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ABSTRACT
The Internet of Things, characterized by hardware hetero-
geneity, siloed hardware and software platforms that stifle
interoperation, and systems that are distributed by nature,
represents a challenging domain for application developers.
Many industrial and academic efforts have produced tools
seeking to remedy this situation, but they typically operate
at a low level of abstraction centered on individual devices or
give developers little control over the deployment and execu-
tion of their applications. Most IoT development frameworks
are designed around the notion of integrating connected edge
devices with cloud-based services, ignoring an intermediate
collection of local resources, such as workstations and servers,
that can help satisfy many applications’ requirements while
also protecting user privacy by keeping sensitive data off of
the cloud. We propose a distributed IoT runtime system to as-
sist developers in the creation, deployment, and management
of their applications. This system is intended to incorporate
edge devices, local resources, and cloud servers while also
giving developers precise control over where and how their
software is executed. We motivate our system through a case
study accompanied by microbenchmarks, present a prelim-
inary system design, and discuss the issues raised by our
proposal.

1. INTRODUCTION
Developing applications for the Internet of Things (IoT)
involves several challenges. These applications must deal
with highly heterogeneous hardware, which can range from
low power embedded microcontrollers deployed at the edge
of the network to powerful servers running in the cloud. The
Internet of Things also suffers from a lack of interoperability
among both hardware and software systems. Many devices
are only accessible through vendor-specific APIs or software
platforms. Finally, because IoT applications are running
on distributed systems, the developer must pay particular
attention to where computation will be performed and where
data will be stored. The situation is further complicated by
the fact that IoT devices and users are frequently mobile,

making location a primary concern in IoT apps. Decisions
on where to place data and computation have important
consequences for performance, security, user privacy, and
reliability. For example, the cloud offers practically limitless
storage and computation, but also suffers from potentially
high latency and inconsistent network bandwidth. Use of the
cloud also raises privacy concerns, as users may be opposed
to the use of the cloud to store their sensitive data.

Numerous IoT development toolkits and frameworks have
been proposed in recent years. However, we believe they inad-
equately address the problems cited above. While a plethora
of platforms have been put forth by industry, the majority
are mainly concerned with agreeing upon common interfaces
and protocols to ensure mutual compatibility between differ-
ent products. These platforms force developers to reason at
the low level of individual devices and do little to ease the
task of composing these devices into a meaningful applica-
tion or service. The platforms that do provide tools to help
developers, such as a mechanism for device discovery, also
lock these developers into a particular set of vendor-specific
technologies. Perhaps more importantly, these frameworks
tend to reduce the Internet of Things to a two-layer entity:
a layer of relatively weak edge devices to collect data and
perform actuation coupled with a layer of more powerful
servers running in the cloud. This overlooks the critical role
that a third, intermediate tier of local resources, such as
personal workstations and building servers, can play in the
Internet of Things. We have dubbed this the “stratus” tier,
after the low altitude clouds.

We are also beginning to see academic efforts in the IoT
space that are more explicitly concerned with application
development, e.g. [16], but they either omit the stratus tier or
fail to give the developer control over how their applications
run on the underlying infrastructure. Ultimately, today’s IoT
frameworks represent two extreme situations, neither of which
is desirable: they either force developers to write applications
primarily focused on hardware devices and their low-level
interactions, or they offer a higher level of abstraction but
wrest control over where computation occurs and where data
is stored away from the developer and thus the end user.

We believe that several fundamental improvements to the
state of the art in IoT application development are necessary
in order for the Internet of Things to achieve its full potential.
Developers need a set of tools that will enable them to
rapidly create non-trivial applications incorporating multiple



hardware and software systems. Additionally, these tools
must give the developer full control over where and how
their applications run on the underlying infrastructure. This
facilitates the creation of applications that in turn allow end
users to control the propagation of sensitive data.

In this paper, we present our vision for a distributed IoT
runtime system that addresses these issues. Our proposed
system is centered on a belief in the importance of all three
tiers of the Internet of Things: cloud, stratus, and edge. We
also emphasize the concept of services rather than devices.
The components of an application are viewed as a collection
of interconnected services, and a developer may discover and
enlist external services to provide utility functions to their
applications. In summary, our system consists of three pieces,
a collection of services to manage application execution over
the cloud, stratus, and edge tiers, a programming model to
help developers construct their application components, and
a configuration framework that allows developers to express
the interactions between their application components, where
and how their application should be executed, and who is
authorized to use the application.

2. RELATED WORK
IoT Platforms and Frameworks. The AllSeen Alliance’s
AllJoyn framework [5] is a prominent IoT framework which
aims to create a standard set of protocols over which IoT
devices can communicate. AllJoyn is primarily concerned
with devices and their interactions, offering a lower level of
abstraction than our proposed system. Amazon has recently
released its own framework, AWS IoT [2], offering an SDK to
integrate connected devices into an ecosystem of AWS-hosted
services for messaging and data processing. AWS IoT offers
a rich set of features but heavily emphasizes the cloud and
ignores the potential of local resources.

Microsoft’s HomeOS [9] is focused on device interoperability
and facilitating application development for smart homes,
but it does not feature a notion of adaptive execution or
precise control over deployment. Beam [16] is a framework for
inference-based applications featuring an adaptive runtime
model in which application modules can migrate, but this
migration is based on policies embedded within the system
itself that are not exposed to the application developer. The
role of local resources in Beam is not clear. Berkeley’s Global
Data Plane project [18] seeks to incorporate local resources
into IoT, but serves as a data storage substrate rather than
an application development platform.

Mobile-Cloud Offloading. Our goal of adaptive execution
for IoT apps is similar to work that has been done in offload-
ing computations from mobile devices to the cloud, such as
MAUI [6]. These systems dynamically migrate computation
between mobile phones and a cloud backend to improve per-
formance and conserve battery life. Sapphire [19] expresses
mobile-cloud applications as collections of objects represent-
ing data and computation, separating application logic from
policies on how the application is executed like our system,
but it is not concerned with the Internet of Things and its
associated challenges.

Distributed Systems and Service Architectures. Many
distributed systems have been built around the idea of adap-

tively migrating data and computation, such as Emerald [13].
The intelligent placement and migration of computation
and has also been well studied in the data center literature,
e.g. [10], but the Internet of Things involves a much more
varied collection of resources, both in terms of hardware
capabilities and the desired access control and management
policies. Moreover, we are proposing a system that enables
more interesting forms of application composition than what
is typically seen in the data center. Other systems, such as
Ninja [12] and Apache River (Jini) [1], have featured the kind
of service-oriented architecture we envision for the Internet of
Things, and their ideas merit reconsideration since the advent
of smart phones, the cloud, and IoT. Finally, our emphasis on
local resources is similar to the notions of cloudlets [15], and
our system can be viewed as a means of managing cloudlet
resources while also orchestrating application execution on
top of them.

Security and Privacy. Much work has been done to facili-
tate the development of secure applications that leverage the
cloud. One prominent example is CryptDB [14], a database
that uses homomorphic encryption to perform queries di-
rectly over encrypted data, meaning data in the cloud never
needs to be decrypted. Unfortunately, CryptDB is still too
slow to support general application workloads. We intend
to take a different approach by ensuring that sensitive data
never reaches the cloud in the first place. Jeeves [17] is a
language that allows programmers to control the visibility of
sensitive data in different application components. Our pro-
posed system also includes the notion of developer-specified
policies, but we focus instead on where to execute application
components within a distributed system.

3. MOTIVATION
We motivate our system through a case study object recogni-
tion application, depicted in Figure 1. Imagine an augmented
reality application intended to support the Internet of Things
in which a user can catalog and learn about the smart devices
located in a given space by capturing images of these devices
on their phone. The object recognition process can be viewed
as a pipeline of stages: the application starts with a source
image, subsamples the image to reduce its size, selects regions
of the image that may potentially contain objects, and then
analyzes these regions using a precomputed object model to
identify any objects within.

Such an object recognition application has a number of
requirements. First, the latency of the recognition process
must be low because it is incorporated into the application’s
interaction with the user, which means response times must
be small. Smartphone cameras actually produce images of
much higher resolution than what is required for object
recognition [8]. However, the collection of images needed
to serve as training data for a practical object model is
hundreds of gigabytes in size [4], and the model itself requires
tens of hours to be computed, even when using high-end
GPUs [11]. We may also want to periodically recompute this
model as new data becomes available in order to increase its
accuracy. Finally, there are privacy concerns regarding the
user’s images. For example, the user may not want photos of
their home to be analyzed in the cloud.

We group the devices comprising the Internet of Things into
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Figure 1: The components of an object recognition application and their relationships.

three tiers. First, there are edge devices consisting of sensors,
actuators, embedded microcontroller platforms, and mobile
phones. These devices frequently operate with a limited
supply of energy, computing power, and network bandwidth,
although smartphones now feature reasonably powerful CPUs.
The cloud, which forms the opposite end of the spectrum,
features practically limitless compute and storage resources
but also raises privacy concerns as well as issues of potentially
high latency and inconsistent bandwidth. In between these
two extremes lies a tier of personal workstations and building
servers, which we refer to as the “stratus” layer. This tier
has been largely overlooked despite the fact that it offers
ample computing resources with low and consistent network
latencies in a more trustworthy environment than the cloud.

A new runtime system architecture is needed to enable de-
velopers to effectively incorporate all three of these tiers
into their IoT applications. Abstractions over heterogeneous
hardware must strike the right balance between hiding un-
necessary details while exposing the specific capabilities of
specific hardware systems. Moreover, the Internet of Things
is fundamentally a distributed system rather than a set of
client-server interactions, which means we must move beyond
the traditional computation offloading techniques. Finally,
the IoT setting is characterized by the mobility of both users
and devices, which motivates a system that allows applica-
tions to adaptively change as they execute. In the remainder
of this section, we further motivate our vision and present
preliminary microbenchmarks from a prototype object recog-
nition application to examine the potential role of each of
these tiers in an IoT runtime system. These microbenchmarks
were collected using an LG Mini 2 smartphone running An-
droid 4.4.2, a local server with an Intel Xeon E5-2690 CPU
and 64 GB of RAM, and an m4.xlarge instance running on
Amazon EC2.

3.1 The Stratus Tier
At the heart of our vision is the belief that local resources,
like personal workstations, proxies, and gateways, will play
an essential role in IoT applications. We envision a system
that not only incorporates local resources into its operation
but also distributes computation across this tier. Such an
approach would be useful to balance load across different
machines and to run computation close to the associated data.

Moreover, local resources come with a notion of ownership.
A user may want to devote resources they control only to
applications running on their behalf. Conversely, a user may
want computations to run only on machines they trust.

Several of the requirements for object recognition described
above can be addressed through effective use of the stratus
tier. To achieve low latency and thus fast response times for
user interaction, we can perform image analysis against the
object model at a local server. Figure 2a shows how response
time changes when we move this phase of the recognition
process from the cloud to a nearby server. We can see that
there is a noticeable difference in latency between the cloud
and stratus servers. A second important requirement for
our case study is the protection of user privacy by keeping
sensitive information off of the cloud, and we can once again
use the local tier to address this need. By analyzing images
locally, there is no need to send them to the cloud. A potential
counterargument to this approach is that images can be
encrypted when stored in the cloud, but they must then
be decrypted to be processed. Even if we were to use fully
homomorphic encryption to operate directly on the encrypted
images, this would increase the computational cost by several
orders of magnitude [14].

3.2 Edge Processing
In order to incorporate an edge device into a distributed
system, the device will require a driver, possibly running on a
proxy, to serve as a layer of abstraction over the raw hardware.
This implies that distributed edge computation will be an
inevitable aspect of any IoT runtime system. We believe that
as edge devices become more capable, we can move beyond
drivers and begin tasking them with a non-trivial portion
of an application’s computational load. This approach is
especially advantageous when there is a tradeoff between
computation and communication. Edge devices often feature
capable CPUs but are still inherently limited by poor or
intermittent network connectivity. In our object recognition
case study, this motivates subsampling a captured image on
the user’s end device rather than at a local or cloud-based
server. Subsampling trades increased computation at the
device for reduced data transfer over the network. Figure
2b shows that subsampling actually reduces the impact of
moving from a local server to a cloud server, demonstrating
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Figure 2: Image subsampling and network transfer time for object recognition hosted at the cloud vs. a local server. We ignore
server processing time because of differences in hardware configuration.

an interesting tradeoff in the placement of computation.

3.3 The Role of the Cloud
Although we have advocated for an increased use of local
and edge resources in IoT applications, the cloud still has
an important part to play. It serves as an excellent setting
for compute-intensive tasks and as a repository for sharing
data that is not sensitive in nature. In our object recognition
application, the object model requires a large body of non-
sensitive training data and is expensive to compute, but it
only needs to be recomputed periodically. We can therefore
avoid storing the training data in the edge or local tiers, where
space may be in relatively short supply, and instead keep this
information in the cloud. Because model (re)computation is
not directly involved in the application’s interaction loop, we
can perform this asynchronously in the cloud and propagate
the object model to the local tier as necessary.

4. SYSTEM DESIGN
We propose a distributed runtime system to facilitate IoT
application development, deployment, and management. The
discussion of Section 3 informs the design of our system in
several ways. First, the system should include resources from
all three tiers within the Internet of Things: edge, stratus, and
cloud. Application components should be distributed across
and within these tiers both to improve performance and to
protect sensitive information. As environmental conditions
such as the load on a machine or the available network band-
width change, the system should respond by re-evaluating
its placement decisions and possibly migrating application
components. However, the developer must be able to express
constraints on placement and migration to restrict flows
of sensitive information, while stratus and edge resources
must be associated with access control policies to prevent
unauthorized use of infrastructure.

The Internet of Things, as it stands today, forces develop-
ers to reason at a low level about individual devices and
nodes, and it suffers from the lack of an analogue to the
libraries that have become so indispensable in the develop-
ment of traditional applications. Therefore, we propose an
IoT system that focuses on services rather than devices, in
the vein of a microservice architecture. We define a service
as a long-running software module that performs a specific

function. It can maintain internal state and asynchronously
exchange messages with other services, similar to the actor
model of computation. Services act as the building blocks of
applications and may range in complexity from a simple de-
vice driver to a sophisticated data analysis tool. Our system
seeks to foster the sharing of services between developers
by allowing applications to incorporate externally-defined
services as utilities.

4.1 Service Execution
Figure 3 shows the collection of system components that sup-
port execution of user-defined services across the edge, stra-
tus, and cloud tiers. These components are nothing more than
special services with additional privileges and constraints
on their execution. All services are expected to advertise
themselves so they can be discovered by other services and
then composed to form full applications. Our system relies
on a discovery service that maintains a directory mapping a
service’s name and metadata to an address where the service
can be reached. This service can then be queried to learn
about other, new services. The discovery protocol relies on
soft state, meaning services must periodically renew their ad-
vertisements to remain visible in the directory. Additionally,
no special recovery procedure is necessary when restarting a
discovery service in the event of a failure.

As shown in Figure 3, each node in the system runs a“resource
point”service that allocates and manages the node’s resources
so that it can serve as an endpoint for user-defined services.
A “resource point” service is tasked with monitoring the
load on the underlying hardware and performing admission
control accordingly. It also includes hardware information as
metadata in its advertisement messages to make this available
to other services.

Finally, there is the need to intelligently match user services
to resource points for execution. This role is filled by a dedi-
cated scheduling service, which requires special algorithms
to perform initial placement and adaptively migrate services
when environmental conditions change. We expect that each
administrative domain of local and edge nodes will run its
own scheduling service to control those nodes. This situation
is similar to the problem of scheduling tasks to nodes in the
data center but involves new challenges. One of the most
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Figure 3: A deployment of our proposed runtime system.
Each node runs a resource point service to execute user
services. Special discovery and scheduling services run in the
local tier. Some edge devices may require proxies to host
their drivers.

important challenges is user and device mobility. When a
user moves to a new location, it is logical to migrate their
supporting applications as well. This can help maintain con-
sistent application performance and ensures that a user can
only consume stratus resources in the surrounding area.

4.2 Programming Framework
Not only do IoT developers need a cohesive runtime execu-
tion platform, they also need a programming framework that
facilitates the rapid development of applications for such a
platform. As discussed above, our system expects developers
to express their applications as compositions of simple and
modular services that communicate with each other via asyn-
chronous message passing. A service will therefore consist
primarily of internal state and a set of user-defined callback
functions that handle events such as the arrival of a new
message and migration of the service to a new node. Along
with this programming model, the developer’s task can be
further eased by a useful set of libraries and primitives. Note,
for example, that our programming model is agnostic to the
underlying transport technology. Hence, the system can han-
dle the exchange of messages among services internally and is
free to use HTTP, a publish-subscribe network, or some other
protocol for communication. Similarly, service advertisement
can be handled automatically, with the developer free to
specify any additional information to include, and discovery
by a service’s name or metadata is treated as a fundamental
system primitive.

4.3 Deployment and Execution Configuration
Once a developer has implemented the services comprising
their application, they need to deploy it and specify how the
application may be executed on the underlying infrastruc-
ture. To deploy an application, the developer must contact
the scheduling service that controls the relevant stratus and
edge resources, meaning they must know its address in ad-
vance. Then, the code for each service is submitted to the
scheduler. The scheduler intelligently assigns each service
to a resource point. The developer may specify how their
application is executed by writing a configuration file that is
paired with an application’s source code. An application’s
configuration should identify any external services required
by the application. Additionally, the developer should specify
the interactions between all services involved in the appli-
cation, depicted as arrows in Figure 1. The configuration
file is where a developer specifies two important classes of
constraints: (1) where their services are allowed to run and
(2) who is allowed to use these services. To protect sensitive
data, some services may be allowed to run only in the edge
or stratus tiers. To conserve energy, some services may be
excluded from running on edge devices. We might also imag-
ine constraints that involve specific resource points, such as
a developer requiring that their service run only on their
personal workstation, or a case where a service acts as an ab-
straction for a particular device and hence is only allowed to
run on that device. One of the critical features of this system,
then, is to adhere to these constraints in its management of
services, allowing the developer to treat them as invariants.

5. DISCUSSION
5.1 Placement and Migration
Application components must be matched to resource points
for initial execution and migrated to adapt to environmental
changes. How should initial placement decisions be made?
One potential approach is to attempt to co-locate computa-
tion with its requisite data whenever possible, but how do
we know of the relationship between computation and data
prior to execution? Should the programmer be expected to
enumerate these relationships as part of their application’s
configuration? Migration brings up similar questions. How
should we decide when migration is warranted? What factors
into the selection of a destination for migration? Further-
more, migration techniques form a spectrum ranging from
immediately transferring all state from source to destina-
tion to only transferring data to the destination on demand,
when it is actually needed. What points on this spectrum
are appropriate for a distributed IoT system like our own?

5.2 Discovery and Scheduling
We have proposed that each local administrative domain
contain its own instances of the discovery and scheduling
services, but we then must deal with applications that span
multiple local domains as well as users and devices that
move from one local domain to another. How do we organize
the discovery and scheduling services and structure their
interactions? For example, how do we handle the transfer of
responsibilities from one scheduler to another that accompa-
nies the migration of an application component across local
domains? Prior discovery systems have relied on the concept
of hierarchy, often based on geographic location [7]. To what
extent is this appropriate for our system?



5.3 Security
We mentioned the notion of access control for services above,
but how do we effectively enforce access control policies?
One could imagine enforcement occurring at several points
in the system architecture. This could be done at the dis-
covery level by restricting the visibility of services only to
authorized clients, at the transport level by permitting the
exchange of messages only between authorized parties, or at
the service level by requiring the services themselves to reject
unauthorized messages. What are the benefits and drawbacks
of each of these choices in the context of IoT application
development, deployment, and execution?

5.4 Resource Monitoring and Isolation
How can we monitor computation load and network traffic
effectively and with minimal overhead? Once we have this
information, how can we leverage it to perform admission
control for placement and migration? What tools can we
use to attribute resource consumption to specific services
that could be deployed in any of the three tiers we have
described? Similarly, how do we maintain isolation between
services on a shared resource point, and how do we protect
the integrity of a host when it is running untrusted code in
the form of user services? This has traditionally been the
role of virtual machines in the cloud and, more recently, the
role of lightweight containers such as Docker [3], but even
containers are too cumbersome to deploy on embedded edge
devices.

6. CONCLUSION
We have advocated for a new distributed runtime system to
facilitate rapid application development for the Internet of
Things, informed by the belief that an intermediate tier of
resources lying between edge devices and the cloud, is an
integral yet underutilized element of the IoT landscape. Our
proposed system includes a suite of services to orchestrate
the execution of IoT applications, a programming model to
simplify the construction of application components, and
a configuration engine that allows developers to stipulate
where their application’s components may run as well as who
can access them. We believe that this would represent an
important step forward in enabling developers to unleash
the potential of the Internet of Things. Our system aims not
only to help developers more easily construct applications
but also to serve as a platform that offers precise and easily
controlled execution semantics for distributed IoT software.
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