Data-efficient De novo Genome Assembly Algorithm :
Theory and Practice

Ka Kit Lam

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-43
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-43.html

May 9, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Data-efficient De novo Genome Assembly Algorithm : Theory and Practice
by
Ka Kit Lam
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Engineering — Electrical Engineering and Computer Sciences
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Satish Rao, Chair

Professor Lior Pachter
Professor Allan Sly

Spring 2016

Data-efficient De novo Genome Assembly Algorithm : Theory and Practice

Copyright 2016
by
Ka Kit Lam

Abstract

Data-efficient De novo Genome Assembly Algorithm : Theory and Practice
by
Ka Kit Lam
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Satish Rao, Chair

We study data-efficient and also practical de-novo genome assembly algorithm. Due to the
advancement in high-throughput sequencing, the cost of read data has gone down rapidly
in recent years. Thus, there is a growing need to do genome assembly in a cost effective
manner on a large scale. However, the state-of-the-art assemblers are not designed to be
data-efficient. This leads to wastage of read data, which translates to a significant monetary
loss for large scale sequencing projects. Moreover, as technology advances, the nature of
the read data also evolves. This makes the old assemblers insufficient for discovering all the
information behind the data. Therefore, there is a need to re-invent genome assemblers to
suit the growing demand.

In this dissertation, we address the data efficiency aspect of genome assembly as follows.

First, we show that even when there is noise in the reads, one can successfully recon-
struct the genomes with information requirements close to the noiseless fundamental limit.
We develop a new assembly algorithm, X-phased Multibridging, is designed based on a prob-
abilistic model of the genome. We show, through analysis that it performs well on the model,
and through simulation that it performs well on real genomes.

Second, we introduce FinisherSC, a repeat-aware and scalable tool for upgrading de-
novo haploid genome assembly using long and noisy reads. Experiments with real data
suggest that FinisherSC can provide longer and higher quality contigs than existing tools
while maintaining high concordance. Thus, FinisherSC achieves higher data efficiency than
state-of-the-art haploid genome assembly pipelines.

Third, we study whether post-processing metagenomic assemblies with the original in-
put long reads can result in quality improvement. Previous approaches have focused on
pre-processing reads and optimizing assemblers. We introduce BIGMAC, which takes an
alternative perspective to focus on the post-processing step. Using both the assembled con-
tigs and original long reads as input, BIGMAC first breaks the contigs at potentially mis-
assembled locations and subsequently scaffolds contigs. Our experiments on metagenomes
assembled from long reads show that BIGMAC can improve assembly quality by reducing

the number of mis-assemblies while maintaining/increasing N50 and N75. Thus, BIGMAC
achieves higher data efficiency than state-of-the-art metagenomic assembly pipelines.

Moreover, we also discuss some theoretical work regarding genome assembly in terms of
data, time and space efficiency; and a promising post-processing tool POSTME in improving
metagenomic assembly using both short and long reads.

Blessed to be a blessing

Contents

Contents
1 Introduction

2 Near-optimal assembly for shotgun sequencing with noisy reads

—

2.1 Background
2.2 Results
2.3 Methods
2.4 Shotgun sequencing model and problem formulation
2.5 Repeats structure and their relationship to the information requirement for

successful reconstruction L
2.6 Model for genome
2.7 Algorithm design and analysis
2.8 Simulation of the prototype assembler
2.9 Extension to handle indel noise oL
2.10 Conclusion e

Towards computation, space, and data efficiency in de novo genome as-
sembly

3.1 Introduction
3.2 The basic generative modelo
3.3 Main algorithm
3.4 Analysis
3.5 Conclusion

FinisherSC : A repeat-aware tool for upgrading de-novo assembly using
long reads

4.1 Introduction
4.2 Methods
4.3 Results and discussion
4.4 Algorithm details, theoretical justification and more data analysis
4.5 Conclusion L

—
O O 0o ot Ot

—_

15
16
25
28
28

29
29
31
33
42
45

5 BIGMAC : Breaking Inaccurate Genomes and Merging Assembled Con-
tigs for long read metagenomic assembly

5.1
5.2
5.3
5.4
5.9

Introduction
A top-down design of BIGMAC
Breaker: Breaking Inaccurate Genome
Merger: Merging Assembled Contigs

Experiments

6 POSTME : POSTprocessing MEtagenomics assembly with hybrid data
by highly precise scaffolding

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Problem statement
Baseline algorithm
Data analysis
Set cover minimization
Benchmarking
Further optimization feasibility test
Discussion

A Appendix of Near-optimal Assembly for Shotgun Sequencing with Noisy
Reads

Al
A2

A3
A4
A5

Appendix:
Appendix:

assembler

Appendix:
Appendix:
Appendix:

Proof on performance guarantee
Design and additional algorithmic components for the prototype
Treatment of indel noise
Evidence behind model

Dot plots of finished genomes

B Appendix of Towards Computation, Space, and Data Efficiency in de
novo Genome Assembly

B.1 Appendix: Extensions to realistic data

il

103
104

B.2 Appendix: Bounds on the data requirements in presence of substitution errors 107

C Appendix of FinisherSC

C.1 Appendix: Detailed experimental results on bacterial genomes

D Appendix of BIGMAC

D.1
D.2
D.3
D4
D.5
D.6

Appendix:
Appendix:
Appendix:
Appendix:
Appendix:
Appendix:

Outline of the appendix
Implementation details of the break point finding algorithm
Data analysis of the Breaker and Merger
Feasbility of Breaker to recover consistent contigs
More information on the EM algorithm and the MSA
Commands for datasets

113
114

124
125
125

D.7 Appendix: Detailed Quast reports

Bibliography

v

Chapter 1

Introduction

Determining the ordering of nucleotides in genomes is a fundamental problem in bioinfor-
matics. It is still beyond the reach of current technology to read the whole genome from
beginning to end for species of moderate genomic complexity. However, in DNA sequencing,
biologists can obtain fragmented snapshots of the genome under investigation, which are
called reads. Moreover, due to the advancement in high throughput sequencing, one can
obtain many such reads at a reasonable cost. While it is a promising method to determine
the genome, it also comes with its unique challenges. Since we do not know the genomic
locations from where the reads are extracted, one has to rearrange the reads computationally
to determine the genomes. A de novo assembler pieces together reads to form the underlying
genome. Since this is an algorithm design problem with a strong connection to practical ap-
plication, both the design and experimentation are critical components. Let us first review
previous works on the design part.

One approach is to find the shortest superstring for the reads [4]. A basic greedy algorithm
of successively merging reads of largest overlap length can yield an approximation ratio of
4. Subsequent work has reduced the approximation ratio to 2.5 [22|. Another approach is
to use string graph [42, 41|. Under this approach, reads are treated as nodes on a graph
and an edge is defined when the corresponding reads have significant overlap. The output
genomes (or contigs) thus correspond to tours on the graph subject to certain optimality
criterion (e.g. minimum cost network flow [42]). To handle complex repeats using short
reads, De Bruijn graph approach is studied [50]. Under this approach, a read is broken into
multiple K-mers that are consecutive substrings of length K. The graph considered consists
of K-mers as nodes. An edge is defined when two K-mers are consecutive in some reads. The
goal is to find an Fulerean trail on the graph. Under some idealized setting, this approach
is shown to be optimal[49]. It is noteworthy that de novo assembly problem can also be
cast as a maximum likelihood estimation problem|[34]. Although this approach theoretically
yields an optimal solution, various heuristics are normally employed to handle the intractable
computational complexity [34].

Following the algorithm engineering paradigm[55], the next step in the study of de novo
assembly algorithm is experimentation. There are various implementations of de novo assem-

CHAPTER 1. INTRODUCTION 2

blers [42, 63, 47, 50, 1]. However, benchmarking shows that no single assembler dominates
because different approaches are competitive in different aspects|6, 54|. This should not be
a big surprise because there are multiple dimensions of optimization involved. In particular,
one has to simultaneously consider repeats, noise, abundance information, space complexity
and time complexity. Frequently, a specific type of data favors assemblers with strength in
specific dimensions. Nonetheless, these experiments confirm that the nature of the data is
important in the design of de novo assemblers. Therefore, with third generation sequencing
platforms (e.g. long read technology) emerging [40], it is natural to anticipate that there are
plenty of opportunities to develop optimized de novo assemblers.

In the last few years, advancement in sequencing technology has led to a significant
increase in the length of reads |14, 21]. It is promising progress because longer reads help
resolve complex repetitive regions in genomes. Some notable applications of these long
reads include providing new insights into human genomes by closing interstitial gaps [10]
and routinely automating genome finishing for bacterial genomes [12]. Despite having great
potential, long read technology poses new computational challenges for de novo assembly.
Since single molecule of DNA is sequenced, the reads obtained are mostly corrupted by
insertion and deletion noise with a noise level around 15% [14, 21]. Moreover, the throughput
of current long read sequencers is generally lower than that of the short read sequencers.
Thus, it is common for biologists to generate reads from multiple machines and subsequently
seek computational approaches to combine them.

There are three mainstream approaches for de novo assembly involving long reads. In
hybrid assembly approach, one uses short reads to error-correct long reads and subsequently
assembles the error-corrected long reads|25]. In non-hybrid assembly approach, one error-
corrects long reads by long reads themselves and subsequently assembles the error-corrected
long reads [12]. In scaffolding approach, one uses long reads to scaffold contigs formed from
short reads [16, 5|. These three approaches follow the overlap-layout-consensus paradigm.
Due to high noise rate, significant efforts have been made toward improving the compu-
tational efficiency for the overlap stage [9, 3, 43]. While this computational bottleneck is
gaining better understanding and resolution, a natural next step is to improve data efficiency
of de novo assemblers. Improving data efficiency in de novo assembly can be understood as
improving assembly quality using the same data available. Data efficiency is especially rel-
evant because tradeoff is made in the overlap computation stage to balance computational
speed and accuracy. However, it is not clear how one can achieve quality improvement, nor
is it clear how far we are from optimal performance. Thus, addressing the de novo assembly
problem in terms of data efficiency does not only shed light on building better software but
also save human resources on indefinitely optimizing assemblers.

Shannon studies a mathematical theory of communication, which has a profound impact
in the age of digital revolution [57|. It is thus advantageous to mimic the work of Shannon
to study other data-related engineering problems, in particular, de novo assembly. Study of
data efficiency for de novo assembly problem can be traced back to the time when the notion
of Lander-Waterman coverage is introduced [32|. Subsequent work discovers the theoretical
significance of Eulerian trail in perfect reconstruction[49] . An information theoretic for-

CHAPTER 1. INTRODUCTION 3

malization and tight characterization are later studied [37, 7, 39]. For example, it is shown
that in i.i.d. genome model, noise is irrelevant for genome assembly[39]. Tt is also shown
that close to optimal assembly is possible for a range of bacterial genomes in a noiseless
setting [7]. However, there are gaps in the study of data-efficient algorithms for long read
data. For example, it is not clear about the role of noise toward data efficiency beyond the
i.i.d. genome model. Moreover, it is also not clear how well the theoretical insights can
be translated into quality improvement in de novo assembly for long read data in practice.
Thus in the literature, there is a gap between the theory and the practice in the study of
data-efficient algorithms for long read data.

In this dissertation, we claim that it is feasible to construct practical and more data-
efficient algorithm for de novo assembly for long read data. To establish the thesis, there
are two main pillars. On the theoretical part, we use an information theoretic framework
to guide the design of data-efficient algorithm to handle noise and to be computationally
efficient. On the practical part, we use post-processing as a technique to bring theoretical
insights into assembler building process for long read data, which would otherwise involve
significant engineering efforts.

In theory, we introduce two algorithms: X-phased Multibridging [29] and OnlineOf-
flineAlgo [31]. We show that even when there is noise in the reads, one can successfully
reconstruct the genomes with information requirements close to the noiseless fundamental
limit. A new assembly algorithm, X-phased Multibridging, is designed based on a proba-
bilistic model of the genome. We show, through analysis that it performs well on the model,
and through simulations that it performs well on real genomes. We also study computa-
tional complexity of a de novo assembly algorithm: OnlineOfflineAlgo. For noiseless reads
of length at least twice the minimum length, OnlineOfflineAlgo requires minimum cover-
age, is time-efficient and is space-optimal under the i.i.d. genome model. The key idea to
achieve space and time efficiency is to break the procedure into two phases, an online and
an offline phase. The theoretical study has provided several algorithmic insights. X-phased
Multibridging demonstrates that repeat-aware overlap rule and phasing of polymorphisms
within repeat interiors are effective measures to combat noise in reads. OnlineOfflineAlgo
demonstrates that a two-phase process can effectively save computational demand for de
novo assembly. To transfer algorithmic insights into practical assemblers, one can build as-
semblers from scratch. However, this normally requires significant engineering effort. This
is not ideal in such a fast moving field. Thus, we seek a more agile approach. In particular,
we use a post-processing approach: post-processing assembled contigs with original data.

In practice, we introduce three post-processing tools: FinisherSC [30], BIGMAC |[28§]
and POSTME [27]. We introduce FinisherSC, a repeat-aware and scalable tool for upgrad-
ing de-novo haploid genome assembly using long and noisy reads. Experiments with real
data suggest that FinisherSC can provide longer and higher quality contigs than existing
tools while maintaining high concordance. Thus, FinisherSC achieves higher data efficiency
than state-of-the-art haploid genome assembly pipelines. We study whether post-processing
metagenomic assemblies with the original input long reads can result in quality improvement.
Previous approaches have focused on pre-processing reads and optimizing assemblers. We

CHAPTER 1. INTRODUCTION 4

introduce BIGMAC, which takes an alternative perspective to focus on the post-processing
step. Using both the assembled contigs and original long reads as input, BIGMAC first
breaks the contigs at potentially mis-assembled locations and subsequently scaffolds con-
tigs. Our experiments on metagenomes assembled from long reads show that BIGMAC can
improve assembly quality by reducing the number of mis-assemblies while maintaining/in-
creasing N50 and N75. Thus, BIGMAC achieves higher data efficiency than state-of-the-art
metagenomic assembly pipelines. Finally we study POSTME, a metagenomic assembly post-
processor using hybrid data. It shows promising results when compared to Spades-Hybrid,
which is a leading software in the field.

As history suggested in the past decade, high throughput sequencing is an actively evolv-
ing field. We expect that new sequencing platforms will continue to push the boundary of
our understanding on the genomes of living things. One notable application area is metage-
nomics. However, the problem of metagenomic assembly has long been considered as a
difficult computational challenge [11]. Although short read metagenomic assemblers have
appeared in the last few years [48, 44|, the problem is still wide open [59]. On the other
hand, promising development of long reads has raised optimism for the plausibility in crack-
ing the notorious metagenomic assembly problem [24]. With more informative data and
more sophisticated assembler design methods, we are better positioned than ever to advance
the field. This dissertation can serve as one of the starting points for these exciting research
directions.

Chapter 2

Near-optimal assembly for shotgun
sequencing with noisy reads

Recent work identified the fundamental limits on the information requirements in terms
of read length and coverage depth required for successful de novo genome reconstruction
from shotgun sequencing data, based on the idealistic assumption of no errors in the reads
(noiseless reads). In this work, we show that even when there is noise in the reads, one can
successfully reconstruct with information requirements close to the noiseless fundamental
limit. A new assembly algorithm, X-phased Multibridging, is designed based on a proba-
bilistic model of the genome. It is shown through analysis to perform well on the model, and
through simulations to perform well on real genomes.

2.1 Background

Optimality in the acquisition and processing of DNA sequence data represents a serious
technology challenge from various perspectives including sample preparation, instrumenta-
tion and algorithm development. Despite scientific achievements such as the sequencing of
the human genome and ambitious plans for the future [60, 56|, there is no single, overarching
framework to identify the fundamental limits in terms of information requirements required
for successful output of the genome from the sequence data.

Information theory has been successful in providing the foundation for such a framework
in digital communication [57], and we believe that it can also provide insights into under-
standing the essential aspects of DNA sequencing. A first step in this direction has been
taken in the recent work 7], where the fundamental limits on the minimum read length and
coverage depth required for successful assembly are identified in terms of the statistics of
various repeat patterns in the genome. Successful assembly is defined as the reconstruction
of the underlying genome, i.e. genome finishing [51|. The genome finishing problem is partic-
ularly attractive for analysis because it is clearly and unambiguously defined and is arguably
the ultimate goal in assembly. There is also a scientific need for finished genomes [36][35].

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 6

Until recently, automated genome finishing was beyond reach [18] in all but the simplest
of genomes. New advances using ultra-long read single-molecule sequencing, however, have
reported successful automated finishing [12, 25]. Even in the case where finished assembly
is not possible, the results in [7] provide insights on optimal use of read information since
the heart of the problem lies in how one can optimally use the read information to resolve
repeats.

Figure 2.1a gives an example result for the repeat statistics of E. coli K12. The x-axis of
the plot is the read length and the y-axis is the coverage depth normalized by the Lander-
Waterman depth (number of reads needed to cover the genome [32]). The lower bound
identifies the necessary read length and coverage depth required for any assembly algorithm
to be successful with these repeat statistics. An assembly algorithm called Multibridging
Algorithm was presented, whose read length and coverage depth requirements are very close
to the lower bound, thus tightly characterizing the fundamental information requirements.
The result shows a critical phenomenon at a certain read length L = /..;: below this
critical read length, reconstruction is impossible no matter how high the coverage depth;
slightly above this read length, reconstruction is possible with Lander-Waterman coverage
depth. This critical read length is given by ..y = max{li., by}, where £, is the length
of the longest pair of exact interleaved repeats and ¢,; is the length of the longest exact
triple repeat in the genome, and has its roots in earlier work by Ukkonen on Sequencing-
by-Hybridization [61]. The framework also allows the analysis of specific algorithms and the
comparison with the fundamental limit; the plot shows for example the performance of the
Greedy Algorithm and we see that its information requirement is far from the fundamental
limit.

A key simplifying assumption in [7] is that there are no errors in the reads (noiseless
reads). However reads are noisy in all present-day sequencing technologies, ranging from
primarily substitution errors in Illumina® platforms, to primarily insertion-deletion errors
in Ton Torrent® and PacBio® platforms. The following question is the focus of the current
paper: in the presence of read noise, can we still successfully assemble with a read length
and coverage depth close to the minimum in the noiseless case? A recent work [23| with an
existing assembler suggests that the information requirement for genome finishing substan-
tially exceeds the noiseless limit. However, it is not obvious whether the limitations lie in the
fundamental effect of read noise or in the sub-optimality of the algorithms in the assembly
pipeline.

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH

NOISY READS 7
10; _
--Noiseless Lower Bound
—Multibriding Algorithm
8+ ~Greedy Algorithm
2 :
O
2 |
< 4
0 gcrit J gmax ‘ ‘ ‘
2000 4000 1 6000 8000 10000
(a) Information requirement for noiseless reads
107 o
--Noiseless Lower Bound
8 —X-phased Multibridging
I —Multibridging Algorithm
~Greedy Algorithm
> 6f
(@)
O
Z
Z 4 "
2r \
“\ o "“"*--_.__\'LQ\ =
0 gcrit ‘ Ecrit emax ‘ ‘
0 2000 4000] 6000 8000 10000

(b) Information requirement for noisy reads
Figure 2.1: Information requirement to reconstruct E. coli K12.
lerig = 1744, leriy = 3393

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 8

2.2 Results

The difficulty of the assembly problem depends crucially on the genome repeat statistics.
Our approach to answering the question of the fundamental effect of read noise is based
on design and analysis using a parametric probabilistic model of the genome that matches
the key features of the repeat statistics we observe in genomes. In particular, it models the
presence of long flanked repeats which are repeats flanked by statistically uncorrelated region.
Figure 2.1b shows a plot of the predicted information requirement for reliable reconstruction
by various algorithms under a substitution error rate of 1%. The plot is based on analytical
formulas derived under our genome model with parameters set to match the statistics of E.
coli K12. We show that it is possible in many cases to develop algorithms that approach the
noiseless lower bound even when the reads are noisy. Specifically, the X-phased Multibridging
Algorithm has close to the same critical read length L = £.,.; as in the noiseless case and
only slightly greater coverage depth requirement for read lengths greater than the critical
read length.

We then proceed to build a prototype assembler based on the analytical insights and
we perform experiments on real genomes. As shown in Figure 2.2, we test the prototype
assembler by using it to assemble noisy reads sampled from 4 different genomes. At coverage
and read length indicated by a green circle, we successfully assemble noisy reads into one
contig (in most cases with more than 99% of the content matched when compared with the
ground truth). Note that the information requirement is close to the noiseless lower bound.
Moreover, the algorithm (X-phased Multibridging) is computationally efficient with the most
computational expensive step being the computation of overlap of reads/K-mers, which is
an unavoidable procedure in most assembly algorithms.

The main conclusion of this work is that, with an appropriately designed assembly algo-
rithm, the information requirement for genome assembly is surprisingly insensitive to read
noise. The basic reason is that the redundancy required by the Lander-Waterman coverage
constraint can be used to denoise the data. This is consistent with the asymptotic result
obtained in [39] and the practical approach taken in [12]. However, the result in [39] is based
on a very simplistic i.i.d. random genome model, while the model and genomes considered
in the present paper both have long repeats. A natural extension of the Multibridging Al-
gorithm in [7] to handle noisy reads allows the resolution of these long flanked repeats if the
reads are long enough to span them, thus allowing reconstruction provided that the read
length is greater than L = &mt = max{ﬁmt, fm} where Kmt is the length of the longest pair
of flanked interleaved repeats and /,; is the length of the longest flanked triple repeat in the
genome. This condition is shown as a vertical asymptote of the "Multibridging Algorithm"
curve in Figure 2.1b. By exploiting the redundancy in the read coverage to resolve read
errors, the X-phased Multibridging can phase the polymorphism across the flanked repeat
copies using only reads that span the exact repeats. Hence, reconstruction is achievable with
a read length close to L = {.,.;;, which is the noiseless limit.

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH

NOISY READS 9
10 -
|--Noiseless Lower Bound|
8,
3 6
(8]
b4
Z 4
2r %
et} ey)) |
OO 500 1 OLOO 1500 2000
(a) Prochlorococcus marinus
107 -
|--Noiseless Lower Bound|
8,
3 6
(8]
2
Z 4
2,
) Losit § foris . s |
GO 1000 2000 30L00 4000 5000 6000
(b) Helicobacter pylori
107 -
|--Noiseless Lower Bound|
8,
3 6
(8]
2
Z 4
2 "~
C Lerit i B . ,
00 2000 40L00 6000 8000
(¢) Methanococcus maripaludis
107 -
|--Noiseless Lower Bound|
8,
3 6
O
4
2 4
2r . ¥
Lerit) Lorit , 3
O0 0.5 1 1.5 2
L x 10°

(d) Mycoplasma agalactiae
Figure 2.2: Simulation results on a prototype assembler (substitu-
tion noise of rate 1.5 %)

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 10

Related work

All assemblers must somehow address the problem of resolving noise in the reads during
genome reconstruction. However, the traditional approaches to measuring assembly per-
formance makes quantitative comparisons challenging for unfinished genomes [45]. In most
cases, the heart of the assembly problem lies in processing of the assembly graph, as in
[63, 17, 58]. A common strategy for dealing with ambiguity from the reads lies in filtering
the massively parallel sequencing data using the graph structure prior to traversing possible
assembly solutions. In the present work, however, we are focused on the often-overlooked
goal of optimal data efficiency. Thus, to the extent possible we distinguish between the
read error and the mapping ambiguity associated with the shotgun sampling process. The
proposed assembler, X-phased Multibridging, adds information to the assembly graph based
on a novel analysis of the underlying reads.

2.3 Methods

The path towards developing X-phased Multibridging is outlined as follows.
1. Setting up the shotgun sequencing model and problem formulation.

2. Analyzing repeats structure of genome and their relationship to the information re-
quirement for genome finishing.

3. Developing a parametric probabilistic model that captures the long tail of the repeat
statistics.

4. Deriving and analyzing an algorithm that require minimal information requirements
for assembly — close to the noiseless lower bound.

5. Performing simulation-based experiments on real and synthetic genomes to characterize
the performance of a prototype assembler for genome finishing.

6. Extending the algorithm to address the problem of indel noise.

2.4 Shotgun sequencing model and problem formulation

Sequencing model

Let s be a length GG target genome being sequenced with each base in the alphabet set
Y. ={A,C,G,T}. In the shotgun sequencing process, the sequencing instrument samples N
reads, 771, ..., 7y of length L and sampled uniformly and independently from s. This unbiased
sampling assumption is made for simplicity and is also supported by the characteristics of
single-molecule (e.g. PacBio®) data. Each read is a noisy version of the corresponding

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 11

length L substring on the genome. The noise may consist of base insertions, substitutions
or deletions. Our analysis focus on substitution noise first. In a later section, indel noise is
addressed. In the substitution noise model, let p be the probability that a base is substituted
by another base, with probability p/3 to be any other base. The errors are assumed to be
independent across bases and across reads.

Formulation

Successful reconstruction by an algorithm is defined by the requirement that, with probability
at least 1 — €, the reconstruction § is a single contig which is within edit distance ¢ from the
target genome s. If an algorithm can achieve that guarantee at some (N, L), it is called e-
feasible at (IV, L). This formulation implies automated genome finishing, because the output
of the algorithm is one single contig. The fundamental limit for the assembly problem is
the set of (IV, L) for which successful reconstruction is possible by some algorithms. If §
is directly spelled out from a correct placement of the reads, the edit distance between §
and s is of the order of pGG, where the error rate is p. This motivates fixing § = 2pG for
concreteness. The quality of the assembly can be further improved if we follow the assembly
algorithm with a consensus stage in which we correct each base, e.g. with majority voting.
But the consensus stage is not the focus in this paper.

2.5 Repeats structure and their relationship to the
information requirement for successful
reconstruction

Long exact repeats and their relationship to assembly with
noiseless reads

We take a moment to carefully define the various types of exact repeats. Let s denote the
length-¢ substring of the DNA sequence s starting at position ¢. An exact repeat of length
¢ is a substring appearing twice, at some positions ¢y, ty (so Sfl = SfQ) that is maximal (i.e.
s(ty — 1) # s(te — 1) and s(t; + £) # s(ta + £)).

Similarly, an exact triple repeat of length-¢ is a substring appearing three times, at
positions ty, s, t3, such that s; = s =s; , and such that neither of s(t; — 1) = s(t, — 1) =
s(ts — 1) nor s(t; +) = s(ta + £) = s(t3 + £) holds.

A copy of a repeat is a single one of the instances of the substring appearances. A pair
of exact repeats refers to two exact repeats, each having two copies. A pair of exact repeats,
one at positions 1, t3 with ¢t; < t3 and the second at positions to, t4 with 5 < 4, is interleaved
if t] <ty <tz <tyorty <ty <ty <ts. The length of a pair of exact interleaved repeats is
defined to be the length of the shorter of the two exact repeats. A typical appearance of a

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 12

pair of exact interleaved repeat is —X—Y—X—-Y— where X and Y represent two different exact
repeat copies and the dashes represent non-identical sequence content.

We let /.. be the length of the longest exact repeat, ¢;,; be the length of the longest
pair of exact interleaved repeats and ¢;,; be the length of the longest exact triple repeat.

As mentioned in the introduction, it was observed that the read length and coverage
depth required for successful reconstruction using noiseless reads for many genomes is gov-
erned by long exact repeats. For some algorithms (e.g. Greedy Algorithm), the read length
requirement is bottlenecked by £p4,. The Multibridging Algorithm in [7] can successfully re-
construct the genome with a minimum amount of information. The corresponding minimum
read length requirement is the critical exact repeat length £c.;; = max(€iny, liri)-

Flanked repeats

While exact repeats are defined as the segments terminated on each end by a single differing
base (Fig 2.3a), flanked repeats are defined by the segments terminated on each end by
a statistically uncorrelated region. We call that ending region to be the random flanking
region. A distinguishing characteristic of the random flanking region is a high Hamming
distance to segment length ratio between the ends of two repeat copies. The ratio in the
random flanking region is around 0.75, which matches with that when the genomic content
is independently and uniformly randomly generated. We observe that long repeats of many
genomes terminate with random flanking region. Additional statistical analysis is detailed
in the Appendix.

If the repeat interior is exactly the same between two copies of the flanked repeat (Fig
2.3b), the corresponding flanked repeat is called a flanked exact repeat. If there are a few
edits (called polymorphism) within the repeat interior (Fig 2.3c), the corresponding flanked
repeat is called a flanked approximate repeat.

The length of the repeat interior bounded by the random flanking region is then the
flanked repeat length. We let fp,0, be the length of the longest flanked repeat, it be the
length of the longest pair of flanked interleaved repeats and f,,; be the length of the longest
flanked triple repeat. The critical flanked repeat length is then Emt = max(fmt, Em)

Long flanked exact repeats and their relationship to assembly with
noisy reads

If all long flanked repeats are flanked exact repeats, we can utilize the information in the
random flanking region to generalize Greedy Algorithm and Multibridging Algorithm to
handle noisy reads. The corresponding information requirement is very similar to that when
we are dealing with noiseless reads.

The key intuition is as follows. A criterion for successful reconstruction is the existence of
reads to span the repeats to their neighborhood. When a read is noiseless, it only need to be
long enough to span the repeat interior to its neighborhood by one base (Fig 2.4a) so as to

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS

13
A C G T
[copy1 | AAATAGTT...CTGTTTGTT...TTGCC... GC
Copy 2 GAATAGTT...CTGTTTGTT...TTGCC... GT
Distance | 10000000...000000000...00000...01
Differing Repeat interior Differing
base base

(a) Exact repeat

copy1 | TAGCAGCAAATAGTT...CTGTTTGTT...TTGCC... GCCAGGATGT
Copy2 |TACGACGGAATAGTT...CTGTTTGTT...TTGCC... GTGACCACAG

pistance |001101110000000...000000000...00000...0110110111

3 <
> < >

Random Repeat interior Random
flanking region flanking region

(b) Flanked exact repeat

Pflymorphism
Copy1 | TAGCAGCAAATAGTT... ATGTTTGTC...TTGCC... GCCAGGATGT

Copy 2 |TACGACGGAATAGTT...GTGTTTGTT...TTGCC... GTGACCACAG

pistance |001101110000000...100000001...00000...0110110111

<
> <

Random Repeat interior Random
flanking region flanking region
(c) Flanked approximate repeat
Figure 2.3: Repeat pattern

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 14

A C G

T

(a) Noiseless reads spanning an exact repeat and its terminating bases

-
A C T
(b) Noisy reads spanning a flanked exact repeat and its terminating random
flanking region

fo

——— E——
- —
—— —
— —
—— e——
— —
—— S —
S — —
- m —_———

(c) Noisy reads extending to span a flanked approximate repeat and its termi-
nating random flanking region

Figure 2.4: Intuition behind the information requirement

differentiate between two exact repeat copies. When a read is noisy, it then need to be long
enough to span the repeat interior plus a short extension into the random flanking region
(Fig 2.4b) so as to confidently differentiate between two flanked repeat copies. However, the
Hamming distance between two flanked repeat copies’ neighborhood in the random flanking
region is very high even within a short length. This can be used to differentiate between two
flanked repeat copies confidently even when the reads are noisy. The short extension into
the random flanking region has a length which is typically of order of tens whereas the long
repeat length is of order of thousands. Therefore, relative to the repeat length, the change
of the critical read length requirement from handling noiseless reads to noisy reads is only
marginal when all long repeats are flanked exact repeats.

Long flanked approximate repeats and their relationship to
assembly with noisy reads

If a long flanked repeat is a flanked approximate repeat, the flanked repeat length may
be significantly longer than the length of its longest enclosed exact repeat. Merely relying
on the information provided by the random flanking region requires the reads to be of
length longer than the flanked repeat length for successful reconstruction. This explains
why the information requirement for Greedy Algorithm and Multibridging Algorithm has
a significant increase when we use noisy reads instead of noiseless reads (as shown in Fig
2.1b). However, if we utilize the information provided by the coverage, we can still confidently
differentiate different repeat copies by phasing the small edits within the repeat interior (Fig

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 15

2.4¢). Specifically, we design X-phased Multibridging whose information requirement is close
to the noiseless lower bound even when some long repeats are flanked approximate repeats,
as shown in Fig 2.1b.

From information theoretic insight to algorithm design

Because of the structure of long flanked repeats, there are two important sources of informa-
tion that we specifically want to utilize when designing data-efficient algorithms to assemble
noisy reads. They are

e The random flanking region beyond the repeat interior
e The coverage given by multiple reads overlapping at the same site

Greedy Algorithm(Alg 1) utilizes the random flanking region when considering overlap.
The minimum read length needed for successful reconstruction is close to gmax.

Multibridging Algorithm(Alg 2) also utilizes the random flanking region but it improves
upon Greedy Algorithm by using a De Bruijn graph to aid the resolution of flanked repeats.
The minimum read length needed for successful reconstruction is close to Corir-

X-phased Multibridging(Alg 3) further utilizes the coverage given by multiple reads to
phase the polymorphism within the repeat interior of flanked approximate repeats. The
minimum read length needed for successful reconstruction is close to f..;, which is the
noiseless lower bound even when some long repeats are flanked approximate repeats.

2.6 Model for genome

To capture the key characteristics of repeats and to guide the design of assembly algorithms,
we use the following parametric probabilistic model for genome. A target genome is modeled
as a random vector s of length G that has the following three key components (a pictorial
representation is depicted in Figure 2.5).

Random background: The background of the genome is a random vector, composed
of uniformly and independently picked bases from the alphabet set ¥ = {A,C, G, T}.

Long flanked repeats: On top of the random background, we randomly position the
longest flanked repeat and the longest flanked triple repeat. Moreover, we randomly position
a flanked repeat interleaving the longest flanked repeat, forming the longest pair of flanked
interleaved repeat. The corresponding length of the flanked repeats are gmax, gm» and lZnt
respectively. It is noted that Conan > max(gint, Zm).

Polymorphism and long exact repeats: Within the repeat interior of the flanked
repeats, we randomly position 7,4., Mine and ng,.; edits (polymorphism) respectively. The
sites of polymorphism are chosen such that the longest exact repeat, the longest pair of
exact interleaved repeats and the longest exact triple repeat are of length ¢,,4., lins and £,
respectively.

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH

NOISY READS 16
¢ max Eint Etri
—l ~ L]
A ¢ mE s 1 @@ moccoe
— = -
‘emax Eint Etri

Ecrit - max(einta gtri) Ecrit - max(gintsgtri)

Figure 2.5: Model for genome

2.7 Algorithm design and analysis

Greedy Algorithm

Read Ry is a successor of read Ry if there exists length-W suffix of R; and length-W prefix
of Ry such that they are extracted from the same locus on the genome. Furthermore, there
is no other reads that can satisfy the same condition with a larger W. To properly determine
successors of reads in the presence of long repeats and noise, we need to define an appropriate
overlap rule for reads. In this section, we show the conceptual development towards defining
such a rule, which is called RA-rule.

Noiseless reads and long exact repeats: If the reads are noiseless, all reads can be
paired up with their successors correctly with high probability when the read length exceeds
limaz- 1t was done |7] by greedily pairing reads and their candidate successors based on their
overlap score in descending order. When a read and a candidate successor are paired, they
will be removed from the pool for pairing. Here the overlap score between a read and a
candidate successor is the maximum length such that the suffix of the read and prefix of the
candidate successor match ezactly.

Noisy reads and random background: Since we cannot expect exact match for noisy
reads, we need a different way to define the overlap score. Let us consider the following toy
situation. Assume that we have exactly one length-(¢ + 1) noisy read starting at each locus
of a length G random genome(i.e. only consists of the random background). Each read
then overlaps with its successor precisely by ¢ bases. Analogous to the noiseless case, one
would expect to pair reads greedily based on overlap score. Here the overlap score between
a read and a candidate successor is the maximum length such that the suffix (x) of the
read and prefix (y) of the candidate successor match approzimately. To determine whether
they match approzimately, one can use a predefined a threshold factor a and compute the
Hamming distance d(x,y). If d(x,y) < « - ¢, then they match approzimately, otherwise
not. Given this decision rule, we can have false positive (i.e. having any pairs of reads
mistakenly paired up) and false negative (i.e. having any reads not paired up with the true
successors). If false positive and false negative probability are small, this naive method is a
reliable enough metric. This can be achieved by using a long enough length ¢ > /;;; and an
appropriately chosen threshold a.

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 17

Random flanking region Repeat

_— interior

| Noisy read {3
segments

Figure 2.6: Intuition about why we define the overlap rule to be
RA-overlap rule

Recall that € is the overall failure probability. By bounding the sum of false positive
and false negative probability by €/3, one can find f;;4(p, €/3,G) and «a(p,€/3,G) to be the
(4iia,) solution to the following pair of equations:

G - exp(—lig - D(a]|5)) =& (2.1)
G-exp(—&id-D(aHZp—%pQ)) SE (2.2)

where D(al|b) = alog ¢ + (1 — a) log =% is the Kullback-Leibler divergence.

Noisy reads and long flanked repeats: However, when the genome contains long
flanked repeats on top of the random background, this naive rule of determining overlap is
not enough. Let us look at the example in Fig. 2.6. As shown in Fig. 2.6, because of long
flanked repeats, we have a small ratio of overall distance against the overlap length for the
segments that are extracted from different copies of the repeat (e.g Segment 1 and Segment
3 in Fig. 2.6). Therefore, the overall Hamming distance between two segments is not a good
enough metric for defining overlap. If we abide by the naive rule, we need to increase the
read length significantly longer than the flanked repeat length so as to guarantee confidence
in deciding approximate match. Otherwise, it will either result in a high false positive rate
(if we set a large «) or a high false negative rate (if we set a small). To properly handle
such scenario, we define a repeat-aware rule(or RA-rule).

e RA-matching: Two segments (z,y) of length W match under the RA-rule if and only
if the distance between whole segments is < - W and both of its ending segments(of
length /¢;;4) also have distance < « - ;4.

e RA-overlap: The overlap score between a read and a candidate successor under the
RA-rule is the maximum length such that the suffix of the read and prefix of the
candidate successor match under the RA-matching.

The RA-rule is particularly useful because it puts an emphasis on both ends of the overlap
region. Since the ends are separated by a long range, one end will hopefully originate from the

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 18

random flanking region of the flanked repeat. If we focus on the segments originating from
the random flanking region, the distance per segment length ratio will be very high when
the segments originate from different copies of the repeat but very low when they originate
from the same copy of the repeat. This is how we utilize the random flanking region to
differentiate between repeat copies and determine correct successors in the presence of long
flanked repeats and noise.

If we use Greedy Algorithm (Alg 1) to merge reads greedily with this overlap rule (RA-
rule), Prop 2.7.1 shows the information requirement under the previously described sequenc-
ing model and genome model. A plot is shown in Fig 2.1b. Since ¢;;; is of order of tens
whereas {pq, is of order of thousands, the read length requirement for Greedy Algorithm to
succeed is dominated by lmaz. The detailed proof of Prop 1 is given in Appendix.

Algorithm 1 Greedy Algorithm
Initialize contigs to be reads
for W =1L tol;ydo
if any two contigs x,y are of overlap W under RA-rule then
| merge x,y into one contig.
end

end

Proposition 2.7.1. With lq = Lsa(p, 5, G), if

L> gmax + 2£iid7

G1n(3/e) Gln(?)N/e))
L — lpuw — 200 L —20sq
then, Greedy Algorithm(Alg 1) is e—feasible at (N, L).

N > max(

Multibridging Algorithm

The read length requirement of Greedy Algorithm has a bottleneck around (., because
it requires at least one copy of each flanked repeat to be spanned by at least one read for
successful reconstruction. Spanning a repeat by a single read is called bridging in [7]. A
natural question is whether we need to have all repeats bridged for successful reconstruction.

In the noiseless setting, |7] shows that this condition can be relaxed. Using noiseless
reads, one can have successful reconstruction given all copies of each exact triple repeat
being bridged, and at least one copy of one of the repeats in each pair of exact interleaved
repeats being bridged.

A key idea to allow such a relaxation in |7] is to use a De Bruijn graph to capture the
structure of the genome.

When the reads are noisy, we can utilize the random flanking region to specify a De
Bruijn graph with high confidence by RA-rule and arrive at a similar relaxation. By some

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 19

graph operations to handle the residual errors, we can have successful reconstruction with
read length gcm‘t+2'€iz‘d <L< gmax. The algorithm is summarized in Alg 2. Prop 2.7.2 shows
its information requirement under the previously described sequencing model and genome
model. A plot is shown in Fig 2.1b. We note that Alg 2 can be seen as a noisy reads
generalization of Multibridging Algorithm for noiseless reads in |7].

Description and its performance

Proposition 2.7.2. With (g = ly(p, 5, G), if

L > lorit + 254,

G1n(3/e) G1In(3N/e)
L— gcrit - %n‘d’ L — 2054)
then, Multibridging Algorithm(Alg 2) is e—feasible at (N, L).

N > max(

Detailed proof is given in the Appendix. The following sketch highlights the motivation
behind the key steps of Multibridging Algorithm.

[Stepl] We set a large K value to make sure the K-mers overlapping the shorter repeat
of the longest pair of flanked interleaved repeats and the longest flanked triple repeat can be
separated as distinct clusters.

[Step2| Clustering is done using the RA-rule because of the existence of long flanked
repeats and noise.

[Step3] A K-mer cluster corresponds to an equivalence class for K-mers matched under
the RA-rule. This step forms a De Bruijn graph with K-mer clusters as nodes.

[Step4| Because of large K, the graph can be disconnected due to insufficient coverage.
In order to reduce the coverage constraint, we connect the clusters greedily.

[Step5, 7] These two steps simplify the graph.

[Step6| Branch clearing repairs any incorrect merges near the boundary of long flanked
repeat.

[Step8| Since an Euler path in the condensed graph corresponds to the correct genome
sequence, it is traversed to form the reconstructed genome.

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 20

Algorithm 2 Multibridging Algorithm

1. Choose K to be llm + 24,4 and extract K-mers from reads.
2. Cluster K-mers based on the RA-rule.
3. Form uncondensed De Bruijn graph Gpe_pgruijn = (V, E) with the following rule:

e a) K-mers clusters as node set V.

e b) (u,v) = e € E if and only if there exists K-mers u; € u and v; € v such that
uy,v1are consecutive K-mers in some reads.

4. Join the disconnected components of G'pe_pyuijn together by the following rule:

for W=K-1 to{;; do

for each node u which has either no predecessors / successors in G pe—pruijn do
a) Find the predecessor/successor v for u from all possible K-mers clusters such that
overlap length(using any representative K-mers in that cluster) between u and v is
W under RA-rule.
b) Add dummy nodes in the De Bruijn graph to link u with v and update the graph
to G pe—Bruijn

end

end

5. Condense the graph G'pe—pruijn to form Ging with the following rule:
e a) Initialize Ggping t0 be Gpe—pryijn With node labels of each node being its cluster

group index.

e b) while Jsuccessive nodes u — v such that out — degree(u) = land
in — degree(v) =1 do
bi) Merge u and v to form a new node w
bii) Update the node label of w to be the concatenation of node labels of u and v

end

6. Clear Branches of Gtring:

for each node u in the condensed graph Ggiping do
if out — degree(u) > 1 and that all the successive paths are of the same length(measured

by the number of node labels) and then joining back to node v and the path length < {44

then
| we merge the paths into a single path from u to v.

end
end
7. Condense graph Giring
8. Find the genome :
e a) Find an Euler Cycle/Path in Gng and output the concatenation of the node
labels to form a string Sj,peis.

e b) Using Sjupers and look up the associated K-mers to form the final recovered genome
S.

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 21

Some implementation details: improvement on time and space efficiency

For Multibridging Algorithm, the most computational expensive step is the clustering of
K-mers. To improve the time and space efficiency, this clustering step can be approximated
by performing pairwise comparison of reads.

Based on the alignment of the reads, we can cluster K-mers from different reads together
using a disjoint set data structure that supports union and find operations. Since only reads
are used in the alignment, only the K-mer indices along with their associated read indices
and offsets need to be stored in memory— not all the K-mers.

Pairwise comparison of reads roughly runs in ©(N2L?) if done in the naive way. To speed
up the pairwise comparison of noisy reads, one can utilize the fact that the read length is
long. We can extract all consecutive f-mers (which act as fingerprints) of the reads and do a
lexicographical sort to find candidate neighboring reads and associated offsets for comparison.
Since the reads are long, if two reads overlap, there should exist some perfectly matched f-
mers which can be identified after the lexicographical sort. This allows an optimized version
of Multibridging Algorithm to run in O(NL - %) time and O(NLf) space.

X-phased Multibridging

As shown in Fig 2.1b, when long repeats are flanked approximate repeats, there can be a big
gap between the noiseless lower bound and the information requirement for Multibridging
Algorithm. A natural question is whether this is due to a fundamental lack of informa-
tion from the reads or whether Multibridging Algorithm does not utilize all the available
information. In this section, we demonstrate that there is an important source of informa-
tion provided by coverage which is not utilized by Multibridging Algorithm. In particular,
we introduce X-phased Multibridging, an assembly algorithm that utilizes the information
provided by coverage to phase the polymorphism in long flanked repeat interior. The in-
formation requirement of X-phased Multibridging is close to the noiseless lower bound (as
shown in Fig 2.1b) even when some long repeats are flanked approximate repeats.

Description of X-phased Multibridging

Multibridging Algorithm utilizes the random flanking region to differentiate between repeat
copies. However, for a flanked approximate repeat, its enclosed exact repeat does not termi-
nate with the random flanking region but only terminates with sparse polymorphism. When
we consider the overlap of two reads originating from different copies of a flanked approximate
repeat, the distinguishing polymorphism is so sparse that it cannot be used to confidently
differentiate between repeat copies. Therefore, there is a need to use the extra redundancy
introduced by the coverage from multiple reads to confidently differentiate between repeat
copies and that is what X-phased Multibridging utilizes.

X-phased Multibridging (Alg 3) follows the algorithmic design of Multibridging Algo-
rithm. However, it adds an extra phasing procedure to differentiate between repeat copies

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 22

1. Consensus step:

Use all reads to decide where the sites of polymorphism are within
the repeat (e.g. Given 60 reads overlap at a base and its counter
part in the other copy; If 30 A, 30 G => it is a site of polymorphism;
54 A, 6G => it is not a site of polymorphism)

(a) Consensus Step
2. Read extension step : Use the reads that span the sites of

polymorphism to do the vote Error can occur but majority
decreases the error rate

connection 5 1 1
pattern across So,
the sites of 1 5 5 W =Y and
polymorphism:
) - - W —Y’
Final answer: , A > T < Y,
W G C Y

(b) Read Extension Step
Figure 2.7: Illustration of how to phase polymorphism to extend
reads across repeats

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 23

of long flanked repeats that Multibridging Algorithm cannot confidently differentiate. We
recall that after running step 7 of Multibridging Algorithm, a node in the graph Ging cor-
responds to a substring of the genome and has node label consisting of consecutive K-mer
cluster indices. An X-node of Ging is a node that has in-degree and out-degree > 2. X-
node indeed corresponds to a flanked repeat. The incoming/outgoing nodes of the X-node
correspond to the incoming/outgoing random flanking region of the flanked repeat.

To be concrete, we focus the discussion on a pair of flanked interleaved repeats, assuming
triple repeats are not the bottleneck. However, the ideas presented can be generalized to
repeats of more copies.

For the flanked approximate repeat with length ¢;,, < L and gim > L (as shown in
Fig 2.7), there is no node-disjoint paths joining incoming/outgoing random flanking region
with the distinct repeat copies in Gging. It is because the reads are corrupted by noise
and the polymorphism is too sparse to differentiate between the repeat copies. Executing
Multibridging Algorithm directly will result in the formation of an X-node, which is an
artifact due to K-mers from different copies of the flanked approximate repeat erroneously
clustered together.

Successful reconstruction requires an algorithm to pair up the correct incoming/outgoing
nodes of the X-node(i.e. decide how W, W’ and Y,Y” are linked in Fig 2.7). This is handled
by the phasing procedure in X-phased Multibridging, which uses all the reads information.
The phasing procedure is composed of two main steps:

e Consensus step: Confidently find out where the sites of polymorphism are located
within the flanked repeat interior.

e Read extension step: Confidently determine how to extend reads using the random
flanking region and sites of polymorphism as anchors.

Consensus step For the X-node of interest, let D be the set of reads originating from any
sites of the associated flanked repeat region and let x; and x5 denote the associated repeat
copies. Since the random flanking region is used as anchor, it is treated as the starting base
(i.e. 21(0) = W and 29(0) = W’). For the i subsequent site of the flanked repeat (where
1 < i < liyy), we determine the consensus according to Eq (2.3). This can be implemented
by counting the frequency of occurrence of each alphabet overlapping at each site of the
repeat. The consensus result determines the sites of polymorphism and the most likely pairs

of bases at the sites of polymorphism.

pefax P({z1(i), z2(i)} = F'| D) (2.3)

Read extension step After knowing the sites of polymorphism, we use those reads
that span the sites of polymorphism or random flanking region to help decide how to extend
reads across the flanked repeat. Let o be the possible configuration of alphabets at the sites
of polymorphism and random flanking region (e.g. o = (ACY,GTY’) means that the two

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 24

copies of the flanked repeat with the corresponding random flanking region respectively are
W-A-C-Y, W-G-T-Y’ where the common bases are omitted).
The following maximum a posteriori estimation is used to decide the correct configuration.

max P (6 = o | D, {1 (i), w2 (i)} 24) (2.4)

where ¢ is the estimator, D is the raw read set, and z, 7z, are the estimates from the
consensus step. It is noted that the size of the feasible set for ¢ is 2"+t

In practice, for computational efficiency, the maximization in Eq (2.4) can be approxi-
mated accurately even if it is replaced by the simple counting illustrated in Fig 2.7, which
we call count-to-extend algorithm(countAlg). CountAlg uses the raw reads to establish ma-
jority vote on how one should extend to the next sites of polymorphism using only the reads
that span the sites of polymorphism.

Performance

After introducing the phasing procedure in X-phased Multibridging, we proceed to find its
information requirement for successful reconstruction.

The information requirement for X-phased Multibridging is the amount of information
required to reduce the error of the phasing procedure to a negligible level. The phasing
procedure — step 2 in Alg. 3 — is a combination of consensus and read extension steps, which
contribute to the error as follows.

Let £ be the error event of the repeat phasing procedure for a repeat, €; be the error
probability for the consensus step, €2 be the error probability for the read extension step
given k reads spanning each consecutive site of polymorphism within the flanked repeat, ..,
be the probability for having k reads spanning each consecutive sites of polymorphism(i.e.
k bridging reads) within the flanked repeat. We have,

7)(8) é €1 —+ €9 + 5001) (25)

Therefore, to guarantee confidence in the phasing procedure, it suffices to upper bound €y,
€5 and d.,,- We tabulate the error probabilities of €;, €5 in Table 2.1 for phasing a flanked
repeat (whose length is 5000 whereas the genome length is 5M). The flanked repeat has two
sites of polymorphism which partition it into three equally spaced segments.

From Table 2.1, when p = 0.01, the information requirement translates to the condition
of having three bridging reads spanning the shorter exact repeat of the longest pair of exact
interleaved repeats. Therefore, the information requirement for X-phased Multibridging
shown in Fig 2.1b also corresponds to this condition. It is noted that X-phased Multibridging
has the same vertical asymptote as the noiseless lower bound. The vertical shift is due to
the increase of requirement on the number of bridging reads from k& = 1 (noiseless case) to
k = 3 (noisy case).

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 25

Algorithm 3 X-phased Multibridging
1. Perform Step 1 to Step 7 of MultiBridging Algorithm
2. For every X-node = € Gping

e a) Align all the relevant reads to the flanked repeat x
e b) Consensus step: Consensus to find location of polymorphism by solving Eq (2.3)

e ¢) Read extension step: If possible, resolve flanked repeat(i.e. pair up the
incoming/outgoing nodes of x) by either countAlg or by solving Eq (2.4)

3. Perform Step 8 of MultiBridging Algorithm as in Alg 2

| p | Coverage (NL/G) | € |

0.01 20 0.00
0.01 40 0.00
0.01 60 0.00
0.1 20 0.16
0.1 40 0.00
0.1 60 0.00

(a) Calibration for €;

‘ P ‘ Number of bridging reads k ‘ Upper bound for e ‘

0.01 1 0.060
0.01 3 0.0036
0.01 5 0.00024
0.1 11 0.089
0.1 21 0.022
0.1 31 0.0059

(b) Calibration for ey

Table 2.1: Calibration of error probability made by the phasing procedure of X-phased
Multibridging

2.8 Simulation of the prototype assembler

Based on the algorithmic design presented, we implement a prototype assembler for auto-
matic genome finishing using reads corrupted by substitution noise. First, the assembler was
tested on synthetic genomes, which were generated according to the genome model described
previously. This demonstrates a proof-of-concept that one can achieve genome finishing with
read length close to £..;, as shown in Fig 2.8. The number on the line represents the number

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 26

of simulation rounds (out of 100) in which the reconstructed genome is a single contig with
> 99% of its content matching the ground truth.

Second, the assembler was tested using synthetic reads, sampled from genome ground
truth downloaded from NCBI. The assembly results are shown in Table 2.2. The observa-
tion from the simulation result is that we can assemble genomes to finishing quality with
information requirement near the noiseless lower bound. More information about the detail
design of the prototype assembler is presented in the Appendix.

‘ Index ‘ Species ‘ G ‘ P ‘ % ‘ L ‘ Crnaz ‘ Lerit ‘ Lerit ‘ % match ‘ Ncontig ‘ ﬁ ‘ Zcit ‘
1 a 1440371 | 1.5% | 37.36 X | 930 | 1817 | 803 770 100.00 1 1.57 1.21
2 a 1440371 | 1.5% | 33.14 X | 970 | 1817 | 803 770 99.95 1 1.67 1.26
3 a 1440371 | 1.5% | 29.60 X | 1000 | 1817 | 803 770 99.99 1 1.66 1.30
4 b 1589953 | 1.5% | 40.82 X | 2440 | 4183 2155 | 2122 100.00 1 1.30 1.15
5 b 1589953 | 1.5% | 21.31 X | 2752 | 4183 | 2155 | 2122 99.99 1 1.19 1.30
6 b 1589953 | 1.5% | 20.66 X | 2900 | 4183 | 2155 | 2122 99.99 1 1.35 1.37
7 ¢ 1772693 | 1.5% | 30.03 X | 3950 | 5018 | 3234 | 3218 99.96 1 1.36 1.23
8 c 1772693 | 1.5% | 21.96 X | 4279 | 5018 | 3234 | 3218 99.97 1 1.33 1.33
9 c 1772693 | 1.5% | 17.03 X | 4700 | 5018 | 3234 | 3218 | 100.00 1 1.31 1.46
10 d 1006701 | 1.5% | 35.23 X | 6867 | 15836 | 10518 | 5494 99.05 1 1.72 1.25
11 d 1006701 | 1.5% | 19.88 X | 7500 | 15836 | 10518 | 5494 97.86 1 1.30 1.37
12 d 1006701 | 1.5% | 17.69 X | 9000 | 15836 | 10518 | 5494 98.10 1 1.68 1.64

Table 2.2: Simulation results on the assembly of several real genomes using reads corrupted
by substitution noise ((a) Prochlorococcus marinus (b) Helicobacter pylori (c) Methanococcus
maripaludis (d) Mycoplasma agalactiae) with le;y = max(ling, liri) Corig = max(gint,gtri)
and N,piseiess 1S the lower bound on number of reads in the noiseless case for 1 — e = 95%
confidence recovery

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 27

Ukkonen's ‘ V_rmhacad Mulithridoi
YiHEH S \A pnasea viuitoriaging
1’4

condition =

Noiseless lower bound

N/Ncov
OFRLNWEAEUIO
{fééi
[EIY
((n]
~J
o
~J

0 100 200 300
Read length (bp)

Figure 2.8: Simulation results on the assembly of synthetic genomes
using reads corrupted by substitution noise. The parameters are as
follows. G = 10K byar = lumaz = 500, liy = 200, by = 100 with
two sites of polymorphism within the flanked repeat. p = 1.5%, ¢ =
5%.

scoT-CoT

acsTceT |

Group K-mers into clusters according to
the alignment within the overlap region

(a) Form K-mer Clusters

Possible Noisy De Bruijn Graph
Noiseless De Bruijn Graph ’8‘

(b) Abnormality in (indel) De Bruijn Graph
Figure 2.9: Treatment of reads corrupted by indel noise

CHAPTER 2. NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN SEQUENCING WITH
NOISY READS 28

2.9 Extension to handle indel noise

A further extension of the prototype assembler addresses the case of reads corrupted by
indel noise. Similar to the case of substitution noise, tests were performed on synthetic reads
sampled from real genomes and synthetic genomes. Simulation results are summarized in
Table 2.3 where p;, pg are insertion probability and deletion probability and rate is the number
of successful reconstruction(i.e. simulation rounds that show mismatch < 5%) divided by
total number of simulation rounds. The simulation result for indel noise corrupted reads
shows that X-phased Multibridging can be generalized to assemble indel noise corrupted
reads. The information requirement for automated finishing is about a factor of two from
the noiseless lower bound for both N and L.

We remark that one non-trivial generalization is the way that we form the noisy De Bruijn
graph for K-mer clusters. In particular, we first compute the pairwise overlap alignment
among reads, then we use the overlap alignment to group K-mers into clusters. Subsequently,
we link successive cluster of K-mers together as we do in Alg 2. An illustration is shown in
Fig 2.9a. However, due to the noise being indel in nature, the edges in the noisy De Bruijn
graph may point in the wrong direction as shown in Fig 2.9b. In order to handle this, we
traverse the graph and remove such abnormality when they are detected.

Type G ‘ Di ‘ Dd ‘ & ‘ L ‘gmaw Cori Rate‘

Synthetic | 50000 | 1.5% | 1.5% | 23.0 X | 200 | 500 | 200 | 100 2.25 2 |28/30
Synthetic | 50000 | 1.5% | 1.5% | 24.1 X | 180 | 500 | 200 | 100 2.33 1.8 | 27/30

a 1440371 | 1.5% | 1.5% | 28.53 X | 1000 | 1817 | 803 | 770 1.60 1.30 | 1/1
b 1589953 | 1.5% | 1.5% | 20.66 X | 2900 | 4183 | 2155 | 2122 1.35 137 1/1

N L
gcrit ‘ gcrit ‘ N,y oiselos ‘

Table 2.3: Simulation results on the assembly of real/ synthetic genomes using reads cor-
rupted by indel noise(Synthetic: randomly generated to fit (iaz, lerit, erie; (a) @ Prochloro-
coccus marinus ; (b): Helicobacter pylori)

2.10 Conclusion

In this work, we show that even when there is noise in the reads, one can successfully
reconstruct with information requirements close to the noiseless fundamental limit. A new
assembly algorithm, X-phased Multibridging, is designed based on a probabilistic model
of the genome. It is shown through analysis to perform well on the model, and through
simulations to perform well on real genomes.

The main conclusion of this work is that, with an appropriately designed assembly al-
gorithm, the information requirement for genome assembly is insensitive to moderate read
noise. We believe that the information theoretic insight is useful to guide the design of future
assemblers. We hope that these insights allow future assemblers to better leverage the high
throughput sequencing read data to provide higher quality assembly.

29

Chapter 3

Towards computation, space, and data
efficiency in de novo genome assembly

We consider the problem of de novo genome assembly from shot gun data, wherein an
underlying (unknown) DNA sequence is to be reconstructed from several short substrings of
the sequence. We propose a de novo assembly algorithm, OnlineOfflineAlgo. For noiseless
reads of length at least twice the minimum length, OnlineOfflineAlgo requires minimum
coverage, is time-efficient and is space-optimal under the i.i.d. genome model. The key idea
to achieve space and time efficiency is to break the procedure into two phases, an online and
an offline phase. We design the algorithm from an information theoretic perspective of using
minimum amount of data. The key idea to achieve space and computational efficiency is to
break the procedure into two phases, an online and an offline phase. We remark that this
can serve as an evidence of the feasibility of using an information-theoretic perspective to
guide practical algorithmic design in de novo genome assembly.

3.1 Introduction

De novo genome assembly is an important process that contributes greatly to the understand-
ing and advancement of medicine and biology. The advent of next-generation sequencing
technologies has drastically reduced the costs and the time associated to DNA sequencing
in the last ten years [62]. Under these next-generation technologies, reads (i.e., substrings)
of the underlying DNA sequence are first obtained, from which the underlying sequence is
then inferred computationally. Due to the massive amounts of data generated, there is a
great need to address the computational aspects of the sequencing process [51, 53]. Thus,
algorithm design for assembly of such reads for DNA sequencing remains an important al-
gorithmic challenge.

In this chapter, we consider the problem of designing efficient algorithms for de novo
genome assembly from shot-gun data. We present a novel algorithm for de novo genome as-
sembly that is efficient in terms of both (storage-)space and computations, and furthermore,

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 30

minimizes the number of reads required for recovering the underlying DNA sequence.

The approach we take towards algorithm design is based on an information-theoretic
perspective [38]. This model, which we shall refer to as the 'i.i.d. model’, is a simple
generative model for the DNA sequence and the reading process. This model, per se, is
not a very accurate description of real DNA sequences, but provides good insights with
respect to this problem. In particular, this model has previously been employed to analyse
the fundamental requirements of a sequencing process (e.g., the number of reads required
for correct reconstruction) and to analytically compare the performance various existing
algorithms. In this chapter, we first design an efficient sequencing algorithm based on this
model, and subsequently use this as a building block towards de novo assembly in more
realistic scenarios.

The contributions of this work thus are:

1. construction of a space, time and data efficient de novo sequencing algorithm based on
the i.i.d. model,

2. construction of a framework towards building efficient de novo assembly algorithms for
real data, and

3. providing evidence of the feasibility of a information-theoretic perspective to building
practical algorithms for de novo assembly (as opposed to using it for the purposes of
analysis alone).

The key idea behind this algorithm, that helps it retain both space and computational
efficiency, is to divide the task into two phases: an online phase and an offline phase. Current
algorithms (e.g., [50, 8, 17, 13, 53|) operate only under an offline phase, wherein they require
all the reads at their disposal at the beginning of the execution of the algorithm. Such
an approach leads to a considerably high storage space requirement since all the reads are
required to be stored, and are then processed jointly. On the other hand, the online phase of
our algorithm processes and combines reads on the fly, thereby offering a significant reduction
in the storage space requirements. We provide additional algorithmic novelties to ensure that
the two phases are executed in an efficient manner.

We note that while a lower computational complexity directly relates to lowering the
sequencing time, a low space requirement can also contribute significantly to this cause. A
lower storage requirement essentially enables the storage of all the data (i.e., all the necessary
information required for assembly) in the faster but limited main memory. This results in a
faster sequencing as compared to algorithms that have a larger storage footprint, and thus
mandate either buying a greater amount of (expensive) main memory, or store and read part
of the data from the (slower) disks.

The remainder of the chapter is organized as follows. Section3.2 describes the i.i.d.
generative model of [38], along with the fundamental bounds on the various parameters for
exact recovery. Section3.3 presents a space-and-computation-efficient and data-requirement-
optimal assembly algorithm under the i.i.d. generative model. Section3.4 presents an analysis
of this algorithm. Conclusion is drawn in Section3.5.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 31

3.2 The basic generative model

Notation

Assume that the underlying sequence is haploid, and is G bases long. Denote the sequence
by a G-length vector Z¢, with each of its elements being A, C, G, or T. We have at our
disposal, N reads (substrings) of Zg, each of length L, and the goal is to reconstruct Zgfrom
these N reads.

Throughout the chapter, we shall use the terms underlying sequence and underlying
genome interchangeably.

The i.i.d., Error-free Model [38]

The underlying DNA sequence Zgand the set of reads are assumed to be generated in the
following manner. Each entry of the underlying sequence Z4is independently and identically
distributed on the set of four alphabets {A, C, G, T}, with probabilities {pi, ps, p3,ps} re-
spectively. Here, min}_, p; > 0 and Z?Zl pi = 1. The values of {p1, ps, p3,ps4} may or may
not be known — our algorithm can handle both the cases. The N reads are obtained by
noiseless sampling from the long underlying sequence . The starting positions of the reads
are unknown, and are assumed to be uniformly (and independently) distributed across the
entire sequence Tgof length G. Moreover, for simplicity of exposition, we assume that the
reads may also be wrapped around Zg, i.e., if the starting position of a read lies in the last
(L — 1) bases of Zg, then the L bases of the read consist of the last few bases of Zgfollowed
by the first few bases of 5. Again, this condition of wrapping around is not fundamental to
our algorithm, and only aids in the analysis. The reads are assumed to be free of errors or
missing data. The setting is illustrated via an example in Fig.3.1. The goal is to exactly
recover the underlying sequence 7.

Fundamental bounds under the i.i.d. Model [38]

Motahari et al. [38] previously showed that for exact recovery of T, there exists a tradeoff
between the number of reads N and the length L of each read. In particular, in an asymptotic
setting, they derived a precise characterization of the values of (N, L) under which exact
reconstruction is feasible, as described below.

The scheme for assembly provided in [38] is a greedy one. Under this scheme, the maxi-
mum overlap between every pair of reads is computed first. Pairs of reads are then merged
in the decreasing order of overlaps. For this algorithm to fail, there are two possible sources
of errors:

(a) Lack of coverage: There exists one or more bases in Zgthat are not covered by any of
the N reads.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 32

GGAAC
CTGAC
ACAGT
AACTG
ACAGT
AGTGG

(a) Original Sequence T (b)
Reads

ACTGACAGTGGA

Figure 3.1: Example illustrating the setting and notation of the model. (a) shows the original
sequence Tgof length G = 12, and (b) shows N = 6 reads, each of length L = 5. Observe
how the reads GGAAC and AACTG wrap around Zg. The sequence Tgwas generated
with the base in each position being picked randomly and independently with a probability
p1 = p2 = p3 = ps = 0.25.The starting positions of each read in Fgwas picked uniformly at
random from {1,...,12}.

Impossible

~ Our (efficient)
algorithm

Zq —

2 4 L
loga

Figure 3.2: Plot showing the set of parameters achievable, impossible to decode for, and
those which our algorithm operates under.

(b) Confounding due to repeats: Two reads, which do not overlap in Z, coincidentally have
an overlap that is larger than their overlaps with the reads that are their true neighbours.

For instance, for the sequence depicted in Fig.3.1a, the set of reads {ACTGA, TGACA,
CAGTG, AGTGG} would cause an error due to lack of coverage since the last position
is not covered by any of the reads. On the other hand, the reads {ACTGA, ACAGT,
AGTGG,GAACTY} would confound the algorithm due to the repeats: the algorithm would
append GAACT at the end of ACTGA (due to the overlap ‘GA’), while the correct merge
would have been to append ACAGT at the end of ACTGA (they have an overlap of only
‘A).

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 33

It is shown in [38| that under the greedy algorithm, when

2
L > In G, and 3.1
=) (31)
GInG
N > 7 (3.2)

the probability of error decays exponentially with an increase in G. Here, Hy(p) is the Renyi
entropy of order 2 for the distribution {py, p2, p3, ps4}, and is given by

Hy(p) = =In} _p}. (3.3)

When conditions(3.1) and(3.2) are satisfied, the probability of error under the greedy algo-
rithm goes to zero asymptotically as G — oo. It is also shown in [38] that the conditions(3.1)
and(3.2) are necessary for any algorithm to be able to correctly reconstruct the sequence
el

The greedy algorithm of [38] described above is highly suboptimal in terms of space and
computation efficiency. In particular, since it stores all the reads, it requires a space of
O(NL) = ©(GIn®G). Furthermore, the algorithm needs to make pairwise overlap compu-
tation for each pair of reads, thus resulting in a computation complexity lower bounded by
O(N2L) = @(G2¥). In the next section, we describe our algorithm that is efficient in
terms of storage space and computation requirements, and is also optimal with respect to
the number of reads required.

3.3 Main algorithm

The proposed algorithmic framework operates as follows. Depending on the (stochastic)
model for the process, define a similarity metric between any two reads. Also find a threshold
such that under the model considered, there is a vanishing probability of two non-adjacent
reads having a similarity greater than that threshold. The first phase of the algorithm is an
online phase, where two reads are merged whenever their similarity crosses the threshold.
This phase thus allows the algorithm to require a small storage space, since all the reads
now are not required to be stored separately. The second phase of the algorithm is an offline
phase, where the remaining reads are merged in a greedy-yet efficient manner, exploiting the
knowledge that no two of the remaining cotigs gave a similarity greater than the threshold.
Finally, depending on the underlying model of errors, run a third ‘consensus’ phase that
performs a consensus operation to obtain a final result from the scaffold construction (this
third phase is not required in the absence of errors, or if missing data is the only form of
errors). We now make this framework concrete by applying it to an i.i.d. model in the
absence of errors.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 34

[ccsc | GoTr | Acar {acoh |
(gocc | Gean | TGt

Figure 3.3: An example of MergedContig and K-mers data structures. Each row represents
one distinct merged-contig/K-mer respectively. The entries of MergedContig are split into
consecutive K-length segments represented via curly braces. These K-length segments are
stored in the K-mers table in a sorted manner. Also depicted (through indices 1 to 10) is
the one-to-one correspondence between the entries of the two tables, which are implemented
via pointers both ways.

[coce | acan | Trr_cor |

Implemented as a linked list with K reserved space for each entry

CCGG GGTT ACGT ACGA_ GICA CGCG ;GCC GCGA §GT

Contig-prefix Contig-suffix

Figure 3.4: Implementation details of the MergedContig data structure. Each contig in the
table is stored in the form of a linked list with each element of the list accommodating a
sequence of length K, and each element having a pointer to the immediately succeeding
length K sequence in that contig. Pointers to the beginning and end of each contig are
stored separately. The set of contigs in the example are depicted on top of the figure, and
its implemented as a linked list is depicted at the bottom of the figure. The parameters L
and K take values 8 and 4 respectively in this example.

Parameters

Our algorithm requires the read lengths to satisfy

L>

2) InG. (3.4)

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 35

Implemented as a red-black tree

8 GCGA

D CCGG 8 GTCA
3 ACGT ® CGCG @ GGTG @ TGGT
? GGce 9 TTTT

4 ACGA

& cocs
8 ccon

Figure 3.5: Implementation details of the of K-mers data structure. The K-mers are stored
in a sorted manner as a red-black-tree. The list of K-mers in this example is displayed on
the left, and the corresponding red-black-tree is depicted on the right of the figure. The
parameters L and K take values 8 and 4 respectively in this example.

For any L satisfying this condition, our algorithm is optimal with respect to the number of
reads required for successful exact reconstruction, i.e., operates with

GlnG
N = 7 (3.5)
Note that the value of L required by our algorithm(3.4) is only a factor of 2 away from
the lower bound(3.1). This may not be of a great concern in general, since for example,
substituting G = 10'° and assuming p; = 0.25V4, we get the requirement to be L > 67 which
is certainly feasible with today’s sequencing technologies. On the other hand, the optimality
of N (see(3.2) and(3.5)) is perhaps a significant advantage offered by this algorithm since
this allows the sequencing to be carried out much faster.
Associated to our algorithm, we define an additional parameter K as
2

K= InG. (3.6)

This parameter shall be extensively employed in the algorithm.?

Data structures employed

The algorithm employs two data-structures, ‘MergedContig’ and ‘K-mers’. A high-level
desription of these data structures is provided below; details will be clarified in the subsequent
sections.

!The parameter K may also be chosen to have any higher value than3.6, and this will continue to possess
theoretical correctness guarantees provided in Section3.4. The space and computation complexity of the
algorithm remains the same (in an order sense) as long as K is chosen to be ©(In G).

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 36

e MergedContig: This is a table that stores the set of contigs that have been merged
at that point in time. The number of entries, and the length of each entry vary with
time. To support these dynamics, the MergedContig table is implemented via a linked
list.

e K-mers: This is a table storing a sorted list of entries, each of (equal) size K. The
number of entries in K-mers changes over time, and the data structure needs to support
efficient real-time search, (sorted) insertion and deletion. Thus, we implement K-mers
as a self-balanced binary tree (e.g., a red-black tree).

The entries of the K-mers table are K-length substrings of the entries of “Merged-contig”,
and there are pointers pointing back and forth between the corresponding elements of the
two data structures.

The MergedContig and K-mers data structures are initially empty.

The data structures are illustrated via an example in Figs.3.3,3.4 and3.5. In particu-
lar, Fig.3.3 depicts the relation between the MergedContig and the K-mers data structures,
Fig.3.4 illustrates the implementation of MergedContig, and Fig.3.5 illustrates the imple-
mentation of K-mers. These illustrations are associated to the parameters L = 8 and K = 4.

Algorithm

The main assembly algorithm (see Algorithm4) is divided into two phases: the first phase
is an online phase and the second is an offline phase. At a higher level, in the online phase,
reads with overlaps of K or more contiguous positions are merged in real-time. (With respect
to the general framework described previously, the distance metric is thus the amount of
contiguous overlap and the threshold is K.) This phase thus allows the algorithm to require
a small storage space, since all the reads now are not required to be stored separately. The
comparisons and merges are made efficient by implementing the K-mers data structure as a
red-black-tree, which enables fast searching, insertion and deletion. The offline phase merges
the remaining set of contigs in a greedy-yet-efficient manner. This phase is made efficient by
exploiting the fact that (following the online phase) no pair of contigs will have an overlap
larger than K.

We also implement the following two subroutines that perform these tasks efficiently.
Subroutine Combine() is used in the online phase for merging a new read with existing
contigs. Subroutine Matching() is used in the offline phase for finding the best possible match
(i.e., one with highest contiguous overlap) of a prefix contig among a set of suffix contigs, or
vice versa. The precise algorithms of the two subroutines are provided in Algorithmb and
Algorithm6 respectively.

The operation of the online and offline phases of the main assembly algorithm are illus-
trated via an example in Figs.3.7 and3.8 respectively. These illustrations are associated to
parameters L = 4 and K = 2, and assume an underlying sequence as GCGTGGACCC'. The
illustration of the online phase considers four newly arriving reads GCGT, ACCC, GTGG
and GGAC (in that order).

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 37

Algorithm 4 Main assembly algorithm

1. Phase 1: online
Execute the following for every arrival of a new read 7 (of length L).

a) Segment 7 into K-mers, i.e., all consecutive K-length subsequences (a total of L — K + 1 of them)

b) Search each of these (L — K + 1) subsequences in the K-mers table, and for each exact match, obtain
the corresponding parent entry in “Merged-contig”. There will be at-most two such parent entries in
“Merged-contig” (see Fig.3.6).

i. If there are no matching entries, then run subroutine Combine(7, null, new, null).

ii. If there is exactly one matching entry ¢ in “Merged-contig”, and if ¥ completely subsumes 7, then
do nothing. Such a matching is depicted in Fig.3.6b.

iii. If there is exactly one matching entry 4 in “Merged-contig”, and if this entry has a partial overlap
with 7, then (see Fig.3.6a)

A. if prefix of 7 overlaps with suffix of ¥, run subroutine Combine(7, ¥, new, existing)
B. if suffix of ¥ overlaps with prefix of %, run subroutine Combine(¥, 7, existing, new).

iv. If there are two matching entries, then 7 will have partial overlaps with both, as depicted in
Fig.3.6¢c. Suppose the suffix of 7 overlaps with the prefix of #; and the prefix of ¥ overlaps with
the suffix of ¢, then run subroutine Combine(¥1, ¥2, existing, existing).

2. Phase 2: offline
This phase merges all remaining contigs in MergedContig.

a) Discard the K-mers table.

b) Create two tables “pre-K-mer” and “suf-K-mer”, both implemented in the same way as “K-mer”, and
populate them as follows (note that both these tables will be sorted).

¢) For each entry in MergedContig, store its K-length prefix as an entry in “pre-K-mer”.

d) For each entry in MergedContig, store its reversed K-length suffix as an entry in “suf-K-mer”.

e) If table “pre-K-mer” is empty, exit. Else, for the first entry ¢ of “front-K-mer”, do the following;:
ity , 51 < 0,52 < —1, Is « null

ii. Execute subroutine Matching(#,, suf, s2). If “no match found” then go to (2b iv). Else, let ts
denote this best match, and let s; denote the overlap between t; and t; and continue to (2b iii).

iii. Execute subroutine Matching(fs, pre, s1). If “no match found” then go to (2b iv). Else, let %,
denote this best match, and let sy denote the overlap between s and 123, and go back to (2b ii).

iv. Merge the contigs corresponding to E; and Z, in “MergedContigs”. Delete f; from “pre-K-mer” and
t, from “suf-K-mer”. Go to (2e).

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 38

Algorithm 5 Subroutine : Combine(t, @, preType, sufType)

1. If preType=new and sufType=null then add ¢ as a new entry in table “Merged-contig”.
Add the K-length prefix of ¢ and the K-length suffix of ¢ as two new entries in the
K-mers table. Exit the subroutine.

2. If preType = existing, delete the K-mer corresponding to the prefix of ¢ from K-mers
3. If sufType = existing, delete the K-mer corresponding to the suffix of « from K-mers
4. Merge the entries ¢ and @ in table “Merged-contig” as a single entry.

5. If a part of the merged entry is not included in K-mers (due to steps 2 and 3 of the
subroutine, or if ¢ or @ is a new read), extract K-length substrings covering this part
and add them as new entries into K-mers.

Algorithm 6 Subroutine : Matching(f, searchTable, s)
1. If searchTable=suf:

a) For the w = (£ — 1) downto (s + 1)
i. Let @ be the first w elements of . Reverse #. Append @ with (K — w) zeros.
ii. Search for ¢’ in “suf-K-mer”.

iii. If there is an entry in “suf-K-mer” that matches the first w elements of ¥, and
that the parent (in MergedContig) of this entry is different from the parent
of t, then return this entry and the value of w. Exit the subroutine.

b) Return “No match found"
2. If searchTable=pre:

a) For the w = (£ — 1) downto (s + 1)

i. Let ¥ be the last w elements of . Append ¥ with (K — w) zeros.
ii. Search for ¢ in “pre-K-mer”.
iii. If there is an entry in “pre-K-mer” that matches the first w elements of ¥, and
thaj the parent (in MergedContig) of this entry is different from the parent
of £, then

b) Return “No match found"

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 39

L

-
BT

(a) New read matching the suffix
an existing merged contig: ap-
pend the new read at the end of
the existing contig.

NENE

N
LHE

(b) New read completely over-
lapped by an existing merged
contig: discard the new read
since it is already covered.

IRE
Sl

ConR

R —p—

FH gy

(¢) New read matching the prefix of one merged con-
tig and the suffix of another merged contig: merge
these two existing contigs.

Figure 3.6: Different ways a new read may match existing entries in MergedContig, and
corresponding means of merging them. Existing reads in MergedConting are depicted yellow
(lightly shaded when viewed in grayscale) and new reads in green (dark shaded when viewed
in grayscale). Curly braces indicte the substrings that are entries of the K-mers table.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 40

MergedContig
GCGT GCGT

MergedContig K-mers
ACCC GCGT
ACCC

MergedContig

GTGG

MergedContig

GCGTGGACCC

GGAC R

Figure 3.7: An example of the online phase of the main assembly algorithm, with L = 4 and
K = 2. The four parts (from top to bottom) show the updates to the MergedContig and

the K-mers tables under the algorithm upon arrival of four new reads.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 41

ACACGGG d GGGACAC

GACACTT CCCCCAC

Sort by prefix Sort by suffix

ACACGGG CCCCCAC

Sort by prefix Sort by suffix

Figure 3.8: An example of the offline phase of the algorithm. The figures depicts two merges
in this phase: the subfigure above shows one merge and the subfigure below shows the
immediate next merge. The tables depicted are the pre-K-mer and the suf-K-mer tables (on
the left and right respectively). The MergedContig table of the offline phase is not depicted
here. Highest overlap counterparts of the contig being matched are indicated by an arrow.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 42

3.4 Analysis

We analyse the performance of our algorithm in this section. Subsection3.4 describes sim-
ulations and experiments, while Subsections3.4,3.4 and3.4 provide a theoretical analysis of
the algorithm.

To state the theoretical analysis in a nutshell, our algorithm is space-efficient in that it
requires only O(G) main memory and computation-efficient as it requires O(G In® G) com-
putations. The algorithm also minimizes the amount of data (i.e., the number of reads)
required for successful reconstruction by achieving(3.5) which is (asymptotically) the mini-
mum number of reads required for successful reconstruction of the sequence.

Simulation and experiments

We have built a prototype of the assembler based on the algorithm provided, and the source
code of the prototype has been made available. Using this prototype, we perform experiments
to test the performance of the assembly algorithm. In particular, we consider an underlying
DNA sequence of length G = 1000, and for various values of the read length L and coverage
%, we plot the fraction of times the algorithm successfully reconstructed the underlying
sequence exactly.? We experiment with three different underlying sequences: (a) a synthetic
sequence generated from an i.i.d. uniform distribution at each base, (b) a segment of human
chromosome 22 and (c) a segment of a bacteria genome Enterobacteria phage. The results
are plotted in Fig.3.9.

We remark that under the i.i.d. model with each base drawn from a uniform distribution,
our algorithm requires (in theory, asymptotically) a coverage of at least % > 6.9078 to
entirely cover the underlying sequence and a read-length threshold of at least L > 4% =
39.8631 for successful reconstruction. The empirical results of Fig.3.9 are fairly close: the
genome is recovered correctly a reasonable fraction of times when L > 60 and coverage is
> 9x. We reckon that the observed discrepancy is because the parameter G = 1000, and
hence the algorithm is operating in a regime that is far from hitting asymptotic limits.®> One
can also observe from the plots that, as one would expect, the performance of the algorithm

improves with an increase in coverage or with an increase in the read lengths.

Theoretical correctness guarantees

One can see that the algorithm described above will give a correct solution whenever the
following three conditions are satisfied:

2For the simulations below, we employ the algorithm as in Algorithm4. However, the implementations
of the individual data-structures have not been fine tuned yet (e.g., the K-mers table is implemented as
an array instead of the more efficient red-black-tree). This preserves all the correctness guarantees of the
algorithm, but does not provide as efficient a performance in terms of space and computation.

3We are also simulating the algorithm for much higher values of G, but the simulations are still running
at the time of submission.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 43

0.98

0.95

0.91

Coverage

0.82

0.69

120

90
Read length

(a) An i.i.d. synthetic sequence

0.97

0.96

0.90

Coverage

0.83

0.68

60 120 150

90
Read length

(b) First 1000 bases of human chromosome 22

0.97

0.95

0.90

Coverage

0.82

0.64

120 150

90
Read length

(c) First 1000 bases of a bacteria genome Enterobacte-
ria phage

Figure 3.9: Empirical variation of the proportion of instances of successful recovery with
read length and coverage. The algorithm was run on three different underlying genomes, with
the reads being sampled uniformly at random from the entire sequence. 500 simulations were
performed for each triplet of (underlying genome, read length, coverage).

e coverage: every position in Zgshould be covered at-least once
e no-duplication: in Zg, no sub-string of length K should occur more than once

e no-confounding: for any read, the maximum overlap at its suffix (prefix) should be
with the read that occurs next (previous) to it in Z¢.

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 44

The condition of no-duplication ensures that there are no errors in the merges performed in
the online phase, the no-confounding condition prevents any incorrect merging in the offline
phase, and the coverage condition ensures that each of the positions of Zgare covered in the
reads.

Under the i.i.d. model, one can show using [38, Theorem 1| that when L > —— 5 InG

and when N > GIEG, the first and the third conditions are satisfied with a probabihty that
decays exponentially in the length G of the underlying sequence. Furthermore, Theorem
[38, Theorem 1| also ensures that with a high probability (decaying exponentially in G),
there are no two identical substrings of length 7 ()lnG in . Thus the conditions(3.4)
and(3.5) guarantee successful reconstruction of Zg. In particular, in the asymptotic setting
as G — oo, the correctness is guaranteed with probability 1

We note that our algorithm is guarantees the correct output (with probability 1) whenever
the three conditions listed above (coverage, no duplication, no confounding) are satisfied.
This makes the algorithm robust to the assumptions on Z'gas well as to the starting positions
of the N reads, as long as these three conditions are satisfied.

Space complexity

We first analyze the space complexity (i.e., the storage space requirements) of the algo-
rithm. The data-structures “MergedConting” and K-mers encompass all the storage space
requirements under our algorithm.

We begin with an analysis of the MergedContig data structure, which is employed in
both the online and offline phases. As we saw previously in Section3.4, since K > + lnG
all merge operations performed in the online phase are correct (with a high probability)
Furthermore, observe that since L = 2K, any position in the underlying sequence Zgcan be
a part of at-most two contigs in MergedContig (otherwise two of the contigs in MergedContig
containing this position would have had an overlap of at least K, and would have been merged
previously with each other). It follows that in MergedContig, every position appears at most
twice, and hence the total size of the data stored is no more than < 2G bases. This requires
a storage space of at most 4G bits. Furthermore, it follows from a similar argument that the
total number of contigs stored in MergedContig is at most % We implement MergedContig
as a linked list, and the overhead caused by the pointers employed is no more than %%
For each entry of MergedContig, we also employ pointers to keep track of its prefix and suffix
that are stored in K-mers, and this consumes a space of at most 2¢2¢ From(3.4) we have

T 2"
L > 5= lnG and hence the total space required to store these pointers is upper bounded

by glﬁz G Summing these items up, memory of size no larger than (4 + 3;2 g))G bits is
required for MergedContig.

Next we analyse the space requirements of the K-mers data-structure. The analysis en-
compasses all three tables using this data-structure, i.e., K-mers, pre-K-mers and suf-K-mers.
Since K-mers is allowed to be deleted at the end of the online phase, the storage require-

ments for these tables is max(storage required by K-mers table, sum of storage required by

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 45

pre-K-mer and suf-K-mer tables). Thus, each of the parameters (e.g., storage requirement,
number of entries) that are analysed below actually correspond to the max(parameter under
K-mers table, sum of parameter under pre-K-mer and suf-K-mer tables). The aggregate
length of all the entries in the table is upper bounded by 4G, and hence storing this data
requires a space no more than 8G bits. We also need pointers referring the entries of K-mers
back to their respective parents in the MergedContig table. The number of entries in this
table is at most %, while the number of entries in MergedContig is at most % Thus these
pointers require a space of at most 4[(51125 bits. We implement the K-mers data-structure as
a self-balanced binary tree, and since the K-mers contains at most % entries, the pointers
for this implementation require a space of at most 4¢1E bits, Summing up these quanti-

Kln2
ties, and substituting the value of K from(3.6), we see that a memory of size no more than

<8 + 2)> G bits is required for the K-mers data-structure.

In2
. : . 5.5Hz(p)
Thus the total space requirements for the algorithm is upper bounded by (11 + T";p) G
bits.

Computational complexity

We now analyze the computational complexity of the algorithm. We start with an analysis
of the complexity of the online phase. The online phase requires processing of N = %
reads. For each read, we obtain O(L) number of K-mers. For each of these K-mers, an exact
match is searched for in the K-mers table. Since this table is implemented as a red-black-
tree, each search takes a worst case of O(In %) instances of matching two length K strings.
Thus the search complexity is O(K In %) for each K-mer. Furthermore, one needs to update
the MergedContig and the K-mer tables, which also takes at most O(K In G) computations.
Aggregating these quantities and substituting the value of K from(3.6), we obtain that the
online phase requires an aggregate computation upper bounded by O(GIn* G).

Next we analyse the computational-complexity of the offline phase. To this end, note
that the total number of entries in MergedContig can be at most O(%), and hence the same
also applies to the pre-K-mer and the suf-K-mer tables. Finding the best match in suf-K-mer
for an entry of pre-K-mer takes O(K In$). Since there are O(é%) entries in MergedContig,
the subroutine of finding the best match is run a total of O(K) times. Aggregating these
quantities and substituting the value of K from(3.6), we obtain that the offline phase requires
an aggregate computation upper bounded by O(G'In* G).

Thus the overall computational complexity is O(G In® Q).

3.5 Conclusion
In this chapter, we presented a new algorithm for de novo genome assembly that is effi-

cient with respect to the storage space and computation requirements, and is optimal with
respect to the number of reads required for reconstruction. The algorithm is based on an

CHAPTER 3. TOWARDS COMPUTATION, SPACE, AND DATA EFFICIENCY IN DE
NOVO GENOME ASSEMBLY 46

i.i.d. generative model for the underlying DNA sequence. Our assembly algorithm operates
in two phases, an online and an offline phase. The online phase merges reads with high
overlaps on the fly, while the subsequent offline phase merges the remaining reads greedily.
The operations in both phases are designed to be efficient in terms of space and time. In
particular, by combining reads at run-time, the online phase significantly reduces the storage
space requirements, which can also be exploited to achieve a much faster assembly by storing
a greater proportion of the data in the fast-but-expensive main memory. This also serves
as an algorithmic framework for designing algorithms in the future addressing various other
scenarios and models. Furthermore, this also provides evidence of the feasibility of using the
information-theoretic perspective for constructing practical algorithms for de novo assembly
(and not merely for analysis and comparison of different algorithms).

47

Chapter 4

FinisherSC : A repeat-aware tool for
upgrading de-novo assembly using long
reads

We introduce FinisherSC, a repeat-aware and scalable tool for upgrading de-novo assembly
using long reads. Experiments with real data suggest that FinisherSC can provide longer
and higher quality contigs than existing tools while maintaining high concordance. The tool
and data are available and will be maintained at http://kakitone.github.io/finishingTool/

4.1 Introduction

In de-novo assembly pipelines for long reads, reads are often trimmed or thrown away.
Moreover, there is no evidence that state-of-the-art assembly pipelines are data-efficient.
In this work, we ask whether state-of-the-art assembly pipelines for long reads have already
used up all the available information from raw reads to construct assembly of the highest
possible quality. To answer this question, we first collect output contigs from the HGAP [12]
pipeline and the associated raw reads. Then, we pass them into our tool FinisherSC to see
if higher quality assemblies can be consistently obtained after post-processing.

4.2 Methods

Usage and pipeline

FinisherSC is designed to upgrade de-novo assembly using long reads (e.g. PacBio® reads).
It is especially suitable for data consisting of a single long reads library. Input to FinisherSC
are contigs (contigs.fasta) constructed by an assembler and all the raw reads with adaptors
removed (raw_reads.fasta). Output of FinisherSC are upgraded contigs (improved3.fasta)
which are expected to be of higher quality than its input (e.g. longer N50, longer longest

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 48

raw_reads.fasta

A 4

Error correction

¢ cleaned_reads.fasta

Celera Assembler

contigs.fasta
A 2

N FinisherSC

improved3.fasta

v

Figure 4.1: Pipeline where FinisherSC can fit in

contigs, fewer number of contigs, high percentage match with reference, high genome fraction,
etc). In Fig 4.1, we show an example pipeline in which FinisherSC can fit. As shown in
Fig 4.1, FinisherSC can be readily incorporated into state-of-the-art assembly pipelines (e.g.
PacBio® HGAP).

Algorithm and features

The algorithm of FinisherSC is summarized in Alg 7. Detailed description of the algorithm
is in the supplementary materials. We summarize the key features of FinisherSC as follows.

e Repeat-aware: FinisherSC uses a repeat-aware rule to define overlap. It uses string
graphs to capture overlap information and to handle repeats so that FinisherSC can
robustly merge contigs. There is an optional component, X-phaser [29], that can resolve
long approximate repeats with two copies by using the polymorphisms between them.
There is also an optional component, T-solver, that can resolve tandem repeat by using
the copy count information.

e Data-efficient: FinisherSC utilizes all the raw reads to perform re-layout. This can fill
gaps and improve robustness in handling repeats.

e Scalable: FinisherSC streams raw reads to identify relevant reads for re-layout and
refined analysis. MUMMER [26] does the core of the sequence alignment. Although
MUMMER is single threaded, we provide an option to segment the files and run multi-

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 49

ple MUMMER jobs in parallel. These techniques allow FinisherSC to be easily scalable
to high volume of data.

Algorithm 7 Main flow of FinisherSC
Input : contigs.fasta, raw _reads.fasta
Output: improved3.fasta

1. Filter completely embedded contigs
2. Form a string graph with the BEST successors/predecessors as edges

3. Condense the string graph by contracting edges with both in-degree and out-degree
being 1

4. Use raw reads to declare potential successors/predecessors of dangling contigs

5. Merge contigs (with gaps filled by reads) when they respectively only have 1 successor/1
predecessor

6. Form a string graph with ALL successors/predecessors as edges

7. Merge contigs with only 1 predecessor or 1 successor and each has no more than two
competing edges

4.3 Results and discussion

Experimental evaluation on bacterial genomes

We evaluated the performance of FinisherSC as follows. Raw reads were processed according
to the pipeline in Fig 4.1. They were first error corrected and then assembled into contigs by
an existing pipeline (i.e. HGAP). Contigs were upgraded using FinisherSC and evaluated for
quality with Quast [19]. The data used for assessment are real PacBio® reads. These include
data recently produced at JGI and data available online supporting the HGAP publication.
We compared the assembly quality of the contigs coming out from the Celera assembler
[42] of HGAP pipeline, the upgraded contigs by FinisherSC and the upgraded contigs by
PBJelly [16]. A summary of the evaluation is shown in Fig 4.2. More details can be found
in the supplementary materials. We find that FinisherSC can upgrade the assembly from
HGAP without sacrifice on accuracy on these test cases. Moreover, the upgraded contigs by
FinisherSC are generally of higher quality than those upgraded by PBJelly. This suggests
that there is extra information from the reads that is not fully utilized by state-of-the-art
assembly pipelines for long reads.

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 50

Experiments on scalability

We tested the scalability of FinisherSC by applying it to handle larger genomes. The data
used are the benchmark data available on PacBio Devnet. We run FinisherSC with the
option of using 20 threads (-par 20) on a server computer. The server computer is equipped
with 64 cores of CPU at clock rate of 2.4-3.3GHz and 512GB of RAM. The running time is
tabulated in Table 4.1.

Discussion

Although FinisherSC was originally designed to improve de-novo assembly by long reads, it
can also be used to scaffold long contigs (formed by short reads) using long reads. For that
use case, we note that the contigs formed by short reads can sometimes have length shorter
than the average length of long reads. Therefore, we suggest users to filter out those short
contigs before passing them into FinisherSC.

| Genome name | Genome size (Mbp) | Size of reads (Gbp) | Running time (hours) |
Caenorhabditis elegans 104 7.65 23
Drosophila 138 2.27 9.4
Saccharomyces cerevisiae 12.4 1.40 0.66

Table 4.1: Summary of running time for the experiments on scalability

Number of contigs comparison Percentage match against

reference genome

150 102.0
100.0
100 — 9.0
96.0
50 94.0
= (R
0 90.0
(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
W HGAP M FinisherSC - PBlelly “HGAP & FinisherSC = PBlelly

Figure 4.2: Experimental evaluation on bacterial genomes. (a,b) : Pedobacter heparinus
DSM 2366 (PacBio® long reads from JGI) (c, d, e) : Escherichia coli MG 1655, Meiothermus
ruber DSM 1279, Pedobacter heparinus DSM 2366 (PacBio® long reads supporting the
HGAP publication).

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS o1

raw_reads.fasta / raw_reads.fasta contigs.fasta

Filter completely embedded contigs

noEmbed.fasta
Form a string graph with BEST successors/
predecessors as edges

cleaned| reads.fasta ff - String_graph_1

fi Condense the string graph by contracting
- / noEmbed.fast edges with both in-degree and out-degree being 1

Celera Assembler
improved].fasta

Use raw reads to declare potential
contigs|fasta fi successors/predecessors for dangling contigs
! String_graph_2

: Merge contigs(with gap filled by reads) when they [llJiui2 PRERS
respectively only have 1 successor/1 predecessor

Extra blocking edges improved2 fasta

Form a string graph with ALL
successors/predecessors as edges

improved3.fasta

String_graph_3

Merge contigs with only 1 predecessor or 1 successor
and each has no more than two competing edges

improved3.fasta

Figure 4.3: Summary of data flow of FinisherSC

4.4 Algorithm details, theoretical justification and more
data analysis

Summary of dataflow in FinisherSC and key experimental results

We visualize in Figure 4.3 the flow of FinisherSC. Moreover, we summarize the key experi-
mental results in Table 4.2.

Typical use cases

In this section, we describe example use cases of FinisherSC. Below are several scenarios that
FinisherSC is helpful to you.

Low coverage data

There are many reasons that you end up having low coverage reads. You may want to save
chemicals, the genome may be too long, some parts of the experimental setup may just
malfunction or you do not want to overwhelm the assembler with huge amount of data. In

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING

DE-NOVO ASSEMBLY USING LONG READS 52
‘ Genome name ‘ (a) ‘ (b) ‘ (c) ‘ (d) ‘ (e) ‘
Genome size 5167383 | 5167383 | 4639221 | 3097457 | 5167383
Coverage of raw reads 50 30 50 55 53.1
Coverage of corrected reads 32.93 17.74 10.1 11.3 9.5
Coverage of input to Celera 32.93 17.74 10.1 11.3 9.5
N50 of HGAP output 4097401 | 89239 | 392114 | 1053479 | 1403814
N50 of FinisherSC upgraded output 5168551 | 215810 | 1525398 | 3099349 | 2913716
N50 of PBJelly upgraded output 4099674 | 145441 | 1200847 | 1715191 | 3343452
Number of contigs of HGAP output 45 163 21 3 18
Number of contigs of FinisherSC upgraded output 4 41 7 1 5
Number of contigs of PBJelly upgraded output 44 115 14 2 8
Length of the longest contig of HGAP output 4097401 | 254277 | 1241016 | 1390744 | 2103385
Length of the longest contig of FinisherSC upgraded output 5168551 | 637485 | 2044060 | 3099349 | 2913716
Length of the longest contig of PBJelly upgraded output 4099674 | 495596 | 1958341 | 1715191 | 3343452
Percentage match of HGAP output against reference 99.87 98.11 99.51 99.96 99.85
Percentage match of FinisherSC upgraded output against reference | 99.87 98.27 99.60 99.99 99.89
Percentage match of PBJelly upgraded output against reference 99.86 98.34 92.77 99.98 99.97
Total length of HGAP output 5340498 | 5536634 | 4689701 | 3102769 | 5184825
Total length of FinisherSC upgraded output 5212355 | 5139491 | 4660679 | 3099349 | 5167414
Total length of PBJelly upgraded output 5383836 | 5821106 | 4718818 | 3106774 | 5210862

Table 4.2: Experimental evaluation results. (a,b) : Pedobacter heparinus DSM 2366 (recent
real long reads from JGI) (c, d, e) : Escherichia coli MG 1655, Meiothermus ruber DSM
1279, Pedobacter heparinus DSM 2366 (real long reads supporting the HGAP publication).
Detailed analysis by Quast is shown in the supplementary material.

any of these situations, you want to utilize as much information from the reads as possible
because of the scarcity of read data.

Simple setup for assemblers

There are normally a lot of parameters that can be tuned for modern assemblers. It is
also often not clear what parameters work best for your data. However, you do not want
to waste time in repeatedly running the assembler by varying different combinations of
parameters/setting. In this case, you need a tool that can efficiently and automatically
improve your assemblies from the raw reads without rerunning the assembler.

Scaffolding

You may have long contigs prepared from one library and long reads prepared from the other.
In this case, you want to robustly and seamlessly combine data from two libraries through
scaffolding.

Instructions on using FinisherSC

Our software, FinisherSC, is helpful for the use cases discussed above. It processes long
contigs with long reads. You only need to supply the input data files and issue a one-line

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 53

command as follows to perform the processing. Let us assume that mumP is the path to
your MUMMER and destP is the location where the input and output files stay.

e Input : raw_reads.fasta, contigs.fasta
e QOutput : improved3.fasta

e Command :

python finisherSC.py destP/ mumP/

We provide a sandbox example linked in our webpage. Besides the standard usage,
there are extra options with details in our webpage.Specifically, we note that users can run
FinisherSC in parallel by using the option of [-par numberOfThreads].

Detailed description of the algorithm

We adopt the terminology in [29]. Random flanking region refers to the neighborhood
of a repeat interior. A copy of a repeat being bridged means that some reads cover the
copy into the random flanking region. Subroutine 1 removes embedded contigs that would
otherwise confuse the later string graph operations. Subroutines 2, 3, 6, 7 are designed to
handle repeats. Subroutines 2, 3 resolve repeats whose copies are all bridged by some reads.
Subroutines 6, 7 resolve two-copies repeats of which only one copy is bridged. Subroutines
4, 5 utilize neglected information from raw reads. They define merges at locations which are
not parts of any long repeats. !

Algorithm 8 Subroutine 1: Filter completely embedded contigs
Input : contigs.fasta
Output: noEmbed.fasta

1. Obtain alignment among contigs from contigs.fasta
2. For any (x,y) contig pair, if x is completely embedded in y, then we add x to removeList

3. Remove all contigs specified in removetList from contigs.fasta. The resultant set of
contigs are outputted as noEmbed.fasta

ITo simplify discussion, the subroutines described are based on the assumption that reads are extracted
from a single-stranded DNA. However, we remark that we have implemented FinisherSC by taking into
account that reads are extracted from both forward and reverse strands.

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 54

Algorithm 9 Subroutine 2: Form a string graph with the BEST successors/predecessors as
edges

Input : noEmbed.fasta

Output: String graph 1

1. Initialize the nodes of G to be contigs from noEmbed.fasta
2. Obtain alignment among contigs from noEmbed.fasta

3. for each contig x do
Find predecessor y and successor z with the largest overlap with x

if such y exists then
| add an edge y — x to G

end

if such z exists then
| add an edge x — 2z to G

end

end

4. Output G as String graph 1

Algorithm 10 Subroutine 3: Condense the string graph by contracting edges with both
in-degree and out-degree being 1

Input : String graph 1, noEmbed.fasta

Output: improvedl.fasta

1. for each edge uw — v in String _graph 1, do
if out-deg (u) = in-deg (v) =1 then
| condense (u,v) into a single node and concatenate the node labels

end

end

2. for each node z in the transformed String graph 1 do
| output the concatenation of contigs associated with node x to be a merged contig

end

3. Output all the merged contigs as improved]1.fasta

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 55

Algorithm 11 Subroutine 4: Use raw reads to declare potential successors/predecessors of
dangling contigs

Input : improvedl.fasta, raw reads.fasta

Output: String graph 2

1. Initialize nodes of G to be contigs from improvedl.fasta
2. Divide raw _reads into batches Bg

3. Stream the data in Bg.

for b € Bs do
i) align b with contigs from improvedl.fasta

ii) record the overlap information in /

end

4. for each pair of nodes u,v in G do

if u — v is a predecessor-successor pair then
| Add an edge u — v to G

end

if there exists read R such that (u, R) and (R,v) are predecessor-successor pairs according
to I then
| Add an edge u — v to G

end

end

5. Output graph G as String graph 2

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 56

Algorithm 12 Subroutine 5: Merge contigs (with gaps filled by reads) when they respec-
tively only have 1 successor/1 predecessor

Input : improvedl.fasta, String graph 2
Output: improved2.fasta, connectivity info

1. for each edge u — v of String graph_2 do
if out-deg (u) = in-deg (v) =1 then
| condense (u,v) into a single node and concatenate the node labels

end

end

2. for each node in the transformed String graph_2 do
output concatenated contigs as new contigs (with reads filling the gaps) and connectivity

information to connectivity info

end

Algorithm 13 Subroutine 6: Form a string graph with ALL successors/predecessors as
edges

Input : improved2.fasta, connectivity info

Output: String graph 3

1. Use connectivity info to form a graph G with nodes from improved2.fasta. All
predecessor-successor pairs are edges in G.

2. Output the corresponding graph as String graph 3

Algorithm 14 Subroutine 7: Merge contigs with only 1 predecessor or 1 successor and each
has no more than two competing edges

Input : improved2.fasta, String graph 3

Output: improved3.fasta

1. Traverse the String graph 3 for pattern of ul — w3, u2 — u3 , u2 — u4 and that
out-deg (ul) =1, out-deg (u2) = 2, in-deg (u3) =2, in-deg (ud) =1, if found, then,

a) Delete the edge u2 — u3
b) Condense the graph

c¢) Continue until the whole graph is traversed

2. Output the merged contigs as improved3.fasta

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS

Repeat patterns

Typical String_graph_1

o7

Typical String_graph_3

Best successor as an edge All successors as edges
r

Al bridged Best predecessor as an edge All predecessors as edges
- vee
Singly-bridged
1 ﬁ 3 el gZ ve. 02
Not bridged
1 2 [gu—" :S :z g z

Figure 4.4: Repeat patterns, typical String graph 1, typical String graph 3

Justification of the algorithm

Big picture

There are two main parts of the algorithm underlying FinisherSC. They are

1. Gap filling

2. Repeat resolution

With uniform sampling assumption, the gaps are unlikely to land on the few long repeats
on bacterial genomes. Therefore, subroutines 4, 5 can close most of the gaps. For repeat
resolution, subroutines 1, 2, 3, 6, 7 robustly define merges using various transformations of
string graphs. Detailed discussion is in the coming section.

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 58

Detailed justification on repeat resolution

We focus the discussion on a long repeat with two copies. To simplify discussion, we further
assume that each base of the genome is covered by some reads and the read length is fixed.
The goal here is to correctly merge as many reads as possible in the presence of that repeat.
The claim is that Subroutines 2, 3, 6, 7 collectively can achieve this goal. In the case of
one repeat, we only need consider the reads either bridging the repeat copies/ reads at the
interior of repeats/ touching the repeat copies of that repeat. We separate the discussion on
each of the cases depicted in the rows of Fig 4.4. They are listed as follows.

1. Both copies are bridged
2. Only one copy is bridged
3. Both copies are not bridged

Let us first clarify some terminologies before proceeding. A read y is called a successor
of another read x if they have significant head-to-tail overlap in the order of z — y. y is
called the best successor of x if the overlap length is the largest among all the successors of
x. y is called the true immediate successor of x if y is the closest read to x’s right side in the
sequencing process. Similarly, we can also define the corresponding notion for predecessors.

In the first case, without loss of generality, let us consider any read R emerging from the
left flanking region of the left copy. It will get merged with its best successor when condensing
String graph 1. Moreover, the best successor is also the true immediate successor. It is
because reads from the other copy of the repeat either have smaller overlap length or are not
SUCCEeSSOTs.

Now, let us move to the second case. Since there is a bridging read, there are no reads
completely embedded in the interior of the repeat. Without loss of generality, we consider the
case that the left copy is bridged and the right copy is not. Now we label R2 as the bridging
read, R1/R3 respectively as the true immediate predecessor/successor of the bridging read,
R4/R5 as the most penetrating reads into the second copy of the repeat. For all other
reads, they get merged with their true immediate successors/predecessors when condensing
in String_graph 1. For the remaining five items of interest, the main question is whether
there is an edge between R4 and R5 in String graph 1 (i.e. whether the best successor of
R4 is R3). If not, then condensing in String graph 1 will merge R4 with R5, which is the
true immediate successor. If such an edge exists, then we end up with the pattern shown
in Fig 4.4 for String graph 3. This means that only R1 is merged to R2 when condensing
String graph 1. However, given the existence of the Z-shape pattern, graph operations on
String graph 3, the subroutine 7 will merge R2 and R3, and also will merge R4 and R5.

Finally, consider the third case, when both repeat copies are not bridged. For reads that
are not closest to the repeat copies, they get merged correctly when condensing String graph 1.
Without loss of generality, we consider a read x closest to the left flanking region of the left
copy of the repeat. An illustration of this situation in String graph 1 is shown in Fig 4.5.
Let its true immediate successor be T. We are going to show that it will not get merged with

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 59

X T y F_

L — L

—

Figure 4.5: Z-pattern in string graph

Polymorphism
Copy1 | TAGCAGCAAATAGTT... ATGTTTGTC...TTGCC... GCCAGGATGT

Copy2 | TACGACGGAATAGTT...GTGTTTGTT...TTGCC... GTGACCACAG

pistance |001101110000000...100000001...00000...0110110111

Random Repeat interior Random
flanking region flanking region

Figure 4.6: Approximate repeat with two copies

Figure 4.7: Using string graph to define repeat interiors and flanking regions

the wrong read in String graph 1 through a proof by contradiction. If x got merged with
some wrong F, then + — F would be an edge. Let y be the read closest the left flanking
region of the right copy of the repeat. Then, y — F'is also an edge. Therefore, there should
be no merges of x — F, which results in contradiction. Now we consider String graph 3,
if x has only 1 successor, then it should be T. Otherwise, it is connected to both T and some
F. Then, we consider the y coming from the left flanking region of the right copy. There
must be an edge from y to F. If there is also an edge from y to T, then both x and y are not
merged in String graph 3. However, if there is no edge from y to T, then x is merged with
T and y with F correctly.

Approximate repeat phasing option

FinisherSC provides an optional component, X-phaser to resolve approximate repeat with
two copies, which cannot be bridged by any reads. An example of such an approximate
repeat is shown in Fig 4.6. The algorithm behind X-phaser involves two main parts.

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 60

Figure 4.8: Pattern of back-to-back tandem repeat

N AN A

Figure 4.9: Pattern of string graph that corresponds to a typical back-to-back tandem repeat

1. Identify repeat interior and its flanking regions
2. Merge contigs by phasing the polymorphisms within the repeat

Algorithm 15 achieves the first part by performing various operations on a string graph. The
nodes of the string graph are either contigs or reads near the end points of the contigs. An
illustration of a typical string graph is shown in Fig 4.7. The contigs are indicated by solid
circles and reads are indicated by rectangles. The dotted circles specify the random flanking
region and repeat interior that we want to infer through Algorithm 15. The X-phasing step
in [29] achieves the second part. It utilizes the polymorphisms within the repeat interior to
help distinguish the repeat copies. Interested readers may refer to Xphased-Multibridging
in [29] for more details. In FinisherSC, we use the implementation of the Xphasing step in

29].

Tandem repeat resolution option

The optional tandem repeat resolution step can resolve back-to-back tandem repeat. A back-
to-back tandem repeat refers to repeat whose copies directly follow one another. An example
is given in Fig 4.8. FinisherSC provides a component, T-solver, to resolve that. The key
idea is to detect cycles in the string graph that join the reads and contigs. An illustration
of such a graph is shown in Fig 4.9, where the circles are contigs and rectangles are reads
associated with the end points of the contigs. The algorithm behind T-solver is in Alg 16.

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 61

Algorithm 15 Repeat phasing option

Input :improveds3.fasta, raw_read.fasta
Output: improved4.fasta

1. Stream reads to identify reads that are associated with end points of contigs
2. Form a 2-color graph with black nodes as reads and red nodes as contigs. Name it as G

3. for each red node in G do
Perform graph search to determine other red nodes that are reachable by it through path consisting of black
nodes only

end
4. Form a bipartite graph B = (B, Br) with nodes on left /right side representing left /right ends of the contigs.

An edge L — R exists, where L € Br, R € Bg, if there exists a path of black nodes in G such that R is
reachable from L

5. Find connected components in B

6. for each connected component at b € B do
if |bNBr| =2 and |bN Br| =2 then
| define b as a two-copies repeat

end
end
7. for each two-copies repeat| with associated nodes (L1,L2; R1, R2) | do
a) Go back to graph G, and label nodes reachable from each of L1/L2 and to each of R1/R2 through black paths.

b) For each black node in G connected to all L1/1.2/R1/R2, name it as inside nodes. If it only misses one of the
four, then label it as miss_x node where x is the missed item

¢) Define start node S as an inside node connected to some miss_ L1 nodes and miss_ L2 nodes. Similarly, define
end node E as an inside node connected to some miss R1 nodes and miss R2 nodes

d) Define repeat interior and flanking region

i) Find a black path between S and E and label it as a repeat path (this is the repeat interior)

ii) Find paths from L1 to S, L2 to S, E to R1, E to R2 respectively (these are the flanking regions)
e) For each black node involved with this repeat,

i) If it is connected to nodes on paths L1 to S, add it to L1 to S read set. Similarly, do it for L2 to S, E to R1
and E to R2 read sets

ii) If it is connected to inside nodes only, then add it to repeat read set

iii) Use the separated read sets to perform repeat phasing as described in [29]

iv) Declare merging of contigs based on the phasing results

end

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 62

Algorithm 16 Tandem repeat resolution option
Input : improved3.fasta, raw read.fasta
Output: tandem resolved.fasta

1. Classify contigs into two clusters in which one contains long contigs (S;) and the other
contains short contigs(Ss). We only focus on the treatment on Sy.

2. Form a 2-color read-contig string graph G with contigs from S;, and raw reads associ-
ated to the endpoints of these contigs. This step is similar to step 2 in Alg 15

3. repeat
a) Identify local graph pattern in G consisting of 1 incoming contig, 1 outgoing contig

and cycles linking intermediate reads. Declare that as a tandem repeat target t.

b) For such target ¢, find the repetitive pattern of the tandem repeat through finding a
cycle on the intermediate reads.

c) Estimate the copy count of the repetitive pattern by using overall coverage and amount
of reads associated with ¢.

d) Connect the contigs associated with ¢ with appropriate tandem repeat copies filled in.

until there is no back-to-back tandem repeat pattern detected in G

CHAPTER 4. FINISHERSC : A REPEAT-AWARE TOOL FOR UPGRADING
DE-NOVO ASSEMBLY USING LONG READS 63

4.5 Conclusion

In this chapter, we introduce FinisherSC which improves assembly quality for haploid genome
assembly with long read only data. The key idea is to reuse the original data to perform
scaffolding in a repeat-aware manner. FinisherSC has shown significant quality improvement
on assembly quality for haploid genome assembly on all the tested datasets. Moreover, it has
shown better performance when compared to another state-of-the-art long read scaffolding
tool, PBJelly. We note that FinisherSC takes the post-processing approach and thus is much
simpler to implement than a brand-new assembler. This thus serves as an evidence that
post-processing is a good technique to bring sophisticated techniques to assembler building
process. Because of its great potential, we further explore the post-processing approach in
the coming two chapters by studying more complex cases involving metagenomes and hybrid
data.

64

Chapter 5

BIGMAC : Breaking Inaccurate
Genomes and Merging Assembled
Contigs for long read metagenomic
assembly

The problem of de-novo assembly for metagenomes using only long reads is gaining attention.
We study whether post-processing metagenomic assemblies with the original input long reads
can result in quality improvement. Previous approaches have focused on pre-processing reads
and optimizing assemblers. BIGMAC takes an alternative perspective to focus on the post-
processing step. Using both the assembled contigs and original long reads as input, BIGMAC
first breaks the contigs at potentially mis-assembled locations and subsequently scaffolds con-
tigs. Our experiments on metagenomes assembled from long reads show that BIGMAC can
improve assembly quality by reducing the number of mis-assemblies while maintaining/in-
creasing N50 and N75. The software is available at https://github.com/kakitone/BIGMAC

5.1 Introduction

De-novo assembly is a fundamental yet difficult [11] computational problem in metagenomics.
Indeed, there is currently an open challenge for metagenomic assembly using short reads, ti-
tled "Critical Assessment of Metagenomic Interpretation (CAMI [59])." On the other hand,
emerging sequencing technologies can provide extra information and make the computa-
tional problem more tractable. For example, long reads are increasingly being shown to be
valuable in the de-novo assembly of single genomes|24|. Therefore, it is natural to study
metagenomic assembly using long reads. Current assembly approaches for long reads fo-
cus on developing more optimized assemblers to leverage the power of the data. However,
significant engineering effort is usually involved to build an end-to-end assembler.

We take a different perspective, focusing the design effort on a post-processor that im-

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 65

proves assembled contigs using the original long read data (Fig 5.1). The main question is
whether we can achieve quality improvement with this approach using typical long reads.
This post-pocessing approach is attractive because it leverages existing software. Conse-
quently, we can focus design effort and computational resources to specifically address thorny
issues arising from the nature of new data, complex repeats, varying abundances and noise.
Moreover, since the long reads are part of the input, the post-processor can bring back in-
formation missed upstream. In single genome assembly, FinisherSC [30] has demonstrated
the effectiveness of this approach. In this paper, we investigate the effectiveness of this
post-processing approach for metagenomic assembly.

BIGMAC is a post-processor to improve metagenomic assemblies with long read only
data. It first breaks contigs at potentially mis-assembled locations and subsequently scaf-
folds contigs. In our experiments, BIGMAC demonstrates promising results on several mock
communities using data from the Pacific Biosciences long read sequencer. Inputs to BIGMAC
include assembled contigs from HGAP [12] and the original raw reads with adapters removed.
After assembly and post-processing, we use QUAST [19] to evaluate and compare the as-
sembly quality of contigs before and after using BIGMAC. As shown in Fig 5.1, BIGMAC
improves the quality of the contigs by reducing the number of mis-assemblies while main-
taining /increasing N50 and N75. This demonstrates the effectiveness of the post-processing
approach for metagenomic assembly with long reads.

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 66

Figure 5.1: Position of post-processor in an assembly pipeline (left). Improve-
ment in assembly quality using post-processor BIGMAC on three different datasets
(right). BIGMAC shows the effectiveness of the post-processing approach for long
read metagenomic assembly.

500

400
Raw reads

300

Assembler 200

100

Assembled contigs

&&Z L

Percentage change after using BIGMAC

-100
Post-processor

-200

. Dataset 1 Dataset 2 Dataset 3
Improved contigs e E——r——
g. -61.11111111 -85.02673797 -46.15384615
assemblies
¥9%changeinN50 | 431.691494 | 0 39.93868754
% change in N75 | 0 | 96.68321593 21.2553114

5.2 A top-down design of BIGMAC

We use a hypothetical yet representative set of input data to illustrate the design of BIGMAC
in a top-down manner. Let g1, g2 be two genomes of abundances A\, Ay respectively. Assume
that they share a long repeat in the middle, that is, g1 = x17y1, g2 = x27rys. Unfortunately,
an upstream assembler mis-assembles the reads and produces two contigs ¢, co with incorrect
joins at the repeat. That is, ¢; = 17y, ¢ = x9ry;. As an assembly post-processor, BIGMAC
takes the mis-assembled contigs c;, co and original reads as input. Its goal is to reproduce
g1, 92- To achieve this, we immediately recognize that there should be components for fixing
mis-assemblies and scaffolding contigs. In BIGMAC, they are respectively Breaker and
Merger. An illustration is given in Fig 5.2.

Breaker is further divided into two subcomponents: Signal Detector and Signal Aggre-
gator. Signal Detector collects signals that indicates mis-assemblies and Signal Aggregator
subsequently makes decisions on breaking contigs based on the collected signals. In our
example, the coverage fluctuation between A\, Ay along the contigs c;, co and the presence of
long repeat r are useful signals that Signal Detector collects. After aggregating these signals,
Signal Aggregator decides on breaking both the contigs ¢; and ¢y at the starting points of

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 67

Figure 5.2: Top-down design of BIGMAC with an example of how BIGMAC im-
proves a pair of mis-assembled contigs.

BIGMAC: Breaking Inaccurate Genomes and Merging Assembled Contigs

Breaker Merger

T [[|

Improved

i

:
p
.
!

location

Gathers signals from Combines signals to
repeats and coverage determine breakpoints

Constructs and Decides whether to
transforms graph extend contigs

Raw

reads { \f { }

the repeat r. Therefore, the output contigs of Breaker are x1, xo, 7y, rys.

Merger is also divided into two subcomponents: Graph Operator and Contig Extender.
With information from the original reads, Graph Operator establishes connectivity of the
input contigs using string graphs. Then, based on the evidence from spanning reads and
contig coverage, Contig Extender extends input contigs into longer contigs. In our example,
the input contigs to Merger are x1,xo, 7y1,7y2. Graph Operator forms a string graph with
edges r1 — ry1,x1 — TY2, T2 — ry; and xo — ry,. Contig Extender analyzes the coverage
depth of the related contigs and decides to merge contigs to form x7ry; and worys, thus
reproducing the correct genomes.

5.3 Breaker: Breaking Inaccurate Genome

After the functional decomposition of BIGMAC in the previous section, we are ready to
investigate its first component: Breaker. We note that the goal of Breaker is to fix mis-
assemblies. In order to achieve that, we need to collect sensible signals related to mis-
assemblies and subsequently aggregate the signals to make the contig breaking decisions.

Signal Detector

Signal Detector collects three important signals related to mis-assemblies.

Palindrome: We are interested in palindromes because of their relationship to a form
of chimeric reads, the adaptor-skipped reads, which are common in today’s long read technol-
ogy. Since assemblers get stuck at these chimeric reads, the palindrome pattern in reads prop-

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 68

agates to the corresponding contigs. Thus, the pattern of palindrome is a strong signal indi-
cating mis-assemblies, particularly when the palindrome is long. A string tuple (a, b) is called
a wrapping pair if the reverse complement of a is a prefix of b or the reverse complement of b is
a suffix of a. z is called a palindrome if it is the concatenation of a wrapping pair (a, b), that
is # = ab. The wrapping length of x is max,;—p,(a,b) is a wrapping pair Min(a.length,b.length).
For example, r = ACGGCCG is a palindrome of wrapping length 3; (a,b) = (ACGG,CCGQG)
is a wrapping pair because the reverse complement of b is CGG, which is a suffix of a. Since
the minimum length of @ and b is min(4, 3) = 3 and the wrapping length of x cannot exceed
3, the wrapping length for x is 3.

Signal Detector collects information about palindromes by aligning each contig against
itself. It then identifies palindromes with long wrapping length because that indicates mis-
assemblies. The corresponding palindromes’ information is then put into Spaiindrome. To
improve sensitivity, Signal Detector allows approximate match when searching for palin-
dromes.

Repeat: Since long repeats confuse assemblers, their endpoints are possible candidates
for mis-assemblies. Let s; = axb,sy = cxd, a repeat between si, sy is specified by the
endpoints of x in s1, so. For example, s; = CAAAAT, sy = GAAAAG, the endpoints of the
repeat AAAA are the position specified by ! in C1AAAAIT, GTAAAA!G. Signal Detector
aligns contigs against themselves to find the repeats. It then marks down the positions of
the endpoints and puts them in a set called Syepeqr. To improve sensitivity, Signal Detector
allows approximate matches when searching for repeats. Moreover, it only considers repeats
that are maximal and are of significant length.

Coverage: Significant coverage variation along contigs can correspond to false joins of
sequences from different genomes with different abundances. Coverage profile is the coverage
depth along the contigs. For example, the coverage profile along a string s = ACGT is
(1,2,2,1) if the reads are AC,CG,GT. Signal detector aligns original reads to the contigs
to find the coverage profile, which is called Scoperage-

Signal Aggregator

After Signal Detector collects signals regarding palindromes Spaiindrome, repeats Syepeqt and
coverage profile Scoperage, Signal Aggregator uses them to determine the breakpoints on the
input contigs C. The algorithm is summarized in Alg 17.

ChimericContigFixing

The goal of ChimericContigFixing is to fix the contigs formed from chimeric reads. We simply
break the palindromes in Spuindrome at locations corresponding to their wrapping lengths.
After removing redundant contigs, ChimericContigFixing returns the broken palindromes
with the unchanged contigs.

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 69

Algorithm 17 Signal Aggregator

: Input: Input contigs C' and signals from Signal Detector Spatindrome, Srepeat a0d Scoverage
: Output: Contigs C" with less mis-assemblies
: procedure SIGNALAGGREGATION (Spatindrome; Srepeats Scoverages C')
C" = ChimericContigFixing(Spaindrome, C) > Fix chimeric contigs
S'titer = LocatePotentialMisassemblies(Syepeat; C') > Locate mis-assemblies caused
by repeats
C" = ConfirmBreakPoints(Stiter, Scoverage; C”) > Confirm mis-assemblies using
coverage
7: return C”

CUA W

>

LocatePotentialMisassemblies

The goal of the subroutine LocatePotentialMisassemblies is to locate potential mis-assemblies
caused by repeats. We study the design of this subroutine in this section.

Motivating question and example: We can declare all the endpoints of approximate
repeats in Syepeqr to be potential mis-assemblies. While this is a sensible baseline algorithm,
it is not immediately clear whether it is sufficient or necessary. It is thus natural to consider
the following question.

Given a set of contigs, how can we find the smallest set of locations on contigs to break
so that the broken contigs are consistent with any reasonable ground truth? To illustrate
our ideas, we consider an example with contigs x1 = abede,x9 = fbcg,x3 = hedi with
{a,b,¢,d,e, f,g,h,i} being strings of equal length L.

The baseline algorithm of breaking contigs at the starting points of all the long(> 2L)
repeats breaks the contigs 4 times(i.e. a|b|cde, f|bcg, h|edi). However, interestingly, we will
show that one only need to break the contigs 3 times to preserve consistency (i.e. x; =
ablcde, xo = fblcg, x5 = h|cdi) and that is optimal.

Modelling and problem formulation: We will formalize the notions of feasible break
points, feasible ground truth, consistency between sets of contigs, sufficiency of break points
to achieve consistency and the optimiality criterion.

We use a graph theoretic framework. Specifically, we study a directed graph G = (V, E)
with m sources S and m sinks T where Vv ¢ S U T,indeg(v) = outdeg(v) and par-
allel edges between two vertices are allowed. This is used to model a fully contracted
De Bruijn graph formed by successive K-mers of the contigs. Vertices V' are substrings
of the contigs and edges F correspond to potentially mis-assembled locations on contigs.
In our example, the set of vertices is V' = {a,b,c,d,e, f,g,h,i} and the set of edges is
E = {ab, fb,bcy, bey, he, edy, edsy, cg, de, di}. We use subscripts to differentiate parallel edges
joining the same vertices. The graph corresponding to our running example is shown in Fig
5.3.

Given such a graph G, we note that E is the set of all feasible break points because
each edge in the graph corresponds to a potentially mis-assembled location on contigs. A

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 70

A A

Figure 5.3: The graph corresponding to our example contig set z; = abcde, x5 =
fbeg, x3 = hedi is shown. We note the optimal set of break points by the red dotted
line.

feasible ground truth corresponds to a set of m edge-disjoint source-to-sink trails that par-
titions the edge set E. For simplicity, we represent a trail as a sequence of the vertices in
G, where the edges linking the vertices are ignored. For example, {abcde, fbcdi, heg} is a
feasible ground truth while {abcg, fgde, hedi} is another feasible ground truth. The set of
all feasible ground truths is GT.

We recall that our high level goal is to choose a set of feasible break points R C E so
that the broken contigs are consistent with any feasible ground truth. So, we need to define
the notion of broken contigs and consistency between two sets of contigs under the current
framework. Let gt € GT, we denote gt\R be a set of trails after the removal of the edge set
R. In particular, for the original contig set C' € GT', C'\ R is the set of broken contigs for the
set of feasible break points R. For example, if R = {bcy, bce, he} and C' = {abcde, fbedi, heg},
C\R = {ab, cde, fb,cdi, h,cg}. To capture consistency between two sets of contigs, we use
the following definition. Given two sets of trails T},7T5, we say that T} is consistent with
Ty if Ve € Ty,3y € Ty st. © C y and Va! € Ty, Fy € Ty st. 2/ C . We call R a
sufficient breaking set with respect to (C,GT) if Vgt € GT, C\R is consistent with gt\R. In
other words, R is a set of feasible break points that allows the broken contigs to be consistent
with any feasible ground truth. Although this notion of sufficient breaking set is a natural
model of the problem, it depends on the original contig set C', which is indeed not necessary.
Specifically, we show that we have an equivalent definition of sufficient breaking set without
referring back to the original contig set. Let us call R a sufficient breaking set with respect
to G, or simply a sufficient breaking set, if Vgt,, gts € GT, gt;\R is consistent with gto\ R.

Proposition 5.3.1. R is a sufficient breaking set with respect to (C,GT) if and only if R a
sufficient breaking set with respect to G.

Proof. The backward direction is immediate because C' € GT. We will show the forward
direction as follows. Let g1, g2 € GT and we want to show that g;\ R is consistent with go\ R.
Since R is a sufficient breaking set with respect to (C,GT'), g1\ R is consistent with C'\ R.
Therefore, Vz € g1\R3y € C\R s.t. z C y. But since g\ R is consistent with C'\R , we have

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 71

dz € g2\ R s.t. y C z. By transitivity, we have z C y C z € go\ R. By symmetry, we can also
show that V2’ € g2\ RT3y € ¢g1\R s.t. 2/ C y/. Thus, g;\R is consistent with go\R. O

Now, we state our optimization criterion. The goal here is to minimize the cardinality of
the sufficient breaking set, formally as Eq 5.1.

OPT = glclg |R| s.t. R is a sufficient breaking set with respect to G (5.1)

We will show that if we solve Eq 5.1 for our running example, the answer is 3. This thus
shows that the baseline algorithm of breaking contigs at all starting points (in our example,
there are 4 of them) of all long repeats is not optimal.

Proposition 5.3.2. For our running example, OPT = 3.

Proof. First, by inspecting the 6 feasible ground truths in GT, we note R = {bcy, bca, he}
is a sufficient breaking set with respect to G. Second, we note that the edge set need to
disconnect sources and sinks, otherwise, we can find g, go € GT such that g;\R, go\R are
inconsistent. This means |R| need to be > mincut of the graph, which is 3. O

Algorithm development and performance guarantee: Next we describe an algo-
rithm that finds a sufficient breaking set with respect to G. Let us denote a boolean variable
b. on each edge e € E, with b = (b.)ecp. For v € V, InEdges(v), OutEdges(v) are the
sets of incoming edges and outgoing edges at v respectively. Prev(v), Succ(v) are the sets
of predecessor vertices and successor vertices of v respectively. Our algorithm solves the
following minimization problem (Eq 5.2) as a proxy to (Eq 5.1).

min |7] (5.2)

rChir=True=®(b)=True

where,
(I)(b) = /\v:|Prev(v)|22 and ‘Succ(v)‘ZQ(AeEInEdges(v)be \ /\eEOutEdges(v)be) (53)

In other words, it includes either all the incoming edges or all the outgoing edges for every
vertices with at least 2 successors and at least 2 predecessors to R. We then seek R with
minimum cardinality among the choices available. If G can be decomposed into connected
components, we can optimize (I)(E) independently on each connected component. In our
implementation, if the size of the connected component is not too large, we optimize the
objective function by exhaustion. Beyond a certain threshold, we simply output a feasible
solution without optimizing. Indeed, in our experiments on real data, most of the connected
components are not that large and this step typically takes a few minutes. But we remark
that for more complex applications, one can further optimize the algorithm. For example,
one can first topologically sort the vertices and then use dynamic programming to solve Eq
5.2 along the sorted vertices.

We note that the algorithm described gives an optimal solution for our running example.
Moreover, we show performance guarantee of the algorithm as follows.

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 72

Proposition 5.3.3. Solving Eq 5.2 gives a sufficient breaking set R if the graph G is fully
contracted.

Proof. Let R be the set of edges selected by the algorithm. For any two gti, gto € GT, we
want to show that gt;\R and gto\ R are consistent. By symmetry, it suffices to prove that
if z € gt;\R, then Jy € gto,\R s.t. © C y. If |x| = 2, it is immediate because every edge
other than those in R are covered. If |z| > 3, we will show that it is also true using proof
by contradiction. If Vy € gto\R,z € y, we can find a sub-trail ' = (a1, as, ..., ag, axy1) of
x such that 3y’ € gto\R s.t. 2" = (a1, ...,ax) C ¢y but Vy € gto\R, 2" € y. This implies
da* # agy1 s.t. (2”,a*) C z for some z € gty\R. Since the edge (ax,ary1) C = € gt1\R,
we know that (ag,ags1) is not in R. Similarly, (ax,a*) ¢ R because (ax,a*) C y' € gto\R.
But since |Succ(ay)| > 2, the fact that our algorithm does not include (ag, a*), (ax, ax41) in
R implies that |Pred(ay)| = 1, namely Pred(ayx) = {ar—1}. Note that we are considering a
fully contracted graph. So, the fact that a;_; exists implies that |Succ(ag—1)| > 2. But our
algorithm has not removed edge (ax_1, ax). This gives |Pred(ax_1)| = 1. Inductively, we get
|Pred(a;)| = 1¥2 < i < k. But we know that (ax,ary1) € w for some w € gts\R. Since
the edges along (aq, ..., agy1) are not in R, this gives, ' = (aq, ..., arpy1) C w € gt\R. This
contradicts the assumption about z’. O

Proposition 5.3.4. If the graph G is fully contracted DAG without parallel edges, then
solving Eq 5.2 returns a sufficient breaking set that is of optimal cardinality, OPT.

Proof. Tt suffices to show that for any sufficient breaking set R, Vv € V where |Succ(v)| >
2,|Pred(v)| > 2, we have either InEdges(v) C R or OutEdges(v) C R. We prove it by
contradiction. If not, Jv € V' where |Succ(v)| > 2,|Pred(v)| > 2 but InEdges(v) € R and
OutEdges(v) € R. Because it is a DAG, it means we can find gt; € GT such that Jz,y, 2", 1/
such that (z,v,y) € gt; and (2/,v,y') € gt;. Now consider gty to be a clone of gt; except
that it has (z,v,y'), (¢/,v,y) instead of (z,v,v'), (2',v,y). We note that gt € GT. And
because there are no parallel edges, (x,v,y) is not a subset of any of the trails in gts. So,
we find two distinct gtq, gto € GT such that gty, gto are not consistent. This contradicts the
fact that R is a sufficient breaking set. m

It is noteworthy that if we are given any set of contigs from any gt € GT, we still
obtain the same set of broken contigs after the operation of removal of redundant trails,
RemoveRedundant (i.e. we eliminate the contigs in a set A to form a minimal subset B C A
in which Vx # y € B,z € y). This can be formalized as follows.

Proposition 5.3.5. If R is a sufficient breaking set, then for any gty, gt € GT,
Remove Redundant(gt,\R) = RemoveRedundant(gts\ R)

Proof. Let s; = RemoveRedundant(gt;\R) for ¢ € {1,2}. By symmetry, it suffices to prove
that s1 C so Vo € 51 C gt1\R, Jy € gt2\ R, such that x C y. Note that we can also find some
x* € s such that y C z*. This gives x C y C x*. However, since we have no redundant
trails in sy, we get x = z*. Thus x = z* € s5. O

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 73

To apply BIGMAC to real data, we have to implement the described algorithm with
some further engineering. This includes methods to tolerate noise, to handle double stranded
nature of DNA, and to construct De Bruijn graph from the repeats. Interestd readers can
refer to the Appendix for these implementation details.

ConfirmBreakPoints

The goal of ConfirmBreakPoints is to utilize the coverage profile Spperage to confirm breaking
decisions at potentially mis-assembled locations specified in Sp;jer. For the sake of simplicity,
we now consider a string s of length L, and a set of positions Y = {y; }1<i<x of s which are
potential mis-assemblies. Furthermore, let us assume that all mis-assemblies are caused by
mixing genomes of different abundances. Using Y, we can partition s into segments {s; }o<i<
of lengths respectively as {{;}o<i<x. We let x; be the number of reads that start in segment
si, which can be estimated from Scoperage- The question is how to classify the points in Y as
true mis-assemblies or as fake mis-assemblies.

One can use heuristics, like comparing coverage depth difference before and after each y;.
However, this is not ideal. For example, if we have coverage depth before and after y; differing
by 1X, we would expect it to be a much stronger signal for true mis-assembly if the lengths
o, t1 are of order of 100K rather than of 100 and this cannot be seen by considering coverage
depth difference alone. For the case of just two segments of equal length and if we assume the
x;’s are independent Poisson random variables, there is a popular statistical test, C-Test|52],
that can make the decision. Formally, if 2y ~ Poisson(m;) and zo ~ Poisson(ms), then
C-Test is a test to decide between the hypothesis of Hy : my = my against Hy : my # ms.
C-Test first considers x; + z2 to compute the decision boundary and it then decides whether
to reject Hy based on z7/xs and the previously derived decision boundary. The intuition
is that x; 4+ x9 corresponds to the amount of data, which determines the confidence of a
statistical test. Thus, if 1 4+ 5 is large, a small perturbation of x;/xs from 1 can still be
very significant and can correspond to a confident rejection of H.

However, we still need to think carefully about how to apply C-Test to our problem.
One method is to directly apply k£ independent C-Test on each of the junctions y;. However,
that method cannot take advantage of the information from neighboring segments to boost
the statistical power at a junction. Therefore, we develop the algorithm IterativeCTest.
IterativeCTest performs traditional C-Test but in multiple iterations. Initially, it directly
applies £ independent C-Test on each of the junctions y;. Some of the segments are merged
and we aggregate the counts from the merged segments to continue to the next C-Test at the
remaining unmerged junctions in Y. This process is repeated until the algorithm converges.
Finally, we use the breaking decisions from IterativeCTest to break the incoming contigs and
return the fixed contigs.

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 74

5.4 Merger: Merging Assembled Contigs

After fixing mis-assemblies, we are ready to study another pillar of BIGMAC: Merger. Merger
establishes connectivity among contigs and subsequently makes decisions to extend contigs.

Graph Operator

The goal of Graph Operator is to identify candidates for contig extension. It forms and
transforms a string graph using the overlap information among original reads and contigs.
It subsequently analyzes the graph to find candidates for contig extension. The overall
algorithm is summarized in Alg 18.

Algorithm 18 Graph Operator

1: Input: Contigs C' and original reads R
2: Output: String graph G with information about candidates for contig extension
3: procedure GRAPHOPERATOR(R, (')

4: M = Mapping(R, S) > Obtain mapping among contigs and reads
5: G = FormGraph(M) > Form string graph to represent connectivity
6: G.GraphSurgery(M) > Simplify graph
7: G.FindExtensionCandidates() > Identify candidates for contig extension
8: return G

Mapping: We obtain mapping among contigs and reads. This provides the fundamental
building block to construct the connectivity relationship among contigs and reads.

FormGraph: The goal of FormGraph is to establish connectivity among contigs. We
use contig-read string graph as our primary data structure. Contig-read string graph is
a string graph[41] with both the contigs and the reads associated with their endpoints as
nodes. The size of the graph is thus manageable because most reads are not included in
the graph. Then, we construct an overlay graph (which we call the contig graph) such that
the nodes are the contigs with weights on nodes being the coverage depth of contigs. In the
contig graph, there is an edge between two nodes if there is a sequence of reads between
the associated contigs. With these data structures, we can switch between macroscopic and
microscopic representation of the contig connectivity easily.

GraphSurgery: GraphSurgery simplifies the contig graph. This includes removal of
transitive edge and edge contraction.

For nodes u, v, w, if we have edges u — v,u — w and w — v, then we call u — v a
transitive edge. We perform transitive reduction|[41] on the contig graph to remove transitive
edges. Removing these transitive edges prevents us from finding false repeats in the next
stage. To improve robustness, there is a pre-processing step before transitive reduction. If
the contig w is too short and there are no reads that form head-to-tail overlap between w, u
or w, v, then we can have a missing edge for transitive reduction to operate properly. Thus,

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 75

we add the missing edge (either from u to w or w to v) back when we find contigs and related
reads that suggest the missing edge might be there.

An edge u — v is contractable when the outgoing degree of u and the incoming degree of
v are both 1. We contract edges to fill gaps. Our experience with FinisherSC is that data are
dropped in the assembler and so reconsidering them as a post-processing step can potentially
fill some gaps. However, there is a caveat. In establishing connectivity in contig-read string
graph, we only use reads close to each contig’s endpoints (as a way to save computation
resources), we may miss some legitimate connections. Therefore, very long repeats prevent
the detection of linkage of contigs, thereby allow contigs to be erroneously merged. To
address that, if there exists contig w that is connected (by some reads) to a region close to
the right end of u/left end of v, then we avoid contraction of u — v.

FindExtensionCandidates: FindExtensionCandidates identifies candidates for con-
tig extension by identifying local patterns in the contig graph. One form of extension candi-
dates is a pair of contigs that are connected without competing partners. This corresponds
to the contigs joined by a contractable edge. Another form of extension is a set of contigs
that are connected with competing partners. This corresponds to the contigs linked together
in the presence of repeats. In the contig graph, the repeat interior can either be represented
as a separate node or not. If the repeat interior is represented as a separate node, the local
subgraph is a star graph with the repeat node at the center. Otherwise, the local subgraph
is a bipartite graph consisting of competing contigs. After identifying the contigs associated
with a specific repeat, we can then merge contigs in the next stage.

Contig Extender

After the operations by Graph Operator, we have extracted the potential contig extension
candidates from the contig graph. It remains to decide whether and how to merge the
corresponding contigs. In a high level, Contig Extender aims at solving the Contig Merging
Decision Problem.

Contig Merging Decision Problem. Given a set of incoming contigs I and a set of
outgoing contigs O whose coverage depth and read connectivity information is known. Decide
how to form an appropriate bipartite matching between I and O.

While we do not intend to rigorously define the statement of Contig Merging Decision
Problem now, it is clear that appropriate matching corresponds to one that achieves high
accuracy. Contig Extender carefully analyzes the read connectivity and contig coverage
to make decisions on merging contigs. In the coming discussion, we first study an effective
heuristic that captures the essence of the problem. After that, we will study how to rigorously
define the Contig Merging Decision Problem in a mathematical form and suggest an EM-
algorithm in solving that.

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 76

Heuristic in solving the Contig Merging Decision Problem

When the cardinality of the set of incoming contigs I and the set of outgoing contigs O are
both 1, a natural decision is to merge them. Thus, the focus here is to study the case when
|I] > 1 or |O] > 1. We select the reads that uniquely span one contig a in the incoming set
and one contig b in the outgoing set. If there are multiple such reads, then we decide that
a,b should be joined together provided that there does not exist any paths of reads that
lead a to other contigs in the outgoing set and similarly for b. Moreover, we perform similar
tests using contig coverage. If the coverage depth between two contigs is very close, they
will be declared to be a potential merge pair. Then, we test whether there are any close
runner-ups. If not, they should be merged. To combine the decisions made using spanning
reads and coverage depth, we have a subroutine that discards all conflicting merges. We
find that this heuristic for decision making works quite well in our datasets. However, in the
coming discussion, we will study how to make the extension decisions in a more principled
and unified manner.

General framework in solving the Contig Merging Decision Problem

The challenge for the Contig Merging Decision Problem is the tradeoff for many physical
quantities (e.g. abundance, edit distance of reads, noise level, number of spanning reads,
etc). We address this by defining a confidence score based on parameter estimation. For
simplicity of discussion, we assume that k is the cardinality of both the set of incoming
contigs and the set of outgoing contigs. The goal is to find the best perfect matching with
respect to a confidence score.

Let M be a perfect matching of contigs among incoming and outgoing groups [/ and
O. Under M, there are k merged contigs. Let the observation be the set of related reads
X ={R; | 1 <i < n}. We define the parameters 6 = {(\;,I;)1<j<x}, where); is the
normalized abundance of contig j and I; is genomic content of the contig j. Note that
> 1<j<x Aj = 1. So, the parameter estimation problem can be cast as sy = maxy Pp(X | M),
where sj; is the confidence score of the matching M. Finally, the best perfect matching can
be found by comparing the corresponding confidence score.

Note that we have hidden variables Z = (Z;)1<i<, which indicate the contigs that reads
X are extracted from (i.e. Z; € {1,2,...,k}). If we assume the length of the contig j to be
¢; and g to be the indel noise level (i.e. probability of 1 — 2¢ to be remained unaltered at
each location), then we can use an EM-algorithm to obtain an estimate of #. Specifically,
the expected value of the log likelihood function E, 4y gw)[log Pyo (X, Z, O0+] is

(t+1)

. A
> D MR I log = — + | Rif log(1 — 2q) + d(R;, 1"*")) log § q2
1<i<n 1<j<k J —

where M7(R,I®) = §_

j=argmin; d(R,I;-t))

(with tie breaking using A, d(A, B) is the best local alignment score, I®*) = (]J(t))lgjgk

I (54

is the assignment of reads to the most similar contig

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 7

are the genomic contents of the contigs at iteration t and A®) = (X;);<;<x are the estimated
abundances at iteration t. By maximizing the log likelihood function with respect to ¢+1.
we have the update formulas as

/\(t+1) _ Zlgign Mj*<Ria ﬂt))
! Zlgg‘gk Zlgign Mj(Ri7](t))

(5.5)

I = argmin > M7 (R, IW)d(R;, 1) (5.6)
I 1<i<n

Note that the update of I;- requires multiple sequence alignment. In general, the problem
is NP-hard[15]. However, for noisy reads extracted from several contigs, the problem is not
as difficult. For example, in the case of pure substitution noise, an efficient optimal solution
is a column-wise majority vote. Despite the elegance and feasibility of this approach, it is
still computationally more intense than the heuristic. Therefore, in our implementation of
BIGMAC, the heuristic is the default method used in Contig Extender. But we also provide
an experimental version of the EM-algorithm which can be used when users specify --option

emalgo=True in their commands.

5.5 Experiments

End-to-end experiments
Synthetic data

We verify that BIGMAC correctly improves the incoming contigs using the following syn-
2 5

thetic data. We generate two synthetic species of different abundances (z,2). They are
composed of random nucleotide sequences of length 5M each and share a common segment
of length 12K. We uniformly sample indel noise corrupted reads of length 6K from the
genomes, with coverage depth of 20X and 50X respectively. We also artificially construct
mis-assembled contigs by switching the genome segments at the 12K repeat.

The contigs and the reads are passed through BIGMAC. BIGMAC breaks the contigs
at the mis-assembled point and joins them back correctly. This is also the example that we

discuss in the top-down design of BIGMAC.

Real data

We test the performance of BIGMAC in improving metagenomic assembly on PacBio only
data. We use different datasets of different characteristics. Dataset 1 consists of a mock
community of 5 species [20], with genomes of high similarity. Dataset 2 consists of a mock
community of 23 species [46], with genomes of diverse abundances. We also remark that
we have tested BIGMAC on a third PacBio only dataset (Dataset 3): a real experiment
involving Desulfuromonas biwabikus, D. soudanensis and some other unknown genomes. We

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 78

note that we know the complete ground truth for the metagenomes in both Dataset 1 and
2 but only know part of the ground truth for Dataset 3. We take the output of HGAP
and use the raw reads to improve them using BIGMAC. We observe that in these datasets,
BIGMAC reduces the number of mis-assemblies while maintaining/increasing N50 and N75.
The results of BIGMAC is summarized in Table 5.1, where the quantity of mis-assemblies
is obtained from the QUAST reports. By default, QUAST’s statistics are based on contigs
of size >= 500 bp. Interested readers can refer to the Appendix for more details of the
assessment. The data is provided in our online distribution and users can reproduce the
results by issuing a single command python reproduce.py

Table 5.1: Performance evaluation of BIGMAC on several mock communities is shown. BIG-
MAC consistently improves assembly quality by simultaneously increasing contig contiguity
and decreasing the number of mis-assemblies.

Dataset | Method NContig | # Mis-assembly | N50 N75

1 HGAP 130 18 818655 | 274801
1 BIGMAC | 129 7 4352719 | 274801
2 HGAP 477 187 397611 | 38471
2 BIGMAC | 344 28 397611 | 75666
3 HGAP 185 26 257044 | 82370
3 BIGMAC | 140 14 359704 | 99878

Comparison with other post-processing tools
Synthetic data

We use the synthetic data in Section 5.5 to evaluate and benchmark BIGMAC, Finish-
erSC|30], SSPACE_LongRead|5| and PBJelly[16]. BIGMAC is the only tool among the
tested tools that fix the mis-assembled contigs and merge them back correctly. Other tested
tools output the same mis-assembled contigs.

Real data

We perform end-to-end testing to compare performance of different tools. The comparison is
shown in Table 5.2. BIGMAC shows the largest N75/# Mis-assemblies on all three datasets
and largest N50/# Mis-assemblies on two out of three datasets. Indeed, in the only dataset
that BIGMAC does not have the largest N50/#Mis-assemblies, the number of contigs(i.e.
L50) beyond N50 is 7. Due to the small number of contigs, this particular measurement on
that dataset may not be significant. We also remark that BIGMAC is the only tool that
improves contiguity (N50 and N75) and the number of mis-assemblies.

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 79

Table 5.2: Comparison of performance of BIGMAC with other post-processing tools for long
read assemblies is shown. BIGMAC shows the largest N75/# Mis on all three datasets and
largest N50/# Mis on two out of three datasets. We also remark that BIGMAC is the only
tool that can improve N50 and N75 while reducing the number of mis-assemblies. Note that
Mis is an abbreviation for the number of mis-assemblies.

Data | Method # Mis | N50 N75 N50/# Mis | N75/# Mis

1 HGAP 18 818655 | 274801 | 45481 15267
BIGMAC 7 4352719 | 274801 | 621817 39257
FinisherSC 32 2531294 | 415024 | 79103 12970
PBlJelly 19 4642330 | 418480 | 244333 22025
SSPACE_LR | 32 4657611 | 493683 | 145550 15428

2 HGAP 187 397611 | 38471 | 2126 206
BIGMAC 28 397611 | 75666 | 14200 2702
FinisherSC 192 654163 | 43018 | 3407 224
PBlJelly 271 1585584 | 61775 | 5851 228
SSPACE LR | 255 1568442 | 95133 | 6151 373

3 HGAP 26 257044 | 82370 | 9886 3168
BIGMAC 14 359704 | 99878 | 25693 7134
FinisherSC 25 996532 | 97964 | 39861 3919
PBlJelly 27 1103847 | 128718 | 40883 4767
SSPACE LR | 43 1266912 | 290104 | 29463 6747

Simulation and testing on independent components

We perform micro-benchmarking on individual components of BIGMAC. The settings and
results are summarized as follows.

Analysis of LocatePotentialMisassemblies : We test our break point finding al-
gorithm used in LocatePotentialMisassemblies of Breaker on the synthetic data of x; =
abcde, xo = fbcg,x3 = hedi discussed in the previous section. The algorithm succeeds in
identifying the minimum number of break points as 3. Also, it succeeds in identifying the
minimum number of break points as 2 in the presence of double stranded DNA, in the test
case of 1 = abed, x9 = ec'b' f, where V', ¢ are the reverse complement of b, ¢ respectively.

Analysis of ConfirmBreakPoints: We test IterativeCTest used in ConfirmBreak-
Points of Breaker on synthetic data. We simulate mis-assemblies and variation on abun-
dances by generating a sequence of Poisson random variables and compare the performance
of the algorithms on the simulated data as follows. We generate a sequence of 100 numbers by
100 independent Poisson random variables. The Poisson random variables have parameters
of either 20 or 50. To select the parameters, we simulate 100 steps of a two-states Markov
chain with transition probability of 0.1. We then evaluate the performance of C-Test and
IterativeCTest on finding the true transition points, which correspond to the junctions of
mis-assemblies. Taking average from 100 rounds of simulation, the recall of both C-Test and

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 80

IterativeCTest are 0.93, meaning that they both can identify almost all transition points.
C-Test has precision of 0.75 while the precision of IterativeCTest is of 0.87, meaning that
IterativeCTest can avoid more fake mis-assemblies.

Analysis of Merger : We compare Merger with other tools on synthetic data as fol-
lows. We use a synthetic contig set {z1,xo,7,y1, 92} where the ground truth genomes are
(x1,7,91), (z2,7,92). The coverage depth of (z1,4;) and (3, y2) are 20X and 50X respectively.
We pass the reads together with the contig set to FinisherSC, PBJelly, SSPACE LongRead
to perform scaffolding. We note that BIGMAC is the only tool the can scaffold the contigs
correctly into 2 contigs by using the abundance information among the tested tools. Other
tools either do not change the input or simply merge r with some of {x1, 22,91, y2}, resulting
in 4 contigs.

Runtime of BIGMAC

The runtime of BIGMAC is summarized in Table 5.3. We use 20 threads to run the tool on
a server computer. The server computer is equipped with 64 AMD Opteron(tm) Processor
6380(8 cores) with frequency 2500 MHz and 362GB RAM. We note that the majority of the
time is spent on alignment of contigs and reads by MUMmer.

Table 5.3: Runtime of BIGMAC and the corresponding file size

Conti Read file | Runnin

Dataset | Component file sizge (MB) | size (GB) | time (sei)
Synthetic | Breaker 9.6 0.335 164
Synthetic | Merger 9.6 0.335 123

1 Breaker 30 5.7 6646

1 Merger 29 5.7 6998

2 Breaker 32 5.8 4865

2 Merger 29 5.8 5087

3 Breaker 17 7.6 7099

3 Merger 14 7.6 6887

Discussion

There are two main implications from the experiments performed. First, we show that
post-processing assemblies is a feasible alternative in improving assembly quality to building
another assembler from scratch. This is demonstrated by BIGMAC showing simultanous
improvement in terms of number of mis-assembly and contiguity. We note that this is a
non-trivial feature because all other tested tools fail to achieve it. Second, BIGMAC is
competitive when compared to the existing post-processing tools. In particular, it shows
better N75/# Mis-assemblies than all other tested tools in all tested datasets. Moreover,

CHAPTER 5. BIGMAC : BREAKING INACCURATE GENOMES AND MERGING
ASSEMBLED CONTIGS FOR LONG READ METAGENOMIC ASSEMBLY 81

BIGMAC is also the only tool that can handle abundance information, which makes it an
attractive candidate for improving metagenomic assembly.

82

Chapter 6

POSTME : POSTprocessing
MEtagenomics assembly with hybrid
data by highly precise scaffolding

6.1 Problem statement

We study data efficiency of de novo metagenomic assembly using hybrid data. Initial inputs
are short reads (e.g. Illumina reads) and long reads (e.g. PacBio reads). We investigate
whether state-of-the-art assemblers are data-efficient for these data. We use our previ-
ously established post-processing paradigm to guide this study. To quantify the assembly
quality, we focus on two dimensions, which are the number of contigs and the number of
mis-assemblies. As a preliminary evaluation, we use Spades to assemble the short reads. Let
the resultant contigs be C;. We also use Spades-Hybrid to assemble both the short reads
and the long reads. Let the resultant contigs be C5. On a mock community of 26 genomes, it
is observed that there are less contigs but more mis-assemblies in C'; than C. To study data
efficiency, we build a post-processor that takes in C', short reads and long reads to produce
improved contigs C'3. We note that our post-processor only merges contigs, so the number of
contigs is a good proxy for contiguity. It turns out that C3 has higher quality than C5 both
in terms of number of contigs and number of mis-assemblies. On the other hand, we can
also tune parameters to produce more conservative merges. In that case, when compared
with ', we can significantly reduce the number of contigs while keeping the number of mis-
assemblies almost unchanged. Details can be seen in Fig 6.1. This shows that improvement
on the state-of-the-art hybrid assembler Spades-Hybrid can be made.

CHAPTER 6. POSTME : POSTPROCESSING METAGENOMICS ASSEMBLY WITH
HYBRID DATA BY HIGHLY PRECISE SCAFFOLDING 83

Figure 6.1: Performance of POSTME
4650
4600 -
4550 a

4500 x
¢ Spades (with/without long reads)

=

4450

4400 @ POSTME: baseline

Number of contigs

4350 X POSTME: setcover greedy
4300 X

4250
0 20 40 60 80 100 120 140 160

Number of Mis-assemblies

6.2 Baseline algorithm

Let us study a baseline post-processing algorithm that captures the essential features of the
hybrid data. Hybrid data involves long reads with low coverage and short reads with high
coverage. Our baseline algorithm uses long reads to establish connectivity among contigs and
uses short reads to estimate the coverage depth of the contigs. The algorithm is as follows.
We find contig pairs that are connected by m uniquely spanning reads. A spanning read is
connected to some contigs on either end. A uniquely spanning read is connected to exactly
one contig on either end. We then use coverage depth information to confirm merges for the
contig pair using C-Test at confidence level q. We implement this algorithm and test it on
the previously described dataset. We have a few interesting observations. First, by requiring
m = 3 uniquely spanning reads and a confidence level of ¢ = 0.95 in C-Test, the baseline
algorithm can generate contigs of higher quality than the input contigs C (i.e. a significant
decrease in the number of contigs with almost the same number of mis-assemblies). Second,
if we further relax the parameters of ¢ and m, we have a tradeoff in quality improvement.
One can see detail results in Fig 6.1. However, despite having fewer mis-assemblies, the
baseline algorithm produces more fragmented contigs than Spades-Hybrid. So, whether
Spades-Hybrid is already competitive enough is still an open question.

6.3 Data analysis

To figure out the bottleneck of the baseline algorithm, we perform explorative data analysis.
We study the input contigs C; produced by Spades using a scatter plot in Fig 6.2. In the

CHAPTER 6. POSTME : POSTPROCESSING METAGENOMICS ASSEMBLY WITH
HYBRID DATA BY HIGHLY PRECISE SCAFFOLDING 84

figure, each contig corresponds to a point whose y-coordinate is the coverage depth from
short reads and x-coordinate is the length of the contig. It is noteworthy that there is a lot
of contigs of short length in ;. Since they constitute a significant fraction of the total contig
count, proper merging involving these contigs has a significant impact on the overall quality.
We further note that these contigs have diverse coverage depth, which suggests that they
can easily pass the C-Test. Since the long reads are uniformly sampled from the genomes,
connectivity for these contigs should be comparable with those of the other contigs (if it is
done properly). However, there is a caveat in establishing connectivity: a single long read
can indeed span multiple contigs formed from short reads. We confirm this hypothesis by
performing further data analysis, which is shown in Fig 6.3. In the figure, the x-axis is the
number of distinct contigs embedded in the long read and the y-axis is the number of such
long reads. According to the figure, there is a significant number of short contigs that are
embedded in the long reads. The baseline algorithm overlooks this characteristic of the data
because it assumes contigs to be long enough and thus uses long reads for scaffolding only.
Thus, it is a potential bottleneck over which we can optimize.

Figure 6.2: Data analysis of the contigs. Y-axis is the coverage depth and X-axis
is the contig length.

200
150

100 |

Coverage depth

50

0K 200K 400K 600K 800K

Length of contig

CHAPTER 6. POSTME : POSTPROCESSING METAGENOMICS ASSEMBLY WITH
HYBRID DATA BY HIGHLY PRECISE SCAFFOLDING 85

Figure 6.3: Data analysis on the number of short contigs embedded in long reads.

2500

2000 |

1500 |

1000 +

500

Number of reads containing
such number of contigs

=500
0

1 2 3 4 5 6 7 8

Number of embedded contigs

6.4 Set cover minimization

We use set cover minimization formulation. The short contigs are treated as elements to be
covered. The set containers are the long reads, in which the short contigs are embedded.
To include all the contigs, we append set containers containing only one contig. We note
that some contigs (i.e. elements) can simultaneously be embedded in multiple reads (i.e. set
containers). The goal is to find the minimum set cover, that is, to find the set containers
that include all the short contigs and are of the smallest overall cardinality. We note that
finding minimum set cover is NP-hard in general and it is known that greedy algorithm
gives an optimal approximation ratio unless P = NP. For the contigs embedded in a long
read, we consider the neighboring contig to be potential merging pairs. C-Test is then used
to decide on the final merging. We note that POSTME is a modification of the baseline
algorithm with this extra step on set cover minimization. We implement POSTME and test
it on the example data. Interestingly, with this single optimization, we can produce contigs
with higher quality than those produced by Spades-Hybrid, both in terms of the number of
contigs and the number of mis-assemblies.

CHAPTER 6. POSTME : POSTPROCESSING METAGENOMICS ASSEMBLY WITH
HYBRID DATA BY HIGHLY PRECISE SCAFFOLDING 86

6.5 Benchmarking

Besides Spades-Hybrid, we also benchmark the quality improvement made by POSTME
with other post-processing tools. The goal is to explore other dimensions for improvement
or to verify that POSTME has already obtained good enough quality improvement. For
example, we compare the performance of POSTME with Minimus2. Minimus2 is a tool
for merging assemblies, which is also used to merge the error-corrected long reads with the
contigs formed from the short reads. We note that despite a significant drop in contig count,
there is also a significant drop in the captured genome fraction for Minimus2. This means
that Minimus2 cannot provide conclusive answer on quality improvement in terms of data
efficiency. Indeed, a trade-off is observed when we test POSTME with other tools, which
cannot provide conclusive answer to whether further improvement is possible. Thus, in
additional to benchmarking, we need another approach to check whether POSTME is good
enough.

6.6 Further optimization feasibility test

To study the question on how good is good enough, we analyze the characteristics of all
possible merging pairs to see if we are already close to optimal (i.e. having minimum contig
count while not making further mis-assemblies). We define an ascending hierrachy (T'1 C
T2 C T3 C T4) of merging pairs. 71 includes the merging pairs that are connected by
three or more uniquely spanning reads and do not have competing contigs. T2 includes
the merging pairs that are connected by one or more uniquely spanning reads and do not
have competing contigs. T'3 includes the merging pairs that are connected by one or more
uniquely spanning reads. 74 includes the merging pairs that are connected by one or more
spanning reads. The proportion of merging pairs in the example data is shown in Fig 6.4. We
also measure the success rate of merges in our example data. It turns out that all merges in
T'1 are correct whereas 90% of the merges in T2 are correct. However, T2 only corresponds
to around one-third of all the merges and they are the only merges considered in POSTME.
For the other two-thirds, overlap information is clearly not adequate because of competing
contigs. However, it is still not clear whether the abundance information can come to the
rescue. Thus, we rank the merges by the ratio of C-Test on the best match versus the
second best match in each conflicting cluster. Surprisingly, in order to make no errors, the
best threshold can only be made to include the top two merging pairs. This suggests that
POSTME is performing reasonably well in the dataset.

CHAPTER 6. POSTME : POSTPROCESSING METAGENOMICS ASSEMBLY WITH
HYBRID DATA BY HIGHLY PRECISE SCAFFOLDING 87

Figure 6.4: Relative proportion of each class of merging pairs

6.7 Discussion

As an explorative research, POSTME effectively demonstrates the potential to improve the
assembly quality on hybrid data. Moreover, we also remark that the design of POSTME
demonstrates the agility of the post-processing approach in the study of data efficiency for
emerging data. We hope that this case study can spark more progress in improving the
quality of metagenomic assembly involving hybrid data.

Appendix A

Appendix of Near-optimal Assembly for
Shotgun Sequencing with Noisy Reads

88

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 89

A.1 Appendix: Proof on performance guarantee

Here we use the short hand of l.cpeat, linterteavea and liripie to represent the corresponding
approximate repeat length of longest simple, interleaved, triple repeat respectively.

Greedy algorithm

Let us define a #— neighborhood of the repeat specified by z[a : b and z[c : d] to be the loci
of repeat which are zja — 6 : b+ 0] and z[c — 6 : d + 0].

We say a repeat is §—bridged if there exists a read that cover the #-neighborhood
of at least one copy of the repeat. For simplicity of arguments, we assume lrepeqr >>

maX(lintereleav67 ltm’ple)-

Lemma A.1.1. We first note the following sufficient conditions for Noisy Greedy to succeed.
1. Merging at stages from L to {;q(p, €, G) are merging successive reads
2. Bvery successive reads have overlap with length at least Liq(p, 5, G)

Theorem A.1.2. Under the generative model on genome, with lyq = lua(p,5,G), a =
Oé(p, %7 G); Zf

L > lrepeat + 2. giid
Gln % G-In 6%

G >N >
maX(L - lrepeat —2- eiid’ L — giid

, then P(S8¢) < e.

Proof. In order to prove that claim, let us break down into several subparts

Let E; be the event that condition 1 in Lemma (A.1.1) is not satisfied. E; be the event
that condition 2 in Lemma (A.1.1) is not satisfied. F3 be the event that the long/inter-
leave/triple repeat is not ¢;;,;—bridged.

Now we claim that with the chose (N, L) in the range,

1. P(Ey) <5

2. P(Es) <<

3. P(Ey | BE N ES) < ¢

We first see how we can use these to obtain the desired claim and proceed to prove each
of the above sub-claims.

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS

P(SY) =P(E,) + P(E, N EY)
=P(E)) + P(E;NEC NES) +P(EyN EY N Ey)
SP(E1) + P(E; | Elc N E?)C) + P(Eg)
€ € €
< 4 -4
=3T3 t3

Now, we proceed to prove each of the sub-claims.
Gn 2
1. With N > %7 we have,

N
P(El) SN exp(—E(L - &m))
<_
-3
G-ln%
L*l'repeat*2'£iid

2. With N >

we have,

N
P(E?)) S eXp(_E(L - 2€iid - lrepeat))

3. With the choice of fiiq = liia(p, 5, G), we have,

P(E, | Elc N Esc) <NZ?. exp(—giidD(aHZ))
+ 2N exp(—tiaD(||n))

<G?. eXp(—giidD(aH%))
+ 2G exp(—tiaD(||n))

€
<_
-3

90

Here we use the fact that there are indeed 4 types of overlap as in Fig A.1. And given the
bridging condition, we are only left with 2 types, namely, both ending segments outside/ex-

actly one ending segment outside the longest repeat repeat region.

O

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN

SEQUENCING WITH NOISY READS 91
o — N
D B
Onein ﬂ L
One out
S Om
Both out I I
I i I
- — O
Onehalfway [1

Figure A.1: Overlap Type

Algorithm 19 Noisy Simple De Bruijn
Choose K to be max(lintericaves liripie)
Extract Kmers from reads

Clusters Kmers

Form Kmer Graphs

Condense the graph

Clear Branches

Condense graph

Find Euler Cycle

Nt WO

Simple De Bruijn algorithm

Before continuing proving the performance of Multibridging Algorithm, it is instructive to
analyze the following Simple De Bruijn Algorithm (Alg 19) because this is closely related to
the Multibridging Algorithm.

Here we first define several genomic region of interest which we will refer to in the proofs
below.

a) Sy = set of K-mers that are completely inside ¢;;— neighborhood of the longest repeat

b) S; = set of K-mers that are completely inside the longest repeat

C) 52 = S()\Sl

Lemma A.1.3. Here we provide several deterministic conditions that guarantee the success
of the algorithm.

1. Successive reads overlap with length at least K

2 K-mers are almost correctly clustered, that is,

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 92

(a) Before branch clearing

(b) After
branch
clearing

Figure A.2: Branch clearing

a) K-mers from the same locus but not merged

b) x not in Sy s.t. = get clustered with wrong K-mers

c) x in Sy s.t.x get clustered with elements other than its own cluster/mirror clus-
ter(mirror cluster is defined to be the cluster for the other copy of the repeat)

3) Repeat at both circle are at least 2- ;4 separated(the interleaving segments between the
repeat differ with at least 20;4in length)

Proof. We note that every length K segments x ¢ S, they are represented as a distinct node
in the K-mer graph because of the length K that we pick and the condition that successive
reads overlap at least K bases. Moreover, for K-mers x € Sy, they are condensed into the
repeat as 'X’ in Fig A.2a. However, for the K-mers x € S5, they have chances not to merge
properly, thus they form into the branches surrounding X’ in Fig A.2a. Because of condition
3, branch clearing will not eliminate the ’A” or ’C’ in Fig A.2a, further after condensing, we
get the desired K-mer graph as in Fig A.2b and this can be successfully read by a Eulerian
Walk. [

n 3N
N > G-ln =

= L—max(lint,ltripte) —2iid

G

v

Theorem A.1.4. If G > a
o = a(p, £, G), then, P(SC) < ¢

, with g = giid(p7§7G)

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 93

I—2=3 4 576

* If both red repeat are bridged,
* Then
1 will not join 5 ; 4 will not join 2

* If further, we have liid overlap between successive reads,
* Then
the overlap graph looks like

Figure A.3: An illustration of the Noisy Multi Bridging

Proof. We first note that in order to obtain a bound on the error probability, we only need
to separately bound the probability that each of the conditions in Lemma A.1.3 fail,which
are < £ each. Thus, combining, we get, P(SY) <e. O

Multibridging algorithm
An illustration of noisy Multibridging Algorithm is shown in Fig (A.3).

Lemma A.1.5. Here are the deterministic conditions for the algorithm to succeed.
1) Every successive reads overlap at least Li4(p, 5, Q)
2) K-mers are almost correctly clustered, that is,
a) K-mers from the same locus but not merged
b) x not in Sy s.t. x get clustered with wrong K-mers
c) z in Sy s.t. x get clustered with elements other than its own cluster/mirror cluster
3) Repeat at both circle are at least 2 - ;4 separated
4) When finding successors/predecessors, they are the real successors and predecessors

Proof. Along the same lines as the proof in Lemma (A.1.3), we only note that in this algo-
rithm, we have an extra step of finding predecessor /successors. Moreover, the overlap here
is significantly reduced to only ¢;;4 instead of K in the Noisy Simple De Bruijn case. m

3
Theorem A.1.6. With G > -~ G > N > maX(_L—gz--d In ¥ Gln)

eliza’ 6/3 ’ L_max(ltriple7linterleave)_zziid

with Lig = Laa(p, 5,G) a = a(p, 5,G) , then P(SY) <e.

Proof. Here we note that with the given coverage, bridging conditions of the interleave repeat
and the triple repeat are satisfied. And when this is true, then Condition 4 in Lemma A.1.5
is true with high probability. Following the arguments in Theorem A.1.4, we get desired. [J

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 94

genome Sequence

Graph
Formation

Data noisy reads ()
Generation

x) > cluster mapping (f1)

merged cluster mapping(f2) Sequence graph (G1)| cluster mapping (f1)

noisy reads (r) /
‘/ Branch

Alignment Sequence Graph (G3) Noisy Sequence graph (G2)
bridging Multi-bridging Clearing

Sequence Graph (G4) merged cluster mapping(f2)

Recovered Sequence Index Recovered Genome (X'
Euler cycle (rec) Resolving) Alignment Mismatch #
finding fused nodes check
Noisy Reads (r) >
Merged Cluster Mapping (f2) Genome (x)

Figure A.4: Pipeline of the prototype assembler

A.2 Appendix: Design and additional algorithmic
components for the prototype assembler

Pipeline of the prototype assembler

The pipeline of the prototype assembler is shown in Fig A.4. With a ground truth genome
as input, the output is the performance of the whole pipeline by giving the mismatch rate.

A more robust branch clearing step

Since we employ a speed up step in the clustering and there may be K-mers that are not
completely clustered correctly in the clustering step of Multibridging Algorithm. Regarding
that, we need to have a more robust branch clearing step. In particular, we first classfy nodes
as “big” or “small” nodes based on the size of the nodes in the sequence graph. The key idea
is to merge the small nodes together while keeping the big nodes unchanged. Starting from
each big nodes, we tranverse the graph to detect all the small nodes that link the current
big node to other big nodes. Then, we classify the small nodes into levels(depending on
its distance from the current big node). After that, the small nodes in the same level are
merged. Finally, we note that we keep the reachability among each big nodes.

Enhanced Multibridging algorithm that can resolve middle range
repeats

We note that the ideas presented here can also be found in the prior work on the treatment of
noiseles sreads. It is stated here for completeness. In the noisy setting, instead of considering

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 95

the alphabet set to be X = {A, C G, T}, one can consider the alphabet set as the cluster
index of the K-mers.

Algorithm 20 Enhanced Multibridging Algorithm

Resolution of repeats:

0. Intially the weight of the edge are set to be 1.

1. While there is a X-node v :

a) For each edge (p;,v) with weight a,, ., create a new node u; ="~ v and an edge (p;, u;)
with weight 1 + a,,,. Similarly, for each edge (v,g;), create a new node w; = v~% and an
edge (wj7 QJ)

b) If v has a self-loop (v, v) with weight a,,, add an edge (v="","~ v) with weight a,,,, + 2
¢) Remove node v and all incident edges

d) For each pair of u;, w; adjacent in a read(extending to at least length of ¢;;4 on both
sides of the X-node), add edge (u;, w;). If exactly on each of the u;and w;nodes have no
added edge, add the edge.

e) Condense the graph

A.3 Appendix: Treatment of indel noise

Formation of K-mer De Bruijn graph for indel corrupted reads

In order to form K-mer De Bruijn graph for indel corrupted reads, we first need to have a
clear notion of K-mers. We define K-mers to be the length K segments in the genome ground
truth (as opposed to the usual definition from the reads). Although we mostly work on the
reads themselves, the definition of the Kmers are based on the ground truth. In order to
successfully cluster K-mers, we need to do the following steps.

1. We first compute the pairwise alignement of the reads.

2. Based on the pairwise alignment, for each length K-segments, we know which should
be aligned to which. We then group them together using the alignment result.

3. Finally, we end up with the length K segments from the reads clustering together, and
now we use it as an operational way to identify the Kmers since each cluster will naturally
correspond to a K-mers originated from the genome groundtruth(though there are a few
discrepancy, mostly this is correct).

4. After we identify the K-mers clusters, we add an edge between them if there exists a
read such that there are two consecutive Kmers originate from it.

Graph surgery to clear abnormality of the noisy De Bruijn graph

Due to indel noise and runs of the same alphabet, the way that we form K-mers graph may
need to abnormality of the graph. We thus perform a graph tranversal and identify the
abnormality that are of short length(i.e. resulted from noise but not the genome structure).

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 96

After that, we remove such abnormality. This step also involves transitive edge reduction
and removal of small self loops.

X-phased step tailored for indel noise type
Generalization to handle indel error

When dealing with indel noise, the neighborhood of reads can also affect consensus of the
base. There we have to do sequence alignment in order to find the appropriate posterior
probability in order to do a maximum likelihood estimate of whether a particular given
genomic location is a site of polymorphism or not. In order to do that, we formulate the
problem as a ML problem as follows.

I%}Eaé(HzESP(RZ | T)7 Perr = POPt (A 1)
Ij{le%)ji HzESP(RZ | T)? Perr = Lopt + 51 (A 2)
max Mies P(R; | T), Pary = Py + 61 (A3)
rTne%)}f H(j,k)HieSQkP(Rz‘ | TJjJrk)a Perr = Popt + 01 (A4)
{P&;ﬁ H(j7j+1)Hi€S§,j+1P(Ri | Tjjﬂ)v Perp = opt T o1+ 02 (A 5>

Here we also discuss about the places that we take approximation to enhance the com-
putational efficiency in the steps of the previous reduction. From (A.1) to (A.2), we use
some heuristics to find out the possible location of SNPs within the whole repeat in which
disagreement is observed after several rounds of error correction. From (A.2) to (A.3), we
remove all the reads that only span one single SNPs and it has no effect on the error of the
detection problem that we are trying to solve. From (A.3) to (A.4), we further partition the
reads into group in which % is the set of reads that only span the SNPs j to j+k. Doing this
can decompose the ML problem into smaller subproblems with no effect on the accuracy.
Finally, in practice, we take a first order approximation of (A.4) to (A.5) by only onsidering
two SNPs for each subproblem.

As for each of the marginal probability distribution, the best way is to run Sum-Product
algorithm to compute in a dynamic programming fashion similar to S-W alignment. But as
pointed out in Quiver, this steps can be significanly speeded up using a Viterbi approximation
and this is also what we implemented in the simulation code.

Simulation study

We simulated on both synthetic and real data set with indel noise and on a double stranded
DNA. In the simulation, we assume that the reads from the neighborhood of a repeat is
given and our goal is to decide how to extend the reads to span the repeat copies into the

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN

SEQUENCING WITH NOISY READS 97
‘ Repeat Type ‘ Cy ‘ L, ‘ C ‘ L ‘ Ddel ‘ Dins ‘ G ‘ Homology ‘ [approv ‘ jewact ‘ Success % ‘
Randomly generated 50X | 100 | 50X | 240 | 10% | 10% | 10000 0.67% 300 150 99%
A repeat of Ecoli-K12 - — | 80X | 3000 | 10% | 10% | 4646332 0.48% 5182 | 1507 89%
A repeat of Bacillus anthracis - —~ | 80X | 3500 | 10% | 10% | 5227293 0.23% 4778 | 2305 85%
A repeat of Meiothermus ruber | — - | 80X | 750 | 10% | 10% | 3097457 1.40% 1217 | 257 94%

Table A.1: Simulation results on long contig creator(Cy, L, are coverage and readlength for
short reads. Cj, L; are coverage and readlength for long reads. pger, pins are the probability
of insertion and deletion. G is the length of the genome. Homology is the number of
SNPs divided by the length of the approximate repeat. [%PPT% [¢a¢t are the length of the
approximate and exact repeat being studied. Success % is the percentage of success in 100
rounds)

Calibration of the similarity score metric

score (ins, del, sub, match) = (-1,-1,-10,
w 5

Localized alignment

Figure A.5: A calibration for similarity score using global alignment computation.

flanking region correctly. The correctness is evaluated based on whether they can correctly
extend the correct reads into the flanking region.

Edit distance metric calibration

We also do a study on whether we can use alignment score to differentiate between segments
from being extracted from the same locus or not. In Fig A.5, the upper curve is the score
for segment extracted from the same locus while the bottom curve is for completely iid
randomly (irrelevant) generated segment. And we simulate it for 100 times at each length
and the bar indicate 1 standard deviation from the mean.

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 98

Tolerance in the Multibridging step

We note that due to the indel noise and the graph surgery that we perform, an X-node of the
graph may be p times longer than the usual size of the approximate repeat, thus we should
have a corresponding higher tolerance to use the reads to bridge across the repeats.

Computation speed up of alignment step

The key bottleneck in computation speed of the indel extension is on the pairwise alignment
of the reads, which can be speeded up using the ideas in BLAST. We use sorting to identify
exact matching fingerprint that identify the starting and ending location of the segment that
need to be aligned with. After that, we do a local search instead of the whole dynamic
programming search.

A.4 Appendix: Evidence behind model

Approximate repeat

We let the underlying genome be ¥ and use the short hand that x[a : b] be the a'™ to (b— 1)
entries of Z.

Let ¥} = x[s1 : s1+1] and Uy = z[s : s5+1] be two length [substrings of the genome with
starting positions at s; and s, respectively. We call v; and 9, be an approximate repeat of
length [if

d(z[sy — W : s1],x[sg — W : s5]) > 0.TW

dlz[sy +1:s1+1+Wl,z[se:sg+1+W]) > 07TW

d(xz[sy =W 4+ k:s1+ k|, z[so =W +k:se+k]) <07W forall 0 < k <1

To understand approximate repeat better, we plot the Hamming distance for consecutive
disjoint window of length 10 as shown in Fig A.6 .

Classification of approximate repeat

While repeats are studied in the literature|2|, they are not investigated by looking at the
ground truth. This is partially due to the insufficiency of data in the early days of genome
assembly development. Therefore, based on the ground truth genome, we define several
quantities that allow us to classify approximate repeat and understand the approximate
repeat spectrum of genome. Here we define stretch and mutation rate. Stretch is defined
to be the ratio of the length (I*) of the longest exact repeat within an approximate repeat
divided by the length (lapprez) of the approximate repeat. Mutation rate is defined to be
number of mutation within approximate repeat divided by (lapproz—0*). An illustration is
shown in Fig A.6.

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 99

IIW

1v

6

in a window of 10

S

Mutations
v

g —
|

% 2000 4000 6000 8000 10000 12000 14000 16000 18000

Hamming distance

< Repeatlength
< Approximate repeat length

Stretch = Approximate repeat length/ Repeat length;
mutation rate = # of mutation / (Approximate repeat length — Repeat length)

Figure A.6: Example of how to define stretch and mutation rate

Moreover, we do a scatter plot to classify the approximate repeats(approximate repeat
having exact repeat length within top 20) and we have a plot of approximate repeat spectrum
as in Fig A.7.

From the plots in Fig A.7, we classify approximate repeat as homologous repeat if the
stretch is bigger than 1.25 and as non-homologous repeat if the stretch is less than 1.25.

For the scatter plot, every approximate repeat is a dot there with x coordinate and y
coordinate being mutation rate and stretch respectively. And the color represents the length
of that approximate repeat. For the approximate repeat spectrum plot, the red bar represent
non-homogeneous repeat while the blue bar represent homologous repeat. The green dotted
line indicates the length of the longest repeat.

We focus on genomes when the non-homologous repeat dominates, namely the longest
interleave and the longest triple repeats are non-homologous because the stretch is relatively
short which can be captured by our generative model. We do not distinguish between the
length of approximate or exact repeat are considered to be the same and we do not distinguish
between the two in the discussion because of the small stretch.

Stopping criterion for defining approximate repeat by MLE
estimate

Parametric model

Let Lj, be the number of bases between the (k — 1) and the k' SNPs starting from the
right end-point of a repeat.
We consider the following probabilistic model for the Lj. {Lg}}_,is taken as an indepen-

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN

SEQUENCING WITH NOISY READS 100

10" 107 107 10" 10°
Mutation Rate

=
=
o5
o

Number of
approximate repeat
o]

NN o

J]]lll L 11 H
2

1000

=)

0 3000 4000 5000 6000
Length of approximate repeat

Figure A.7: Classification of approximate repeats and approximate repeat spectrum. The
upper plot is scatter plot to classify approximate repeat. The lower plot is the approximate
repeat spectrum

dent sequence of geometrically distributed random variables with parameter © = {py, ps, r}
defined as follows.

I Geo(py) if1<k<r
g Geo(ps) ifr<k<n

MLE estimate of parameters

We now would like to estimate © given the observation of {ik}2;1 by maximum likelihood
estimation. Consider the log-likelihood function L(©) = log P({Li}}_; | ©).

L(O) = logP({LiYis|6) | (A6
= log{[IT_y (1 — p)"*pi] - (i1 (1 = p2)™*pal} (A7)
= rlogp + [Z L] -log(1 —p1) + (n—7) -logps + | Z Ly] - log(1 — py)A.8)

k=1 k=r+1

And we want to find © = arg maxe L(O).
Observe that, if we fix 1 < r < n, then the optimal p; and p, can be readily obtained by
taking derivative on L(©) with respect to pjand ps, specifically,

1
W = —— A9
P 1 ST i ()
by = ! (A.10)
P2z = ZZ:TH i/k '

1+

n—r

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 101

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure A.8: An example plot that define the stopping point of approximate repeat by Algo-
rithm 21

© can then be obtained by running over all integral 1 < r < n and use the corresponding
optimal p; and py to obtain the L(©), and finally we use the r that gives the highest value
of L(©) as the MLE estimate given the observation.

Linear time algorithm to estimate the stopping criterion

Moreover, this can be done by the following algorithm Algo 21, which run in linear time
©(n) with respect to the number of observations n.

Algorithm 21 Linear time algorithm to estimate the stopping criterion

1. a)Con;b)forrzlton:Cr%C’T—i—IA/TA
2. a)Dy <+ Cy, ;b)fforr =1ton: D, + C, — L,
3. forr=1ton

P~ 1+1g
~(r)
2

<

1420

0, (r,p",)

X, < L(©,)

4. find maximum among {X,}"_,, and the corresponding ©, is the MLE estimate.
5. (Differentiate between homologous and non-homologous repeat)

If the optimal ﬁgr),ﬁg)are too close (i.e. ;55”) > 0.2), then claim r = 1; else, claim 7 = .

A sample plot is of who we can use the critierion to accurately define the ending of
approximate repeat is shown in Fig A.8.

A.5 Appendix: Dot plots of finished genomes

APPENDIX A. APPENDIX OF NEAR-OPTIMAL ASSEMBLY FOR SHOTGUN
SEQUENCING WITH NOISY READS 102

(c) Index 3

et 51 chronosane, conp... v3. se51

51 chronasone, conp.. v5. sl

(d) Index 4 (e) Index 5 (f) Index 6

(j) Index 10 (k) Index 11 (1) Index 12

Figure A.9: Dot plot of recovered genomes against ground truth(according to index in Table
2.2)

103

Appendix B

Appendix of Towards Computation,
Space, and Data Efficiency in de novo
Genome Assembly

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA
EFFICIENCY IN DE NOVO GENOME ASSEMBLY 104

B.1 Appendix: Extensions to realistic data

The algorithm presented here is based on the simplistic i.i.d. model, and some preliminary
results on its extensions towards handling long repeats and errors are provided. Our imme-
diate future goal is to build on this work and develop algorithms that can perform space,
time and data efficient sequencing on real data. The two main departures of the i.i.d. model
considered here, from the realistic data are that (a) the reads are assumed to be error free
here, while in practice they may have indel or substitution errors or missing data, and (b)
the underlying sequence may have much longer repeats that what is predicted by the i.i.d.
model. The following two subsections describe preliminary thoughts on handling these is-
sues. Also provided are bounds on the system parameters in the presence of substitution
errors in the reads.

Handling repeats

A significant difference between the i.i.d. model and real data is the presence of long repeats
in real DNA sequences, which is a very low probability event under the i.i.d. model. In this
section, we describe our preliminary work on extending the algorithmic framework described
in Section3.3 to handle the case of having long repeats. In a nutshell, the framework of
Sectiond.3 can detect repeats in the online phase. This enables one to avoid any confounding
due to repeats in the online phase, and the greedy-yet-efficient algorithm of the offline phase
can then handle the repeats. Details follow.

When the underlying sequence has multiple repeats of length K or more, the algorithm
of Section3.3 is likely to get confounded, and produce an incorrect output. The follow-
ing toy example illustrates the kinds of errors that will result in such a situation. Let
us assume GG = 34 and L = 8, which gives K = 4. Suppose the underlying sequence is
TTTTTAAAAACCCCCAAAAAGGGGGAAAAATCGA. Then, there is a chance that the
algorithm will (incorrectly) output TTTTTAAAAAGGGGGAAAAACCCCCAAAAATCGA.
This sequence has three repeats AAAAA of length greater than K = 4, due to which the
algorithm may interchange the data GGGGG and CCCCC between two of the long repeats.

The framework developed in Section3.3 inherently has the ability to detect long repeats.
To see this, let us first consider an instance of running the algorithm on the toy sequence
considered above. Let us assume that the first read is TTTTAAAA. The online algorithm
will insert this read as the first entry in MergedContig table, and insert the extracted K-mers
AAAA and TTTT in the K-mers table. Now suppose the next read is AAAATCGA. Then,
the K-mer AAAA of this new read will match the AAAA K-mer from the K-mer table. Since
the online algorithm detects a length K overlap, it will merge these two reads, and replace
the entry of the MergedContig table with TTTTAAAATCGA (and the K-mers table will
now have AAAA, TCGA and TTTT). This is what will subsequently lead to an erroneous
output. Let us now see a modification of the algorithm to handle such cases. Suppose the
algorithm subsequently observes the read AAAAGGGG. The K-mer AAAA from the new
read will match the K-mer AAAA in the MergedContig. Thus, the algorithm would try to

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA
EFFICIENCY IN DE NOVO GENOME ASSEMBLY 105

merge the two parent contigs AAAAGGGG and TTTTAAAATCGA (treating AAAA as a
common sub-string), and would have failed in this process. However, observe that in this
process, the algorithm does manage to detect the presence of a repeating AAAA, and we
shall now exploit this ability of detecting long repeats.

Upon detection of any long repeat (AAAA in this case), the algorithm now separates out
the strings in the MergedContig table that contain this repeat as follows. The merged contig
containing this repeat is split into two strings, one of which contains the prefix of the repeat
followed by the repeat, and the other contains the repeat followed by its suffix. E.g., the
string TTTTAAAATCGA in this case would be split into TTTTAAAA and AAAATCGA.
The MergedContig and the K-mers tables are now updated with these two new strings, and
the older string TTTTAAAATCGA is removed. Also, the new read AAAAGGGG that
triggered this is also not merged, and is stored as a separate string in MergedContig. At any
subsequent time, a new read involving AAAA has the K-mer AAAA matching with multiple
entries in MergedConting, and even in this case, a multiple repeat is safely detected. These
contigs are subsequently merged in the offline phase in a greedy manner.

We note that these are preliminary ideas, and have not yet been implemented or thor-
oughly analysed.

Handling errors

As mentioned previously, in general, our framework operates as follows. Depending on the
(stochastic) error model, define a similarity metric between any two reads. Also find a thresh-
old such that under the model considered, there is a vanishing probability of two non-adjacent
reads having a similarity greater than that threshold. Now in the online phase, merge two
reads whenever their similarity crosses the threshold. (In the algorithm of Section3.3, the
distance metric is the amount of contiguous overlap and the threshold is K.) In the offline
phase, merge the reads in a greedy-yet efficient manner, exploiting the knowledge that no
two of the remaining cotigs gave a similarity greater than the threshold. Finally, run a
third phase that performs a consensus operation to obtain a final result from the scaffold
construction (this third phase is not required in the absence of errors, or if missing data is
the only form of errors). While we leave the general case for future work, below we present
(fairly tight) bounds on the system parameters for exact reconstruction in the presence of
substitution errors in the reads.

Let us consider the case when the reads might have random substitution errors. As in
Section3.2, we assume that the underlying sequence Zgis generated with each base drawn
randomly in an i.i.d. fashion. For simplicity, we assume for now that the distribution for
each base is uniform over {A, C, G, T}. Each read is an L length contiguous substring of
Zg, and is drawn uniformly at random from the entire sequence 7. We introduce errors into
the model in the following manner. For each read, we assume that each base is randomly and
independently substituted by a different base. In particular, we associate a new parameter
p to the model, and assume that each base flips to any one of the three other bases with a
probability £ each.

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA

EFFICIENCY IN DE NOVO GENOME ASSEMBLY 106
30 T T
—~Upper bound /
< 257 —Lower bound /
(g) q
8 20r
“E 151
éw—
8 5,
Q01 0z 03 _od o5 o8 o7
Error Rate

Figure B.1: A graph of the lower and upper bounds to the coefficient of growth, plotted
against the error rate. Notice how closely the two bounds follow each other.

Our goal is to find necessary and sufficient conditions on the number of reads N required
to allow for exact recovery of Zgwith a high probability. More formally, if Zgis the actual
underlying sequence, and T’ is the sequence reconstructed, we wish to have

lim P(Zg # 7)) = 0.
G—oo

We obtain a lower bound and an upper bound on minimum data requirement N* for
exact recovery in an asymptotic setting as follows. Let

~ 2p(9/8 —p)
f(p) - (p_3/4)2
and]
Then, :
max{l,f(p)}-Glng<N*<max{1,g(p)}-G (ng (B.1)

The proof of this result, along with a more detailed discussion on it, is provided in the
Appendix. A plot of the bounds is provided in Fig.B.1.

Preliminary thoughts on incorporating substitution errors in the algorithmic framework
described in Section3.3 are as follows. We could choose a higher value of the parameter K,
and in the online phase merge reads with an overlap of K but allowing for a small fraction
of differences between the reads. Likewise in the offline phase, the merge of contigs can be
performed allowing for a small fraction of errors. The positions of misconsensus are marked,
and a consensus is enforced at the end of the assembly algorithm.

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA
EFFICIENCY IN DE NOVO GENOME ASSEMBLY 107

B.2 Appendix: Bounds on the data requirements in
presence of substitution errors

Previous work

The authors in [38] find the conditions for having the correct alignment on reads. We extend
their results by considering a more stringent metric, exact recovery. We also provide an
explicit coefficient factor on the coverage requirement for this more stringent metric.

In [38], authors consider a greedy algorithm. We reproduce this algorithm in Algorithm22,
along with an additional consensus requirement since our aim is to achieve exact recovery of
the underlying sequence.

Let a* be the value of a that satisfies the following equation

31
D(la, 1 = allll3, 7))
4 4 4,
= 2-D(le.1=all[2-p— 30" 1 =2 p—2p]) (B.2)
In order to correctly align the reads, one can use the following overlap score metric
along with the greedy algorithm (Algorithm 22) to correctly align the reads. Let function
d(+,-) denote the Hamming distance between its two arguments. We define the score metric
=

between two reads (77, i) to be the maximum overlap segment length that disagrees by at

most a factor a of the overlapping segment. More formally, denoting the score metric by
S('?)
AN — . 1.
s(ri,rj) = org%XL[t | d(T[L —t: L],rj[l 1)) < at]
where we use the notation ¥fa : b] to denote a segment of vector 7 spanning position a
to position b of 7 (including the end points). The following lemma presents the precise
asymptotic performance guarantees of Algorithm?22.

Lemma B.2.1 ([38]). When L > 2/D([o*,1 —a*]||[2,1]) - InG and N > “E the greedy

algorithm (Algorithm22) returns the correct alignment with high probability as G — oco.

Main theorem

Proposition B.2.2. If p < % and L > 2/D(Ja*,1 — a*]||[%, Zﬂ) -InG, we obtain a lower
bound and an upper bound on the data requirement for exact recovery as follows. Let f(p) =
2p(9/8—p)
(p—3/4)

o If N <max{l, f(p)}- GIEG, then o > 0 such that P(Zq # Z) > a >0

e [f N > max{l, l—ea:p(l—ﬁ)} GG “then Algorithm 22 achieves P(Tg #) = 0

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA
EFFICIENCY IN DE NOVO GENOME ASSEMBLY 108

That is the minimum data requirement on N* lies in the range of max{1, f(p)} - Z2E <

* 1 GInG
N* < max{1, l—ezp(—ﬁ)} T

This expression is consistent with our intuition on coupon collector problem that the
number of reads required should be multiple of % To have more intuition of the coefficient
of growth of GI—EG, we have plotted the lower and upper bounds in Fig.B.1. Indeed, when
p = 0, it reduces to the coverage constraint without noise, which is consistent of the Lander-
Waterman coverage condition|32]. Thus this condition can be viewed as a generalization of
Lander-Waterman coverage condition in the presence of noise.

Proof of propositionB.2.2

Precondition Let (ny,...,ng) be the number of reads covering location (1,...,G) of the
underlying sequence Tg respectively. Note that ZZG:1 n; = N - L. We first show a result
Prop(B.2.3) that allows us to work on the asymptotic regime. Prop (B.2.3) means that the
number of reads covering any base of the underlying sequence ¥ grows with G. This is a
precondition for us to later use the normal approximation. The precise statement of this
precondition is in Prop (B.2.3).

Proposition B.2.3. We have, V¢’ > 0, if N > %(1 +€),

lim P(3i such that ,n; <IlnlnG) =0

G—oo

Algorithm 22 Greedy algorithm with consensus

1. Compute overlap score between all pairs of noisy reads by s(77, F;)
2. Initialize contig list as reads

3. for w = L down to 0 do

for all (7},77) do

if (77,7%) do not belong to the same contig and s(r;,7;) = w then

']
end
Declare (77,77%) as consecutive read and declare them to belong to the same contig
end
end

4. Align consecutive reads together to form a long string 7, which is the recovered sequence
5. Do a majority vote from the reads at each location in the ', to form correctedGenome
6. Return correctedGenome

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA

EFFICIENCY IN DE NOVO GENOME ASSEMBLY 109
Proof.
P(Fi such that ,n; < Inln G)
< G-P(np <InlnG) (B.3)
InlnG
N\ L, L n_;
= . . —)(1—-=)"" B.4
-y (V) @u-g (B.4)
InlnG 1 I
= G- IV =1 (V =i+ ()]
i=0

= G-[(1- £)_1“1“G] -P(Poisson(E) <InlnG)
G G

< G- [(%)lnlnG] . ’P(Poisson(%) S Inln G)

= [GInG]- P(Poisson(%) <IlnlnG)

e . (e%)lnlnc

s (GG —g o Gmme (B.5)
< [GInG]-[e & -InG- (%)mlnc]
= [GIn®G] [e o - (%)mlnc]
< e:vp(lnG—%+ln(%).1n1nG+2.mlng)
(B.6)

where(B.3) follows from union bound, (B.4) follows because ny ~ Bin(N, %), and(B.5)
follows from the Chernoff bound. Letting G — oo in(B.6), we get the desired result. O]

Necessary condition We now establish the necessary condition on data requirement to
have exact recovery of the target genome. That is, if N < max(1, f(p)), then P(error) >0
as G — oo.

Let us start by defining some notation. Let

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA
EFFICIENCY IN DE NOVO GENOME ASSEMBLY 110

P, = P(3i such that n; = 0)

Py = P(3i such that ¥4 (i) # (i) | Vi,n; > Inln G)

Py =P(Vi,n; > InlnG)

In terms of these quantities, the probability of error P(error) > Py + P - Ps

If N < GIEG, P, — 1, thus P(error) — 1, which is the Lander-Waterman condition on
coverage.

If N > €IC g satisfied but N < f(p) - €, we want to show that Ja > 0 such that
P, > a > 0as G — oo. This, in turn, suggests P(error) > « > 0 (Remark: the precondition
ensures that P; — 1).

Now, let us proceed to establish the lower bound on P, by considering an upper bound

on 1 — P,. Here we condition on the event that {Vi,n; > Inln G}. For any vector ¢, we shall
denote its i*" element as (7).

1-5

I
=
Q

nc [P (T (i) = T (i)¥i) | nf]
< B e[IE P () = 25()) | nf]
< E.g [1IZ, P (At location i, #reads having A
> #reads having C | Zg(i) = A) | n¢] (B.7)
Now let us define random variables
1 with probability 1 —p

Yj(i) =40 with probability %
—1 with probability £

We have E[Yj(i)] =1- %p, Var[Yj(i)] = 2p-(1—22). We proceed the bounding of (B.7), with
notation ®(z) being the cumulative distribution of standard normal distribution. Ve’ > 0,
we have,

1-P5

< E M, PO> v >0) | nf]

Jj=1

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA
EFFICIENCY IN DE NOVO GENOME ASSEMBLY

IA

IA

IN

IN

g

AT 1 =P Y <0)] | nf}

AU YOl ks D
2 ni2p - (1 o %)
B, {119, [1 — cap(n; - “f[pf)n | n§
B, (T12. capl—cap(n, - (1fzp§/)>] |6}
o C N (1—¢€) G
apleanl= Y eaptn- S)
exp|—] G n&
G g T |
eETrp|l— G nG
welemi=] 1)
leanl=G - eon(= g - o])
E,c{exp[—exp(InG — % : <1pr§/>)] | n{'}

111

(B.8)

Here,(B.8)) follows from a normal approximation, and(B.9) follows since A.M. > G.M..

Thus, if N < €2&. f(p), then 1 — P, — 0 and thus as G — oo , P(error) > 0.

Sufficient condition For Algorithm.22, we have,

P (error)

< P(misaligned) + P(mis-consensus | correctly aligned)

From the results of|38], we know that, P(misaligned) — 0 with the parameters given
above. Thus it remains to bound the second term. We obtain the following bound, Ve > 0,
when G is sufficiently large, with £ as the precondition

APPENDIX B. APPENDIX OF TOWARDS COMPUTATION, SPACE, AND DATA
EFFICIENCY IN DE NOVO GENOME ASSEMBLY

P(misconsensus | correctly aligned)

<

IN

IN

IN

<

G

E[Z P(misconsensus at location i | £)] + €

i=1

G
3E[Z P(ig(i) = C | Za(i) = A) | €] + ¢

3E[ZG:<1>(il — 5))| €]+
i=1 2pn; (1 — 3p)

1 1
3G - Em{aexp[—ni : m]} +e
L

3 S E

-G - — —(1 — f(p)

2G 1 G(l e N +e
LN

;exp[lnG - ?(1 — e_ﬁ)] +e

112

(B.10)

(B.11)

Here,(B.10) follows from a normal approximation,(B.11) results from bounding the ® func-
tion. Thus, if the conditions are satisfied, P(error) — 0 as G — oo.

113

Appendix C
Appendix of FinisherSC

APPENDIX C. APPENDIX OF FINISHERSC 114

C.1 Appendix: Detailed experimental results on
bacterial genomes

In this section, we provide the detailed Quast report for the results described in Table 4.2.
Moreover, we compare in Fig C.1 the memory consumption and running time of FinisherSC
with those of PBJelly. The computing experiments for this section were performed on the
genepool cluster at JGI. Below are commands used to run PBJelly.

Jelly.py setup Protocol.xml -x "-minGap=1"

Jelly.py mapping Protocol.xml

Jelly.py support Protocol.xml -x " -debug"

Jelly.py extraction Protocol.xml

Jelly.py assembly Protocol.xml -x "-nproc=16"

Jelly.py output Protocol.xml

The BLASR configuration in Protocol.xml is

-minMatch 8 -minPctIdentity 70 -bestn 8

-nCandidates 30 -maxScore -500 -nproc 16

-noSplitSubreads

Details of the scalability experiments

We run the scalability experiments on a server computer, which is equipped with 64 cores
of CPU at clock rate of 2.4-3.3GHz and 512GB of RAM. We also note that, for even larger
contig or read data with genomes of higher repeat content, one may be interested in the
following options. They are [-f True| for fast alignment and [-1 True| for breaking down large
contig file. As a reference, we also attach the Quast analysis results on all the intermediate
output for the scalability test in Table C.6, C.7 and C.8. We note that the misassembly
count in the Quast analysis for these genomes should only be used as a reference because
there is a lack of high quality reference and reference genomes may be from different strains.

APPENDIX C. APPENDIX OF FINISHERSC 115

Running time comparison

10000

8000

6000

4000

2000
0

Time -- seconds

(a) (b) (c) (d) (e)
W Time(FinisherSC)--seconds, 768 793 398 = 118 267
¥ Time(PBlJelly)--seconds 8534 = 2328 2983 1068 1485

Maximum amount of virtual memory used comparison

1113l

_ @ b @ d (e)
& Memory(FinisherSC)-GB 0.37786 = 0.30731 0.23489 0.21077 0.2373
® Memory(PBJelly)}--GB 498 289 = 333 = 223 348

Memory -- GB

© = N W B W0

Figure C.1: Running time and memory consumption comparison of FinisherSC and PBJelly
. (a) to (e) are the corresponding data sets in Table 4.2.

APPENDIX C. APPENDIX OF FINISHERSC 116

Table C.1: (a) in Table 4.2. All statistics are based on contigs of size > 500 bp, unless
otherwise noted (e.g., "# contigs (> 0 bp)" and "Total length (> 0 bp)" include all contigs).

Assembly HGAP | FinisherSC PBJelly
contigs (> 0 bp) 45 4 44
contigs (> 1000 bp) 45 4 44
Total length (> 0 bp) 5340498 5212355 5383836
Total length (> 1000 bp) 5340498 5212355 5383836
contigs 45 4 44
Largest contig 4097401 5168551 4099674
Total length 5340498 5212355 5383836
Reference length 5167383 5167383 5167383
GC (%) 42.16 42.06 42.19
Reference GC (%) 42.05 42.05 42.05
N50 4097401 5168551 4099674
NG5H0 4097401 5168551 4099674
NT5 4097401 5168551 4099674
NGT75 4097401 5168551 4099674
L50 1 1 1
LG50 1 1 1
L75 1 1 1
LGT75 1 1 1
misassemblies 1 1 3
misassembled contigs 1 1 2
Misassembled contigs length 9679 9679 4117533
local misassemblies 2 3 4
unaligned contigs 39 + 0 part | 1 + 0 part | 39 + 0 part
Unaligned length 135514 17453 163702
Genome fraction (%) 100.000 100.000 100.000
Duplication ratio 1.007 1.005 1.010
N’s per 100 kbp 4.25 0.48 4.46
mismatches per 100 kbp 9.56 1.30 10.14
indels per 100 kbp 92.62 54.90 94.75
Largest alignment 4097400 5168480 4098915
NA50 4097400 5168480 4098915
NGA5H0 4097400 5168480 4098915
NAT5 4097400 5168480 4098915
NGAT5 4097400 5168480 4098915
LA50 1 1 1
LGA50 1 1 1
LAT5 1 1 1
LGAT5 1 1 1

APPENDIX C. APPENDIX OF FINISHERSC 117

Table C.2: (b) in Table 4.2. All statistics are based on contigs of size > 500 bp, unless
otherwise noted (e.g., "# contigs (> 0 bp)" and "Total length (> 0 bp)" include all contigs).

Assembly HGAP | FinisherSC PBJelly
contigs (> 0 bp) 163 41 115
contigs (> 1000 bp) 163 41 115
Total length (> 0 bp) 5536634 5139491 5821106
Total length (> 1000 bp) 5536634 5139491 5821106
contigs 163 41 115
Largest contig 254277 637485 495596
Total length 5536634 5139491 5821106
Reference length 5167383 5167383 5167383
GC (%) 41.98 41.96 42.01
Reference GC (%) 42.05 42.05 42.05
N50 89239 215810 145441
NG50 94672 215810 161517
NT5 44568 117879 98297
NGT75 53723 117879 116800
L50 20 9 14
LG50 18 9 12
L75 42 17 26
LGT75 36 17 21
misassemblies 0 0 12
misassembled contigs 0 0 10
Misassembled contigs length 0 0 439591
local misassemblies 0 3 3
unaligned contigs 46 + 1 part | 1 + 0 part | 43 + 22 part
Unaligned length 200727 11862 302804
Genome fraction (%) 98.727 98.957 99.964
Duplication ratio 1.046 1.003 1.068
N’s per 100 kbp 15.64 6.17 9.50
mismatches per 100 kbp 63.00 67.78 68.92
indels per 100 kbp 577.98 589.72 597.99
Largest alignment 254274 637485 495589
NA50 89239 215810 145441
NGA50 94672 215810 161490
NAT5 44567 117879 98293
NGAT5 50860 117879 115834
LA50 20 9 14
LGA50 18 9 12
LAT5 42 17 26
LGAT5 36 17 21

APPENDIX C. APPENDIX OF FINISHERSC 118

Table C.3: (c) in Table 4.2. All statistics are based on contigs of size > 500 bp, unless
otherwise noted (e.g., "# contigs (> 0 bp)" and "Total length (> 0 bp)" include all contigs).

Assembly HGAP | FinisherSC PBlJelly
contigs (> 0 bp) 21 7 14
contigs (> 1000 bp) 21 7 14
Total length (> 0 bp) 4689701 4660679 4718818
Total length (> 1000 bp) 4689701 4660679 4718818
contigs 21 7 14
Largest contig 1241016 2044060 1958341
Total length 4689701 4660679 4718818
Reference length 4639221 4639221 4639221
GC (%) 50.87 50.85 50.85
Reference GC (%) 50.79 50.79 50.79
N50 392114 1525398 1200847
NG5H0 392114 1525398 1200847
NT5 252384 1525398 275618
NGT75 252384 1525398 321636
L50 3 2 2
LG50 3 2 2
L75 7 2 4
LGT75 7 2 3
misassemblies 8 8 12
misassembled contigs 4 3 5

Misassembled contigs length 2530799 3584781 3672462

local misassemblies 3 3 4
unaligned contigs 0+ 1part | O+ O part | O + 3 part
Unaligned length 205 0 2605
Genome fraction (%) 99.583 99.656 99.689
Duplication ratio 1.015 1.008 1.021
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 3.66 4.61 4.11
indels per 100 kbp 8.36 13.82 10.75
Largest alignment 683967 1094192 949307
NA50 339478 860437 685586
NGA50 339478 860437 685586
NAT5 229039 378942 255377
NGAT5 229039 378942 255377
LA50 5 3 3
LGA50 5 3 3
LAT5 9 5 7
LGAT5 9 5 7

APPENDIX C. APPENDIX OF FINISHERSC 119

Table C.4: (d) in Table 4.2. All statistics are based on contigs of size > 500 bp, unless
otherwise noted (e.g., "# contigs (> 0 bp)" and "Total length (> 0 bp)" include all contigs).

Assembly HGAP | FinisherSC PBlJelly
contigs (> 0 bp) 3 1 2
contigs (> 1000 bp) 3 1 2
Total length (> 0 bp) 3102769 3099349 3106774
Total length (> 1000 bp) 3102769 3099349 3106774
contigs 3 1 2
Largest contig 1390744 3099349 1715191
Total length 3102769 3099349 3106774
Reference length 3097457 3097457 3097457
GC (%) 63.38 63.39 63.38
Reference GC (%) 63.38 63.38 63.38
N50 1053479 3099349 1715191
NG5H0 1053479 3099349 1715191
NT5 1053479 3099349 1391583
NGT75 1053479 3099349 1391583
L50 1 1
LG50 2 1 1
L75 2 1 2
LGT75 2 1 2
misassemblies 0 0 0
misassembled contigs 0 0 0
Misassembled contigs length 0 0 0
local misassemblies 2 2 2
unaligned contigs 0+ Opart | O+ O part | O+ O part
Unaligned length 0 0 0
Genome fraction (%) 99.966 99.986 99.986
Duplication ratio 1.002 1.001 1.003
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 0.03 0.26 0.10
indels per 100 kbp 1.10 3.87 1.32
Largest alignment 1390744 3099004 1713236
NA50 1053134 3099004 1713236
NGA50 1053134 3099004 1713236
NAT5 1053134 3099004 1391558
NGAT5 1053134 3099004 1391558
LA50 2 1 1
LGA50 2 1 1
LAT5 2 1 2
LGAT5 2 1 2

APPENDIX C. APPENDIX OF FINISHERSC 120

Table C.5: (e) in Table 4.2. All statistics are based on contigs of size > 500 bp, unless
otherwise noted (e.g., "# contigs (> 0 bp)" and "Total length (> 0 bp)" include all contigs).

Assembly HGAP | FinisherSC PBJelly
contigs (> 0 bp) 18 5 8
contigs (> 1000 bp) 18 5 8
Total length (> 0 bp) 5184825 5167414 5210862
Total length (> 1000 bp) 5184825 5167414 5210862
contigs 18 5 8
Largest contig 2103385 2913716 3343452
Total length 5184825 5167414 5210862
Reference length 5167383 5167383 5167383
GC (%) 42.05 42.05 42.07
Reference GC (%) 42.05 42.05 42.05
N50 1403814 2913716 3343452
NG50 1403814 2913716 3343452
N75 790287 2225895 1814491
NGT75 790287 2225895 1814491
L50 2 1 1
LG50 2 1 1
L75 3 2 2
LGT75 3 2 2
misassemblies 1 1 2
misassembled contigs 1 1 2

Misassembled contigs length 1403814 2913716 1820739

local misassemblies 0 0 1
unaligned contigs 0+ Opart | O+ 0 part | O+ 3 part
Unaligned length 0 0 13698
Genome fraction (%) 99.900 99.934 99.954
Duplication ratio 1.005 1.001 1.007
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 3.41 3.56 2.28
indels per 100 kbp 291 5.31 5.21
Largest alignment 2103385 2225895 3343452
NA50 1259090 1656831 3343452
NGA50 1259090 1656831 3343452
NAT5 790287 1656831 1270970
NGAT5 790287 1656831 1270970
LA50 2 2 1
LGA50 2 2 1
LAT5 3 2 2
LGAT5 3 2 2

APPENDIX C. APPENDIX OF FINISHERSC 121
Table C.6: Quast analysis report of Caenorhabditis elegans

Assembly contigs noEmbed improved improved2 improved3
contigs (> 0 bp) 245 237 207 200 196
contigs (> 1000 bp) 245 237 207 200 196
Total length (> 0 bp) 104169699 103975584 103804734 103826835 103822380
Total length (> 1000 bp) 104169699 103975584 103804734 103826835 103822380
contigs 245 237 207 200 196
Largest contig 3165643 3165643 4217234 4217234 4217234
Total length 104169699 103975584 103804734 103826835 103822380
Reference length 100286401 100286401 100286401 100286401 100286401
GC (%) 35.67 35.66 35.66 35.66 35.66
Reference GC (%) 35.44 35.44 35.44 35.44 35.44
N50 1613475 1613475 1773224 1832604 1832604
NG50 1619480 1619480 1832604 1910174 1910174
NT75 834223 834223 947068 959597 959597
NGT75 881109 881109 959597 1031901 1031901
L50 24 24 22 21 21
LG50 23 23 21 20 20
L75 48 48 43 41 41
LG75 44 44 40 38 38
misassemblies 1358 1334 1411 1407 1403
misassembled contigs 127 120 108 104 102
Misassembled contigs length 96744440 96571278 98809318 99454743 99479049
local misassemblies 784 783 809 805 810
unaligned contigs 70 + 20 part | 70 + 20 part | 70 + 11 part | 68 + 11 part | 68 + 10 part
Unaligned length 1862487 1862487 1743676 1745585 1743404
Genome fraction (%) 99.525 99.525 99.531 99.535 99.535
Duplication ratio 1.027 1.025 1.024 1.024 1.024
N’s per 100 kbp 0.00 0.00 0.00 0.00 0.00
mismatches per 100 kbp 13.27 13.27 13.23 13.20 13.13
indels per 100 kbp 20.89 20.89 20.63 20.80 20.86
Largest alignment 1362562 1362562 1362562 1362562 1362562
NA50 407833 407833 407888 402635 402635
NGA50 421272 421272 421272 412370 412370
NAT75 213728 217528 213728 211961 211961
NGAT75 232043 232043 229862 226413 226413
LA50 85 85 85 85 85
LGA50 80 80 80 80 80
LA75 169 168 168 169 169
LGAT5 156 156 156 157 157

APPENDIX C. APPENDIX OF FINISHERSC 122
Table C.7: Quast analysis report of Drosophila
Assembly contigs | noEmbed | improved | improved2 | improved3
contigs (> 0 bp) 128 128 110 96 93
contigs (> 1000 bp) 128 128 110 96 93
Total length (> 0 bp) 138490501 | 138490501 | 138082066 | 138131721 | 138096303
Total length (> 1000 bp) 138490501 | 138490501 | 138082066 | 138131721 | 138096303
contigs 128 128 110 96 93
Largest contig 24648237 | 24648237 | 27967410 | 27967410 | 27967410
Total length 138490501 | 138490501 | 138082066 | 138131721 | 138096303
Reference length 168717020 | 168717020 | 168717020 | 168717020 | 168717020
GC (%) 41.86 41.86 41.87 41.87 41.87
Reference GC (%) 41.74 41.74 41.74 41.74 41.74
N50 15305620 | 15305620 | 21710673 | 21710673 | 21710673
NG50 6168915 6168915 | 15305620 | 15305620 | 15305620
NT75 920983 920983 1012145 1448033 1448033
NGT75 291391 291391 308285 389196 402690
L50 4 4 3 3 3
LG50 6 6 4 4 4
L75 15 15 11 10 10
LGT75 57 57 50 42 41
misassemblies 8272 8272 8057 8071 8064
misassembled contigs 98 98 84 76 73
Misassembled contigs length | 127872011 | 127872011 | 130423069 | 130352009 | 130316591
local misassemblies 290 290 282 283 284
unaligned contigs 14+ Opart |1 +0part |1+ 0part |14 0part | 1+ 0 part
Unaligned length 61383 61383 61383 61383 61383
Genome fraction (%) 76.376 76.376 76.348 76.367 76.364
Duplication ratio 1.082 1.082 1.079 1.079 1.079
N’s per 100 kbp 0.00 0.00 0.00 0.00 0.00
mismatches per 100 kbp 21.85 21.85 21.34 21.81 21.84
indels per 100 kbp 20.88 20.88 20.81 20.94 20.99
Largest alignment 6494798 6494798 6494798 6494798 6494798
NA50 1316520 1316520 1316520 1377072 1377072
NGA50 820949 820949 821097 829069 829069
NAT5 308622 308622 341648 398564 398564
NGAT5 6441 6441 6389 6414 6384
LA50 26 26 26 26 26
LGA50 41 41 41 40 40
LAT75 78 78 76 72 72
LGAT5 532 532 533 520 522

APPENDIX C. APPENDIX OF FINISHERSC 123
Table C.8: Quast analysis report of Saccharomyces cerevisiae
Assembly contigs | noEmbed | improved | improved2 | improved3
contigs (> 0 bp) 30 27 23 22 20
contigs (> 1000 bp) 30 27 23 22 20
Total length (> 0 bp) 12370681 | 12295446 | 12221471 | 12225040 | 12220764
Total length (> 1000 bp) 12370681 | 12295446 | 12221471 | 12225040 | 12220764
contigs 30 27 23 22 20
Largest contig 1538192 1538192 1538192 1538192 1538192
Total length 12370681 12295446 12221471 12225040 12220764
Reference length 12157105 | 12157105 | 12157105 | 12157105 | 12157105
GC (%) 38.21 38.18 38.17 38.17 38.17
Reference GC (%) 38.15 38.15 38.15 38.15 38.15
N50 TTTT87 TTTT87 77787 777787 77787
NG50 77787 TTTT87 TT7T87 TTTT87 777787
NT75 544615 544615 544615 544615 583193
NGT75 544615 544615 544615 544615 583193
L50 6 6 6 6 6
LG50 6 6 6 6 6
L75 11 11 11 11 11
LGT75 11 11 11 11 11
misassemblies 112 109 106 106 107
misassembled contigs 27 24 20 20 18
Misassembled contigs length | 11049515 | 10974280 | 10900305 | 10900305 | 10896029
local misassemblies 21 21 21 21 21
unaligned contigs 0+ 0Opart |0+ 0part | 0+ Opart | 0+ 0 part | 0 4+ O part
Unaligned length 0 0 0 0 0
Genome fraction (%) 98.117 98.117 98.215 98.243 98.243
Duplication ratio 1.038 1.032 1.024 1.024 1.024
N’s per 100 kbp 0.00 0.00 0.00 0.00 0.00
mismatches per 100 kbp 76.68 76.68 78.86 79.14 78.05
indels per 100 kbp 11.71 11.71 11.67 13.58 13.50
Largest alignment 1027016 1027016 1027016 1053518 1053518
NA50 377112 377112 377016 377016 377016
NGA50 377112 377112 377016 377016 377016
NAT5 181420 198393 198393 198393 198393
NGAT5 198393 198393 198393 198393 198393
LA50 11 11 11 11 11
LGA50 11 11 11 11 11
LAT5 23 22 22 22 22
LGAT5 22 22 22 22 22

124

Appendix D
Appendix of BIGMAC

APPENDIX D. APPENDIX OF BIGMAC 125

D.1 Appendix: Outline of the appendix
This appendix includes the following sections.

1. Implementation details of the break point finding algorithm
2. Data analysis of the Breaker and Merger

3. Feasbility of Breaker to recover consistent contigs

4. More information on the EM algorithm and the MSA

5. Commands used to run various tools

6. Detailed Quast reports

D.2 Appendix: Implementation details of the break
point finding algorithm

In forming a De Bruijn graph, we use the following method. First, we fill in the hidden
end points by inspecting any inconsistent number of end points between repeat copies. In
our example of z; = alb(c]d)e,xs = flbclg, x5 = h(ed)i, we have [()] as the long(> 2L)
repeat end points. We fill in the hidden end points z1 = a[b(c]d)e, xo = f[b|c]g, 3 = h(c|d)i
because between [| there should be a), and between (), there should be a |After filling in
the hidden end points, we label and cluster the end points. At first, two end points have
the same label if they correspond to the same side of the same repeat. Then, we cluster end
points that are close to each other to have the same label. With the relabelled end points
along each contig, we form a graph. Note that the end points correspond to edges of the
graph. In the previous example, let the label of end point of [(]) be 1,2, 3,4 respectively, we
have the edge sequences of x1,x9, z3 being (1,2,3,4),(1,2,3),(2,3,4). And we will append
beginning and ending edge to the sequences, so the actual edge sequences of 1, x9, x3 are
(01,1,2,3,4,€1), (b2, 1,2,3,€2), (b3,2,3,4, e3). Next, we need to find the nodes. This can be
done by scannig for successive end points in the edge sequences. Any two successive end
points define a node. And if they do not correspond to a closed end point followed by an
open end point, it is considered as a repeat node. For example, (1,2) is a repeat node node,
and (b1, 1) is a non-repeat node. Now we note that from the repeat nodes, we can gather
together the edges to form the graph. For example, the incoming edges of node (1,2) are
the two end points corresponding to 1 and outgoing edges of the node (1,2) are the two end
points corresponding to 2. In order to handle double stranded nature of the genome, when
scanning the edge sequences, we search both forward and backward to identify the nodes.
The approximate nature of matching is handled when we cluster end points close to each
other.

APPENDIX D. APPENDIX OF BIGMAC 126

D.3 Appendix: Data analysis of the Breaker and
Merger

We perform independent data analysis of the performance of Breaker and Merger of BIG-
MAC. We note that we both use QUAST and an independent evaluation(which is imple-
mented by us) from QUAST. Users can use our evaluation scripts to evaluate the performance
of their own improvement as well. We note that the dataset 1,2,3 are those studied in the
experiment section and the dataset 0 is the synthetic dataset.

Quast reports

The Breaker only and BIGMAC end-to-end results are tabulated as follows. We note that
Breaker can decrease the number of contigs because it remove redundant contigs after break-
ing at potentially mis-assembled points. The are located at the QUAST report section.

Data anaysis on Breaker

We measure mis-assemblies fixing capability of Breaker. Specifically, we study the perfor-
mance of ChimericContigFixing(Palindrome) and the combination of LocatePotentialMisas-
semblies and ConfirmBreakPoints (Repeat&Coverage). We map the contigs back to the
ground truth to see if the segments mapped to different locations. We note that our method
is more stringent that QUAST. Even in the cases of repeat, we only map the segment to the
best matched location. Thus, occasionally, a FP may not be a real false positive. The script
can be run as python -m srcRefactor.evalmfixer foldername mummerpath The precision and
recall on the subcompoents are as follows.

Table D.1: Breaker Evaluation

Dataset | Break point detector | Precision | Recall Number of TP | Number of FP
0 Palindrome 1 0 0 0

0 Repeat&Coverage 1 1 2 0

1 Palindrome 1 0 0 0

1 Repeat&Coverage 0.102041 | 0.483871 | 15 132

2 Palindrome 0.605556 | 0.246606 | 109 71

2 Repeat&Coverage 0.021898 | 0.032967 | 9 402

3 Palindrome 0.818182 | 0.157895 | 9 2

3 Repeat&Coverage 0.142857 | 0.113636 | 5 30

APPENDIX D. APPENDIX OF BIGMAC 127

Data anaysis on Merger

To evaluation, we collect data from graphsurgery merges(when condensing edges), BRepeat
merges(when repeat node is not a separte node) and XRepeat merges(when repeat node is a
separate node). We map back to reference to identify correct successors. Then we report the
percentage left. The scripts can be run as python -m srcRefactor.evalasplitter foldername
mummerpath The precision and recall on the subcompoents are as follows. Note that we are
more stringent than QUAST, because if two are not immediate successors then we report as
FP here. Also, we use best match on the reference, meaning that repeat can be mapped to
more than one location, thus a FP may not really be a FP. So, the number reported only
serves as an approximation here. We note that we have duplicated tje contigs to handle
reverse complements, so all numbers are approximately double of the actual number, with
some offset due to slight variation due to tie-breaking in the alignment tool.

Table D.2: Merger Evaluation

Dataset | Merger subroutine | precision | recall TP num | FP_ num
0 GraphSurgery 1 0 0 0
0 BResolve 1 1 4 0
0 XResolve 1 0 0 0
1 GraphSurgery 0.829268 | 0.164251 | 68 14
1 BResolve 0.745455 | 0.099034 | 41 14
1 XResolve 0.823529 | 0.033816 | 14 3
2 GraphSurgery 0.741379 | 0.076512 | 43 15
2 BResolve 0.384615 | 0.008897 | 5 8
2 XResolve 0.250000 | 0.001779 | 1 3
3 GraphSurgery 0.235294 | 0.090909 | 4 13
3 BResolve 0.333333 | 0.045455 | 2 4
3 XResolve 1.000000 | 0.022727 | 1 0

D.4 Appendix: Feasbility of Breaker to recover
consistent contigs

In this section, we study why Breaker can recover contigs by modelling the mis-assemblies
formed by an upstream assembler

We define the ground truth to be Sy = {s1, S, ..., s,} which is a set of strings with
alphabets taken from ¥ = {A,C,G,T}. Now we specify their repeat structures as follows.
Let z,y be length L substrings of s;, s; respectively , where ¢ # j and L > 2. If V1 < k <
L, x[k] = ylk] and x[1] # y[1], x[L] # y[L], then we call (x,y) be a maximal exact repeat of
length L — 2. Although this notion of maximal exact repeat can be generalized to the same

APPENDIX D. APPENDIX OF BIGMAC 128

string, for simplicity of discussion, we assume they are extracted from different strings. We
fix Ky to be a large constant which is related to the length of the reads and assume that
there are only » maximal exact repeats of length > K.

Next, we model the upstream assembler’s mis-assembly formation process by the following
sequence of operations of strings. Let {7}}1<;j<m be a sequence of operations that act on
strings Sy and form {SW} <., successively. That is, S0 = Sy and 1 < j < m, SV =
T;(S (G=1). Now, we specify the action of T;. It picks two arbitrary strings with a maximal
repeat of length > K. Then, it breaks at the start of the repeat and joins the corresponding
string at the breakpoint. Symbolically, let T" operate on two strings s = axb,t = cxd, where
the common segment is x and the breakpoint is the position immediately before x. The
resultant strings are ' = axd,t’ = cxb. We further assume that each string under the
operations does not have repeat within itself of length > K.

Under this setting, we prove the following theorem.

Theorem D.4.1. Given S™ generated from Sy = {si}1<i<n after successive operations by
{T;}i<j<m , we can recover a set of strings W of cardinality at most n + 4r such that W is
consistent with Sy (i.e. for each string w € W, w is a substring of some string s € Sp).

Proof. The way to construct the set W is as follows. We first identify all maximal exact
repeats across the strings in S™. We then break the strings at every endpoints of each of
these maximal exact repeats. Now, it remains to show that 1) there are at most n + 4r
strings in W and 2) they are consistent with the ground truth.

To show them, we use the following bookkeeping method. Let us assign a unique label
to each position at each string in the ground truth Sy. Let the set of all the labels be B
and the mapping from B to string index and offset be fy. At the beginning, we define ®,
as the labels that are the endpoints of any maximal exact repeat of length > K. That is,
®y = {a € B | a corresponds to an endpoint of some maximal exact repeat of of length >
Ko in SO}, When we apply T; on the strings, let be the repeat. We move both the
segment and the associated labels to the other string starting at the left endpoint of x.
The exceptions are the labels within the repeat x which are associated with some right
endpoints of another repeat z’ that has left endpoint before x. We keep those labels at
the original positions. Since the set of labels remains invariant, and they correspond to a
bijection, f;, from B to string position at each stage after T}, we can define ®; = {a € B |
a corresponds to an endpoint of some maximal exact repeat of of length > K in SV}

We consider the simple case when initially no two pairs of repeat copies overlap at exactly
one point(otherwise, we just need to generalize our book keeping scheme by introducing
multiple labels at those points). In that case, it turns out that ®; is invariant(i.e. ®; = @
for all j), which we will prove in a separate Lemma. With this Lemma, then we can show
the theorem follows.

We first show that W is consistent with Sy. We note that for each T}, if we mark
the label of the junction as b; and break them, then the resulting set of string will be
consistent throughout. But since b; € ®; and |J;{b;} C U; ®; = ®,, = Py, it suffices to

APPENDIX D. APPENDIX OF BIGMAC 129

break at every position corresponding to ®,, in S™ to obtain consistent strings. Moreover,
|®,,| = |®o| < 47. So, if we break at every position corresponding to ®,, in S we have at
most n + 4r resultant strings. This gives, |W| < n + 4r.

O

Lemma D.4.2. If0 < j < m, we have ®; = ®,.

Proof. We consider 7 = 1 and inductively, the lemma follows. Without loss of generality, we
assume s, so are the strings that 73 acts on and the associated repeat is x.

If T} can cause an element b € B to enter or leave @4, it could only belong to a maximal
repeat that includes a copy of x. Otherwise the labels and the moving segment, which
include that potential repeat segment, are moved together. Thus, there cannot be any
creation/destruction of maximal exact repeats. We will show that, even for those repeats
that include a copy of x, their endpoints are still invariant. Without loss of generality, we
take the suspicious repeat to end at the right endpoint of s;. There are two cases that can
cause changes in ®; upon 77. These include getting a bigger maximal repeat or getting a
big repeat separated into smaller pieces with a third string. Since we assume that we cannot
have a repeat of length > K, on the same string in the sequence of operations, the third
string cannot be s; or s5. They correspond to a T} that goes either from left to right or right
to left in Fig D.1. We enumerate the pairwise maximal repeats as shown in Fig D.1. It turns
out that in both cases, the set of associated repeat endpoints is invariant. This concludes

the proof that &, = P O
s1 ——ct___ k2 dt s1’ ——ct_ b2
s2 al———— bt 22— s2’ at———bH je2—dt
s3 a2l g2 d2 s3’ et 2 d2

s1vss2: (c1, c2), (b1,b2)
s1vss3: (c1,d1), (e1,d2)
s2vss3: (a1,b2), (a2, e2)

Involved endpoints
={a1, a2, b1, b2, c1, c2,d1, d2, e1, e2}

s1'vss2' : (c1, b2), (b1,c2)
s1 vs s3': (c1, b2), (e1, e2)
s2'vs s3': (al,d1), (a2, d2)

Involved endpoints
={a1, a2, b1, b2, c1, c2,d1,d2, e, e2}

Figure D.1: Illustration of conservation of endpoints

APPENDIX D. APPENDIX OF BIGMAC 130

D.5 Appendix: More information on the EM algorithm
and the MSA

In this section, we discuss about the details of the EM algorithm used and related materials.
Derivation of the EM algorithm

log Py(X, Z)
= log ngiSnPG(Riv Zz‘)
— Z log Py(R;, Z;)

1<i<n

=) logThejck(NP(R: | Z; = j))'4e

1<i<n

= Y Y lzllogh; — logt; + log g/ (1 — 2g) "~ Fuli))]

1<i<n 1<j<k

_ Z Z 1z,—illog \; —log ¢; + d(R;, I;) log

1<i<n 1<j<k

Llog(1 — 2
ot og(1 — 2q)]

Thus, after taking expectation, we get Eyp.00[0(z, Z, 0] as desired.

Feasibility of MSA in our setting

Note that when we only have substitution noise and if all the R; originates from the same
genomic location, the problem of min, > d(z, R;) can be readily solved by a majority vote.
We expect similar results regarding indel noise. However, we need to pre-process with an
alignment phase before the majority vote. We thus introduce Algorithm majority-consensus-
star-alignment.

1. Compute alignment of Ry and R; where j > 2

2. for j = 2 to n, use the alignment of R; and R; to form introduce gaps to previous
alignment with the principle of "once a gap always a gap"

3. Take column-wise majority to form z*
4. return x*

We note that in the alignment, we use the scoring scheme of (1, -1 ;-1 ,-10) for match,
insertion, deletion, substitution. It is because pure substitution noise is rare in current long
read technology. We also note that when there is a run of alphabet, we will push the gap
towards the end of the alignment. For example CCAAATT is aligned to CCAA_ TT.

APPENDIX D. APPENDIX OF BIGMAC 131

Theorem D.5.1. Let {R;}1<i<n be a set of string with alphabets in {A,C,G, T} of length
{l(R;) }1<i<n where ((R;) > n > 5. IfVi# j,d(R;, R;) = 2 and 3x* such that Vi, d(z*, R;) =
1 then the majority-consensus-star-alignment can find the optimizer of min, Y d(x, R;).

Proof. We can break it down into the following three steps. A high level intuition is that we
are randomly placing an error on R; generated from the same source, so, a simple majority
vote should just work after doing an initial alignment.

1. Note that z* is the optimizer. If we define R, 4, = Ry, we have, Vz, >, d(z, R;) =

5 D 1<icnld(, Ri)+d(z, Rit1)] 2 5 31 < d(Ri, Riy1) = n But since 33, d(z*, R;) =

1<i<n L =1 , we know that x* is the optimizer.

2. Second, we assume we input the ground truth z* as a read, we will find that the
algorithm give x* as the output.

The reason is as follows. Let e; be the edit introduced by R; when aligned to x*. Note
that e; # e; if i # j otherwise, d(R;, R;) = 0. So, it means that e, cannot win the
majority vote at the end because n > 6 and |{A,C,G,T, —}| = 5, so entry at x* will
be voted instead.

3. Finally, we find that the alignment with z* is the same as that without it as input.

The reason is as follows. We have the notation of M (A, B) as the alignment of A and
B when z* is the first input, and Mg(A, B) as the alignment of A and B when z* is the
input. We claim that a small lemma, which says that Vj, M (R, R;) = Mg(Ry, R;).
Note that it suffices because no gaps are introduced without conflicting some R;. Then
with the lemma, we have alignment of every reads be identical with and without x*,
and by step 1 and 2, we know that the algorithm will output the right optimizer.
Now we proceed to show the lemma. First note e; corresponds to edit on zx for R;.
Recall that, e; has to be distinct due to d(R;, R;) = 2. Now consider , without loss
of generality, e, eo and their corresponding location when x* is the input. We define
runs of alphabets that e; lands on under Mg as r;. Now, we exhaust the cases on r;.

a) There exists at least one other run between r; and ry. For example, AAAA-
CCCTTT vs AAA-CCCTT- Since putting e, es on Mg gives two edits between
r1, 79, we cannot shift the alphabets at the middle to give the same edit distance.
This means that the same alignment shows up under M so as to conserve the
same edit distance. Moreover, as the - is always put to the end of run, we will
have that consistent under both Mg and M too.

b) ry, 7y are neighboring runs. For example, CCC-TTT vs CCCCTT-. Shifting of
run at 71, 7o will cause substitution error, so it is not used under Mg. Thus, 71,79
will have the same alignment too under M to conserve the edit distance of 2.

c) ri,re are on the same run. For example, CCCC- vs CCCCC while z*gives CCCC-

Since the - is always put at the end of the run, we have the alignment conserved
under M and Msg.

APPENDIX D. APPENDIX OF BIGMAC 132

]

We note that, in our implementation of BIGMAC, we use ClustalW2(33] to do the core of
multiple sequence alignment. We first use MUMmer to get a rough anchors of the reads and
then we chop up the reads into smaller Kmers. Then, we group the related Kmers together
use ClustalW2 to do the multiple sequence alignment.

An interesting repeat

There is an interesting case which can justify why we need the EM algorithm for some tough
cases. Consider the situation in Fig D.2. The correct matching is the one that follows row by
row. However, there exists matching at the interior such that the polymorphic sites are still
consistent (as shown in the figure). Moreover, if we only consider abundance information
alone, this repeat cannot be resolved as well (in the sense that we cannot find the correct
matching). However, if we consider both the abundances and the polymorphism together
during the decision making, we can identify the correct linkage. That is why we introduce
the parameter formulation to incorporate both of these quantities.

Figure D.2: An example regarding why it requires abundances and edit distance
should be considered together

v
I
dot

APPENDIX D. APPENDIX OF BIGMAC 133

D.6 Appendix: Commands for datasets

Commands for using BIGMAC on synthetic data and real data are all based on the following
commands.

$ python —m srcRefactor.misassemblyFixerLib.mFixer destF mPath
$ python —m srcRefactor.repeatPhaserLib.aSplitter destF mPath

FinisherSC, SSPACE _LongRead and PBJelly are run at their default settings.
In particular, the commands used to run them are as follows.

FinisherSC
$ python finisherSC .py dest mPath

PBlJelly

$ Jelly .py setup Protocol.xml

$ Jelly.py mapping Protocol.xml

$ Jelly .py support Protocol.xml

$ Jelly .py extraction Protocol.xml
$ Jelly .py assembly Protocol.xml
$ Jelly.py output Protocol.xml

SSPACE_LongRead :
$ perl SSPACE-LongRead.pl —t 20 —c¢ LC.fasta —p LR.fasta —b e2e/

The protocol.xml has the following setting for BLASR, <blasr>-minMatch 8 -minPctIdentity
70 -bestn 1 -nCandidates 20 -maxScore -500 -nproc 20 -noSplitSubreads< /blasr>

Moreover, we note that you can reproduce results regarding BIGMAC by running python
reproduce.py to download data, dependencies and run the tools. The results is saved in
allinone.txt

D.7 Appendix: Detailed Quast reports

The Quast reports for various comparison for synthetic data and dataset 1,2,3 are in the
following tables.

APPENDIX D. APPENDIX OF BIGMAC 134

Table D.3: Synthetic data (Comparison with Breaker only and HGAP results). All statistics
are based on contigs of size > 500 bp, unless otherwise noted (e.g., "# contigs (> 0 bp)"
and "Total length (> 0 bp)" include all contigs).

Assembly Original | Breaker only | BIGMAC end-to-end
contigs (> 0 bp) 2 4 2
contigs (> 1000 bp) 2 4 2
Total length (> 0 bp) 10000000 10000000 9999992
Total length (> 1000 bp) 10000000 10000000 9999992
contigs 2 4 2
Largest contig 5000000 2512000 4999998
Total length 10000000 10000000 9999992
Reference length 10000000 10000000 10000000
GC (%) 50.01 50.01 50.01
Reference GC (%) 50.01 50.01 50.01
N50 5000000 2512000 4999998
NG50 5000000 2512000 4999994
NT75 5000000 2488000 4999994
NGT75 5000000 2488000 4999994
L50 1 2 1
LG50 1 2 2
L75 2 3 2
LGT75 2 3 2
misassemblies 2 0 0
misassembled contigs 2 0 0
Misassembled contigs length | 10000000 0 0
local misassemblies 0 0 0
unaligned contigs 0 + 0 part 0 + 0 part 0 + 0 part
Unaligned length 0 0 0
Genome fraction (%) 100.000 100.000 100.000
Duplication ratio 1.000 1.000 1.000
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 0.00 0.00 0.05
indels per 100 kbp 0.00 0.00 2.38
Largest alignment 2512000 2512000 4999998
NA50 2512000 2512000 4999998
NGA50 2512000 2512000 4999994
NAT5 2488000 2488000 4999994
NGAT5 2488000 2488000 4999994
LA5’0 2 2 1
LGA50 2 2 2
LAT5 3 3 2
LGAT5 3 3 2

APPENDIX D. APPENDIX OF BIGMAC 135

Table D.4: Dataset 1 (Comparison with Breaker only and HGAP results): All statistics are
based on contigs of size > 500 bp, unless otherwise noted (e.g., "# contigs (> 0 bp)" and
"Total length (> 0 bp)" include all contigs).

Assembly Original | Breaker only | BIGMAC end-to-end
contigs (> 0 bp) 130 199 131
contigs (> 1000 bp) 130 197 129
Total length (> 0 bp) 30499818 29452892 29273543
Total length (> 1000 bp) 30499818 29452752 29273403
contigs 130 197 129
Largest contig 8887616 8615553 8615553
Total length 30499818 29452752 29273403
Reference length 30128987 30128987 30128987
GC (%) 56.54 57.45 57.68
Reference GC (%) 56.98 56.98 56.98
N50 818655 758280 4352719
NG50 1595590 567256 4352719
NT75 274801 157172 274801
NGT5 277114 132279 256020
L50 4 4 3
LG50 3 5 3
L75 23 28 14
LGT75 22 32 16
misassemblies 18 4 7
misassembled contigs 15 4 7
Misassembled contigs length | 16357196 536534 1785642
local misassemblies 6 6 9
unaligned contigs 0 + 0 part 0 + 0 part 0 + 0 part
Unaligned length 0 0 0
Genome fraction (%) 98.189 96.217 96.325
Duplication ratio 1.033 1.016 1.010
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 33.76 22.38 44.80
indels per 100 kbp 7.13 5.40 63.44
Largest alignment 8631596 8615553 8615553
NA50 758280 758280 4351628
NGA50 758280 567256 4351628
NAT5 227835 148337 262515
NGAT5 254545 132279 181075
LA5’0 5 4 3
LGA50 5 5 3
LAT5 26 29 14
LGAT75 25 32 17

APPENDIX D. APPENDIX OF BIGMAC 136

Table D.5: Dataset 2 (Comparison with Breaker only and HGAP results). All statistics are
based on contigs of size > 500 bp, unless otherwise noted (e.g., "# contigs (> 0 bp)" and
"Total length (> 0 bp)" include all contigs).

Assembly Original | Breaker only | BIGMAC end-to-end
contigs (> 0 bp) 477 382 351
contigs (> 1000 bp) 477 371 341
Total length (> 0 bp) 32897488 29572416 29605579
Total length (> 1000 bp) 32897488 29569477 29603092
contigs 477 374 344
Largest contig 4673711 4673711 4673711
Total length 32897488 29571716 29605331
Reference length 66662626 66662626 66662626
GC (%) 47.38 48.81 48.80
Reference GC (%) 46.01 46.01 46.01
N50 397611 354308 397611
N75 38471 59190 75666
L50 9 13 12
L75 101 70 57
misassemblies 187 25 28
misassembled contigs 176 21 22
Misassembled contigs length 18192123 8079336 8582043
local misassemblies 22 18 19
unaligned contigs 39 + 7 part | 30 + 7 part 29 + 8 part
Unaligned length 1646412 982915 993710
Genome fraction (%) 41.946 41.941 41.995
Duplication ratio 1.118 1.023 1.022
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 1.58 1.97 8.68
indels per 100 kbp 8.63 9.02 37.15
Largest alignment 4547258 4547258 4547258
NA50 369454 333580 369454
NAT5 32926 47209 56711
LA50 12 15 14
LAT75 123 81 68

APPENDIX D. APPENDIX OF BIGMAC 137

Table D.6: Dataset 3 (Comparison with Breaker only and HGAP results). All statistics are
based on contigs of size > 500 bp, unless otherwise noted (e.g., "# contigs (> 0 bp)" and
"Total length (> 0 bp)" include all contigs).

Assembly Original | Breaker only | BIGMAC end-to-end
contigs (> 0 bp) 185 154 145
contigs (> 1000 bp) 185 149 140
Total length (> 0 bp) 17393660 13844743 13912664
Total length (> 1000 bp) 17393660 13843875 13911796
contigs 185 149 140
Largest contig 3968563 3968563 3968563
Total length 17393660 13843875 13911796
Reference length 7883268 7883268 7883268
GC (%) 61.18 60.96 60.98
Reference GC (%) 61.71 61.71 61.71
N50 257044 359704 359704
NG50 3968563 3968563 3968563
N75 82370 82649 99878
NG75 3924590 474671 517104
L50 5 7 7
LG50 1 1 1
L75 38 29 27
LGT75 2 5 5
misassemblies 26 11 14
misassembled contigs 20 5 5
Misassembled contigs length 5470082 4234268 4328506
local misassemblies 2 2 2
unaligned contigs 118 + 0 part | 121 + 1 part 115 + 2 part
Unaligned length 5585886 5543409 5553281
Genome fraction (%) 99.983 99.982 99.982
Duplication ratio 1.498 1.053 1.060
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 0.18 0.24 2.30
indels per 100 kbp 8.70 22.88 23.60
Largest alignment 3924590 1719755 1719755
NA50 137772 284436 284436
NGA50 1719755 569978 576251
NGAT5 1452284 474671 517104
LA50 11 10 10
LGA50 2 4 4
LGAT5 3 7 7

APPENDIX D. APPENDIX OF BIGMAC 138

Table D.7: Dataset 1 (Comparison with other tools) : All statistics are based on
contigs of size > 500 bp, unless otherwise noted (e.g., "# contigs (> 0 bp)" and
"Total length (> 0 bp)" include all contigs).

Assembly original | BIGMAC | finisherSC_e2e jelly _e2e | SSPACE_e2e
contigs (> 0 bp) 130 131 53 100 86
contigs (> 1000 bp) 130 129 53 100 86
Total length (> 0 bp) 30499818 | 29273543 29883342 30619263 30589751
Total length (> 1000 bp) 30499818 | 29273403 29883342 30619263 30589751
contigs 130 129 53 100 86
Largest contig 8887616 8615553 8887616 8889022 8887616
Total length 30499818 | 29273403 29883342 30619263 30589751
Reference length 30128987 | 30128987 30128987 30128987 30128987
GC (%) 56.54 57.68 57.14 56.54 56.54
Reference GC (%) 56.98 56.98 56.98 56.98 56.98
N50 818655 4352719 2531294 4642330 4657611
NGH0 1595590 4352719 2531294 4642330 4657611
N75 274801 274801 415024 418480 493683
NGT75 277114 256020 399053 818655 818655
L50 4 3 3 3 3
LG50 3 3 3 3 3
L75 23 14 12 6 6
LGT75 22 16 13 5 5
misassemblies 18 7 32 19 32
misassembled contigs 15 7 23 16 20
Misassembled contigs length 16357196 1785642 20096169 21804531 17545253
local misassemblies 6 9 11 9 36
unaligned contigs 0 + 0 part | O + O part 0 + 0 part | O + 11 part 0 + 0 part
Unaligned length 0 0 0 33217 0
Genome fraction (%) 98.189 96.325 98.330 98.423 98.189
Duplication ratio 1.033 1.010 1.030 1.034 1.037
N’s per 100 kbp 0.00 0.00 0.00 0.00 294.00
mismatches per 100 kbp 33.76 44.80 73.10 34.06 33.96
indels per 100 kbp 7.13 63.44 23.53 9.39 6.69
Largest alignment 8631596 8615553 8631596 8631646 8631596
NA5’0 758280 4351628 2530093 3871007 3854031
NGA50 758280 4351628 1537643 3871007 3854031
NAT5 227835 262515 304665 361412 361362
NGAT5 254545 181075 304665 414429 414429
LA50 5 3 3 3 3
LGA50 5 3 4 3 3
LAT75 26 14 16 8 8
LGAT5 25 17 16 7 7

APPENDIX D. APPENDIX OF BIGMAC

139

Table D.8: Dataset 2 (Comparison with other tools) : All statistics are based on
contigs of size > 500 bp, unless otherwise noted (e.g., "# contigs (> 0 bp)" and
"Total length (> 0 bp)" include all contigs).

Assembly original BIGMAC | finisherSC_e2e jelly _e2e | SSPACE _e2e
contigs (> 0 bp) 477 351 447 403 307
contigs (> 1000 bp) 477 341 447 403 307
Total length (> 0 bp) 32897488 29605579 32870423 34484366 33520228
Total length (> 1000 bp) 32897488 29603092 32870423 34484366 33520228
contigs 477 344 447 403 307
Largest contig 4673711 4673711 4673711 4673711 4673711
Total length 32897488 29605331 32870423 34484366 33520228
Reference length 66662626 66662626 66662626 66662626 66662626
GC (%) 47.38 48.80 47.40 46.90 47.38
Reference GC (%) 46.01 46.01 46.01 46.01 46.01
N50 397611 397611 654163 1585584 1568442
NG50 - - - 17013 14909
N75 38471 75666 43018 61775 95133
L50 9 12 8 6 7
LG50 - - - 329 294
L75 101 57 89 65 45
misassemblies 187 28 192 271 255
misassembled contigs 176 22 168 246 165
Misassembled contigs length 18192123 8582043 18393113 24250973 23415983
local misassemblies 22 19 22 37 101
unaligned contigs 39 + 7 part | 29 + 8 part 34 + 7 part | 38 + 23 part 17 + 5 part
Unaligned length 1646412 993710 1594170 1760782 1479235
Genome fraction (%) 41.946 41.995 41.999 43.521 41.946
Duplication ratio 1.118 1.022 1.117 1.128 1.146
N’s per 100 kbp 0.00 0.00 0.00 0.00 1857.80
mismatches per 100 kbp 1.58 8.68 4.39 15.40 1.58
indels per 100 kbp 8.63 37.15 16.06 71.69 8.49
Largest alignment 4547258 4547258 4547258 4547258 4547258
NA50 369454 369454 401563 742006 737193
NAT75 32926 56711 33995 46245 42004
LA50 12 14 11 9 9
LA75 123 68 113 90 82

APPENDIX D. APPENDIX OF BIGMAC 140
Table D.9: Dataset 3 (Comparison with other tools) : All statistics are based on
contigs of size > 500 bp, unless otherwise noted (e.g., "# contigs (> 0 bp)" and
"Total length (> 0 bp)" include all contigs).

Assembly original BIGMAC | finisherSC_e2e jelly _e2e | SSPACE _e2e
7 contigs (> 0 bp) 185 145 162 133 97
contigs (> 1000 bp) 185 140 162 133 97
Total length (> 0 bp) 17393660 13912664 17391031 18003698 17738519
Total length (> 1000 bp) 17393660 13911796 17391031 18003698 17738519
contigs 185 140 162 133 97
Largest contig 3968563 3968563 3968563 3971059 4319145
Total length 17393660 13911796 17391031 18003698 17738519
Reference length 7883268 7883268 7883268 7883268 7883268
GC (%) 61.18 60.98 61.19 61.19 61.18
Reference GC (%) 61.71 61.71 61.71 61.71 61.71
Nb50 257044 359704 996532 1103847 1266912
NG50 3968563 3968563 3968563 3971059 4319145
N75 82370 99878 97964 128718 290104
NGT75 3924590 517104 3924590 3927083 3985906
L50) 7 3 3 3
LG50 1 1 1 1 1
L75 38 27 27 19 10
LGT75 2) 2 2 2
misassemblies 26 14 25 27 43
misassembled contigs 20 5 17 21 23
Misassembled contigs length 5470082 4328506 5465644 9434182 10736561
local misassemblies 2 2 2 2 5
unaligned contigs 118 + 0 part | 115 4 2 part 99 + 0 part | 66 + 14 part 50 + 0 part
Unaligned length 5H8H886 5553281 5602837 6149028 5791170
Genome fraction (%) 99.983 99.982 99.983 99.983 99.983
Duplication ratio 1.498 1.060 1.496 1.504 1.516
7 N’s per 100 kbp 0.00 0.00 0.00 0.00 1044.13
mismatches per 100 kbp 0.18 2.30 0.16 0.60 0.18
indels per 100 kbp 8.70 23.60 5.14 6.39 8.70
Largest alignment 3924590 1719755 3924590 3925633 3924590
NA50 137772 284436 152488 107893 126445
NGA50 1719755 576251 1719755 1719755 1719755
NGAT75 1452284 517104 1452284 1453076 1452284
LA50 11 10 10 13 12
LGA50 2 4 2 2 2
LGAT75 3 7 3 3 3

141

Bibliography

1]

2l

3]

4]

[5]

(6]

17l

18]

19]

Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin,
Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham, Andrey D Pr-
jibelski, et al. “SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing”. In: Journal of Computational Biology 19.5 (2012), pp. 455-477.

Zhirong Bao and Sean R Eddy. “Automated de novo identification of repeat sequence
families in sequenced genomes”. In: Genome Research 12.8 (2002), pp. 1269-1276.

Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Landolin,
and Adam M Phillippy. “Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing”. In: Nature biotechnology 33.6 (2015), pp. 623-630.

Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. “Linear ap-
proximation of shortest superstrings”. In: Proceedings of the twenty-third annual ACM
symposium on Theory of computing. ACM. 1991, pp. 328-336.

Marten Boetzer and Walter Pirovano. “SSPACE-LongRead: scaffolding bacterial draft
genomes using long read sequence information”. In: BMC' bioinformatics 15.1 (2014),

p- 1.

Keith R Bradnam, Joseph N Fass, Anton Alexandrov, Paul Baranay, Michael Bech-
ner, Inang Birol, Sébastien Boisvert, Jarrod A Chapman, Guillaume Chapuis, Rayan
Chikhi, et al. “Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species”. In: GigaScience 2.1 (2013), pp. 1-31.

Guy Bresler, Ma’ayan Bresler, and David Tse. “Optimal Assembly for High Throughput
Shotgun Sequencing”. In: BMC' Bioinformatics (2013).

J. Butler, I. MacCallum, M. Kleber, I.A. Shlyakhter, M.K. Belmonte, E.S. Lander, C.
Nusbaum, and D.B. Jaffe. “ALLPATHS: De novo assembly of whole-genome shotgun
microreads”. In: Genome research 18.5 (2008), pp. 810-820.

Mark J Chaisson and Glenn Tesler. “Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application and theory”.
In: BMC bioinformatics 13.1 (2012), p. 238.

BIBLIOGRAPHY 142

[10]

[11]

12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

Mark JP Chaisson, John Huddleston, Megan Y Dennis, Peter H Sudmant, Maika Ma-
lig, Fereydoun Hormozdiari, Francesca Antonacci, Urvashi Surti, Richard Sandstrom,
Matthew Boitano, et al. “Resolving the complexity of the human genome using single-
molecule sequencing”. In: Nature 517.7536 (2015), pp. 608-611.

Kevin Chen and Lior Pachter. “Bioinformatics for whole-genome shotgun sequencing
of microbial communities”. In: PLoS Comput Biol 1.2 (2005), pp. 106-112.

Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James Drake,
Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E Eichler, et al.
“Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing
data”. In: Nature methods 10.6 (2013), pp. 563-569.

P.E.C. Compeau, P.A. Pevzner, and G. Tesler. “How to apply de Bruijn graphs to
genome assembly”. In: Nature biotechnology 29.11 (2011), pp. 987-991.

John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso,
David Rank, Primo Baybayan, Brad Bettman, et al. “Real-time DNA sequencing from
single polymerase molecules”. In: Science 323.5910 (2009), pp. 133-138.

[saac Elias. “Settling the intractability of multiple alignment”. In: Journal of Compu-
tational Biology 13.7 (2006), pp. 1323-1339.

Adam C English, Stephen Richards, Yi Han, Min Wang, Vanesa Vee, Jiaxin Qu, Xiang
Qin, Donna M Muzny, Jeffrey G Reid, Kim C Worley, et al. “Mind the gap: upgrading

genomes with Pacific Biosciences RS long-read sequencing technology”. In: PloS one
7.11 (2012), e47768.

Sante Gnerre, lain MacCallum, Dariusz Przybylski, Filipe J Ribeiro, Joshua N Burton,
Bruce J Walker, Ted Sharpe, Giles Hall, Terrance P Shea, Sean Sykes, et al. “High-
quality draft assemblies of mammalian genomes from massively parallel sequence data”.
In: Proceedings of the National Academy of Sciences 108.4 (2011), pp. 1513-1518.

David Gordon, Chris Abajian, and Phil Green. “Consed: a graphical tool for sequence
finishing”. In: Genome research 8.3 (1998), pp. 195-202.

Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. “QUAST: qual-
ity assessment tool for genome assemblies”. In: Bioinformatics 29.8 (2013), pp. 1072—
1075.

Richard J. Hall, Chen-Shan Chin, Sudeep Mehrotra, Nikoleta Juretic, Jessica Wasser-
scheid, and Ken Dewar. An interactive workflow for the analysis of contigs from the
metagenomic shotgun assembly of SMRT Sequencing data. $http://files.pacb.com/
pdf/RHall_ASM2014_InteractiveWorkflow.pdf$. 2014.

Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten, and Mark
Akeson. “Improved data analysis for the MinlON nanopore sequencer”. In: Nature
methods 12.4 (2015), pp. 351-356.

BIBLIOGRAPHY 143

[22]

23]

[24]

[25]

[31]
32]

[33]

[34]

Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. “ Approximation
algorithms for asymmetric TSP by decomposing directed regular multigraphs”. In:

Journal of the ACM (JACM) 52.4 (2005), pp. 602-626.

Asif Khalak, Ka-Kit Lam, Greg Concepcion, and David Tse. “Conditions on Finishable
Read Sets for Automated De Novo Genome Sequencing”. In: Sequencing, Finishing and
Analysis in the Future (May, 2013).

Sergey Koren and Adam M Phillippy. “One chromosome, one contig: complete micro-
bial genomes from long-read sequencing and assembly”. In: Current opinion in micro-
biology 23 (2015), pp. 110-120.

Sergey Koren, Michael C Schatz, Brian P Walenz, Jeffrey Martin, Jason T Howard,
Ganeshkumar Ganapathy, Zhong Wang, David A Rasko, W Richard McCombie, Erich
D Jarvis, et al. “Hybrid error correction and de novo assembly of single-molecule se-
quencing reads”. In: Nature biotechnology 30.7 (2012), pp. 693-700.

Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway,
Corina Antonescu, and Steven L Salzberg. “Versatile and open software for comparing
large genomes”. In: Genome biology 5.2 (2004), R12.

Ka-Kit Lam. “POSTME : POSTprocessing MEtagenomics assembly with hybrid data
by highly precise scaffolding”. In: (). URL: https://github.com/kakitone/postme.

Ka-Kit Lam, Richard Hall, Alicia Clum, and Satish Rao. “BIGMAC : Breaking Inac-
curate Genomes and Merging Assembled Contigs for long read metagenomic assem-
bly”. In: bioRziv (2016). DOI: 10.1101/045690. eprint: http://www.biorxiv.org/
content/early/2016/03/29/045690.full.pdf. URL: http://www.biorxiv.org/
content/early/2016/03/29/045690.

Ka-Kit Lam, Asif Khalak, and David Tse. “Near-optimal assembly for shotgun se-
quencing with noisy reads.” In: BMC' Bioinformatics (2014).

Ka-Kit Lam, Kurt LaButti, Asif Khalak, and David Tse. “FinisherSC: a repeat-aware
tool for upgrading de novo assembly using long reads”. In: Bioinformatics 31.19 (2015),
pp- 3207-3209. DOI: 10.1093/bioinformatics/btv280.

Ka-Kit Lam and Nihar B Shah. “Towards Computation, Space, and Data Efficiency
in de novo DNA Assembly: A Novel Algorithmic Framework”. In: ().

Eric S Lander and Michael S Waterman. “Genomic mapping by fingerprinting random
clones: a mathematical analysis”. In: Genomics 2.3 (1988), pp. 231-239.

Mark A Larkin, Gordon Blackshields, NP Brown, R Chenna, Paul A McGettigan,
Hamish McWilliam, Franck Valentin, Iain M Wallace, Andreas Wilm, Rodrigo Lopez,
et al. “Clustal W and Clustal X version 2.0”. In: Bioinformatics 23.21 (2007), pp. 2947—
2948.

Jonathan Laserson, Vladimir Jojic, and Daphne Koller. “Genovo: de novo assembly for
metagenomes”. In: Journal of Computational Biology 18.3 (2011), pp. 429-443.

BIBLIOGRAPHY 144

[35] Elaine Mardis, John McPherson, Robert Martienssen, Richard K Wilson, and W
Richard McCombie. “What is finished, and why does it matter”. In: Genome research
12.5 (2002), pp. 669-671.

[36] Duccio Medini, Davide Serruto, Julian Parkhill, David A Relman, Claudio Donati,
Richard Moxon, Stanley Falkow, and Rino Rappuoli. “Microbiology in the post-genomic
era”. In: Nature Reviews Microbiology 6.6 (2008), pp. 419-430.

[37] A Motahari, G Bresler, and D Tse. “Information Theory of DNA Sequencing”. In: In-
formation Theory Proceedings (ISIT) 2012 IEEE International Symposium on (2012).

[38] A. Motahari, G. Bresler, and D. Tse. “Information Theory of DNA Sequencing”. In:
arXiv:1203.6233 (2012).

[39] Abolfazl Motahari, Kannan Ramchandran, David Tse, and Nan Ma. “Optimal DNA
shotgun sequencing: Noisy reads are as good as noiseless reads”. In: Proceedings of the

2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, July
7-12, 2013 (2013).

[40] David J Munroe and Timothy JR Harris. “Third-generation sequencing fireworks at
Marco Island”. In: Nature biotechnology 28.5 (2010), pp. 426-428.

[41] Eugene W Myers. “The fragment assembly string graph”. In: Bioinformatics 21.suppl
2 (2005), pp. 1i79-1i85.
[42] Eugene W Myers, Granger G Sutton, Art L. Delcher, Tan M Dew, Dan P Fasulo, Michael

J Flanigan, Saul A Kravitz, Clark M Mobarry, Knut HJ Reinert, Karin A Remington,
et al. “A Whole-Genome Assembly of Drosophila”. In: (2000).

[43] Gene Myers. “Efficient local alignment discovery amongst noisy long reads”. In: Algo-
rithms in Bioinformatics. Springer, 2014, pp. 52—67.

[44] Toshiaki Namiki, Tsuyoshi Hachiya, Hideaki Tanaka, and Yasubumi Sakakibara. “MetaVel-
vet: an extension of Velvet assembler to de novo metagenome assembly from short
sequence reads”. In: Nucleic acids research 40.20 (2012), e155-155.

[45] Giuseppe Narzisi and Bud Mishra. “Comparing De Novo Genome Assembly: The Long
and Short of It”. In: PLoS ONFE 6.4 (Apr. 2011), e19175. DOI: 10.1371/journal.pone.
0019175. URL: http://dx.doi.org/10.1371/journal.pone.0019175.

[46] PacBio. PacBio Devnet. $https://github.com/PacificBiosciences/DevNet/wiki/
Human_Microbiome_Project_MockB_Shotgun$.

[47] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. “IDBA-a practical
iterative de Bruijn graph de novo assembler”. In: Research in Computational Molecular
Biology. Springer. 2010, pp. 426-440.

[48] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. “Meta-IDBA: a de
Novo assembler for metagenomic data”. In: Bioinformatics 27.13 (2011), pp. 194-i101.

[49] Pavel A Pevzner. “1-Tuple DNA sequencing: computer analysis”. In: Journal of Biomolec-
ular structure and dynamics 7.1 (1989), pp. 63-73.

BIBLIOGRAPHY 145

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

|61
62]

[63]

Pavel A Pevzner, Haixu Tang, and Michael S Waterman. “An Eulerian path approach
to DNA fragment assembly”. In: Proceedings of the National Academy of Sciences 98.17
(2001), pp. 9748-9753.

Mihai Pop. “Genome assembly reborn: recent computational challenges”. In: Briefings
in bioinformatics 10.4 (2009), pp. 354-366.

J Przyborowski and H Wilenski. “Homogeneity of results in testing samples from Pois-
son series: With an application to testing clover seed for dodder”. In: Biometrika (1940),
pp- 313-323.

N. Rodriguez-Ezpeleta, M. Hackenberg, and A.M. Aransay. Bioinformatics for high
throughput sequencing. Springer, 2011.

Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc,
Sergey Koren, Todd J Treangen, Michael C Schatz, Arthur L. Delcher, Michael Roberts,
et al. “GAGE: A critical evaluation of genome assemblies and assembly algorithms”.
In: Genome research 22.3 (2012), pp. 557-567.

Peter Sanders. “Algorithm engineering—an attempt at a definition”. In: Efficient Algo-
rithms. Springer, 2009, pp. 321-340.

DNA SEQUENCING. “A plan to capture human diversity in 1000 genomes”. In: Sci-
ence 21 (2007), p. 1842.

Claude E. Shannon. “A Mathematical Theory of Communication”. In: The Bell System
Technical Journal 27 (July 1948), pp. 379-423, 623-656. URL: http://cm.bell -
labs.com/cm/ms/what/shannonday/shannon1948.pdf.

Jared T Simpson and Richard Durbin. “Efficient de novo assembly of large genomes
using compressed data structures”. In: Genome Research 22.3 (2012), pp. 549-556.

The Critical Assessment of Metagenome Interpretation (CAMI) competition. http :
//blogs . nature . com/methagora /2014 /06 / the - critical - assessment - of -
metagenome-interpretation-cami-competition.html.

Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob Knight,
and Jeffrey I Gordon. “The human microbiome project”. In: Nature 449.7164 (2007),
pp- 804-810.

Esko Ukkonen. “Approximate string-matching with g-grams and maximal matches”.
In: Theoretical computer science 92.1 (1992), pp. 191-211.

K.A. Wetterstrand. “DNA sequencing costs: data from the NHGRI large-scale genome
sequencing program”. In: Accessed November 20 (2011), p. 2011.

Daniel R Zerbino and Ewan Birney. “Velvet: algorithms for de novo short read assembly
using de Bruijn graphs”. In: Genome research 18.5 (2008), pp. 821-829.

