
Optimizing Expectations: From Deep Reinforcement
Learning to Stochastic Computation Graphs

John Schulman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-217
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-217.html

December 16, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Optimizing Expectations: From Deep Reinforcement Learning to Stochastic
Computation Graphs

by

John Schulman

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Stuart Russell

Professor Michael Jordan
Assistant Professor Joan Bruna

Fall 2016

The dissertation of John Schulman, titled Optimizing Expectations: From Deep Reinforce-
ment Learning to Stochastic Computation Graphs, is approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Optimizing Expectations: From Deep Reinforcement Learning to Stochastic
Computation Graphs

Copyright 2016
by

John Schulman

A C K N O W L E D G M E N T S

All of the work described in this thesis was done in collaboration with my advisor, Pieter
Abbeel, who has continually pointed me in the right direction and provided inspiration
to do the best work I could.

I’d also like to thank Sergey Levine and Philipp Moritz, who were my closest collabo-
rators on the main work in the thesis, and with whom I shared many great conversations.
The work on stochastic computation graphs grew out of discussions with my coauthors
Pieter Abbeel, Nick Heess, and Theophane Weber. Thanks to Mike Jordan, Stuart Russell,
and Joan Bruna for serving on my quals and thesis committee, and for many insightful
conversations over the past few years. I also collaborated with a number of colleagues
at Berkeley on several projects that are not included in this thesis document, including
Jonathan Ho, Alex Lee, Sachin Patil, Zoe McCarthy, Greg Kahn, Michael Laskey, Ibrahim
Awwal, Henry Bradlow, Jia Pan, Cameron Lee, Ankush Gupta, Sibi Venkatesan, Mal-
lory Tayson-Frederick, and Yan Duan. I am thankful to DeepMind for giving me the
opportunity to do an internship there in the Spring of 2015, so I would like to thank
my supervisor, David Silver, as well as Yuval Tassa, Greg Wayne, Tom Erez, and Tim
Lillicrap.

Thanks to UC Berkeley for being flexible and allowing me to switch from the neuro-
science program to the computer science program without much difficulty. Thanks to
the wonderful staff at Philz Coffee in Berkeley, where most of the research and writing
was performed, along with Brewed Awakening, Nefeli’s, Strada, and Asha Tea House.

Finally, this thesis is dedicated to my parents, for all the years of love and support,
and for doing so much to further my education.

2

C O N T E N T S

1 introduction 1

1.1 Reinforcement Learning 1

1.2 Deep Learning 1

1.3 Deep Reinforcement Learning 2

1.4 What to Learn, What to Approximate 3

1.5 Optimizing Stochastic Policies 5

1.6 Contributions of This Thesis 6

2 background 8

2.1 Markov Decision Processes 8

2.2 The Episodic Reinforcement Learning Problem 8

2.3 Partially Observed Problems 9

2.4 Policies 10

2.5 Deriviative Free Optimization of Policies 11

2.6 Policy Gradients 12

3 trust region policy optimization 18

3.1 Overview 18

3.2 Preliminaries 19

3.3 Monotonic Improvement Guarantee for General Stochastic Policies 21

3.4 Optimization of Parameterized Policies 23

3.5 Sample-Based Estimation of the Objective and Constraint 24

3.5.1 Single Path 25

3.5.2 Vine 25

3.6 Practical Algorithm 27

3.7 Connections with Prior Work 28

3.8 Experiments 29

3.8.1 Simulated Robotic Locomotion 30

3.8.2 Playing Games from Images 32

3.9 Discussion 33

3.10 Proof of Policy Improvement Bound 34

3.11 Perturbation Theory Proof of Policy Improvement Bound 37

3.12 Efficiently Solving the Trust-Region Constrained Optimization Problem 39

3.12.1 Computing the Fisher-Vector Product 40

3

contents 4

3.13 Approximating Factored Policies with Neural Networks 42

3.14 Experiment Parameters 43

3.15 Learning Curves for the Atari Domain 44

4 generalized advantage estimation 45

4.1 Overview 45

4.2 Preliminaries 46

4.3 Advantage function estimation 49

4.4 Interpretation as Reward Shaping 51

4.5 Value Function Estimation 53

4.6 Experiments 54

4.6.1 Policy Optimization Algorithm 55

4.6.2 Experimental Setup 56

4.6.3 Experimental Results 57

4.7 Discussion 59

4.8 Frequently Asked Questions 61

4.8.1 What’s the Relationship with Compatible Features? 61

4.8.2 Why Don’t You Just Use a Q-Function? 62

4.9 Proofs 62

5 stochastic computation graphs 64

5.1 Overview 64

5.2 Preliminaries 65

5.2.1 Gradient Estimators for a Single Random Variable 65

5.2.2 Stochastic Computation Graphs 67

5.2.3 Simple Examples 68

5.3 Main Results on Stochastic Computation Graphs 70

5.3.1 Gradient Estimators 70

5.3.2 Surrogate Loss Functions 72

5.3.3 Higher-Order Derivatives. 73

5.4 Variance Reduction 73

5.5 Algorithms 74

5.6 Related Work 74

5.7 Conclusion 76

5.8 Proofs 77

5.9 Surrogate as an Upper Bound, and MM Algorithms 78

5.10 Examples 79

5.10.1 Generalized EM Algorithm and Variational Inference. 79

5.10.2 Policy Gradients in Reinforcement Learning. 81

6 conclusion 84

6.1 Frontiers 85

L I S T O F F I G U R E S

Figure 1 Illustration of single-path and vine procedures 26

Figure 2 2D robot models used for TRPO locomotion experiments 30

Figure 3 Neural networks used for TRPO experiments 30

Figure 4 Learning curves for TRPO locomotion tasks 32

Figure 5 Computation of factored discrete probability distribution in Atari
domain 43

Figure 6 Learning curves for TRPO atari experiments 44

Figure 7 3D robot models used in GAE experiments 56

Figure 8 Learning curves for GAE experiments on cart-pole system 58

Figure 9 Learning curves for GAE experiments on 3D locomotion 59

Figure 10 Learning curves and stills from 3D standing 60

Figure 11 Simple stochastic computation graphs 69

Figure 12 Deterministic computation graphs of surrogate functions for gra-
dient estimation 73

Figure 13 Stochastic computation graphs for NVIL and VAE models 82

Figure 14 Stochastic Computation Graphs for MDPs and POMDPs 83

L I S T O F TA B L E S

Table 1 Performance comparison for vision-based RL algorithms on the
Atari domain 33

5

List of Tables 6

Table 2 Parameters for continuous control tasks in TRPO experiments 43

Table 3 Parameters for Atari task in TRPO experiments 44

1
I N T R O D U C T I O N

1.1 reinforcement learning

Agent

Environment

action

observation, reward

Reinforcement learning (RL) is the branch of machine learn-
ing that is concerned with making sequences of decisions.
It considers an agent situated in an environment: each
timestep, the agent takes an action, and it receives an obser-
vation and reward. An RL algorithm seeks to maximize the
agent’s total reward, given a previously unknown environ-
ment, through a trial-and-error learning process. Chapter 2

provides a more detailed description of the mathematical formulation of reinforcement
learning.

The reinforcement learning problem sketched above, involving a reward-maximizing
agent, is extremely general, and RL algorithms have been applied in a variety of differ-
ent fields, from business inventory management [VR+97] to robot control [KBP13], to
structured prediction [DILM09]

1.2 deep learning

Modern machine learning is mostly concerned with learning functions from data. Deep
learning is based on a simple recipe: choose a loss function, choose an expressive func-
tion approximator (a deep neural network), and optimize the parameters with gradient
descent. The remarkable empirical finding is that it is possible to learn functions that
perform complicated multi-step computations with this recipe, as has been shown by
groundbreaking results in object recognition [KSH12] and speech recognition [Dah+12].
The recipe involves a reduction from a learning problem to an optimization problem: in
supervised learning, we are reducing obtain a function that makes good predictions on unseen

1

1.3 deep reinforcement learning 2

data, to minimize prediction-error-plus-regularization on training data.
The reduction from learning to optimization is less straightforward in reinforcement

learning (RL) than it is in supervised learning. One difficulty is that we don’t have
full analytic access to the function we’re trying to optimize, the agent’s expected total
reward—this objective also depends on the unknown dynamics model and reward func-
tion. Another difficulty is that the agent’s input data strongly depends on its behavior,
which makes it hard to develop algorithms with monotonic improvement. Complicating
the problem, there are several different functions that one might approximate, as we will
discuss in Section 1.4

1.3 deep reinforcement learning

Deep reinforcement learning is the study of reinforcement using neural networks as
function approximators. The idea of combining reinforcement learning and neural net-
works is not new—Tesauro’s TD-Gammon [Tes95], developed in the early 1990s, used a
neural network value function and played at the level of top human players, and neu-
ral networks have been used for long time in system identification and control [NP90].
Lin’s 1993 thesis [Lin93] explored the combination of various reinforcement learning
algorithms with neural networks, with application to robotics.

However, in the two decades following Tesauro’s results, RL with nonlinear function
approximation remained fairly obscure. At the time when this thesis work was beginning
(2013), none of the existing RL textbooks (such as [SB98; Sze10]) devoted much attention
to nonlinear function approximation. Most RL papers, in leading machine learning con-
ferences such as NIPS and ICML were mostly focused on theoretical results and on toy
problems where linear-in-features or tabular function approximators could be used.

In the early 2010s, the field of deep learning begin to have groundbreaking empirical
success, in speech recognition [Dah+12] and computer vision [KSH12]. The work de-
scribed in this thesis began after the realization that similar breakthroughs were possible
(and inevitable) in reinforcement learning, and would eventually dominate the special-
purposes methods which were being used in domains like robotics. Whereas much work
in reinforcement learning only applies in the case of linear or tabular functions, such
methods will not be applicable in settings where we need to learn functions that per-
form multi-step computation. On the other hand, deep neural networks can successfully
approximate these functions, and their empirical success in supervised learning shows
that it is tractable to optimize them.

An explosion of interest in deep reinforcement learning occurred following the re-

1.4 what to learn, what to approximate 3

sults from Mnih et al. [Mni+13], who demonstrated learning to play a collection of Atari
games, using screen images as input, using a variant of Q-learning. These results im-
proved on previous results obtained by Hausknecht et al. [Hau+12] using an evolution-
ary algorithm, despite using a more challenging input representation. Since then, there
have been many interesting results occurring concurrently with the work described in
this thesis. To sample a couple of the more influential ones, Silver et al. [Sil+16] learned
to play Go better than the best human experts, using a combination of supervised learn-
ing and several reinforcement learning steps to train deep neural networks, along with a
tree search algorithm. Levine et al. [Lev+16] showed the learning of manipulation behav-
iors on a robot from vision input, with a small number of inputs. Mnih et al. [Mni+16]
demonstrated strong results with a classic policy gradient method on a variety of tasks.
Silver et al. [Sil+14], Lillicrap et al. [Lil+15], and Heess et al. [Hee+15] explored a dif-
ferent kind of policy gradient method, which can be used in settings with a continuous
action space. Furthermore, there have been a variety of improvements on the original
Deep Q-learning algorithm [Mni+13], including methods for exploration [Osb+16] and
stability improvements [VHGS15].

1.4 what to learn, what to approximate

In reinforcement learning there are many different choices of what to approximate—
policies, value functions, dynamics models, or some combination thereof. This contrasts
with supervised learning, where one usually learns the mapping from inputs to outputs.
In reinforcement learning, we have two orthogonal choices: what kind of objective to
optimize (involving a policy, value function, or dynamics model), and what kind of
function approximators to use.

The figure below shows a taxonomy of model-free RL algorithms (algorithms that do
are not based on a dynamics model). At the top level, we have two different approaches
for deriving RL algorithms: policy optimization and dynamic programming.

1.4 what to learn, what to approximate 4

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients Policy Iteration Value Iteration

Actor-Critic
Methods

modified
policy iteration

Q-Learning

Policy optimization methods are centered around the policy, the function that maps
the agent’s state to its next action. These methods view reinforcement learning as a nu-
merical optimization problem where we optimize the expected reward with respect to
the policy’s parameters. There are two ways to optimize a policy. First, there are deriva-
tive free optimization (DFO) algorithms, including evolutionary algorithms. These algo-
rithms work by perturbing the policy parameters in many different ways, measuring the
performance, and then moving in the direction of good performance. They are simple
to implement and work very well for policies with a small number of parameters, but
they scale poorly with the number of parameters. Some DFO algorithms used for policy
optimization include cross-entropy method [SL06], covariance matrix adaptation [WP09],
and natural evolution strategies [Wie+08] (these three use Gaussian distributions); and
HyperNEAT, which also evolves the network topology [Hau+12]. Second, there are pol-
icy gradient methods [Wil92; Sut+99; JJS94; Kak02]. These algorithms can estimate the
policy improvement direction by using various quantities that were measured by the
agent; unlike DFO algorithms, they don’t need to perturb the parameters to measure the
improvement direction. Policy gradient methods are a bit more complicated to imple-
ment, and they have some difficulty optimizing behaviors that unfold over a very long
timescale, but they are capable of optimizing much larger policies than DFO algorithms.

The second approach for deriving RL algorithms is through approximate dynamic
programming (ADP). These methods focus on learning value functions, which predict
how much reward the agent is going to receive. The true value functions obey certain
consistency equations, and ADP algorithms work by trying to satisfy these equations.
There are two well-known algorithms for exactly solving RL problems that have a finite
number of states and actions: policy iteration and value iteration. (Both of these algo-
rithms are special cases of a general algorithm called modified policy iteration.) These
algorithms can be combined with function approximation in a variety of different ways;
currently, the leading descendents of value iteration work by approximating Q-functions
(e.g., [Mni+15]).

1.5 optimizing stochastic policies 5

Finally, there are actor-critic methods that combine elements from both policy opti-
mization and dynamic programming. These methods optimize a policy, but they use
value functions to speed up this optimization, and often use ideas from approximate dy-
namic programming to fit the value functions. The method described in Chapter 4, along
with deterministic policy gradient methods [Lil+15; Hee+15], are examples of actor-critic
methods.

1.5 optimizing stochastic policies

This thesis focuses on a particular branch in the family tree of RL algorithms from the
previous section—methods that optimize a stochastic policy, using gradient based meth-
ods. Why stochastic policies, (defining ⇡(a | s) = probability of action given state) rather
than deterministic policies (a = ⇡(s))? Stochastic policies have several advantages:

• Even with a discrete action space, it’s possible to make an infinitesimal change to a
stochastic policy. That enables policy gradient methods, which estimate the gradient
of performance with respect to the policy parameters. Policy gradients do not make
sense with a discrete action space.

• We can use the score function gradient estimator, which tries to make good actions
more probable. This estimator, and its alternative, the pathwise derivative estimator,
will be discussed in Chapter 5. The score function estimator is better at dealing
with systems that contain discrete-valued or discontinuous components.

• The randomness inherent in the policy leads to exploration, which is crucial for
most learning problems. In other RL methods that aren’t based on stochastic poli-
cies, randomness usually needs to be added in some other way. On the other hand,
stochastic policies explore poorly in many problems, and policy gradient methods
often converge to suboptimal solutions.

The approach taken in this thesis—optimizing stochastic policies using gradient-based
methods—makes reinforcement learning much more like other domains where deep
learning is used. Namely, we repeatedly compute a noisy estimate of the gradient of
performance, and plug that into a stochastic gradient descent algorithm. This situation
contrasts with methods that use function approximation along with dynamic program-
ming methods like value iteration and policy iteration—there, we can also formulate
optimization problems; however, we are not directly optimizing the expected perfor-
mance. While there has been success using neural networks in value iteration [Mni+13],
this sort of algorithm is hard to analyze because it is not clear how errors in the dynamic
programming updates will accumulate or affect the performance—thus, these methods

1.6 contributions of this thesis 6

have not shown good performance across as wide of a variety of tasks that policy gradi-
ent methods have; however, when they work, they tend to be more sample-efficient than
policy gradient methods.

While the approach of this thesis simplifies the problem of reinforcement learning by
reducing it to a more well-understood kind of optimization with stochastic gradients,
there are still two sources of difficulty that arise, motivating the work of this thesis.

1. Most prior applications of deep learning involve an objective where we have access
to the loss function and how it depends on the parameters of our function approx-
imator. On the other hand, reinforcement learning involves a dynamics model that
is unknown and possibly nondifferentiable. We can still obtain gradient estimates,
but they have high variance, which leads to slow learning.

2. In the typical supervised learning setting, the input data doesn’t depend on the
current predictor; on the other hand, in reinforcement learning, the input data
strongly depends on the current policy. The dependence of the state distribution
on the policy makes it harder to devise stable reinforcement learning algorithms.

1.6 contributions of this thesis

This thesis develops policy optimization methods that are more stable and sample effi-
cient than their predecessors and that work effectively when using neural networks as
function approximators.

First, we study the following question: after collecting a batch of data using the current
policy, how should we update the policy? In a theoretical analysis, we show that there is cer-
tain loss function that provides a local approximation of the policy performance, and the
accuracy of this approximation is bounded in terms of the KL divergence between the
old policy (used to collect the data) and the new policy (the policy after the update). This
theory justifies a policy updating scheme that is guaranteed to monotonically improve
the policy (ignoring sampling error). This contrasts with previous analyses of policy gra-
dient methods (such as [JJS94]), which did not specify what finite-sized stepsizes would
guarantee policy improvement. By making some practically-motivated approximations
to this scheme, we develop an algorithm called trust region policy optimization (TRPO).
This algorithm is shown to yield strong empirical results in two domains: simulated
robotic locomotion, and Atari games using images as input. TRPO is closely related to
natural gradient methods, [Kak02; BS03; PS08]; however, there are some changes intro-
duced, which make the algorithm more scalable and robust. Furthermore, the derivation
of TRPO motivates a new class of policy gradient methods that controls the size of the

1.6 contributions of this thesis 7

policy update but doesn’t necessarily use the natural gradient step direction. This work
was previously published as [Sch+15c].

Policy gradient methods, including TRPO, often require a large number of samples to
learn. They work by trying to determine which actions were good, and then increasing
the probability of the good actions. Determining which actions were good is called the
credit assignment problem (e.g., see [SB98])—when the agent receives a reward, we need to
determine which preceding actions deserve credit for it and should be reinforced. The
next line of work described in this thesis analyzes this credit assignment problem, and
how we can reduce the variance of policy gradient estimation through the use of value
functions. By combining the proposed technique, which we call generalized advantage esti-
mation, with TRPO, we are able to obtain state-of-the-art results on simulated 3D robotic
tasks. 3D locomotion has been considered to be a challenging problem for all methods
for a long time; yet our method is able to automatically obtain stable walking controllers
for a 3D humanoid and quadruped, as well as a policy that enables a 3D humanoid to
stand up off the ground—all using the same algorithm and hyperparameters. This work
was previously published as [Sch+15b]

When optimizing stochastic policies, the reinforcement learning problem turns into
a problem of optimizing an expectation, defined on a stochastic process with many
sampled random variables. Problems with similar structure occur in problems outside
of reinforcement learning; for example, in variational inference, and in models that
use “hard decisions” for memory and attention. The last contribution of this thesis
is the formalism of stochastic computation graphs, which are aimed to unify reinforce-
ment learning and these other problems that involve optimizing expectations. Stochastic
computation graphs allow one to automatically derive gradient estimators and variance-
reduction schemes for a variety of different objectives that have been used in reinforce-
ment learning and probabilistic modeling, reproducing the special-purpose estimators
that were previously derived for these objectives. The formalism of stochastic computa-
tion graphs could assist researchers in developing intricate models involving a combina-
tion of stochastic and deterministic operations, enabling, for example, attention, memory,
and control actions—and also in creating software that automatically computes these gra-
dients given a model definition, as with automatic differentiation software. This work was
previously published as [Sch+15a].

2
B A C K G R O U N D

2.1 markov decision processes

A Markov Decision Process (MDP) is a mathematical object that describes an agent in-
teracting with a stochastic environment. It is defined by the following components:

• S: state space, a set of states of the environment.
• A: action space, a set of actions, which the agent selects from at each timestep.
• P(r, s 0 | s,a): a transition probability distribution. For each state s and action a, P

specifies the probability that the environment will emit reward r and transition to
state s 0.

In certain problem settings, we will also be concerned with an initial state distribution
µ(s), which is the probability distribution that the initial state s0 is sampled from.

Various different definitions of MDP are used throughout the literature. Sometimes,
the reward is defined as a deterministic function R(s), R(s,a), or R(s,a, s 0). These formu-
lations are equivalent in expressive power. That is, given a deterministic-reward formu-
lation, we can simulate a stochastic reward by lumping the reward into the state.

The end goal is to find a policy ⇡, which maps states to actions. We will mostly con-
sider stochastic policies, which are conditional distributions ⇡(a | s), though elsewhere
in the literature, one frequently sees deterministic policies a = ⇡(s).

2.2 the episodic reinforcement learning problem

This thesis will be focused on the episodic setting of reinforcement learning, where the
agent’s experience is broken up into a series of episodes—sequences with a finite num-
ber of states, actions and rewards. Episodic reinforcement learning in the fully-observed
setting is defined by the following process. Each episode begins by sampling an initial
state of the environment, s0, from distribution µ(s0). Each timestep t = 0, 1, 2, . . . , the

8

2.3 partially observed problems 9

agent chooses an action at, sampled from distribution ⇡(at | st). ⇡ is called the policy—it’s
the probability distribution that the agent uses to sample its actions. Then the enviroment
generates the next state and reward, according to some distribution P(st+1, rt | st,at). The
episode ends when a terminal state sT is reached. This process can be described by the
following equations or diagram below.

s0 ⇠ µ(s0)

a0 ⇠ ⇡(a0 | s0)

s1, r0 ⇠ P(s1, r0 | s0,a0)

a1 ⇠ ⇡(a1 | s1)

s2, r1 ⇠ P(s2, r1 | s1,a1)

. . .

aT-1 ⇠ ⇡(aT-1 | sT-1)

sT , rT-1 ⇠ P(sT | sT-1,aT-1)

μ0

a0

s0 s1

a1 aT-1

sT

π

P

Agent

r0 r1 rT-1

Environment

s2

The goal is to find a policy ⇡ that optimizes the expected total reward per episode.

maximize
⇡

E⌧[R | ⇡]

where R = r0 + r1 + · · ·+ rlength(⌧)-1

The expectation is taken over trajectories ⌧, defined as the sequence of states, actions,
and rewards, (s0,a0, r0, s1,a1, r1, . . . , sT), ending in a terminal state. These trajectories are
sampled using policy ⇡ to generate actions.

Note: expectation notation. Ex[f(x) |z] is defined to mean Ex[f(x) |z] =
R

dx p(x |z)f(x).
In words, the subscript is the random variable we are averaging over, and the con-
ditioning expression (z) is a variable that affects the distribution over x. In a slight
abuse of notation, we’ll place functions like the policy ⇡ in this conditioning expres-
sion, i.e., E⌧[f(⌧) | ⇡] =

R
d⌧ p⇡(⌧)f(⌧), where p⇡(⌧) is the probability distribution of

trajectories obtained by executing policy ⇡.

2.3 partially observed problems

In the partially-observed setting, the agent only has access to an observation at each
timestep, which may give noisy and incomplete information about the state. The agent

2.4 policies 10

should combine information from many previous timesteps, so the action at depends on
the preceding history ht = (y0,a0,y1,a1, . . . ,yt-1,at-1,yt). The data-generating process
is given by the following equations, and the figure below.

s0,y0 ⇠ µ0

a0 ⇠ ⇡(a0 | h0)

s1,y1, r0 ⇠ P(s1,y1, r0 | s0,a0)

a1 ⇠ ⇡(a1 | h1)

s2,y2, r1 ⇠ P(s2,y2, r1 | s1,a1)

. . .

aT-1 ⇠ ⇡(aT-1 | hT-1)

sT ,yT , rT-1 ⇠ P(sT ,yT , rT-1 | sT-1,aT-1)

μ0

a0

s0 s1

a1 aT-1

sT

P

Agent

r0 r1 rT-1

Environment

s2

h0 h1

y1 y1 s1
y0

h2

π

This process is called a partially observed Markov decision process (POMDP). The
partially-observed setting is equivalent to the fully-observed setting because we can call
the observation history ht the state of the system. That is, a POMDP can be written as
an MDP (with infinite state space). When using function approximation, the partially
observed setting is not much different conceptually from the fully-observed setting.

2.4 policies

We’ll typically use parameterized stochastic policies, which we’ll write as ⇡✓(a | s). Here,
✓ 2 Rd is a parameter vector that specifies the policy. For example, if the policy is a
neural network, ✓ would correspond to the flattened weights and biases of the network.
The parameterization of the policy will depend on the action space of the MDP, and
whether it is a discrete set or a continuous space. The following are sensible choices
(but not the only choices) for how to how to define deterministic and stochastic neural
network policies. With a discrete action space, we’ll use a neural network that outputs
action probabilities, i.e., the final layer is a softmax layer. With a continuous action space,
we’ll use a neural network that outputs the mean of a Gaussian distribution, with a sep-
arate set of parameters specifying a diagonal covariance matrix. Since the optimal policy
in an MDP or POMDP is deterministic, we don’t lose much by using a simple action
distribution (e.g., a diagonal covariance matrix, rather than a full covariance matrix or a
more complicated multi-model distribution.)

2.5 deriviative free optimization of policies 11

2.5 deriviative free optimization of policies

Recall from the previous chapter that episodic reinforcement learning can be viewed as
the following optimization problem:

maximize
⇡

E[R | ⇡]

where R is the total reward of an episode. If we choose a parameterized model ⇡✓ for the
policies, then this becomes an optimization problem with respect to ✓ 2 Rd.

maximize
✓

E[R | ⇡✓]

In derivative-free optimization, we treat the whole process for turning a parameter ✓
into a reward R as a black box, which gives us noisy evaluations ✓ ! ⌅ ! R, but we
know nothing about what’s inside the box.

A thorough discussion of derivative-free optimization algorithms is beyond the scope
of this thesis. However, we’ll introduce one algorithm, which is applicable in the noisy
black-box optimization setting, and is used in comparisons later. Cross entropy method
(CEM) is a simple but effective evolutionary algorithm, which works with Gaussian dis-
tributions, repeatedly updating the mean and variance of a distribution over candidate
parameters. A simple instantiation is as follows.

Algorithm 1 Cross Entropy Method

Initialize µ 2 Rd,� 2 Rd

for iteration = 1, 2, . . . do
Collect n samples of ✓i ⇠ N(µ, diag(�))
Perform one episode with each ✓i, obtaining reward Ri

Select the top p% of samples (e.g. p = 20), which we’ll call the elite set
Fit a Gaussian distribution, with diagonal covariance, to the elite set, obtaining a

new µ,�.
end for
Return the final µ.

Algorithm 1 is prone to reducing the variance too quickly and converging to a bad
local optimum. It can be improved by artificially adding extra variance, according to
a schedule where this added noise decreases to zero. Details of this technique can be
found in [SL06].

2.6 policy gradients 12

2.6 policy gradients

Policy gradient methods are a class of reinforcement learning algorithms that work by
repeatedly estimating the gradient of the policy’s performance with respect to its pa-
rameters. The simplest way to derive them is to use the score function gradient estimator,
a general method for estimating gradients of expectations. Suppose that x is a random
variable with probability density p(x | ✓), f is a scalar-valued function (say, the reward),
and we are interested in computing r✓Ex[f(x)]. Then we have the following equality:

r✓Ex[f(x)] = Ex[r✓ logp(x | ✓)f(x)].

This equation can be derived by writing the expectation as an integral:

r✓Ex[f(x)] = r✓

Z
dx p(x | ✓)f(x) =

Z
dx r✓p(x | ✓)f(x)

=

Z
dx p(x | ✓)r✓ logp(x | ✓)f(x) = Ex[f(x)r✓ logp(x | ✓)].

To use this estimator, we can sample values x ⇠ p(x | ✓), and compute the LHS of the
equation above (averaged over N samples) to get an estimate of the gradient (which
becomes increasingly accurate as N ! 1. That is, we take x1, x2, . . . , xN ⇠ p(x | ✓), and
then take our gradient estimate ĝ to be

ĝ =
1

N

NX

n=1

r✓ logp(xi | ✓)f(xi)

To use this idea in reinforcement learning, we will need to use a stochastic policy. That
means that at each state s, our policy gives us a probability distribution over actions,
which will be denoted ⇡(a | s). Since the policy also has a parameter vector ✓, we’ll write
⇡✓(a | s) or ⇡(a | s, ✓).

In the following discussion, a trajectory ⌧ will refer to a sequence of states and actions
⌧ ⌘ (s0,a0, s1,a1, . . . , sT). Let p(⌧ | ✓) denote the probability of the entire trajectory ⌧
under policy parameters ✓, and let R(⌧) denote the total reward of the trajectory.

The derivation of the score function gradient estimato tells us that

r✓E⌧[R(⌧)] = E⌧[r✓ logp(⌧ | ✓)R(⌧)]

Next, we need to expand the quantity logp(⌧ | ✓) to derive a practical formula. Using the
chain rule of probabilities, we obtain

p(⌧ | ✓) =µ(s0)⇡(a0 | s0, ✓)P(s1, r0 | s0,a0)⇡(a1 | s1, ✓)
P(s2, r1 | s1,a1) . . .⇡(aT-1 | sT-1, ✓)P(sT , rT-1 | sT-1,aT-1),

2.6 policy gradients 13

where µ is the initial state distribution. When we take the logarithm, the product turns
into a sum, and when we differentiate with respect to ✓, the terms P(st | st-1,at-1) terms
drop out as does µ(s0). We obtain

r✓E⌧[R(⌧)] = E⌧

"
T-1X

t=0

r✓ log⇡(at | st, ✓)R(⌧)

#

It is somewhat remarkable that we are able to compute the policy gradient without
knowing anything about the system dynamics, which are encoded in transition proba-
bilities P. The intuitive interpretation is that we collect a trajectory, and then increase its
log-probability proportionally to its goodness. That is, if the reward R(⌧) is very high, we
ought to move in the the direction in parameter space that increases logp(⌧ | ✓).

Note: trajectory lengths and time-dependence. Here, we are considering trajecto-
ries with fixed length T , whereas the definition of MDPs and POMDPs above as-
sumed variable or infinite length, and stationary (time-independent) dynamics. The
derivations in policy gradient methods are much easier to analyze with fixed length
trajectories—otherwise we end up with infinite sums. The fixed-length case can be
made to mostly subsume the variable-length case, by making T very large, and in-
stead of trajectories ending, the system goes into a sink state with zero reward. As
a result of using finite-length trajectories, certain quantities become time-dependent,
because the problem is no longer stationary. However, we can include time in the
state so that we don’t need to separately account for the dependence on time. Thus,
we will omit the time-dependence of various quantities below, such as the state-value
function V⇡.

We can derive versions of this formula that eliminate terms to reduce variance. This
calculation is provided in much more generality in Chapter 5 on stochastic computation
graphs, but we’ll include it here because the concrete setting of this chapter will be easier
to understand.

First, we can apply the above argument to compute the gradient for a single reward
term:

r✓E⌧[rt] = E⌧

"
tX

t 0=0

r✓ log⇡(at 0 | st 0 , ✓)rt

#

Note that the sum goes up to t, because the expectation over rt can be written in terms
of actions at 0 with t 0 6 t. Summing over time (taking

PT-1
t=0 of the above equation), we

2.6 policy gradients 14

get

r✓E⌧[R(⌧)] = E⌧

"
T-1X

t=0

rt

tX

t 0=0

r✓ log⇡(at 0 | st 0 , ✓)

#

= E⌧

"
T-1X

t=0

r✓ log⇡(at | st, ✓)
T-1X

t 0=t

rt 0

#

. (1)

The second formula (Equation (1)) results from the first formula by reordering the sum-
mation. We will mostly work with the second formula, as it is more convenient for
numerical implementation.

We can further reduce the variance of the policy gradient estimator by using a baseline:
that is, we subtract a function b(st) from the empirical returns, giving us the following
formula for the policy gradient:

r✓E⌧ [R(⌧)] = E⌧

"
T-1X

t=0

r✓ log⇡(at | st, ✓)

T-1X

t 0=t

rt 0 - b(st)

!#

(2)

This equality holds for arbitrary baseline functions b. To derive it, we’ll show that the
added terms b(st) have no effect on the expectation, i.e., that E⌧ [r✓ log⇡(at 0 | st 0 , ✓)b(st)] =
0. To show this, split up the expectation over whole trajectories E⌧ [. . .] into an expecta-
tion over all variables before at, and all variables after and including it.

E⌧ [r✓ log⇡(at | st, ✓)b(st)]

= Es
0:t,a

0:(t-1)

h
Es(t+1):T ,a

t:(T-1)
[r✓ log⇡(at | st, ✓)b(st)]

i
(break up expectation)

= Es
0:t,a

0:(t-1)

h
b(st)Es(t+1):T ,a

t:(T-1)
[r✓ log⇡(at | st, ✓)]

i
(pull baseline term out)

= Es
0:t,a

0:(t-1)
[b(st)Ea

t

[r✓ log⇡(at | st, ✓)]] (remove irrelevant vars.)

= Es
0:t,a

0:(t-1)
[b(st) · 0]

The last equation follows because Ea
t

[r✓ log⇡(at 0 | st 0 , ✓)] = r✓Ea
t

[1] = 0 by the defini-
tion of the score function gradient estimator.

A near-optimal choice of baseline is the state-value function,

V⇡(s) = E
⇥
rt + rt+1 + · · ·+ rT-1 | st = s, at:(T-1) ⇠ ⇡

⇤

See [GBB04] for a discussion of the choice of baseline that optimally reduces variance
of the policy gradient estimator. So in practice, we will generally choose the baseline to
approximate the value function, b(s) ⇡ V⇡(s).

2.6 policy gradients 15

We can intuitively justify the choice b(s) ⇡ V⇡(s) as follows. Suppose we collect a
trajectory and compute a noisy gradient estimate

ĝ =
T-1X

t=0

r✓ log⇡(at | st, ✓)
T-1X

t 0=t

rt 0

which we will use to update our policy ✓ ! ✓ + ✏ĝ. This update increases the log-
probability of at proportionally to the sum of rewards rt+ rt+1+ · · ·+ rT-1, following that
action. In otherwords, if the sum of rewards is high, then the action was probably good,
so we increase its probability. To get a better estimate of whether the action was good, we
should check to see if the returns were better than expected. Before taking the action, the
expected returns were V⇡(st). Thus, the difference

PT-1
t 0=t rt 0 - b(st) is an approximate

estimate of the goodness of action at—Chapter 4 discusses in a more precise way how
it is an estimate of the advantage function. Including the baseline in our policy gradient
estimator, we get

ĝ =
T-1X

t=0

r✓ log⇡(at | st, ✓)

T-1X

t 0=t

rt 0 - b(st)

!

,

which increases the probability of the actions that we infer to be good—meaning that
the estimated advantage Ât =

PT-1
t 0=t rt 0 - b(st) is positive.

If the trajectories are very long (i.e., T is high), then the preceding formula will have
excessive variance. Thus, practitioners generally use a discount factor, which reduces
variance at the cost of some bias. The following expression gives a biased estimator of
the policy gradient.

ĝ =
T-1X

t=0

r✓ log⇡✓(at|st)

T-1X

t 0=t

rt 0�
t 0-t - b(st)

!

To reduce variance in this biased estimator, we should choose b(st) to optimally estimate
the discounted sum of rewards,

b(s) ⇡ V⇡,�(s) = E

"
T-1X

t 0=t

�t
0-trt 0

���� st = s;at:(T-1)⇠⇡

#

Intuitively, the discount makes us pretend that the action at has no effect on the reward
rt 0 for t 0 sufficiently far in the future, i.e., we are downweighting delayed effects by

2.6 policy gradients 16

a factor of �t 0-t. By adding up a series with coefficients 1,�,�2, . . . , we are effectively
including 1/(1- �) timesteps in the sum.

The policy gradient formulas given above can be used in a practical algorithm for
optimizing policies.

Algorithm 2 “Vanilla” policy gradient algorithm
Initialize policy parameter ✓, baseline b
for iteration=1, 2, . . . do

Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return Rt =

PT-1
t 0=t �

t 0-trt 0 , and
the advantage estimate Ât = Rt - b(st).

Re-fit the baseline, by minimizing kb(st)- Rtk2,
summed over all trajectories and timesteps.

Update the policy, using a policy gradient estimate ĝ,
which is a sum of terms r✓ log⇡(at | st, ✓)Ât

end for

In the algorithm above, the policy update can be performed with stochastic gradient
ascent, ✓! ✓+ ✏ĝ, or one can use a more sophisticated method such as Adam [KB14].

To numerically compute the policy gradient estimate using automatic differentiation
software, we swap the sum with the expectation in the policy gradient estimator:

ĝ =
T-1X

t=0

r✓ log⇡✓(at|st)

T-1X

t 0=t

rt 0�
t 0-t - b(st)

!

= r✓

T-1X

t=0

log⇡✓(at|st)Ât

Hence, one can construct the scalar quantity
P

t log⇡✓(at|st)Ât and differentiate it to
obtain the policy gradient.

The vanilla policy gradient method described above has been well-known for a long
time; some early papers include [Wil92; Sut+99; JJS94]. It was considered to be a poor
choice on most problems because of its high sample complexity. A couple of other prac-
tical difficulties are that (1) it is hard to choose a stepsize that works for the entire course
of the optimization, especially because the statistics of the states and rewards changes;

2.6 policy gradients 17

(2) often the policy prematurely converges to a nearly-deterministic policy with a subop-
timal behavior. Simple methods to prevent this issue, such as adding an entropy bonus,
usually fail.

The next two chapters in this thesis improve on the vanilla policy gradient method in
two orthogonal ways, enabling us to obtain strong empirical results. Chapter 3 shows
that instead of stepping in the gradient direction, we should move in the natural gradient
direction, and that there is an effective way to choose stepsizes for reliable monotonic im-
provement. Chapter 4 provides much more detailed analysis of discounts, and Chapter 5

also revisits some of the variance reduction ideas we have just described, but in a more
general setting. Concurrently with this thesis work, Mnih et al. [Mni+16] have shown
that it is in fact possible to obtain state-of-the-art performance on various large-scale
control tasks with the vanilla policy gradient method, however, the number of samples
used for learning is extremely large.

3
T R U S T R E G I O N P O L I C Y O P T I M I Z AT I O N

3.1 overview

This chapter studies how to develop policy optimization methods that lead to mono-
tonically improving performance and make efficient use of data. As we argued in the
Introduction, in order to optimize function approximators, we need to reduce the re-
inforcement learning problem to a series of optimization problems. This reduction is
nontrivial in reinforcement learning because the state distribution depends on the policy.
This chapter shows that to update the policy, we should improve a certain surrogate
objective as much as possible, while changing the policy as little as possible, where this
change is measured as a KL divergence between action distributions. We show that by
bounding the size of the policy update, we can bound the change in state distributions,
guaranteeing policy improvement despite non-trivial step sizes.

Following this theoretical analysis, we make a series of approximations to the theoretically-
justified algorithm, yielding a practical algorithm that we call trust region policy opti-
mization (TRPO). We describe two variants of this algorithm: first, the single-path method,
which can be applied in the model-free setting; second, the vine method, which requires
the system to be restored to particular states, which is typically only possible in simu-
lation. These algorithms are scalable and can optimize nonlinear policies with tens of
thousands of parameters, which have previously posed a major challenge for model-free
policy search [DNP13]. In our experiments, we show that the same TRPO methods can
learn complex policies for swimming, hopping, and walking, as well as playing Atari
games directly from raw images.

18

3.2 preliminaries 19

3.2 preliminaries

Consider an infinite-horizon discounted Markov decision process (MDP), defined by
the tuple (S,A,P, r, ⇢0,�), where S is a finite set of states, A is a finite set of actions,
P : S⇥A⇥ S ! R is the transition probability distribution, r : S ! R is the reward
function, ⇢0 : S ! R is the distribution of the initial state s0, and � 2 (0, 1) is the
discount factor. Note that this setup differs from the Chapter 2 due to the discount,
which is necessary for the theoretical analysis.

Let ⇡ denote a stochastic policy ⇡ : S⇥A ! [0, 1], and let ⌘(⇡) denote its expected
discounted reward:

⌘(⇡) = Es
0

,a
0

,...

" 1X

t=0

�tr(st)

#

, where

s0 ⇠ ⇢0(s0), at ⇠ ⇡(at | st), st+1 ⇠ P(st+1 | st,at).

We will use the following standard definitions of the state-action value function Q⇡, the
value function V⇡, and the advantage function A⇡:

Q⇡(st,at) = Es
t+1

,a
t+1

,...

" 1X

l=0

�lr(st+l)

#

,

V⇡(st) = Ea
t

,s
t+1

,...

" 1X

l=0

�lr(st+l)

#

,

A⇡(s,a) = Q⇡(s,a)- V⇡(s), where
at ⇠ ⇡(at | st), st+1 ⇠ P(st+1 | st,at) for t > 0.

The following useful identity expresses the expected return of another policy ⇡̃ in terms
of the advantage over ⇡, accumulated over timesteps (see Kakade and Langford [KL02]
or Appendix 3.10 for proof):

⌘(⇡̃) = ⌘(⇡) + Es
0

,a
0

,···⇠⇡̃

" 1X

t=0

�tA⇡(st,at)

#

(3)

where the notation Es
0

,a
0

,···⇠⇡̃ [. . .] indicates that actions are sampled at ⇠ ⇡̃(· | st). Let ⇢⇡
be the (unnormalized) discounted visitation frequencies

⇢⇡(s)=P(s0 = s)+�P(s1 = s)+�2P(s2 = s)+. . . ,

3.2 preliminaries 20

where s0 ⇠ ⇢0 and the actions are chosen according to ⇡. We can rewrite Equation (3)
with a sum over states instead of timesteps:

⌘(⇡̃) = ⌘(⇡) +
1X

t=0

X

s

P(st = s | ⇡̃)
X

a

⇡̃(a | s)�tA⇡(s,a)

= ⌘(⇡) +
X

s

1X

t=0

�tP(st = s | ⇡̃)
X

a

⇡̃(a | s)A⇡(s,a)

= ⌘(⇡) +
X

s

⇢⇡̃(s)
X

a

⇡̃(a | s)A⇡(s,a). (4)

This equation implies that any policy update ⇡ ! ⇡̃ that has a nonnegative expected
advantage at every state s, i.e.,

P
a ⇡̃(a | s)A⇡(s,a) > 0, is guaranteed to increase the pol-

icy performance ⌘, or leave it constant in the case that the expected advantage is zero
everywhere. This implies the classic result that the update performed by exact policy
iteration, which uses the deterministic policy ⇡̃(s) = arg maxa A

⇡(s,a), improves the pol-
icy if there is at least one state-action pair with a positive advantage value and nonzero
state visitation probability, otherwise the algorithm has converged to the optimal policy.
However, in the approximate setting, it will typically be unavoidable, due to estimation
and approximation error, that there will be some states s for which the expected advan-
tage is negative, that is,

P
a ⇡̃(a | s)A⇡(s,a) < 0. The complex dependency of ⇢⇡̃(s) on

⇡̃ makes Equation (4) difficult to optimize directly. Instead, we introduce the following
local approximation to ⌘:

L⇡(⇡̃) = ⌘(⇡) +
X

s

⇢⇡(s)
X

a

⇡̃(a | s)A⇡(s,a). (5)

Note that L⇡ uses the visitation frequency ⇢⇡ rather than ⇢⇡̃, ignoring changes in state
visitation density due to changes in the policy. However, if we have a parameterized
policy ⇡✓, where ⇡✓(a | s) is a differentiable function of the parameter vector ✓, then L⇡
matches ⌘ to first order (see Kakade and Langford [KL02]). That is, for any parameter
value ✓0,

L⇡
✓

0

(⇡✓
0

) = ⌘(⇡✓
0

),

r✓L⇡
✓

0

(⇡✓)
��
✓=✓

0

= r✓⌘(⇡✓)
��
✓=✓

0

. (6)

Equation (6) implies that a sufficiently small step ⇡✓
0

! ⇡̃ that improves L⇡
✓

old

will also
improve ⌘, but does not give us any guidance on how big of a step to take.

3.3 monotonic improvement guarantee for general stochastic policies 21

To address this issue, Kakade and Langford [KL02] proposed a policy updating scheme
called conservative policy iteration, for which they could provide explicit lower bounds
on the improvement of ⌘. To define the conservative policy iteration update, let ⇡old
denote the current policy, and let ⇡ 0 = arg min⇡ 0 L⇡

old

(⇡ 0). The new policy ⇡new was
defined to be the following mixture:

⇡new(a | s) = (1-↵)⇡old(a | s) +↵⇡ 0(a | s). (7)

Kakade and Langford proved the following result for this update:

⌘(⇡new)>L⇡
old

(⇡new)-
2✏�

(1- �(1-↵))(1- �)
↵2,

where ✏ = max
s

|Ea⇠⇡ 0(a | s) [A
⇡(s,a)]| (8)

Since ↵,� 2 [0, 1], Equation (8) implies the following simpler bound, which we refer to
in the next section:

⌘(⇡new) > L⇡
old

(⇡new)-
2✏�

(1- �)2
↵2. (9)

The simpler bound is only slightly weaker when ↵ ⌧ 1, which is typically the case in
the conservative policy iteration method of Kakade and Langford [KL02]. Note, however,
that so far this bound only applies to mixture policies generated by Equation (7). This
policy class is unwieldy and restrictive in practice, and it is desirable for a practical
policy update scheme to be applicable to all general stochastic policy classes.

3.3 monotonic improvement guarantee for general stochastic poli-
cies

Equation (8), which applies to conservative policy iteration, implies that a policy update
that improves the right-hand side is guaranteed to improve the true performance ⌘. Our
principal theoretical result is that the policy improvement bound in Equation (8) can
be extended to general stochastic policies, rather than just mixture polices, by replacing
↵ with a distance measure between ⇡ and ⇡̃. Since mixture policies are rarely used
in practice, this result is crucial for extending the improvement guarantee to practical
problems. The particular distance measure we use is the total variation divergence, which
is defined by DTV(p k q) = 1

2

P
i|pi-qi| for discrete probability distributions p,q.1 Define

1 Our result is straightforward to extend to continuous states and actions by replacing the sums with inte-
grals.

3.3 monotonic improvement guarantee for general stochastic policies 22

Dmax
TV (⇡, ⇡̃) as

Dmax
TV (⇡, ⇡̃) = max

s
DTV(⇡(· | s) k ⇡̃(· | s)). (10)

Proposition 1. Let ↵ = Dmax
TV (⇡old,⇡new). Then Equation (9) holds.

We provide two proofs in the appendix. The first proof extends Kakade and Langford’s
result using the fact that the random variables from two distributions with total variation
divergence less than ↵ can be coupled, so that they are equal with probability 1-↵. The
second proof uses perturbation theory to prove a slightly stronger version of Equation (9),
with a more favorable definition of ✏ that depends on ⇡̃.

Next, we note the following relationship between the total variation divergence and
the KL divergence (Pollard [Pol00], Ch. 3): DTV(p k q)2 6 DKL(p k q). Let Dmax

KL (⇡, ⇡̃) =
maxs DKL(⇡(· | s) k ⇡̃(· | s)). The following bound then follows directly from Equation (9):

⌘(⇡̃) > L⇡(⇡̃)-CDmax
KL (⇡, ⇡̃),

where C =
2✏�

(1- �)2
. (11)

Algorithm 3 describes an approximate policy iteration scheme based on the policy im-
provement bound in Equation (11). Note that for now, we assume exact evaluation of the
advantage values A⇡. Algorithm 3 uses a constant ✏ 0 6 ✏ that is simpler to describe in
terms of measurable quantities.

It follows from Equation (11) that Algorithm 3 is guaranteed to generate a mono-
tonically improving sequence of policies ⌘(⇡0) 6 ⌘(⇡1) 6 ⌘(⇡2) 6 To see this, let
Mi(⇡) = L⇡

i

(⇡)-CDmax
KL (⇡i,⇡). Then

⌘(⇡i+1) > Mi(⇡i+1) by Equation (11)
⌘(⇡i) = Mi(⇡i), therefore,
⌘(⇡i+1)- ⌘(⇡i) > Mi(⇡i+1)-M(⇡i). (12)

Thus, by maximizing Mi at each iteration, we guarantee that the true objective ⌘ is
non-decreasing. This algorithm is a type of minorization-maximization (MM) algorithm
[HL04], which is a class of methods that also includes expectation maximization. In
the terminology of MM algorithms, Mi is the surrogate function that minorizes ⌘ with

3.4 optimization of parameterized policies 23

Algorithm 3 Approximate policy iteration algorithm guaranteeing non-decreasing ex-
pected return ⌘

Initialize ⇡0.
for i = 0, 1, 2, . . . until convergence do

Compute all advantage values A⇡
i

(s,a).
Solve the constrained optimization problem

⇡i+1 = arg max
⇡

[L⇡
i

(⇡)- (
2✏ 0�

(1- �)2
)Dmax

KL (⇡i,⇡)]

where ✏ 0 = max
s

max
a

|A⇡(s,a)|

and L⇡
i

(⇡)=⌘(⇡i)+
X

s

⇢⇡
i

(s)
X

a

⇡(a | s)A⇡
i

(s,a)

end for

equality at ⇡i. This algorithm is also reminiscent of proximal gradient methods and
mirror descent.

Trust region policy optimization, which we propose in the following section, is an ap-
proximation to Algorithm 3, which uses a constraint on the KL divergence rather than a
penalty to robustly allow large updates.

3.4 optimization of parameterized policies

In the previous section, we considered the policy optimization problem independently
of the parameterization of ⇡ and under the assumption that the policy can be evaluated
at all states. We now describe how to derive a practical algorithm from these theoretical
foundations, under finite sample counts and arbitrary parameterizations.

Since we consider parameterized policies ⇡✓(a | s) with parameter vector ✓, we will
overload our previous notation to use functions of ✓ rather than ⇡, e.g. ⌘(✓) := ⌘(⇡✓),
L✓(✓̃) := L⇡

✓

(⇡✓̃), and DKL(✓ k ✓̃) := DKL(⇡✓ k ⇡✓̃). We will use ✓old to denote the previous
policy parameters that we want to improve upon.

The preceding section showed that ⌘(✓) > L✓
old

(✓) - CDmax
KL (✓old, ✓), with equality

at ✓ = ✓old. Thus, by performing the following maximization, we are guaranteed to
improve the true objective ⌘:

maximize
✓

[L✓
old

(✓)-CDmax
KL (✓old, ✓)].

3.5 sample-based estimation of the objective and constraint 24

In practice, if we used the penalty coefficient C recommended by the theory above, the
step sizes would be very small. One way to take larger steps in a robust way is to use a
constraint on the KL divergence between the new policy and the old policy, i.e., a trust
region constraint:

maximize
✓

L✓
old

(✓) (13)

subject to Dmax
KL (✓old, ✓) 6 �.

This problem imposes a constraint that the KL divergence is bounded at every point in
the state space. While it is motivated by the theory, this problem is impractical to solve
due to the large number of constraints. Instead, we can use a heuristic approximation
which considers the average KL divergence:

D
⇢
KL(✓1, ✓2) := Es⇠⇢

⇥
DKL(⇡✓

1

(· | s) k ⇡✓
2

(· | s))
⇤

.

We therefore propose solving the following optimization problem to generate a policy
update:

maximize
✓

L✓
old

(✓) (14)

subject to D
⇢
✓

old

KL (✓old, ✓) 6 �.

Similar policy updates have been proposed in prior work [BS03; PS08; PMA10], and
we compare our approach to prior methods in Section 3.7 and in the experiments in
Section 3.8. Our experiments also show that this type of constrained update has similar
empirical performance to the maximum KL divergence constraint in Equation (13).

3.5 sample-based estimation of the objective and constraint

The previous section proposed a constrained optimization problem on the policy param-
eters (Equation (14)), which optimizes an estimate of the expected total reward ⌘ subject
to a constraint on the change in the policy at each update. This section describes how the
objective and constraint functions can be approximated using Monte Carlo simulation.

We seek to solve the following optimization problem, obtained by expanding L✓
old

in
Equation (14):

maximize
✓

X

s

⇢✓
old

(s)
X

a

⇡✓(a | s)A✓
old

(s,a)

subject to D
⇢
✓

old

KL (✓old, ✓) 6 �. (15)

3.5 sample-based estimation of the objective and constraint 25

We first replace
P

s ⇢✓
old

(s)[. . .] in the objective by the expectation 1
1-�Es⇠⇢

✓

old

[. . .].
Next, we replace the advantage values A✓

old

by the Q-values Q✓
old

in Equation (15),
which only changes the objective by a constant. Last, we replace the sum over the actions
by an importance sampling estimator. Using q to denote the sampling distribution, the
contribution of a single sn to the loss function is

X

a

⇡✓(a | sn)A✓
old

(sn,a) = Ea⇠q

⇡✓(a | sn)

q(a | sn)
A✓

old

(sn,a)
�

.

Our optimization problem in Equation (15) is exactly equivalent to the following one,
written in terms of expectations:

maximize
✓

Es⇠⇢
✓

old

,a⇠q

⇡✓(a | s)

q(a | s)
Q✓

old

(s,a)
�

(16)

subject to Es⇠⇢
✓

old

⇥
DKL(⇡✓

old

(· | s) k ⇡✓(· | s))
⇤
6 �.

All that remains is to replace the expectations by sample averages and replace the Q
value by an empirical estimate. The following sections describe two different schemes
for performing this estimation.

The first sampling scheme, which we call single path, is the one that is typically used
for policy gradient estimation [BB11], and is based on sampling individual trajectories.
The second scheme, which we call vine, involves constructing a rollout set and then
performing multiple actions from each state in the rollout set. This method has mostly
been explored in the context of policy iteration methods [LP03; GGS13].

3.5.1 Single Path

In this estimation procedure, we collect a sequence of states by sampling s0 ⇠ ⇢0 and
then simulating the policy ⇡✓

old

for some number of timesteps to generate a trajectory
s0,a0, s1,a1, . . . , sT-1,aT-1, sT . Hence, q(a | s) = ⇡✓

old

(a | s). Q✓
old

(s,a) is computed at
each state-action pair (st,at) by taking the discounted sum of future rewards along the
trajectory.

3.5.2 Vine

In this estimation procedure, we first sample s0 ⇠ ⇢0 and simulate the policy ⇡✓
i

to gener-
ate a number of trajectories. We then choose a subset of N states along these trajectories,

3.5 sample-based estimation of the objective and constraint 26

all state-action
pairs used in
objective

trajectories

s ann

ρ
0

1

a2

sn

rollout set

two rollouts
using CRN

sampling
trajectories

ρ
0

Figure 1: Left: illustration of single path procedure. Here, we generate a set of trajectories via
simulation of the policy and incorporate all state-action pairs (s

n

,a
n

) into the objective.
Right: illustration of vine procedure. We generate a set of “trunk” trajectories, and then
generate “branch” rollouts from a subset of the reached states. For each of these states
s
n

, we perform multiple actions (a
1

and a
2

here) and perform a rollout after each
action, using common random numbers (CRN) to reduce the variance.

denoted s1, s2, . . . , sN, which we call the “rollout set”. For each state sn in the rollout set,
we sample K actions according to an,k ⇠ q(· | sn). Any choice of q(· | sn) with a support
that includes the support of ⇡✓

i

(· | sn) will produce a consistent estimator. In practice, we
found that q(· | sn) = ⇡✓

i

(· | sn) works well on continuous problems, such as robotic lo-
comotion, while the uniform distribution works well on discrete tasks, such as the Atari
games, where it can sometimes achieve better exploration.

For each action an,k sampled at each state sn, we estimate Q̂✓
i

(sn,an,k) by performing
a rollout (i.e., a short trajectory) starting with state sn and action an,k. We can greatly re-
duce the variance of the Q-value differences between rollouts by using the same random
number sequence for the noise in each of the K rollouts, i.e., common random numbers. See
[Ber05] for additional discussion on Monte Carlo estimation of Q-values and [NJ00] for
a discussion of common random numbers in reinforcement learning.

In small, finite action spaces, we can generate a rollout for every possible action from
a given state. The contribution to L✓

old

from a single state sn is as follows:

Ln(✓) =
KX

k=1

⇡✓(ak | sn)Q̂(sn,ak),

where the action space is A = {a1,a2, . . . ,aK}. In large or continuous state spaces, we
can construct an estimator of the surrogate objective using importance sampling. The
self-normalized estimator (Owen [Owe13], Chapter 8) of L✓

old

obtained at a single state

3.6 practical algorithm 27

sn is

Ln(✓) =

PK
k=1

⇡
✓

(a
n,k | s

n

)
⇡
✓

old

(a
n,k | s

n

)Q̂(sn,an,k)

PK
k=1

⇡
✓

(a
n,k | s

n

)
⇡
✓

old

(a
n,k | s

n

)

,

assuming that we performed K actions an,1,an,2, . . . ,an,K from state sn. This self-normalized
estimator removes the need to use a baseline for the Q-values (note that the gradient is
unchanged by adding a constant to the Q-values). Averaging over sn ⇠ ⇢(⇡), we obtain
an estimator for L✓

old

, as well as its gradient.
The vine and single path methods are illustrated in Figure 1. We use the term vine, since

the trajectories used for sampling can be likened to the stems of vines, which branch at
various points (the rollout set) into several short offshoots (the rollout trajectories).

The benefit of the vine method over the single path method that is our local estimate of
the objective has much lower variance given the same number of Q-value samples in the
surrogate objective. That is, the vine method gives much better estimates of the advantage
values. The downside of the vine method is that we must perform far more calls to the
simulator for each of these advantage estimates. Furthermore, the vine method requires
us to generate multiple trajectories from each state in the rollout set, which limits this
algorithm to settings where the system can be reset to an arbitrary state. In contrast,
the single path algorithm requires no state resets and can be directly implemented on a
physical system [PS08].

3.6 practical algorithm

Here we present two practical policy optimization algorithm based on the ideas above,
which use either the single path or vine sampling scheme from the preceding section. The
algorithms repeatedly perform the following steps:

1. Use the single path or vine procedures to collect a set of state-action pairs along with
Monte Carlo estimates of their Q-values.

2. By averaging over samples, construct the estimated objective and constraint in
Equation (16).

3. Approximately solve this constrained optimization problem to update the policy’s
parameter vector ✓. We use the conjugate gradient algorithm followed by a line
search, which is altogether only slightly more expensive than computing the gradi-
ent itself. See Section 3.12 for details.

With regard to (3), we construct the Fisher information matrix (FIM) by analytically
computing the Hessian of the KL divergence, rather than using the covariance matrix

3.7 connections with prior work 28

of the gradients. That is, we estimate Aij as 1
N

PN
n=1

@2

@✓
i

@✓
j

DKL(⇡✓
old

(· | sn) k ⇡✓(· | sn)),
rather than 1

N

PN
n=1

@
@✓

i

log⇡✓(an | sn)
@
@✓

j

log⇡✓(an | sn). The analytic estimator integrates
over the action at each state sn, and does not depend on the action an that was sampled.
As described in Section 3.12, this analytic estimator has computational benefits in the
large-scale setting, since it removes the need to store a dense Hessian or all policy gradi-
ents from a batch of trajectories. The rate of improvement in the policy is similar to the
empirical FIM, as shown in the experiments.

Let us briefly summarize the relationship between the theory from Section 3.3 and the
practical algorithm we have described:

• The theory justifies optimizing a surrogate objective with a penalty on KL diver-
gence. However, the large penalty coefficient 2✏�

(2-�)2
leads to prohibitively small

steps, so we would like to decrease this coefficient. Empirically, it is hard to robustly
choose the penalty coefficient, so we use a hard constraint instead of a penalty, with
parameter � (the bound on KL divergence).

• The constraint on Dmax
KL (✓old, ✓) is hard for numerical optimization and estimation,

so instead we constrain DKL(✓old, ✓).
• Our theory ignores estimation error for the advantage function. Kakade and Lang-

ford [KL02] consider this error in their derivation, and the same arguments would
hold in the setting of this chapter, but we omit them for simplicity.

3.7 connections with prior work

As mentioned in Section 3.4, our derivation results in a policy update that is related to
several prior methods, providing a unifying perspective on a number of policy update
schemes. The natural policy gradient [Kak02] can be obtained as a special case of the
update in Equation (14) by using a linear approximation to L and a quadratic approxi-
mation to the DKL constraint, resulting in the following problem:

maximize
✓

[r✓L✓
old

(✓)
��
✓=✓

old

· (✓- ✓old)] (17)

subject to
1

2
(✓old - ✓)

TA(✓old)(✓old - ✓) 6 �,

where A(✓old)ij =

@

@✓i

@

@✓j
Es⇠⇢

⇡

[DKL(⇡(· | s, ✓old) k ⇡(· | s, ✓))]
��
✓=✓

old

.

3.8 experiments 29

The update is ✓new = ✓old +
1
�A(✓old)

-1r✓L(✓)
��
✓=✓

old

, where the stepsize 1
� is typically

treated as an algorithm parameter. This differs from our approach, which enforces the
constraint at each update. Though this difference might seem subtle, our experiments
demonstrate that it significantly improves the algorithm’s performance on larger prob-
lems.

We can also obtain the standard policy gradient update by using an `2 constraint or
penalty:

maximize
✓

[r✓L✓
old

(✓)
��
✓=✓

old

· (✓- ✓old)] (18)

subject to
1

2
k✓- ✓oldk2 6 �.

The policy iteration update can also be obtained by solving the unconstrained problem
maximize⇡ L⇡

old

(⇡), using L as defined in Equation (5).
Several other methods employ an update similar to Equation (14). Relative entropy

policy search (REPS) [PMA10] constrains the state-action marginals p(s,a), while TRPO
constrains the conditionals p(a | s). Unlike REPS, our approach does not require a costly
nonlinear optimization in the inner loop. Levine and Abbeel [LA14] also use a KL di-
vergence constraint, but its purpose is to encourage the policy not to stray from regions
where the estimated dynamics model is valid, while we do not attempt to estimate the
system dynamics explicitly. Pirotta et al. [Pir+13] also build on and generalize Kakade
and Langford’s results, and they derive different algorithms from the ones here.

3.8 experiments

We designed our experiments to investigate the following questions:
1. What are the performance characteristics of the single path and vine sampling pro-

cedures?
2. TRPO is related to prior methods (e.g. natural policy gradient) but makes several

changes, most notably by using a fixed KL divergence rather than a fixed penalty
coefficient. How does this affect the performance of the algorithm?

3. Can TRPO be used to solve challenging large-scale problems? How does TRPO
compare with other methods when applied to large-scale problems, with regard to
final performance, computation time, and sample complexity?

To answer (1) and (2), we compare the performance of the single path and vine variants
of TRPO, several ablated variants, and a number of prior policy optimization algorithms.
With regard to (3), we show that both the single path and vine algorithm can obtain high-

3.8 experiments 30

Figure 2: 2D robot models used for locomotion experiments. From left to right: swimmer, hopper,
walker. The hopper and walker present a particular challenge, due to underactuation
and contact discontinuities.

Jo
in

ta
ng

le
s

an
d

ki
ne

m
at

ic
s

Control

Standard
deviationsdimu units

Fully
connected

layer

30 units

Input
layer

Mean
parameters Sampling

Sc
re

en
in

pu
t

4⇥4

4⇥4

4⇥4

4⇥4

4⇥4

4⇥4

4⇥4

4⇥4

Control

Hidden
layer

20 units

Conv.
layer

Conv.
layer

Input
layer

16 filters16 filters

Action
probabilities Sampling

Figure 3: Neural networks used for the locomotion task (left) and for playing Atari games (right).
In the locomotion task, the sampled control (red diamond) is a vector u, whereas in
Atari, it is a triple of integers that forms a factored representation of the action: see
Section 3.13.

quality locomotion controllers from scratch, which is considered to be a hard problem.
We also show that these algorithms produce competitive results when learning policies
for playing Atari games from images using convolutional neural networks with tens of
thousands of parameters.

3.8.1 Simulated Robotic Locomotion

We conducted the robotic locomotion experiments using the MuJoCo simulator [TET12].
The three simulated robots are shown in Figure 2. The states of the robots are their
generalized positions and velocities, and the controls are joint torques. Underactuation,
high dimensionality, and non-smooth dynamics due to contacts make these tasks very
challenging. The following models are included in our evaluation:

1. Swimmer. 10-dimensional state space, linear reward for forward progress and a
quadratic penalty on joint effort to produce the reward r(x,u) = vx - 10-5kuk2.
The swimmer can propel itself forward by making an undulating motion.

3.8 experiments 31

2. Hopper. 12-dimensional state space, same reward as the swimmer, with a bonus of
+1 for being in a non-terminal state. We ended the episodes when the hopper fell
over, which was defined by thresholds on the torso height and angle.

3. Walker. 18-dimensional state space. For the walker, we added a penalty for strong
impacts of the feet against the ground to encourage a smooth walk rather than a
hopping gait.

We used � = 0.01 for all experiments. See Table 2 in the Appendix for more details
on the experimental setup and parameters used. We used neural networks to repre-
sent the policy, with the architecture shown in Figure 3, and further details provided in
Section 3.13. To establish a standard baseline, we also included the classic cart-pole bal-
ancing problem, based on the formulation from Barto, Sutton, and Anderson [BSA83],
using a linear policy with six parameters that is easy to optimize with derivative-free
black-box optimization methods.

The following algorithms were considered in the comparison: single path TRPO; vine
TRPO; cross-entropy method (CEM), a gradient-free method [SL06]; covariance matrix adap-
tion (CMA), another gradient-free method [HO96]; natural gradient, the classic natural
policy gradient algorithm [Kak02], which differs from single path by the use of a fixed
penalty coefficient (Lagrange multiplier) instead of the KL divergence constraint; empiri-
cal FIM, identical to single path, except that the FIM is estimated using the covariance ma-
trix of the gradients rather than the analytic estimate; max KL, which was only tractable
on the cart-pole problem, and uses the maximum KL divergence in Equation (13), rather
than the average divergence, allowing us to evaluate the quality of this approximation.
The parameters used in the experiments are provided in Section 3.14. For the natural
gradient method, we swept through the possible values of the stepsize in factors of three,
and took the best value according to the final performance.

Learning curves showing the total reward averaged across five runs of each algorithm
are shown in Figure 4. Single path and vine TRPO solved all of the problems, yielding
the best solutions. Natural gradient performed well on the two easier problems, but was
unable to generate hopping and walking gaits that made forward progress. These results
provide empirical evidence that constraining the KL divergence is a more robust way to
choose step sizes and make fast, consistent progress, compared to using a fixed penalty.
CEM and CMA are derivative-free algorithms, hence their sample complexity scales
unfavorably with the number of parameters, and they performed poorly on the larger
problems. The max KL method learned somewhat more slowly than our final method,
due to the more restrictive form of the constraint, but overall the result suggests that
the average KL divergence constraint has a similar effect as the theorecally justified

3.8 experiments 32

Figure 4: Learning curves for locomotion tasks, averaged across five runs of each algorithm with
random initializations. Note that for the hopper and walker, a score of -1 is achievable
without any forward velocity, indicating a policy that simply learned balanced standing,
but not walking.

maximum KL divergence. Videos of the policies learned by TRPO may be viewed on the
project website: http://sites.google.com/site/trpopaper.

Note that TRPO learned all of the gaits with general-purpose policies and simple
reward functions, using minimal prior knowledge. This is in contrast with most prior
methods for learning locomotion, which typically rely on hand-architected policy classes
that explicitly encode notions of balance and stepping [TZS04; GPW06; WP09].

3.8.2 Playing Games from Images

To evaluate TRPO on a task with high-dimensional observations, we trained policies for
playing Atari games, using raw images as input. The games require learning a variety
of behaviors, such as dodging bullets and hitting balls with paddles. Aside from the
high dimensionality, challenging elements of these games include delayed rewards (no
immediate penalty is incurred when a life is lost in Breakout or Space Invaders); complex
sequences of behavior (Q*bert requires a character to hop on 21 different platforms); and
non-stationary image statistics (Enduro involves a changing and flickering background).

We tested our algorithms on the same seven games reported on in [Mni+13] and
[Guo+14], which are made available through the Arcade Learning Environment [Bel+13]
The images were preprocessed following the protocol in Mnih et al [Mni+13], and the
policy was represented by the convolutional neural network shown in Figure 3, with two

http://sites.google.com/site/trpopaper

3.9 discussion 33

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders

Random 354 1.2 0 -20.4 157 110 179

Human [Mni+13] 7456 31.0 368 -3.0 18900 28010 3690

Deep Q Learning [Mni+13] 4092 168.0 470 20.0 1952 1705 581

UCC-I [Guo+14] 5702 380 741 21 20025 2995 692

TRPO - single path 1425.2 10.8 534.6 20.9 1973.5 1908.6 568.4

TRPO - vine 859.5 34.2 430.8 20.9 7732.5 788.4 450.2

Table 1: Performance comparison for vision-based RL algorithms on the Atari domain. Our al-
gorithms (bottom rows) were run once on each task, with the same architecture and
parameters. Performance varies substantially from run to run (with different random ini-
tializations of the policy), but we could not obtain error statistics due to time constraints.

convolutional layers with 16 channels and stride 2, followed by one fully-connected layer
with 20 units, yielding 33,500 parameters.

The results of the vine and single path algorithms are summarized in Table 1, which
also includes an expert human performance and two recent methods: deep Q-learning
[Mni+13], and a combination of Monte-Carlo Tree Search with supervised training [Guo+14],
called UCC-I. The 500 iterations of our algorithm took about 30 hours (with slight vari-
ation between games) on a 16-core computer. While our method only outperformed the
prior methods on some of the games, it consistently achieved reasonable scores. Unlike
the prior methods, our approach was not designed specifically for this task. The ability
to apply the same policy search method to methods as diverse as robotic locomotion and
image-based game playing demonstrates the generality of TRPO.

3.9 discussion

We proposed and analyzed trust region methods for optimizing stochastic control poli-
cies. We proved monotonic improvement for an algorithm that repeatedly optimizes a
local approximation to the expected return of the policy with a KL divergence penalty,
and we showed that an approximation to this method that incorporates a KL divergence
constraint achieves good empirical results on a range of challenging policy learning tasks,
outperforming prior methods. Our analysis also provides a perspective that unifies pol-
icy gradient and policy iteration methods, and shows them to be special limiting cases
of an algorithm that optimizes a certain objective subject to a trust region constraint.

3.10 proof of policy improvement bound 34

In the domain of robotic locomotion, we successfully learned controllers for swimming,
walking and hopping in a physics simulator, using general purpose neural networks
and minimally informative rewards. To our knowledge, no prior work has learned con-
trollers from scratch for all of these tasks, using a generic policy search method and
non-engineered, general-purpose policy representations. In the game-playing domain,
we learned convolutional neural network policies that used raw images as inputs. This
requires optimizing extremely high-dimensional policies, and only two prior methods
report successful results on this task.

Since the method we proposed is scalable and has strong theoretical foundations, we
hope that it will serve as a jumping-off point for future work on training large, rich func-
tion approximators for a range of challenging problems. At the intersection of the two
experimental domains we explored, there is the possibility of learning robotic control
policies that use vision and raw sensory data as input, providing a unified scheme for
training robotic controllers that perform both perception and control. The use of more so-
phisticated policies, including recurrent policies with hidden state, could further make it
possible to roll state estimation and control into the same policy in the partially-observed
setting. By combining our method with model learning, it would also be possible to sub-
stantially reduce its sample complexity, making it applicable to real-world settings where
samples are expensive.

3.10 proof of policy improvement bound

This proof uses techniques from the proof of Theorem 4.1 in [KL02], adapting them to
the more general setting considered in this chapter.

Lemma 1. Given two policies ⇡, ⇡̃,

⌘(⇡̃) = ⌘(⇡)+E⌧⇠⇡̃

" 1X

t=0

�tA⇡(st,at)

#

This expectation is taken over trajectories ⌧ := (s0,a0, s1,a0, . . .), and the notation E⌧⇠⇡̃ [. . .]
indicates that actions are sampled from ⇡̃ to generate ⌧.

3.10 proof of policy improvement bound 35

Proof. First note that A⇡(s,a) = Es 0⇠P(s 0 | s,a) [r(s) + �V
⇡(s 0)- V⇡(s)]. Therefore,

E⌧ | ⇡̃

" 1X

t=0

�tA⇡(st,at)

#

= E⌧ | ⇡̃

" 1X

t=0

�t(r(st) + �V
⇡(st+1)- V⇡(st))

#

= E⌧ | ⇡̃

"

-V⇡(s0) +
1X

t=0

�tr(st)

#

= -Es
0

[V⇡(s0)] + E⌧ | ⇡̃

" 1X

t=0

�tr(st)

#

(19)

= -⌘(⇡) + ⌘(⇡̃)

Rearranging, the result follows.

Define Ā⇡,⇡̃(s) to be the expected advantage of ⇡̃ over ⇡ at state s:

Ā⇡,⇡̃(s) = Ea⇠⇡̃(· | s) [A
⇡(s,a)] .

Now Lemma 1 can be written as follows:

⌘(⇡̃) = ⌘(⇡) + E⌧⇠⇡̃

" 1X

t=0

�tĀ⇡,⇡̃(st)

#

Note that L⇡ can be written as

L⇡(⇡̃) = ⌘(⇡) + E⌧⇠⇡

" 1X

t=0

�tĀ⇡,⇡̃(st)

#

The difference in these equations is whether the states are sampled using ⇡ or ⇡̃. To
bound the difference between ⌘(⇡̃) and L⇡(⇡̃), we will bound the difference arising from
each timestep. To do this, we first need to introduce a measure of how much ⇡ and ⇡̃
agree. Specifically, we’ll couple the policies, so that they define a joint distribution over
pairs of actions.

3.10 proof of policy improvement bound 36

Definition 1. (⇡, ⇡̃) is an ↵-coupled policy pair if it defines a joint distribution (a, ã) | s,
such that P(a 6= ã | s) 6 ↵ for all s. ⇡ and ⇡̃ will denote the marginal distributions of a and
ã, respectively.

In words, this means that at each state, (⇡, ⇡̃) gives us a pair of actions, and these actions
differ with probability 6 ↵.

Lemma 2. Let (⇡, ⇡̃) be an ↵-coupled policy pair. Then
��Es

t

⇠⇡̃

⇥
Ā⇡,⇡̃(st)

⇤
- Es

t

⇠⇡

⇥
Ā⇡,⇡̃(st)

⇤�� 6 2✏(1- (1-↵)t),

where ✏ = max
s

|Ā⇡,⇡̃(s)|

Proof. Consider generating a trajectory using ⇡̃, i.e., at each timestep i we sample (ai, ãi) | st,
and we choose the action ãi and ignore ai. Let nt denote the number of times that ai 6= ãi

for i < t, i.e., the number of times that ⇡ and ⇡̃ disagree before arriving at state st.

Es
t

⇠⇡̃

⇥
Ā⇡,⇡̃(st)

⇤
= P(nt = 0)Es

t

⇠⇡̃ |n
t

=0

⇥
Ā⇡,⇡̃(st)

⇤
+ P(nt > 0)Es

t

⇠⇡̃ |n
t

>0

⇥
Ā⇡,⇡̃(st)

⇤

P(nt = 0) = (1- ↵)t, and Es
t

⇠⇡̃ |n
t

=0

⇥
Ā⇡,⇡̃(st)

⇤
= Es

t

⇠⇡ |n
t

=0

⇥
Ā⇡,⇡̃(st)

⇤
, because nt = 0

indicates that ⇡ and ⇡̃ agreed on all timesteps less than t. Therefore, we have

Es
t

⇠⇡̃

⇥
Ā⇡,⇡̃(st)

⇤
= (1-↵t)Es

t

⇠⇡ |n
t

=0

⇥
Ā⇡,⇡̃(st)

⇤
+ (1- (1-↵t))Es

t

⇠⇡̃ |n
t

>0

⇥
Ā⇡,⇡̃(st)

⇤

Subtracting Es
t

⇠⇡ |n
t

=0

⇥
Ā⇡,⇡̃(st)

⇤
from both sides,

Es
t

⇠⇡̃

⇥
Ā⇡,⇡̃(st)

⇤
- Es

t

⇠⇡

⇥
Ā⇡,⇡̃(st)

⇤
= (1- (1-↵t))(-Es

t

⇠⇡ |n
t

=0

⇥
Ā⇡,⇡̃(st)

⇤
+ Es

t

⇠⇡̃ |n
t

>0

⇥
Ā⇡,⇡̃(st)

⇤
)

��Es
t

⇠⇡̃

⇥
Ā⇡,⇡̃(st)

⇤
- Es

t

⇠⇡

⇥
Ā⇡,⇡̃(st)

⇤�� 6 (1- (1-↵t))(✏+ ✏)

Now we can sum over time to bound the error of L⇡.

Lemma 3. Suppose (⇡, ⇡̃) is an ↵-coupled policy pair. Then

|⌘(⇡̃)- L⇡(⇡̃)| 6
2✏�↵

(1- �)(1- �(1-↵))

3.11 perturbation theory proof of policy improvement bound 37

Proof.

⌘(⇡̃)- L⇡(⇡̃) = E⌧⇠⇡̃

" 1X

t=0

�tĀ⇡,⇡̃(st)

#

- E⌧⇠⇡

" 1X

t=0

�tĀ⇡,⇡̃(st)

#

=
1X

t=0

�t(Es
t

⇠⇡̃

⇥
Ā⇡,⇡̃(st)

⇤
- Es

t

⇠⇡

⇥
Ā⇡,⇡̃(st)

⇤
)

|⌘(⇡̃)- L⇡(⇡̃)| 6
1X

t=0

�t
��Es

t

⇠⇡̃

⇥
Ā⇡,⇡̃(st)

⇤
- Es

t

⇠⇡

⇥
Ā⇡,⇡̃(st)

⇤��

6
1X

t=0

�t · 2✏ · (1- (1-↵t))

=
2✏�↵

(1- �)(1- �(1-↵))

Last, we need to use the correspondence between total variation divergence and cou-
pled random variables:

Suppose pX and pY are distributions with DTV(pX k pY) = ↵. Then there exists
a joint distribution (X, Y) whose marginals are pX,pY , for which X = Y with
probability 1-↵.

See [LPW09], Proposition 4.7.
It follows that if we have two policies ⇡ and ⇡̃ such that maxs DTV(⇡(· | s) k ⇡̃(· | s))↵,

then we can define an ↵-coupled policy pair (⇡, ⇡̃) with appropriate marginals. Proposi-
tion 1 follows.

3.11 perturbation theory proof of policy improvement bound

We also provide a different proof of Proposition 1 using perturbation theory. This method
makes it possible to provide slightly stronger bounds.

Proposition 1a. Let ↵ denote the maximum total variation divergence between stochastic policies
⇡ and ⇡̃, as defined in Equation (10), and let L be defined as in Equation (5). Then

⌘(⇡̃) > L(⇡̃)-↵2 2�✏

(1- �)2

3.11 perturbation theory proof of policy improvement bound 38

where

✏ = min
s

�P
a(⇡̃(a | s)Q⇡(s,a)- ⇡(a | s)Q⇡(s,a))P

a|⇡̃(a | s)- ⇡(a | s)|

�
(20)

Note that the ✏ defined in Equation (20) is less than or equal to the ✏ defined in
Proposition 1. So Proposition 1a is slightly stronger.

Proof. Let G = (1+ �P⇡ + (�P⇡)2 + . . .) = (1- �P⇡)-1, and similarly Let G̃ = (1+ �P⇡̃ +
(�P⇡̃)2 + . . .) = (1- �P⇡̃)-1. We will use the convention that ⇢ (a density on state space)
is a vector and r (a reward function on state space) is a dual vector (i.e., linear functional
on vectors), thus r⇢ is a scalar meaning the expected reward under density ⇢. Note that
⌘(⇡) = rG⇢0, and ⌘(⇡̃) = cG̃⇢0. Let � = P⇡̃ - P⇡. We want to bound ⌘(⇡̃) - ⌘(⇡) =
r(G̃-G)⇢0. We start with some standard perturbation theory manipulations.

G-1 - G̃-1 = (1- �P⇡)- (1- �P⇡̃)

= ��.

Left multiply by G and right multiply by G̃.

G̃-G = �G�G̃

G̃ = G+ �G�G̃

Substituting the right-hand side into G̃ gives

G̃ = G+ �G�G+ �2G�G�G̃

So we have

⌘(⇡̃)- ⌘(⇡) = r(G̃-G)⇢ = �rG�G⇢0 + �
2rG�G�G̃⇢0

Let us first consider the leading term �rG�G⇢0. Note that rG = v, i.e., the infinite-
horizon state-value function. Also note that G⇢0 = ⇢⇡. Thus we can write �cG�G⇢0 =
�v�⇢⇡. We will show that this expression equals the expected advantage L⇡(⇡̃)- L⇡(⇡).

L⇡(⇡̃)- L⇡(⇡) =
X

s

⇢⇡(s)
X

a

(⇡̃(a | s)- ⇡(a | s))A⇡(s,a)

=
X

s

⇢⇡(s)
X

a

(⇡✓(a | s)- ⇡✓̃(a | s))[r(s) +
X

s 0

p(s 0 | s,a)�v(s 0)- v(s)]

=
X

s

⇢⇡(s)
X

s 0

X

a

(⇡(a | s)- ⇡̃(a | s))p(s 0 | s,a)�v(s 0)

=
X

s

⇢⇡(s)
X

s 0

(p⇡(s
0 | s)- p⇡̃(s

0 | s))�v(s 0)

= �v�⇢⇡

3.12 efficiently solving the trust-region constrained optimization problem 39

Next let us bound the O(�2) term �2rG�G�G̃⇢. First we consider the product �rG� =
�v�. Consider the component s of this dual vector.

(�v�)s =
X

a

(⇡̃(s,a)- ⇡(s,a))Q⇡(s,a)

=
X

a

|⇡̃(a | s)- ⇡(a | s)|

P
a(⇡̃(s,a)- ⇡(s,a))Q⇡(s,a)P

a|⇡̃(a | s)- ⇡(a | s)|

6 ↵✏

We bound the other portion G�G̃⇢ using the `1 operator norm

kAk1 = sup
⇢

{
kA⇢k1
k⇢k1

}

where we have that kGk1 = kG̃k1 = 1/(1- �) and k�k1 = 2↵. That gives

kG�G̃⇢k1 6 kGk1k�k1kG̃k1k⇢k1

=
1

1- �
·↵ · 1

1- �
· 1

So we have that

�2|rG�G�G̃⇢| 6 �k�rG�k1kG�G̃⇢k1

6 � ·↵✏ · 2↵

(1- �)2

= ↵2 2�✏

(1- �)2

3.12 efficiently solving the trust-region constrained optimization prob-
lem

This section describes how to efficiently approximately solve the following constrained
optimization problem, which we must solve at each iteration of TRPO:

maximizeL(✓) subject to DKL(✓old, ✓) 6 �.

3.12 efficiently solving the trust-region constrained optimization problem 40

The method we will describe involves two steps: (1) compute a search direction, using a
linear approximation to objective and quadratic approximation to the constraint; and (2)
perform a line search in that direction, ensuring that we improve the nonlinear objective
while satisfying the nonlinear constraint.

The search direction is computed by approximately solving the equation Ax = g,
where A is the Fisher information matrix, i.e., the quadratic approximation to the KL di-
vergence constraint: DKL(✓old, ✓) ⇡ 1

2(✓-✓old)
TA(✓-✓old), where Aij =

@
@✓

i

@
@✓

j

DKL(✓old, ✓).
In large-scale problems, it is prohibitively costly (with respect to computation and mem-
ory) to form the full matrix A (or A-1). However, the conjugate gradient algorithm allows
us to approximately solve the equation Ax = b without forming this full matrix, when
we merely have access to a function that computes matrix-vector products y ! Ay.
Section 3.12.1 describes the most efficient way to compute matrix-vector products with
the Fisher information matrix. For additional exposition on the use of Hessian-vector
products for optimizing neural network objectives, see [MS12] and [PB13].

Having computed the search direction s ⇡ A-1g, we next need to compute the maxi-
mal step length � such that ✓+ �s will satisfy the KL divergence constraint. To do this,
let � = DKL ⇡ 1

2(�s)
TA(�s) = 1

2�
2sTAs. From this, we obtain � =

p
2�/sTAs, where �

is the desired KL divergence. The term sTAs can be computed through a single Hessian
vector product, and it is also an intermediate result produced by the conjugate gradient
algorithm.

Last, we use a line search to ensure improvement of the surrogate objective and sat-
isfaction of the KL divergence constraint, both of which are nonlinear in the parameter
vector ✓ (and thus depart from the linear and quadratic approximations used to com-
pute the step). We perform the line search on the objective L✓

old

(✓)-X[DKL(✓old, ✓) 6 �],
where X[. . .] equals zero when its argument is true and +1 when it is false. Starting with
the maximal value of the step length � computed in the previous paragraph, we shrink
� exponentially until the objective improves. Without this line search, the algorithm oc-
casionally computes large steps that cause a catastrophic degradation of performance.

3.12.1 Computing the Fisher-Vector Product

Here we will describe how to compute the matrix-vector product between the averaged
Fisher information matrix and arbitrary vectors; this calculation is also described in other
references such as [PB13], but we include it here for self-containedness. This matrix-
vector product enables us to perform the conjugate gradient algorithm. Suppose that the
parameterized policy maps from the input x to “distribution parameter” vector µ✓(x),

3.12 efficiently solving the trust-region constrained optimization problem 41

which parameterizes the distribution ⇡(u | x). (For example, for a Gaussian distribution,
µ could be the mean and standard deviation concatenated; for a categorical distribution,
it could be the vector of probabilities or log-probabilities.) Now the KL divergence for a
given input x can be written as follows:

DKL(⇡✓
old

(· | x) k ⇡✓(· | x)) = kl(µ✓(x),µold(x))

where kl is the KL divergence between the distributions corresponding to the two mean
parameter vectors. Let us assume we can compute kl analytically in terms of its argu-
ments. Differentiating kl twice with respect to ✓, we obtain

@µa(x)

@✓i
kl 00ab(µ✓(x),µold(x))

@µb(x)

@✓j| {z }
JTMJ

+
@2µa(x)

@✓i@✓j
kl 0a(µ✓(x),µold(x))

| {z }
=0 at µ

✓

=µold

(21)

where the primes (0) indicate differentiation with respect to the first argument, and there
is an implied summation over indices a,b. The second term vanishes because the KL
divergence is minimized at µ✓ = µold, and the derivative is zero at a minimum. Let J :=
@µ

a

(x)
@✓

i

(the Jacobian), then the Fisher information matrix can be written in matrix form as
JTMJ, where M = kl 00ab(µ✓(x),µold) is the Fisher information matrix of the distribution
in terms of the mean parameter µ (as opposed to the parameter ✓). M has a simple form
for most parameterized distributions of interest.

The Fisher-vector product can now be written as a function y ! JTMJy. Multiplica-
tion by JT and J can be performed by automatic differentiation software such as Theano
[Ber+10], and the matrix M (the Fisher matrix with respect to µ) can be computed ana-
lytically for the distribution of interest. Note that multiplication by JT is the well-known
backpropagation operation, whereas multiplication by J is tangent-propagation [Gri+89] or
the R-Op (in Theano).

There is a simpler but (slightly) less efficient way to calculate the Fisher-vector prod-
ucts using only reverse mode automatic differentiation. This technique is described in
[WN99], chapter 8. Let f(✓) = kl(µ✓(x),µold), then we want to compute the Hessian-
vector product Hy, where y is a vector, and H is the Hessian of f(✓). We can first form
the expression for the gradient-vector product r✓f(✓) · p, then we differentiate this ex-
pression to get the Hessian-vector product. This method is slightly less efficient than the
one above as it does not exploit the fact that the second derivatives of µ(x) (i.e., the sec-
ond term in Equation (21)) can be ignored, but may be substantially easier to implement.

We have described a procedure for computing the Fisher-vector product y ! Ay,
where the Fisher information matrix is averaged over a set of inputs to the function µ.

3.13 approximating factored policies with neural networks 42

Computing the Fisher-vector product is typically about as expensive as computing the
gradient of an objective that depends on µ(x) [WN99]. Furthermore, we need to compute
k of these Fisher-vector products per gradient, where k is the number of iterations of the
conjugate gradient algorithm we perform. We found k = 10 to be quite effective, and
using higher k did not result in faster policy improvement. Hence, a naïve implemen-
tation would spend more than 90% of the computational effort on these Fisher-vector
products. However, we can greatly reduce this burden by subsampling the data for the
computation of Fisher-vector product. Since the Fisher information matrix merely acts as
a metric, it can be computed on a subset of the data without severely degrading the qual-
ity of the final step. Hence, we can compute it on 10% of the data, and the total cost of
Hessian-vector products will be about the same as computing the gradient. With this op-
timization, the computation of a natural gradient step A-1g does not incur a significant
extra computational cost beyond computing the gradient g.

3.13 approximating factored policies with neural networks

The policy, which is a conditional probability distribution ⇡✓(a | s), can be parameterized
with a neural network. The most straightforward way to do so is to have the neural
network map (deterministically) from the state vector s to a vector µ that specifies a
distribution over action space. Then we can compute the likelihood p(a | µ) and sample
a ⇠ p(a | µ).

For our experiments with continuous state and action spaces, we used a Gaussian
distribution, where the covariance matrix was diagonal and independent of the state. A
neural network with several fully-connected (dense) layers maps from the input features
to the mean of a Gaussian distribution. A separate set of parameters specifies the log
standard deviation of each element. More concretely, the parameters include a set of
weights and biases for the neural network computing the mean, {Wi,bi}Li=1, and a vector
r (log standard deviation) with the same dimension as a. Then, the policy is defined
by the normal distribution N

⇣
mean = NeuralNet

⇣
s; {Wi,bi}Li=1

⌘
, stdev = exp(r)

⌘
. Here,

µ = [mean, stdev].
For the experiments with discrete actions (Atari), we use a factored discrete action

space, where each factor is parameterized as a categorical distribution. These factors
correspond to the action components (left, no-op, right), (up, no-op, down), (fire, no-
fire). Thus, the neural network output a vector of dimension 3+ 3+ 2 = 8, where each
of the components was normalized. The process for computing the factored probability
distribution is shown in Figure 5 below.

3.14 experiment parameters 43

8-d
output of final

fully-connected
layer Probabilities

softmax

softmax

softmax

slice

Figure 5: Computation of factored discrete probability distribution in Atari domain

3.14 experiment parameters

Swimmer Hopper Walker

State space dim. 10 12 20

Control space dim. 2 3 6

Total num. policy params 364 4806 8206

Sim. steps per iter. 50K 1M 1M

Policy iter. 200 200 200

Stepsize (DKL) 0.01 0.01 0.01

Hidden layer size 30 50 50

Discount (�) 0.99 0.99 0.99

Vine: rollout length 50 100 100

Vine: rollouts per state 4 4 4

Vine: Q-values per batch 500 2500 2500

Vine: num. rollouts for sampling 16 16 16

Vine: len. rollouts for sampling 1000 1000 1000

Vine: computation time (minutes) 2 14 40

SP: num. path 50 1000 10000

SP: path len. 1000 1000 1000

SP: computation time 5 35 100

Table 2: Parameters for continuous control tasks, vine and single path (SP) algorithms.

3.15 learning curves for the atari domain 44

All games

Total num. policy params 33500

Vine: Sim. steps per iter. 400K

SP: Sim. steps per iter. 100K

Policy iter. 500

Stepsize (DKL) 0.01

Discount (�) 0.99

Vine: rollouts per state ⇡ 4

Vine: computation time ⇡ 30 hrs

SP: computation time ⇡ 30 hrs

Table 3: Parameters used for Atari domain.

3.15 learning curves for the atari domain

Figure 6: Learning curves for the Atari domain. For historical reasons, the plots show cost =
negative reward.

4
G E N E R A L I Z E D A D VA N TA G E E S T I M AT I O N

4.1 overview

The two main challenges with policy gradient methods are the large number of samples
typically required, and the difficulty of obtaining monotonic improvement despite the
nonstationarity of the incoming data. The previous chapter addressed the monotonic-
ity issue and provided some improvement in sample complexity due to the use of the
natural gradient step, which was theoretically justified. This chapter provides further im-
provements to sample complexity issue, by reducing the variance of the policy gradient
estimates—the techniques of this chapter are equally applicable to other policy gradient
methods such as the vanilla policy gradient algorithm.

In this chapter, we propose a family of policy gradient estimators that significantly
reduce variance of the policy gradient estimators while maintaining a tolerable level of
bias. We call this estimation scheme, parameterized by � 2 [0, 1] and � 2 [0, 1], the gen-
eralized advantage estimator (GAE). Related methods have been proposed in the con-
text of online actor-critic methods [KK98; Waw09]. We provide a more general analysis,
which is applicable in both the online and batch settings, and discuss an interpretation
of our method as an instance of reward shaping [NHR99], where the approximate value
function is used to shape the reward.

We present experimental results on a number of highly challenging 3D locomotion
tasks, where we show that our approach can learn complex gaits using high-dimensional,
general purpose neural network function approximators for both the policy and the
value function, each with over 104 parameters. The policies perform torque-level control
of simulated 3D robots with up to 33 state dimensions and 10 actuators.

The contributions of this chapter are summarized as follows:
1. We provide justification and intuition for an effective variance reduction scheme

for policy gradients, which we call generalized advantage estimation (GAE). While

45

4.2 preliminaries 46

the formula has been proposed in prior work [KK98; Waw09], our analysis is novel
and enables GAE to be applied with a more general set of algorithms, including
the batch trust-region algorithm we use for our experiments.

2. We propose the use of a trust region optimization method for the value function,
which we find is a robust and efficient way to train neural network value functions
with thousands of parameters.

3. By combining (1) and (2) above, we obtain an algorithm that empirically is effective
at learning neural network policies for challenging control tasks. The results extend
the state of the art in using reinforcement learning for high-dimensional continuous
control. Videos are available at https://sites.google.com/site/gaepapersupp.

4.2 preliminaries

In this chapter, we consider an undiscounted formulation of the policy optimization
problem. The initial state s0 is sampled from distribution ⇢0. A trajectory (s0,a0, s1,a1, . . .)
is generated by sampling actions according to the policy at ⇠ ⇡(at | st) and sampling the
states according to the dynamics st+1 ⇠ P(st+1 | st,at), until a terminal (absorbing) state is
reached. A reward rt = r(st,at, st+1) is received at each timestep. The goal is to maximize
the expected total reward

P1
t=0 rt, which is assumed to be finite for all policies. Note that

we are not using a discount as part of the problem specification; it will appear below as
an algorithm parameter that adjusts a bias-variance tradeoff. But the discounted problem
(maximizing

P1
t=0 �

trt) can be handled as an instance of the undiscounted problem in
which we absorb the discount factor into the reward function, making it time-dependent.

Policy gradient methods maximize the expected total reward by repeatedly estimating
the gradient g := r✓E [

P1
t=0 rt]. There are several different related expressions for the

policy gradient, which have the form

g = E

" 1X

t=0

 tr✓ log⇡✓(at | st)

#

, (22)

where t may be one of the following:

1.
P1

t=0 rt: total reward of the trajectory.

2.
P1

t 0=t rt 0 : reward following action at.
3.

P1
t 0=t rt 0 - b(st): baselined version of

previous formula.
4. Q⇡(st,at): state-action value function.
5. A⇡(st,at): advantage function.
6. rt + V⇡(st+1)- V⇡(st): TD residual.

https://sites.google.com/site/gaepapersupp

4.2 preliminaries 47

The latter formulas use the definitions

V⇡(st) := Es
t+1:1,
a
t:1

" 1X

l=0

rt+l

#

Q⇡(st,at) := Es
t+1:1,
a
t+1:1

" 1X

l=0

rt+l

#

A⇡(st,at) := Q⇡(st,at)- V⇡(st), (Advantage function).

Here, the subscript of E enumerates the variables being integrated over, where states
and actions are sampled sequentially from the dynamics model P(st+1 | st,at) and policy
⇡(at | st), respectively. The colon notation a : b refers to the inclusive range (a,a +
1, . . . ,b). These formulas are well known and straightforward to obtain; they follow
directly from Proposition 1, which will be stated shortly.

The choice t = A⇡(st,at) yields almost the lowest possible variance, though in prac-
tice, the advantage function is not known and must be estimated. This statement can
be intuitively justified by the following interpretation of the policy gradient: that a step
in the policy gradient direction should increase the probability of better-than-average
actions and decrease the probability of worse-than-average actions. The advantage func-
tion, by it’s definition A⇡(s,a) = Q⇡(s,a)- V⇡(s), measures whether or not the action
is better or worse than the policy’s default behavior. Hence, we should choose t to be
the advantage function A⇡(st,at), so that the gradient term tr✓ log⇡✓(at | st) points in
the direction of increased ⇡✓(at | st) if and only if A⇡(st,at) > 0. See [GBB04] for a more
rigorous analysis of the variance of policy gradient estimators and the effect of using a
baseline.

We will introduce a parameter � that allows us to reduce variance by downweighting
rewards corresponding to delayed effects, at the cost of introducing bias. This parameter
corresponds to the discount factor used in discounted formulations of MDPs, but we
treat it as a variance reduction parameter in an undiscounted problem; this technique
was analyzed theoretically by [MT03; Kak01b; Tho14]. The discounted value functions
are given by:

V⇡,�(st) := Es
t+1:1,
a
t:1

" 1X

l=0

�lrt+l

#

Q⇡,�(st,at) := Es
t+1:1,
a
t+1:1

" 1X

l=0

�lrt+l

#

A⇡,�(st,at) := Q⇡,�(st,at)- V⇡,�(st).

The discounted approximation to the policy gradient is defined as follows:

g� := Es
0:1

a
0:1

" 1X

t=0

A⇡,�(st,at)r✓ log⇡✓(at | st)

#

. (23)

4.2 preliminaries 48

The following section discusses how to obtain biased (but not too biased) estimators
for A⇡,�, giving us noisy estimates of the discounted policy gradient in Equation (23).

Before proceeding, we will introduce the notion of a �-just estimator of the advantage
function, which is an estimator that does not introduce bias when we use it in place
of A⇡,� (which is not known and must be estimated) in Equation (23) to estimate g�.1

Consider an advantage estimator Ât(s0:1,a0:1), which may in general be a function of
the entire trajectory.

Definition 2. The estimator Ât is �-just if

Es
0:1

a
0:1

⇥
Ât(s0:1,a0:1)r✓ log⇡✓(at | st)

⇤
= Es

0:1
a
0:1

[A⇡,�(st,at)r✓ log⇡✓(at | st)] .

It follows immediately that if Ât is �-just for all t, then

Es
0:1

a
0:1

" 1X

t=0

Ât(s0:1,a0:1)r✓ log⇡✓(at | st)

#

= g� (24)

One sufficient condition for Ât to be �-just is that Ât decomposes as the difference
between two functions Qt and bt, where Qt can depend on any trajectory variables
but gives an unbiased estimator of the �-discounted Q-function, and bt is an arbitrary
function of the states and actions sampled before at.

Proposition 2. Suppose that Ât can be written in the form
Ât(s0:1,a0:1) = Qt(s0:1,a0:1)- bt(s0:t,a0:t-1) such that for all (st,at),
Es

t+1:1,a
t+1:1 | s

t

,a
t

[Qt(st:1,at:1)] = Q⇡,�(st,at). Then Â is �-just.

The proof is provided in Section 4.9. It is easy to verify that the following expressions
are �-just advantage estimators for Ât:

•
P1

l=0 �
lrt+l

• Q⇡,�(st,at)
• A⇡,�(st,at)
• rt + �V⇡,�(st+1)- V⇡,�(st).

1 Note, that we have already introduced bias by using A⇡,� in place of A⇡; here we are concerned with
obtaining an unbiased estimate of g�, which is a biased estimate of the policy gradient of the undiscounted
MDP.

4.3 advantage function estimation 49

4.3 advantage function estimation

This section will be concerned with producing an accurate estimate Ât of the discounted
advantage function A⇡,�(st,at), which will then be used to construct a policy gradient
estimator of the following form:

ĝ =
1

N

NX

n=1

1X

t=0

Ân
t r✓ log⇡✓(an

t | snt) (25)

where n indexes over a batch of episodes.
Let V be an approximate value function. Define �Vt = rt + �V(st+1)- V(st), i.e., the

TD residual of V with discount � [SB98]. Note that �Vt can be considered as an estimate
of the advantage of the action at. In fact, if we have the correct value function V = V⇡,�,
then it is a �-just advantage estimator, and in fact, an unbiased estimator of A⇡,�:

Es
t+1

h
�V

⇡,�
t

i
= Es

t+1

[rt + �V
⇡,�(st+1)- V⇡,�(st)]

= Es
t+1

[Q⇡,�(st,at)- V⇡,�(st)] = A⇡,�(st,at).

However, this estimator is only �-just for V = V⇡,�, otherwise it will yield biased policy
gradient estimates.

Next, let us consider taking the sum of k of these � terms, which we will denote by
Â

(k)
t

Â
(1)
t := �Vt = -V(st) + rt + �V(st+1)

Â
(2)
t := �Vt + ��Vt+1 = -V(st) + rt + �rt+1 + �

2V(st+2)

Â
(3)
t := �Vt + ��Vt+1 + �

2�Vt+2 = -V(st) + rt + �rt+1 + �
2rt+2 + �

3V(st+3)

Â
(k)
t :=

k-1X

l=0

�l�Vt = -V(st) + rt + �rt+1 + · · ·+ �k-1rt+k-1 + �
kV(st+k)

These equations result from a telescoping sum, and we see that Â
(k)
t involves a k-step

estimate of the returns, minus a baseline term -V(st). Analogously to the case of �Vt =

Â
(1)
t , we can consider Â

(k)
t to be an estimator of the advantage function, which is only

�-just when V = V⇡,�. However, note that the bias generally becomes smaller as k ! 1,

4.3 advantage function estimation 50

since the term �kV(st+k) becomes more heavily discounted, and the term -V(st) does
not affect the bias. Taking k ! 1, we get

Â
(1)
t =

k-1X

l=0

�l�Vt = -V(st) +
1X

l=0

�lrt+l,

which is simply the empirical returns minus the value function baseline.
The generalized advantage estimator GAE(�, �) is defined as the exponentially-weighted

average of these k-step estimators:

Â
GAE(�,�)
t := (1- �)

⇣
Â

(1)
t + �Â

(2)
t + �2Â

(3)
t + . . .

⌘

= (1- �)
⇣
�Vt + �(�Vt + ��Vt+1) + �

2(�Vt + ��Vt+1 + �
2�Vt+2) + . . .

⌘

= (1- �)(�Vt (1+ �+ �
2 + . . .) + ��Vt+1(�+ �

2 + �3 + . . .)

+ ��Vt+2(�
2 + �3 + �4 + . . .) + . . .)

= (1- �)

✓
�Vt

✓
1

1- �

◆
+ ��Vt+1

✓
�

1- �

◆
+ �2�Vt+2

✓
�2

1- �

◆
+ . . .

◆

=
1X

l=0

(��)l�Vt+l (26)

From Equation (26), we see that the advantage estimator has a remarkably simple for-
mula involving a discounted sum of Bellman residual terms. Section 4.4 discusses an
interpretation of this formula as the returns in an MDP with a modified reward func-
tion. The construction we used above is closely analogous to the one used to define
TD(�) [SB98], however TD(�) is an estimator of the value function, whereas here we are
estimating the advantage function.

There are two notable special cases of this formula, obtained by setting � = 0 and
� = 1.

GAE(�, 0) : Ât := �t = rt + �V(st+1)- V(st) (27)

GAE(�, 1) : Ât :=
1X

l=0

�l�t+l =
1X

l=0

�lrt+l - V(st) (28)

GAE(�, 1) is �-just regardless of the accuracy of V , but it has high variance due to the
sum of terms. GAE(�, 0) is �-just for V = V⇡,� and otherwise induces bias, but it typically
has much lower variance. The generalized advantage estimator for 0 < � < 1 makes a
compromise between bias and variance, controlled by parameter �.

4.4 interpretation as reward shaping 51

We’ve described an advantage estimator with two separate parameters � and �, both of
which contribute to the bias-variance tradeoff when using an approximate value function.
However, they serve different purposes and work best with different ranges of values. �
most importantly determines the scale of the value function V⇡,�, which does not depend
on �. Taking � < 1 introduces bias into the policy gradient estimate, regardless of the
value function’s accuracy. On the other hand, � < 1 introduces bias only when the value
function is inaccurate. Empirically, we find that the best value of � is much lower than
the best value of �, likely because � introduces far less bias than � for a reasonably
accurate value function.

Using the generalized advantage estimator, we can construct a biased estimator of g�,
the discounted policy gradient from Equation (23):

g� ⇡ E

" 1X

t=0

r✓ log⇡✓(at | st)Â
GAE(�,�)
t

#

= E

" 1X

t=0

r✓ log⇡✓(at | st)
1X

l=0

(��)l�Vt+l

#

, (29)

where equality holds when � = 1.

4.4 interpretation as reward shaping

In this section, we discuss how one can interpret � as an extra discount factor applied
after performing a reward shaping transformation on the MDP. We also introduce the
notion of a response function to help understand the bias introduced by � and �.

Reward shaping [NHR99] refers to the following transformation of the reward function
of an MDP: let � : S ! R be an arbitrary scalar-valued function on state space, and
define the transformed reward function r̃ by

r̃(s,a, s 0) = r(s,a, s 0) + ��(s 0)-�(s), (30)

which in turn defines a transformed MDP. This transformation leaves the discounted
advantage function A⇡,� unchanged for any policy ⇡. To see this, consider the discounted
sum of rewards of a trajectory starting with state st:

1X

l=0

�lr̃(st+l,at, st+l+1) =
1X

l=0

�lr(st+l,at+l, st+l+1)-�(st). (31)

Letting Q̃⇡,�, Ṽ⇡,�, Ã⇡,� be the value and advantage functions of the transformed MDP,

4.4 interpretation as reward shaping 52

one obtains from the definitions of these quantities that

Q̃⇡,�(s,a) = Q⇡,�(s,a)-�(s)

Ṽ⇡,�(s,a) = V⇡,�(s,a)-�(s)

Ã⇡,�(s,a) = (Q⇡,�(s,a)-�(s))- (V⇡(s)-�(s)) = A⇡,�(s,a).

Note that if � happens to be the state-value function V⇡,� from the original MDP, then
the transformed MDP has the interesting property that Ṽ⇡,�(s) is zero at every state.

Note that [NHR99] showed that the reward shaping transformation leaves the pol-
icy gradient and optimal policy unchanged when our objective is to maximize the
discounted sum of rewards

P1
t=0 �

tr(st,at, st+1). In contrast, this chapter is concerned
with maximizing the undiscounted sum of rewards, where the discount � is used as a
variance-reduction parameter.

Having reviewed the idea of reward shaping, let us consider how we could use it to
get a policy gradient estimate. The most natural approach is to construct policy gradient
estimators that use discounted sums of shaped rewards r̃. However, Equation (31) shows
that we obtain the discounted sum of the original MDP’s rewards r minus a baseline
term. Next, let’s consider using a “steeper” discount ��, where 0 6 � 6 1. It’s easy to see
that the shaped reward r̃ equals the Bellman residual term �V , introduced in Section 4.3,
where we set � = V . Letting � = V , we see that

1X

l=0

(��)lr̃(st+l,at, st+l+1) =
1X

l=0

(��)l�Vt+l = Â
GAE(�,�)
t .

Hence, by considering the ��-discounted sum of shaped rewards, we exactly obtain the
generalized advantage estimators from Section 4.3. As shown previously, � = 1 gives an
unbiased estimate of g�, whereas � < 0 gives a biased estimate.

To further analyze the effect of this shaping transformation and parameters � and �,
it will be useful to introduce the notion of a response function �, which we define as
follows:

�(l; st,at) = E [rt+l | st,at]- E [rt+l | st] .

Note that A⇡,�(s,a) =
P1

l=0 �
l�(l; s,a), hence the response function decomposes the

advantage function across timesteps. The response function lets us quantify the tempo-
ral credit assignment problem: long range dependencies between actions and rewards
correspond to nonzero values of the response function for l � 0.

4.5 value function estimation 53

Next, let us revisit the discount factor � and the approximation we are making by using
A⇡,� rather than A⇡,1. The discounted policy gradient estimator from Equation (23) has
a sum of terms of the form

r✓ log⇡✓(at | st)A
⇡,�(st,at) = r✓ log⇡✓(at | st)

1X

l=0

�l�(l; s,a).

Using a discount � < 1 corresponds to dropping the terms with l � 1/(1-�). Thus, the
error introduced by this approximation will be small if � rapidly decays as l increases,
i.e., if the effect of an action on rewards is “forgotten” after ⇡ 1/(1- �) timesteps.

If the reward function r̃ were obtained using � = V⇡,�, we would have E [r̃t+l | st,at] =
E [r̃t+l | st] = 0 for l > 0, i.e., the response function would only be nonzero at l = 0.
Therefore, this shaping transformation would turn temporally extended response into
an immediate response. Given that V⇡,� completely reduces the temporal spread of the
response function, we can hope that a good approximation V ⇡ V⇡,� partially reduces
it. This observation suggests an interpretation of Equation (26): reshape the rewards
using V to shrink the temporal extent of the response function, and then introduce a
“steeper” discount �� to cut off the noise arising from long delays, i.e., ignore terms
r✓ log⇡✓(at | st)�Vt+l where l � 1/(1- ��).

4.5 value function estimation

A variety of different methods can be used to estimate the value function (see, e.g.,
[Ber12]). When using a nonlinear function approximator to represent the value function,
the simplest approach is to solve a nonlinear regression problem:

minimize
�

NX

n=1

kV�(sn)- V̂nk2, (32)

where V̂t =
P1

l=0 �
lrt+l is the discounted sum of rewards, and n indexes over all

timesteps in a batch of trajectories. This is sometimes called the Monte Carlo or TD(1)
approach for estimating the value function [SB98].2

2 Another natural choice is to compute target values with an estimator based on the TD(�) backup [Ber12;
SB98], mirroring the expression we use for policy gradient estimation: V̂�

t

= V
�old(sn) +

P1
l=0

(��)l�
t+l

.
While we experimented with this choice, we did not notice a difference in performance from the � = 1
estimator in Equation (32).

4.6 experiments 54

For the experiments in this work, we used a trust region method to optimize the value
function in each iteration of a batch optimization procedure. The trust region helps us to
avoid overfitting to the most recent batch of data. To formulate the trust region problem,
we first compute �2 = 1

N

PN
n=1kV�old(sn) - V̂nk2, where �old is the parameter vector

before optimization. Then we solve the following constrained optimization problem:

minimize
�

NX

n=1

kV�(sn)- V̂nk2

subject to
1

N

NX

n=1

kV�(sn)- V�old(sn)k
2

2�2
6 ✏. (33)

This constraint is equivalent to constraining the average KL divergence between the
previous value function and the new value function to be smaller than ✏, where the
value function is taken to parameterize a conditional Gaussian distribution with mean
V�(s) and variance �2.

We compute an approximate solution to the trust region problem using the conjugate
gradient algorithm [WN99]. Specifically, we are solving the quadratic program

minimize
�

gT (�-�old)

subject to
1

N

NX

n=1

(�-�old)
TH(�-�old) 6 ✏. (34)

where g is the gradient of the objective, and H = 1
N

P
n jnj

T
n, where jn = r�V�(sn). Note

that H is the “Gauss-Newton” approximation of the Hessian of the objective, and it is (up
to a �2 factor) the Fisher information matrix when interpreting the value function as a
conditional probability distribution. Using matrix-vector products v ! Hv to implement
the conjugate gradient algorithm, we compute a step direction s ⇡ -H-1g. Then we
rescale s ! ↵s such that 1

2(↵s)
TH(↵s) = ✏ and take � = �old + ↵s. This procedure is

analogous to the procedure we use for updating the policy, which is described further in
Section 4.6 and based on [Sch+15c].

4.6 experiments

We designed a set of experiments to investigate the following questions:
1. What is the empirical effect of varying � 2 [0, 1] and � 2 [0, 1] when optimizing

episodic total reward using generalized advantage estimation?

4.6 experiments 55

2. Can generalized advantage estimation, along with trust region algorithms for pol-
icy and value function optimization, be used to optimize large neural network
policies for challenging control problems?

4.6.1 Policy Optimization Algorithm

While generalized advantage estimation can be used along with a variety of different
policy gradient methods, for these experiments, we performed the policy updates using
trust region policy optimization (TRPO) [Sch+15c]. TRPO updates the policy by approx-
imately solving the following constrained optimization problem each iteration:

minimize
✓

L✓
old

(✓)

subject to D
✓
old

KL (⇡✓
old

,⇡✓) 6 ✏

where L✓
old

(✓) =
1

N

NX

n=1

⇡✓(an | sn)

⇡✓
old

(an | sn)
Ân

D
✓
old

KL (⇡✓
old

,⇡✓) =
1

N

NX

n=1

DKL(⇡✓
old

(· | sn) k ⇡✓(· | sn)) (35)

As described in [Sch+15c], we approximately solve this problem by linearizing the ob-
jective and quadraticizing the constraint, which yields a step in the direction ✓- ✓old /
-F-1g, where F is the average Fisher information matrix, and g is a policy gradient es-
timate. This policy update yields the same step direction as the natural policy gradient
[Kak01a] and natural actor-critic [PS08], however it uses a different stepsize determina-
tion scheme and numerical procedure for computing the step.

Since prior work [Sch+15c] compared TRPO to a variety of different policy optimiza-
tion algorithms, we will not repeat these comparisons; rather, we will focus on varying
the �, � parameters of policy gradient estimator while keeping the underlying algorithm
fixed.

For completeness, the whole algorithm for iteratively updating policy and value func-
tion is given below:

Note that the policy update ✓i ! ✓i+1 is performed using the value function V�
i

for advantage estimation, not V�
i+1

. Additional bias would have been introduced if we
updated the value function first. To see this, consider the extreme case where we overfit
the value function, and the Bellman residual rt + �V(st+1)- V(st) becomes zero at all
timesteps—the policy gradient estimate would be zero.

4.6 experiments 56

Initialize policy parameter ✓0 and value function parameter �0.
for i = 0, 1, 2, . . . do

Simulate current policy ⇡✓
i

until N timesteps are obtained.
Compute �Vt at all timesteps t 2 {1, 2, . . . ,N}, using V = V�

i

.
Compute Ât =

P1
l=0(��)

l�Vt+l at all timesteps.
Compute ✓i+1 with TRPO update, Equation (35).
Compute �i+1 with Equation (34).

end for

4.6.2 Experimental Setup

Figure 7: Top figures: robot models used for 3D locomotion. Bottom figures: a sequence of
frames from the learned gaits. Videos are available at https://sites.google.com/site/
gaepapersupp.

We evaluated our approach on the classic cart-pole balancing problem, as well as
several challenging 3D locomotion tasks: (1) bipedal locomotion; (2) quadrupedal loco-
motion; (3) dynamically standing up, for the biped, which starts off laying on its back.
The models are shown in Figure 7.

Architecture

We used the same neural network architecture for all of the 3D robot tasks, which was
a feedforward network with three hidden layers, with 100, 50 and 25 tanh units respec-

https://sites.google.com/site/gaepapersupp
https://sites.google.com/site/gaepapersupp

4.6 experiments 57

tively. The same architecture was used for the policy and value function. The final output
layer had linear activation. The value function estimator used the same architecture, but
with only one scalar output. For the simpler cart-pole task, we used a linear policy, and
a neural network with one 20-unit hidden layer as the value function.

Task details

For the cart-pole balancing task, we collected 20 trajectories per batch, with a maximum
length of 1000 timesteps, using the physical parameters from Barto, Sutton, and Ander-
son [BSA83].

The simulated robot tasks were simulated using the MuJoCo physics engine [TET12].
The humanoid model has 33 state dimensions and 10 actuated degrees of freedom, while
the quadruped model has 29 state dimensions and 8 actuated degrees of freedom. The
initial state for these tasks consisted of a uniform distribution centered on a reference
configuration. We used 50000 timesteps per batch for bipedal locomotion, and 200000

timesteps per batch for quadrupedal locomotion and bipedal standing. Each episode was
terminated after 2000 timesteps if the robot had not reached a terminal state beforehand.
The timestep was 0.01 seconds.

The reward functions are provided in the table below.

Task Reward
3D biped locomotion vfwd - 10-5kuk2 - 10-5kfimpactk2 + 0.2

Quadruped locomotion vfwd - 10-6kuk2 - 10-3kfimpactk2 + 0.05
Biped getting up -(hhead - 1.5)2 - 10-5kuk2

Here, vfwd := forward velocity, u := vector of joint torques, fimpact := impact forces,
hhead := height of the head.

In the locomotion tasks, the episode is terminated if the center of mass of the actor falls
below a predefined height: .8m for the biped, and .2m for the quadruped. The constant
offset in the reward function encourages longer episodes; otherwise the quadratic reward
terms might lead lead to a policy that ends the episodes as quickly as possible.

4.6.3 Experimental Results

All results are presented in terms of the cost, which is defined as negative reward and is
minimized. Videos of the learned policies are available at https://sites.google.com/
site/gaepapersupp. In plots, “No VF” means that we used a time-dependent baseline

https://sites.google.com/site/gaepapersupp
https://sites.google.com/site/gaepapersupp

4.6 experiments 58

that did not depend on the state, rather than an estimate of the state value function. The
time-dependent baseline was computed by averaging the return at each timestep over
the trajectories in the batch.

Cart-pole

The results are averaged across 21 experiments with different random seeds. Results are
shown in Figure 8, and indicate that the best results are obtained at intermediate values
of the parameters: � 2 [0.96, 0.99] and � 2 [0.92, 0.99].

Figure 8: Left: learning curves for cart-pole task, using generalized advantage estimation with
varying values of � at � = 0.99. The fastest policy improvement is obtain by intermediate
values of � in the range [0.92, 0.98]. Right: performance after 20 iterations of policy
optimization, as � and � are varied. White means higher reward. The best results are
obtained at intermediate values of both.

3D bipedal locomotion

Each trial took about 2 hours to run on a 16-core machine, where the simulation rollouts
were parallelized, as were the function, gradient, and matrix-vector-product evaluations
used when optimizing the policy and value function. Here, the results are averaged
across 9 trials with different random seeds. The best performance is again obtained
using intermediate values of � 2 [0.99, 0.995], � 2 [0.96, 0.99]. The result after 1000 it-
erations is a fast, smooth, and stable gait that is effectively completely stable. We can
compute how much “real time” was used for this learning process: 0.01 seconds/timestep ⇥
50000 timesteps/batch ⇥ 1000 batches/3600 · 24 seconds/day = 5.8days. Hence, it is plausible

4.7 discussion 59

Figure 9: Left: Learning curves for 3D bipedal locomotion, averaged across nine runs of the al-
gorithm. Right: learning curves for 3D quadrupedal locomotion, averaged across five
runs.

that this algorithm could be run on a real robot, or multiple real robots learning in par-
allel, if there were a way to reset the state of the robot and ensure that it doesn’t damage
itself.

Other 3D robot tasks

The other two motor behaviors considered are quadrupedal locomotion and getting up
off the ground for the 3D biped. Again, we performed 5 trials per experimental con-
dition, with different random seeds (and initializations). The experiments took about 4

hours per trial on a 32-core machine. We performed a more limited comparison on these
domains (due to the substantial computational resources required to run these experi-
ments), fixing � = 0.995 but varying � = {0, 0.96}, as well as an experimental condition
with no value function. For quadrupedal locomotion, the best results are obtained using
a value function with � = 0.96 Section 4.6.3. For 3D standing, the value function always
helped, but the results are roughly the same for � = 0.96 and � = 1.

4.7 discussion

Policy gradient methods provide a way to reduce reinforcement learning to stochastic
gradient descent, by providing unbiased gradient estimates. However, so far their success
at solving difficult control problems has been limited, largely due to their high sample

4.7 discussion 60

Figure 10: Left: curve from 3D standing, right: clips from 3D standing up.

complexity. We have argued that the key to variance reduction is to obtain good estimates
of the advantage function.

We have provided an intuitive but informal analysis of the problem of advantage func-
tion estimation, and justified the generalized advantage estimator, which has two param-
eters �, � which adjust the bias-variance tradeoff. We described how to combine this idea
with trust region policy optimization and a trust region algorithm that optimizes a value
function, both represented by neural networks. Combining these techniques, we are able
to learn to solve difficult control tasks that have previously been out of reach for generic
reinforcement learning methods.

Our main experimental validation of generalized advantage estimation is in the do-
main of simulated robotic locomotion. In these domains, the � = 0 As shown in our
experiments, choosing an appropriate intermediate value of � in the range [0.9, 0.99] usu-
ally results in the best performance. A possible topic for future work is how to adjust
the estimator parameters �, � in an adaptive or automatic way.

One question that merits future investigation is the relationship between value func-
tion estimation error and policy gradient estimation error. If this relationship were
known, we could choose an error metric for value function fitting that is well-matched to
the quantity of interest, which is typically the accuracy of the policy gradient estimation.
Some candidates for such an error metric might include the Bellman error or projected
Bellman error, as described in [Bha+09].

Another enticing possibility is to use a shared function approximation architecture for
the policy and the value function, while optimizing the policy using generalized advan-
tage estimation. While formulating this problem in a way that is suitable for numerical
optimization and provides convergence guarantees remains an open question, such an

4.8 frequently asked questions 61

approach could allow the value function and policy representations to share useful fea-
tures of the input, resulting in even faster learning.

In concurrent work, researchers have been developing policy gradient methods that
involve differentiation with respect to the continuous-valued action [Lil+15; Hee+15].
While we found empirically that the one-step return (� = 0) leads to excessive bias and
poor performance, those papers show that such methods can work when tuned appro-
priately. However, note that those papers consider control problems with substantially
lower-dimensional state and action spaces than the ones considered here. A comparison
between both classes of approach would be useful for future work.

4.8 frequently asked questions

4.8.1 What’s the Relationship with Compatible Features?

Compatible features are often mentioned in relation to policy gradient algorithms that
make use of a value function, and the idea was proposed in the paper On Actor-Critic
Methods by Konda and Tsitsiklis [KT03]. These authors pointed out that due to the lim-
ited representation power of the policy, the policy gradient only depends on a certain
subspace of the space of advantage functions. This subspace is spanned by the com-
patible features r✓

i

log⇡✓(at | st), where i 2 {1, 2, . . . , dim ✓}. This theory of compatible
features provides no guidance on how to exploit the temporal structure of the problem
to obtain better estimates of the advantage function, making it mostly orthogonal to the
ideas in this chapter.

The idea of compatible features motivates an elegant method for computing the natu-
ral policy gradient [Kak01a; PS08]. Given an empirical estimate of the advantage function
Ât at each timestep, we can project it onto the subspace of compatible features by solving
the following least squares problem:

minimize
r

X

t

kr ·r✓ log⇡✓(at | st)- Âtk2.

If Â is �-just, the least squares solution is the natural policy gradient [Kak01a]. Note that
any estimator of the advantage function can be substituted into this formula, including
the ones we derive in this paper. For our experiments, we also compute natural policy
gradient steps, but we use the more computationally efficient numerical procedure from
[Sch+15c], as discussed in Section 4.6.

4.9 proofs 62

4.8.2 Why Don’t You Just Use a Q-Function?

Previous actor critic methods, e.g. in [KT03], use a Q-function to obtain potentially
low-variance policy gradient estimates. Recent papers, including [Hee+15; Lil+15], have
shown that a neural network Q-function approximator can used effectively in a policy
gradient method. However, there are several advantages to using a state-value function
in the manner of this paper. First, the state-value function has a lower-dimensional input
and is thus easier to learn than a state-action value function. Second, the method of this
paper allows us to smoothly interpolate between the high-bias estimator (� = 0) and
the low-bias estimator (� = 1). On the other hand, using a parameterized Q-function
only allows us to use a high-bias estimator. We have found that the bias is prohibitively
large when using a one-step estimate of the returns, i.e., the � = 0 estimator, Ât = �Vt =
rt + �V(st+1)- V(st). We expect that similar difficulty would be encountered when us-
ing an advantage estimator involving a parameterized Q-function, Ât = Q(s,a)- V(s).
There is an interesting space of possible algorithms that would use a parameterized
Q-function and attempt to reduce bias, however, an exploration of these possibilities is
beyond the scope of this work.

4.9 proofs

Proof of Proposition 1: First we can split the expectation into terms involving Q and b,

Es
0:1,a

0:1 [r✓ log⇡✓(at | st)(Qt(s0:1,a0:1) + bt(s0:t,a0:t-1))]

= Es
0:1,a

0:1 [r✓ log⇡✓(at | st)(Qt(s0:1,a0:1))]

+ Es
0:1,a

0:1 [r✓ log⇡✓(at | st)(bt(s0:t,a0:t-1))]

We’ll consider the terms with Q and b in turn.

Es
0:1,a

0:1 [r✓ log⇡✓(at | st)Qt(s0:1,a0:1)]

= Es
0:t,a

0:t

⇥
Es

t+1:1,a
t+1:1 [r✓ log⇡✓(at | st)Qt(s0:1,a0:1)]

⇤

= Es
0:t,a

0:t

⇥
r✓ log⇡✓(at | st)Es

t+1:1,a
t+1:1 [Qt(s0:1,a0:1)]

⇤

= Es
0:t,a

0:t-1

[r✓ log⇡✓(at | st)A
⇡(st,at)]

4.9 proofs 63

Next,

Es
0:1,a

0:1 [r✓ log⇡✓(at | st)bt(s0:t,a0:t-1)]

= Es
0:t,a

0:t-1

⇥
Es

t+1:1,a
t:1 [r✓ log⇡✓(at | st)bt(s0:t,a0:t-1)]

⇤

= Es
0:t,a

0:t-1

⇥
Es

t+1:1,a
t:1 [r✓ log⇡✓(at | st)]bt(s0:t,a0:t-1)

⇤

= Es
0:t,a

0:t-1

[0 · bt(s0:t,a0:t-1)]

= 0.

5
S T O C H A S T I C C O M P U TAT I O N G R A P H S

5.1 overview

The great success of neural networks is due in part to the simplicity of the backpropa-
gation algorithm, which allows one to efficiently compute the gradient of any loss func-
tion defined as a composition of differentiable functions. This simplicity has allowed re-
searchers to search in the space of architectures for those that are both highly expressive
and conducive to optimization; yielding, for example, convolutional neural networks in
vision [LeC+98] and LSTMs for sequence data [HS97]. However, the backpropagation
algorithm is only sufficient when the loss function is a deterministic, differentiable func-
tion of the parameter vector.

A rich class of problems arising throughout machine learning requires optimizing loss
functions that involve an expectation over random variables. Two broad categories of
these problems are (1) likelihood maximization in probabilistic models with latent vari-
ables [Nea90; NH98], and (2) policy gradients in reinforcement learning [Gly90; Sut+99;
Wil92]. Combining ideas from from those two perennial topics, recent models of atten-
tion [Mni+14] and memory [ZS15] have used networks that involve a combination of
stochastic and deterministic operations.

In most of these problems, from probabilistic modeling to reinforcement learning, the
loss functions and their gradients are intractable, as they involve either a sum over an
exponential number of latent variable configurations, or high-dimensional integrals that
have no analytic solution. Prior work (see Section 5.6) has provided problem-specific
derivations of Monte-Carlo gradient estimators, however, to our knowledge, no previous
work addresses the general case.

Section 5.10 recalls several classic and recent techniques in variational inference [MG14;
KW13; RMW14] and reinforcement learning [Sut+99; Wie+10; Mni+14], where the loss
functions can be straightforwardly described using the formalism of stochastic compu-

64

5.2 preliminaries 65

tation graphs that we introduce. For these examples, the variance-reduced gradient esti-
mators derived in prior work are special cases of the results in Sections 5.3 and 5.4.

The contributions of this chapter are as follows:
• We introduce a formalism of stochastic computation graphs, and in this general

setting, we derive unbiased estimators for the gradient of the expected loss.
• We show how this estimator can be computed as the gradient of a certain dif-

ferentiable function (which we call the surrogate loss), hence, it can be computed
efficiently using the backpropagation algorithm. This observation enables a prac-
titioner to write an efficient implementation using automatic differentiation soft-
ware.

• We describe variance reduction techniques that can be applied to the setting of
stochastic computation graphs, generalizing prior work from reinforcement learn-
ing and variational inference.

• We briefly describe how to generalize some other optimization techniques to this
setting: majorization-minimization algorithms, by constructing an expression that
bounds the loss function; and quasi-Newton / Hessian-free methods [Mar10], by
computing estimates of Hessian-vector products.

The main practical result of this chapter is that to compute the gradient estimator,
one just needs to make a simple modification to the backpropagation algorithm, where
extra gradient signals are introduced at the stochastic nodes. Equivalently, the resulting
algorithm is just the backpropagation algorithm, applied to the surrogate loss function,
which has extra terms introduced at the stochastic nodes. The modified backpropagation
algorithm is presented in Section 5.5.

5.2 preliminaries

5.2.1 Gradient Estimators for a Single Random Variable

This section will discuss computing the gradient of an expectation taken over a single
random variable—the estimators described here will be the building blocks for more
complex cases with multiple variables. Suppose that x is a random variable, f is a func-
tion (say, the cost), and we are interested in computing @

@✓Ex [f(x)]. There are a few
different ways that the process for generating x could be parameterized in terms of ✓,
which lead to different gradient estimators.

• We might be given a parameterized probability distribution x ⇠ p(·; ✓). In this case,

5.2 preliminaries 66

we can use the score function (SF) estimator [Fu06]:

@

@✓
Ex [f(x)] = Ex

f(x)

@

@✓
logp(x; ✓)

�
. (36)

This classic equation is derived as follows:

@

@✓
Ex [f(x)] =

@

@✓

Z
dx p(x; ✓)f(x) =

Z
dx

@

@✓
p(x; ✓)f(x)

=

Z
dx p(x; ✓)

@

@✓
logp(x; ✓)f(x) = Ex

f(x)

@

@✓
logp(x; ✓)

�
. (37)

This equation is valid if and only if p(x; ✓) is a continuous function of ✓; however,
it does not need to be a continuous function of x [Gla03].

• x may be a deterministic, differentiable function of ✓ and another random variable
z, i.e., we can write x(z, ✓). Then, we can use the pathwise derivative (PD) estimator,
defined as follows.

@

@✓
Ez [f(x(z, ✓))] = Ez

@

@✓
f(x(z, ✓))

�
.

This equation, which merely swaps the derivative and expectation, is valid if and
only if f(x(z, ✓)) is a continuous function of ✓ for all z [Gla03]. 1 That is not true if,
for example, f is a step function.

• Finally ✓ might appear both in the probability distribution and inside the expecta-
tion, e.g., in @

@✓Ez⇠p(·; ✓) [f(x(z, ✓))]. Then the gradient estimator has two terms:

@

@✓
Ez⇠p(·; ✓) [f(x(z, ✓))] = Ez⇠p(·; ✓)

@

@✓
f(x(z, ✓)) +

✓
@

@✓
logp(z; ✓)

◆
f(x(z, ✓))

�
.

This formula can be derived by writing the expectation as an integral and differen-
tiating, as in Equation (37).

In some cases, it is possible to reparameterize a probabilistic model—moving ✓ from the
distribution to inside the expectation or vice versa. See [Fu06] for a general discussion,
and see [KW13; RMW14] for a recent application of this idea to variational inference.

The SF and PD estimators are applicable in different scenarios and have different
properties.

1 Note that for the pathwise derivative estimator, f(x(z, ✓)) merely needs to be a continuous function of ✓—it
is sufficient that this function is almost-everywhere differentiable. A similar statement can be made about
p(x; ✓) and the score function estimator. See Glasserman [Gla03] for a detailed discussion of the technical
requirements for these gradient estimators to be valid.

5.2 preliminaries 67

1. SF is valid under more permissive mathematical conditions than PD. SF can be
used if f is discontinuous, or if x is a discrete random variable.

2. SF only requires sample values f(x), whereas PD requires the derivatives f 0(x). In
the context of control (reinforcement learning), SF can be used to obtain unbiased
policy gradient estimators in the “model-free” setting where we have no model of
the dynamics, we only have access to sample trajectories.

3. SF tends to have higher variance than PD, when both estimators are applicable (see
for instance [Fu06; RMW14]). The variance of SF increases (often linearly) with the
dimensionality of the sampled variables. Hence, PD is usually preferable when x
is high-dimensional. On the other hand, PD has high variance if the function f is
rough, which occurs in many time-series problems due to an “exploding gradient
problem” / “butterfly effect”.

4. PD allows for a deterministic limit, SF does not. This idea is exploited by the deter-
ministic policy gradient algorithm [Sil+14].

nomenclature . The methods of estimating gradients of expectations have been in-
dependently proposed in several different fields, which use differing terminology. What
we call the score function estimator (via [Fu06]) is alternatively called the likelihood ratio es-
timator [Gly90] and REINFORCE [Wil92]. We chose this term because the score function
is a well-known object in statistics. What we call the pathwise derivative estimator (from
the mathematical finance literature [Gla03] and reinforcement learning [Mun06]) is alter-
natively called infinitesimal perturbation analysis and stochastic backpropagation [RMW14].
We chose this term because pathwise derivative is evocative of propagating a derivative
through a sample path.

5.2.2 Stochastic Computation Graphs

The results of this chapter will apply to stochastic computation graphs, which are defined
as follows:

Definition 3 (Stochastic Computation Graph). A directed, acyclic graph, with three types
of nodes:

1. Input nodes, which are set externally, including the parameters we differentiate with
respect to.

2. Deterministic nodes, which are functions of their parents.

5.2 preliminaries 68

3. Stochastic nodes, which are distributed conditionally on their parents.
Each parent v of a non-input node w is connected to it by a directed edge (v,w).

In the subsequent diagrams of this chapter, we will use circles to denote stochastic nodes
and squares to denote deterministic nodes, as illustrated below. The structure of the
graph fully specifies what estimator we will use: SF, PD, or a combination thereof. This
graphical notation is shown below, along with the single-variable estimators from Sec-
tion 5.2.1.

✓

Input node

Deterministic node

Stochastic node

✓

x

f

Gives SF estimator

✓

z

x

f

Gives PD estimator

5.2.3 Simple Examples

Several simple examples that illustrate the stochastic computation graph formalism are
shown below. The gradient estimators can be described by writing the expectations as
integrals and differentiating, as with the simpler estimators from Section 5.2.1. However,
they are also implied by the general results that we will present in Section 5.3.

5.2 preliminaries 69

Stochastic Computation Graph Objective Gradient Estimator

(1)
✓

x

y

f

(2)
✓

x

y

f

(3)
✓

x

y

f

(4)
✓

x

y

f

(5)
✓

x0 x1 x2

f1 f2

@x

@✓

@

@x

log p(y | x)f(y)

@

@✓

log p(x | ✓)f(y(x))

@

@✓

log p(x | ✓)f(y)

@

@✓

log p(x | ✓)f(x, y(✓)) + @y

@✓

@f

@y

@

@✓

log p(x1 | ✓, x0)(f1(x1) + f2(x2))

+
@

@✓

log p(x2 | ✓, x1)f2(x2)

E
y

[f(y)]

E
x

[f(y(x))]

E
x,y

[f(y)]

E
x

[f(x, y(✓))]

E
x1,x2 [f1(x1) + f2(x2)]

Figure 11: Simple stochastic computation graphs

These simple examples illustrate several important motifs, where stochastic and de-
terministic nodes are arranged in series or in parallel. For example, note that in (2) the
derivative of y does not appear in the estimator, since the path from ✓ to f is “blocked”
by x. Similarly, in (3), p(y | x) does not appear (this type of behavior is particularly useful
if we only have access to a simulator of a system, but not access to the actual likelihood
function). On the other hand, (4) has a direct path from ✓ to f, which contributes a term
to the gradient estimator. (5) resembles a parameterized Markov reward process, and it
illustrates that we’ll obtain score function terms of the form grad log-probability ⇥ future
costs.

x

h1 h2

W1 W2b1 b2

soft-
max

y=label

cross-
entropy
loss

The examples above all have one input ✓, but
the formalism accommodates models with multi-
ple inputs, for example a stochastic neural network
with multiple layers of weights and biases, which
may influence different subsets of the stochastic
and cost nodes. See Section 5.10 for nontrivial ex-
amples with stochastic nodes and multiple inputs. The figure on the right shows a de-

5.3 main results on stochastic computation graphs 70

terministic computation graph representing classification loss for a two-layer neural net-
work, which has four parameters (W1,b1,W2,b2) (weights and biases). Of course, this
deterministic computation graph is a special type of stochastic computation graph.

5.3 main results on stochastic computation graphs

5.3.1 Gradient Estimators

Notation Glossary

⇥: Input nodes

D: Deterministic nodes

S: Stochastic nodes

C: Cost nodes

v � w: v influences w

v �D w: v deterministically influences w

deps

v

: “dependencies”,
{w 2 ⇥[S |w �D v}

Q̂
v

: sum of cost nodes influenced by v.

v̂: denotes the sampled value of the node
v.

This section will consider a general stochastic
computation graph, in which a certain set of
nodes are designated as costs, and we would
like to compute the gradient of the sum of costs
with respect to some input node ✓.

In brief, the main results of this section are as
follows:

1. We derive a gradient estimator for an ex-
pected sum of costs in a stochastic compu-
tation graph. This estimator contains two
parts (1) a score function part, which is a
sum of terms grad log-prob of variable ⇥ sum
of costs influenced by variable; and (2) a path-
wise derivative term, that propagates the
dependence through differentiable func-
tions.

2. This gradient estimator can be computed
efficiently by differentiating an appropri-
ate “surrogate” objective function.

Let ⇥ denote the set of input nodes, D the set
of deterministic nodes, and S the set of stochastic nodes. Further, we will designate a set
of cost nodes C, which are scalar-valued and deterministic. (Note that there is no loss
of generality in assuming that the costs are deterministic—if a cost is stochastic, we can
simply append a deterministic node that applies the identity function to it.) We will use
✓ to denote an input node (✓ 2 ⇥) that we differentiate with respect to. In the context of
machine learning, we will usually be most concerned with differentiating with respect
to a parameter vector (or tensor), however, the theory we present does not make any
assumptions about what ✓ represents.

5.3 main results on stochastic computation graphs 71

For the results that follow, we need to define the notion of “influence”, for which we
will introduce two relations � and �D. The relation v � w (“v influences w”) means that
there exists a sequence of nodes a1,a2, . . . ,aK, with K > 0, such that
(v,a1), (a1,a2), . . . , (aK-1,aK), (aK,w) are edges in the graph. The relation v �D w (“v

deterministically influences w”) is defined similarly, except that now we require that each
ak is a deterministic node. For example, in Figure 11, diagram (5) above, ✓ influences
{x1, x2, f1, f2}, but it only deterministically influences {x1, x2}.

Next, we will establish a condition that is sufficient for the existence of the gradient.
Namely, we will stipulate that every edge (v,w) with w lying in the “influenced” set
of ✓ corresponds to a differentiable dependency: if w is deterministic, then the Jacobian
@w
@v must exist; if w is stochastic, then the probability mass function p(w | v, . . .) must be
differentiable with respect to v.

More formally:

Condition 1 (Differentiability Requirements). Given input node ✓ 2 ⇥, for all edges
(v,w) which satisfy ✓ �D v and ✓ �D w, then the following condition holds: if w is
deterministic, Jacobian @w

@v exists, and if w is stochastic, then the derivative of the probability
mass function @

@vp(w | parentsw) exists.

Note that Condition 1 does not require that all the functions in the graph are differ-
entiable. If the path from an input ✓ to deterministic node v is blocked by stochastic
nodes, then v may be a nondifferentiable function of its parents. If a path from input ✓
to stochastic node v is blocked by other stochastic nodes, the likelihood of v given its
parents need not be differentiable; in fact, it does not need to be known2.

We need a few more definitions to state the main theorems. Let depsv := {w 2 ⇥ [
S |w �D v}, the “dependencies” of node v, i.e., the set of nodes that deterministically
influence it. Note the following:

• If v 2 S, the probability mass function of v is a function of depsv, i.e., we can write
p(v | depsv).

• If v 2 D, v is a deterministic function of depsv, so we can write v(depsv).
Let Q̂v :=

P
c�v,
c2C

ĉ, i.e., the sum of costs downstream of node v. These costs will be

treated as constant, fixed to the values obtained during sampling. In general, we will
use the hat symbol v̂ to denote a sample value of variable v, which will be treated as
constant in the gradient formulae.

2 This fact is particularly important for reinforcement learning, allowing us to compute policy gradient
estimates despite having a discontinuous dynamics function or reward function.

5.3 main results on stochastic computation graphs 72

Now we can write down a general expression for the gradient of the expected sum of
costs in a stochastic computation graph:

theorem 1 . Suppose that ✓ 2 ⇥ satisfies Condition 1. Then the following two equivalent
equations hold:

@

@✓
E

"
X

c2C
c

#

= E

2

664
X

w2S,
✓�Dw

✓
@

@✓
logp(w | depsw)

◆
Q̂w +

X

c2C
✓�Dc

@

@✓
c(depsc)

3

775 (38)

= E

2

664
X

c2C
ĉ

X

w�c,
✓�Dw

@

@✓
logp(w | depsw) +

X

c2C,
✓�Dc

@

@✓
c(depsc)

3

775 . (39)

Proof: See Section 5.8.
The estimator expressions above have two terms. The first term is due to the influence

of ✓ on probability distributions. The second term is due to the influence of ✓ on the
cost variables through a chain of differentiable functions. The distribution term involves
a sum of gradients times “downstream” costs. The first term in Equation (38) involves a
sum of gradients times “downstream” costs, whereas the first term in Equation (39) has
a sum of costs times “upstream” gradients.

5.3.2 Surrogate Loss Functions

The next corollary lets us write down a “surrogate” objective L, which is a function of
the inputs that we can differentiate to obtain an unbiased gradient estimator.

Corollary 1. Let L(⇥, S) :=
P

w logp(w | depsw)Q̂w +
P

c2C c(depsc). Then differentia-
tion of L gives us an unbiased gradient estimate: @

@✓E
⇥P

c2C c
⇤
= E

⇥
@
@✓L(⇥, S)

⇤
.

One practical consequence of this result is that we can apply a standard automatic
differentiation procedure to L to obtain an unbiased gradient estimator. In other words,
we convert the stochastic computation graph into a deterministic computation graph, to
which we can apply the backpropagation algorithm.

5.4 variance reduction 73

Surrogate Loss Computation Graph

(1)
✓

x

log p(y|x) ˆf

(2)
✓

log p(x; ✓)

ˆ

f

(3)
✓

log p(x; ✓)

ˆ

f

(4)
✓

log p(x; ✓)

ˆ

f

y

f

(5)
✓

x0
log p(x1|x0; ✓)

(

ˆ

f1 +
ˆ

f2)
log p(x2|x1; ✓)

ˆ

f2

Figure 12: Deterministic computation
graphs obtained as surrogate loss func-
tions of stochastic computation graphs
from Figure 11.

There are several alternative ways to define the
surrogate objective function that give the same
gradient as L from Corollary 1. We could also
write L(⇥, S) :=

P
w

p(ŵ | deps

w

)

P̂
v

Q̂w +
P

c2C c(depsc),
where P̂w is the probability p(w | depsw) obtained
during sampling, which is viewed as a constant.

The surrogate objective from Corollary 1 is actu-
ally an upper bound on the true objective in the
case that (1) all costs c 2 C are negative, (2) the
the costs are not deterministically influenced by
the parameters ⇥. This construction allows from
majorization-minimization algorithms (similar to
EM) to be applied to general stochastic computa-
tion graphs. See Section 5.9 for details.

5.3.3 Higher-Order Derivatives.

The gradient estimator for a stochastic computation graph is itself a stochastic computa-
tion graph. Hence, it is possible to compute the gradient yet again (for each component
of the gradient vector), and get an estimator of the Hessian. For most problems of in-
terest, it is not efficient to compute this dense Hessian. On the other hand, one can also
differentiate the gradient-vector product to get a Hessian-vector product—this compu-
tation is usually not much more expensive than the gradient computation itself. The
Hessian-vector product can be used to implement a quasi-Newton algorithm via the
conjugate gradient algorithm [WN99]. A variant of this technique, called Hessian-free
optimization [Mar10], has been used to train large neural networks.

5.4 variance reduction

Consider estimating @
@✓Ex⇠p(·; ✓) [f(x)]. Clearly this expectation is unaffected by subtract-

ing a constant b from the integrand, which gives @
@✓Ex⇠p(·; ✓) [f(x)- b]. Taking the score

function estimator, we get @
@✓Ex⇠p(·; ✓) [f(x)] = Ex⇠p(·; ✓)

⇥
@
@✓ logp(x; ✓)(f(x)- b)

⇤
. Taking

b = Ex [f(x)] generally leads to substantial variance reduction—b is often called a base-

5.5 algorithms 74

line3 (see [GBB04] for a more thorough discussion of baselines and their variance reduc-
tion properties).

We can make a general statement for the case of stochastic computation graphs—that
we can add a baseline to every stochastic node, which depends all of the nodes it doesn’t
influence. Let NonInfluenced(v) := {w | v ⌃ w}.

theorem 2 .

@

@✓
E

"
X

c2C
c

#

= E

2

64
X

v2S
v�✓

✓
@

@✓
logp(v | parentsv)

◆
(Q̂v - b(NonInfluenced(v)) +

X

c2C⌫✓

@

@✓
c

3

75

Proof: See Section 5.8.

5.5 algorithms

As shown in Section 5.3, the gradient estimator can be obtained by differentiating a
surrogate objective function L. Hence, this derivative can be computed by performing
the backpropagation algorithm on L. That is likely to be the most practical and efficient
method, and can be facilitated by automatic differentiation software.

Algorithm 4 shows explicitly how to compute the gradient estimator in a backwards
pass through the stochastic computation graph. The algorithm will recursively compute

gv :=
@
@vE

P
c2C
v�c

c

�
at every deterministic and input node v.

5.6 related work

As discussed in Section 5.2, the score function and pathwise derivative estimators have
been used in a variety of different fields, under different names. See [Fu06] for a review
of gradient estimation, mostly from the simulation optimization literature. Glasserman’s
textbook provides an extensive treatment of various gradient estimators and Monte Carlo
estimators in general. Griewank and Walther’s textbook [GW08] is a comprehensive ref-
erence on computation graphs and automatic differentiation (of deterministic programs.)
The notation and nomenclature we use is inspired by Bayes nets and influence diagrams

3 The optimal baseline for scalar ✓ is in fact the weighted expectation E
x

[f(x)s(x)2]
E
x

[s(x)2]
where s(x) =

@

@✓

logp(x; ✓).

5.6 related work 75

Algorithm 4 Compute Gradient Estimator for Stochastic Computation Graph
for v 2 Graph do . Initialization at output nodes

gv =

8
<

:
1dim v if v 2 C

0dim v otherwise
end for
Compute Q̂w for all nodes w 2 Graph
for v in ReverseTopologicalSort(NonInputs) do . Reverse traversal

for w 2 parentsv do
if not IsStochastic(w) then

if IsStochastic(v) then
gw += (@

@w logp(v | parentsv))Q̂w

else
gw += (@v@w)

Tgv

end if
end if

end for
end for
return [g✓]✓2⇥

5.7 conclusion 76

[Pea14]. (In fact, a stochastic computation graph is a type of Bayes network; where the
deterministic nodes correspond to degenerate probability distributions.)

The topic of gradient estimation has drawn significant recent interest in machine
learning. Gradients for networks with stochastic units was investigated in Bengio et
al. [BLC13], though they are concerned with differentiating through individual units and
layers; not how to deal with arbitrarily structured models and loss functions. Kingma
and Welling [KW14] consider a similar framework, although only with continuous latent
variables, and point out that reparameterization can be used to to convert hierarchical
Bayesian models into neural networks, which can then be trained by backpropagation.

The score function method is used to perform variational inference in general mod-
els (in the context of probabilistic programming) in Wingate and Weber [WW13], and
similarly in Ranganath et al. [RGB13]; both papers mostly focus on mean-field approxi-
mations without amortized inference. It is used to train generative models using neural
networks with discrete stochastic units in Mnih and Gregor [MG14] and Gregor et al. in
[Gre+13]; both amortize inference by using an inference network.

Generative models with continuous valued latent variables networks are trained (again
using an inference network) with the reparametrization method by Rezende, Mohamed,
and Wierstra [RMW14] and by Kingma and Welling [KW13]. Rezende et al. also pro-
vide a detailed discussion of reparameterization, including a discussion comparing the
variance of the SF and PD estimators.

Bengio, Leonard, and Courville [BLC13] have recently written a paper about gradi-
ent estimation in neural networks with stochastic units or non-differentiable activation
functions—including Monte Carlo estimators and heuristic approximations. The notion
that policy gradients can be computed in multiple ways was pointed out in early work
on policy gradients by Williams [Wil92]. However, all of this prior work deals with spe-
cific structures of the stochastic computation graph and does not address the general
case.

5.7 conclusion

The reinforcement learning is extremely general and lies at the heart of artificial intelli-
gence, and corresponds to the ability for decision making and motor control. The core
idea in deep learning is that by reducing learning into optimization, it is possible to learn
function approximators that perform computation.

We have developed a framework for describing a computation with stochastic and
deterministic operations, called a stochastic computation graph. Given a stochastic com-

5.8 proofs 77

putation graph, we can automatically obtain a gradient estimator, given that the graph
satisfies the appropriate conditions on differentiability of the functions at its nodes. The
gradient can be computed efficiently in a backwards traversal through the graph: one
approach is to apply the standard backpropagation algorithm to one of the surrogate
loss functions from Section 5.3; another approach (which is roughly equivalent) is to ap-
ply a modified backpropagation procedure shown in Algorithm 4. The results we have
presented are sufficiently general to automatically reproduce a variety of gradient esti-
mators that have been derived in prior work in reinforcement learning and probabilistic
modeling, as we show in Section 5.10. We hope that this work will facilitate further
development of interesting and expressive models.

5.8 proofs

Theorem 1
We will consider the case that all of the random variables are continuous-valued, thus

the expectations can be written as integrals. For discrete random variables, the integrals
should be changed to sums.

Recall that we seek to compute @
@✓E

⇥P
c2C c

⇤
. We will differentiate the expectation of

a single cost term; summing over these terms yields Equation (39).

Ev2S,
v�c

[c] =

Z Y

v2S,
v�c

p(v | depsv)dv c(depsc)

@

@✓
Ev2S,

v�c
[c] =

@

@✓

Z Y

v2S,
v�c

p(v | depsv)dv c(depsc)

=

Z Y

v2S,
v�c

p(v | depsv)dv

2

64
X

w2S,
w�c

@
@✓p(w | depsw)

p(w | depsw)
c(depsc) +

@

@✓
c(depsc)

3

75 (40)

=

Z Y

v2S,
v�c

p(v | depsv)dv

2

64
X

w2S,
w�c

✓
@

@✓
logp(w | depsw)

◆
c(depsc) +

@

@✓
c(depsc)

3

75

= Ev2S,
v�c

2

64
X

w2S,
w�c

@

@✓
logp(w | depsw)ĉ+

@

@✓
c(depsc)

3

75 .

5.9 surrogate as an upper bound, and mm algorithms 78

Equation (40) requires that the integrand is differentiable, which is satisfied if all of the
PDFs and c(depsc) are differentiable. Equation (39) follows by summing over all costs
c 2 C. Equation (38) follows from rearrangement of the terms in this equation.

Theorem 2
It suffices to show that for a particular node v 2 S, the following expectation (taken

over all variables) vanishes

E

✓
@

@✓
logp(v | parentsv)

◆
b(NonInfluenced(v))

�
.

Analogously to NonInfluenced(v), define Influenced(v) := {w |w � v}. Note that the
nodes can be ordered so that NonInfluenced(v) all come before v in the ordering. Thus,
we can write

ENonInfluenced(v)

EInfluenced(v)

✓
@

@✓
logp(v | parentsv)

◆
b(NonInfluenced(v))

��

= ENonInfluenced(v)

EInfluenced(v)

✓
@

@✓
logp(v | parentsv)

◆�
b(NonInfluenced(v))

�

= ENonInfluenced(v) [0 · b(NonInfluenced(v))]

= 0

where we used EInfluenced(v)

⇥�
@
@✓ logp(v | parentsv)

�⇤
= Ev

⇥�
@
@✓ logp(v | parentsv)

�⇤
=

0.

5.9 surrogate as an upper bound, and mm algorithms

L has additional significance besides allowing us to estimate the gradient of the expected
sum of costs. Under certain conditions, L is a upper bound on on the true objective (plus
a constant).

We shall make two restrictions on the stochastic computation graph: (1) first, that all
costs c 2 C are negative. (2) the the costs are not deterministically influenced by the
parameters ⇥. First, let us use importance sampling to write down the expectation of a
given cost node, when the sampling distribution is different from the distribution we are
evaluating: for parameter ✓ 2 ⇥, ✓ = ✓old is used for sampling, but we are evaluating at

5.10 examples 79

✓ = ✓new.

Ev�c | ✓
new

[ĉ] = Ev�c | ✓
old

2

664ĉ
Y

v�c,
✓�Dv

Pv(v | depsv\✓, ✓new)
Pv(v | depsv\✓, ✓old)

3

775

6 Ev�c | ✓
old

2

664ĉ

0

BB@log

0

BB@
Y

v�c,
✓�Dv

Pv(v | depsv\✓, ✓new)
Pv(v | depsv\✓, ✓old)

1

CCA+ 1

1

CCA

3

775

where the second line used the inequality x > log x+ 1, and the sign is reversed since ĉ
is negative. Summing over c 2 C and rearranging we get

ES | ✓
new

"
X

c2C
ĉ

#

6 ES | ✓
old

"
X

c2C
ĉ+

X

v2S
log
✓
p(v | depsv\✓, ✓new)
p(v | depsv\✓, ✓old)

◆
Q̂v

#

= ES | ✓
old

"
X

v2S
logp(v | depsv\✓, ✓new)Q̂v

#

+ const. (41)

Equation (41) allows for majorization-minimization algorithms (like the EM algorithm)
to be used to optimize with respect to ✓. In fact, similar equations have been derived
by interpreting rewards (negative costs) as probabilities, and then taking the variational
lower bound on log-probability (e.g., [Vla+09]).

5.10 examples

This section considers two settings where the formalism of stochastic computation graphs
can be applied. First, we consider the generalized EM algorithm for maximum likelihood
estimation in probabilistic models with latent variables. Second, we consider reinforce-
ment learning in Markov Decision Processes. In both cases, the objective function is given
by an expectation; writing it out as a composition of stochastic and deterministic steps
yields a stochastic computation graph.

5.10.1 Generalized EM Algorithm and Variational Inference.

The generalized EM algorithm maximizes likelihood in a probabilistic model with latent
variables [NH98]. We start with a parameterized probability density p(x, z; ✓) where x is

5.10 examples 80

observed, z is a latent variable, and ✓ is a parameter of the distribution. The generalized
EM algorithm maximizes the variational lower bound, which is defined by an expectation
over z for each sample x:

L(✓,q) = Ez⇠q

log
✓
p(x, z; ✓)
q(z)

◆�
.

As parameters will appear both in the probability density and inside the expectation,
stochastic computation graphs provide a convenient route for deriving the gradient esti-
mators.

Neural variational inference.
Mnih and Gregor [MG14] propose a generalized EM algorithm for multi-layered latent

variable models that employs an inference network, an explicit parameterization of the
posterior q�(z | x) ⇡ p(z | x), to allow for fast approximate inference. The generative
model and inference network take the form

p✓(x) =
X

h
1

,h
2

p✓
1

(x|h1)p✓
2

(h1|h2)p✓
3

(h2|h3)p✓
3

(h3)

q�(h1,h2|x) = q�
1

(h1|x)q�
2

(h2|h1)q�
3

(h3|h2).

The inference model q� is used for sampling, i.e., we sample h1 ⇠ q�
1

(· | x),h2 ⇠

q�
2

(· | h1),h3 ⇠ q�
3

(· | h2). The stochastic computation graph is shown above.

L(✓,�) = Eh⇠q
�

2

6664log
p✓

1

(x|h1)

q�
1

(h1|x)| {z }
=r

1

+ log
p✓

2

(h1|h2)

q�
2

(h2|h1)| {z }
=r

2

+ log
p✓

3

(h2|h3)p✓
3

(h3)

q�
3

(h3|h2)| {z }
=r

3

3

7775 .

Given a sample h ⇠ q� an unbiased estimate of the gradient is given by Theorem 2 as

@L

@✓
⇡ @

@✓
logp✓

1

(x|h1) +
@

@✓
logp✓

2

(h1|h2) +
@

@✓
logp✓

3

(h2) (42)

@L

@�
⇡ @

@�
logq�

1

(h1|x)(Q̂1 - b1(x))

+
@

@�
logq�

2

(h2|h1)(Q̂2 - b2(h1)) +
@

@�
logq�

3

(h3|h2)(Q̂3 - b3(h2)) (43)

where Q̂1 = r1 + r2 + r3; Q̂2 = r2 + r3; and Q̂3 = r3, and b1,b2,b3 are baseline functions.
The stochastic computation graph is shown in Figure 13.

5.10 examples 81

Variational Autoencoder, Deep Latent Gaussian Models and Reparameterization.
Here we’ll note out that in some cases, the stochastic computation graph can be trans-
formed to give the same probability distribution for the observed variables, but one
obtains a different gradient estimator. Kingma and Welling [KW13] and Rezende et al.
[RMW14] consider a model that is similar to the one proposed by Mnih et al. [MG14]
but with continuous latent variables, and they re-parameterize their inference network
to enable the use of the PD estimator. The original objective, the variational lower bound,
is

Lorig(✓,�) = Eh⇠q
�

log

p✓(x|h)p✓(h)

q�(h|x)

�
.

The second term, the entropy of q�, can be computed analytically for the parametric
forms of q considered in the paper (Gaussians). For q� being conditionally Gaussian, i.e.
q�(h|x) = N(h|µ�(x),��(x)) re-parameterizing leads to h = h�(✏; x) = µ�(x) + ✏��(x),
giving

Lre(✓,�) = E✏⇠⇢

⇥
logp✓(x|h�(✏, x)) + logp✓(h�(✏, x))

⇤

+H[q�(·|x)].

The stochastic computation graph before and after reparameterization is shown in Fig-
ure 13. Given ✏ ⇠ ⇢ an estimate of the gradient is obtained as

@Lre

@✓
⇡ @

@✓

⇥
logp✓(x|h�(✏, x)) + logp✓(h�(✏, x))

⇤
,

@Lre

@�
⇡

@

@h
logp✓(x|h�(✏, x)) +

@

@h
logp✓(h�(✏, x))

�
@h

@�
+

@

@�
H[q�(·|x)].

5.10.2 Policy Gradients in Reinforcement Learning.

In reinforcement learning, an agent interacts with an environment according to its policy
⇡, and the goal is to maximize the expected sum of rewards, called the return. Policy
gradient methods seek to directly estimate the gradient of expected return with respect
to the policy parameters [Wil92; BB01; Sut+99]. In reinforcement learning, we typically
assume that the environment dynamics are not available analytically and can only be
sampled. Below we distinguish two important cases: the Markov decision process (MDP)
and the partially observable Markov decision process (POMDP).

5.10 examples 82

x

h1 h2 h3

r1 r2 r3

�1 �2 �3

✓1 ✓2 ✓3

x

h1 z

h2 x̃

L

�

✓

+ Reparameterization

x

h1 z

h2 x̃

L

�

✓

✏

Figure 13: Stochastic computation graphs for NVIL (left) and VAE (right) models

MDPs. In the MDP case, the expectation is taken with respect to the distribution over
state (s) and action (a) sequences

L(✓) = E⌧⇠p
✓

"
TX

t=1

r(st,at)

#

,

where ⌧ = (s1,a1, s2,a2, . . .) are trajectories and the distribution over trajectories is de-
fined in terms of the environment dynamics pE(st+1 | st,at) and the policy ⇡✓: p✓(⌧) =
pE(s1)

Q
t ⇡✓(at | st)pE(st+1 | st,at). r are rewards (negative costs in the terminology of

the rest of the paper). The classic REINFORCE [Wil92] estimate of the gradient is given
by

@

@✓
L = E⌧⇠p

✓

"
TX

t=1

@

@✓
log⇡✓(at | st)

TX

t 0=t

r(st 0 ,at 0)- bt(st)

!#

, (44)

where bt(st) is an arbitrary baseline which is often chosen to approximate Vt(st) =

E⌧⇠p
✓

hPT
t 0=t r(st 0 ,at 0)

i
, i.e. the state-value function. Note that the stochastic action nodes

at “block” the differentiable path from ✓ to rewards, which eliminates the need to differ-
entiate through the unknown environment dynamics. The stochastic computation graph
is shown in Figure 14.

5.10 examples 83

POMDPs. POMDPs differ from MDPs in that the state st of the environment is not
observed directly but, as in latent-variable time series models, only through stochastic
observations ot, which depend on the latent states st via pE(ot | st). The policy there-
fore has to be a function of the history of past observations ⇡✓(at | o1 . . . ot). Applying
Theorem 2, we obtain a gradient estimator:

@

@✓
L = E⌧⇠p

✓

h TX

t=1

@

@✓
log⇡✓(at | o1 . . . ot))

TX

t 0=t

r(st 0 ,at 0)- bt(o1 . . . ot)

!i
. (45)

Here, the baseline bt and the policy ⇡✓ can depend on the observation history through
time t, and these functions can be parameterized as recurrent neural networks [Wie+10;
Mni+14]. The stochastic computation graph is shown in Figure 14.

✓

s1 s2 . . .

sT

a1 a2 . . .

aT

r1 r2 . . .

rT

✓

s1 s2 . . .

sT

o1 o2 . . .

oT

m1 m2 . . .

mT

a1 a2 . . .

aT

r1 r2 . . .

rT

Figure 14: Stochastic Computation Graphs for MDPs (left) and POMDPs (right)

6
C O N C L U S I O N

The reinforcement learning problem, of maximizing reward in a POMDP, is extremely
general and lies at the core of artificial intelligence. Historically, most work in reinforce-
ment learning has used function approximators with limited expressivity, but recent
work in deep reinforcement learning (including this thesis) studies how to use expres-
sive function approximators such as deep neural networks. These function approxima-
tors are capable of performing multi-step computations, but they are also tractable to
learn gradient-based optimization. Nevertheless, deep reinforcement learning brings
many challenges, in how to develop reinforcement learning algorithms that are reliable,
scalable, and reasonably sample efficient.

This thesis is mostly concerned with developing deep reinforcement learning algo-
rithms that are more reliable and sample-efficient than the algorithms that were available
previously. In this work, we focus on using stochastic policies, for which it is possible
to obtain estimators of the gradient of performance. We developed an algorithm called
trust region policy optimization (TRPO), which is theoretically justified, and empirically
performs well in the challenging domains of Atari and 2D simulated robotic locomo-
tion. Recently, Duan et al. [Dua+16] found TRPO to perform the best overall out of the
algorithms considered on a benchmark of continuous control problems. We also stud-
ied variance reduction for policy gradient methods, unifying and expending on several
some previous statements of this idea, and obtaining strong empirical results in the do-
main of 3D simulated robotic locomotion, which exceed previous results obtained with
reinforcement learning.

The last work discussed, on stochastic computation graphs, makes the point that policy
gradient methods for reinforcement learning are an instance of a more general class of
techniques for optimizing objectives defined as expectations. We expect this to be useful
for deriving optimization procedures in reinforcement learning or other probabilistic
modeling problems; also, the unifying view motivates using RL algorithms like TRPO in

84

6.1 frontiers 85

non-RL problems.

6.1 frontiers

Many open problems remain, which relate to and could build on this thsis work. Below,
we describe some of the frontiers that we consider to be the most exciting, mostly in the
field of deep reinforcement learning.

1. Shared representations for control and prediction. In domains with high-dimensional
observations (for example, robotics using camera input, or games like Atari), two
different mappings need to be learned: first, we need to map the raw input into
more useful representations (for example, parse the image into a set of objects and
their locations); second, we need to map these representations to the actions. When
using policy gradient methods, this learning is driven by the advantage function,
which is a noisy one-dimensional signal—i.e., it is a slow source of information
about the environment. It should be possible to learn representations faster by
solving prediction problems involving the observations themselves—that way, we
are using much more information from the environment. To speed up learning
this way, we would need to use an architecture that shares parameters between a
prediction part and an action-selection part.

2. Hierarchy: animals and (prospectively) intelligent robots need to carry out behaviors
that unfold over a range of different timescales: fractions of a second for low-level
motor control; hours or days for various high-level behaviors. But traditional rein-
forcement learning methods have fundamental difficulties learning any behaviors
that require more than 100 - 1000 timesteps. Learning can proceed if the MDP
is augmented with high-level actions that unfold over a long period of time: some
versions of this idea include hierarchical abstract machines [PR98] and options [SPS99].
The persistent difficulty is how to automatically learn these high-level actions, or
what kind of optimization objective will encourage the policy to be more “hierar-
chical”.

3. Exploration: the principle of exploration is to actively encourage the agent to reach
unfamiliar parts of state space, avoiding convergence to a suboptimal policy. Policy
gradient methods are prone to converging to suboptimal policies, as we observed
many times while doing the empirical work in this thesis. While a body of theoret-
ical work answers the question of how to explore optimally in an finite MDP (e.g.,
[Str+06]), there is a need for exploration methods that can be applied in challeng-
ing real-world settings such as robotics. Some preliminary work towards making

6.1 frontiers 86

exploration work in the deep RL setting includes methods based on Thompson
sampling [Osb+16] and exploration bonuses [Hou+16].

4. Using learned models: model-based reinforcement learning methods seek to speed
up learning by fitting a dynamics model and using it for planning or speeding up
learning. It is known that in certain low-dimensional continuous control problems,
it is possible to learn good controllers in an extremely small number of samples
(e.g., [DR11; Mol+15]); however, this success has not yet been extended to problems
with high-dimensional state spaces. More generally, many have found that model
based methods learn faster (in fewer samples) than model-free methods such as
policy gradients and Q-learning when they work; however, no method has yet
emerged that can perform as well as model-free methods on challenging high-
dimensional tasks, such as the Atari and MuJoCo tasks considered in this thesis.
Guided policy search, which uses a model for trajectory optimization [Lev+16], was
used to learn some behaviors efficiently on a physical robot. These methods also
have yet to be extended to problems that require controlling a high-dimensional
state.

5. Finer-grained credit assignment: the policy gradient estimator performs credit assign-
ment in a crude way, since it credits an action with all rewards that follow the action.
However, often it is possible to do better credit assignment based on some knowl-
edge of the system. For example, when one serves a tennis ball, the result does not
depend on any action he takes after his racket hits the ball; however, that sort of
inference is not included in any of our reinforcement learning algorithms. It should
be possible to do better credit assignment with the help of a model of the system.
Heess et al. [Hee+15] tried model-based credit assignment and obtained a negative
result; however, other possible instantiations of the idea might be more successful.
Another technique for variance reduction was proposed in [LCR02]; however, this
technique only provides a moderate amount of variance reduction. If there were a
generic method for approximating the unknown or non-differentiable components
in a stochastic computation graph (e.g., the dynamics model in reinforcement learn-
ing) and using them to obtain better gradient estimates, this method could provide
significant benefits in reinforcement learning and probabilistic modeling problems
that involve “hard” decisions.

B I B L I O G R A P H Y

That which has been is that which will be,
And that which has been done is that which will be done.

So there is nothing new under the sun.
— Ecclesiastes 1:9, NASB

[BS03] J. A. Bagnell and J. Schneider. “Covariant policy search.” In: IJCAI. 2003 (cit. on pp. 6,
24).

[BB11] P. L. Bartlett and J. Baxter. “Infinite-horizon policy-gradient estimation.” In: arXiv
preprint arXiv:1106.0665 (2011) (cit. on p. 25).

[BSA83] A. G. Barto, R. S. Sutton, and C. W. Anderson. “Neuronlike adaptive elements that
can solve difficult learning control problems.” In: Systems, Man and Cybernetics, IEEE
Transactions on 5 (1983), pp. 834–846 (cit. on pp. 31, 57).

[BB01] J. Baxter and P. L. Bartlett. “Infinite-horizon policy-gradient estimation.” In: Journal
of Artificial Intelligence Research (2001), pp. 319–350 (cit. on p. 81).

[Bel+13] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. “The Arcade Learning Envi-
ronment: An Evaluation Platform for General Agents.” In: Journal of Artificial Intelli-
gence Research 47 (2013), pp. 253–279 (cit. on p. 32).

[BLC13] Y. Bengio, N. Léonard, and A. Courville. “Estimating or propagating gradients through
stochastic neurons for conditional computation.” In: arXiv preprint arXiv:1308.3432
(2013) (cit. on p. 76).

[Ber+10] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D.
Warde-Farley, and Y. Bengio. “Theano: a CPU and GPU math expression compiler.”
In: Proceedings of the Python for scientific computing conference (SciPy). Vol. 4. Austin,
TX. 2010, p. 3 (cit. on p. 41).

[Ber05] D. Bertsekas. Dynamic programming and optimal control. Vol. 1. 2005 (cit. on p. 26).

[Ber12] D. P. Bertsekas. Dynamic programming and optimal control. Vol. 2. 2. Athena Scientific,
2012 (cit. on p. 53).

87

Bibliography 88

[Bha+09] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári.
“Convergent temporal-difference learning with arbitrary smooth function approxi-
mation.” In: Advances in Neural Information Processing Systems. 2009, pp. 1204–1212

(cit. on p. 60).

[Dah+12] G. E. Dahl, D. Yu, L. Deng, and A. Acero. “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition.” In: IEEE Transactions on
Audio, Speech, and Language Processing 20.1 (2012), pp. 30–42 (cit. on pp. 1, 2).

[DILM09] H. Daumé Iii, J. Langford, and D. Marcu. “Search-based structured prediction.” In:
Machine learning 75.3 (2009), pp. 297–325 (cit. on p. 1).

[DNP13] M. Deisenroth, G. Neumann, and J. Peters. “A Survey on Policy Search for Robotics.”
In: Foundations and Trends in Robotics 2.1-2 (2013), pp. 1–142 (cit. on p. 18).

[DR11] M. Deisenroth and C. E. Rasmussen. “PILCO: A model-based and data-efficient ap-
proach to policy search.” In: Proceedings of the 28th International Conference on machine
learning (ICML-11). 2011, pp. 465–472 (cit. on p. 86).

[Dua+16] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep
Reinforcement Learning for Continuous Control.” In: arXiv preprint arXiv:1604.06778
(2016) (cit. on p. 84).

[Fu06] M. C. Fu. “Gradient estimation.” In: Handbooks in operations research and management
science 13 (2006), pp. 575–616 (cit. on pp. 66, 67, 74).

[GGS13] V. Gabillon, M. Ghavamzadeh, and B. Scherrer. “Approximate Dynamic Program-
ming Finally Performs Well in the Game of Tetris.” In: Advances in Neural Information
Processing Systems. 2013 (cit. on p. 25).

[GPW06] T. Geng, B. Porr, and F. Wörgötter. “Fast biped walking with a reflexive controller
and realtime policy searching.” In: Advances in Neural Information Processing Systems
(NIPS). 2006 (cit. on p. 32).

[Gla03] P. Glasserman. Monte Carlo methods in financial engineering. Vol. 53. Springer Science
& Business Media, 2003 (cit. on pp. 66, 67).

[Gly90] P. W. Glynn. “Likelihood ratio gradient estimation for stochastic systems.” In: Com-
munications of the ACM 33.10 (1990), pp. 75–84 (cit. on pp. 64, 67).

[GBB04] E. Greensmith, P. L. Bartlett, and J. Baxter. “Variance reduction techniques for gradi-
ent estimates in reinforcement learning.” In: The Journal of Machine Learning Research
5 (2004), pp. 1471–1530 (cit. on pp. 14, 47, 74).

[Gre+13] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra. “Deep autoregressive
networks.” In: arXiv preprint arXiv:1310.8499 (2013) (cit. on p. 76).

Bibliography 89

[GW08] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algo-
rithmic differentiation. Siam, 2008 (cit. on p. 74).

[Gri+89] A. Griewank et al. “On automatic differentiation.” In: Mathematical Programming:
recent developments and applications 6.6 (1989), pp. 83–107 (cit. on p. 41).

[Guo+14] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. “Deep learning for real-time
Atari game play using offline Monte-Carlo tree search planning.” In: Advances in
Neural Information Processing Systems. 2014, pp. 3338–3346 (cit. on pp. 32, 33).

[HO96] N. Hansen and A. Ostermeier. “Adapting arbitrary normal mutation distributions in
evolution strategies: The covariance matrix adaptation.” In: Evolutionary Computation,
1996., Proceedings of IEEE International Conference on. IEEE. 1996, pp. 312–317 (cit. on
p. 31).

[Hau+12] M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone. “HyperNEAT-GGP:
A HyperNEAT-based Atari general game player.” In: Proceedings of the 14th annual
conference on Genetic and evolutionary computation. ACM. 2012, pp. 217–224 (cit. on
pp. 3, 4).

[Hee+15] N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, and T. Erez. “Learning Continu-
ous Control Policies by Stochastic Value Gradients.” In: arXiv preprint arXiv:1510.09142
(2015) (cit. on pp. 3, 5, 61, 62, 86).

[HS97] S. Hochreiter and J. Schmidhuber. “Long short-term memory.” In: Neural computation
9.8 (1997), pp. 1735–1780 (cit. on p. 64).

[Hou+16] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. “Curiosity-
driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks.”
In: arXiv preprint arXiv:1605.09674 (2016) (cit. on p. 86).

[HL04] D. R. Hunter and K. Lange. “A tutorial on MM algorithms.” In: The American Statis-
tician 58.1 (2004), pp. 30–37 (cit. on p. 22).

[JJS94] T. Jaakkola, M. I. Jordan, and S. P. Singh. “On the convergence of stochastic iterative
dynamic programming algorithms.” In: Neural computation 6.6 (1994), pp. 1185–1201

(cit. on pp. 4, 6, 16).

[Kak01a] S. Kakade. “A Natural Policy Gradient.” In: NIPS. Vol. 14. 2001, pp. 1531–1538 (cit.
on pp. 55, 61).

[Kak01b] S. Kakade. “Optimizing average reward using discounted rewards.” In: Computa-
tional Learning Theory. Springer. 2001, pp. 605–615 (cit. on p. 47).

[Kak02] S. Kakade. “A Natural Policy Gradient.” In: Advances in Neural Information Processing
Systems. MIT Press, 2002, pp. 1057–1063 (cit. on pp. 4, 6, 28, 31).

Bibliography 90

[KL02] S. Kakade and J. Langford. “Approximately optimal approximate reinforcement
learning.” In: ICML. Vol. 2. 2002, pp. 267–274 (cit. on pp. 19–21, 28, 34).

[KK98] H. Kimura and S. Kobayashi. “An Analysis of Actor/Critic Algorithms Using Eli-
gibility Traces: Reinforcement Learning with Imperfect Value Function.” In: ICML.
1998, pp. 278–286 (cit. on pp. 45, 46).

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization.” In: arXiv
preprint arXiv:1412.6980 (2014) (cit. on p. 16).

[KW13] D. P. Kingma and M. Welling. “Auto-encoding variational Bayes.” In: arXiv:1312.6114
(2013) (cit. on pp. 64, 66, 76, 81).

[KW14] D. P. Kingma and M. Welling. “Efficient gradient-based inference through transfor-
mations between bayes nets and neural nets.” In: arXiv preprint arXiv:1402.0480 (2014)
(cit. on p. 76).

[KBP13] J. Kober, J. A. Bagnell, and J. Peters. “Reinforcement learning in robotics: A survey.”
In: The International Journal of Robotics Research (2013), p. 0278364913495721 (cit. on
p. 1).

[KT03] V. R. Konda and J. N. Tsitsiklis. “On Actor-Critic Algorithms.” In: SIAM journal on
Control and Optimization 42.4 (2003), pp. 1143–1166 (cit. on pp. 61, 62).

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks.” In: Advances in neural information processing systems.
2012, pp. 1097–1105 (cit. on pp. 1, 2).

[LP03] M. G. Lagoudakis and R. Parr. “Reinforcement learning as classification: Leveraging
modern classifiers.” In: ICML. Vol. 3. 2003, pp. 424–431 (cit. on p. 25).

[LCR02] G. Lawrence, N. Cowan, and S. Russell. “Efficient gradient estimation for motor
control learning.” In: Proceedings of the Nineteenth conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann Publishers Inc. 2002, pp. 354–361 (cit. on p. 86).

[LeC+98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on
p. 64).

[LPW09] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American
Mathematical Society, 2009 (cit. on p. 37).

[LA14] S. Levine and P. Abbeel. “Learning neural network policies with guided policy
search under unknown dynamics.” In: Advances in Neural Information Processing Sys-
tems. 2014, pp. 1071–1079 (cit. on p. 29).

Bibliography 91

[Lev+16] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-end training of deep visuomotor
policies.” In: Journal of Machine Learning Research 17.39 (2016), pp. 1–40 (cit. on pp. 3,
86).

[Lil+15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.
Wierstra. “Continuous control with deep reinforcement learning.” In: arXiv preprint
arXiv:1509.02971 (2015) (cit. on pp. 3, 5, 61, 62).

[Lin93] L.-J. Lin. Reinforcement learning for robots using neural networks. Tech. rep. DTIC Docu-
ment, 1993 (cit. on p. 2).

[MT03] P. Marbach and J. N. Tsitsiklis. “Approximate gradient methods in policy-space op-
timization of Markov reward processes.” In: Discrete Event Dynamic Systems 13.1-2
(2003), pp. 111–148 (cit. on p. 47).

[MS12] J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-
free optimization.” In: Neural Networks: Tricks of the Trade. Springer, 2012, pp. 479–
535 (cit. on p. 40).

[Mar10] J. Martens. “Deep learning via Hessian-free optimization.” In: Proceedings of the 27th
International Conference on Machine Learning (ICML-10). 2010, pp. 735–742 (cit. on
pp. 65, 73).

[MG14] A. Mnih and K. Gregor. “Neural variational inference and learning in belief net-
works.” In: arXiv:1402.0030 (2014) (cit. on pp. 64, 76, 80, 81).

[Mni+13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller. “Playing Atari with Deep Reinforcement Learning.” In: arXiv preprint
arXiv:1312.5602 (2013) (cit. on pp. 3, 5, 32, 33).

[Mni+14] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. “Recurrent models of visual
attention.” In: Advances in Neural Information Processing Systems. 2014, pp. 2204–2212

(cit. on pp. 64, 83).

[Mni+15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level control through
deep reinforcement learning.” In: Nature 518.7540 (2015), pp. 529–533 (cit. on p. 4).

[Mni+16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu. “Asynchronous methods for deep reinforcement learning.” In: arXiv
preprint arXiv:1602.01783 (2016) (cit. on pp. 3, 17).

[Mol+15] T. M. Moldovan, S. Levine, M. I. Jordan, and P. Abbeel. “Optimism-driven explo-
ration for nonlinear systems.” In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2015, pp. 3239–3246 (cit. on p. 86).

Bibliography 92

[Mun06] R. Munos. “Policy gradient in continuous time.” In: The Journal of Machine Learning
Research 7 (2006), pp. 771–791 (cit. on p. 67).

[NP90] K. S. Narendra and K. Parthasarathy. “Identification and control of dynamical sys-
tems using neural networks.” In: IEEE Transactions on neural networks 1.1 (1990), pp. 4–
27 (cit. on p. 2).

[Nea90] R. M. Neal. “Learning stochastic feedforward networks.” In: Department of Computer
Science, University of Toronto (1990) (cit. on p. 64).

[NH98] R. M. Neal and G. E. Hinton. “A view of the EM algorithm that justifies incremental,
sparse, and other variants.” In: Learning in graphical models. Springer, 1998, pp. 355–
368 (cit. on pp. 64, 79).

[NJ00] A. Y. Ng and M. Jordan. “PEGASUS: A policy search method for large MDPs and
POMDPs.” In: Uncertainty in artificial intelligence (UAI). 2000 (cit. on p. 26).

[NHR99] A. Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transforma-
tions: Theory and application to reward shaping.” In: ICML. Vol. 99. 1999, pp. 278–
287 (cit. on pp. 45, 51, 52).

[Osb+16] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. “Deep Exploration via Boot-
strapped DQN.” In: arXiv preprint arXiv:1602.04621 (2016) (cit. on pp. 3, 86).

[Owe13] A. B. Owen. Monte Carlo theory, methods and examples. 2013 (cit. on p. 26).

[PR98] R. Parr and S. Russell. “Reinforcement learning with hierarchies of machines.” In:
Advances in neural information processing systems (1998), pp. 1043–1049 (cit. on p. 85).

[PB13] R. Pascanu and Y. Bengio. “Revisiting natural gradient for deep networks.” In: arXiv
preprint arXiv:1301.3584 (2013). arXiv: 1301.3584 [cs.DG] (cit. on p. 40).

[Pea14] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann, 2014 (cit. on p. 76).

[PMA10] J. Peters, K. Mülling, and Y. Altün. “Relative Entropy Policy Search.” In: AAAI Con-
ference on Artificial Intelligence. 2010 (cit. on pp. 24, 29).

[PS08] J. Peters and S. Schaal. “Natural actor-critic.” In: Neurocomputing 71.7 (2008), pp. 1180–
1190 (cit. on pp. 6, 24, 27, 55, 61).

[Pir+13] M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. “Safe policy iteration.” In:
Proceedings of The 30th International Conference on Machine Learning. 2013, pp. 307–315

(cit. on p. 29).

[Pol00] D. Pollard. Asymptopia: an exposition of statistical asymptotic theory. 2000. url: http:
//www.stat.yale.edu/~pollard/Books/Asymptopia (cit. on p. 22).

http://arxiv.org/abs/1301.3584
http://www.stat.yale.edu/~pollard/Books/Asymptopia
http://www.stat.yale.edu/~pollard/Books/Asymptopia

Bibliography 93

[RGB13] R. Ranganath, S. Gerrish, and D. M. Blei. “Black box variational inference.” In: arXiv
preprint arXiv:1401.0118 (2013) (cit. on p. 76).

[RMW14] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic backpropagation and ap-
proximate inference in deep generative models.” In: arXiv:1401.4082 (2014) (cit. on
pp. 64, 66, 67, 76, 81).

[Sch+15a] J. Schulman, N. Heess, T. Weber, and P. Abbeel. “Gradient estimation using stochas-
tic computation graphs.” In: Advances in Neural Information Processing Systems. 2015,
pp. 3528–3536 (cit. on p. 7).

[Sch+15b] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. “High-dimensional con-
tinuous control using generalized advantage estimation.” In: arXiv preprint arXiv:1506.02438
(2015) (cit. on p. 7).

[Sch+15c] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust region policy
optimization.” In: CoRR, abs/1502.05477 (2015) (cit. on pp. 7, 54, 55, 61).

[Sil+14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. “Determinis-
tic Policy Gradient Algorithms.” In: ICML. 2014 (cit. on pp. 3, 67).

[Sil+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. “Mastering the
game of Go with deep neural networks and tree search.” In: Nature 529.7587 (2016),
pp. 484–489 (cit. on p. 3).

[Str+06] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. “PAC model-free
reinforcement learning.” In: Proceedings of the 23rd international conference on Machine
learning. ACM. 2006, pp. 881–888 (cit. on p. 85).

[SB98] R. S. Sutton and A. G. Barto. Introduction to reinforcement learning. MIT Press, 1998

(cit. on pp. 2, 7, 49, 50, 53).

[SPS99] R. S. Sutton, D. Precup, and S. Singh. “Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning.” In: Artificial intelligence 112.1
(1999), pp. 181–211 (cit. on p. 85).

[Sut+99] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al. “Policy gradient methods
for reinforcement learning with function approximation.” In: NIPS. Vol. 99. Citeseer.
1999, pp. 1057–1063 (cit. on pp. 4, 16, 64, 81).

[Sze10] C. Szepesvári. “Algorithms for reinforcement learning.” In: Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning 4.1 (2010), pp. 1–103 (cit. on p. 2).

[SL06] I. Szita and A. Lörincz. “Learning Tetris using the noisy cross-entropy method.” In:
Neural computation 18.12 (2006), pp. 2936–2941 (cit. on pp. 4, 11, 31).

Bibliography 94

[TZS04] R. Tedrake, T. Zhang, and H. Seung. “Stochastic policy gradient reinforcement learn-
ing on a simple 3D biped.” In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2004 (cit. on p. 32).

[Tes95] G. Tesauro. “Temporal difference learning and TD-Gammon.” In: Communications of
the ACM 38.3 (1995), pp. 58–68 (cit. on p. 2).

[Tho14] P. Thomas. “Bias in natural actor-critic algorithms.” In: Proceedings of The 31st Inter-
national Conference on Machine Learning. 2014, pp. 441–448 (cit. on p. 47).

[TET12] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for model-based con-
trol.” In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE. 2012, pp. 5026–5033 (cit. on pp. 30, 57).

[VHGS15] H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double
Q-learning.” In: CoRR, abs/1509.06461 (2015) (cit. on p. 3).

[VR+97] B. Van Roy, D. P. Bertsekas, Y. Lee, and J. N. Tsitsiklis. “A neuro-dynamic program-
ming approach to retailer inventory management.” In: Decision and Control, 1997.,
Proceedings of the 36th IEEE Conference on. Vol. 4. IEEE. 1997, pp. 4052–4057 (cit. on
p. 1).

[Vla+09] N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis. “Learning model-free robot
control by a Monte Carlo EM algorithm.” In: Autonomous Robots 27.2 (2009), pp. 123–
130 (cit. on p. 79).

[WP09] K. Wampler and Z. Popović. “Optimal gait and form for animal locomotion.” In:
ACM Transactions on Graphics (TOG). Vol. 28. 3. ACM. 2009, p. 60 (cit. on pp. 4, 32).

[Waw09] P. Wawrzyński. “Real-time reinforcement learning by sequential actor–critics and
experience replay.” In: Neural Networks 22.10 (2009), pp. 1484–1497 (cit. on pp. 45,
46).

[Wie+08] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. “Natural evolution strategies.”
In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computa-
tional Intelligence). IEEE. 2008, pp. 3381–3387 (cit. on p. 4).

[Wie+10] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. “Recurrent policy gradients.”
In: Logic Journal of IGPL 18.5 (2010), pp. 620–634 (cit. on pp. 64, 83).

[Wil92] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning.” In: Machine learning 8.3-4 (1992), pp. 229–256 (cit. on pp. 4,
16, 64, 67, 76, 81, 82).

[WW13] D. Wingate and T. Weber. “Automated variational inference in probabilistic program-
ming.” In: arXiv preprint arXiv:1301.1299 (2013) (cit. on p. 76).

Bibliography 95

[WN99] S. J. Wright and J. Nocedal. Numerical optimization. Vol. 2. Springer New York, 1999

(cit. on pp. 41, 42, 54, 73).

[ZS15] W. Zaremba and I. Sutskever. “Reinforcement Learning Neural Turing Machines.”
In: arXiv preprint arXiv:1505.00521 (2015) (cit. on p. 64).

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Reinforcement Learning
	1.2 Deep Learning
	1.3 Deep Reinforcement Learning
	1.4 What to Learn, What to Approximate
	1.5 Optimizing Stochastic Policies
	1.6 Contributions of This Thesis

	2 Background
	2.1 Markov Decision Processes
	2.2 The Episodic Reinforcement Learning Problem
	2.3 Partially Observed Problems
	2.4 Policies
	2.5 Deriviative Free Optimization of Policies
	2.6 Policy Gradients

	3 Trust Region Policy Optimization
	3.1 Overview
	3.2 Preliminaries
	3.3 Monotonic Improvement Guarantee for General Stochastic Policies
	3.4 Optimization of Parameterized Policies
	3.5 Sample-Based Estimation of the Objective and Constraint
	3.5.1 Single Path
	3.5.2 Vine

	3.6 Practical Algorithm
	3.7 Connections with Prior Work
	3.8 Experiments
	3.8.1 Simulated Robotic Locomotion
	3.8.2 Playing Games from Images

	3.9 Discussion
	3.10 Proof of Policy Improvement Bound
	3.11 Perturbation Theory Proof of Policy Improvement Bound
	3.12 Efficiently Solving the Trust-Region Constrained Optimization Problem
	3.12.1 Computing the Fisher-Vector Product

	3.13 Approximating Factored Policies with Neural Networks
	3.14 Experiment Parameters
	3.15 Learning Curves for the Atari Domain

	4 Generalized Advantage Estimation
	4.1 Overview
	4.2 Preliminaries
	4.3 Advantage function estimation
	4.4 Interpretation as Reward Shaping
	4.5 Value Function Estimation
	4.6 Experiments
	4.6.1 Policy Optimization Algorithm
	4.6.2 Experimental Setup
	4.6.3 Experimental Results

	4.7 Discussion
	4.8 Frequently Asked Questions
	4.8.1 What's the Relationship with Compatible Features?
	4.8.2 Why Don't You Just Use a Q-Function?

	4.9 Proofs

	5 Stochastic Computation Graphs
	5.1 Overview
	5.2 Preliminaries
	5.2.1 Gradient Estimators for a Single Random Variable
	5.2.2 Stochastic Computation Graphs
	5.2.3 Simple Examples

	5.3 Main Results on Stochastic Computation Graphs
	5.3.1 Gradient Estimators
	5.3.2 Surrogate Loss Functions
	5.3.3 Higher-Order Derivatives.

	5.4 Variance Reduction
	5.5 Algorithms
	5.6 Related Work
	5.7 Conclusion
	5.8 Proofs
	5.9 Surrogate as an Upper Bound, and MM Algorithms
	5.10 Examples
	5.10.1 Generalized EM Algorithm and Variational Inference.
	5.10.2 Policy Gradients in Reinforcement Learning.

	6 Conclusion
	6.1 Frontiers

	Bibliography

