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ABSTRACT
While the use of autograders for code correctness is
widespread, less e↵ort has focused on automating feed-
back for good programming style: the tasteful use of
language features and idioms to produce code that is
not only correct, but also concise, elegant, and revealing
of design intent. We present a system that can provide
real-time actionable code style feedback to students in
large introductory computer science classes. We demon-
strate that in a randomized controlled trial, 70% of stu-
dents using our system achieved the best style solution
to a coding problem in less than an hour, while only
13% of students in the control group achieved the same.
Students using our system also showed a statistically-
significant greater improvement in code style than stu-
dents in the control group. We also present experiments
to demonstrate the e�cacy and relevance of each of the
di↵erent types of hints generated by our system.

Author Keywords
coding style; autograding; automatic hint generation;
intelligent tutoring systems; MOOCs

ACM Classification Keywords
K.3.2 [Computer and Information Science Education]:
Computer science education.

MOTIVATION AND OVERVIEW
Rapid feedback is integral to mastery learning. Prior
work has shown that students learn best through the
process of repeatedly submitting, receiving immediate
actionable feedback and resubmitting [1, 9, 13]. Auto-
matic graders (autograders) provide this capability and
are thus used extensively in programming courses, es-
pecially Massive Open Online Courses (MOOCs). How-
ever, while the use and development of autograders for
code correctness is widespread, less e↵ort has focused on
automating feedback for good programming style [17].

Parts of this work have been published in the proceedings of

L@S 2015, CSCW 2016, and ITS 2016.

Software with poor code quality has been shown to
require significantly higher maintenance, a sobering
fact considering that maintenance dominates software
cost [5]; good coding style therefore has significant impli-
cations for the software industry. By providing students
with rapid and actionable style feedback, intelligent tu-
toring systems can help future software developers de-
velop good coding style habits early.

Most existing code style tools check code against a fixed
set of style rules that do not depend on the specific code
being analyzed. Checkers such as lint(1) and pylint

and existing autograders such as rag [6] are unable to
account for subtleties such as whether using a di↵erent
data structure, language construct or library call might
be stylistically better, and therefore cannot provide ac-
tionable feedback on how to improve style [6, 11]. As
a result, providing actionable style feedback usually re-
quires instructors to manually read student code, which
can be resource-prohibitive in large courses. Our uni-
versity’s rigorous introductory computer science course
relies on over 40 teaching assistants to manually grade
over a thousand code submissions per assignment. Given
scarce TA resources, style is lightly graded on a coarse-
grained scale based on a “style guide” given to students.
Automating style grading would save significant instruc-
tor time and could provide more tailored feedback to
support mastery learning.

Our approach to providing such guidance automatically
is to (1) identify similarities among student code submis-
sions for a short assignment (a few lines to tens of lines
of code), (2) analyze these similarities using clustering
techniques and Abstract Syntax Tree (AST) comparison,
and (3) use them to deliver a combination of instructor-
authored guidance and auto-generated syntactic hints,
such that the guidance provided on a given submission
is based on properties of another student’s structurally
similar but stylistically superior submission.

Specifically, we make the following contributions:

1. Two techniques for analyzing similarities in student
code for short assignments: one based on unsupervised
classification and the other based on di↵erencing of the
ASTs of student submissions.



2. A workflow based on the above techniques that en-
ables instructors to e�ciently provide style feedback
for a large body of submissions to the same assign-
ment, with e↵ort proportional to the number of dis-
tinct approaches to solving the problem, not the num-
ber of students.

3. An unsupervised, automated, student-facing work-
flow that provides students with a combination
of instructor-authored guidance and automatically-
generated guidance based on similar submissions by
other students.

4. A randomized controlled trial experiment demonstrat-
ing the e�cacy of our system. Students in the treat-
ment group showed a statistically-significantly greater
improvement in style than students in the control
group.

We believe these contributions constitute a novel
approach to autograding.

RELATED WORK
Most work on hint generation has focused on code cor-
rectness. Lazar and Bratko [14] construct hints for Pro-
log programs in a generative manner based on specific
editing operations that transform the program code.
Rivers and Koedinger [19] propose a method for au-
tomatic code correctness feedback by using AST dif-
ferencing to identify a student’s state in a solution
space and showing the student another student’s slightly-
better program as feedback, developing various tech-
niques to reduce the vast solution space and make the
hint-generation problem tractable. In contrast, we as-
sume students start with a correct but possibly ugly so-
lution, which they may have produced on their own or
with the help of such a system and/or verified against a
test-based autograder [6].

Whereas early work on providing automated feedback
was based on (often manually-constructed) “bug li-
braries,” as large corpora of code have become avail-
able (due the increasing class sizes and the availabil-
ity of cloud services such as GitHub), guidance systems
have begun generating feedback by comparing student
code to an existing corpus. Codex [2] discovers com-
mon language idioms (integral to good style) and de-
tects patterns in the student’s code that might bene-
fit from applying them. Codewebs [18] tries to identify
semantically-equivalent code blocks in di↵erent students’
submissions, to which the same instructor feedback can
be applied. Both approaches use abstract syntax tree
(AST) di↵erencing to compare code exemplars. We use
similar techniques to identify correct student submis-
sions that are similar but have salient stylistic di↵er-
ences, and use these submissions to generate style feed-
back.

We also draw upon recent work on using machine learn-
ing techniques to increase instructor leverage. Huang et

al. [10] found that clustering ASTs of student submis-
sions produces clusters that embody similar strategies
to solving the problem and could potentially receive the
same feedback. Glassman et al. [8] hierarchically cluster
student submissions, based first on student strategy and
then on implementation. They identify the features re-
quired for e↵ective clustering. We draw upon their work
to cluster existing student submissions to allow instruc-
tors to provide predetermined style feedback for students
solving the problem using a particular strategy.

APPROACH
We and others have observed that given a large enough
corpus of submissions to a given programming problem,
there exists a range of stylistic mastery, from näıve to ex-
pert [17]. Figure 1 shows three correct submissions from
students with pseudonyms Alice, Bob, and Charlie, who
provide three correct solutions to the same simple prob-
lem: given a list of words, return a list of groups such
that all words in each group are anagrams of each other.
As the figure shows, correct solutions vary in length (and
therefore complexity) by nearly a factor of ten. While
we could simply show Alice’s solution to Charlie, many
conceptual gaps separate her concise solution from his
30-line solution. In contrast, guiding students to in-
crementally improve and discover the best solution has
been shown to be more conducive to mastery learning
by reducing cognitive load, especially for struggling stu-
dents [21]. Thus, we seek a sequence of hints that will
guide Charlie to incrementally transform his solution to
one like Alice’s.

In order to provide style-improvement feedback based on
di↵erences between student submissions, we need a way
to measure both style goodness and di↵erences. The
software engineering literature suggests a variety of met-
rics of stylistic quality [12]. We have found empirically
that the ABC score, which tallies a weighted count of
assignments, branches, and conditional statements in a
block of code [3], is a good proxy for stylistic quality
when used on short (a few lines to a few tens of lines)
code fragments. It relies on static analysis only, and is
easy to implement and fast to compute. In general, a
lower score is better, but it is an ordinal metric, i.e. cut-
ting the ABC score by half does not necessarily imply
that the code has doubled in stylistic quality. That said,
the choice of algorithm used to compute the quality score
is an input to our workflow, and any metric that obeys
the triangle inequality can be used.

The edit distance between the abstract syntax trees
(ASTs) is a common measure of similarity between two
code fragments [24]. To emphasize the importance of
higher-level structure (the “problem solving strategy”),
we use the normalized tree edit distance (n-TED) of the
AST, which weights nodes closer to the root of the AST
more heavily, thus preventing minor syntactic di↵erences
at the leaves from a↵ecting the similarity score of pro-
grams that are structurally similar, but di↵er in low-level
details [23].



d e f combine anagrams(words) # A l i c e

words . group by{|w| w. chars . downcase . sort }. values

e n d

d e f combine anagrams(words) # B o b

dict = {}
words . each do |word |

l e t t e r s = word . downcase . each char . sort

if dict . has key?( l e t t e r s ) t h e n

dict [ l e t t e r s ] += [word ]

e l s e

dict [ l e t t e r s ] = [word ]

e n d

e n d

r e t u r n dict . values

e n d

d e f combine anagrams(words) # C h a r l i e

rtn = Array .new

words . each do |word |
p(word)

wordDowncase = word . downcase

l e t t e r s = wordDowncase . sp l i t (””)

exist = f a l s e

rtn . each do | rtnAry |
r l = rtnAry [ 0 ] . downcase . sp l i t (””)

if ( r l . length==le t t e r s . length ) t h e n

p( r l )

r l . sort !

l e t t e r s . sort !

match = t r u e

i = 0

r l . each do | r l i |
p((( r l i + ” ”) + le t t e r s [ i ] ) )

match=f a l s e if ( r l i != l e t t e r s [ i ] )

i = ( i + 1)

e n d

if (match == t r u e ) t h e n

( rtnAry << word)

exist = t r u e

e n d

e n d

e n d

( rtn << [word ] ) if ( n o t exist )

e n d

r e t u r n rtn

e n d

Figure 1: A 3-line correct solution by Alice, 12-line correct
solution by Bob, and 30 line correct solution by Charlie to the

same problem, illustrating the range of stylistic mastery com-
monly found in the type of assignments used in introductory
classes.

INSTRUCTOR AND STUDENT WORKFLOW
Our workflow starts with a corpus of existing submis-
sions to a programming problem, which may include an
instructor-authored canonical solution. This corpus may
consist of submissions from a previous o↵ering of the
course, or it can be bootstrapped using submissions from
a subset of the students in a large-enrollment course.
We perform an o✏ine computation to generate the AST
and quality score for every submission, and the pairwise
similarity between all pairs of submissions. The submis-
sion(s) with the best style score(s) are judged to be the
best possible style exemplars for this problem. The re-
sult of this step is an undirected weighted complete graph
in which each submission is a vertex and the tree edit dis-
tance between submissions are the weights on the edges.

We then cluster the student submissions to aggregate
groups of submissions that use the same problem-solving
strategy. The instructor then annotates each cluster
with three items.

The first item is a label: good, average, or weak. A good

cluster has solutions close to or identical to the best so-
lution. Average clusters contain solutions that solve the
problem using a mundane approach and can thus still
improve on both approach and language idioms. Weak

clusters contain solutions that generally exhibit lack of
knowledge of one or more important language concepts
or constructs that are essential to solving the problem
with excellent style. There is clearly instructor subjec-
tivity in applying these labels; to aid the instructor, we
display an interactive 2D visualization, as Fig. 2 shows.

Figure 2: t-SNE [22] 2D visualization of clustering 425 sub-
missions. Each dot represents a submission, colors represent
clusters, and hovering over a dot shows the actual code asso-
ciated with that submission.

The second item is an approach hint for the cluster. Ap-
proach hints aim to correct a misunderstanding or lack of
awareness of the best way to approach the problem; they
illustrate the high-level reasoning of how to approach the
problem from a new direction while still leaving the work
of developing and implementing a more elegant solution
to student. That is, this is the hint that the instructor
would give a student whose submission was similar to
the cluster members.

The third item is an exemplar the instructor chooses
from another cluster that they believe to represent a bet-
ter approach. In keeping with our philosophy of incre-
mental improvement, we ask the instructor not to simply
select an exemplar from the “best” cluster as part of the
approach hints.

In addition to the instructor-authored annotations on
each cluster, our system automatically produces two
other types of guidance. Code Skeletons are redacted
versions of other students’ solutions that demonstrate
the key control flows and structure of a possible solu-
tion, while obfuscating variable names and function call
names. Syntactic hints guide the student to add/remove
specific structures (loops, conditionals, special language
constructs, calls to common built-in or library functions)



Figure 3: System workflow summary.

in order to improve style, based on the presence (ab-
sence) of those features in submissions with better style.

Students use these hints to improve their solutions and
resubmit. Upon submitting, they are instantaneously
given style feedback. The iterative process of using the
feedback and resubmitting continues until the student
meets some stopping criteria (style threshold, time limit)
determined by the instructor.

CLUSTERING METHODOLOGY

Choice of Algorithm
The goal of our clustering module is to generate clusters
such that a human instructor can easily “write down a
label” for each cluster that describes the strategy used
by submissions in that cluster after viewing only a small
subset of submissions for each cluster. We tested sev-
eral clustering algorithms (k-Means, weighted k-Means,
spectral clustering, OPTICS, DBSCAN) on a number of
Ruby and Python assignment datasets from computer
science classes at UC Berkeley. We measured cluster-
ing performance using the silhouette metric [20], a com-
monly used measure of cluster quality. We observed that
density-based clustering algorithms yield the best clus-
ters [23]. This is intuitive—stylistically-better solutions
tend to be densely clustered, whereas stylistically weak
solutions tend to form sparse clusters (informally, there
are many more varied distinct ways to be stylistically
“wrong” but only a few ways to be stylistically “right”
for a short assignment). This observation informed our
decision to use the OPTICS density-based algorithm as
our clustering algorithm.

Similarity Metric
We use the normalized tree edit distance (n-TED) of the
ASTs as our similarity metric for clustering. Cognizant
of the top-down structure characteristic of programming,
n-TED emphasizes the importance of high-level program
structure. It assigns heavier weights to nodes higher

(closer to the root) in the AST. By doing so, it pre-
vents minor di↵erences in syntax (i.e. code at the leaves
of the tree) from a↵ecting the similarity score of code
fragments that are structurally similar but di↵er in low-
level implementation. We use a dynamic-programming
algorithm by Zhang and Shasha [24] to compute n-TED.

We found that n-TED outperforms standard TED when
used as a similarity metric for clustering. Figure 5 in-
cludes reachability plots for an OPTICS clustering of
student solutions to a programming assignment typical
of those found in software engineering courses. The
reachability plots in Figure 5 show that the clusters
formed using n-TED are much denser, indicated by the
deeper “valley-like” structures in (a). The “valleys” re-
sult from points belonging strongly to one cluster (thus
having a low reachability distance to their nearest neigh-
bor). TED also has many more outlier points – points
that do not fit into any cluster (indicated in yellow). Fig-
ure 5 shows that n-TED led to more stable clusters and
fewer outliers than TED.

(a) n-TED

(b) TED

Figure 5: Reachability plots for TED and n-TED for a Ruby
programming assignment with 425 submissions clustered us-
ing OPTICS. Colors represent clusters. Yellow represents
outliers.



Figure 4: Example of a chain and the hints generated for such a chain.

CHAIN-BUILDING
A key component of our hint-generation system is chain-
building [17], a process that traverses the complete graph
generated in the preparation step to find a path from a
given submission to one of the “best possible” submis-
sions. The path is subject to the constraints that for
each edge A ! B, the n-TED structural di↵erence be-
tween A and B does not exceed a set threshold, and B’s
style score is better than A’s by a set threshold.

Syntactic hints are generated by analyzing the path
to determine the most important syntactic hints corre-
sponding to structural features present or absent in later
links in the chain. The feature vectors used in this analy-
sis are composed of binary values indicating the presence
or absence of specific language features such as built-in
functions, language idioms, and control flow constructs
in each language; we have constructed feature vectors for
Ruby, Java, and Python.

We define the importance of a syntactic hint as the like-
lihood that it would call attention to the most significant
stylistic deficiency in the student’s submission. Syntac-
tic hints correspond to features in the above-mentioned
feature vectors. We frame the problem of determining
which features to use as hints as a classification problem
solved using a perceptron [16].

We construct an entire chain from the student’s submis-
sion to one of the best-style solutions, instead of sim-
ply looking at submissions similar to the student’s but
slightly better. By constructing an entire chain we can
identify features that not only appear in a better solu-
tion but also persist – i.e. persistently appear in multiple
submissions later in the chain. These features are more
likely to be relevant to solving a particular problem with
good style than those ones that appear only in the imme-
diate next submission in the chain. Using these features
allows the perceptron to learn to prioritize hints that are

based on features that don’t appear in the student’s sub-
mission but persistently appear in solutions later in the
chain.

Figure 4 is an example of a small chain built by our sys-
tem for a programming assignment that involves find-
ing the number of common letters between two words in
Python. We can see how the hints given to Bob—to use
a call to set() and len() and to use a binary operator—
have been derived from the next solution along the chain
– Alice’s.

Our instructor interface allows instructors to view chains
starting from any submission in the graph. The instruc-
tor can provide feedback about which hints are not help-
ful. The system learns from this feedback by adjusting
the perceptron weights, which in turn adjusts the hints.

EXPERIMENT 1: DESIGN AND SETUP
We performed an intervention experiment using n = 80
compensated student participants and compensated
teaching assistant participants to evaluate the e�cacy
of our system under realistic conditions.1 The recruited
participants were from UC Berkeley’s large-enrollment
introductory computer science course, CS 61A, which
introduces a range of programming concepts, primarily
using the Python language. Participants were recruited
by advertising in the course discussion forum and were
paid US$15 for one hour of their time.

The primary hypothesis is as follows: Compared with
students who are given only a set of “good style” guide-
lines, students receiving hints via our automated work-
flow will improve their code quality more in a given pe-
riod of time.

We had a corpus of 265 student submissions of this as-
signment from a previous o↵ering of the course. Prior

1IRB Protocol number: 2015-10-8003



to working with the study participants, we ran our clus-
tering algorithm on this corpus and labeled each gener-
ated cluster as good, average, or weak; we annotated
average and weak clusters with approach hints, and
picked exemplars for the weak clusters. To help validate
that the clusters do indeed capture common approaches,
we recruited two TAs from the same course and asked
each to write down in their own words a description of
the overall approach represented by each cluster’s mem-
bers, and two additional TAs to judge whether the de-
scriptions provided by the first two TAs were similar
on a five-point scale. We report a square weighted Co-
hen’s kappa of 0.71 and an average similarity rating of
3.85 (�=0.91). These statistics indicate that di↵erent in-
structors are able to recognize the approaches captured
by the clusters.

The recruited students were randomly placed into ei-
ther the treatment group (50 students) or control group
(30 students). Both groups were given the same Python
programming assignment, based on a previous o↵ering
of the course but absent from the current o↵ering. All
participants were provided with the “style guide” au-
thored by the course sta↵ and were allowed access to
the Internet to look up documentation. All participants
were shown the same problem and instructed to submit
a solution; participants were allowed as much time as
they wanted (within the one-hour time limit of the ex-
periment) to do so. Upon submission, participant solu-
tions were automatically evaluated against a set of test
cases for correctness. Upon submitting a correct solu-
tion, the participant was immediately shown the com-
puted “style score” for their solution as well as the best
possible style score for this problem (2.41 based on the
corpus of previous submissions—recall that lower ABC
scores are better), and asked to revise their submission
to work towards the best score. The control group was
given only the style guide (reflecting current practice in
the course), whereas the treatment group received spe-
cific automatically-generated feedback from our system.

In particular, each submission from a treatment-group
student was first analyzed using k-nearest neighbors to
determine which cluster it would belong to. If it be-
longed to a good cluster, the participant was shown only
a syntactic hint based on building a chain from his sub-
mission to the best submission. If it belonged to an
average cluster, the participant was shown the instruc-
tor’s approach hint for that cluster, and a syntactic hint.
If it belonged to a weak cluster, the participant was
shown the instructor’s approach hint for that cluster,
and the code skeleton of the instructor-chosen exem-
plar for that cluster. Code skeletons are automatically
constructed using a regular expression that redacts vari-
ables and function call names while retaining control flow
structures.

All participants were asked to repeatedly revise their so-
lution based on feedback until they achieved the best
possible quality score or exceeded one hour.

EXPERIMENT 1: RESULTS
We collected every correct submission made during the
experiment for both groups. Figure 6 shows each stu-
dent’s submission history and the type of feedback they
received. There was no significant di↵erence in the style
score of the initial submission between the two groups
(p = 0.21, Pearson’s �2 test). However, students in
the treatment group ended with significantly better style
scores (p = 0.007, Kruskal-Wallis H test), indicated in
the graph by the treatment group vertical lines end-
ing much lower than the control group ones (lower style
scores are better with the ABC metric we used).

Figures 6 and 7 show that the percentage of students
that achieved the best style solution (style score of 2.41)
is considerably greater in the treatment group than in
the control group. Moreover, as shown in Fig. 7, students
in the treatment group improved significantly more than
those in the control group over the one hour experiment
period. They also showed significantly more improve-
ment per submission attempt than control group.

To evaluate the e↵ectiveness of the di↵erent types of
guidance, we asked students to rate the helpfulness of
di↵erent types of hints on a scale of 1 (not at all help-
ful) to 4 (very helpful) immediately after completing the
study. We find that when students were given di↵er-
ent types of hints, neither type of hint was perceived
to be significantly more helpful than the others. Specif-
ically, students reported a mean perceived helpfulness
of 3.13 ± 0.79 for syntactic hints (S), 2.77 ± 0.89 for
approach hints (A), and 2.85 ± 0.82 for code skeletons
(C). We also studied the ratings distribution for the sub-
set of students who received some combination of hints
(A+ S or A+ C); at a 5% significance level (t-test), we
found no evidence of significant di↵erence between the
perceived helpfulness of di↵erent types of hints in either
group (p = 0.092 for A+ S, p = 0.760 for A+ C).

EXPERIMENT 2: DESIGN AND SETUP
We performed another intervention experiment using
n = 145 student participants to further evaluate the ef-
fectiveness of each of the di↵erent hint types generated
by our system by isolating their e↵ects.2 The interven-
tion was carried out as an optional extra-credit assign-
ment given to students in UC Berkeley’s software en-
gineering course (CS 169), which is primarily taught in
Ruby and is composed of third or fourth year undergrad-
uates who have substantial programming experience.

The goal of this experiment was to observe the e↵ects of
each of the di↵erent types of hints on students in each
of the di↵erent clusters and see if certain hint types are
more helpful to students in certain clusters. The hypoth-
esis is that skeleton and approach hints are more help-
ful to students in weak or average clusters since they
explain/demonstrate concepts while syntactic hints are
more useful to students in good clusters since they refer

2IRB Protocol number: 2015-10-8003



Figure 6: Each vertical line represents a student and each dot along the line is a submission. The color of line segments between
dots for the treatment group codifies the combination of hints the student received— blue: approach + code skeleton, yellow:
approach + syntactic, green: syntactic only.

Metric Treatment Control Statistically significant?
% of students achieving best solution 70% 13% Yes (p < 0.001)†

Mean improvement in style score 7.1± 4.9 4.1± 3.1 Yes (p = 0.007)‡

Mean improvement per attempt 1.8± 3.12 0.62± 1.9 Yes (p < 0.001)‡

Figure 7: Key results. †Fisher’s exact test ‡Kruskal-Wallis H test

to specific library calls and functions and can help stu-
dents in good clusters e↵ectively fine-tune their solution.

We selected a Ruby assignment for which we had a cor-
pus of 425 student submissions from a previous o↵ering
of the course. Prior to the study, we ran our clustering
algorithm and labeled each generated cluster as good,
average, or weak; we annotated all the clusters with
approach hints, and picked exemplars for all the clus-
ters.

All participants were shown the same problem and in-
structed to submit a solution. Upon submission, par-
ticipant solutions were automatically evaluated against
a set of test cases for correctness. Upon submitting a
correct solution, the participant was immediately shown
the computed “style score” for their solution, the best
possible style score for this problem (6.8 based on the
corpus of previous submissions—recall that lower ABC
scores are better), and style feedback. They were asked
to revise their submission using the provided feedback
to work towards the best score. Participants were told
that in order to get extra-credit they had to either (a)
achieve the best possible style score or (b) spend at least
45 minutes attempting to improve their style using the

system. There was no limit on how long students could
use the system for.

In particular, upon submitting for the first time, the
student was given either syntactic hints, approach hints,
or a code skeleton. The type of hint given was selected
randomly. For each submission thereafter, the student
was given the same type of hint as they received for their
first submission unless they had received approach hints
or a code skeleton and did not change clusters. In this
case they were given syntactic hints thereafter. This
was done in the interest of fairness since each cluster
has only one set of approach hints and one code skeleton
and giving the same hint repeatedly would not help the
student improve.

EXPERIMENT 2: RESULTS
After filtering out students who achieved the best solu-
tion on their first attempt (and thus did not receive any
hints), we split the remaining students into three groups:
(1) students who started out with syntactic hints, (2)
students who started out with approach hints, and (3)
students who started out with code skeletons. The per-
centage of students who started out with each type of
hint was roughly equal (35% syntactic hints, 32% ap-



proach hints, 33% code skeletons). The distribution of
flog scores for students in each of the three groups was
also roughly equal (21 ± 10 for syntactic hints, 20 ± 10
for approach hints, 21± 13 for code skeletons).

Figure 8: Improvement in style score between first and sec-
ond submission, separated by initial cluster and type of hint
received.

We analyzed the improvement in style score for students
in receiving each type of hint in the context of the clus-
ter in which they started out. Figure 8 shows the e↵ect
of the types of hints on students who started out in dif-
ferent clusters. The impact of approach hints and code
skeletons on students in average clusters appears to be
significantly greater than that of syntactic hints. This is
further supported by Figs. 9a, 9b. This is as expected
since average clusters contain solutions that solve the
problem using a mundane approach. Since they advise
students on how to approach the problem di↵erently, ap-
proach hints are e↵ective here. Code skeletons are sim-
ilarly e↵ective as they explicitly demonstrate a better
approach.

For students who started out in the good cluster, syntac-
tic hints and code skeletons were equally helpful. The
relatively low level of improvement shown in Fig. 8 is
because students in the good cluster were already close
to the best solution and were able to reach the best solu-
tion with minor changes. Approach hints were evidently
less e↵ective for helpful for students in the good cluster.
This is as expected, since students in the good cluster
are generally already employing the best strategy and
thus do not require approach advice.

For students who started out in the weak cluster, ap-
proach hints are more e↵ective that syntactic hints, as
can be seen in Fig. 8 and Figs. 9b, 9c. Again, this in
intuitive since syntactic hints are likely too specific or
fine-grained to significantly improve submissions in weak
clusters. It is interesting to see that approach hints were

also more e↵ective here than code skeletons. We spec-
ulate that this is because approach hints are able to fill
conceptual gaps by explicitly describing an approach,
while code skeletons have the additional challenge of
having to parse the code in the skeleton and attempt
to understand the approach it is trying to convey.

Overall, it is evident from this experiment that the type
of cluster that a student submission falls into should play
a role in determining the type of hint or combination of
hints given to the student. Syntactic hints are perceived
to be most e↵ective for submissions falling in a good
cluster, approach hints and code skeletons are best for
submissions in an average cluster, and approach hints
are most e↵ective for those in a weak cluster.

DISCUSSION, LIMITATIONS, ASSUMPTIONS
While we are encouraged by the positive results, we note
some caveats and assumptions. First, our chosen met-
ric of style (ABC score) favors a particular definition
of style consistent with our own opinions as instructors;
di↵erent metrics may better suit the needs of other ped-
agogy. Second, we rely on the instructor to write a good
approach hint for a cluster. Third, we assume that the
best style solution is represented somewhere in the ini-
tial corpus, though this is easily ensured by including
the instructor’s reference solution. Finally, although we
have tested the clustering and chain-building on other
languages and assignments with good results, the cur-
rent experiments were conducted on a single assignment
in one language.

A clear limitation of the current system is its ability to
examine only a single function at a time. A standard
style guideline is to improve a function by refactoring it
to use “helper” functions, but our system cannot cur-
rently handle such assignments. We would need to en-
hance our n-TED similarity metric to account for such
submissions.

Our system deliberately provides guidance consistent
with two observations about how professional program-
mers learn. The first is the importance of concrete
rather than abstract advice for improving coding style.
The “style guide” provided to students in the course we
worked with can be seen as a microcosm of the well-
developed paradigms in software engineering for improv-
ing code readability and maintainability, including refac-
toring and applying design patterns. Yet the canonical
reference books on those topics [7, 4] feature an abun-
dance of concrete examples to illustrate the abstract
points. We speculate that like the professional program-
mers who are the target audience of such books, students
learn better when a hint or technique is situated in a con-
crete example, as our hints and code skeletons try to do,
rather than stated as an abstract principle.

Second, programming requires active independent learn-
ing. Following good design principles requires knowledge
of language features or library functions of which stu-
dents may be unaware. Both syntactic auto-generated



(a) Code Skeletons

(b) Approach hints

(c) Syntactic hints

Figure 9: Impact of di↵erent types of hints on students who started out in di↵erent clusters. Specifically, shows the cluster that
students ended up in upon being given a particular type of hint, plotted with reference to their initial cluster.

hints and instructor-authored approach hints can point
students in the right direction by suggesting, for exam-
ple, “Consider using a call to set()”. Even if a code
skeleton is provided with the hint, the skeleton is suf-
ficiently redacted that the student cannot simply copy
and paste the code without modification. To improve
their code, the student has no choice but to go o↵ and
learn about the language feature or library function sug-
gested by the hint or code skeleton, possibly seeking the
help of peers or instructors in doing so.

Our system allows instructors and students to enjoy
these benefits with a level of instructor e↵ort propor-
tional to the number of clusters, not the number of stu-
dents. Our system currently focuses on giving feedback
for one function or method at a time; since good func-
tions should be short [15], there are only a finite number
of strategies that might be used for a function, so we ex-
pect the number of clusters to grow very slowly with the
number of students. Figure 10 shows that this is indeed
the case for seven such assignments we studied.

Number of students Number of Clusters

265 8
425 3
448 5
686 5
951 3
986 6

1607 4

Figure 10: Number of students who submitted a solution to
an assignment vs. number of clusters for that assignment for
seven comparable assignments.

CONCLUSION
Ultimately, while AutoStyle has its limitations (single
function, particular definition of style), experimental
deployments in large computer science courses at UC
Berkeley have shown the viability and e↵ectiveness of
such a system in classroom settings.

Experiment 1 demonstrated that AutoStyle is able to
e↵ectively help students improve the quality of their so-
lution to a problem. Students using AutoStyle improved
their code style more than those in the control group in a
given time frame and the improvement was statistically
significant. Moreover, 70% of students using it achieved
the best style solution to a coding problem in less than
an hour, while only 13% of students in the control group
achieved the same.

Experiment 2 demonstrated that all three types of feed-
back generated by AutoStyle are relevant and e↵ective,
but highlighted that certain types of feedback are more
e↵ective under certain circumstances. It showed that
syntactic hints are more e↵ective for students whose ini-
tial submissions fall in a good cluster, approach hints
and code skeletons are best for submissions falling in an
average cluster, and approach hints are most e↵ective for
those in a weak cluster.

Instructor e↵ort required to use AutoStyle is indepen-
dent of class size. Thus, integrating systems such
as AutoStyle into computer science courses, especially
MOOCs, can help future programmers and software de-
velopers understand the importance of good coding style
and develop good coding style habits early. Moreover, it
can serve as an e↵ective way to leverage scale to assist
not only students, but also instructors by summarizing
the variety of approaches used by students (through clus-
tering) and saving significant instructor time by elim-
inating the labor-intensive task of manually providing
code style feedback.

FUTURE WORK
We plan to field-test AutoStyle in one or more large-
enrollment campus courses as well as free Massive Open
Online Courses (MOOCs) that teach programming skills.
A key question is whether we can observe transfer of
improved code style skills after students interact with
our system; MOOCs would be an excellent testbed for a
randomized controlled experiment to measure transfer.



We have not focused on the relatively well-explored area
of generating hints for program correctness, in part be-
cause we have observed as instructors that students will
first work toward a correct program “by any means nec-
essary” (including with the support of automated hints
from an intelligent tutoring system), and only later think
about refactoring and improving its style (if they think
about these things at all). Indeed, this process is re-
flected in the “red–green–refactor” cycle [5] espoused by
the Test-First Development approach within the Agile
methodology: programmers are advised to start with
nonworking code that fails a correctness test (red), de-
bug it until it passes the correctness test (green), then
refactor the code and design to improve readability and
maintainability.
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