Accelerator Synthesis and Integration for CPU+FPGA
Systems

Shaoyi Cheng

=i

WL REFLELL

i
']
|

i
i|

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-205
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-205.html

December 15, 2016

Copyright © 2016, by the author(s).
Al rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Accelerator Synthesis and Integration for CPU+FPGA Systems
by
Shaoyi Cheng
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor John Wawrzynek, Chair
Professor Vladimir Stojanovic
Professor Alper Atamturk

Fall 2016

Accelerator Synthesis and Integration for CPU+FPGA Systems

Copyright 2016
by
Shaoyi Cheng

Abstract

Accelerator Synthesis and Integration for CPU4+FPGA Systems
by
Shaoyi Cheng
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor John Wawrzynek, Chair

As the scaling down of transistor size no longer provides boost to processor clock fre-
quency, there has been a move towards parallel computers and more recently, heterogeneous
computing platforms. To target the FPGA component in these systems, high-level synthesis
(HLS) tools were developed to facilitate hardware generation from higher level algorithmic
descriptions. Despite being an effective method for rapid hardware generation, in the context
of offloading compute intensive software kernels to FPGA accelerators, current HLS tools
do not always take full advantage of the hardware platforms. Processor centric software
implementations often have to be rewritten if good quality of results is desired.

In this work, we present a framework to refactor and restructure compute intensive
software kernels, making them better suited for FPGA platforms. An algorithm was proposed
to decouple memory operations and computation, generating accelerator pipelines composed
of independent modules connected through FIFO channels. These decoupled computational
pipelines have much better throughput due to their efficient use of the memory bandwidth
and improved tolerance towards data access latency. Our methodology complements existing
work in high-level synthesis and facilitates the creation of heterogeneous systems with high
performance accelerators and general purpose processors. With our approach, for a set of
non-regular algorithm kernels written in C, a performance improvement of 3.3 to 9.1x is
observed over direct C-to-Hardware mapping using a state-of-the-art HLS tool.

To ensure the absence of artificial deadlocks in the pipelines generated by our framework,
we also formulated an analysis scheme examining various dependencies between operations
distributed across different pipeline modules. The interactions between the modules’ sched-
ules, the capacity of the communication channels and the memory access mechanisms are
all incorporated into our model, such that potential artificial deadlocks can be detected and
resolved a priori. The applicability of our technique is not limited to the computational
pipeline generated by our algorithm, but also other networks of communicating processes
assuming their interaction with the channels follows a set of simple rules.

To push the limit in usability of FPGA platforms, we also explored the generation and
integration of accelerators using only program binaries and execution profiles. Assuming no

user input, the approach is only applied to more regular applications, where the memory
access patterns are analyzable and coarse grained parallelism can be extracted. A run time
mechanism is also devised to ensure the correctness of the parallelization performed during
accelerator synthesis. With the help of binary instrumentation tools, it becomes possible
to integrate the FPGA-accelerated parts into the original application in a user transparent
way. Neither recompilation of the original program nor the source code is required. This
approach is applied to a few benchmarks for which decoupled computational pipelines are
synthesized. With memory level and coarse grained parallelization, significant improvement
in performance (3.7 to 9x) over general purpose processor was observed, despite the FPGA
running at a fraction of the CPU’s clock frequency. The run time checking mechanism was
also shown to only incur small overhead, especially for loop nests with large number of
iterations.

To Zhanglei Cheng and Peizhen Lan,
my amazing parents,
whose sacrifice and love made it possible for me to complete this work

i

Contents

Contents ii
List of Figures iv
List of Tables vi
1 Introduction

1
1.1 Trend in General Purpose Computing Platforms 1
1.2 Heterogeneous Computing with Field Programmable Gate Arrays 2
1.3 High Level Synthesis 4
1.4 Dissertation Organization 5
1.5 Thesis Contributions L 6

Background and Related Work 7
2.1 Development of High Level Synthesis 7
2.2 Compilation Techniques in High Level Synthesis 8
2.3 Hardware Platforms with Reconfigurable Components 9
2.4 Binary Translation and Optimization 10
Synthesis of Decoupled Computational Pipeline on FPGAs 11
3.1 A Motivating Example 12
3.2 Partitioning the Instructionso 13
3.3 Construction of Pipeline of Subgraphs 17
3.4 Optimization of Computational Pipeline 21
3.5 Hardware Generation 28
3.6 Experimental Evaluation L 31
3.7 Discussion and Future Work L 35
Decoupled Computational Pipeline as a Process Network 38
4.1 Memory and Fanout Process 39
4.2 Bounded Execution of the Process Network 40
4.3 Artificial Deadlock in Process Network 42

4.4 Liveness in HLS-generated Computational Pipeline 44

4.5 Discussion and Future Work

5 Accelerator Generation and Integration Using Program Binaries
5.1 Profiling Program Execution with Binary Instrumentation
5.2 Characteristics of the Targeted Platform
5.3 Acceleratable Regions In Program Binaries
5.4 A Two Phased Approach for Accelerating Program Binaries Using FPGA . .
5.5 Accelerator Integration with the Application Binary
5.6 Experimental Evaluation 000
5.7 Discussion and Future Work 00000

6 Conclusion
6.1 Future Explorations o
6.2 Reflections and Closing Remarks

Bibliography

il

60
60
61
62
68
79
81
89

95
96
97

99

v

List of Figures

1.1
1.2

3.1
3.2

3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4

4.5
4.6
4.7

Processor Frequency Scaling Over Time [3] 2
Simplified FPGA Architecture [16] 3
Converting a Simple Function to Decoupled Computational Pipeline 11
(a) Static schedule produced by HLS (b) Actual Execution with Cache Misses (c)
Execution of Decoupled Computational Pipeline 13
Three Types of Memory Dependencies 15
Barrier for Enforcing Order of Memory Accesses 17
(a) The Motivating Example in Single Static Assignment Form (b) Partitioning

of Instructions (c) Pipeline of Reconstructed Subgraphs 19
Transformation of a Function in LLVM IR 20
Subgraph Reconstruction and Simplification 22
Duplicating Nodes into Subgraph 0L 23
Pipelining Memory Transactions 25
Non-optimizable Memory Access 26
Transformation for Burst Memory Access 27
Optimized Data Access Mechanism 27
Converting ¢ Operator to C 29
Pipeline Generation Flow 30
Implementation of Computational Pipeline in FPGA SoC 31
Performance of Conventional Accelerators and Decoupled Computational Pipelines

33

Modeling Memory Access as Inter-process Communication 40
Addition of Fanout Process while Partitioning 41
Limited FIFO Size Causes Artificial Deadlock 43
a) partitioning of the original program into two processes; b) each process exe-

cutes according to the program order; c) instructions in process 1 are reordered

statically Lo 45
Deadlock Detection using Graph with Weighted Edge A7
Execution Schedules and Subscript Assignment in the Presence of Branches . . 48

Multi-level Loop Nest Deadlock Detection 49

4.8
4.9
4.10
4.11
4.12

4.13
4.14

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13

5.14
5.15

5.16

5.17

5.18

5.19

5.20

5.21
5.22

Decomposition of Cycle of Instruction Instances
Rescheduling Creates Statically Unresolvable Deadlock
Safe Reordering of Instructions
Deadlock Involving Memory Accesso
Example Precedence Graphs for Burst Mode Memory Access (a) send_req and
receive_resp in a single process (b) send_req and receive_resp are decoupled into
TWO ProCesSes o e e e e e e e
Deadlock Due to Interaction Between Two Burst Mode Memory Accesses

Burst Mode Memory Access by Decoupled Processes

Dynamic instrumentation in Dyninst [127]
Dependencies in a Loop Nest
Memory Accesses in Program Binaries (x86)
Parallelization with Direction Vectors
Hierarchy of Dependency Testing for A Two-Level Loop Nest
From Disassembled ARM Binary to Synthesizable C Code
Partitioning of Memory Access Interface with Insertion of Memory Barriers
Parallelization in FPGA Accelerators
Thread-level Parallelization
Vectors Used for Online Verification of Parallelism
Main Steps in Running Accelerator-augmented Program Binaries
Performance Comparison of Decoupled Computational Pipeline and Software Bi-
nary for GemsFDTD
GemsFDTD Performance with 2-Way Split of the Iteration Space and Different
Number of HP Ports
Overall Execution Time of Accelerators with Online Checks for GemsFDTD
Performance Comparison of Decoupled Computational Pipeline and Software Bi-
nary for Matrix Multiplicationo
Matrix Multiplication Performance with 4-Way Split of the Iteration Space and
Different Number of HP Ports
Overall Execution Time of Accelerators with Online Checks for Matrix Multipli-
cationo e e
Performance Comparison of Decoupled Computational Pipeline and Software Bi-
nary for Edge Detection L
Edge Detection Performance with 4-Way Split of the Iteration Space and Different
Number of HP Ports
Overall Execution Time of Accelerators with Online Checks for Edge Detection
Analyze Loop in C with Value from Past Profile
Loop Interchange Based on Coefficient Value from Past Execution Profile

ol
53
o4
25

o6
57
o7

61
64
66
67
69
70
72
73
75
78
80

83

84
85

86
87
88
89
90
91

92
93

vi

List of Tables

3.1
3.2
3.3

5.1

FPGA Resource Cost Value for Optimization Formulation 24
Input Data Set for the Benchmarks 33
Resource Usage of Decoupled Computational Pipelines and Conventional Accel-

erators. L 35
Resource Usage for Different Configurations of Decoupled Computational Pipeline 90

vil

Acknowledgments

This thesis would not have been possible without the support and help from the people I
have worked with over the past seven years. My experience in U.C. Berkeley has been a
memorable one, thanks to these wonderful individuals.

Foremost among them is my advisor, Professor John Wawrzynek, who has been a great
mentor and role model for me. He has given me the freedom to explore many interesting
ideas and encouraged me throughout my graduate study. I am indebted to him for his
support and advice. I would also like to thank my dissertation committee, Professor Krste
Asanovic, Vladimir Stojanovic and Alper Atamturk, who have inspired and motivated the
theme of this research effort.

Special thanks to Dr. Mingjie Lin, who I worked with when I just came to Berkeley, for
teaching me many things about graduate school and how to be a successful researcher. I
would also like to acknowledge Ilia Liebedev and Chris Fletcher, with whom I have collabo-
rated in some of my early projects in Berkeley, for the wonderful conversations and helping
hands. I am also grateful to my labmates James Martin, Simon Scott and Chris Yarp for all
the interesting discussions and exchange of ideas.

The wonderful staff in Berkeley Wireless Research Center has also given me big help in
completing my study in Berkeley. The infrastructure used in my experiments is supported
by Brian Richards, who is always there when I encounter problems in using various software
tools. Thanks to Olivia Nolan, Leslie Nishiyama, Sarah Jordan, Columba Candy Corpus
and Yessica Bravo, for their effort in making BWRC such a great place to work.

Chapter 1

Introduction

1.1 Trend in General Purpose Computing Platforms

The downscaling of transistor size, as first observed by Moore [1], massively increased the
capability of VLSI circuits for more than three decades. The number of transistors on a single
silicon die doubles approximately every 18 months while the supply voltage and transistor
channel length scaled down according to the prediction by Dennard [2]. This advancement
in technology not only enabled more integration, it also kept the power density of the new
chip the same as its predecessors, taking advantage of the voltage scaling. Bigger caches
and various architectural features were implemented using the newly available transistors,
which improved single thread performance. At the same time, the voltage scaling also allows
for increased clock frequency of processors under the same power budget. Intel 80386 chips
released in the 1980s operated at 25 MHz while the Pentium D, released in the middle of the
last decade, reached a clock frequency of more than 3.5 GHz. This 140x boost in frequency,
coupled with greater instruction issue width, more accurate branch predictor and many other
micro-architectural innovations unlocked huge performance increase for software applications
during this period. No change in programming methodology was needed to harness the ever
increasing power of the new processors. Unfortunately, the leakage current quickly grows
as the threshold voltage of transistor decreases. Eventually, further scaling of the supply
voltage was no longer possible and with that, the clock rate of the mainstream processors
stagnated at approximately 3.8 GHz.

As the growth of processor clock frequency came to a stop in the middle of the last decade,
the performance boost provided by the continuous advancement of hardware technology for
sequential programs can no longer be sustained. The benefits of user transparent architecture
optimizations are also diminishing. As parallel computers and more recently, heterogeneous
computing platforms become mainstream, the software developers are finally faced with
the challenge of matching their computation specifications with the characteristics of the
underlying compute substrate.

During the rise of parallel computer systems, the research community created many

CHAPTER 1. INTRODUCTION 2

10000

.n' L]

3162 ‘....;! :
...l A m &

+ LS

LIS] -
— 1000 it
= + .; Te
=
= t %
: *
g . 3 | 20
316 L oa ey
H Mi - *
$ ¢ A%
* e ‘. A
s + % = Intel
o 100 oootl S
. ?. PRED s AMD
. A |BM
32 ¢ n :. * “ ' DEC
LI | Sun
- + other
10 | * | L |
1985 1990 1995 2000 2005 2010 2015

Figure 1.1: Processor Frequency Scaling Over Time [3]

auto parallelization tools [4] [5] [6], to relieve the programmers from the tedious manual
parallelization process. As real applications often contain irregular algorithms which are hard
to analyze, various mechanisms were also proposed for users to provide hints/interactively
guide the parallelizing compiler [7] [8] [9]. A very similar trend, is currently happening in
the heterogeneous computing realm as well.

1.2 Heterogeneous Computing with Field
Programmable Gate Arrays

Field programmable gate array (FPGA) is a fundamentally different computation device
compared to the conventional microprocessors. Figure 1.2 shows a simple FPGA which con-
tains a matrix of logic blocks connected by programmable interconnect. Each logic block
can be configured to perform different compute operations while the interconnect links them
together to form a fixed function hardware engine. Compare to application specific inte-
grated circuits (ASICs), the FPGA configurations can be easily changed to implement many
different functions, accommodating various needs of the users. This flexibility, of course,
comes at a cost. As the logic and routing resources are all reprogrammable mechanisms
supported by RAM bits and switches, there are significant area, performance and power
overheads compared to the ASICs [10]. To alleviate these disadvantages, more specialized
circuits such as block RAM and DSP blocks are added to modern FPGAs [11] [12]. Subse-
quently some of the common functions can be mapped onto these blocks and get closer to
ASIC performance/power.

CHAPTER 1. INTRODUCTION 3

When an application is implemented on an FPGA, arithmetic and logic operations are
spatially mapped to the various compute resources in the reconfigurable array, while the
dependencies between them are satisfied by physical connections formed with on-chip routing
resources. Compare to the CPUs, where the ALUs are heavily time multiplexed, FPGAs can
perform orders of magnitude more operations every clock cycle due to its massive parallelism.
Many previous research projects [13] [14] [15] have demonstrated the advantage of FPGAs in
performance and energy efficiency v.s. other programmable platforms. For the right kind of
computation, FPGAs offer an attractive trade-off between flexibility and efficiency compared
to ASICs and CPUs, and thus occupy a unique space in the spectrum of computing devices.

—] | — H\\‘HH ,."f
|_l L H‘“& TS o e ok aL ra

fiil -

1 I
Tt

[]-{"E:fjfx-

PROGRAMMABLE
INTERCONNECT

o)

A
03/008
DGO
ifaXutufutalufullnd
BOOOO00000E

IO BLOCKS

=== ===

Mooo

BOGESHO BOBAGOE
/

P At S et

[?'EL{J

%jiﬁigﬁ

{: S ||/
ba D /

| —

BOCOOOCD0O0E
BOOQOONO0E
BOGOOCODOUE
BOCOoOOCooDs

he s

LOGIC BLOCKS

Figure 1.2: Simplified FPGA Architecture [16]

When CPUs are combined with FPGAs, the resulted heterogeneous platforms would
allow the users to place workloads onto the most appropriate computing device to increase
overall system efficiency. Inherently serial functions may not be able to make use of the
FPGAs’ abundance of computing resources and can have better speed on the CPUs, which
usually run at much higher clock frequencies. Meanwhile, functions with plenty of parallelism
can take advantage of the spatial computing paradigm provided by the FPGAs. Application
specific accelerators implementing these functions can offer huge performance and energy
advantages over general purpose processors. There are many systems where FPGAs are
coupled to CPUs through PCle interconnect, Front Side Bus etc. [17] [18], used in application
domains ranging from scientific computing, gas and oil exploration to financial analytics
[19] [20] [21]. Also, recent developments in FPGA SoCs, where the reconfigurable arrays are
integrated with hard processors and memory interface IPs at the chip level, have created

CHAPTER 1. INTRODUCTION 4

some highly compact yet versatile computing platforms [22] [23]. However, to make these
platforms easily accessible to the application developers, there are still many challenges,
as the programming methodology for FPGAs is rather different than that for the general
purpose processors.

Traditionally, FPGAs are programmed using register transfer level (RTL) design abstrac-
tion. The designers not only have to extract both coarse-grain and fine-grain parallelism in
the application, but also need to define the behavior of the final implementation down to
every clock cycle. Hardware design principles such as clock management, state machines,
pipelining, and device specific memory management must be employed to really unlock the
potential in FPGA computing. All these concepts are unfortunately outside the expertise of
most application-oriented software developers.

1.3 High Level Synthesis

Given the difficulty in programming FPGAs, there has been a trend towards design synthesis
from higher levels of specifications [24], [25]. Being more compact and expressive, high level
languages, when used as design input, can greatly increase the productivity of engineers.
Just like in the case of parallelizing compilers, the gap between an efficient implementation
and a productive programming experience attracted major interest from both industry and
academia. Many commercial, [26], [27] [28], [29] and open source [30], [31] tools have been de-
veloped over the years to tackle this challenge of generating hardware functional blocks from
high level behavioral descriptions. Programming languages such as C/C++, designed for
processor-centric execution, are used by these high-level synthesis programs as the medium
for input specification.

All these HLS tools attempt to capture parallelism in the control dataflow described by
high level languages, often with various forms of guidance provided by the user, and generate
hardware in the form of RTL. Compute operations and memory accesses are scheduled
according to the dependency constraints extracted from analysis and resource constraints
imposed by the target platform. The circuits generated usually follow a Finite State Machine
with Datapath (FSMD) paradigm. Activation of a particular operator in the datapath is
associated with a certain clock cycle and the execution of the entire control dataflow graph
is orchestrated by a synthesized central controller. Depending on the system architecture,
the generated hardware can have different mechanisms for accessing the memory. In some
systems, direct memory access (DMA) engines are instantiated and data movements are
explicitly managed, while in others, the generated hardware is presented with a memory
interface rather similar to that used by a processor, with various caching schemes [32] [33]
proposed to complement the datapath.

With the HLS tools, it seems the programmers now have an easy path to offloading
the compute intensive parts of their software to FPGAs, but the performance boost and
energy efficiency of the mapped implementations are often less than ideal. To produce good
FPGA designs with HLS, the users still have to visualize and create hardware descriptions,

CHAPTER 1. INTRODUCTION d

albeit with the C/C++ syntax. The parallelism in the application still needs to be identified
and communicated to the tool with the addition of pragmas and directives. Furthermore,
the hardware infrastructure for data movement into and out of on chip buffers also need
to be created and managed explicitly. In most scenarios, there is still a trade-off between
ease of use and the achieved quality of results. It is thus important to provide methods in
parallelism discovery, accelerator optimization and system integration to help the user better
take advantage of this unique compute substrate.

1.4 Dissertation Organization

In this dissertation, we present tools and mechanisms for transforming, optimizing and in-
tegrating FPGA accelerators using high-level synthesis approach.

Synthesis of computational pipelines with decoupled memory
access

The first flow we created transforms a sequential program into a computational pipeline
comprising multiple processing stages connected by communication channels. FPGAs are
especially efficient in implementing streaming applications where data moves through a cas-
cade of pipeline stages. This is unfortunately not how a typical C/C++ program describes
its computation. By utilizing pipeline parallelism in sequential programs, we generate elas-
tic pipelines with much better tolerance towards data access latency. For programs with a
memory footprint greater than the on-chip RAM capacity, significant improvement in per-
formance can be achieved. Within the same framework, conventional memory accesses are
converted to a streaming model whenever possible, with customized caching and burst ac-
cesses to further boost the accelerator efficiency. In chapter 3, the implementation details of
this flow are presented. To demonstrate the advantage of our approach, experimental results
comparing it against state-of-the-art HLS tools are also presented.

Deadlock prevention in network of statically scheduled
accelerators

In synthesizing the decoupled computational pipeline, the original program is essentially
converted to a network of processes, each executed by a statically scheduled accelerator. In
chapter 4, we create a framework to analyze the property of this network, leveraging past
research in Kahn process networks, to determine conditions for liveness of our generated
pipeline. Contrary to past simulation-based approaches, we examine the interaction between
the static scheduling by HLS and the sizing of the communication channels between the
processes to find ways to prevent deadlock a priori. We also discuss how our technique may
be used in other more generalized contexts.

CHAPTER 1. INTRODUCTION 6

Accelerator generation and integration using program binaries

To push the limit in usability of FPGA platforms, we explored the generation and integra-
tion of accelerators with just program binaries and execution profiles. This approach is only
beneficial for more regular applications, where the memory access patterns are analyzable
and coarse grained paralellism can be extracted. With program binary analysis and instru-
mentation, it becomes possible to integrate the FPGA-accelerated parts into the original
application in a user transparent way. Neither recompilation of the original program nor the
source code is required. Performing all the analysis based on program binaries can introduce
more uncertainty than a source code based approach. Thus we have devised a two phase
mechanism to have parts of the analysis done during the runtime to ensure correctness. The
details are described in chapter 5.

1.5 Thesis Contributions

In summary, the main contributions of my thesis include the following;:

e Advancing the state of the art for high level synthesis by devising a systematic method
to generate elastic processing pipelines from sequential programs. The pipeline paral-
lelism in the source code is effectively harnessed to create higher performance acceler-
ators.

e Creating an analysis framework for the generated pipeline, which is formulated as a
process network. By examining the interaction between scheduling and buffer sizing
in this network, we can perform the detection and resolution of deadlocks statically.

e Improving the usability of FPGAs by creating a flow which synthesize accelerators
from program binaries. Various aspects of integrating the accelerators with the original
program are also discussed. It opens up the possibility of offloading certain types of
computation to FPGAs in a user-transparent fashion.

e Quantifying the benefits of the proposed flows using off-the-shelf FPGA SoCs. The
performance and area consumption for the benchmarks are presented. Some design
space exploration is also performed to demonstrate the trade-off between execution
time and resource usage.

Chapter 2

Background and Related Work

In section 2.1, we first briefly discuss the history of high level synthesis and its most recent
development. As current generation of HLS tools are heavily leveraging technologies devel-
oped in compilers for parallel computers, section 2.2 describes some of the most relevant
work in this area. Section 2.3 looks at previous works in integrating conventional processors
and reconfigurable fabrics, which provide the target substrate for any software + accelerator
compilation flow. Finally, parallelization based on program binaries (section 2.4) is another
research area which overlaps with our effort, though the existing work mostly focused on
creation of parallel executable for multicore/vector machines.

2.1 Development of High Level Synthesis

The synthesis of hardware accelerators from higher-level specifications has been attracting
interest from the CAD research community since the 1970s [34] [35]. The very early works
focused on synthesis and simulation at both RTL and algorithmic level, but had little impact
outside of academia as they predate the emergence of the EDA software industry. During
the 80s and 90s, many fundamental concepts in HLS were explored. The main steps in HLS:
allocation, scheduling and binding were all being investigated and influential papers and
books were published, laying the foundation for the field [36][37][38][39][40][41][42][43][44].
Meanwhile, for design input, domain specific languages were often used, especially in the
DSP-oriented projects [45][46][47]. In terms of commercialization of the research, in an era
where RTL synthesis was just getting acceptance, the notion that HLS could further improve
productivity using an unfamiliar input language did not appeal to most ASIC designers. As
major EDA software vendors ventured into this space [48][49], however, HLS tools started
to draw more attention by the early 2000s. But as the input languages for these tools were
behavioral HDLs, and the quality of results were not superior to synthesized RTL, they did
not achieve much success among the RTL designers.

The most recent generation of HLS tools finally made an attempt to target algorithm
and software designers, by adopting C/C++ as the medium for design input [50][51][52].

CHAPTER 2. BACKGROUND AND RELATED WORK 8

The rise of FPGASs also offered a perfect target for high level synthesis. The time to market
advantage of FPGAs is nicely enhanced with a fast algorithm to hardware mapping flow.
The quality of results was also boosted as the newer tools leveraged progress in compiler
optimizations and parallel computing. Consequently, we have seen wider adoption of HLS in
recent years [53]. On the other hand, the usage model of modern HLS still assumes a certain
level of hardware-awareness in the users, be it in the form of following the right coding
style [54] or knowing where and when to insert optimization pragmas. Independent studies
also suggested the necessity of FPGA expertise in the development of efficient end-to-end
solutions [55][56]. There is certainly room for further improvement as the gap between a
truly high level design specification and efficient hardware implementation still exists.

2.2 Compilation Techniques in High Level Synthesis

As mentioned in section 1.2, the performance advantage of FPGA accelerators comes from
the massive parallelism exploited when computations are spatially mapped. The newest
generation of HLS tools has been evolving concurrently with the wide adoption of parallel
computers, many of the techniques proposed for parallelizing compilers were borrowed and
applied in HLS.

Since the targeted platforms can vary for automatic parallelization, parallelisms of dif-
ferent granularities need to be identified to match of characteristics of the machines (e.g.
data-level parallelism for SIMD machines, thread-level parallelism for multicores etc.). All
these can be potentially taken advantage of by FPGAs due to their flexibility.

When compiling algorithms written in high level languages to FPGAs, it is possible
to exploit instruction level parallelism (ILP) within basic blocks of the program without
applying any transformation. Due to the limit of ILP within basic blocks [57], however,
the speed up is not enough to provide a significant advantage versus a general purpose
processor where the clock frequency can be a lot higher than a typical FPGA. To improve
the quality of results in FPGA accelerators, execution of different iterations of loops are
often overlapped. This is often performed using software pipelining techniques, proposed
for very long instruction word (VLIW) processors [58][59][60][61][62]. The HLS tools start
new iterations before previous ones are completed, and the minimum interval with which a
new iteration can be initiated is dictated by the latency of the longest circular dependence
in the control dataflow graph. This initiation interval (II) ultimately bounds the overall
throughput achievable by the accelerators. Other loop transformations like loop unrolling
and splitting are sometimes used to complement the loop pipelining performed during HLS.
Incurring higher area overhead, they improve the performance by either decreasing the total
number of iterations, each with more intra-iteration parallelism, or by simplifying the logic
in the critical cycle of dependencies. In commercial HLS tools, these techniques are often
applied through the use of pragmas by the users. Thus to find out where to apply these
techniques often involves interactive design space exploration using the particular tool.

In certain application domains where memory access patterns can be statically analyzed,

CHAPTER 2. BACKGROUND AND RELATED WORK 9

concise mathematical models can be used to represent data dependencies and mathematical
transformation [63][64][65][66][67][68]. These techniques were employed in program compila-
tion targeting parallel machines of different kinds[69][70][71], and are now used by the HLS
community [72][73][74].

Another body of work explored transformations from imperative descriptions in high
level programs to alternative models of computation (MoC), before mapping to hardware
accelerators [75][76]. MoCs like Kahn process networks are more suitable for implementation
in hardware due to the explicit parallelism laid out in the model. These methodologies are
most effective when applied to regular computation kernels like those in DSP applications.
There are also some unaddressed issues such as how to close the gap between the memory
model of the new MoC and that of a general purpose processor, which is essential in the
context of generating closely coupled CPU+accelerator systems. Other tools requires the
user to directly construct application in more parallel description of computation to facilitate
hardware generation [77][78][79].

An important aspect of the HLS-generated accelerators lies in their interaction with the
data stored in the memory. It is a common design practice to have data explicitly moved in
and out of chip through instantiation of DMA engines [80], and coordinate the computation
with transfer of data using software. There are also tools [81] which hide the complexity of
managing memory hierarchy from the user by providing a standard abstraction of data access
interfaces. The FPGA designers can use the provided primitives to explicitly manage data
movement between the on-board memory and the SRAM on-chip, allowing locally-addressed
memory accesses by the computation pipeline. A set of regular kernels are synthesized to
this architecture in [82], demonstrating its applicability in the context of high level synthesis.

2.3 Hardware Platforms with Reconfigurable
Components

In terms of the actual physical substrates containing reconfigurable elements, there were
many different architectures proposed over the years. As the programmable logic portions
of the systems vary in size, the models for their use also differ. Several platforms use
programmable logic as function units [83] [84] [85] [86], tightly integrated with the processor
pipeline. These reconfigurable functional units (RFUs) are given access to the internal
states of the processors and can be used to speed up fine grained tasks. The proximity of the
programmable logic to the CPU also allows for strong interaction between the accelerated
parts of the computation and the software execution flow. To better take advantage of the
enhanced architecture, compilers [87] were constructed to map operations expressed in high
level languages to configurations for the RFUs.

In contrast with those highly integrated architectures, some platforms have loosely cou-
pled reconfigurable arrays, used in co-processor mode [88] [89] [90]. To effectively leverage
the capabilities of the programmable arrays, computation-intensive coarse grained tasks need

CHAPTER 2. BACKGROUND AND RELATED WORK 10

to be extracted and offloaded. Even further along this direction of loose coupling, many com-
mercial reconfigurable devices are actually used in stand-alone FPGA boards [91] [92]. Their
interaction with the host CPU is even more costly but the capacity of the arrays themselves
are usually higher. Traditionally, HDL programming is the preferred way to access these
devices, however high level synthesis tools can also be used [93] [94].

2.4 Binary Translation and Optimization

In this work, we also attempt to create accelerators solely based on program binaries, thus
another related research area is binary translation. Before a program is actually executed
on the processor, its binary can be modified with no additional input from the user or
involvement of the compiler. This process can happen statically [95] [96], or dynamically
while the application is running. In a lot of cases, the purpose of translating at the program
binary level is to bridge the gap between existing software and newer hardware. In the
late 90s and early 2000s, for instance, several VLIW machines provide their own dynamic
binary translation (DBT) layer to ensure the compatibility of their processor with existing
executables [97] [98] [99]. There are also DBT systems where the target ISA and source
ISA are the same [100] [101], and the translation is performed to optimize the performance
of the program. In the case of just-in-time compilation [102], the source binary is for a
virtual machine. By translating Java bytecode to the native ISA, the runtime can achieve
performance close to that of a natively compiled binary [103].

With the advent of parallel computers, binary translation also gets used to parallelize
sequential programs. In [104], feasibility of dynamic binary parallelization is studied. Traces
of instructions are parallelized to run on simulator of multicore machines. The system
described in [105] performs both static analysis and dynamic recompilation of “super-blocks”
to better take advantage of CMP and vector machines. A more recent project [106] aims
to dynamically convert the older Intel SSE instruction set to the newer AVX one. There
are also a few projects which perform the parallelization off-line. Vizer [107] provides a
framework which statically vectorizes Intel x86 binaries, targeting a very restrictive set of
loops. SecondWrite [108] is binary rewriter which generate multithreaded code for affine
loops. It also showed there is but a small difference in performance improvement when the
binaries, instead of the source code, are used as the starting point for parallelization. All
these projects aim to minimize the user effort required to take advantage of the newer, faster
but harder to program compute devices, which is an objective we would also like to achieve
in this work. Some of their ideas are adopted and modified in our approach described in
chapter 5, so they can be applied to FPGA accelerators.

11

Chapter 3

Synthesis of Decoupled
Computational Pipeline on FPGAs

As mentioned in 1.3, the HLS tools statically schedule operations when generating acceler-
ators, whose runtime behavior is therefore rather simple. Different parts of the generated
circuit run in lockstep with each other, no dynamic dependency checking mechanisms, such
as scoreboarding or load-store queueing, are needed. This rigid scheduling of operators,
while producing hardware of simpler structure and smaller area, is also vulnerable to stalls
introduced by cache misses or variable latency operations. In this chapter, we present a
flow which alleviates this problem by structuring the computations and data accesses in
the original program into a series of coarse-grained pipeline stages, through which data can
stream. This pattern takes advantage of the FPGAs being throughput-oriented devices,
while naturally overlaps computation and communication in the applications.

loat foo (float* x, float* product, int* ind)

—_~— =h

float curProd = 1.0;
for(inti=0;i<N;i++)

float curNum = x[curlnd];
curProd = curProd * curNum;

product[i] = curProd; FP Multiply
10}
11 return curProd;

2) | omawere |«

Figure 3.1: Converting a Simple Function to Decoupled Computational Pipeline

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 12

3.1 A Motivating Example

Shown in figure 3.1 is a simple example where separating a software kernel into multiple
decoupled stages can improve the overall performance. As the shown function is pushed
through the conventional HLS flow, opportunities for parallelization are discovered and a
static schedule can be generated. The loop counter addition and the loading of curlInd
can happen simultaneously, and the next iteration of the loop can start before the current
iteration finishes. Meanwhile, because the floating-point multiply always uses its result
from the previous iteration, the shortest interval with which we can start a new iteration is
limited by the latency of the multiplier. The execution schedule of this function is shown in
figure 3.2(a).

This execution schedule, unfortunately, assumes the best case latency for all the memory
accesses. Since the computation kernel is turned into a monolithic accelerator, the cen-
tralized controller would have to stall the entire compute engine when long latency off-chip
communication operations are occurring. This is less of an issue when the memory access
patterns are known a priori, such that the data can be moved on-chip before it is needed,
or if the data set is small enough to be entirely buffered on the FPGA. However, in this
example, just like in many interesting algorithms, the data access depends on the result of
computation and the memory footprint requires the use of off-chip storage. Figure 3.2(b)
shows the execution of the generated hardware module in the presence of cache miss stalls.
Note how the slowdown reflects the combination of all cache miss latencies. This does not
have to be the case though, since there are parts of the computation graph whose progress
does not need the memory data to be immediately available. These sections should be able
to move forward. This extra bit of freedom in the execution schedule can potentially have a
significant effect.

In this example, it is possible to decouple the execution of the floating point multiply
and the data accesses from each other. Without a unified schedule, one load operator can
keep requesting new data while the other one waits for previous requests to be responded
by off-chip storage, and the floating point multiplier works through previously fetched data.
This is achieved by having one module responsible for each of the memory accesses and the
multiplication, as shown in figure 3.1. The FIFOs allow for the communication between
these modules, while buffering the data already produced but not yet consumed. Over a
long period of time, the stalls introduced by the memory accesses are shadowed by the long
latency of the floating point multiplier, who is always supplied with the backlog of data in the
FIFO when cache misses occur. As long as the overall bandwidth provided by the memory
subsystem satisfies the need of the computation, the latency of the memory accesses can be
tolerated.

Figure 3.2(c) shows the execution schedule when the decoupled pipeline is used. The
latencies through the FIFOs are not taken into consideration here, e.g. FP multiply starts
immediately after completion of curNum load, but their effect should be minimal when
amortized over a large number of iterations.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 13

iterationl iteration2 iteration3 . iterationl iteration2 iteration3

+ Compute
Engine
Stalls

A .
time

() (b) : (c)

Figure 3.2: (a) Static schedule produced by HLS (b) Actual Execution with Cache Misses
(¢) Execution of Decoupled Computational Pipeline

3.2 Partitioning the Instructions

To generate modules who are running out of sync from each other, the original control data
flow graph (CDFQG) needs to be partitioned into multiple sets. Each set is to be converted
to a self-contained function and synthesized to a stage in our pipeline. To maximize the
performance of the resulted implementation, a few factors should be considered during our
partitioning process. First, circular dependencies between nodes of the innermost loop need
to be contained within each set. These strongly connected components (SCCs) in CDFG are
associated with loop carried dependencies, and are the limiting factors for how aggressively
loop iterations can be overlapped. The initiation interval (II) of loops are dictated by the
latency of these cycles. As the communication channels will always add latency, having parts
of an SCC in CDFG scattered across multiple stages would increase the II of the iterations,

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 14

Algorithm 1 Instruction Partitioning
procedure PARTITIONCDFG(G)
: > SCCs of instructions formed with data/control/memory dependency edges

1:
2
3 SCCs <« allStronglyConnComps(G)

4: DAG <« collapse(SCCs,G)

5. topoSortedNodes < topologicalSort(DAG)
6: longSCCs + getSCCWithLongOp(SCCs)
7 memNodes < findLdStNodes(G)

8 memLongSCC <+ LongSCCs U memNodes
9 allSets « {}

10: curSet < {}

11: while topoSortedNodes # () do

12: curNode < topoSortedNodes.pop()
13: curSet < curSet U curNode

14: if curNode € memLongSCC then
15: allSets +— allSets U curSet

16: curSet < {}

17: end if

18: end while

19: return allSets

20: end procedure

which are now executed in a distributed manner. Secondly, as we have demonstrated in
section 3.1, with memory operations separated from dependency cycles involving long latency
compute, we can have cache misses completely hidden by the slow rate of data consumption.
Thirdly, to localize the effects of stalls introduced by cache misses, the number of memory
operations in each set should be minimized, especially when they address different parts of
the memory space.

Partitioning Algorithm

The first factor to consider for the partitioning algorithm is one of the observations made
in [109], where sequential programs were converted into multithreaded codes running on
multicore processors. Their algorithm finds strongly connected components (SCCs) in the
original dataflow graph, collapses them into nodes and then heuristically partitions the re-
sulted directed acyclic graph (DAG) into threads with balanced load. In our flow, the search
for SCCs is also necessary and its outcome is used for the ensuing partitioning, which centers
upon memory operations. In Algorithm 1, the steps taken to perform the partitioning are
detailed. The SCCs are collapsed into new nodes, which together with the original nodes in
the CDFG, are topologically sorted. The obtained directed acyclic graph is traversed and a
new set is created whenever a memory operation or an SCC with long latency computation

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 15

is encountered. Here, long latency operations are those which cannot be completed within
one clock cycle, and their categorization ultimately depends on the target frequency of the
final implementation on the FPGA. Currently, we leverage Xilinxs Vivado HLS to generate
latency estimate for various compute operations. With a target clock frequency of 125MHz,
for instance, floating point multiply takes four clock cycles while a 32 bit integer addition
can be completed within a cycle. As Vivado HLS is eventually used as the backend for our
HDL generation, it provides accurate annotations for our flow.

Fori=1to 10 Fori=1to 10 Fori=1to 10
Ali] = B[i] * C[i] Ali] = B[i] * C[i] Ali] = B[i] * C[i]
._*. 4_/ (C[i] = Ali]
C[i] = A[i] Cli] = A[i] A[i] = D[i]
Al[i] = D[i] Ali] = DI[i]
En.c'i.for En'c.j.for Endfor

(a) (b) (c)

Figure 3.3: Three Types of Memory Dependencies

Preserving Memory Dependency

The semantics of the input high level language often create dependencies implicitly carried by
memory accesses. Given two statements in a program, Bernstein’s conditions [110] describe
when they are independent and can be executed in parallel or out of order. If two memory
operations access the same location and one of them is a store, their order in the original
program execution must be preserved. More specifically, three types of dependencies need
to be observed:

e Read-after-write (RAW) — When the same memory location is written by one statement
and read by the other, there is a dataflow dependence between them (figure 3.3a). Per-
forming them out of order results in the outdated operand to be used by the consumer
statement.

o Write-after-read (WAR) — When a memory location is read by the first statement
and subsequently written by the second, there is an anti-dependence between them
(figure 3.3b). Performing them out of order overwrites the correct operand prematurely.

o Write-after-write (WAW) — When both statements write to the same location, there is
an output dependence between them (figure 3.3c). Reordering the two writes exposes
the wrong value to the subsequent reads.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 16

For every pair of operations whose ordering needs to be preserved, a special dependency
edge is added between them. Since the generation of the sets is performed around strongly
connected components in the original dataflow, it is important to avoid adding unnecessary
memory dependency edges. To achieve this, our flow currently relies on alias analysis to per-
form partitioning of the memory space. Accesses to disjoint memory regions can be safely
reordered. When the source code contains pointer arithmetic or irregular memory accesses,
compile time alias analysis may produce overly conservative results, in which case user anno-
tations can be used to provide hints to the tool, similar to [111]. This partitioning of memory
space naturally leads to creation of multiple data access interfaces, whose interactions with
the memory subsystem can be customized, as will be elaborated in section 3.4.

Under certain circumstances, we do not want to directly add edges between memory
operations as they hinder the CDFG partitioning. For the example in figure 3.4, during the
execution of one outer loop iteration, the set of memory addresses accessed by the the load
does not intersect with that of the store instruction. However, across different outer loop
iterations, these two instructions can accesses the same locations. We can conservatively
make them dependent on each other, but this creates an SCC that ultimately prevents any
partitioning, as can be seen in the figure.

Alternatively, a memory barrier can be inserted after the completion of each outer loop
iteration. To implement the barrier in the pipeline, the stage in charges of the last mem-
ory operation before the barrier broadcasts “barrier” tokens to pipeline stages who contain
memory operations following the barrier. Eventually during the RTL generation, the local
schedule of instructions also needs to be constrained such that the sender of the barrier
tokens is not reordered to before its memory accessing predecessors, while the receivers of
barrier tokens must execute before their memory accessing successors in the original program
order as well. In figure 3.4, the store operation (Ali][j] = tmp) is followed by the sender of
the barrier token, whereas the load operation (tmp = A[i-1][j]) in the other pipeline stage
waits for the reception of barrier token for the previous outer loop iteration.

The insertion of the sender/receiver of the barrier happens after the instruction parti-
tioning. Depending on if a partition is the sender or receiver of the token, an extra push/pop
operation is introduced into the set of instructions, associated with the basic block where
the barrier occurs.

Control Dependency Edges

Another source of edges in our CDFG — control dependency, also warrants some discussion.
The simplest way to add the control dependency edges is to have every instruction depen-
dent on the control transfer instructions of the immediate predecessors of its container basic
blocks. For a loop nest, this will necessarily create a single SCC with all the branch in-
structions of the basic blocks within the loop nest. Essentially, a control low “backbone” is
generated and the branch tag tokens will need to be sent to all other modules whose instruc-
tions are predicated on these branches. The pipeline thus generated, while valid, may have
higher communication channel count and less opportunities for optimization within each

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 17

With mem dependency edge added from
store to load

. - Outerloop:
Outerloop:Fori=1toM ﬁountQ—, =
InnerLoop:Forj=1to N \;:f,,,,,/ m;f:j?op' przssnizzsfgue;itng
Load: tmp = A[i-1][j] Qcounter Q r Z{;]"[;fi“;g”‘
Store: A[|][J] = tmp — endinnerloop
E df endOuterloop
naror Ensure ordering . e
across different outer With mem Parrler inserted after
Endfor (i) loop iterations innerLoop Outerloop:
»(popi
" Innerloop:

’—> pop j
pop tmp

&A[i"-1][)’] # &A[i"][i”]
ifi'-1#i”

&A[i’-1][j'] = &AI[i"1[j"]
ifi’=i"-1andj = j”

Outerloop:
pop i
Innerloop:
{ popj
tmp = A[i-1](j]
push tmp
endInnerloop

- p
push barrier

A[il[j] = tmp
endInnerloop

endOuterloop

pop barrier
endOuterloop

Figure 3.4: Barrier for Enforcing Order of Memory Accesses

module, which will be elaborated more in section 3.4. We thus perform a more aggressive
predication/control edge insertion by looking for the earliest branch outcome which neces-
sarily leads to the execution of an instruction. Given an instruction 7 and its container basic
block bb, our flow looks for the nearest set of basic blocks BB’ who are not properly post-
dominated by bb, and insert the dependency edge between the branch instructions ending
each member of BB’ and 1.

3.3 Construction of Pipeline of Subgraphs

With instructions partitioned into disjoint sets, the flow then reconstructs subgraphs from
these sets of instructions. Each subgraph contains a subset of the original control flow/basic
blocks and will later be synthesized as a self-contained function. The reconstruction process
involves adding relevant basic blocks according to the association of the instructions with
the current set.

e For every instruction ¢ in the current set, recreate its container basic block if it’s not
already in the current subgraph.

e For every instruction j ¢ depends on, recreate its container basic block if it’s not already
in the current subgraph.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 18

e If j is associated with another subgraph, a “pop” function call is added locally as a
placeholder in its container basic block.

e If i is producing operands for instructions assigned to other sets, a “push” function
call is inserted after i.

The set of recreated basic blocks B are thus associated with either the instructions assigned
to the subgraph, or the placeholder function call supplying them with operands. To mirror
the relevant execution path in the original program, a few more steps need to be taken.

e In the control flow of the original program, find the nearest common dominator d of all
the recreated basic blocks B, and add d to B. It will be the entry block of our control
flow in this subgraph.

e Find all the paths P from d to b € B, add all the basic blocks in each p € P to B.

e From each b € B, find the paths P, to every &/ € B without passing through d. Add
all the basic blocks in each p, € P, to B.

e (Create the branching instructions at the end of each b € B. If the branching instruction
was already assigned to the current subgraph, nothing needs to be done, otherwise a
“pop” operation is created to accept a branch target token from another subgraph,
and then the actual branching is performed according to the received token.

e If d was inside a loop in the original control flow, any branch out of the set B is
redirected to d. Otherwise, any branch out of the set B terminates the execution of
this subgraph.

In the control flow graph of the original program, the set of paths whose starting points
and end points both fall in B can be divided into two groups. Some of these paths never
reach basic blocks outside of B, and the rest go out of B and then come back into B via
d. The first group is completely contained within our subgraph. If there is any path in
the second group, then d must be inside a loop, in which case we have effectively enclosed
the subgraph with a while(true) loop and the execution of the part of the path within the
subgraph will be repetitively activated by the availability of the proper tokens.

The insertion of “pop” and “push” operations is necessitated by various dependencies
between the generated subgraphs. Other than data and control (branch) tokens we have men-
tioned, special tokens are also sent when ordering of memory accesses needs to be enforced.
Each of the inserted operations corresponds to a hardware queue between the decoupled
modules, the flow of tokens ensures the execution path are synchronized across different sub-
graphs and the right operands are supplied for computations distributed across the pipeline.
Eventually, in the hardware module synthesized from each subgraph, these “pop” and “push”
operations are blocking, as they operate on standard FIFO interfaces. Flow control between
different pipeline stages are thus naturally introduced. The execution of the entire processing

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON

FPGAS 19

entry: Control Flow Instruction

cond0=icmpgtN, 0 Graph Partitioning
br cond0, bb, bb2

Y el
bb:

curProd0 = phi [curProd1, bb],[1.00, entry]
i0 = phi [i1, bb],[0, entry]

curlnd_ptr = &(ind[i0]) :
curind = *curlnd_ptr |

; 1.0¢
curNum_ptr = &(x[curInd]) \\ A v
curNum = *curNum_ptr \ C”rPl“’do ‘ |J:|
curProd1 = curProdO * curNum ‘\‘ } i
prod_ptr = &(product[i0]) |
*prod_ptr = curProd1 | v H
i1=i0+1 ‘ cond
condl =icmpeqil, N y = 4
br condl, return, bb ' br cond1
\ e) e
x ! Meemennnnae: -
return: /.00 |
| curProd2 = phi [1.00, entry],[curProd1, bb] ‘ IJ:Vl@
*product = curProd2 Store curProd1 (12}
ret curProd2
-------------------- » : Predicate for phi / control dependency
phi: select value based on the predecessor basic block + data dependency
of the current execution : subgraphs formed
icmp: generate 1 bit value by comparing the two @ - topological order
operands i
br: choose successor basic block based on the value : var : Memory Operation
of the first operand; act as unconditional jump if : I:l .sec
there is only one successor | '
(a) § (b)
Pipeline of
Decoupled Subgraphs
While(1){ 5G3
entry: SG1 While(1){ SG2 entry:
cond0 =icmp gt N,0 bb: pop(broQ, brTag)
brTag = cond0? bb:return pop(indQ, curind) br brTag
push(broQ, brTag) _ | curNum_ptr= &(x[curind]) bb: While(1){ 5G4
br brTag indQy | curNum = *curNum_ptr curProd0 = phi [curProd1, bb], [1.00, entry] entry:
bb: push(numQ, curNum) »| pop(numQ, curNum) pop(br0Q, brTag)
i0 = phi [i1, bb],[0, entry] } numQ | cyrProd1 = prod0 * curNum br brTag
curlnd_ptr = &(ind[i0]) push (prodQ, curProd1) P bb:
curind = *curind_ptr » pop(brlQ, brTagl) prodd
push(indQ, curind) broQ br brTagl pop(prodQ,curProd2)
prod_ptr = &(product[i0]) return: *prod_ptr = curProd2
} pop(brlQ, brTagl)
i1=i0+1 br brTagl
condl=icmpeqil, N P return:
brTagl = cond1? bb2:bb curProd2 = phi [1.00, entry],
push(br1Q, brTagl) [curProd1l, bb]
br cond1, return, bb ret curProd2
return: }

SG1: Counter Addition SG2: Data Fetch $G3: FP Multiply SG4: Data Write
and Index Fetch

(c)

Figure 3.5: (a) The Motivating Example in Single Static Assignment Form (b) Partitioning
of Instructions (c) Pipeline of Reconstructed Subgraphs

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 20

pipeline is completed when all modules are idling waiting for inputs and all hardware queues
are empty. The runtime behavior of this pipeline thus resembles a streaming processing
engine, with uncertainties introduced by memory access nodes smoothed out by FIFOs.

The implementation of our partitioning algorithm and the insertion of the communication
primitives leverage the LLVM infrastructure [112]. The LLVM front end converts the instruc-
tions in the original program to the single static assignment (SSA) form, which makes it easy
to track dependencies and thus facilitates all the steps in our algorithm. Figure 3.5 shows
the SSA form of our example function and how the instruction partitioning and subgraph
reconstruction can be easily performed given the explicit representation of dependencies.
For better readability, we have converted the LLVM SSA intermediate representation (IR)
to a less verbose, C-like version. Operators not available in C are explained in the figure.
The inserted communication primitives are highlighted, the parameters to these “push” and
“pop” invocations include the names of the associated queues and the data variables.

It is worth noting that transformations in LLVM framework are organized as “passes”.
Well-formed LLVM IR should be fed to and obtained from each of these passes. For our
flow, a single loop-containing LLVM function is broken into multiple LLVM functions who
communicate with each other and collectively perform the same computation as the original
subroutine. To ensure each of the generated LLVM functions is well-formed, pointers are
added to its argument list to represent the FIFO interfaces the token reads/writes act upon.
The original subroutine, on the other hand, has all its computation replaced by invocation
of these generated functions, in addition to allocation of communication channels. This
is illustrated in figure 3.6. As our pipeline is represented in proper LLVM IR, additional
optimization or analysis passes can be applied to it.

Original Function

entry: After Transformation
condO =icmp gt N, 0
br condO, bb, bb2 br0Q = alloca il

bb: briQ=allocail

curProd0 = phi [curProd1, bb],[1.00, entry] indQ = alloca i32 Allocate placeholders for the
i0 = phi [i1, bb], [0, entry] prodPtrQ = alloca i32 communication channels
curlnd_ptr = &(ind[i0]) numQ = alloca float

curlnd = *curlnd_ptr prodQ = alloca float

curNum_ptr = &(x[curlnd]) call void @SG1(i1* broQ, i1* br1Q, i32* indQ,

curNum = *curNum_ptr i32* prodPtrQ, i32* ind, float* product)
curProd1 = curProd0 * curNum call void @5G2(i32* indQ, float* numQ, float* x)

prod_ptr = &(product[i0]) call void @SG3(i1* br0Q, i1* br1Q, float* numQ, float* prodQ)
prod_ptr = curProd1 curProd2 = call void @SG4(i1 br0Q, i1* br1Q, i32* prodPtrQ,
i1=i0+1 float* prodQ, float* product)

condl =icmpeqil, N ret curProd2

r:trucr?:dl’ Sl Subgraphs encapsulated in
curProd2 = phi [1.00, entry],[curProd1, bb] calledfunctions

*product = curProd2

ret curProd2

Figure 3.6: Transformation of a Function in LLVM IR

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 21

3.4 Optimization of Computational Pipeline

With an initial implementation of the computational pipeline, there are a few simple opti-
mizations we can perform to improve its overall efficiency.

Simplification of Subgraph Control Flow

As mentioned in section 3.3, we generate the control flow of a subgraph by recreating basic
blocks to form a self-contained function, in which every path from any member basic block
to any other ones are covered. This approach sometimes introduces basic blocks whose only
purpose is to have the execution path going through them, instead of doing any computation.
Depending on the actual structure of the control flow graph, some of these blocks can be
completely removed with proper redirection of branches.

To perform this simplification, we want to eliminate those basic blocks who do not per-
form any computation/communication, and are not divergent points in the control flow.
More specifically, let the set of all basic blocks be BBy, the set of basic blocks containing
pop instructions (other than receiver of branch tags) be BBomm and the set of basic blocks
performing some computation be BBy, algorithm 2 outlines the steps for this optimiza-
tion.

Our algorithm looks for basic blocks who may branch out of the subgraph, or can branch
(directly or indirectly) to more than one members among BBeomm and BBy, and change
their branches’ destinations while deleting unnecessary basic blocks. As illustrated in fig-
ure 3.7, this optimization reduces the number of branch tag tokens to be transmitted between
different subgraphs and thus the number of communication channels needed. It also reduces
each subgraph’s complexity, making the generated hardware smaller and faster. In the sim-
plified CFG in figure 3.7, the original outer loop becomes an inner loop, thus can be pipelined
independent from the inner loop in the other subgraph.

Duplication over Communication

A major overhead our flow introduces comes from the mechanisms added for different sub-
graphs to communicate with each other. In hardware accelerators, these are manifested as
resource overhead in implementing the extra push and pop operations in each subgraph and
more importantly, the FIFOs between different subgraphs. Even a minimal depth FIFO can
use a non-trivial amount of FPGA resources. For instance, a 32 bit counter can be mapped
onto 14 SLICEs while a 32 bit wide, 16 entry FIFO takes up 24 SLICEs. Considering the area
efficiency of the whole pipeline, it can be beneficial to duplicate some of the computations
to multiple subgraphs.

More specifically, for each subgraph, any outside node supplying it with operands may
be a candidate for duplication. By copying some of these nodes into the subgraph, the edges
cut by the subgraph boundaries also change and there can be an overall saving.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 22

CFG Partitioned into Simplified CFG

Original Control
Two Subgraphs 3 for Partition 1

Flow Graph
| bb: © [entry:
entry: /\Jbb— . |entry: T INS1 f
br bb; INS1 - L brbb; \1 § ¥
INS2 f push(cond0Q, cond0) ' |bb:
§ | br condo, bb3, bb1 | INS1
br condo, bb3, bb1 3 '/ Y ! \

N '/ /\‘ bb3: \ push(cond0Q, cond0)
| v | |bbi: INS5 J [brbb3
(bb1: “ pop(cond1Q, condl) || ... : Y \
| |PPL: | | breond1, bb3, bb1 || push(cond2Q, cond2) |bb3:
;xzj bb3: o br cond2, return_bb, bb 3 INS5
| S |
INS5 | o
INS6 } i| push(cond2Q, cond2)
‘ br cond1, bb3, bb1] Return bb: '| br cond2, return_bb, bb
\ /‘ - brcond2, return_bb, bb return
\ o) : : Return_bb:
y : : return
Return_bb: bb: |
return § INS2 §
f ./’/7 pop (cond0Q, cond0) :
| @. y br cond0, bb3, bb1 |
| / INS3 . |
INS1: Instruction assigned to partition 1 ! NS4 bb3: \‘
INS3: Instruction assigned to partition 2 h d1Q d1 INS6 :
br :branch using tag token from the other 3 | Eus (fjoln bb3’ Ezq) pop(cond2Q, cond2)
subgraph ! \ reond., ! br cond2, return_bb, bb

Figure 3.7: Subgraph Reconstruction and Simplification

In this graph cut problem (figure 3.8), we want to minimize the sum of the cost of
the cut edges and the duplicated nodes. Since we are duplicating instead of moving, the
tokens produced by the nodes involved are used locally and do not need to be sent to other
subgraphs. Thus the edges going out of the subgraph from the duplicated node do not need
to be included in our cost computation. In the figure, for instance, the initial partition cuts
through the edge between node D and subG, which carries a cost Wy. If the combined cost
of node D and edge AD (W) is lower than Wy, we can duplicate node D into subG and
obtain a lower cost design.

More formally, we can write this as an integer programming problem, where each node ¢
is associated with a binary variable p;. p; = 01if 7 € T and p; = 1 if i € S. Similarly, each
edge ij is associated with a binary variable d;; which takes the value 1if7 € S and j € T,
and 0 otherwise. Finally, w;; is used to represent the cost of edge ij while ¢; represents the

cost of the node <.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 23

Edges going out of subgraph not
included in the cost computation

l ‘\, Duplicated node

—

Set S

Initial cut with no
,duplication

A cut after some
node duplication

»@/v‘

After Node
Duplication New SubG

Figure 3.8: Duplicating Nodes into Subgraph

Minimize sz‘jdij + ch

ijEE jer

subject to d;; —p;,+p; >0, ij€EE
pi €{0,1}, eV
d;; € {0,1}, 1j €E
Psuvc =0

We do not wish to duplicate memory operations, thus a very large cost is associated
with each of the memory accesses. For all other nodes, The resource consumed are obtained
using the report generated by our backend, Vivado HLS. Similarly, for each of the edges, we
synthesize a FIFO of depth 64 using the Xilinx FIFO generator. As the FPGAs contain a
variety of resources, we assign a numerical value for each type of primitives used by the node
(table 3.1). We derive the percentage silicon area each type of resources occupies from a die
photo of an older Xilinx chip [113], and generate the cost of nodes and FIFOs accordingly.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 24

With the CPLEX [114] optimization software, the formulated ILP can be solved for each
subgraph obtained. The experimental evaluation presented in section 3.6 has incorporated
the outcome of these optimizations.

Table 3.1: FPGA Resource Cost Value for Optimization Formulation

Resource Type Logic(Slices) | BRAM | DSP

% Chip Area 44.2 124 2.0

Num. of Primitives on Die 17280 148 64
Assigned Cost Value 25 840 309

Memory Optimization
Pipelining of Memory Transactions

When creating the decoupled computational pipelines, each memory operation is assigned
to a subgraph and the generation of memory requests are synchronized with the execution
of the associated module. For instance, in the subgraph shown in figure 3.9, the HLS tool
eventually responsible for RTL generation will need to create a unified schedule where the
loop counter addition (line 13), load (line 9) and push (line 10) operations are each assigned
to a fixed time slot. As the entire module would be stalled when the load misses, no further
memory transactions are initiated even though the address needed for the next load can be
computed, and the downstream FIFO has enough empty space. Meanwhile, modern memory
subsystems usually have the capability to handle many outstanding memory transactions,
in fact, their bandwidth has been improving much faster than their latency [115]. Tt is
therefore undesirable for these hardware components to be artificially sensitized towards
memory access latencies, resulting in a underutilization of the bandwidth.

To resolve this issue, our flow splits the involved memory access operation into two
disjoint portions: send_req and receive_resp. As shown in figure 3.9, send_req takes the place
of the load instruction in the original subgraph, and pushes the addresses into the memory
subsystem. As our partitioning algorithm creates a new set after adding a memory access,
consumers of the returned data are always in other downstream subgraphs. The response
port can thus be directly connected to the downstream module. Store instructions can also
be dealt with in a similar fashion, though the write response only matters in the presence
of memory dependencies. With this special transformation, each memory access node is
capable of pipelining many outstanding requests so long as the memory interface is ready.
Note not every memory access undergoes the modification. There are cases where the result
of a load, or the completion of a store is needed by another operation in the same subgraph.
A classic example is the pointer chasing in linked list traversal, where the address for the
subsequent memory request would not be available until the current load gets its response
(figure 3.10). In general, if a memory access is in a dependency cycle carried by the innermost
loop, our flow categorizes it as non-optimizable, and during our partitioning process, it would

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON

FPGAS 25
1 .
2 curlnd_ptr = &(ind[i0]) indQ
3 curind = *curlnd_ptr /—bmﬂ—b pop(indQ, curind)
4 push(indQ, curind)
6 curlnd_ptli Tcurlnd
7
8 b/lemory SubsystemJ
9 | curind = *curind_ptr N
10 -
> - .
curlnd_ptr = &(ind[i0])
12 -, .
eurtne="curind_pt curlnd_ptr poplindQcurind}
12 send_req (curind_ptr) curind receive_resp(curind)
pushlindQ, curind)
15
16 4
Memory SubsystemJ
/A

Figure 3.9: Pipelining Memory Transactions

also have been buried inside one of the SCCs. Here we assume that the input to our tool
has already undergone potentially helpful high level optimizations. It is well known that for
regular applications with statically analyzable memory access patterns, techniques like loop
interchange can move the dependency cycle to the outer loops [116]. With the insertion of
memory barriers, some of these non-optimizable memory accesses can become pipelinable.
However, as the benchmarks we use for this chapter is non-regular, the applicability of these
high level transformations is not investigated.

Customization of Data Access Mechanism

Non-regular application kernels often contain a variety of memory access patterns, i.e.
streaming, strided or random. General purpose processors use caches as a best effort so-
lution to serve all the different interminglings of these patterns in various applications. The
flexibility of the FPGAs, on the other hand, allows for customization of the data access
mechanism.

In our flow, partitioning of the memory space has provided an opportunity to create better
hardware for memory access on the reconfigurable fabric. Each independent data access
interface, corresponding to one memory partition, can be supported differently according to
the nature of the address stream it generates. Caches, being rather expensive to implement
on FPGA, might not always be the ideal structure connecting the accelerators and the
external memory. For instance, there is no reuse of data for streaming type accesses, our

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON

FPGAS 26

bb
1 for(int i=0; i<N; i++) | | ... \
2 { cond0 = icmp cur_node, 0 \\
3 float cur_product = 1; br cond0, bb3, bbl \\ \\
4 node* cur_node = heads][i]; _ \\
5 while(cur_node !=0) _ |\
7 float cur_val = cur_node->value; // / A \\
8 cur_product *= cur_val; [/ﬁ‘ bb1: ‘
9 cur_node = cur_node->next; | | cur_nodel = phi [cur_node2, bb1], [cur_node,bb] \
10 } “ cur_product = phi [1, bb], [cur_productl, bb1] |
11 products[i] = cur_product; | | cur_value =<¢ur_nodel->value .
12} ‘ cur_productl = cur_product * cur_value -
cur_node2 = cur_nodel->next |
" | cond1=icmp cur_node2, 0 w‘ ’
Memory access in a | | brcondi, bb3, bbl |
\ | 7 |
dependency cycle — \ / \ |/
non-optimizable “
bb3:
Dependency from def-use relationship Dependency on operand

Figure 3.10: Non-optimizable Memory Access

flow therefore does not allocate an on-FPGA buffer. Rather, the send_req module shown in
figure 3.9 is modified to send burst requests, concatenating multiple load /store in the original
program execution. In this mode, a single request sent corresponds with many instances of
receive_resp, which get executed by a loop. We therefore move the send_req operation to
outside of the loop, and send the memory address with the total size of the requested data.
As the memory interface limits the maximum burst size, an adapter module is created to
break the request into ones with appropriate sizes. These are then streamed into the memory,
as illustrated in figure 3.11. To automatically generate burst memory accesses, the iteration
count needs to be computable within the subgraph. The duplication of SCCs described
earlier in this section often copies loop counters into the subgraph firing off the memory
requests, enabling this transformation.

When there is a cycle of dependency through memory, an on-FPGA buffer would be
beneficial. Our flow currently adds a general purpose cache in this case, but if the particular
address stream is analyzable and the reuse distance can be determined statically, structures
like smart buffers [117] may be incorporated. Even in the case when the memory accesses are
random and a general purpose cache is the only plausible solution, its size and associativity

can be adjusted according to a runtime profile.

Original CDFG

entry:
cond0 = icmp gt N,0
br condO, bb, return

I

i0 = phi [i1, bb],[0, entry]

Transformed
CDFG

entry:
condO = icmp gt N,0
br condO, bb, return

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS

“a
bb_new:

curlnd_ptr = &(ind[0])

br bb

('send_req (curlnd_ptr, N) —¢

curlnd_ptr = &(ind[i0])
curind = *curind_ptr
('send_req (curind_ptr)

Burst Access
Adapter

bb:
il=i0+1 i0 = phi [i1, bb],[0, entry]
condl =icmp eqil, N v

il1=i0+1

br cond1, return, bb Memory Memory
i Subsystem condl =icmp eqil, N Subsystem
br cond1, return, bb

return:

v

return:

Figure 3.11: Transformation for Burst Memory Access

_ SpMV_Accelerator FPGA_Cache
M_AX1_ind 5 | 3 i 4RS0_AXI
f£| S _AXI M_AXI_xvecdp Hass1_axi
=S_AXI_ARESETN M_AXI_valdh | : i dpS2_AXI
=S_AXI_ACLK M_AX_|_ptr b | eeifl L5 3_AXI M_AXI |
M_AXLydk | i dps4_AxI
| ACLK
|—<LARESETN

Uncached burst
memory access

i

SpMV_Accelerator AXI_INTERCON

System Cache

M_AX_i
R S_AXI M_AXI_xvec
S_AXI_ARESETN M_AXI_val
S_AXI_ACLK M_AX_|_ptr
M_AXI_y:

Figure 3.12: Optimized Data Access Mechanism

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 28

Shown in figure 3.12 is an example where the described techniques are applied to one of
our benchmarks. The cache added between the accelerator and the memory subsystem was
originally shared by the five memory interfaces. However, as four of those will load/store data
in continuous addresses, they can be converted to burst accesses. The cache is now exclusively
used by “xvec” which accesses data randomly. The benefits of these transformations are
incorporated into the final performance results shown in section 3.6.

3.5 Hardware Generation

As mentioned in section 3.3, LLVM is used for implementing the synthesis flow for the
computational pipeline. To create the final hardware, we translate each of the generated
functions back to C syntax and then feed it to an existing HLS tool.

LLVM to C translation

As the computational pipeline is represented as well formed LLVM IR, it’s translation to C
is just another LLVM pass we write and apply within the LLVM framework.

Values in LLVM IR can take on types not recognized by standard C compiler. For
instance, integer types can be of arbitrary width (1-2%% — 1 bits), most of which does not
have equivalence in C language. A vast majority of them do not occur in our flow since
the original input is in C. The branch tag tokens and memory dependency tokens, however,
generally have very narrow width. These types are supported by some HLS tools, but not
standard software compilers. Thus we also generate a separate mapping file containing a list
of C macros, rounding up the width of the data to one of the standard ones. Subsequently,
for every synthesized LLVM function, i.e. a stage in the computational pipeline, we can also
have a software implementation compatible with conventional compilers.

The actual conversion of LLVM to C involves just a few simple steps. The function
signature in LLVM is very similar to that of a normal C function. The conversion is thus
rather trivial. Meanwhile, at the instruction level, most of the LLVM IR can also be directly
mapped to C statements, as illustrated in figure 3.5. One transformation we perform is in
dealing with the ¢ operations, which generate values of variables based on the the incoming
control edges. In the case where the source instruction for an operand is within the same
subgraph, instead of producing to the operand, this source instruction writes directly to the
output of the phi operator. On the other hand, if the source is in another subgraph, a load
operation is inserted to the basic block where the data is produced, but again assigning the
result directly to the output variable of ¢. The ¢ instruction itself can be removed. An
example of this conversion is shown in figure 3.13.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 29

entry:

entry:
curProd0 = 1.00;

br brTag if(brTag == bb) goto bb;

bb: else goto bb2;
curProd0 = phi [curProd1, bb], bb: o
[1.00, entry] eurProd0=—phi{eurProdlbbl; [1-00,entry}
.r;IOp(prodoq curProd1) pop(prodQ, curProd0);

i:.).r brTagl if(brTagl == b.b) goto bb;
bb2: else goto bb2;
bb2:

Figure 3.13: Converting ¢ Operator to C

Testing with Multithreaded Software Implementation

We have so far created a C implementation for each stage in the decoupled computational
pipeline. To test the functional equivalence of the synthesized pipeline with the original
function, our flow also creates a multithreaded software implementation using the pthread
library. Each of the generated stages is assigned to a separate thread, running concurrently
with all other stages. Channels connecting different stages are implemented as instantiations
of a special C++ data structure. An templated array is used to represent a FIFO. A channel
can contain multiple arrays when it fans out to more than one consumer threads. Each
array is protected with a mutex and associated with a conditional variable. Blocking reads
and writes are implemented with pthread_cond_wait while pthread_cond_signal wakes up
blocked threads when token/space becomes available.

The original sequential function, which has all its computation replaced by LLVM func-
tion invocations, is examined and converted to a top level wrapper. In addition to allocating
and initializing the channels, this wrapper also initializes each thread with a pointer to a
packaged list of function arguments. After starting each thread, it synchronizes at the end to
ensure all threads are completed. With this setup, we can easily compare the outcome from
calling the original function v.s. the transformed wrapper function, any differences signify
flaws in our pipeline generation flow.

An interesting aspect in the software implementation is the sizing of the FIFOs. In
chapter 4, we will discuss how sizes of the channels affect the behavior of the pipeline.
For our software implementation, as long as each FIFO contains more than one slot, the
execution of the pipeline should produce the same result as the original code. However, a
greater number of slots in the FIFOs would allow each thread to run for longer before going
into wait state.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 30

Generating System with Xilinx Vivado Tools

When synthesizing each C functions using Xilinx’s Vivado HLS, every pointer argument
through which actual memory references occur is converted to a independent memory port.
These are to be connected to the memory subsystem, as will be described later in section 3.6.
Other pointer arguments are used for inter-subgraph communication, they are associated
with pragmas directing the creation of FIFO interfaces. In terms of the scheduling compu-
tation in each function, we ensure the inner loops are all aggressively pipelined, while the
barriers are contained in non-inlinable function such that operations are not reordered with
respect to them.

For the next step, where all the components are to be connected together, we rely on
the FIFO generators provided by Xilinx. Similarly, on-FPGA cache and the interconnect,
which is used to bridge the computational pipeline and the memory subsystem, are also
parametrized Xilinx IPs. Within our flow, TCL script is generated according to the com-
munication requirement of the subgraphs. The construction of the whole pipeline is then
performed in Xilinx Vivado IP Integrator by invoking this TCL script. All the steps involved
in our pipeline generation flow are summarized in figure 3.14.

Infrastructure/Language Used

App. Kernels Clang '
(CIC++) g (Ilvm front end) :l LLVM (:J Verilog
CDFG (Ilvm IR)

Memory Instruction
Partitioning Paritioing
L lSubgraphs (Ilvm IR)
(Pipelining Mem.) CFG
Transactions Simplification L 4
¢ LLVMtoC
r \ \ 4
Customized Data <
Access Mechanism FIFQ Gen:
\ J Vivado HLS
Y

Module integration

Decoupled Computational Pipeline

Figure 3.14: Pipeline Generation Flow

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 31

3.6 Experimental Evaluation

Experiment Setup

To demonstrate the benefits of our approach, processing pipelines are synthesized and phys-
ically implemented on an FPGA. The particular device used for the experiments is the
Zyng-7000 XC77020 FPGA SoC from Xilinx, installed on the ZedBoard evaluation plat-
form. The SoC is divided into two parts: an ARM-processor based processing system (PS),
and the programmable logic (PL). The baseline for our evaluation is the performance of
each software kernel running on the ARM core in the SoC. It is an out of order, dual issue
hard processor running at 667MHz. The Zynq platform also provides two options for the
reconfigurable accelerators to access the main memory subsystem: through the accelerator
coherence port (ACP), or the high performance (HP) port. The former connects to the
snoop control unit in the processing system and thus uses/modifies the processing system’s
on chip cache. The HP port connects directly to the memory controller, which necessitates
the flushing of cache lines by the processor if a cached data structure is accessed by the ac-
celerator. In either case, if memory states are also buffered in the reconfigurable array with
caches, they need to be explicitly pushed to the processing system side after the accelerator
finishes running. As both ACP and HP are slave ports, they provide no mechanisms to
extract data from the FPGA when the ARM processor is running. The interaction between
the generated accelerators and the main pieces of the FPGA SoC is shown in figure 3.15.

Hardware Accelerator #1 Programmable Logic
Decoupled Computational
Pipeline
‘ | \ Hard Hard
Burst req. Cache | | Cache ardware ardware
Accelerator #2 Accelerator #3
gen #1 #2

g il 3

K AXI Interconnect \

- z AN ~
& 9

| | <% Processing System |
i ARM Processor Snoop On-chip 1
{| With Cache K= Control unit <j>‘ Interconnect J

‘ Memory Controller

e e

Board Peripherals

DRAM

Figure 3.15: Implementation of Computational Pipeline in FPGA SoC

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 32

In our study, Vivado HLS, a state-of-the-art high level synthesis tool provided by Xilinx,
is used for generating the conventional accelerator (Con.ACC) as well as the individual
modules in our decoupled computational pipeline (DCP). With the target clock period set
to 8ns during HLS, the tightest timing constraints post place & route implementations
managed to meet range from 111 to 150MHz. All design points shown in this section use
the highest achievable frequency as the actual operating clock frequency.

Benchmark Descriptions

The target applications of our flow are algorithms where control flow and data access patterns
depend on run time data or results of computation. The four irregular kernels listed below
are pushed through our flow:

e Sparse matrix vector (SpMYV) multiply is a computation kernel that has been
studied, transformed and benchmarked many different ways in various research projects.
Our purpose here is not to produce the best-performing SpMV multiply using special
data structure and memory allocation schemes. Rather, we use the most basic and
widely used algorithm and storage format to evaluate how much benefit our flow can
provide. The input matrix is stored in compressed sparse row (CSR) format. Loads
from an index array are performed before numbers can be fetched for the actual floating
point multiply.

e Knapsack is a problem in combinatorial optimization. Given a collection of items,
each with its own weight and value, knapsack tries to select a subset of them such
that the total profit is maximized while the weight limit is not violated. It is a classic
problem which is often solved using dynamic programming, where the memory ad-
dresses accessed come from computation. It is therefore hard to prefetch the needed
data unless the entire dataset fits in on chip buffer.

e Floyd-Warshall takes a graph as input and computes the shortest distances between
any pairs of vertices. Similar to knapsack, it is solved by dynamic programming. Even
though all memory references are regular, i.e. simple functions of the loop indices, the
control flow depends on the results of computation.

e Iterative depth first search is again a widely used graph algorithm. The version
used for our experiment makes use of a stack and operates on pointer based data
structures.

The irregularity in memory accesses and execution paths in these benchmarks makes
it hard for existing HLS tools to directly generate efficient hardware. The conventional
accelerators, when implemented on the FPGA, are also very sensitive to the latency of data
accesses, due to the high ratio of memory operations to computation.

Table 3.2 describes the characteristics of the input data set for each benchmark. As our
approach is primarily used for cases where off-chip communication plays a significant role

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 33

Table 3.2: Input Data Set for the Benchmarks

Benchmark Description of Input Data Total Size of Input Data

SpMV Matrix dimension = 4096 ~ 16 MB
Multiply Density of Matrix = 0.25 -
Weight Limit = 3200 N

Knapsack Number of Items = 200 ~ 5 MB
Floyd- B -

Warshall Number of Nodes = 1024 ~ 8 MB

Depth-First Number of Nodes = 4000 ~ 3 MB

Search Number of Neighbors per Node = 200

in determining the final performance, the input data size are chosen to be much larger than
typical on-FPGA cache. For smaller problems where the entire input data set can be buffered
on chip, the conventional DMA-accelerator approach, as described in [80], would not suffer
from variable data access latency and our decoupled computational pipelines would offer
little advantage.

5.00 [I I
4.50 SpMV Multiply 1 Knapsack g [| Floyd-Warshall I Depth-First Search
4.00 1 RN I
3.50 I ! !
I | I ECon.ACC EDCP
3.00 | - —~-
2.50 I I X
2.00 N I I
1.50 ! ® ' ' Performance on the ARM core
1.00 frrreeeeeenneereessssnnnnana.. X . - | RN o SO 2 S i SR 2 S N
A1 : | I
0.50 3 3
000@5%%;;;:;!55{;%,;;QIQEEE,;;;!EEQE@@@E
’ a o v O a a v I [= = N) - N« N] I [T = R (< T - N N) I a O 0O VA o vow
r QO c £ T QO £ < I T QO c £ T O < < 1 T O c £ T O £ < 1 r QO c c T QO £ <
< 3R <]] <R 3 <RI R <3 R < 3 R < 3R <]]
O O O O | O O O O | O O O O | O O O O
¥ o+ F ¥ + o+ ¥ ¥ F o+ F ¥ ¥ F F ¥
I < T O I < T O I < T O I < T O
<, < < <

Figure 3.16: Performance of Conventional Accelerators and Decoupled Computational
Pipelines

Performance Comparisons

In figure 3.16, performance of the conventional accelerators and decoupled computational
pipelines are compared, all the numbers are normalized to the baseline. Both Con.ACC and
DCPs are supported with different memory subsystem configurations. Direct connections to

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 34

the HP port generally incur the highest memory access latency as the data are not cached
in the PS or the PL. This latency is reduced when ACP is used. To bring the data even
closer to the accelerator, cache IPs can be instantiated on the PL. Our implementations use
Xilinx’s system cache IP, configured to be 64KB and 2 way associative.

In all four benchmarks, accelerators generated directly from software kernels using con-
ventional HLS flow actually result in a performance degradation compare to running the
kernels on the hard processor. The fastest Con.ACC implementations with on-PL caches,
only manage to achieve throughput less than 50% that of the baseline. The superscalar,
out-of-order ARM core is capable of exploiting instruction level parallelism to a good extent
and also has a high performance on-chip cache. The additional parallelism extracted by the
HLS tool is evidently not enough to compensate for the clock frequency advantage the hard
processor core has over the programmable logic and the longer data access latency from the
reconfigurable array.

With our methodology, the computational pipelines generated are rather competitive
against the hard processor, even without a reconfigurable cache. For SpMV multiply, knap-
sack and Floyd-Warshall, when DCPs are directly connected to the PS through the ACP,
the average performance is 2.3 x that of the baseline—representing an 8.4 x gain over the
conventional accelerators. Upon the addition of on-PL caches, the average runtime of DCPs
was further reduced by 18.7%, making the DCPs about 2.9x faster than the baseline.

It is also apparent that our approach has its limitations, as demonstrated by its ineffec-
tiveness in the benchmark depth first search. The kernel performs very little computing but
lots of memory accesses. The use of a stack in DF'S also creates a dependence cycle through
the memory and consequently, the performance is fundamentally limited by the latency of
memory access. Thus there were only small differences between the performance of the
conventional accelerator and the decoupled computational pipeline. Besides, the memory
access pattern does not provide many opportunities for optimizations. As a result, DCP
and Con.ACC achieves performance far below that of the baseline, which has a much higher
clock frequency and a faster cache.

The figure also allows us to examine the effect of different memory configurations on the
overall performance of the design. There is a general trend that the performance improves as
the data get cached closer to the computation engine. For conventional accelerators, the ratio
of the fastest to the slowest design points is, on average, 2.4x. For decoupled computational
pipeline, this ratio is reduced to 1.7x. The relative insensitivity of the DCPs towards data
access latency is rather evident from this difference.

Overall, for kernels suitable for FPGA acceleration, there is a significant performance
advantage in using decoupled computational pipelines. If we compare the best results using
DCP to conventional accelerators, we see improvement of 3.3 to 9.1 times, with an average
of 5.6.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 35

Table 3.3: Resource Usage of Decoupled Computational Pipelines and Conventional Accel-
erators.

ACP ACP + 64KB Cache

Benchmark LUT \ FFs \ BRAM \ DSP | LUT \ FFs \ BRAM \ DSP
Con.ACC | 9873 9116 10 5 7918 6792 21 5
SpMV DCP 8577 8837 10 5 6718 6788 21 5
Multiply | % change | -13.1 -3.1 0 0 -15.2 -0.1 0 0
Con.ACC | 7672 7490 8 6 6573 5885 21 6
Knapsack DCP 8089 8787 8 6 6970 7256 21 6
% change | +54 | +17.3 0 0 +6.0 | +23.3 0 0
Con.ACC | 2491 3528 0 10 3806 | 4629 19 10
Floyd- DCP 7659 7210 0 10 8995 8309 19 10
Warshall | % change | +207.5 | +104.3 0 0 +104.4 | +79.5 0 0
Con.ACC | 4810 4929 4 0 4931 4594 21 0
DFS DCP 8509 7813 4 0 7436 6298 21 0
% change | +76.9 | +58.5 0 0 +50.8 | +37.1 0 0

Area comparison

To quantify the impact of our proposed methodology on area, we have compared the FPGA
resource usage of conventional accelerators and the decoupled computational pipelines. Ta-
ble 3.3 shows the results, where each accelerator is complemented with two different memory
subsystem configurations.

The difference in area between DCPs and Con.ACCs is effected by two factors. There
are additional costs associated with the communication primitives and FIFOs for the DCP
implementations. On the other hand, the original programs are partitioned into subgraphs
and separately turned into hardware in DCPs, which sometimes can reduce the depth of the
internal pipeline in the processing modules, resulting in area savings. The overall change
therefore depends on which factor plays a larger role, and is ultimately application specific.

3.7 Discussion and Future Work

The experimental results have validated the approach we have proposed and implemented.
Decoupling of execution between different parts of the control dataflow graph can yield
significant benefits. With different parts of the graph each having their own controller,
non-statically schedulable stalls get isolated and more opportunities for optimization can be
exploited. Unfortunately, these benefits do not come for free. We observed significant area
increase when generating our decoupled computational pipeline. How to strike the right
balance between performance gain and the area cost by devising different ways to partition
the CDFG is an interesting dimension for future exploration.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 36

The algorithm we have implemented in this chapter is rather simplistic. It is also very ag-
gressive in that all separable memory accesses are assigned to a new partition. Furthermore,
as we perform topological sort on the nodes before partitioning them, many edges might be
cut when a new subgraph is created, especially when the dependencies between instructions
are relatively denser. Therefore, as the input kernels increase in size, our algorithm may
result in pipelines with prohibitively high number of communication channels. The opti-
mization we described in section 3.4 partially addresses this issue, but it does not reduce
the total number of subgraphs. Similarly, it is possible to model the instruction partitioning
step as a multiterminal cut problem [118], which is an NP-hard problem with a few known
approximation algorithms, but the number of subgraphs can still get large, incurring high
area overhead.

One possible direction for future exploration is to generalize our approach by incorpo-
rating, as a parameter, the set of nodes which must be decoupled from each other. It would
then become possible to optimize for the right number of subgraphs, each centered around
a group of memory access nodes or strongly connected components. It is of course a huge
search space, so we might need to rely on randomized algorithms such as simulated annealing
to search towards a good solution. A challenge there is to come up with a quick estima-
tor of benefit from an instruction partitioning. Unlike the cost of communication channels
introduced between separated instruction groups, which can be easily annotated into the
edges of the original CDFG, the performance gain of decoupling instruction nodes is harder
to model. Empirically, certain quantities can be precomputed or profiled to assist the es-
timation process. The initiation intervals associated with a strongly connected component
can be used to estimate how fast an inner loop memory access node, if being placed in the
same partition, can initiate new requests. Meanwhile, if more locality can be observed from
the profiled memory access pattern of a particular load/store instruction, the performance
hit it incurs on its partition is likely to be smaller, due to a lower cache miss rate. To the
first order, decoupling nodes exhibiting strong locality into separate partitions has a small
performance benefit while isolating nodes with completely random access patterns can bring
about significant gain. In our motivating example, for instance, isolating the data fetch
(assumed to target random addresses) is more meaningful than separating floating point
multiply and the sequential write at the end of the inner loop. On the other hand, off-chip
communication bandwidth also imposes an upper bound on how much concurrent data re-
quests from the generated pipeline can be accommodated. After a certain point, having more
partitions/subgraphs each firing off memory requests independently into a saturated channel
would not increase the overall throughput of the computational pipeline. To integrate all
these effects into a proper formulation, more in-depth investigation is required to determine
how to best link these quantities with each other and associate appropriate coefficients.

CHAPTER 3. SYNTHESIS OF DECOUPLED COMPUTATIONAL PIPELINE ON
FPGAS 37

Algorithm 2 Control Flow Simplification

1: procedure SIMPLIFYCFG

2 keepers < {}

3 keeperQueue < BB omm U BBeomp

4: while keeperQueue # () do

5: curKeeper <— keeperQueue.pop()

6 keepers < keepers U curKeeper

7 allPredecessors < getPredecessors(curKeeper)

8 for all curPredecessor € allPredecessors do

9 > look for divergent points from predecessors

10: backwardDFS(curKeeper, curKeeper, curPredecessor, keeperQueue)
11: end for
12: end while

13: end procedure
14: procedure BACKWARDDF S(curKeeper, prevStep, curPredecessor, keeperQueue)

15: if curPredecessor ¢ BB, then return

16: end if

17: if lcurKeeper.postDominate(curPredecessor) then

18: keeperQueue.push_back(curPredecessor)

19: remapBranch(curPredecessor, prevStep, curKeeper)
20: curKeeper <— curPredecessor

21: end if

22: allPredecessors <— getPredecessors(curPredecessor)

23: for all nextPredecessor € allPredecessors do

24: backwardDFS(curKeeper, curPredecessor, nextPredecessor, keeperQueue)
25: end for

26: end procedure

27: procedure REMAPBRANCH (predecessor, prevTarget, realTarget)
28: branchlnst = predecessor.getBranchInst()

29: branchDstBBs = branchInst.get AllSuccessors()

30: branchDstInd < 0

31: for all curDstBB € branchDstBBs do

32: if curDstBB = prevTarget then

33: > make the destination pointed to by branchDstInd realTarget
34: predecessor.setSuccessor(branchDstInd, realTarget)

35: end if

36: branchDstInd < branchDstInd + 1

37: end for
38: end procedure

38

Chapter 4

Decoupled Computational Pipeline as
a Process Network

When multiple processes communicate through finite communication channels, deadlocks
may happen. The pipeline of subgraphs we have generated can be seen as a network of
communicating processes, and thus may become deadlocked under certain circumstances.
To facilitate the analysis of our pipeline, we relate it to a different model of computation,
Kahn process network (KPN), which provides the theoretical context for looking at these
issues. We develop a systematic approach to find solutions ensuring liveness and correctness
of our pipeline.

The KPN is an inherently parallel model of computation where processes communicate
with one another through unbounded FIFO channels. The processes cannot test for avail-
ability of data tokens in the channels without consuming them. If a channel is empty the
process blocks as it reads from the channel. Writing to the FIFOs, however, is non-blocking.
In addition, each FIFO can only be consumed by a single process, and be written to by
a single process. The KPN model is deterministic in the sense that the scheduling of the
process execution does not alter the final results. This gives great flexibility in implement-
ing/controlling individual processes. By relating our pipeline to KPN, or more precisely,
observing its deviation from a pure KPN, we can understand the freedom we have and the
constraints we are subjected to in our synthesis flow, where the correctness and liveness of
the final implementation is required. Note the required absence of deadlock does not apply
to the eventual state of our pipeline, when the execution finishes. As mentioned in sec-
tion 3.3, the execution of the pipeline completes when all subgraphs are either done running
or waiting for inputs, which is a form of deadlock. This is expected and not the subject of
our discussion in this chapter.

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 39

4.1 Memory and Fanout Process

A characteristic of KPN is that all data exchange are performed over the FIFOs and the
notion of a shared global memory does not exist in the model. Previous works converting
sequential programs to process networks [75][76] were able to transform the original memory
operations to explicit data IOs at the boundary of the generated hardware as the targeted
kernels are highly regular. In our case however, the synthesized pipelines may have irregular
memory access patterns and are often used as accelerators along side a general purpose
processor, the memory model needs to be preserved. It is therefore necessary to conceptually
translate the behavior of processes accessing memory to that of inter-process communication.

In our system, the memory subsystem, including the associated interconnects, exposes
multiple input and output ports to the other hardware modules. Just like other processes
in the network, through these ports, it consumes and produces tokens. In the case of load
operations, addresses generated by the other processes are read by the memory, and the
corresponding data are returned. For store operations, on the other hand, the memory
consumes an extra data token while returning an acknowledge token. This is certainly not
sufficient to allow us to model it as a conventional process in the network. In particular,
while a normal process blocks when reading from an empty channel, the absence of requests
at one input port never prevents the memory from serving requests from other ports. In
other words, it can choose which port to read depending on the availability of input tokens.
In YAPI [119], a “select” function is added as an extension to the Kahn process network
to support non-deterministic events. The behavior of the shared memory subsystem can be
accommodated with this primitive as well.

With the introduction of “select”, the semantics of the original KPN is violated. The
memory subsystem can produce different output sequences depending on the relative timing
of appearance of token at its different input ports. This implies the scheduling of other
processes would have an effect on the final result of the execution, the system is no longer
deterministic. However, as described in section 3.2, we partitioned the memory address space
and added special memory-dependency edges between instructions. Consequently, the timing
of memory requests coming from the normal processes are coordinated by the sending and
receiving of special tokens among themselves. This added constraint effectively eliminated
any input token sequences inconsistent with the behavior of the original sequential program,
while presenting the deviant memory “process” a strict subset of the possible inputs. With
the input streams across different ports adhere to the read-after-write, write-after-read and
write-after-write requirements encoded in the memory access instructions of the original
program, the system becomes deterministic again.

In the denotational semantics of KPN, each process is defined as a function mapping
potentially infinite input streams to output streams, independent of the relative timing
of tokens in the streams. After eliminating the possibility of the conventional processes
generating request sequences which violates memory dependency constraints, for all practical
purposes, the memory subsystem can be seen as exactly that. We have visualize the concept
of this memory process in figure 4.1. For the Select operation in the process, at any point

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 40

Process 1

' Push(addrQ1,&(datalind])) Memory Process

dataA = datal[ind] ‘

pop(dataQl,dataA) While(1){

(addrQ,dataQ) = Select (...)
Pop(addrQ, addrV)

data = *addrVv
Push(dataQ, data)

1

Process 2

‘ Push(&(datal[ind]), addrQ2)

dataB = data2[ind]
pop(dataQ2,dataB) %

Figure 4.1: Modeling Memory Access as Inter-process Communication

in time, the selectable incoming requests can be served in any order without causing any
difference in the final result.

Another requirement for KPN is the singularity of producers and consumers for each
channel. However, in a typical program represented in single static assignment form, value
defined by an instruction can be used by multiple consumer instructions. To make it com-
patible with the KPN model, explicit fanout processes are added. For every 1-to-n def-use
relationship in the SSA, a fanout process with one input and n outputs is added. The pro-
cess duplicates every input token n times and sends one to each of the consumer processes.
As shown in figure 4.2, a fanout process, just like other processes created from partitioning
CDFGs, consists of a sequence of instructions, some of which consume tokens while others
produce and transmit tokens. With the addition of these processes all the channels in the
network are one to one and we have a conceptualization of the entire computation described
by the original program in terms of a KPN, with the addition of a more flexible memory
“process”.

4.2 Bounded Execution of the Process Network

In real implementations of a KPN; it is impossible to have unbounded communication FIFOs
between processes. In [120], KPNs are categorized into strictly bounded, bounded and
unbounded ones. A KPN is strictly bounded if and only if any execution of the network
requires bounded space. It is bounded if and only if there are some execution requiring
bounded space while it is unbounded if and only if any execution requires unbounded space.
Methods to find bounds for communication channels in KPNs were discussed in [120][121].
In general, whether a KPN is bounded is undecidable [122], but for our process networks,
which are generated from sequential programs expressed in single static assignment form, we

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 41

Original Program

prod =inl * in2
5 Pop(prodQ1, prod)

suml = prod +in3 P)
l‘/z*/o,?l.,7 suml =prod +in3
*prodPtr = prod g

Process 2

prod =in1 * in2 fWhlle(l)

{
push(prodQ, prod) " pop(prodQ, prodv)

i push(prodQ1,prodV)
! push(prodQ2,prodV)

pop(prodQ2, prod)

N

*prodPtr = prod
Fanout Process Process 3

Process 1

Process Network with Fanout Process

Figure 4.2: Addition of Fanout Process while Partitioning

can analyze the boundedness of the FIFO channels in various scenarios. Note here we try to
deduce properties applicable for networks created by any arbitrary partitioning algorithms
applied to the original CDFG. Thus they also apply to the pipeline generated using method
outlined in chapter 3, which is just one specific instance of all possible KPNs producible
from a sequential program.

More specifically, given a sequential program .S in single static assignment form, we can
partition the program into a process network N, consisted of a set of normal processes P, a
set of fanout processes F', and a memory process M. Also, as mentioned in chapter 3, if an
instruction is assigned to p and it is taking in tokens from instructions in other processes,
a placeholder instruction (and its owner basic block) is instantiated local to p, whose sole
purpose is to receive the actual token from the producer/fanout process. For M, it can be
seen as executing a mirroring of each of the memory access instructions distributed among
P, producing tokens for the corresponding p to consume.

Definition Let I be the set of instructions in the original S. For ¢ € I, each execution of
i is defined as a instruction instance ()i, where k € Z. In p € P, the set of instructions is
IP. Within I?, each “push” and “pop” primitive added is associated with one 7 in 9, i.e. the
instruction generating the tokens to be transmitted. Every execution of these pusn” €pusn 1P
O popt? €pop IP is defined as (r)pusni? O (k)popt”, corresponding to (7. Similarly, for all other
instructions in I?, denoted as ,IP, each ,i¥ is linked to a specific ¢ and its instances are
denoted as (1),”, also associated with ().

Note for each (4)pusni?, there can be one or more (4 in p’ where p’ € P\ p. They are
connected either directly or through f; € F.

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 42

Lemma 1 Any instance of network N is bounded with FIFO space required for each channel
=1.

To prove Lemma 1, we can constructively create an execution schedule A which does not
overflow the FIFOs of size 1. This can be performed by following the original program order
in S. Whenever a instruction instance i, of i is executed in S, we find its associated set of
instruction instances in all of P, distributed among one or more processes. For each element
(k)J in this set:

o If (k)j g(kz)push P U(k)pop 1P, we can just schedule (k)j'

o If (3)7 €mpusn 1P, 1.e. this is a “producer” instruction, ()7 is scheduled and then the
instructions in f; are scheduled (assuming there is fanout), followed by all the other
“consumer” instruction instances (z)7’ € x)pop " p e P\p.

e If (;)j accesses memory, then the instructions in M is immediately scheduled to serve
the request before everything else.

o If (1)J Ek)pop ¥, do not schedule it directly, wait for the producer instruction and f; to
be scheduled.

In essence, for every instruction executed in the original program, we schedule the process
network’s instructions derived from it in H. If these instructions are involved in communi-
cation, the source of the data tokens is scheduled first, immediately followed by the token
sinks. It should be apparent that only one slot is needed in each communication channel for
the process network to execute, since the produced tokens are promptly consumed and no
backlog of tokens would occur in the FIFOs.

Definition Let the schedule of instructions in each p € PUF be G(p), we say G(p) is locally
consistent with H if and only if ()7 <) 77 in H = ()7’ <) J" in G(p) , V5, 5" € I?,
x,y € Z. Additionally, if we have a schedule H, for a set of instruction instances which can
belong to different processes, we say H, is globally consistent with H if and only if ()j" <, 7"
in H = () <@ J" in Hy where z,y € Z,j' € I*', j” € [, pl e PUF,p2 € PUF.

It should be apparent that if instances of a producer/consumer instruction pair around
a FIFO are globally consistent to H, we do not need to have FIFOs with size greater one for
our execution. Meanwhile, as H is derived from the original program order of the sequential
program S, all locally consistent schedules G(p) do not violate data dependencies imposed
by S.

4.3 Artificial Deadlock in Process Network

In actual implementation of KPN where FIFOs have fixed sizes, blocking writes are intro-
duced so that processes block when trying to write to a full FIFO. This induces artificial

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 43

deadlock as described in [121]. When an artificial deadlock occurs, a circular dependency is
formed among processes, none of whom can make progress. At least one of the processes in
the cycle is blocked on write — therefore the deadlock is “artificially” introduced by the size
limit of FIFOs. Examples of this is shown in figure 4.3.

Process 1: Process 2:

int tmp0, tmp1; int tmp0, tmp1;

int tmp2, tmp 3; int tmp2, tmp 3;
for(int i=0; i<100; i++) for(int j=0; j<100; j++)
{ {

push(Q1, tmp0);

) push(Q2, tmp2);
push(QL, tmpl); & & %

push(Q2, tmp3);

pop(Q2, tmp2); o pop(Q1, tmp0);

pop(Q2, tmp3); pop(Q1, tmpl);

} }...

Given Q1 and Q2 both have only ONE buffer slot

° process 1 cannot push tmp1 until tmp0 is popped by process 2

° process 2 cannot pop tmpO0 until tmp3 is pushed

° process 2 cannot push tmp3 until tmp2 is popped by process 1, which
happens after tmp1 is pushed — we have a circular dependency

If Q1 and Q2 has infinite size, no circular dependency and no artificial
deadlock occurs

Figure 4.3: Limited FIFO Size Causes Artificial Deadlock

Being a network of sequential processes and memory connected together by bounded
FIFOs, the computational pipeline synthesized may experience artificial deadlocks as well.
The interaction between the sizing of the FIFOs and the occurrence of deadlocks needs to
be analyzed to ensure the liveness of our pipeline.

Lemma 2 Assuming all FIFOs are of size one and blocking write, as long as G(p),Vp €
P UF are locally consistent with H, artifictal deadlock will not occur in N.

Assume there is an artificial deadlock, we can go around the dependency cycle and
examine the blocked processes P, C P U F'. For a process p, to be blocked at instruction
instance)7, (k)J €wpush 17 Ukypop 1P is either reading from an empty FIFO, or writing
to a full FIFO. For the former case, the FIFO is empty because the producer of the token

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 44

&) Eypush I ? cannot execute, which indicates an earlier instruction instance myl in G (p') is
blocked. For the later case, the FIFO is full because the consumer (x—1)j" €x—1)pop I?" of the
earlier token produced by (4—1)pusnj cannot execute, which also indicates an earlier instruction
in G(p”) is blocked. Apply this reasoning recursively around the circle of dependencies, we
have a chain of instructions instances ()j >@m) [= ... =@) J OT ()] =@-1) J" > - =@ J
in H, as each pair in the chain comes from a schedule locally or globally consistent with H.
This chain is self-contradictory and therefore the scenario for artificial deadlock can never
occur.

Note each memory operation is just one instruction in G(p), the access is therefore
modeled as an atomic action — the sending of the address is immediately followed by the
receiving of response, both of which happen in the same process p. The memory process
thus always produces response tokens some processes are waiting to consume, precluding
the possibility of it being blocked on write. It therefore will not be part of the dependency
cycle causing the deadlock. However, when we optimize the memory access mechanism by
pipelining the requests, this may no longer be the case. We will elaborate the implication of
this change later in section 4.4.

As each G(p),p € PUF is locally consistent with H, which is derived from the program
order of the original S, we can conclude that if each of the generated subgraph is executed
strictly according to the original program order, we will have a pipeline free from artificial
deadlock. This will guarantee, for instance, when processors are used as the execution
substrate, the network will produce the correct result as each process is executed according
to program order. On the other hand, when HLS is used to create hardware accelerators from
them, this guarantee may not hold anymore since aggressive parallelization and reordering
of instructions would violate the consistency between G(p) and S. We thus need to examine
the effect of instruction reordering on the liveness of our pipeline.

4.4 Liveness in HLS-generated Computational
Pipeline

Figure 4.4 shows a simple example of a otherwise deadlock free network becomes problematic
when the instructions are statically reordered in individual processes by HLS.

Figure 4.4(a) shows how the example sequential program is decoupled into two inde-
pendently running processes. Due to the size limit of the FIFOs, which is equal to 1 here,
the execution of the producer instruction (“push”) is dependent on the completion of the
previous instance of the consumer instruction (“pop”). When both Process 1 and Process
2 are running according to the original program order, there is no cycle of dependency, and
therefore no deadlocks during the execution of the network, as illustrated by 4.4(b).

However, in 4.4(c), a common HLS technique, loop pipelining, is applied to Process 1,
where iterations of the loop are aggressively overlapped. Every cycle, a new iteration is
started. Because of the long latency of load from infi/ and the multiplication, the sending of

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS

NETWORK 45
Original Program Process 1 Process 2
for(i=0;i<=M;i++) for(i=0;i<=M;i++)
for(i=0;i<=Mji++) | |{ {
{ o rl = in[il; '—>r1Q pop(r1Q, ri);
=in[i]; push(rlQ, rl); pop(r2Q, r2);

r2 = rl*r0; p2=r 150, = out2[i] =r2;

out2[i] =r2; push(r2Q, r2); r2Q }
} }

Process 1 Process 2
<orl =in[i] ©pop(rlQ, r1) %
. (o)pUSh(rlQ 1) <1 7 gpop(r2Q,r2)
L @r2=r1*r0 oout2[il=r2 ¥
: (O)PUSh(FZQ r2)«| wpop(rlQ, r1) v | | —» DepD: Data dependency
L wrl=inli @pop(r2Q, r2)
};(push(rlQ r1) 47 @out2[i] =r2 ¥ DepF: Dependency due to FIFO
qr2= ri*r0 [T size limit
. (ypush(r2Q, r2
0 (1)p |(n[|]Q) R DepS: Dependency due to static
4@ o o intra- -
Y push(rlQ 1) No Reordering in intra-process scheduling
by Processes

No cycle of dependence in the schedule (b)

Process 1 Process 2
« (orL = in(i] ©Pop(rlQ, r1) %
- wrl =in[i] oPop(r2Q,r2) %
: @rl=in[i] r2 = r1*r0 gpush(rlQ, r1) oout2il=r2 ¥
: @rl =in[i] (1yr2 = r1*r0 (3push(riQ, r1) "l wpop(riq, r1) ¥
’i @rl =in[i] r2 = r1*r0 ppush(rlQ, rl) =<~ / @wpop(r2Q,r2)
: s)F1 =in[i] 3r2 = r1*r0 3push(rlQ, rl) gpush(r2Q, r2) ()out2[i] = r2 '
Lerl =in[i] 4r2 = r1*r0 4push(rlQ, r1) gpush(r2qQ, r2) ;

I
Cycle for Artificial Deadlock |
ycle for Artificial Deadloc I_O)push(rZQ 2)« o pop(rZQ r2)|

(c)

Figure 4.4: a) partitioning of the original program into two processes; b) each process ex-
ecutes according to the program order; c) instructions in process 1 are reordered statically

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 46

the first 72 token, (o)push(r2Q,r2), is scheduled after many instruction invocations for later
iterations. It can not execute until after (9)push(rlQ,rl), whose writing to the FIFO r1Q
cannot happen unless the previous token has been consumed by 1)pop(rlQ,rl). Because
of the scheduling in process 2, this read from r1Q occurs after ypop(r2Q,r2), which can-
not complete unless (o)push(r2Q,r2) can send the token. An artificial deadlock is therefore
created.

In this particular example, if the size of r1Q is increased from 1 to 2, then the execution
of (9ypush(r1Q,rl) would be dependent on (ypop(r1Q,rl) instead of (1ypop(rlQ,rl). The
channel can now buffer the tokens produced by (g)push(rlQ,r1) and (ypush(rlQ,rl) before
(0)Pop(r1Q,rl) needs to be invoked to create empty slot. With this increase in buffer space,
the cycle of dependence is broken as there will be no path of dependence from () pop(r1Q,rl)
to (oypush(rlQ,rl) The deadlock no longer exists.

Indeed, this is the classic approach for resolving artificial deadlock [120]. When artificial
deadlock is detected, the process which is write blocked is found, the full FIFO it tries to
write to is given more capacity. However, in a network implemented in hardware, the FIFO
size cannot be easily increased. To determine the needed buffer space in the channels a
priori, simulations are sometimes used [123][124]. It relies on using representative dataset as
input and for certain type of problems, simulation results may not provide any guarantee,
especially if the control flow is runtime data dependent. In this section, we want to analyze
the interaction between FIFO sizing and intra-process instruction scheduling, so we can
better understand their joint effect on the liveness of the process network.

Artificial Deadlock Detection without Simulation

In our networks derived from sequential programs, given each process’ schedule and each
FIFO’s size, it is possible to determine if a potential artificial deadlock can arise without
running simulation. As demonstrated in figure 4.4, we can add DepS edges between instruc-
tion instances belonging to the same process, and DepF edges between producer/consumer
instruction instances writing/reading from the same FIFO. Note for a FIFO of size s, DepF
edges are added between (y)pusnj and (x_gpopJ to indicate that the producer instruction
instance is disabled until the consumer instruction instance is invoked. The graph thus
obtained can be checked for cycles, which indicate the occurrence of artificial deadlock.
The schedule for each process may contain potentially infinite instruction instances, re-
sulting in a graph with infinite number of nodes, which makes it impossible to guarantee the
absence of artificial deadlock. However, when we use HLS tool to map each process, a short,
repeatable schedule is generated and we can represent the dependencies between instruction
instances using a manageable sized graph. Figure 4.5 shows a more concise representation of
the schedule we have in figure 4.4(c). Various dependency edges are associated with weights
to represent the difference between the subscripts of the pair of instruction instances. For
instance, as (2ypush(rlQ, rl) is scheduled before (oypushr2Q, 12 in process 1, the edge from
pushr2Q, 12 to push(rlQ, rl) carries a weight of 2, meaning the occurrence of (,)push(r1Q,
r1) depends on the completion of (,;9)push(rlQ, rl). Similarly, when the channel between

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 47

push(rlQ, rl) in process 1 and pop(rlQ, rl) in process 2 is of size one, (;push(rlQ, rl)
depends on the completion of ,_1pop(rlQ, rl), which is represented by the —1 weight of
the edge representing this dependency. The edges denoting data dependencies between pro-
cesses are always of weight 0, as the end points are both associated to the same instruction
instance. This graph is named precedence graph as it captures the necessary ordering of
instruction instances, allowing for the analysis of deadlocks.

rocess (it n-n i [
P 1 Process 2 yc|e with Non- egative Welght
Push(rlQ, r)—4——-—=

> pop(riQq,rl),| ————————— — — — -
p//p()A‘, A puskm(rlQ, rl) T) pop(rlQ, r1) :

i i l,’_l On I 2 ‘ v 1

2 -4 o l
| v | -Lsipop(r2q,r2) | | Push(2Q.12) < pop(2Q,12) |

push(r2Q, r2)<—— 0
5.7 55 0. Sum of edge weights =0

Figure 4.5: Deadlock Detection using Graph with Weighted Edge

To shrink the size of the precedence graph, we have taken advantage of the transitive
property of dependencies to reduce the number of the DepS edges in the graph. Also, as
only the scheduling of producer/consumer instructions matters for deadlock detection, we
have trimmed the graph by omitting any DepS edges having end point j €pusn 1P Upop 17.
In figure 4.5, for instance, out2[i| is not included and all its incoming edges are redirected to
the nearest communication instructions.

Now, if a non-negatively weighted cycle is found within the precedence graph, we have
an artificial deadlock. A cycle in the graph means we have an instruction instance ,j, whose
occurrence depends on the completion of ,,,,7, w being the weight of the cycle. With w being
greater or equal to zero, ,j cannot happen until itself or a later instance happens — we have
a deadlock. The computation to find deadlocks may potentially be expensive. In the worst
case, the number of simple cycles in the graph can be exponential in |V|, the number of nodes
in the graph. Practically, however, the number of nodes involved are approximately the same
as the number of channels needed, and the graph is rather sparse in the connectivity between
these nodes. Methods such as [125] can be used for efficient enumeration of the cycles and
the subsequent identification of the deadlocks.

Resolving the deadlock involves choosing one of the DepF' edges in the cycle and add
enough slots (making the weight more negative), such that the sum of the edge weights
becomes negative. For one particular cycle, the DepF' edge whose channel has the smallest
width can be selected, so the cost of adding the extra slots is minimized. Of course, as
multiple non-negatively weighted cycles can be present simultaneously, this heuristic does
not necessarily produce the globally optimal solution, though it suffices for our use cases.

It is worth noting that the weights assigned to edges correspond to the largest differences
in instance subscripts, i.e. the furthest an instruction is running ahead of its dependents.

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS

NETWORK 48

In the presence of branches, it is possible that an instruction does not get executed every
loop iteration. The subscripts assumed by the instruction instances do not take this into
account. In figure 4.6 for instance, (2)push(r2Q, r2) gets executed despite (1)push(r2Q, r2)
never appearing in the schedule of process 1. Thus under our scheme, the subscripts assigned
to instruction instances are just the iteration numbers of the enclosing loop in the original
program. Note in the literature about loop dependency analysis [116], the term iteration
number is generally associated with analyzable loop index, with bounds and regular change
steps. Here, however, we just use the term to represent the simple ordering of iterations,
with or without actual loop indices.

Original Program Process 1 Process 2
for(i=0;i<=M;i++) for(i=0;i<=M;i++) for(i=0;i<=M;i++)
—Y,Ix=ivL, { {

{rl _ in[il: rl =inli]; ?5 pop(rlQ, r1);
if(r1 == 6) push(riQ, rl); if(rl == 0)

'{ = if(rl == 0) =2

r
2Q, r2);
F2 = r1*r0; { oy pop(r: Qr);
2[i] = r2; r2 = r1*r0; out2[i] =r2;
}ou H=re push(r2Q, r2); }
) ! }
!
.

ol =in[i]

(1)I’1 = |n[|]

2)rl =in[i] @cmp(r1,0) ©opush(rlQ, r1)

3r1 = in[i] 1ycmp(r1,0) r2 = r1*r0 ypush(rlQ, r1)

@l =in[i] 2cmp(r1,0) 2push(rlQ, rl)

5r1 = in[i] 3cmp(r1,0) 3r2 = r1*r0 ;3push(rlQ, rl)

)1 =in[i] @cmp(rl,0) 3r2 = r1*r0 4push(rlQ, r1) gpush(r2Q, r2)
(7r1 =in[i] 55cmp(r1,0) 4r2 = r1*r0 5push(rlQ, rl)

gl =in[i] cmp(rl,0) s5r2 = r1*r0 g push(rlQ, r1) zpush(r2Q, r2)

©0cmp(r1,0): comparison evaluates to equal
(ycmp(r1,0): comparison evaluates to not equal

Figure 4.6: Execution Schedules and Subscript Assignment in the Presence of Branches

The method we have formulated so far can be easily applied for deadlock detection and
resolution of a single level loop. To generalize this method for loop nests of multiple levels,
we associate each instruction instance with a vector of iteration numbers, with the earlier
elements corresponding to the outer loops. Subsequently, for the weight assigned to each
of the edges, instead of a single number, a vector is used. The number of elements in the

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS

NETWORK
Original Program Process 1 Process 2
for(j=0;j<20;j++) ‘;0r(j=0ij<2°ij++) for(j=0;j<20;j++)
{ : {
r0 = a[j]+b; 18~ alil+b, r0Q pop(r0Q, r0)
for(i=0;i<=M;i++) push(rO.Q, rO)' = for(i=0;i<=M;i++)
{ for(i=0;i<=M;i++) - {
.

rl=in[i]; j> { AL = pop(rlQ,rl);
r2 =rl*r0; (= anll; 2 pop(r2Q,r2);
out2[i] =r2; push(rlQ, rl); out2[i] = r2;

} r2 = r1*ro; }

outl[j] = ri; push(r2Q, r2);
) } }

}
= &

Process 1 Process 2
<0010 = afj]+b (0,0P0op(roQ,ro)%
\l,o o)push(r0Q, r0) 00Pop(riQ,ri)%
2 oorl =inli] 0,0POP(r2Q,r2)x
: o,rl =in[i] poout2=r2 %
: 021 =in[ilr2 = r1*r0ypush(riQ, rl) (02)pop(riQ,ri)x
: 03)rL = infiljoyr2 = r1*r0 1push(r1Q, rl) ©0,1)pop(r2Q, r2)>’
: 0,41 =in[il2r2 = r1*r0push(rlQ, rl) £ oqout2=r2 °
'4(0 4l =in[ilj03r2 = r1*r0 3push(rlQ, r1)eepush(r2Q, r2) ¥
051 =in[iljo,4r2 = r1*r0 4push(rlQ, rl) ypush(r2Q, r2) ,\

(1,o)p0p(r00~,r0)>f
(1,o>pUSh(r0Q,r0) wopop(riQ,rl)’
Schedules of Instruction Instances
0,0
-push(r0Q,r0) —*—t:::::::—,)i—::ff pop(roQ,r0) -~
A (-1,0) A .
(-L,m) (0,0) 0.0 (0,0) }
‘. push(rlQ rl) < ! pop(rlQ rl) ‘;
i (0,-1 1 M
\ (0 -4) (oz) (0,-1) (00)(M)
' %- pop(r2Q,r2) «-
push(rZQ r2) 0,-1)
_ _ _ _ _ _____ Precedence Graph
A (0,-1) |
| ?(;JSZ)(HQ r1) = pop((cl;lcll)rl) I Weight of Cycle : (0,0)
|_push(r2Q, r2) <20 (0,0) 00p(r2Q,r2) E - Artificial Deadlock

Figure 4.7: Multi-level Loop Nest Deadlock Detection

49

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 50

vector corresponds to the number of levels in the loop nest. An example of this is shown
in figure 4.7, where a two level loop nest is decoupled into two processes and independently
scheduled.

The vector weights assigned to the edges between instructions of the same level in the
loop nest are really the same as in the single level loop example, except the padding of zeros.
A more interesting case is the DepS edge from push(r0Q,r0) to push(r2Q,r2), which goes
from an outer loop instruction to an inner loop instruction. The last components of the
subscript vectors of push(r0Q,r0) instances are always 0 as the instruction does not execute
in the innermost loop. The subscript vectors of push(r2Q,r2) instances, however, can take a
value up to M for its right most element, as the inner most loop has an iteration count of
M. Thus the weight (—1, M) means that only after the Mth occurrence of push(r2Q,r2) in
the previous iteration of the outer loop, another instance of push(r0Q,r0) can be scheduled
within process 1.

In this enhanced precedence graph, every cycle in the graph now has a weight sum which
is also a vector. A deadlock is manifested as a cycle with weight being the zero vector (0) or
a vector whose first non-zero element (leading element) is positive. Similar to the case when
we have scalar weights, these weight vectors indicate an instruction instance depending on
itself or a later instance in the execution trace, and thus a deadlock. The deadlocks can
also be resolved by finding the DepF edges, whose change of capacity makes all the cycles’
weights to have negative leading element.

Definition When an artificial deadlock occurs, a cycle of dependency between instruction
instances is formed. Define this cycle as C,. Each instruction instance in C,, corresponds to
one instruction in the precedence graph. Define the cycle formed in the precedence graph
by the corresponding instructions as Cy, and the set of instructions as V.

As mentioned before, non-communicating instructions/instruction instances can be omit-
ted in the graph without affecting the deadlock analysis, thus V' C,,sn 1P Upep IP. As the
nodes in C, are instantiations of nodes in C'y, the edges in C), are also instantiations of edges
in C'y. The weights of these edges are the differences between the subscript vectors of the
end-points in C,, which are always lexicographically smaller or equal to the weights carried
by edges in Cy .

Lemma 3 If there is an artificial deadlock in the network, there will be a cycle in the prece-
dence graph whose sum of edges is either 0 or a vector with positive leading element.

We can take any point in C,, and go around the cycle C, to get a sequence Xl)Vl, (XQ)V2
)V where VIV e V, VI =V"and X; = X, = X1+ (Xo — X1) + (X3 — Xo)...(X,, —
X,_1). The sum of edges in C,, = (X — X1) + (X3 — X3)...(X,, — X,_1) =0 as X; = X,,.
If no two elements in (', map to the same element in V| then the sum of edges in C, is
equal to or smaller than the sum of edges in C'y,, which would be zero or lexicographically
greater — we have a cycle in the weighted graph whose sum of edges is 0 or a vector with
positive leading element.

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK o1

Otherwise, we can have (), containing two instruction instances y,U,y, U mapping to
the same element U € V, and instruction instances on the path between y,U,y, U are all
instances of unique instructions in W; C V \ U. Now we can construct a cycle Cy, of
instructions using Wy, and the weight of this cycle is the same or greater than the weight of
the path between y1U and yoU. This is essentially the case we have just discussed, where
only single instances of the instructions are present in a cycle. We can decompose C, further,
and obtain more of these cycles, Cy,, Cy,...Cywy,, the sum of their respective weights must
be equal to or greater then the weight of C,. Since weight of C,, is 0, these cycles can either
all be of weight 0, or at least one of them will have positive leading element. This process is
illustrated in figure 4.8 for a single level loop. In essence, if a cycle (of instruction instances)
in a graph carries a weight of 0, then the weight of one of its component simple cycles must
have a positive leading element /be 0. The weights of the simple cycles here provide lower
bounds for the weights of cycles of instructions in the precedence graph.

Artificial Precedence
Deadlock Graph
Process 1 Process 2
push(rlQrif———& wPOP(r1Qrl)y push(r'zrgcris;s i# Process 2
gzz)push(rlQ rl) %MOOIO(FZQ r2)>: 1 , :inpop(rl(l,rl)u\
wePUsh(rlQrifer——f @3 =rlir2 i1 3, NG =0
l](]b’déﬁgrlQ ik / @POP(r1Qrl) ! \usm%;‘;pop(rzcz,rz)l
wpush(r2Q,r2)% \ @pop(r2Qr2) / LE , 1
\oPUSh(r2Q,r2)4 @r3=ri+r2 o @
\\ & 3pop(rlQ, rl):’

v Cycle weight =1
push(r2Q,r2) 3, push(riQ,ril)

(1)push(r2Q,r2)f?3> @push(riQ,ri) 0 O J7

OT %'1 ! -1

1)pop(r2Q,r2) (3)p0p(‘r1Q,r1) : ; pop(r2Q,r2) ;7 pop(r S,rl)]
+ i _1 N
-1 v b

(Pop(r1Q,ri) o (2)pop(r2Q,r2)

~

0 ~ pop(r2Q r2)

Decomposition into
Cycle weight = -

Cycle of Instruction cycles in the
Instances (C,) precedence graph

Figure 4.8: Decomposition of Cycle of Instruction Instances

As lemma 3 is proven to be true, the absence of cycles of weight 0 or with positive leading
elements guarantees the the absence of artificial deadlock (the contrapositive of lemma 3).

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 52

Statically Unresolvable Artificial Deadlocks

Using the analysis framework we have formulated, we can foresee situations where artificial
deadlocks may always occur, regardless of how much space is statically assigned to a FIFO
channel. Figure 4.9 shows one example where no guarantee of deadlock freedom can be
statically obtained. Here, the outer loop consumer instruction are rescheduled to before
the start of the inner loop, while the corresponding producer instruction executes after
the completion of the inner loop iterations. As the number of iterations of the inner loop
is statically unknown, there will always be a DepF between a pair of the push and pop
instruction instances (and therefore a cycle of dependence), regardless of how large the
FIFO size is.

In the precedence graph, the number of iterations is represented symbolically and the
DepS edge between the outer loop and inner loop producers carries a weight of (0,4). As-
suming FIFOs of size 1, a cycle of weight (0,7 — 1) is found. Without knowing the bound
of i, there is no way we can add enough space to the DepF' edge between the producer and
consumer of data such that the cycle weight has negative leading element.

The actual computation is shown in this example to demonstrate the validity of the
reordering. There is no local data dependency violated, yet artificial deadlocks are created
in the network. To prevent this type of unresolvable deadlocks, we can impose constraints on
the reordering of instructions performed by the HLS tools. The starting point of instruction
rescheduling is always the original program order, or more specifically the locally consistent
G(p). It was proven that if every process is run according to G(p), there will be no artificial
deadlock. Thus as long as we do not introduce symbolic vectors into the the weights of the
cycles in the precedence graph, no unresolvable deadlock would be introduced.

A sufficient condition, which ensures no new symbolic vectors are introduced into the
cycle weight, is to disallow outer loop instruction to be locally reordered with respect to
inner loop instruction. According to our scheme, all the simple paths whose weights contain
symbolic variables must be ones going from an outer loop instruction to inner loop ones.
Meanwhile, simple paths between instructions of the same loop level, if not going through
an inner loop instruction, are always free from unknown variables in their weights. Adhering
to our proposed constraint essentially means we are only reordering instructions between
which the simple paths are of statically known weights. Consequently, no new symbolic
variable would be added to the cycle weight after the reordering. An example is shown in
figure 4.10. Note this condition is not a necessary condition, in figure 4.9, if the sender of
outInd is also scheduled to before loop_inner, we are not going to encounter the unresolvable
deadlock. However, our proposed condition is easy to check against during HLS, and the
liveness of the resulted hardware can readily be guaranteed.

Memory Access Representation

So far we have been modeling the memory operations as atomic actions. The process sending
out memory requests waits for the responses before continuing. However, the sending of

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS

loop_outer

NETWORK 53
Process 1
A
(©0inind = inlnd+1 Process 2
(0,0/data = dataSrc[inind] A
opush(dataQ, data) (0,0Pop(outindQ,outind) %
loop_outer: ©pinind = inlnd+1 \ ©o,0indArr[outind] = outlnd\‘
loop_inner: & | |oqdata = dataSrclinind] %
inInd = inlnd+1 .EI (0)push(dataQ, data) = Lo,0pop(dataQ, data) -
data = dataSrc[inind] 3 (02inind = inlnd+1 (0,00data = data * Odata
Odata = data * Odata L2 (0,2data = dataSrc[inind] Lo,yPOp(dataQ, data)
if (data > 10) (0,2push(dataq, data)((0,0data = data * Odata
goto loop_inner; (,3inind = inind+1 (02pop(dataq, data) 5
outind = outind+1 (0,3ydata = dataSrc[inInd] (0,20data = data * Odata =
indArr[outind] = outind (03)push(dataQ, data)< (0,3pop(dataQ, data) o
if(outind <100) . (0,30data = data * Odata 8
goto loop_outer : (0.4pop(dataQ, data) -
B (O,i)push(dataov data) (0/4)Odata = data * Odata

Process 1 / \\ Process 2 E % | (U,U)Outlnd = outind+1 ,1

3 | loopush(outindQ, outind)
loop_outer: loop_outer: 8‘| S
loop_inner: pop(outindQ,outind) o :
inInd = inInd+1 indArr[outind] = outInd
data = dataSrc[inind] || loop_inner: |
push(dataQ, data) pop(dataQ, data)
if (data > 10) Odata = data * Odata push(dataQ, data) pop(outindQ,outind)
goto loop_inner if (data > 10) 4 % i k\
outind = outlnd+1 goto loop_inner B i >< (-1 i 0. 0}
push(outindQ, outlnd) || if(outind <100) ‘\(0' i) "(1,0) (\) (©,),‘
if(outlnd <100) goto loop_outer X V¢ (-1,0) < A
goto loop_outer Eushioutndeodtlnd) (0,-1)2| pop(dataqQ, data)
Cycle for Artificial Deadlock

Sum of edge weight = (0, i-1)

Figure 4.9: Rescheduling Creates Statically Unresolvable Deadlock

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS

NETWORK 54
Process After Schedule = G(p) Legal Reordering Disallowed
Partition Reordering
for(j=0; j<20; j++) push(r0Q,r0) Push(r0Q,r0) push{raQ,r4)
{ / "(0,0) 40,0) / (0,0)
/ 4 / push(riQ,ri / push(riQ,rl
push(r0Q, r0); ! push(rlQ'\rl) ; P 4(.) ; p . (Q\)
for(i=0; i<N; i++) ! A | ;/ / 0 _4)] i i !
{ (1 0) f (0 O): (0"1)'J (-1,0)” (O,3)| ! Vl ('1,0) ” (0,3): (01'4),
-1,0)) ! 1 : v
: : % ' push(r2q,r2) i push(r2Q,r2)
push(riQrl); i push(r2Q,r2) i . : ~
push(r2Q,r2);) T(O,N—l) ! /'(O'N'l) i 1(O,N-1)
Y / \'\ ‘\ h /O ; O
} % push(r3Q,r3) Y push(rlLQ,r4) pus (er r0)
push(r3Q,r3); %, T(0,0) s 1(0,0) ' 0,0)
push(r4Q,rd); 4 / S\ ,’ « ; (O,
) push(r4Q,r4) push(r3Q,r3) push(r3Q,r3)

Figure 4.10: Safe Reordering of Instructions

requests and receiving of the responses can often be decoupled, as we have done in chapter 3.
In the case when they are assigned to the same process, to accommodate the latency of data
access, instructions can also be scheduled between them. Now when the responses are sent
back from the memory, their designated consumers may not be ready to execute, and more
buffering is needed. This behavior can be easily incorporated into our model.

As shown in figure 4.11, corresponding to each memory access, a send_req/receive_resp
pair is created in the schedule. The reaction of the memory is modelled by a pop action
responding to the incoming request, and a push action producing one response data token.
As multiple send_regs are scheduled before receive_resp, i.e. due to aggressive loop pipelining,
the memory subsystem must be able to buffer/serve multiple outstanding memory requests
to prevent deadlock. In the example schedule, 4 send_reqs are scheduled before the first re-
ceive_resp, while the memory subsystem (with the associated FIFOs) can only accommodate
three, a deadlock is thus created. This is detected as the zero weight cycle in the precedence
graph. Just like for normal processes, increasing the FIFO size resolves the issue. When the
send_req and receive_resp are partitioned into two different processes, a similar graph can be
created and the minimal amount of space for deadlock avoidance can be computed.

Another common optimization in memory access is the use of burst mode. As described
in chapter 3, to concatenate memory requests across loop iterations into one burst access,
the send_req operation is hoisted to one level out of the original loop. The receive_resp,
meanwhile, remains in the initial loop level. Even though the memory “process” does not
block on reads, if the response data it sends to other normal processes is not consumed
promptly, it can blocked on writes. The head-of-line blocking can then create a dependency

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 95

Schedule

Process

Loop: osend_req(dataPtr)

wsend_req(dataPtr)
»send_req(dataPtr)
»send_req(dataPtr)
wsend_req(dataPtr) yreceive_resp(data)
ssend_req(dataPtr) receive_resp(data)

data = *dataPtr

Memory

(0)
(-1) Req_fifo

send_req(dataPtr) < Cycle for Artificial Deadlock

3) (-5)

= pop(dataPtr)

Areceive_respf Bl »receive_resp
Y (1)

o)
A] J

Resp_fifo
push(data)

(1)

\ . *
receive_resp(data) =

Sum of edge weight = (0)

Precedence Graph

Figure 4.11: Deadlock Involving Memory Access

cycle, resulting in a deadlock. Our precedence graph can be used to compute the necessary
buffer size to resolve this situation as well. Figure 4.12 shows how a precedence graph can be
used to represent the transformed program. In (a), only a single process is involved, while
(b) shows the precedence graph when the memory access is decoupled into two processes.
In both cases, all the cycle weights have negative leading elements even when each FIFO is
assumed to be of size one. No deadlocks would occur in this case. A more interesting scenario
is when two memory accesses are converted to burst mode and the interaction between them
causes deadlocks. This is illustrated in figure 4.13.

Besides the usual dependence edges, an extra DepM dependency edge is added between
push(data?2) and push(datal). The symbolic variable B in the weight of this edge captures
the head-of-line blocking due to large amount of response data, i.e. how many tokens have
to be consumed /buffered before the response for the next request (data2) become accessible
for the receiver. With this precedence graph, we can easily detect a potential deadlock in the
implementation. To resolve this deadlock, the capacity of the FIFO between push(datal) and
receive_resp(datal) should be increased to B, such that the weight of the deadlock-causing
cycle becomes (0,-1). A similar buffering increase in the response channel for data2 resolves
the other remaining deadlock. In essence, the head-of-line burst mode responses need to be
buffered entirely to ensure other subsequent receive_resps are getting their data, and the
whole datapath can then continue executing.

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS

| sy
receive_resp(data)

NETWORK 56
Transformation to % Process 1 Process 2
Process Burst Access !
! |send_req(arr, N) Fori=0toN:
Eori= Ot : senq_req(arr, N) | Fori=0to N: pop(.rOQ,rO);
) Fori=0toN: | push(roQ, r0); receive_resp(data);
push(roQ,r0); push(r0Q,r0); !
data = arr{i]; ‘M receive_resp(data); ‘ @
| PrecedencTOC(i);'aph Memory
i slAend_rgyaq(arr, N) tH(—LO) /pop(arr)k
Precedence Graph /00y ' 11(0,0) ' (-1,N) LN) (0,0),
i | | A J
(0,0) Lol x push(data)
send_req(arr, N) t4>(o) pop(arr) | push(rCQ, ro) ©11)
1 1 - ‘/ k } o (O’_l)
1(0,0) (-1,N) £-1,N) (0,0), s : : (0,0)
‘\ i 0.- ; ! ’ pop(roQ, r0);
receive_resp(data) i‘% push(data) | 0,00° (0,-1)°

(a) (b)
Figure 4.12: Example Precedence Graphs for Burst Mode Memory Access (a) send_req and
receive_resp in a single process (b) send_req and receive_resp are decoupled into two processes

The actual value of B depends on a few factors. In chapter 3, we mentioned the burst
access adapter which generates multiple burst mode requests according to the parameters
of the send_req operation. For the process in figure 4.13, for example, two streams of
requests S; and Sy, corresponding to send_req(arri,N) and send_req(arr2,N) respectively
would be created. Assume the arbiter for the memory subsystem implements a policy which
can potentially take in and serve multiple (K) consecutive requests from one stream, we
can compute B to be BurstSize,.. * K. In the case of a round-robin schedule, B =
BurstSize,,,, and for our experiment platform which uses AXI bus protocal, this number
is 256.

When multiple burst mode accesses are distributed across different decoupled processes,
depending on the exact graph generated, the required buffer size can be a lot smaller and
in certain cases, not at all affected by the size of the burst. This is shown in figure 4.14.
By decoupling the memory accesses and duplicating the loop counters, we essentially have
two separate data fetch engines running independently. As their schedules are completely
separated, there are no cycles containing the DepM edge. Thus even with a buffer size of
one in each channel, no deadlocks will occur.

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS

o7

NETWORK
Transformation to Precedence Graph
Burst Mode Memory
send_req(arrl, N) (0,0 o arrl)k
Fori=0toN: AT . o pr
(0,0) ! (-1,0) | (-1, N)
datal = arri[i] X 1/ 0,0 3
datai=an2lil slend_req&arrz N) % pop(arrZJ 4
’// (0 0) (1 N) (0 0) \\\
(-1 N) }ﬁ—l)/ push(dataZ)‘ (O;p)
@ -1, recelvs resp(dataZ) /TTO)/) o, B) \ ;i
send_req(arrl, N) “* (0 -1) (0, O) (0,-1) Y v
send_req(arr2, N) receive resp(datal) ;],/_’(0’,6?;/’ push(datal)
Fori=0to N:
&-—-> DepM: Dependency due to head-of-line blocking for
receive_resp(datal) memory responses
receive_resp(data2) Cycle for Artificial Deadlock
receive_resp(datal) - (fq'ilf)» receive_resp(data2) :
4 0] 0 v (0,0) |
| (0,B) |
L __Push(datal) ¢---=--=----- push(data2)__ 1
Weight of Cycle = (0, B-2)

Figure 4.13: Deadlock Due to Interaction Between Two Burst Mode Memory Accesses

Precedence Graph
Decoupled Processes (0,0) Memory
Fori=0to N: send _req(arrl, N) —W Pop arr1)>
(0 0) (-1, N) (-1 N) (0 0)
datal = arrl[i] . //L(_)Jj_)/push(datal
data2 = arr2[i] receive_resp(datal)éf’(,T)/> (0 B)
/v \ j% push(dataZ)
_ TS e receive_resp(data2) /(W' ’
Fori=0to N: = : (1N) (0,0). 0.0) (00) (1N)
datal = arrd[i]; || data2 = arr2[i]; SRR o ¢ “poplarr2)’
No simple cycle with weight = (0,0)
- No Deadlock

Figure 4.14: Burst Mode Memory Access by Decoupled Processes

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 58

4.5 Discussion and Future Work

In this chapter, we devised a proof for the absence of artificial deadlock in a pipeline of
processes generated by our flow, assuming each of them is executed according to the original
program order. A framework is then proposed to compute the minimum FIFO size needed
to avoid deadlocks when the processes are synthesized into accelerators, which aggressively
parallelize/reorder operations. This approach is proposed to reason about the properties
of our accelerator pipeline, generated by splitting a single CDFG. However, it may also be
applied to networks of processes created using other methods.

In our analysis, the construction of a precedence graph is based on 1) the scheduling of
sender and receiver operators within each process, and 2) the size of communication channels
between pairs of sender and receiver instructions in different processes. The local ordering
of instructions can be easily extracted from any statically scheduled accelerators, but not
all networks of processes satisfies the condition that each pair of sender and receiver has a
dedicated communication channel. If each FIFO is read/written to by only one instruction
locally, or more precisely, at a single time slot allocated in the local schedule, deadlock anal-
ysis can be performed statically. In commercial high level synthesis tools [29], for instance,
computations can be manually structured into a series of functions which are annotated to
allow the generation of a streaming pipeline. However, the problem of artificial deadlock is
left to be addressed by the users as no systematic approach is provided by the vendor for
sizing the FIFOs. If within every function, only one instruction accesses each FIFO interface,
we can generate our precedence graph and perform deadlock analysis. Of course there are
cases where this condition is not satisfied, when the user might need to rely on simulation
or just devise special mechanisms to deal with potential deadlocks.

In many cases, the minimal FIFO sizes for deadlock avoidance may not be ideal for
performance purposes. The decoupled computational pipeline works well when its member
accelerators can execute out of sync with each other. Very small FIFO sizes potentially allow
the lack of progress in one process to interfere with the other processes. One accelerator’s
slow rate of data consumption can exert back pressure which, if propagated quickly, can stall
other parts of the pipeline — we are back to our original situation described in the beginning
of chapter 3.

Of course given the decoupled pipeline architecture, we can explore the trade-off between
area and performance in a much more flexible way. For instance, a unified schedule can
choose to accommodate memory access latency by internally having more pipeline stages,
which means adding register stages to a very wide datapath, incurring costly resource over-
head. Our architecture, on the other hand, can dedicate buffer space to where decoupling is
needed the most. To this end, our implementation can be tuned based on its run time behav-
ior. Every FIFO can be instrumented with a histogram generator which tracks its occupancy.
In the case of memory interface buffers, as the data count may not be directly available, we
look at the percentage time when available data is not immediately pulled into the data path.
These statistics can help us detect the point of inefficiency in the pipeline. More specifically,
a FIFO channel fully occupied most of the time indicates the downstream/consumer acceler-

CHAPTER 4. DECOUPLED COMPUTATIONAL PIPELINE AS A PROCESS
NETWORK 59

ator is not consuming tokens fast enough, where as a mostly empty FIFO reveals the relative
inefficiency in the source of the data token. In some cases, certain stages in the pipeline can
be made faster with more hardware invested for more aggressive parallelization or larger
on-chip buffer, while in other scenarios, the information we gathered can help us reduce the
amount of buffering in FIFO channels. A thorough exploration with this method is left to
future work.

60

Chapter 5

Accelerator (GGeneration and
Integration Using Program Binaries

As usability remains to be one of the most significant obstacles for adoption of FPGA
computing, in this chapter, we explore the possibility of a user transparent flow for mapping
applications to systems with reconfigurable components. In contrast to previous chapters
where source code in high level languages is used as input, here we try to only use the program
binaries and their execution profiles as the design entries. The mechanism for integrating
the accelerator back into the overall program execution is also discussed. From the users’
perspective, a flow based on program binaries requires no source rewriting nor recompilation,
the effort needed to take advantage of the reconfigurable platform is thus minimized.

With respect to the synthesis of the actual compute engine, we certainly take advantage
of what we have developed in the previous chapters. The decoupled computational pipeline is
again used as the architectural template to which the original software behavioral descriptions
are mapped. The overall performance of the hardware implementation is thus a net result of
exploiting pipeline, memory level and coarse grained parallelism in the application, as will
be described in later parts of this chapter.

5.1 Profiling Program Execution with Binary
Instrumentation

To perform various analysis on and eventually stitch the invocation of accelerators into
the original program binary, we leverage the infrastructure developed in the field of binary
instrumentation. In particular, Dyninst [126] provides great APIs for parsing, analyzing and
modifying program binaries, both statically and dynamically.

To capture useful information during the execution of a program, Dyninst’s dynamic
instrumentation functionality is used. Its overall implementation is shown in figure 5.1. In
Dyninst’s terminology, the binary to be modified is called the “mutatee” while the program
performing the instrumentation is the “mutator”. Code that gets inserted into a program

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 61
Mutator Application
doWwrk(int a, b)
Mutator App A
PointS<Mgan;ﬂ;rﬂ <
AP| !

Dyninst | Machine Sni
Code | Dependent nippets

Code
ptrace/procfs Run-time Library

Figure 5.1: Dynamic instrumentation in Dyninst [127]

binary is organized into “snippets”. The OS services used by debuggers (e.g., ptrace, /proc
filesystem, etc.) are employed by the mutator to control process execution and to read
and write the address space of the mutatee program. Dyninst also has a dynamic linked
library which contains utility functions and two large arrays. With this library loaded into
the mutatee application, the arrays can be used for dynamically allocating small regions
of memory. The instrumentation variables and code are stored separately among the two
arrays. The snippets are first translated into machine code in the memory of the mutator
process and then copied into the array in the mutatee address space. The original code is
then modified to branch to the newly generated code.

It’s worth noting that the insertion and deletion of snippets can all be done dynamically
during runtime. A mutator can attach to a running process to add information-gathering
snippets, and after enough data is collected, remove all instrumentation and detach itself.
The overhead of profiling is therefore only transient when applied to a long running program.
Even though the performance may degrade to various extents depending on the actual snip-
pets added, the application doesn’t have to be interrupted.

Given Dyninst’s capability, we can insert counters, track memory addresses referenced
and log register accesses at points of interest in the program. It helps us identify the most
frequently executed loop nests in the applications and allows us to capture all necessary
information to perform the analysis and parallelization described in the later sections.

5.2 Characteristics of the Targeted Platform

The general approach of translating program binaries to accelerators can certainly be ap-
plied to various heterogeneous platforms. To justify some of the design decisions made in
our flow, the assumed platform characteristics need to be outlined first. In section 2.3, a
whole array of machines with reconfigurable components were examined and there is a wide

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 62

spectrum of configurations when it comes to how tightly integrated the reconfigurable fabric
is to the processor. In this work, we focus on the part of the space where the general purpose
processor and the reconfigurable component are loosely coupled. Instead of being a func-
tional unit in the processor execution pipeline, the FPGA is used as a coprocessor for which
communication and management is assumed to be expensive. Meanwhile, the capacity of
the reconfigurable fabric can potentially be greater as it is not constrained in any way by
the pipeline of the associated processor. Most of the off-the-self systems currently available
or in development [128] fall into this category. As the costs of semiconductor manufacturing
become prohibitive, special processors with modified pipeline accommodating reconfigurable
functional units are less likely to be built and offered commercially, as compared to systems
with conventional processor and FPGA integrated at either chip, package or board level.

Another important factor to consider is how sharable the memory is between the CPU
and the FPGA. One possible configuration, as represented by the zynq SoC, has the CPU’s
address space shared with the programmable logic. The physical addresses used to access the
memory are identical, whether it comes from the CPU or the FPGA. Of course in the presence
of virtual memory, address translation needs to occur before the requests are forwarded to
the memory subsystem. On the other hand, there are platforms where the FPGA has its own
memory space which is explicitly populated with the working dataset before the activation
of the accelerator [129]. It’s worth noting that this difference in programming model is
orthogonal to the actual physical configuration of the platform. For instance, CPU and
FPGA located in two different sockets can have shared address space while a system based
on a single chip SoC may associate the FPGA with a separate DRAM interface which are
not directly accessible by CPU. Given the flexibility of FPGAs, there are certainly ways to
create a layer of abstraction conforming to either one of these schemes, regardless of the
original expected usage model. In this work, we assume a shared memory space between
the CPU and the FPGA, which is one of the properties of the experiment platform we use,
though a mechanism for explicit data movement applicable in non-shared memory system is
also discussed in section 5.7.

5.3 Acceleratable Regions In Program Binaries

The trade-off between communication efficiency and capacity in the reconfigurable compo-
nents of the systems dictates the granularity of the accelerators to be synthesized. Given the
loose coupling between the programmable logic and the processor, while it is still possible to
create accelerators for small windows of dynamic instruction stream, the cost of frequently
controlling and communicating with these tiny hardware engines would nullify any perfor-
mance gain achieved. It is ideal to have a relatively large chunk of computation handed off
to the FPGA, which then works independently with little intervention from the CPU, before
signalling the completion of the task. The natural targets for our flow are therefore loop
nests in the program binaries. There may be cases where code segments are shared by multi-
ple loops, making it harder to statically carve out the best code region for acceleration. For

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 63

these scenarios, we can leverage runtime profile of the program to find the prevalent loops
and extract single-entry-multiple-exit loops which can undergo further optimizing transfor-
mations. Meanwhile, due to the presence of statically unresolvable control flow, e.g. indirect
jump, not every part of the program can be analyzed. Several techniques were proposed to
tackle this in dynamic binary translation [130], which we can potentially adopt. However, we
do not aim to have complete coverage of the code as only the computation heavy loops are of
interest to us. Practically speaking, the more regular loops, which are the ideal candidates
for FPGA acceleration, are generally easy to detect and analyze.

Another characteristic of the FPGA platform is its low clock frequency (as compared to
a typical CPU), thus to have significant speed up, there needs to be substantial amount of
parallelism extracted, which requires large windows of instruction. In addition to instruction
level parallelism within basic block or a single iteration of a loop, coarse grained parallelism
also needs to be exploited. Blocks of loop iterations are to be executed in parallel, which
implies very aggressive instruction reordering when the accelerators are created. Conse-
quently, speculative execution, which some binary-based dynamic parallelization techniques
were based on, may become rather expensive. As states generated by the speculatively per-
formed operations need to be buffered, the amount of space required to accommodate the
massively parallel execution engine can be large. The subsequent commit of these states may
also induces long delays or requires complicated hardware mechanism. In particular, for any
speculatively disambiguated memory accesses, the address streams need to be dynamically
cross compared to ensure the reordering of loads and stores are indeed valid. Using past
execution profile can boost the confidence with which the disambiguation is performed, but
the probabilistic nature of the approach does not relieve us the need for costly dynamic
checking mechanisms. To generate lean and fast accelerators, in this work, we try to extract
a set of conditions for parallelization which does not vary with the amount of work in the
loop. In other words, we want to find computation that can be done during run time with
a fixed, statically known cost, yet still guarantees the validity of the instruction reordering
we have performed for accelerator generation.

Dependencies in Loops

To understand what characteristics a loop nest should manifest for it to be a feasible target, it
is useful to start from the theory of loop dependencies. As explained in section 3.2, statements
cannot be parallelized or reordered when there are RAW, WAR or WAW dependencies
between them. In the context of instructions in loop nests, [116] defined loop-carried and
loop-independent dependencies between a pair of statements S} and S, (at least one of which
is writing to memory):

e loop-carried dependency: S; accesses a memory location on one iteration of a loop,
and S5 accesses the same location on a subsequent iteration.

e loop-independent dependency: S; and Sy access the same memory location in the same
loop iteration, and there is a execution path from S to Ss.

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 64

The concepts of iteration number, iteration vector and iteration space were also introduced.
The iteration number is the index number for a particular loop iteration, while the iteration
vector extends this concept to a multi-level loop nest. Each element in the vector corresponds
to one level in the loop nest with the left most element representing the outermost loop index.
The set of all possible iteration vectors then constitutes the iteration space. Figure 5.2
visualizes these concepts with a simple loop nest.

Iteration vectors for both S1 & S2:

Fori=1to2
. (1,1), (1,2), (2,1),(2,2)
. ¢ » Loop independent
FOI’J.—.l to 2_) dependency j
st Alil[i] = Bli-1](] S T
- p-carrie ‘
dependency
S2: B[i-1][j] = B[i-1][j-1] 1 ‘ . .
Endfor » 4
Endfor | [

1 2
Iteration Space

Figure 5.2: Dependencies in a Loop Nest

To exploit coarse grained parallelism in the loop nest, we need to ensure the absence
of loop carried dependencies at a particular level in the loop nest. There are also simple
transformations (e.g. loop interchange) which can move loop carried dependencies to other
loop levels so only loop-independent dependencies are left. To enable the discovery of these
opportunities, we need to find, in each statement’s iteration space, if they intersect with other
statements’ accessed memory locations. In general, the memory addresses to be accessed
can be arbitrary functions of loop indices and run time data, which makes it impossible to
statically determine if dependencies exist. There are, however, a set of problems where the
memory referenced can be analyzed during compile time as the addresses are affine functions
of the loop index variables. For loop nests of this kind, dependency analysis is essentially
finding integer solutions for the problem:

f(@) = h(y) (5.1)

Or equivalently this linear Diophantine equation:

a1, — blyl + ...+ a,x, — bnyn = bo — Qo (52)

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 65

where zp, <z < Ty,
Yiby, < Yk < Yuby

Both function f and h takes a iteration vector from within the iteration space of the
statement, point-wise bounded by Zy,/4, and Zyuy/Uup, and map it to a memory location.
When multi-dimensional arrays are used, variables can be separated such that we have
multiple simultaneous equations which are simpler to solve. The loop carried dependency in
figure 5.2, for instance, correspond to the following equations:

—l+z=—-14+wu

Tog =1y —1

where 1<z, <2
1<z <2
1<y <2
1<y, <2
T1,22,Y1,Y2 € Z

This problem is an integer linear program, one of the NP-complete problems. There are
various techniques [131] [132], proposed over the years, to efficiently solve a relaxed version
of this problem. In our binary-based flow, we also try to target these analyzable loop nests,
some of which are especially amenable to FPGA acceleration. Identifying these regions from
the program binaries, however, poses some challenges.

Challenges for Binary-based Analysis

The regular and analyzable memory access patterns expressed in high level languages become
rather mangled when the program binaries are being examined. All memory accesses are
pointer based with no high level information to indicate if the data structures they are
targeting are disjoint. With dimensionality of the arrays eliminated, separate variables in
original address calculation are now coupled to each other. In essence, we have to perform
the dependency analysis on a huge linear array with all addresses being the result of some
run time computation. Figure 5.3 illustrates how different a set of memory accesses manifest
themselves in the actual high level source code v.s. program binaries.

In this example, even though the original array references are all affine functions of
the loop index variables, in the program binaries, their calculation is much more complex.
Dependency testing involving only a single loop index in the source code now have to deal
with multiple induction variables. More importantly, for equation 5.2, the coefficients (ay...a,,
and by...b,) are statically known constants while in the binaries, everything is a runtime data
item stored in either a register or a memory location. Naively substituting these symbolic
variables into the Diophantine’s equations yields a non-linear formulation which can not be
solved by the common techniques in optimizing compilers. On the other hand, as long as

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 66
E 2 £ . B 40: mov -0x10(%ebp),%edx
for(mt = 1; ls= dlm; |++) 43: xor %ecx,%ecx
for(intj == dim; j++) 45: mov -Ox1c(%ebp),%esi
48: mov -0x18(%ebp),%ebx
{ ______________ et 4c: lea 0x0(%esi,%eiz,1),%esi
A['][J] = IIBU']_-][.[]: 50: mov |_(%edx)|%eax
e iy GUPT 52: add $0x1,%ecx
Bli-1][j} = B[i-1][j-1); 55: mov %eax {%esi)
} 57: mov z’/oieEx:)L%eax 2
59: add SO0x4,%esi o

5c: add $0x4,%ebx
5f: mov %eax,(%edx):
esi = esi0 + dim*ind1 + 4*ind2 61: add S0x4,%edx

64: cmp %ecx,%edi
ebx = ebx0 + dim*ind1 + 4*ind2 66: jg 50

.........

68: mov -0x14(%ebp),%eax
Ind1: -0x20(%ebp) ~ edx0: -0x10(%ebp) 6b: addl $0x1,-0x20(%ebp)
Ind2: ecx esi0: -Ox1c(%ebp) 6f: add %eax,-0x18(%ebp)
ebx0: -0x18(%ebp) 72: add %eax,-Ox1c(%ebp)
dim: -0x14(%ebp) 75: add %eax,-0x10(%ebp)
78: cmp -0x20(%ebp),%edi

7b: jg 40

Figure 5.3: Memory Accesses in Program Binaries (x86)

these coefficients are unchanged during the execution of the loop nests, we can use past
execution profile to extract these numbers, perform analysis and carry out parallelization.
Meanwhile, as the assumed parallelism is based on past behaviors, we need to leverage
various classic dependency testing techniques to formulate a set of checks to be performed
during run time as well. The cost of these check, however, is fixed. The dependency analysis
problem does not scale up with the number of iterations, but rather the number of levels in
the loop nest, which is easily recognizable from the static binaries. We can therefore quickly
verify our coarse grained parallelization before the invocation of the accelerator, avoiding
speculative execution and the associated costs.

In our flow, dataflow analysis is always performed on loop nests to ensure there are no
updates to these coefficients during the loops’ execution, before more detailed dependency
testing and parallelization are attempted. The potential for actual speed up of course, largely
depends on the existence of memory level and coarse grained parallelism.

From Dependency Testing to Parallelization

To identify the opportunities in parallelizing a loop nest, the dependency distance vectors
and direction vectors [133] are used.

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 67
Can be performed in
Fori=1to N parallel if outer loop is - . .
2 - L2 performed sequentially Lo .1 A Parallelizable i loop
Forj=1toM T Forj=1toM after Ioop mterchange
B[i][j] = Bli+1][j-1] = j || \ Bli][j] = B[i-1][j-1] = j _
Endfor 4l Endfor 4 YRS
Endfor | Endfor /
. 3 |
Distance vector: [1,-1] Distance vector: [1,1] 3
Direction vector: [<, >] 2 Direction vector: [<, <] 2
Outer loop carries After loop interchange: /
dependency 1 Direction vector;<,<] 1
After loop interchange: .| Loop interchange is legal //
Direction vector = [>,<] | for this loop nest 1
Loop interchange is Iteration Space Iteration Space

illegal for this loop nest

Figure 5.4: Parallelization with Direction Vectors

The dependency distance vectors can be computed:

where

These vectors give rise to the directionvectors D(Z,):

“ <7 d(Z,) > 0
D@,y = “="ifd@ 7 =0
“> 7 d(Z, §)k < 0

The convention is to have the lexicographically earlier iteration vector to be ¥ and with

that the leftmost non-“=" element of a direction vector would always be “<”. The index for
this leading “<” is also the level of the loop-carried dependency. Assuming a transformation
T does not violate loop-independent dependencies, [116] proved that 7" is valid as long as it
does not cause some of the direction vectors to have “>" as the leftmost non-“=" component.
In addition, any iteration reordering at a level of the loop not carrying dependency is also
valid. Using these proven theorems, we can decide if loop transformations and iteration
parallelization are legal when we know all the direction vectors of a loop nest. Figure 5.4
illustrates a few scenarios where dependency direction vectors are used to determine validity
of transformation/parallelization.

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 68

5.4 A Two Phased Approach for Accelerating
Program Binaries Using FPGA

As the accelerator synthesis, which also includes the traditional FPGA CAD flow, can take
hours to finish, it cannot be performed on the fly while the program to be accelerated is
waiting. The preceding step, when loop nests are transformed/parallelized, is therefore also
performed offline. In this work, Banerjee’s test [131] is used to find the direction vectors used
for the extraction of parallelism. Since the required coefficients for equation 5.2 are obtained
from past execution profiles, the dependency testing and parallelization performed during
this offline phase are a reflection of the programs’ past behavior. When the accelerator
is actually running, the input data would have changed. The online phase thus includes
a mechanism to guarantee the semantics of the program is not violated by the reordering
performed during the accelerator synthesis. As we have mentioned in section 5.3, a verifying
function is invoked before the activation of the accelerator, ensuring the correctness of the
overall execution.

This online phase test is also one of the reasons why we choose Banerjee’s method for
our dependency testing even though it is not the most accurate dependency testing method
available. The Banerjee’s inequality tests for existence of any real solutions for the Diophan-
tine’s equations. Since it only tackles the non-integer relaxation of the ILP formulation, the
results obtained are conservative. It will never report lack of dependencies when one exists,
but may report false dependencies, i.e. when all the real solutions are non-integral. More
accurate tests like the Omega test [134] find integer solutions but are more costly. Since
we are going to perform the test again using run time data when the accelerator is actually
being activated, the faster, though more pessimistic, method is preferred.

When applying Banerjee’s method, a particular direction vector ¥ is subjected to test,
and the result reveals if a pair of memory accesses are dependent in ¢’s direction. To find
all the direction vectors for dependencies, a hierarchy of tests may therefore be involved.
For a pair of memory accesses in a two level loop nest, the possible tests are shown in
figure 5.5, where “x” denotes a union of “<”, “=" and “>”. Negative test result from any
node in the hierarchy eliminates the necessity to continue testing its subnodes. A subset
of these dependency direction vectors are true for each loop nest and dictates what kind of
transformations are valid for accelerator synthesis.

Offline Phase: Accelerator Synthesis
Dependency Analysis

To perform the offline dependency testing, we built an analysis pass within the LLVM frame-
work. As LLVM takes C/C++ as input, a preprocessing step is performed to convert the
binary of the selected loops to C functions. It is also in this step when we extract coefficients
for the Diophantine equation and bounds for loop indices from past execution profiles. The
numbers obtained are substituted as constants into the C functions, enabling the subsequent

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 69

(*,*)

(<*) (=%) (>,*)

SN PN

(<<) (<7) (£2) (<) (7)) (=>)

Figure 5.5: Hierarchy of Dependency Testing for A Two-Level Loop Nest

analysis. In the original binaries, these variables are often stored in the memory. Thus in
addition to examining their past values, we also perform a check to ensure their memory
locations do not alias with any other references performed by the loop nest, again using the
addresses observed from the profile. This check can be easily formulated using Banerjee’s
method—we essentially have a set of affine functions which only contain constant terms. Al-
ternatively, these locations can often be recognized as part of the call stack, and are normally
completely disjoint from the “moving” part of the memory footprint in the loop. We can
thus easily disambiguate them using a simple range test. Of course, when the accelerator is
actually being invoked, these tests would need to be run again, as will be described in later
in this section.

Figure 5.6 illustrates the steps involved in converting binary to a synthesizable C func-
tion. The original output from the disassembler is used to generate two different versions
of C functions. The first, incorporating values collected from past execution profile, can be
analyzed by Banerjee’s method. The results are the dependency direction vectors between
memory operations. In this particular case, the store and load operations are found to be
non-aliasing. This information is then used to generate the final C function, where each mem-
ory access is offset from a different pointer. Whether we feed this version to conventional
HLS or our pipeline generation flow, separate pointer arguments can potentially be mapped
to multiple memory ports, through which data requests can be initiated independently.

Memory Level Parallelism

There are actually two levels of parallelization when it comes to scheduling memory accesses
during HLS. As shown in figure 5.6, the absence of dependencies between memory operations
allows for their association with different pointers. The scheduling engine in the HLS tool
can then schedule them without being constrained by the original program order. However,
multiple pointers may still be assigned to a single physical memory interface. The structural
hazard would then constrain the action of the scheduler, as a single memory port may only
accommodate one load and one store per cycle. To loosen this structural constraint, it is
possible to create multiple memory ports, each associated with a subset of pointer arguments.
More aggressive scheduling, from the datapath’s perspective, can then be performed. In

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES

Dependency Analysis Using LLVM

/From runtime profile
#tdefine rO_prof 100000
#tdefine r3_prof 0
#tdefine r1_prof 200000
#define r2_prof 300000

void loop(int* mem)

{
int r0 = rO_prof; J\
int r3 =r3_prof; clang /

int rl =rl_prof;
int r5 = r5_prof;
int r2 = r2_prof;
intip,r4;
bb14:
rd = *(mem+(r0+r3)/4);
ip = *(mem+(r1+r3)/4);
ip =ip+r4;
*(mem + (r2+r3)/4) = ip;
r3 =r3+4;
if(r3 !=r5)
goto bb14;

}

BB
br %BB1
BB1
%r3.0 =phii32 [0, %BB], [%14, %BB1]
%2 = add nsw i32 %r3.0, 100000
%3 = Ishri32 %2, 2
%4 = getelementptr inbounds i32* %mem, i32 %3
%5 = load i32* %4, align 4, !tbaa !1
%6 = add nsw i32 %r3.0, 200000
%7 = Ishr i32 %6, 2
%8 = getelementptr inbounds i32* %mem, i32 %7
%9 = load i32* %8, align 4, !tbaa !1
%10 = add nsw i32 %9, %5
%11 = add nsw i32 %r3.0, 300000
%12 = Ishri32 %11, 2
%13 = getelementptr inbounds i32* %mem, i32 %12
store i32 %10, i32* %13, align 4, !tbaa 11
%14 = add nswi32 %r3.0, 4
%15 = icmp eq i32 %14, 1000
bril %15, %BB16, %BB1

LLVM IR

Preprocessing +
profile info

rd, [r0, r3]
ip, [r1, r3]
ip, r4, ip
20: strip, [r2,r3]
24: add r3,r3,#4
28: cmp r3,r5

2c: bne 14

Output from Disassembler

14: I|dr
18: Idr
1c: add

BB16
ret void
Banerjee’s
Method
N) No alias between
&ﬁ the two loads
Ld2| 1%%] and the store

intr0, intr3,intrl, intr5, int r2)

{
intip, r4;
rd = *(memlLd1+(r0+r3)/4); ‘
ip = *(memLd2+ (r1+r3)/4);
ip = ir+r4;
*(memSt + (r2+r3)/4) = ip;
r3 =r3+4;
if(r3 1= r5)
goto bb14;

,,,,,,,,,,,,, 7
2

Separate memory ports
for non-aliasing
accesses, facilitating
datapath synthesis

Parallelizable loop

Input to Accelerator Synthesis

Figure 5.6: From Disassembled ARM Binary to Synthesizable C Code

70

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 71

addition, certain memory operation inside a loop can be converted to burst access when
it does not have to share the port with others. This frequently boost the efficiency of the
off-chip bandwidth usage. In the decoupled computational pipelines described in chapter 3,
as each separable memory access is independently scheduled in a standalone module, which
has its own memory port, both levels of memory parallelism are taken advantage of.

The precondition for exploiting memory level parallelism is the non-overlap of addresses
accessed by memory operations. This is especially true if they are to be issued through
multiple ports, as we assume the RTL generation backend, the interconnect and memory
subsystem may all be aggressively reordering these requests—by inferring burst accesses or
buffering. Therefore, for every pair of accesses whose ordering matters (i.e. excluding load-
load pair), we check the direction vector (*,*,...), and associate each access to a separate
pointer if the test result is negative. In section 3.2, we described how memory barriers
are inserted to prevent overly conservative dependency annotation. Similarly, in our binary
based flow, if memory dependencies are carried by outer loops, memory barriers can also be
inserted to facilitate the partitioning of memory access interfaces. The direction vector to
test here is (=,=,..,*,*), where ”=" occupies all levels including and outside of the level of
insertion. If negative results is produced, we can be certain that within the same iteration
of the loop where the barrier is inserted, the pair of tested instructions do not reference the
same addresses. Therefore any reordering of memory operations will be valid. An example
of this is shown in figure 5.7.

Coarse Grained Parallelism

In addition to memory level parallelism, the loop shown in the example also has coarse
grained parallelism between iterations of the inner loop. A typical high level synthesis flow
can employ several common mechanisms to parallelize loops, as illustrated in figure 5.8. For
the inner most loop, it is generally very cost effective to pipeline the loop, starting a new
iteration before the previous one finishes. If the iterations are parallelizable, the initiation
interval would be 1. Assuming there are M iterations, the total execution time of the loop
would roughly be M cycles (not counting stalls introduced by cache misses). To further
reduce this number, loop unrolling can be performed. It combines multiple iterations into
one, effectively turning inter-iteration parallelism into fine grained parallelism. The iteration
count is reduced by the unroll factor (U) while the II does not change. Consequently, the
total execution time is reduced to roughly M /U cycles with a approximately U fold increase
in area.

To improve the throughput of the accelerator even further, multiple independent data-
paths can be instantiated, each performing a subset of the iterations. This technique can
be used to parallelize outer loops as well. For loop with a large number of iterations, this
technique provides a good way to trade off more on-chip resources for better performance,
although it also incurs some extra synchronization overheads. Another advantage of hav-
ing multiple datapaths is the independence between their controllers. In an earlier chapter
(section 3.1), we illustrated the vulnerability of a single monolithic schedule to data access

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES

void foo(int* mem, ...) {
bb48:

bb70:
ro = *(mem+(r2+rl1)/4);
*(mem+(r5+r1)/4) = r0;
ip =rl-4;
r0 = *(mem+(r3+ip)/4);

rl =rl+4;
if(rl !=r6)
goto bb70;

r9 +=1;
if(r9 1= r10)
goto bb4s;

Without Memory Barrier

Banerjee’s test using values
from past profile

Ld1 Ld2 Stl

St % | 15% | (=9 | 50
(S I B o R CF)
o

With Memory Barrier

void foo(int* restrict memO, int* restrict mem1,
int* restrict mem2...) {
bb48:

bb70:

ro = *(memO+(r2+r1)/4);
*(mem1+(r5+rl1)/4) = r0;
ip=rl-4;

r0 = *(mem2+(r3+ip)/4);
*(memO+(rd+r1)/4) = r0;
rl =rl+4;

if(rl 1= r6)

goto bb70;

r9+=1;
if(r9 !=r10)
goto bb4s;

void foo(int* restrict memO, int* restrict mem1,
int* restrict mem?2,

{
bb48:

bb70:
r0 = *(memO0+(r2+rl)/4);
*(mem1+(r5+rl1)/4) = r0;
ip =rl-4;
r0 = *(mem2+(r3+ip)/4);
*(+(r4+r1)/4) = r0;
rl =rl+4;
if(rl !=r6)

goto bb70;
barrier;

r9 +=1;

if(r9 1= r10)
goto bb4s;

}...

...)

72

Figure 5.7: Partitioning of Memory Access Interface with Insertion of Memory Barriers

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES

Original
loop
Fori=1toM
INS A
INS B
INS C
Endfor

No
Parallelization

Execution time: 3M cycles

INS A1
INS B1
INS C1
INS A2
INS B2
INS C2

execute sequentially

Assume loop independent dependencies
between A and B, as well as between B
and C: A,B,C of the same iteration must

INS A3

Loop
Pipelining
Execution time: M+2 cycles

Loop Pipelining +
Unrolling (factor 2)
Execution time: M/2+2 cycles

INS A1
INS B1INS A2
INS C1INS B2|INS A3
INS C2|INS B3|INS A4

INS C3]INS B4 ...
INS C4 ...

INS A1 INS A2

INS B1 INS B2 INS A3 INS A4

INS C1 INSC2/INSB3INSB4...
INSC3INSCa ...

Loop Pipelining +
Unrolling (factor 2) + Duplicated Datapath
Execution time: (M/2)/2+2 cycles

INS A1 INS A2

INS B1 INS B2|INS A3 INS A4

INS C1 INS C2|INS B3 INS B4 ..,
INSC3INSCa ...

INS Am/2+1 INS Am/2+2

INS Bwm/2+1 INS Bm/2+2 INS Amy/2+3 INS Am/2+4

INS Cm/2+1 INS Cwm/2+2 INS Bm/2+3 INS Bwmy2+4
INS Cwmy/2+3 INS Cwmy/2+4

Figure 5.8: Parallelization in FPGA Accelerators

73

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 74

latencies and the resulted underutilization of the memory bandwidth. In the presence of
coarse grained parallelism, it is much easier to fully exploit the data bandwidth provided
by the platform, as each datapath independently generates requests, whether its peers are
stalled or not. Certain platforms also provide multiple channels for off-chip memory access,
which can be more easily utilized with duplicated datapaths.

We can draw similarities between these techniques and the compiler optimizations tar-
geting architectural features of various parallel processors. Loop pipelining was a scheduling
technique widely used for VLIW machines, where it is often called software pipelining. Loop
unrolling, in the synthesis of FPGA accelerators, is similar to vectorization, as a wider pro-
cessing engine is now used to process multiple iterations simultaneously. The replication
of datapaths is essentially generating multithreaded implementations from a serial specifi-
cation. Previous research in automatic parallelization can thus be leveraged for our flow.
In this work, we are not trying to invent new techniques, but to enable past work to be
applied to program binaries on FPGA platform. In fact, techniques like loop unrolling and
loop pipelining are already built into commercial HLS tools, and can be easily applied using
directives.

To generate multiple parallel and independent datapaths, one approach is to convert a
single loop nest to multiple functions. Each function can be easily synthesized into an in-
dependent accelerator, but synchronization mechanisms might need to be explicitly inserted
so that outer level loop and the container function can correctly manage accelerators run-
ning in parallel [135]. For our flow however, as we are using the decouple computational
pipeline as the architecture template, a simple splitting of the iteration space can naturally
lead to the generation of parallel processing pipelines, with proper synchronization achieved
by the sending and receiving of tokens. Figure 5.9 illustrate how this process is achieved
using a simple example. Even though we construct a control flow where the two parts of the
iteration space resulted from the split are executed sequentially, due to the optimizations
built into the pipeline generation flow, two parallel pipeline branches are created. Note the
second half of the loop nest (bb20_dup) is predicated by the same branch going into the first
due to the aggressive predication described in section 3.2. Consequently, instead of being
activated after the completion of loop bb20, it executes in parallel to it. Of course, if there
are actual dependencies between these two halves of the loop, the pipeline branch running
bb20_dup will be stalled waiting for the result from 6020. The overall execution would then
be practically serialized. Also, the loop counters, which are relatively cheap, get duplicated
to multiple stages in the computational pipeline, but only one generates the branch token
to be consumed by subsequent pipeline stages. This, along with any other data tokens the
successor basic blocks need to read, collectively synchronize the completion of the loop nest
with all its dependent operations.

For conventional high level synthesis, it’s often desirable to have thread-level auto-
parallelization at the outer level of the loops. An architectural template is used in [135]
to accommodate and explicitly coordinate multiple independent accelerators each with its
own FSM controller. The synthesis of the accelerators and the instantiation of the top level
management circuitry are two separate processes and to perform inner loop thread level

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 75

Splitting the Iteration
Space into Two

loop_ind0 = 0;

upper_bound0 = (r5-r3)/2;

RO =r3<<2;

loop_ind1 = (r5-r3)/2;

upper_bound1 =r5-r3;

bb20:
r4_0 = *(memLd+(rO +r9+loop_ind0*4)/4);
*(memSt+(r2+r9+loop_ind0*4)/4) = r4_0;

bb20:
r9=r3<<2;
r4 = *(memLd+(r0O + r9)/4);
*(memSt + (r2+r9)/4) =r4;

.r3 - r|3_+1; loop_ind0 = loop_ind0+1;

if{r3 I=r5) _ if(loop_ind0 != upper_bound0)

dg.oto bb20; goto bb20;

end: if(lupper_bound1 <= upper_bound0)
canoncalize m goto bb_end;
bb20_dup:

loop_ind = 0; r4_1=*(memLd+(r0 +r9+loop_ind1*4)/4);
r9 = r3 << 2: loop_ind1 = loop_ind1+1;
bb20: ’ if(loop_ind1 != upper_bound1)

goto bb20_dup;
bb_end:

r4 = *(memLd+(r0 +r9+loop_ind*4)/4);
*(memSt + (r2+r9+loop_ind*4)/4) = r4;
loop_ind = loop_ind+1;
if(loop_ind != upper_bound)
goto bb20;
bb_end:

branchTag @

token for bb20:

loop_indO counter

branchTag { 1

upper_bound = r5-r3; !

Load loop_ind0 counter
token for bb20:
push(r4Q_0, r4_0) pop(r4Q_0, r4_0)
} Duplicated loop_ind .
counter node in CDFG r4Q_ 0

loop_ind counter

Load

push(r4Q, r4) > | pop(rdQ, rd)
Store

branchTag token r4aQ
for bb_end:

- -

Compare bound

loop_ind1 counter

Load loop_ind1 counter

push(r4Q_1, r4_1) »m_, pop(r4Q_1, r4_1)

branchTag token R4Q_1
for bb_end:

Figure 5.9: Thread-level Parallelization

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 76

parallelization would be rather intrusive. There are also cases where threads are manually
programmed into the application using APIs such as OpenMP /Pthread. Since the users
have explicitly specified the points and mechanisms of synchronization, the tool can leverage
a prebuilt library of software/hardware to implement these primitives, managing multiple
datapaths running simultaneously. In [136] for instance, each independent thread the user
created is mapped to a separate datapath with its own controller, and a software wrapper
is synthesized to manage it in the software domain at the top level. Meanwhile, OpenMP
pragmas, when attached to the inner loops, direct the HLS tool to create parallel internal
accelerators. The FSM managing the container thread would block until all the internal
accelerators finish executing. Our flow, on the other hand, does not have any noticeable
difference in the implementation of outer and inner loop parallel threads. As the pipeline
generated is controlled in a highly distributed way, making independent inner loop (or outer
loop) thread only requires a loop splitting which can be easily performed to the intermedi-
ate representation. A unified framework involving only source to source transformation can
therefore be applied to all levels in the loop nests.

For the target applications of our flow, the memory footprint of the computation is as-
sumed to be much larger than the capacity of on-chip RAM. With the fetching of data from
off-chip storage being a major task of the generated accelerators, thread-level parallelization
is often preferred to loop unrolling. Unrolled loops usually contain multiple memory ac-
cesses which were initially folded as one operation. In cases where the referenced addresses
are contiguous, the original memory access can be converted to burst mode load or store, sig-
nificantly improving the efficiency of memory bandwidth usage. Loop unrolling prevents this
burst inference from occurring as the original single stream of addresses is now broken into
two interleaved streams. On the other hand, in terms of the effort needed to perform loop un-
rolling v.s. generate multiple hardware threads, most existing HLS flows can easily perform
the former when the user insert the appropriate directives, while thread creation and man-
agement, if being supported at all, may require code rewriting/refactoring. As mentioned in
the earlier paragraph, the special mechanisms used to accommodate and synchronize mul-
tiple independent datapaths can also incur extra area overhead. Fortunately for our flow,
the disadvantages in programming effort and resource usage for multithreaded hardware do
not manifest themselves, as explained earlier. We can therefore focus on optimizing for the
throughput of the final implementation.

So far the analysis and parallelization are all performed independent of the actual RTL
generation. In essence we have devised a set of transformations applicable within the LLVM
framework. A piece of disassembled binary is converted to C code, which is ready to be
synthesized into the decoupled computational pipeline through the RTL generation backend.
The last part of the offline phase involves pushing the RTL through traditional FPGA CAD
flow. This step can take between tens of minutes to a few hours, depending on the size of
the design and the utilization of the FPGA chip.

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 7

Online Phase: Parallelism Validity Check and Accelerator
Execution

During the offiine phase, when the direction vectors based off past execution profiles are
assumed to be true, various transformations are performed. If any of these assumptions is
wrong, the generated accelerator will produce wrong results and should not be run. The
online phase therefore has to verify all the assumptions. More specifically, it needs to check
for the presence of any direction vectors which would invalidate the instruction reordering
the offline phase has done. There are a few main components involved in devising this online
checking mechanism:

1. Constructing the list of vectors to test.

2. Generating C code to test each vector.

3. Compiling the vector testing C code into a software routine (SWepecr)
4. Running the SW_ ... created in the previous step

The first three preparatory steps are all done offline, along with the synthesis of the
accelerators. The last part though, is invoked right before the execution of the accelerator.
Its result determines if the original software binary or the generated hardware accelerator
should perform the computation.

To enumerate the direction vectors to be checked, our flow examines all the transforma-
tions performed during the offline phase. More specifically, the memory level parallelism
and thread level parallelism we have exploited are both going to be explicitly tested. Loop
pipelining, on the other hand, is applied conservatively by Vivado HLS and in most cases,
aggressive reordering only happens after separation of memory ports. Its validity check is
therefore not invoked independently.

To ensure memory operations can be reordered or even issued through multiple ports,
they need to be completely independent from each other as we have explained previously.
The vectors tested during the offline phase, (*,*...) or (=...,*...) with barrier insertion, are
again included for online testing. For thread-level parallelization, we have to ensure the level
at which the iteration space is split does not carry dependency. That is, for any load-store
or store-store pair, the direction vector cannot have leading “ < ” at this level—the vector
(=...,<,*...) must be tested negative. Figure 5.10 illustrates these scenarios with a few
simple examples.

The actual implementation of these tests was outlined in [116], which is transcribed into
C functions in our flow. One optimization, which can potentially be applied in both online
and of fline phases, is to replace Banerjee’s test with a simple address range test. When
two data structures occupied different ranges in the address space, it is computationally very
cheap to just compare the upper and lower bounds of the accessed addresses. However, since
Banerjee’s test is relatively cheap to evaluate for large sized problems, as will be shown in
section 5.6, this optimization may not be necessary.

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

r7 = *(mem+ (r4+r9+ind1_1*4)/4);
*(mem + (ré+r9+ind1_1*4)/4) = r7,
indl _1=ind1_1+1;
if(ind1 _1!=bound)
goto bb20;
ind0_1=ind0_1+1;

if(ind0 _1!= bound)
goto bb10_dup;

Vector to test: (<,*)

PROGRAM BINARIES 78
Memory Level indo=0; |
Parallelism ibound =r2-r3; ‘
e e B ¢) 0 0} 1
'ind0 = 0; | ind1=0; i
ibound =r2-r3; 1 3 r9 = r5*indo; |
'bb10: " bb20
| ind1=0; | r7=%*(mem+ (rd +r9 + ind1*4)/4); :
' r9 =r5*ind0; 1 *(mem + (r6 + r9 +ind1*4)/4) = r7; |
" bb20: ' indl=ind1+1; |
i r7 = *(memLd+ (r4 +r9 + ind1*4)/4); 3 | if(ind1 != bound) |
' *(memSt +(r6 +r9 + ind1*4)/4) = r7; | goto bb20; 3
| ind1 =ind1+1; | indO = ind0+1; |
. if(ind1 != bound) ! if(indO 1= bound) |
. gotobb20; ' | gotobbl0 1
' indO = ind0+1; | 1bb_end |
" if(ind0 != bound) [Thread Level Parallelicn
ot bb10 vector to test: (7] | Thread Level Parallelism
'bb end: o .Y __attheouterlevel
. ,,,,,,,,,,,,,,,,,,,,,,,,J3|nd0=0, i
1ind0_1 = (r2-r3)/2; |
Adf’ ibound =r2-r3; !
barrier ‘bound_0 = (r2-r3)/2; l
o e ‘lbb10 |
3 "1 ind1=0; |
{ind0 = 0; Ll = e XA |
'bound = ecx-eax; N r9 = r5%ind0; ‘
' bb10: 1 bb20 |
o dll-O' 3 ' r7="*(mem+ (r4+r9+ind1*4)/4); i
! IrrS]) i r_5*i'nd0' L *(mem +(r6+r9+ind1*4)/4) = r7; 3
3 bbEO' ’ 'l indl =ind1+1; !
i . : : . . !: |
U r7 =*(memLd+ (r4 +r9 + ind1*4)/4); N |f(|c|)1t(11bb2%?und) |
{ *(memSt + (r6 + r9 + ind1*4)/4) = r7; . & . ' 1
" ind1 =ind1+1; 1 ind0 = ind0+1; 1
if(ind1 1= bou;wd) 3 | if(ind0 != bound_0) !
| 2oto bb20; |1 goto bb10; |
| barrier(): ’ ' 1if(bound <= bound_0) i
' ind0 = ind0+1; | fbiOtfobzaEfd; f
i ifli |= :: - - ’ :
. if(ind != bound) Vector to test: (=,*) i1 ind1_1=0; |
! gotobbl0 PLo e . ‘
'bb end: 1 r9=r5%ind0_1; i
 ob_end: 1 bb20: i

'bb_end:

Figure 5.10: Vectors Used for Online Verification of Parallelism

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 79

In general, how significant a run time overhead the Banerjee’s tests incur depends on how
much computation is going on in the targeted loop nest. They certainly reduce the overall
speed up attainable with the accelerator and for smaller loop nests, they may completely
nullify the benefit of computation offloading. It is thus useful to estimate the performance
of the hardware accelerator and the software binary when executing loop nests of different
sizes. More specifically, to decide if the amount of computation justifies the invocation of
the SWe e and the accelerator, we need to find the size of iteration space I such that

Sy(I) — Hy(I) >> Dy (5.3)

Si(I) and H,(I) are functions predicting the execution time of the loop nest in software
binary and hardware accelerator respectively, while D; denotes the runtime overhead of
performing parallelization validity check (SWepeer). Note that D, does not vary with the
size of I, but the dimensionality of it, which is known during compile time. On the other
hand, to accurately predict how the binaries or accelerators’ performance vary with I can
potentially involve complex mechanisms. Various processor architecture features, interaction
with the memory subsystem, or the the paradigm the accelerator synthesis flow follows can
all make a big difference for a particular workload. Simulation based approaches [137][138],
which may be suitable for design time exploration, are certainly too costly for automatic run
time decision making. One alternative is to measure the actual execution for the software
implementation and hardware accelerators (with the online checks) over different sized input,
and record the smallest I where computation offloading actually provides benefit. As larger
iteration space further amortizes the performance degradation caused by the online checks,
invocation of accelerators should lead to speed up as well. We can then reduce the decision
model to a series of simple arithmetic and comparison operations involving the loop bounds
and the recorded I, which can be evaluated during the online phase with negligible impact
on the overall execution time.

To summarize, the main steps for the execution of the accelerator-augmented program
binaries is illustrated in figure 5.11. The worst case scenario is when all the parallelism checks
are performed and dependency vectors invalidating the parallelization are found. This should

rarely occur, as previous studies found dependence behavior almost never changes with the
data input [139][140].

5.5 Accelerator Integration with the Application
Binary

An important part of integrating the accelerator with the application binary is the transfer
of machine states between the FPGA and the CPU. As the memory are shared between
them, updates to non-stack variables do not need to be explicitly handled. On the other
hand, as the registers and stack variables are converted into local variables in the C code
used for accelerator generation, their changes are not automatically visible to the processor

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 80

EST

Evaluate Decision Model:
S¢(1) -H(1) >> Dy

Yes
CHECK

Perform SW.heck :
No

all direction vectors tested give negative results

‘V Yes
EXE,, ¥

EXEnw

Invoke Hardware
Accelerator

Perform computation using
original program binary

Steps Taken Performance Benefits
Best case EST>CHECK—>EXEpy Si(1)-H¢(1)-D4-E;
Early abort EST>EXE,, -E;
Worst case EST>CHECK—> EXE,,, -D+-E;

E:: Time for evaluating the decision model

Figure 5.11: Main Steps in Running Accelerator-augmented Program Binaries

side. To resolve this issue, a special data structure is used to store the final values of these
variables. A small segment of code, consisted of a series of memory writes, is also inserted
to the end of the C function before it gets processed for accelerator synthesis. Consequently,
when the generated accelerator pipeline finishes running, these up to date machine states
are deposited, ready to be restored by the CPU.

On the processor side, to replace the loop nest in the original program binary with the
generated decision model evaluation, validity check and accelerator invocation subroutine,
Dyninst is again used. The abstract representation of the application binary is rather similar
whether the program is running as a process or statically stored in the disk. Consequently,
the main parts of the “mutator” can work both dynamically, with a already-running process
getting patched to have improved speed, or statically, with application binary being rewritten
to run faster next time it gets executed.

As mentioned earlier, instrumentation code in Dyninst is organized into “snippet”. While
it is possible to create a complete function responsible for all the previously described tasks
by chaining together a large number of snippets, a more convenient method is to generate a

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 81

standalone function encapsulated in a shared library. Dyninst allows for addition of library
dependencies to existing binaries, which can then use the newly created function through
the function replacement mechanism. Dyninst can redirect all invocation of a function in
the mutatee to a new implementation by inserting a non-return jump in the beginning of
the old function body. Alternatively, it can rewrite the destination of specific call sites so
the execution can be steered according to the context. Our flow currently only uses the
former method for simplicity. However, the profile collection instrumentation can certainly
be modified to build maps associating workload of loop nests with the invocation site of its
container function. The selective function replacement can then be performed accordingly.

Other than the steps shown in figure 5.11, the new function is also responsible to ex-
tracting the run time constant for the accelerated loop nest. The register values are read
out using inline assembly code, while the stack variables are dereferenced through offsetted
stack pointer . The values corresponding to loop bounds and the coefficients are supplied
as parameters for the SWop. routine. Then, the accelerator initialization and invocation
are performed using these values as arguments. Finally, after the accelerator execution, the
registers and stack variables updated by the original binary would contain stale values. The
replacement function is also responsible for repopulating these registers/memory locations
with new values extracted from the special data structure written to by the accelerator.

It should be noted that our flow is a best effort attempt to ensure the machine states
in the CPU remain the same whether the original software binary or the FPGA accelerator
gets activated. There are CPU specific mechanisms like precise exception for which our flow
has no support for.

5.6 Experimental Evaluation

To validate the feasibility of our approach, binaries of a few compute intensive programs were
pushed through our flow. We perform our experiments on the same hardware setup (Zyng-
7000 XC7Z020 FPGA SoC on ZedBoard) as the one used in chapter 3. Using the Xilinx
tool chain for RTL generation and FPGA mapping, we configure the timing constraints and
the final clock frequency in the same way as the previous experiments. Vivado HLS is set
to target 8ns clock period while the highest clock frequency achieved after place and route
is used for performance benchmarking. The baseline of our performance comparison is the
software binary running on the ARM core in Zynq. A decoupled computational pipeline
is first generated, directly from the C function produced by our preprocessing step, and
connected to the HP port before further design space exploration is attempted.

As the targeted regions of the application binaries are regular loop nests, our flow can be
configured to take advantage of coarse grained parallelism. In our experiments, we gradually
increase the amount of thread level parallelization by more aggressively splitting the iteration
space, as described in section 5.4. Meanwhile, as the Zynq SoC contains multiple HP ports
connecting the programmable logic to the memory, the amount of bandwidth available to the

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 82

hardware threads can be varied. Thus for every benchmark, we also increase the number of
HP ports enabled to quantify the effects it has on the overall performance of the accelerators.

Another important component of executing accelerators generated from program binaries,
as discussed in section 5.4, is the set of online checks which must be run before the accelerators
are invoked. The size of the iteration space, or more specifically, the upper and lower bounds
for each level of the loop nest, are first examined to estimate if the overhead of parallelization
validity check would have out-weighted the benefit of running the FPGA accelerator. The
actual Banerjee’s test is then performed. The cost of completing these computation during
run time is also evaluated for every benchmark in this section.

Note the purpose here is not to highlight, in absolute terms, how fast we can perform the
computation. There are many techniques which can be applied, either manually or through
compiler optimizations, to each individual benchmark. We just want to demonstrate how
some of those can also be used, without source code modification and recompilation, to take
advantage of the FPGA fabric to achieve good speed up.

Performance Results
Benchmark 1: GemsFDTD

The first application, GemsFDTD, is a general electromagnetic solver which solves the
Maxwell equations in 3D in the time domain using the finite-difference time-domain (FDTD)
method. Every timestep, an update of the E-field and H-field, stored in three dimensional
arrays, are performed. Originally coded in Fortran 90, this benchmark would not have been
directly synthesizable using the Xilinx tool chain without the binary based flow, even though
the workload is particularly suitable for FPGA acceleration.

Two triple nested loops are used to compute the E-field from H-field/H-field from E-field.
Their memory footprint is determined by the size of the grid used to represent the space.
The data structures representing the fields in 3D scales up cubically with the number of
units in each dimension. For our performance comparison, grids of multiple different sizes
are used. Figure 5.12 shows the performance of the decoupled computational pipeline for
different problem sizes. Coarse grained parallelism at the outermost loop is also exploited
to split the iteration space into two halves. All numbers are normalized to the processor
performance, reflecting improvement over the software binary.

The pipeline implemented in programmable logic, despite running at a fraction of the
processor’s clock frequency, is able to outperform the software binary. Its performance ad-
vantage is also more pronounced for larger sized grid as the constant cost of initializing the
accelerator gets amortized over a greater amount of computation. For a space of 128x128x128
units, the computational pipeline achieves a 3x improvement over the processor, while only
1.5x speedup is observed when targeting an 8x8x8 space. In addition, when we take ad-
vantage of the coarse grained parallelism, the performance goes up even further. With the
iteration space split two ways, the generated pipeline achieves 4.2x speedup. More aggressive

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 83

4.5

4 X' No Split 2 way split

w
U

w

N
(&

N

Speedup v.s. Software Binary
[EnY
)

[EnN
!

o
(2]
!

8 16 32 64 128
Grid Size (number of units per dimension)

Figure 5.12: Performance Comparison of Decoupled Computational Pipeline and Software
Binary for GemsFDTD

splitting of the loop nest results in resource utilization greater than 100% for our platform
and is therefore not mapped on actual hardware.

The HP ports and associated interconnect IPs providing data access to the computational
pipeline are often the limiting factor for the performance. Figure 5.13 shows how the speedup
changes as we vary the number of ports to memory. Evidently, the compute capacity provided
by the pipeline with a 2 way split of the iteration space can consume data faster than the
rate sustained by a single HP port. As we enable more ports, across which the data access
interfaces of the pipeline are evenly distributed, the performance increases further. For
the largest problem size, with all HP ports to the programmable logic enabled, close to 9x
speedup is achieved.

Shown in figure 5.14 is the overall execution time of the fastest and slowest accelerator
configurations, including the overhead of all online checks. The execution time is normalized
to that of the software binary and the lower the bar, the faster it is relative to the unaccel-
erated version. As expected, for small sized problems, the online checks can be expensive,
relative to the execution time of both the software and the hardware accelerator. However,
as the problem size gets larger and the loop nest itself takes up more time, the overhead

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 84
10
9 W 1 HP port
W 2 HP ports
8 -
& 3 HP ports
7 4 HP ports -

Speedup v.s. Software Binary
(0]
{

8 16 32 64 128
Grid Size (number of units per dimension)

Figure 5.13: GemsFDTD Performance with 2-Way Split of the Iteration Space and Different
Number of HP Ports

becomes negligible. For this benchmark in particular, even using the slowest accelerator con-
figuration for the smallest grid we have tried, the performance advantage of the accelerators
is big enough to outweigh the overhead introduced.

Benchmark 2: Matrix Multiplication

Matrix multiplication is an computation kernel which has been examined and optimized in
many different contexts. In this experiment, we use a vanilla implementation to compare the
FPGA accelerator against the processor for different problem sizes. Our data therefore covers
various scenarios, from when all operand matrices can fit on the cache and the processor has
cache hit most of the time, to the case where no data in a cache line is accessed more
than once. Meanwhile, the accelerators being compared do not have any caches instantiated
using the programmable logic. As we are only mirroring the memory access patterns of
the processor instead of applying additional high level transformations such as blocking, the

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 85

1.2

M Online Check

1 2 way split + 4 HP ports

M No split + 1 HP port

Normalized Execution Time

8 16 32 64 128
Grid Size (number of units per dimension)

Figure 5.14: Overall Execution Time of Accelerators with Online Checks for GemsFDTD

instantiation of expensive caches on the FPGA provides little overall performance gain for
large sized problems.

Shown in figure 5.15 is the performance as we vary the amount of iteration space splitting.
As more coarse grained parallelism is exploited, the performance improves. In fact, without
splitting the iteration space, the accelerator may run slower than the processor, especially
when the problem size is small and fits in the CPU’s cache completely. When the outer loop
is split four ways however, the accelerator is always faster and for matrices of size 512 by
512, the speedup versus software reaches 2.7x. Note the overall performance does not scale
linearly when more coarse grained parallelism is exploited. This is due to the decrease of the
clock frequency as the resource utilization goes up, and the single HP port’s incapability to
keep up with the increase in memory requests. The second effect can be seen from figure 5.16,
which shows how the performance of the fastest accelerator configuration (4 way split) varies
as more HP ports are enabled. In particular, there is a significant increase in performance
when the the number of HP ports changes from 1 to 2, though enabling more ports beyond

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 86
3.5
3 i No Split i 2 way split

3 waysplit @4 way split

2.5

N

=
wn

[EY

Speedup v.s. Software Binary

o
uv
l

32 64 128 256 512
Number of Rows (Columns) in Square Matrices

Figure 5.15: Performance Comparison of Decoupled Computational Pipeline and Software
Binary for Matrix Multiplication

2 seems to produce less pronounced effects.

In figure 5.17, the effect of online checks is shown. The actual overhead is smaller com-
pared to the previous benchmark as the number of memory access pairs going through the
test is much smaller. The performance improvement provided by the two accelerator con-
figurations listed is virtually unaffected as the actual computation takes up two orders of
magnitude more time than the dependency tests.

Benchmark 3: Sobel Edge Detection

Another application we have benchmarked is the Sobel edge detection. An input image
stored in an 2D array is convolved with small sized kernels, the result of which gets dumped
into a separate 2D array. The image can be large and may not fit on chip while a cache
instantiated with programmable logic can easily buffer the kernel array. The main loop nest
extracted (convolution) in this benchmark is also a core computation pattern being used in
digital signal processing, machine learning and many other fields.

As the memory accesses in this application exhibits very high spatial and temporal lo-
cality, caches are instantiated on the programmable logic. The iteration space is again split

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 87
4
3.5 i 1 HP Port [
2 HP Ports
3 3 HP Ports ‘ —
4 HP Ports

N
U

Speedup v.s. Software Binary
T N

0.5

32 64 128 256 512
Number of Rows (Columns) in Square Matrices

Figure 5.16: Matrix Multiplication Performance with 4-Way Split of the Iteration Space and
Different Number of HP Ports

at the outermost loop level, chunks of the input image are thus convolved with the kernel
in parallel. The performance improvement over the software implementation is shown in
figure 5.18.

The speed improvement again does not scale up linearly when more aggressive thread
level parallelization is employed. The achieved clock frequency drops from 111 MHz to
91 MHz when the iteration is split four ways, which seems to account for the plateauing
of performance gain completely. Figure 5.19 confirms that by showing how enabling more
ports into the memory has little effect on the performance. The caches absorbs most of the
requests due to the locality of memory accesses. A single HP port is therefore sufficient for
supplying data to the parallel computational pipeline.

Finally, the online checks’ overhead for edge detection is shown in figure 5.20. Similar to
previous benchmarks, the improvement provided the accelerator is not offset by the extra
computation of performed before its invocation.

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 88

0.9

B Online Check

0.8 4 Way Split + 4 HP ports |—

B 3 Way Split + 1 HP port

Normalized Execution Time
o

32 64 128 256 512
Number of Rows (Columns) in Square Matrices

Figure 5.17: Overall Execution Time of Accelerators with Online Checks for Matrix Multi-
plication

Area Results

Table 5.1 lists how the resource usage varies with the amount of coarse grained parallelism
utilized in each benchmarks. For all the benchmarks, the LUT and FF usage roughly scale
linearly with the amount of coarse grained parallelism exploited in the implementation. DSP
usage in matrix multiplication, on the other hand, increases super linearly as the iteration
space gets divided. This is due to the fact that in the non-multithreaded implementation, the
zeroes in the lower loop bounds make it possible to generate all memory addresses without
using DSP blocks. Subsequent iteration space splitting creates lower loop bounds which are
run time variables, leading to the instantiation of multipliers in the address calculation parts
of the dataflow, demanding more DSP blocks. Meanwhile, GemsFDTD more than doubled
its BRAM usage when two parallel threads are used. This non-linear increase did not come
from the pipeline itself, but the AXI crossbars used to connect it with the HP port. As the

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 89

4.5

i No Split W 2 way split

3 way split @ 4 way split

w
[

w

Speedup v.s. Software Binary
[y N
n N [,

[EEN

o
[

128 256 512 1024
Size of the Square Image (Number of Rows/Columns of Pixels)

Figure 5.18: Performance Comparison of Decoupled Computational Pipeline and Software
Binary for Edge Detection

number of memory ports exceeds 16 when two way split is performed, an additional AXI
interconnect IP was instantiated, which uses a few extra BRAM blocks.

Overall, for each loop nest, which accelerator configuration to use depends on if the area
used is justifiable in light of the other accelerators’ potential to provide speedup. As we are
only exploring the possibility of binary based accelerator generation by looking at a single
loop nest at a time, the investigation of this trade-off is left to future work.

5.7 Discussion and Future Work

Application of Our Approach in Other Contexts

Our two phased approach leveraging both the run time profile and the static program can be
used for parallelization in other contexts as well. There are certain functions whose memory
access patterns are not necessarily analyzable using only the source code. An example of this
is shown in figure 5.21. As the data structures are passed into the function using pointers,
the constant terms (a, b and c¢) and the coefficient (dim) in the Diophantine equations are all

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 90
3.8
i 1 HP Port
3.75 i 2 HP Ports |
. 3 HP Ports
. 4 HP Ports
3.7 —

3.65

3.6

Speedup v.s. Software Binary

128 256 512 1024
Size of the Square Image (Number of Rows/Columns of Pixels)

3.45 -

Figure 5.19: Edge Detection Performance with 4-Way Split of the Iteration Space and Dif-
ferent Number of HP Ports

Table 5.1: Resource Usage for Different Configurations of Decoupled Computational Pipeline

Benchmark Iters'p?gace LUT | FF | DSP | BRAM
No Split | 19044 | 20209 | 48 20

GemsEDTD g 138730 [41749 | 96 15
No Split | 9441 | 7945 | 5 6

Matrix 2 Way | 18505 | 16772 | 14 12

Multiplication 4 Way 36488 | 30254 | 32 24
No Split | 12184 | 13413 | 27 30
Sobel Edge 2 Way 22879 | 25433 | 54 61
Detection 4 Way 43500 | 49001 | 108 122

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 91

1.2
M Online Check

1 4 Way Split + 1 HP port

m No Split + 1 HP port

Normalized Execution Time

64 128 256 512 1024
Size of the Square Image (Number of Rows/Columns of Pixels)

Figure 5.20: Overall Execution Time of Accelerators with Online Checks for Edge Detection

unknown. Banerjee’s method, in this case, does not produce affirmative result. On the other
hand, with the help of runtime profile, this function can also be analyzed. In this example,
as negative results are produced when tested for the dependency vector (*,*), every level of
the loop is parallelizable.

Other parallel compute platforms can also be the targets of our methodology. Depending
on the speed of the compilation toolchain, the of fline phase may potentially be performed
during run time. If this online compilation uses the current run time profile, we can forgo
the additional online checks and essentially have just-in-time parallelization. In general the
choice between having a cached parallel implementation with online checks and performing
just-in-time parallelization largely hinges on the speed with which parallel implementation
can be created, relative to the execution time of the original code. FPGA accelerators, with
potentially hours of compilation time, falls on one end of this spectrum and the two phased
approach ends up being the most appropriate one.

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING

PROGRAM BINARIES 92
void foo(int* a, int* b, int* ¢, int dim) void foo(int* a, int* b, int* ¢, int dim)
{ {
inti,j; inti,j;
for(j=0; j<dim; j++) for(j=0; j<dim; j++)
for(i=0; i<dim; i++) for(i=0; i<dim; i++)
cli*dim+j] =[a[i*dim-+j]bli*dim-+jl; cli*dim-+j] = a[i*dim+j|+b[i*dim-+jl;
L « VN
Cannot analyze: The memory Analysis result: no alias between loads and store
accesses can potentially alias - Loop parallelizable

Value from past profile:
a =10000; b = 20000; ¢ = 30000; dim = 50 *The parallelization is still speculative as

the past profile doesn’t necessarily reflect
how the function will be used in the future

Figure 5.21: Analyze Loop in C with Value from Past Profile

Data Transfer for CPU-FPGA system with Separate Address
Space

As the FPGA is used to implement accelerators for programs executed on CPU, both the
source and final destination of its working datasets are in the address space of the processor.
Our framework assumes the FPGA can directly access the CPU’s memory, and leverages
the decoupled computational pipeline synthesis flow to naturally extract sets of address
generators who stream requests into the memory subsystem. On the other hand, in systems
where the FPGA has its own address space, the program data would need to be explicitly
transferred into and out of it before and after the accelerator execution. Many of the state-
of-the-art platforms with this model are connected to the host through PCI-e connections,
which is rather similar to discrete GPU platforms. As the GPGPUs were getting more
widely adopted, the automatic management of their communication with the CPU hosts was
also studied in multiple projects [141][142][143]. Most of these frameworks require compiler
assistance or user guidance to facilitate the management of data transfers and is therefore
not directly applicable to a flow targeting existing program binaries.

For the case where the offloaded computation is assumed to have analyzable memory
access patterns, like in our flow, it is possible to calculate a prior: the memory footprint
for the accelerated loop nests. As the referenced addresses are always affine functions of the
loop indices, for a given part of the iteration space, the boundaries of the accessed range of
memory by an instruction can always be computed. This computation would become another
part of the online phase, supplying parameters for the actual data movement mechanisms.

There is certainly a large space for exploration when it comes to performing the data

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 93

transfer, especially when the addresses referenced by the loop nest are non-contiguous. Many
fine grained data transfers may be less efficient compared to a few coarser grained memcpy
invocation, even though the later may incur wastage as some unused data is also moved.
Co-optimizing the data transfer and the computation parallelization based on application
specific memory access patterns requires significant effort and can be an interesting direction
for future research.

Output from Disassembler C generated from

—— > 28:mov ((%esp),%esi preprocessing step
2b: xor %eax,%eax
2d: xor %ecx,%ecx bb28: .
2f: mov 0x20(%esp),%edi eax =0; Converspn o
33: mov Ox1c(%esp),%edx ecx = 0; N stackvariables
37:lea (%edi,%esi,1),%ebp ebp = stk_esp_x20 + stk_esp;
3a: mov (0x18(%esp),%edi-— | edjzstk_esp_x18+ stk_esp;
3e:add %esi,%edi esi = stk_esp_x1c + stk_esp;
40: add %edx,%esi bb4s: .
j 42:lea OxO0(%esi),%esi edx = *(mem+r|(_ed_i+e_a>9|/sizeof(int));
48: mov (%edi,%eax,1),%edx ecx = ecx + 1;
4b:add $0x1,%ecx edx += *(mem+r|(_e;i+_ea;)}sizeof(int));
. 4de:add (%esi,%eax,1),%edx *(mem-+(ebp+eax)/sizeof(int)) = edx;
I 51:mov %edx,0x0(%ebp,%eax,1) eax += ebx;
55:add %ebx,%eax if(stk_esp_x24 != ecx)
57:cmp 0x24(%esp),%ecx goto bb4s;
Sb:jne 48 stk_esp+=4;
5d: addl $0x4,(%esp) if(stk_esp!=ebx)
61:cmp %ebx,(%esp) goto bb28;
64:jne 28

[:‘ (stk_espinitial + Stk_esp_x18at) + €bx*i + 4%
|| (stk_espia + stk_esp_x1Ciiia) + €0X*i + 4%j
From profile: ebx >> 4
-2 loop interchange (between i loop and j loop) helps locality

Figure 5.22: Loop Interchange Based on Coefficient Value from Past Execution Profile

Other Optimization for FPGA Accelerators

While our flow exploits parallelism in multiple different levels, there are many other potential
optimizations incorporable into our framework. For instance, an important factor worth
considering in generation of accelerators is the locality of data accesses. While multiple
datapaths can easily saturate the off-chip memory bandwidth, there might be wastage if
opportunities for data reuse are missed. Even in the absence of data reuse, requests for

CHAPTER 5. ACCELERATOR GENERATION AND INTEGRATION USING
PROGRAM BINARIES 94

contiguous segments or memory locations close to each other are more efficiently served by
the caches and the memory subsystem. For programs which were written with locality in
mind or compiled using toolchain capable of locality optimizations, the accelerators generated
from their binaries would have already benefited from all the techniques applied. In the
absence of those, our approach would still allow some helpful analysis and transformations
to be performed during accelerator generation.

One example would be using loop interchange to increase locality. To generate the imple-
mentation with the smaller memory footprint (normalized by iteration count) at the inner
loop level, we can leverage the run time values from the past profiles. As the targeted loops
for our flow contain memory references whose addresses are affine expressions of the loop
index variables, the coefficient for each of them decides how large of a stride each iteration
takes, which conveniently approximate how “unlocal” the memory accesses are. Thus for a
particular loop index variable, the smaller the coefficient, the deeper its corresponding loop
level should go. This is illustrated in figure 5.22. Of course, as the interchange is performed
based on past input data, for it to be valid, the resultant direction vectors can not have
leading elements being “ > ” when the accelerator is invoked with new data. To achieve
this, the online phase would need to first check if the element being moved outward is “ > .
If it is, then we check if all the levels outside of it are “ =". If the test result is affirmative,
then the loop interchange has violated the original program order and the accelerator should
not be invoked.

There are also other transformations which can be applied to extract additional paral-
lelism or to achieve better data reuse. Loop fission and loop tiling, for instance, are techniques
used in some optimizing compilers. Their incorporation is certainly feasible with our general
approach and will add more dimensions to the design space.

95

Chapter 6

Conclusion

The main challenge in making FPGA a viable mainstream computing platform is to provide
both good quality of results and ease of use to a large customer base. Conventional HLS
serves as a great productivity tool for hardware engineers who have good understanding of
the low level implementation details and the mapping process. It does not, unfortunately,
provide a easy path for software programmers to quickly offload computation onto FPGA in
an attempt to achieve better performance. Despite the relative ease of creating a hardware
engine from high level languages, the advantage of programmable logic over general purpose
processor can rarely be realized without extensive rewriting of the software code. In this
thesis, we have constructed flows and performed experiments to validate a few possible
approaches with which this gap between productivity and implementation quality can be
narrowed.

The decoupled computational pipeline synthesis is an instance of a source to source trans-
formation flow converting sequential programs to process networks. A partitioning algorithm
was proposed to specifically cater to the characteristics of the FPGA platform. By convert-
ing a single threaded sequential program to a cascade of independently scheduled modules,
the flow creates a pipeline through which data can stream. This paradigm is especially suit-
able for FPGA mapping and has proven to have significant performance advantage against
CPU and direct HLS implementations. The complementary deadlock analysis scheme helps
determine the required sizes of the FIFO channels to prevent artificial deadlocks. There are
certain cases where the needed buffer space cannot be statically determined, which the ana-
lyzer can reveal as well. Process networks generated using other partitioning algorithms and
mapped to platforms other than FPGAs may also benefit from the analysis framework we
have proposed, as long as the usage of the channels follows certain rules. In essence, we have
built the infrastructure with which a user can extract more performance from the FPGA
without providing algorithm descriptions drastically different than typical processor-centric
software kernels.

An even more aggressive attempt to reduce user involvement in generating accelerators
was to use the program binaries as the starting point of high level synthesis. With the help
of past execution profiles, memory level and coarse grained parallelism can all be exploited.

CHAPTER 6. CONCLUSION 96

On the other hand, due to the probabilistic nature of this profile based approach, dynamic
checking mechanisms are needed to ensure the parallelization performed during accelerator
synthesis is actually valid. In general, the amount of computation involved in these run time
checks scales up with the number of memory accesses performed by the executed binary.
However, for loop nests with analyzable memory access patterns, the run time checks needed
can be of constant cost. We devised a flow targeting these kernels, demonstrating the
possibility of user-transparent accelerator generation and integration, into which past work
in optimizing compilers can also be incorporated.

6.1 Future Explorations

For each part in this thesis, the potential for further investigation was also discussed. As the
decoupled computational pipeline is used as the core template for the accelerator generation,
different aspects of its generation can be further explored. For the algorithm of instruction
partitioning, the current simplistic approach might have been overly aggressive in decoupling
parts of the control data flow graph, resulting in large area overhead. As problem size gets
even larger, our scheme would need to be modified to contain the cost of the generated
pipeline. Of course, it is difficult to mathematically relate the final performance with how
computation nodes are distributed, thus we did not formulate the partitioning process as a
tractable optimization problem. Meanwhile, design space exploration requiring the actual
mapping onto the FPGA platform would suffer from long compilation time. High level
synthesis, while being relatively fast in providing schedules of compute operations, does not
generate accurate estimate of final performance when unanalyzable interactions with the
memory subsystem are involved. We believe a quick performance estimator incorporating
data access overhead can be really helpful, especially if randomized heuristics are to be used
for generating good solutions.

Another possible dimension for exploration is to vary the pipeline’s flexibility by changing
the depths of the FIFO channels. With the deadlock checking mechanism, we can protect
against artificial deadlocks while making the trade-off between resource usage and rigidity of
the pipeline’s execution schedule. From the minimally required buffer sizes in the channels,
we expect the initial increase in FIFO depths to improve the pipeline performance more
significantly compare to when all the modules are sufficiently decoupled. Run time mon-
itoring using simple occupancy counters may provide information about the usefulness of
buffer spaces in individual channels, revealing opportunities for resource saving. Meanwhile,
the same information can also be used to identify performance bottlenecks, guiding invest-
ment of hardware resources to specific modules, if more aggressive parallelization and better
caching are implementable and have measurable benefits. It would be interesting, though
challenging, to incorporate all these ideas and build an infrastructure performing automatic
tuning of the pipelines as well as individually modules in them.

Finally for the pipelines generated from program binaries of regular computation kernels,
there are other high level optimizations (e.g. loop interchange) which may boost performance

CHAPTER 6. CONCLUSION 97

for some applications, assuming they are not already performed by the compiler producing
the original binaries. The two phased approach proposed in this work provides a pathway
for these existing techniques to be applied to the seemingly irregular memory access patterns
generated from actual affine memory references, exposing the possibility of performing many
optimizations in user transparent ways. Meanwhile, it is worth noting that this method is
applicable to more than just the FPGA platforms. Given that modern SoCs already have
multicore, SIMD and reconfigurable logic all integrated in the same chip, one possible future
direction would be to apply our approach to all these different compute substrates. The
comparison results might reveal new insight about the compatibility between components of
a heterogeneous platform and various transformations. It may leads to a possible flow where
program binaries can be decomposed and executed by different compute substrate collab-
oratively, in a user transparent manner. Of course, the current decoupled computational
pipeline synthesis is designed to be rather FPGA specific. When different modules can be
mapped to different compute substrate, the design space for the pipeline would become even
larger, amplifying all the challenges we have mentioned previously.

6.2 Reflections and Closing Remarks

The methods proposed in this work try to make FPGA accessible to programmers or even end
users who have little hardware knowledge. Thus the assumed starting points for accelerator
generation are always single threaded software implementations written for CPU execution.
There is no re-layout of data in the memory or rewriting of high level algorithms. Admittedly,
the minimization of user effort we strive for in these flows may not be as important in
more traditional FPGA applications, where the reconfigurable arrays are used as less risky;,
faster to market ASIC replacement. In those situations, system performance and resource
utilization are supposed to be as optimized as possible. The design team, with more hardware
expertise and engineering resources, can potentially create more efficient implementations by
architecting the high level computation and data layout patterns with its specific FPGA as
the target. HLS, in this context, allows for faster iteration and design space exploration of
the core compute structure. Meanwhile, other components such as the on-chip interconnect,
which are not suitable for HLS, can also be custom designed in HDL to complement the
accelerators’ operation. The speedups achievable can be higher than what have been realized
in this study.

On the other hand, as reconfigurable computing platforms are getting more ubiquitous,
the traditional way of performing FPGA design will not scale with the number of applica-
tions which can potentially benefit from hardware acceleration. A possible compromise is
to create well optimized libraries targeting emerging applications. This seems to be the ap-
proach vendors have taken. For instance, the most recent development in deep learning has
motivated both Intel and Xilinx to create FPGA IPs targeting developers in this space. From
my own experience in this study, completely automated flows would always have limitations.
Even though our approach has proven to be really helpful for certain types of computations,

CHAPTER 6. CONCLUSION 98

we cannot claim it to be universally applicable. We do believe, however, the techniques
introduced in this work can lower the barrier of using FPGAs and we are confident that that
with future development of high level design methodologies, reconfigurable computing can
benefit more users in more direct ways.

99

Bibliography

Gordon E. Moore. “Readings in Computer Architecture”. In: ed. by Mark D. Hill,
Norman P. Jouppi, and Gurindar S. Sohi. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000. Chap. Cramming More Components Onto Integrated Circuits,
pp. 56-59. ISBN: 1-55860-539-8. URL: http://dl.acm.org/citation.cfm?id=
333067 .333074.

Robert H Dennard et al. “Design of ion-implanted MOSFET’s with very small phys-
ical dimensions”. In: Solid-State Circuits, IEEE Journal of 9.5 (1974), pp. 256-268.

Andrew Danowitz et al. “CPU DB: Recording Microprocessor History”. In: Commun.
ACM 55.4 (Apr. 2012), pp. 55-63. 1SSN: 0001-0782. DOI: 10.1145/2133806 . 2133822.
URL: http://doi.acm.org/10.1145/2133806.2133822.

Robert Wilson et al. The SUIF Compiler System: A Parallelizing and Optimizing
Research Compiler. Tech. rep. Stanford, CA, USA, 1994.

Bill Blume et al. “Polaris: The Next Generation in Parallelizing Compilers”. In: PRO-
CEEDINGS OF THE WORKSHOP ON LANGUAGES AND COMPILERS FOR
PARALLEL COMPUTING. Springer-Verlag, Berlin/Heidelberg, 1994, pp. 10-1.

H. Kasahara et al. “A multi-grain parallelizing compilation scheme for OSCAR (opti-
mally scheduled advanced multiprocessor)”. English. In: Languages and Compilers for
Parallel Computing. Ed. by Utpal Banerjee et al. Vol. 589. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1992, pp. 283-297. 1SBN: 978-3-540-55422-6. DOT:
10.1007/BFb0038671. URL: http://dx.doi.org/10.1007/BFb0038671.

CORPORATE Rice University. “High Performance Fortran Language Specification”.
In: SIGPLAN Fortran Forum 12.4 (Dec. 1993), pp. 1-86. 1SSN: 1061-7264. DOT: 10.
1145/174223.158909. URL: http://doi.acm.org/10.1145/174223.158909.

Shih-Wei Liao et al. “SUIF Explorer: An Interactive and Interprocedural Parallelizer” .
In: SIGPLAN Not. 34.8 (May 1999), pp. 37-48. 1ssN: 0362-1340. DO1: 10 . 1145/
329366.301108. URL: http://doi.acm.org/10.1145/329366.301108.

K. Kennedy, K.S. McKinley, and C.-W. Tseng. “Interactive parallel programming
using the ParaScope Editor”. In: Parallel and Distributed Systems, IEEE Transactions
on 2.3 (1991), pp. 329-341. 1sSN: 1045-9219. po1: 10.1109/71.86108.

BIBLIOGRAPHY 100

. Kuon and J. Rose. easuring the Gap Between s an s”. In:

10] L K dJ. R “M i he Gap B FPGAs and ASICs”. In: IEFEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 26.2
(2007), pp. 203-215. 1SSN: 0278-0070. DOI: 10.1109/TCAD.2006.884574.

[11] Virtex-5 Family Overview. Xilinx Inc. 2015.
2] Arria 10 Device Overview. Altera Inc. 2016.

[13] Jeremy Fowers et al. “A Performance and Energy Comparison of FPGAs, GPUs, and
Multicores for Sliding-window Applications”. In: Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. FPGA '12. Monterey,
California, USA: ACM, 2012, pp. 47-56. 1SBN: 978-1-4503-1155-7. DOI: 10 . 1145/
2145694 .2145704. URL: http://doi.acm.org/10.1145/2145694.2145704.

[14] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. “High-throughput Bayesian Com-
puting Machine with Reconfigurable Hardware”. In: Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA
"10. Monterey, California, USA: ACM, 2010, pp. 73-82. 1SBN: 978-1-60558-911-4. DOT:
10.1145/1723112 . 1723127. URL: http://doi.acm.org/10.1145/1723112.
1723127.

[15] Xiang Tian and Khaled Benkrid. “High-Performance Quasi-Monte Carlo Financial
Simulation: FPGA vs. GPP vs. GPU”. In: ACM Trans. Reconfigurable Technol. Syst.
3.4 (Nov. 2010), 26:1-26:22. 1SSN: 1936-7406. DOI: 10.1145/1862648.1862656. URL:
http://doi.acm.org/10.1145/1862648.1862656.

[16] FPGA Fundamentals. National Instruments, 2012.
[17] 510T FPGA Accelerator Cards. Nallatech. 2015.
[18] Maxeler Technologies. 2015.
[19]

Melissa C Smith, Jeffery S Vetter, and Sadaf R Alam. “Scientific computing beyond
CPUs: FPGA implementations of common scientific kernels”. In:

[20] O. Lindtjorn et al. “Beyond Traditional Microprocessors for Geoscience High-Performance
Computing Applications”. In: Micro, IEEE 31.2 (2011), pp. 41-49. 1sSN: 0272-1732.
DOI: 10.1109/MM.2011.17.

[21] J.W. Lockwood et al. “A Low-Latency Library in FPGA Hardware for High-Frequency
Trading (HFT)”. In: High-Performance Interconnects (HOTI), 2012 IEEE 20th An-
nual Symposium on. 2012, pp. 9-16. DOI: 10.1109/HOTI.2012.15.

2] Zyng-7000 All Programmable SoC Overview. Xilinx Inc. 2013.
3] Cyclone V Hard Processor System Technical Reference Manual. Altera Inc. 2014.

[24] Philippe Coussy and Adam Morawiec. High-Level Synthesis: From Algorithm to Digi-
tal Circuit. 1st. Springer Publishing Company, Incorporated, 2008. 1SBN: 1402085877,
9781402085871.

BIBLIOGRAPHY 101

[25]

[20]

[31]

[32]

[33]

P. Coussy et al. “An Introduction to High-Level Synthesis”. In: Design Test of Com-
puters, IEEE 26.4 (2009), pp. 8-17. 18SN: 0740-7475. por: 10.1109/MDT. 2009 . 69.

J. Cong et al. “High-Level Synthesis for FPGAs: From Prototyping to Deployment”.
In: Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 30.4 (2011), pp. 473-491. 1SSN: 0278-0070. DOI: 10.1109/TCAD.2011.2110592.

Catapult C Synthesis Users and Reference Manual. Mentor Graphics. 2010.
Nios II C2H Compiler User Guide. Altera Inc. 2009.
Vivado Design Suite High-level Synthesis. Xilinx Inc. 2012.

Andrew Canis et al. “LegUp: An Open-source High-level Synthesis Tool for FPGA-
based Processor/Accelerator Systems”. In: ACM Trans. Embed. Comput. Syst. 13.2
(Sept. 2013), 24:1-24:27. 1sSN: 1539-9087. DOI: 10.1145/2514740. URL: http://doi.
acm.org/10.1145/2514740.

J. Villarreal et al. “Designing Modular Hardware Accelerators in C with ROCCC
2.0”. In: Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE
Annual International Symposium on. 2010, pp. 127-134. DOI: 10.1109/FCCM. 2010.
28.

Jongsok Choi et al. “Impact of Cache Architecture and Interface on Performance and
Area of FPGA-Based Processor/Parallel-Accelerator Systems”. In: Field- Programmable
Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Sym-
posium on. 2012, pp. 17-24. po1: 10.1109/FCCM.2012.13.

Shaoyi Cheng et al. “Exploiting Memory-Level Parallelism in Reconfigurable Accel-
erators”. In: Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE
20th Annual International Symposium on. 2012, pp. 157-160. DOI: 10.1109/FCCM.
2012.35.

Mario Roberto Barbacci. “Automated Exploration of the Design Space for Register-
transfer (Rt) Systems.” AAI7414648. PhD thesis. Pittsburgh, PA, USA, 1973.

A. Parker et al. “The CMU Design Automation System: An Example of Automated
Data Path Design”. In: Proceedings of the 16th Design Automation Conference. DAC
'79. San Diego, CA, USA: IEEE Press, 1979, pp. 73-80. URL: http://dl.acm.org/
citation.cfm?id=800292.811694.

P. G. Paulin and J. P. Knight. “Force-directed Scheduling in Automatic Data Path
Synthesis”. In: Proceedings of the 24th ACM/IEEE Design Automation Conference.
DAC ’87. Miami Beach, Florida, USA: ACM, 1987, pp. 195-202. 1SBN: 0-8186-0781-5.
DOI: 10.1145/37888.37918. URL: http://doi.acm.org/10.1145/37888.37918.

Nohbyung Park and Alice Parker. “Sehwa: A Program for Synthesis of Pipelines”.
In: Proceedings of the 23rd ACM/IEEE Design Automation Conference. DAC '86.
Las Vegas, Nevada, USA: IEEE Press, 1986, pp. 454-460. 1SBN: 0-8186-0702-5. URL:
http://dl.acm.org/citation.cfm?id=318013.318086.

BIBLIOGRAPHY 102

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Raul Camposano and Wayne H. Wolf, eds. High-Level VLSI Synthesis. Norwell, MA,
USA: Kluwer Academic Publishers, 1991. 1SBN: 0792391594.

P.G. Paulin and J.P. Knight. “Scheduling and Binding Algorithms for High-Level
Synthesis”. In: Design Automation, 1989. 26th Conference on. 1989, pp. 1-6. DOI:
10.1109/DAC.1989.203360.

S. Devadas and A.R. Newton. “Algorithms for hardware allocation in data path syn-
thesis”. In: Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on 8.7 (1989), pp. 768-781. 1sSN: 0278-0070. DOI: 10.1109/43.31534.

Chia-Jeng Tseng and D.P. Siewiorek. “Automated Synthesis of Data Paths in Digi-
tal Systems”. In: Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 5.3 (1986), pp. 379-395. 1SsN: 0278-0070. DOI: 10.1109/TCAD. 1986.
1270207.

Cheng-Tsung Hwang, J.-H. Lee, and Yu-Chin Hsu. “A formal approach to the schedul-
ing problem in high level synthesis”. In: Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 10.4 (1991), pp. 464-475. 1SsN: 0278-0070. DOTI:
10.1109/43.75629.

W. Grass, M. Mutz, and W.-D. Tiedemann. “High level synthesis based on formal
methods”. In: EUROMICRO 94. System Architecture and Integration. Proceedings of
the 20th EUROMICRO Conference. 1994, pp. 83-91. DOI: 10.1109/EURMIC. 1994.
390403.

C Karfa et al. “A Formal Verification Method of Scheduling in High-level Synthesis”.
In: Proceedings of the 7th International Symposium on Quality Electronic Design.
ISQED ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 71-78. ISBN:
0-7695-2523-7. DOI: 10.1109/ISQED.2006.10. URL: http://dx.doi.org/10.1109/
ISQED.2006.10.

D. Genin et al. “DSP specification using the Silage language”. In: Acoustics, Speech,
and Signal Processing, 1990. ICASSP-90., 1990 International Conference on. 1990,
1056-1060 vol.2. por: 10.1109/ICASSP.1990.116097.

L. Claesen et al. “Automatic synthesis of signal processing benchmark using the
CATHEDRAL silicon compilers”. In: Custom Integrated Circuits Conference, 1988.,
Proceedings of the IEEE 1988. 1988, pp. 14.7/1-14.7/4. pO1: 10.1109/CICC. 1988.
20869.

Chi-Min Chu et al. “HYPER: An Interactive Synthesis Environment for High Per-
formance Real Time Applications”. In: IN PROCEEDINGS OF THE INTERNA-
TIONAL CONFERENCE ON COMPUTER DESIGN. 1989, pp. 432-435.

David W. Knapp. Behavioral Synthesis: Digital System Design Using the Synopsys
Behavioral Compiler. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996. ISBN:
0-13-569252-0.

BIBLIOGRAPHY 103

[58]

Mentor Graphics Monet User Manual. Mentor Graphics Inc. 1999.
C-to-Silicon Compiler High-Level Synthesis. Cadence Inc., 2008.
Cynthesizer User Guide. Forte Design System. 2003.

V. Kathail et al. “PICO: automatically designing custom computers”. In: Computer
35.9 (2002), pp. 39-47. 15SN: 0018-9162. DOI: 10.1109/MC.2002.1033026.

G. Martin and G. Smith. “High-Level Synthesis: Past, Present, and Future”. In:
Design Test of Computers, IEEE 26.4 (2009), pp. 18-25. 1sSN: 0740-7475. DOI: 10.
1109/MDT.2009.83.

Greg Stitt, Frank Vahid, and Walid Najjar. “A Code Refinement Methodology for
Performance-improved Synthesis from C”. In: Proceedings of the 2006 IEEE/ACM
International Conference on Computer-aided Design. ICCAD ’06. San Jose, Califor-
nia: ACM, 2006, pp. 716-723. 1SBN: 1-59593-389-1. DOI: 10.1145/1233501.1233649.
URL: http://doi.acm.org/10.1145/1233501.1233649.

Yun Liang et al. “High-level Synthesis: Productivity, Performance, and Software Con-
straints”. In: JECE 2012 (Jan. 2012), 1:1-1:1. 1sSN: 2090-0147. poI: 10.1155/2012/
649057. URL: http://dx.doi.org/10.1155/2012/649057.

G. Inggs et al. “Is high level synthesis ready for business? A computational finance case
study”. In: Field-Programmable Technology (FPT), 2014 International Conference on.
2014, pp. 12-19. por: 10.1109/FPT.2014.7082747.

David W. Wall. “Limits of Instruction-level Parallelism”. In: Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS IV. Santa Clara, California, USA: ACM, 1991, pp. 176—
188. 1SBN: 0-89791-380-9. DOT: 10.1145/106972.106991. URL: http://doi.acm.
org/10.1145/106972.106991.

M. Lam. “Software Pipelining: An Effective Scheduling Technique for VLIW Ma-
chines”. In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation. PLDI '88. Atlanta, Georgia, USA: ACM, 1988,
pp. 318-328. 1SBN: 0-89791-269-1. DOI: 10.1145/53990.54022. URL: http://doi.
acm.org/10.1145/53990.54022.

B. Ramakrishna Rau. “Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops”. In: Proceedings of the 27th Annual International Symposium on
Microarchitecture. MICRO 27. San Jose, California, USA: ACM, 1994, pp. 63-74.
ISBN: 0-89791-707-3. DOIL: 10.1145/192724.192731. URL: http://doi.acm.org/10.
1145/192724.192731.

P. Tirumalai, M. Lee, and M. Schlansker. “Parallelization of Loops with Exits on
Pipelined Architectures”. In: Proceedings of the 1990 ACM/IEEE Conference on Su-
percomputing. Supercomputing '90. New York, New York, USA: IEEE Computer So-
ciety Press, 1990, pp. 200-212. 1SBN: 0-89791-412-0. URL: http://dl.acm. org/
citation.cfm?id=110382.110438.

BIBLIOGRAPHY 104

[61]

[62]

[63]

[64]

[65]

Vicki H. Allan et al. “Software Pipelining”. In: ACM Comput. Surv. 27.3 (Sept.
1995), pp. 367-432. 1ssN: 0360-0300. DOT: 10.1145/212094 .212131. URL: http:
//doi.acm.org/10.1145/212094.212131.

Kemal Ebcioglu. “A Compilation Technique for Software Pipelining of Loops with
Conditional Jumps”. In: Proceedings of the 20th Annual Workshop on Microprogram-
ming. MICRO 20. Colorado Springs, Colorado, USA: ACM, 1987, pp. 69-79. ISBN:
0-89791-250-0. DOI: 10.1145/255305.255317. URL: http://doi.acm.org/10.1145/
255305.255317.

Corinne Ancourt and Francois Irigoin. “Scanning Polyhedra with DO Loops”. In:
Proceedings of the Third ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPOPP "91. Williamsburg, Virginia, USA: ACM, 1991, pp. 39—
50. 1SBN: 0-89791-390-6. DOI: 10.1145/109625.109631. URL: http://doi.acm.org/
10.1145/109625.109631.

Cdric Bastoul et al. “Putting Polyhedral Loop Transformations to Work”. English.
In: Languages and Compilers for Parallel Computing. Ed. by Lawrence Rauchwerger.
Vol. 2958. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004,
pp- 209-225. 1SBN: 978-3-540-21199-0. DOI: 10.1007/978-3-540-24644-2_14. URL:
http://dx.doi.org/10.1007/978-3-540-24644-2_14.

Mohamed-Walid Benabderrahmane et al. “The Polyhedral Model Is More Widely Ap-
plicable Than You Think”. English. In: Compiler Construction. Ed. by Rajiv Gupta.
Vol. 6011. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010,
pp- 283-303. ISBN: 978-3-642-11969-9. DOI: 10.1007/978-3-642-11970-5_16. URL:
http://dx.doi.org/10.1007/978-3-642-11970-5_16.

Sylvain Girbal et al. “Semi-automatic composition of loop transformations for deep
parallelism and memory hierarchies”. In: International Journal of Parallel Program-
ming 34.3 (2006), pp. 261-317.

William Pugh. “Uniform techniques for loop optimization”. In: Proceedings of the 5th
international conference on Supercomputing. ACM. 1991, pp. 341-352.

Michael E Wolf and Monica S Lam. “A loop transformation theory and an algorithm
to maximize parallelism”. In: Parallel and Distributed Systems, IEEE Transactions
on 2.4 (1991), pp. 452-471.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. “Compiler Transformations
for High-performance Computing”. In: ACM Comput. Surv. 26.4 (Dec. 1994), pp. 345—
420. 18SN: 0360-0300. DOI: 10.1145/197405.197406. URL: http://doi.acm.org/
10.1145/197405.197406.

BIBLIOGRAPHY 105

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. “Compiler Optimizations
for Fortran D on MIMD Distributed-memory Machines”. In: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing. Supercomputing '91. Albuquerque, New
Mexico, USA: ACM, 1991, pp. 86-100. 1SBN: 0-89791-459-7. DOI: 10.1145/125826.
125886. URL: http://doi.acm.org/10.1145/125826.125886.

Paul Feautrier. “Semantical analysis and mathematical programming; application to
parallelization and vectorization”. In: Workshop on Parallel and Distributed Algo-
rithms, Bonas. Citeseer. 1988, pp. 309-320.

Wei Zuo et al. “Improving Polyhedral Code Generation for High-level Synthesis”.
In: Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis. CODES+ISSS ’13. Montreal, Que-
bec, Canada: TEEE Press, 2013, 15:1-15:10. 1SBN: 978-1-4799-1417-3. URL: http:
//dl.acm.org/citation.cfm?id=2555692.2555707.

Louis-Noel Pouchet et al. “Polyhedral-based Data Reuse Optimization for Config-
urable Computing”. In: Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays. FPGA ’13. Monterey, California, USA: ACM,
2013, pp. 29-38. 1SBN: 978-1-4503-1887-7. DOI: 10.1145/2435264 . 2435273. URL:
http://doi.acm.org/10.1145/2435264 .2435273.

Q. Liu et al. “Combining Data Reuse With Data-Level Parallelization for FPGA-
Targeted Hardware Compilation: A Geometric Programming Framework”. In: [EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 28.3
(2009), pp. 305-315. 18SN: 0278-0070. DOIL: 10.1109/TCAD.2009.2013541.

Tim Harriss et al. “Compilation From Matlab to Process Networks Realized in FPGA.”
In: Design Autom. for Emb. Sys. 7.4 (2002), pp. 385-403.

Sven van Haastregt and Bart Kienhuis. “Automated Synthesis of Streaming C Ap-
plications to Process Networks in Hardware”. In: Proceedings of the Conference on
Design, Automation and Test in Furope. DATE ’09. Nice, France: European De-
sign and Automation Association, 2009, pp. 890-893. 1SBN: 978-3-9810801-5-5. URL:
http://dl.acm.org/citation.cfm?id=1874620.1874837.

F. Mayer-Lindenberg. “High-Level FPGA Programming through Mapping Process
Networks to FPGA Resources”. In: Reconfigurable Computing and FPGAs, 2009.
ReConkFig °09. International Conference on. 2009, pp. 302-307. po1: 10 . 1109/
ReConFig.2009.73.

A. Papakonstantinou et al. “FCUDA: Enabling efficient compilation of CUDA ker-
nels onto FPGAs”. In: Application Specific Processors, 2009. SASP °09. IEEE Tth
Symposium on. 2009, pp. 35-42. DOI: 10.1109/SASP.2009.5226333.

I. Lebedev et al. “MARC: A Many-Core Approach to Reconfigurable Computing”. In:
Reconfigurable Computing and FPGAs (ReConFig), 2010 International Conference
on. 2010, pp. 7-12. DOI: 10.1109/ReConFig.2010.49.

BIBLIOGRAPHY 106

[30]

[81]

[82]

[83]

[84]

[85]

[87]

[88]

Zynq-7000 All Programmable SoC Accelerator for Floating-Point Matriz Multiplica-
tion using Vivado HLS. Xilinx Inc. 2013.

Eric S. Chung, James C. Hoe, and Ken Mai. “CoRAM: An In-fabric Memory Ar-
chitecture for FPGA-based Computing”. In: Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. FPGA '11. Monterey,
CA, USA: ACM, 2011, pp. 97-106. 1SBN: 978-1-4503-0554-9. DOI: 10.1145/1950413.
1950435. URL: http://doi.acm.org/10.1145/1950413.1950435.

Gabriel Weisz and James C. Hoe. “C-to-CoRAM: Compiling Perfect Loop Nests to
the Portable CORAM Abstraction”. In: Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays. FPGA ’13. Monterey, California,
USA: ACM, 2013, pp. 221-230. 1SBN: 978-1-4503-1887-7. DOI: 10.1145/2435264 .
2435302. URL: http://doi.acm.org/10.1145/2435264.2435302.

Jorge E. Carrillo and Paul Chow. “The Effect of Reconfigurable Units in Superscalar
Processors”. In: Proceedings of the 2001 ACM/SIGDA Ninth International Sympo-
sium on Field Programmable Gate Arrays. FPGA ’01. Monterey, California, USA:
ACM, 2001, pp. 141-150. 1SBN: 1-58113-341-3. DOI: 10.1145/360276.360328. URL:
http://doi.acm.org/10.1145/360276.360328.

S. Hauck et al. “The Chimaera reconfigurable functional unit”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 12.2 (2004), pp. 206-217. 1SSN: 1063-
8210. por: 10.1109/TVLSI.2003.821545.

A. Lodi et al. “A VLIW processor with reconfigurable instruction set for embedded
applications”. In: IEEE Journal of Solid-State Circuits 38.11 (2003), pp. 1876-1886.
ISSN: 0018-9200. por: 10.1109/JSSC.2003.818292.

R. Razdan and M. D. Smith. “A high-performance microarchitecture with hardware-
programmable functional units”. In: Microarchitecture, 1994. MICRO-27. Proceedings
of the 27th Annual International Symposium on. 1994, pp. 172-180. por: 10.1109/
MICRO.1994.717456.

Zhi Alex Ye, Nagaraj Shenoy, and Prithviraj Banerjee. “A C Compiler for a Pro-
cessor with a Reconfigurable Functional Unit”. In: Field-Programmable Gate Ar-
rays, International ACM Symposium on 0 (2000), pp. 95-100. DOI: http://doi.
ieeecomputersociety.org/10.1109/FPGA.2000.2.

J. R. Hauser and J. Wawrzynek. “Garp: a MIPS processor with a reconfigurable
coprocessor”. In: Field-Programmable Custom Computing Machines, 1997. Proceed-
ings., The 5th Annual IEEE Symposium on. 1997, pp. 12-21. DOI: 10.1109/FPGA.
1997 .624600.

Ming-Hau Lee et al. “Design and Implementation of the MorphoSys Reconfigurable
ComputingProcessor”. In: J. VLSI Signal Process. Syst. 24.2-3 (Mar. 2000), pp. 147—
164. 1SSN: 0922-5773. DOI: 10.1023/A:1008189221436. URL: http://dx.doi.org/
10.1023/A:1008189221436.

BIBLIOGRAPHY 107

e}

[95]

[96]

[98]

[99]

[100]

[101]

Virtex-1I Pro and Virtex-II Pro X Platform FPGAs. Xilinx Inc., 2004.
Alpha Data ADM-PCIE-8K5. Alpha Data Parallel Systems, 2015.
TR5-F4,0W User Manual. Terasic Inc., 2015.

T. J. Callahan, J. R. Hauser, and J. Wawrzynek. “The Garp architecture and C
compiler”. In: Computer 33.4 (2000), pp. 62-69. 1SSN: 0018-9162. pOI: 10.1109/2.
839323.

Deshanand P. Singh, Tomasz S. Czajkowski, and Andrew Ling. “Harnessing the Power
of FPGAs Using Altera’s OpenCL Compiler”. In: Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. FPGA '13. Monterey,
California, USA: ACM, 2013, pp. 5-6. ISBN: 978-1-4503-1887-7. DOI: 10 . 1145/
2435264 .2435268. URL: http://doi.acm.org/10.1145/2435264.2435268.

Jiunn-Yeu Chen et al. “A static binary translator for efficient migration of ARM-
based applications”. In: Workshop on Optimizations for DSP and Embedded Systems.
Citeseer. 2008.

Bor-Yeh Shen et al. “LLBT: an LLVM-based static binary translator”. In: Proceedings
of the 2012 international conference on Compilers, architectures and synthesis for
embedded systems. ACM. 2012, pp. 51-60.

Kemal Ebcioglu and Erik R. Altman. “DAISY: Dynamic Compilation for 100Com-
patibility”. In: Proceedings of the 24th Annual International Symposium on Computer
Architecture. ISCA 97. Denver, Colorado, USA: ACM, 1997, pp. 26-37. 1SBN: 0-89791-
901-7. pOI: 10.1145/264107.264126. URL: http://doi.acm.org/10.1145/264107.
264126.

James C. Dehnert et al. “The Transmeta Code Morphing&Trade; Software: Using
Speculation, Recovery, and Adaptive Retranslation to Address Real-life Challenges”.
In: Proceedings of the International Symposium on Code Generation and Optimiza-
tion: Feedback-directed and Runtime Optimization. CGO ’03. San Francisco, Cali-
fornia, USA: IEEE Computer Society, 2003, pp. 15-24. 1SBN: 0-7695-1913-X. URL:
http://dl.acm.org/citation.cfm?id=776261.776263.

Leonid Baraz et al. “IA-32 Execution Layer: A Two-phase Dynamic Translator De-
signed to Support TA-32 Applications on Itanium®-based Systems”. In: Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microarchitecture. MI-
CRO 36. Washington, DC, USA: IEEE Computer Society, 2003, pp. 191-. 1SBN: 0-
7695-2043-X. URL: http://dl.acm.org/citation.cfm?id=956417.956550.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. “Dynamo: A Transparent
Dynamic Optimization System”. In: SIGPLAN Not. 35.5 (May 2000), pp. 1-12. 1SSN:
0362-1340. pOI: 10.1145/358438.349303. URL: http://doi.acm.org/10.1145/
358438.349303.

Dean Deaver, Rick Gorton, and Norm Rubin. “Wiggins/Redstone: An on-line program
specializer”. In: Proceedings of the IEEE Hot Chips XI Conference. 1999.

BIBLIOGRAPHY 108

[102]

[103]

[104]

[105]

[106]

[107]

108

109]

[110]

111

Ali-Reza Adl-Tabatabai et al. “Fast, effective code generation in a just-in-time Java
compiler”. In: ACM SIGPIAN Notices. Vol. 33. 5. ACM. 1998, pp. 280-290.

Luca Gherardi, Davide Brugali, and Daniele Comotti. “A Java vs. C++ Per-
formance Evaluation: A 3D Modeling Benchmark”. In: Proceedings of the Third In-
ternational Conference on Simulation, Modeling, and Programming for Autonomous
Robots. SIMPAR’12. Tsukuba, Japan: Springer-Verlag, 2012, pp. 161-172. 1SBN: 978-
3-642-34326-1. DOI: 10.1007/978-3-642-34327-8_17. URL: http://dx.doi.org/
10.1007/978-3-642-34327-8_17.

Jing Yang et al. “Feasibility of dynamic binary parallelization”. In: Proceedings of the
4th USENIX conference on Hot Topics in Parallelism. 2011.

Efe Yardimc1 and Michael Franz. “Dynamic parallelization and vectorization of binary
executables on hierarchical platforms”. In: Journal of Instruction-Level Parallelism
10 (2008), pp. 1-24.

N. Hallou et al. “Dynamic re-vectorization of binary code”. In: Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 International Con-
ference on. 2015, pp. 228-237. DOI: 10.1109/SAMOS.2015.7363680.

Keith Cooper, Anshuman Dasgupta, and Ken Kennedy. “Vizer: A system to vectorize
intel x86 binaries”. In: Intl. Symp. on Computer Architecture, Santa Fe, NM. Vol. 64.
2002.

Aparna Kotha et al. “Automatic Parallelization in a Binary Rewriter”. In: Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO ’43. Washington, DC, USA: IEEE Computer Society, 2010, pp. 547-557.
ISBN: 978-0-7695-4299-7. DOI: 10.1109/MICR0.2010.27. URL: http://dx.doi.org/
10.1109/MICR0O.2010.27.

Guilherme Ottoni et al. “Automatic Thread Extraction with Decoupled Software
Pipelining”. In: Proceedings of the 38th Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 38. Barcelona, Spain: IEEE Computer Society, 2005,
pp- 105-118. 1SBN: 0-7695-2440-0. DOT1: 10.1109/MICR0.2005.13. URL: http://dx.
doi.org/10.1109/MICRO.2005.13.

A. J. Bernstein. “Analysis of Programs for Parallel Processing”. In: IEEE Transac-
tions on Electronic Computers EC-15.5 (1966), pp. 757-763. 1SSN: 0367-7508. DOI:
10.1109/PGEC. 1966 .264565.

Andrew Putnam et al. “Performance and Power of Cache-based Reconfigurable Com-
puting”. In: Proceedings of the 36th Annual International Symposium on Computer
Architecture. ISCA ’09. Austin, TX, USA: ACM, 2009, pp. 395-405. ISBN: 978-1-
60558-526-0. DOI: 10.1145/1555754 . 1655804. URL: http://doi.acm.org/10.
1145/1555754.1555804.

BIBLIOGRAPHY 109

[112]

[113]
[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[129]

123]

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation”. In: CGO ’04: Proceedings of the interna-
tional symposium on Code generation and optimization. Palo Alto, California: IEEE
Computer Society, 2004, p. 75. 1SBN: 0-7695-2102-9. URL: http://portal . acm.
org/citation.cfm?id=977395.977673&col1=GUIDE&d1=GUIDE&CFID=48424181&
CFTOKEN=16724426.

John Wawrzynek. “EECS150-Digital Design: Lecture 3Field Programmable Gate Ar-
rays (FPGAs)”. In: Jan 26 (2010), pp. 1-10.

ILOG, Inc. ILOG CPLEX: High-performance software for mathematical programming
and optimization. See http://www.ilog.com/products/cplex/. 2006.

David A. Patterson. “Latency Lags Bandwith”. In: Commun. ACM 47.10 (Oct. 2004),
pp. 71-75. 1sSN: 0001-0782. DOI: 10.1145/1022594.1022596. URL: http://doi.acm.
org/10.1145/1022594.1022596.

Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2002. 1SBN: 1-55860-286-0.

Zhi Guo, Walid Najjar, and Betul Buyukkurt. “Efficient Hardware Code Generation
for FPGAs”. In: ACM Trans. Archit. Code Optim. 5.1 (May 2008), 6:1-6:26. 1SSN:
1544-3566. DOIL: 10.1145/1369396.1369402. URL: http://doi.acm.org/10.1145/
1369396.1369402.

E. Dahlhaus et al. “The Complexity of Multiterminal Cuts”. In: SIAM Journal on
Computing 23.4 (1994), pp. 864-894. DOI: 10 . 1137 /S0097539792225297. eprint:
http://dx.doi.org/10.1137/50097539792225297. URL: http://dx.doi.org/10.
1137/80097539792225297.

E. A. de Kock et al. “YAPI: Application Modeling for Signal Processing Systems”.
In: Proceedings of the 37th Annual Design Automation Conference. DAC 00. Los
Angeles, California, USA: ACM, 2000, pp. 402—405. 1SBN: 1-58113-187-9. pDOI: 10.
1145/337292.337511. URL: http://doi.acm.org/10.1145/337292.337511.

Thomas M. Parks. “Bounded Scheduling of Process Networks”. PhD thesis. EECS
Department, University of California, Berkeley, 1995. URL: http://www . eecs .
berkeley.edu/Pubs/TechRpts/1995/2926 .html.

Marc Geilen and Twan Basten. “Requirements on the Execution of Kahn Process Net-
works”. In: Proceedings of the 12th European Conference on Programming. ESOP’03.
Warsaw, Poland: Springer-Verlag, 2003, pp. 319-334. 1SBN: 3-540-00886-1. URL: http:
//dl.acm.org/citation.cfm?id=1765712.1765736.

Joseph Tobin Buck. “Scheduling Dynamic Dataflow Graphs with Bounded Memory
Using the Token Flow Model”. AAT9431898. PhD thesis. 1993.

Joseph T Buck et al. “Ptolemy: A framework for simulating and prototyping hetero-
geneous systems”. In: (1994).

BIBLIOGRAPHY 110

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]
[133]

[134]

[135]

T. Basten and J. Hoogerbrugge. “Efficient execution of process networks”. In: Proc.
of Communicating Process Architectures 2001. Bristol, UK, 2001, pp. 1-14.

Donald B. Johnson. “Finding All the Elementary Circuits of a Directed Graph”. In:
SIAM Journal on Computing 4.1 (1975), pp. 77-84. DOI: 10.1137/0204007. eprint:
http://dx.doi.org/10.1137/0204007. URL: http://dx.doi.org/10.1137/
0204007.

Dyninst Programmer’s Guide. Computer Science Department, University of Wisconsin-
Madison & University of Maryland. 2015.

Bryan Buck and Jeffrey K. Hollingsworth. “An API for Runtime Code Patching”.
In: Int. J. High Perform. Comput. Appl. 14.4 (Nov. 2000), pp. 317-329. 1sSN: 1094-
3420. por: 10.1177/109434200001400404. URL: http://dx.doi.org/10.1177/
109434200001400404.

Intel starts baking speedy FPGAs into chips. IDG News Service, 2016. URL: http:
//www . pcworld. com/article/3055526/intel-starts-baking-speedy-fpgas-
into-chips.html.

SDAccel Development Environment User Guide. Xilinx. 2015.

Jason D. Hiser et al. “Evaluating Indirect Branch Handling Mechanisms in Software
Dynamic Translation Systems”. In: Proceedings of the International Symposium on
Code Generation and Optimization. CGO ’07. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 61-73. 1SBN: 0-7695-2764-7. DOI: 10.1109/CGO . 2007 . 10.
URL: http://dx.doi.org/10.1109/CG0.2007.10.

U. Banerjee. “Data dependence in ordinary programs”. MA thesis. Dept. of Computer
Science, University of Illinois at Urbana-Champaign, Nov. 1976.

Utpal K. Banerjee. Dependence Analysis for Supercomputing. Norwell, MA, USA:
Kluwer Academic Publishers, 1988. 1SBN: 0898382890.

Michael Joseph Wolfe. “Techniques for improving the inherent parallelism in pro-
grams”. MAS. PhD thesis. 1978. URL: http://opac.inria.fr/record=b1000180.

William Pugh. “The Omega Test: A Fast and Practical Integer Programming Algo-
rithm for Dependence Analysis”. In: Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing. Supercomputing '91. Albuquerque, New Mexico, USA: ACM,
1991, pp. 4-13. 1SBN: 0-89791-459-7. DOI: 10.1145/125826 . 125848. URL: http:
//doi.acm.org/10.1145/125826.125848.

David Sheffield. “Three Fingered Jack: Productively Addressing Platform Diversity”.
PhD thesis. EECS Department, University of California, Berkeley, 2013. URL: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-185.html.

BIBLIOGRAPHY 111

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Jongsok Choi, S. Brown, and J. Anderson. “From software threads to parallel hard-
ware in high-level synthesis for FPGAs”. In: Field-Programmable Technology (FPT),
2013 International Conference on. 2013, pp. 270-277. por: 10.1109/FPT . 2013.
6718365.

M. Oyamada et al. “Software Performance Estimation in MPSoC Design”. In: Pro-
ceedings of the 2007 Asia and South Pacific Design Automation Conference. ASP-
DAC ’07. Washington, DC, USA: TEEE Computer Society, 2007, pp. 38-43. I1SBN:
1-4244-0629-3. DOIL: 10.1109/ASPDAC.2007.357789. URL: http://dx.doi.org/10.
1109/ASPDAC.2007.357789.

Mitesh R. Meswani et al. “Modeling and Predicting Performance of High Perfor-
mance Computing Applications on Hardware Accelerators”. In: Int. J. High Per-
form. Comput. Appl. 27.2 (May 2013), pp. 89-108. 1SSN: 1094-3420. por: 10.1177/
1094342012468180. URL: http://dx.doi.org/10.1177/1094342012468180.

Georgios Tournavitis et al. “Towards a Holistic Approach to Auto-parallelization: In-
tegrating Profile-driven Parallelism Detection and Machine-learning Based Mapping”.
In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’09. Dublin, Ireland: ACM, 2009, pp. 177-187.
ISBN: 978-1-60558-392-1. DOI: 10.1145/1542476.1542496. URL: http://doi.acm.
org/10.1145/1542476.1542496.

Arnamoy Bhattacharyya. “Do Inputs Matter?: Using Data-dependence Profiling to
Evaluate Thread Level Speculation in BG/Q”. In: Proceedings of the 22Nd Interna-
tional Conference on Parallel Architectures and Compilation Techniques. PACT '13.
Edinburgh, Scotland, UK: IEEE Press, 2013, pp. 401-402. 1SBN: 978-1-4799-1021-2.
URL: http://dl.acm.org/citation.cfm?id=2523721.2523775.

Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil. “Fast and Effi-
cient Automatic Memory Management for GPUs Using Compiler-assisted Runtime
Coherence Scheme”. In: Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques. PACT *12. Minneapolis, Minnesota, USA:
ACM, 2012, pp. 33-42. 1SBN: 978-1-4503-1182-3. DOI: 10.1145/2370816 .2370824.
URL: http://doi.acm.org/10.1145/2370816.2370824.

Thomas B. Jablin et al. “Automatic CPU-GPU Communication Management and
Optimization”. In: SIGPLAN Not. 46.6 (June 2011), pp. 142-151. 1SsN: 0362-1340.
DOI: 10.1145/1993316.1993516. URL: http://doi.acm.org/10.1145/1993316.
1993516.

Thomas B. Jablin et al. “Dynamically Managed Data for CPU-GPU Architectures”.
In: Proceedings of the Tenth International Symposium on Code Generation and Opti-
mization. CGO '12. San Jose, California: ACM, 2012, pp. 165-174. 1SBN: 978-1-4503-
1206-6. DOT: 10.1145/2259016 . 2259038. URL: http://doi.acm.org/10.1145/
2259016.2259038.

