption caused not only context loss but also frustration. By converting
the app to use HTML5 video, we take advantage of the ability to stream, similar to how
YouTube and other sites can display the video without loading all of it first. The annotator
can then begin annotating as the video loads. The playback is also much smoother, with
a minor tradeoff of slightly slower rewinds, as videos are encoded in a way optimized for
forward playback. This was an improvement overall as workers used forward playback more

often than rewinds.

3.3 Reducing clicks

In addition to measuring the time it takes for annotators to perform certain actions, we
sought to minimize the number of clicks necessary. We find this to be a good rule of thumb

when we don’t have enough users to properly A/B test design choices.

First, we set the user in the hybrid create/edit mode by default. A new object is
created if the user drags in an empty spot, and an existing object is edited otherwise.
VATIC requires the user to click a “create” button, which enables the user to annotate
heavily overlapped objects more easily. We propose that it’s more efficient to force a user

to perform the extra steps of creating a box in an empty spot and dragging it onto the

13
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object in case of overlap, as heavy overlaps turned out to be rare in our datasets, so it was

better to optimize for the common case.

anary and obstructed objects, for the entire video ® Instructions

What type of object did you
Just annotate?
Car
-~ Person
Bicycle
J Carried Object

Figure 3.2. Explicit object creation in VATIC. BeaverDam guesses whether the worker
wants to create a new object or edit an existing one by where they click, which is efficient
in the general case. We also eliminate this additional prompt of asking for the object type
and assume the type is same as the last created type by default.

Additionally, instead of having the user choose the type of object each time, we default
to the most common label (car) or the user’s last selection. This reduced clicks, but did
result in more errors for new users who didn’t notice that they must change the label from
the default when labeling non-cars. While VATIC’s prompting each time prevented this,

we elected to solve it through a better tutorial to save time for acclimated annotators.

Finally, BeaverDam includes extensive keyboard shortcuts, with the aim of eliminating
any need for the mouse aside from drawing and moving boxes. Tasks such as label selections
and video playback are all controlled through the keyboard. We left in optional mouse con-
trols, but it may be a good choice to remove them to enforce the faster keyboard workflow.
Surprisingly, we have had turkers report that they were on tablets, and keyboard shortcuts
were inefficient for them. However, we find in our small sample of annotators that tablet

users are few, and less efficient in general.

In a typical 15 second video with 30 cars and 5 keyframes each, using each tool’s
recommended method, BeaverDam requires 270 click-and-drags. VATIC requires 270 clicks,
and 240 click-and-drags. We find that click-and-drags take about twice as long to execute

as clicks (workers must aim the start and the end of the drag), so these improvements alone

14
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make for a 28% reduction in estimated time spent performing clicks, in the average case of

a dashcam video with many cars.

3.4 Handling frame exit/enters

During our user tests, we found that users have the most difficulty when objects are
entering or exiting the frame. Not only is it difficult for linear interpolation to handle a
box whose size is increasing but one edge is fixed to the edge of the frame, but workers also
struggle to extend the edge of the box to exactly the edge of the frame.

~J JULSITE OI VIEW ITi
-/ Occluded or obstr

# Options

Figure 3.3. VATIC annotation of object entering frame. Note the user must draw the box
exactly to the edge of the screen as shown here, as drawing fails otherwise. BeaverDam
allows the user’s mouse to draw to outside the frame, cropping back to the frame edge in
post processing.

This was one of the main challenges when annotating using VATIC, as we had many
driving videos where objects frequently entered and exited. To address this issue, we in-
troduced two solutions. First, we allow boxes to be partially or wholly located outside the
frame. This enables the user to guess at the true location of the object if the frame were
bigger, which allows for much better linear interpolation. Then, we add a large padding
around the border of the frame, essentially enlarging the frame with blank space, which

makes drawing and editing boxes that are located partially outside the frame much easier.

15
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After labeling, any boxes that are partially outside the frame can be cropped to the edge

of the frame.

16
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Chapter 4

Conclusion

We have presented numerous improvements to existing video annotation tools [6]. We
first argued that optimizing for researcher time is as important, if not more important than
optimizing for worker efficiency. In this area, we identified several pain points of tools such
as VATIC, including lack of modularization, extensibility, and ease of installation & use.
We improved on each of these areas as well as others such as application security and speedy
video distribution, all with scalable real world deployment in mind. The way BeaverDam
is engineered allows for new types of annotations and data, such as point clouds from LI-
DAR, to be labeled in the future with few changes. Aside from these software product
& implementation improvements, we demonstrated several ideas discovered in our experi-
ments that allow for easier annotation by the workers. We improve the keyframe scheduling
interface, drastically reduced video loading times (especially for workers with slow connec-
tions), reduced clicking required by 20-40%, reduced time necessary to label videos using
smarter defaults and keyboard shortcuts, and improved the handling for occluded objects
and objects that are partially in frame. These improvements in BeaverDam enables cheaper

annotations to create larger datasets to improve model accuracies in production.
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