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Abstract

This thesis describes a method for view-dependent cloth simulation using dynami-

cally adaptive mesh refinement and coarsening. Given a prescribed camera motion, the

method adjusts the criteria controlling refinement to account for visibility and apparent

size in the camera’s view. Objectionable dynamic artifacts are avoided by anticipative

refinement and smoothed coarsening. This approach preserves the appearance of de-

tailed cloth throughout the animation while avoiding the wasted effort of simulating

details that would not be discernible to the viewer. The computational savings realized

by this method increases as the scene complexity grows, producing a 2× speed-up for

a single character and more than 4× for a small group.

∗wjkoh@berkeley.edu
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Figure 1: The clothing on this character uses view-dependent simulation. Visible areas
(blue) are simulated at high resolution, as measured in screen-space. Areas not visible to the
camera (red) are simulated at reduced resolution. The first two images show views from the
camera’s perspective. The rightmost image shows an outside perspective with the camera’s
view frustum drawn in black wireframe.

1 Introduction

Cloth simulation for visual effects has reached a mature state where the use of virtual

characters wearing simulated clothing is now widespread. However, cloth simulation remains

computationally expensive, particularly when films require high-quality, realistic results

computed at high resolution. For characters that are far from the camera, or otherwise

less visible in a shot, most fine details will not be visible to the viewer and work spent

computing those details is wasted. In most film production settings, both the camera

and character motion are known before the simulations are run, and one could use this

information to substitute cheaper low-resolution simulations on distant or out-of-frame

characters. Unfortunately, manually swapping some characters to low-resolution simulations

is cumbersome, particularly when a single character’s clothing requires high-resolution for
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some parts of a shot but not others, but the cloth motion must appear coherent throughout.

For closeup shots where only part of a character is in frame, savings could also be realized

by reducing the computation devoted to out-of-frame cloth, so long as such savings don’t

result in dynamic artifacts that affect visible parts of the cloth.

In this thesis we describe a method for view-dependent simulation using dynamically

adaptive mesh refinement and coarsening. Instead of using a fixed-resolution simulation

mesh, the mesh undergoes local adaptation based on the geometric and dynamic detail of the

simulated cloth. The degree to which this detail is resolved is adjusted locally based on the

view of the simulated cloth. Areas that appear large in the camera will be refined to show

finely detailed dynamics. Areas that are out of frame, facing away from the camera, or at a

distance will be correspondingly less refined.

The goal of this work is to preserve the appearance of detailed simulation throughout the

animation while avoiding the wasted effort of simulating details that will not be apparent

to the viewer. Further, there should be no visible dynamic artifacts created due to varying

refinement as the camera and objects move about. Finally, cloth that leaves and reenters

visibility should appear to have coherent and consistent dynamics.

Our work builds on the publicly available ARCSim framework1 which can be used to

animate sheets of deformable materials such as cloth, paper, plastic, and metal. ARCSim

adaptively refines anisotropic triangle meshes to efficiently resolve the geometric and dy-

namic detail of the simulated objects. Our method modifies the metrics used by ARCSim

so that local mesh visibility is accounted for during refinement. Given the existing frame-

work for adaptivity, our view-dependent refinement is easy to implement and has negligible

overhead.

In cases where only a single character is being modeled, we realize modest savings of

roughly a 2.4× speed-up in comparison with an adaptive simulation of ARCSim due to

1Adaptive Refining and Coarsening Simulator (ARCSim) is available at http://graphics.berkeley.edu/
resources/ARCSim.
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coarsening out-of-view and back-facing parts of the character’s clothing. For small crowd

scenes, the savings are larger, up to 4.5×, as background and out-of-view characters are

automatically coarsened. Compared to a non-adaptive simulation the speed-up is more than

9×. For massive crowd scenes with thousands of agents, we expect that even greater savings

could be realized.

2 Related Work

Adaptive discretizations have been found to give significant performance and scalability

benefits for a number of computationally intensive simulation tasks. In fluid simulation,

detailed liquid surfaces can be animated efficiently by refining the spatial resolution near

the surface using octrees [LGF04], adaptively sampled particles [APKG07], tall-cell grids

[CM11], or tetrahedral meshes [KFCO06, CFL∗07, ATW13]. Adaptive refinement and

simplification techniques have also been proposed for articulated bodies [RGL05] and finite

element models [GKS02]. Most relevant to our work is the approach of Narain et al. [NSO12],

which uses adaptive anisotropic remeshing to resolve detailed features in thin sheets such

as cloth. This approach has been extended to efficiently model plastic deformation and

sharp creases [NPO13] as well as complex fracture patterns [PNdJO14]. However, all

the techniques described above are view-independent and rely only on geometrical and

dynamical properties of the simulated system.

For animation applications, a number of techniques have also been proposed that take

into account the current viewpoint and attempt to expend less computational effort in regions

that are visually less important. One approach, known as simulation level of detail, is to

switch between dynamical models of varying degrees of simplification, depending on the

viewpoint. Carlson and Hodgins [CH97] introduced such a method for real-time animation

of large groups of legged creatures. Their approach required the user to manually design the

simplified models for each level of detail, whereas ours does not. Subsequent work has sought
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to generate approximated models automatically, for example for particle systems [OFL01],

plants [BK04], and hair [WLL∗03].

Alternatively, one can modify the simulation resolution based on the viewpoint without

changing the underlying model. Barran [Bar06] performed fluid simulation on a non-

Cartesian grid based on cylindrical coordinates centered at the viewer, thus directly taking

the distance from the viewer into account in the discretization. Viewpoint information has

also been used to vary simulation resolution in traditional adaptive discretizations for fluids,

such as octrees [KIC06, BK11] and adaptive particles [SG11].

In our work, we also take inspiration from geometric level of detail techniques, such

as those for real-time rendering of terrain [DWS∗97, Hop98] or complex scenes like archi-

tectural walkthroughs [FS93]. These techniques inform our understanding of the important

view-dependent criteria for representing geometrical detail. Hoppe [Hop97] used surface

orientation and screen-space geometric error as refinement criteria. Xia et al. [XESV97]

further propose the use of local illumination gradients, projected lengths of edges in screen

space, and silhouette boundaries.

3 Method

Our view-dependent adaptive remeshing scheme builds on the adaptive anisotropic remeshing

framework described by Narain et al. [NSO12]. We introduce a new view-dependent

refinement strategy that complements their use of dynamical and geometrical refinement

criteria. This approach realizes significant speed improvements by extending the domain of

adaptive remeshing to include perceptual properties as well as physical ones.

The method of Narain et al. defines a sizing field that specifies the desired spatially

varying resolution of the simulation mesh, taking into account various geometric and dynamic

criteria such as local curvature, velocity gradient, compressive strain, and obstacle proximity.

It is represented as a 2×2 symmetric tensor field M which is first computed on faces and
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then transferred to vertices via area-weighted averaging. Once the sizing field is defined, an

edge between vertices i and j is considered valid if its size with respect to M,

s(i, j)2 = uT
i j

(
Mi +M j

2

)
ui j, (1)

does not exceed 1, where ui j = ui−u j is the vector between the two vertices in material

space. If s(i, j)2 > 1, the edge is deemed invalid and must be split. The remeshing algo-

rithm proceeds by splitting all invalid edges, collapsing as many edges as possible without

introducing new invalid edges, and flipping edges to maintain an anisotropically Delaunay

triangulation. This procedure produces a mesh that is as coarse as possible while containing

no invalid edges and remaining Delaunay in the anisotropic space of the metric.

We modify their algorithm so that, rather than using purely physical and geometrical

criteria to determine the mesh resolution, we vary the desired degree of refinement over

space and time based on visual importance relative to a specified camera motion. We

implement this variation by modifying the sizing field M so that the size of each face is no

more than what is needed to resolve visually important features. This modification reduces

computational effort in regions that are less visible from the camera, bringing about a more

efficient simulation without losing significant visual detail.

Our implementation considers two visibility criteria. In regions that are not visible

from the current camera position, that is, those that are out of frame or facing away from

the camera, we scale the sizing field to uniformly coarsen the mesh. In regions that are

visible, we control the sizes of elements in terms of their projected lengths in screen space

so that distant or foreshortened elements are coarser. This approach is roughly equivalent to

adaptivity based on screen-space metrics. However, to avoid artifacts that would occur due

to fast-moving cameras or cuts between views, our algorithm applies conservative spatial

and temporal smoothing to the sizing field.
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3.1 Coarsening of non-visible regions

For non-visible regions, we seek to uniformly coarsen the mesh relative to the original

view-independent sizing field. To do so, we define a scalar field ν ≤ 1, which we call the

view factor, and modify the sizing field as

Mvd = ν
2M. (2)

As the sizing criterion (1) is quadratic, this scaling increases the target edge lengths by a

factor of ν−1.

In general, we would like to use full resolution (ν = 1) for faces that are visible in the

current view, and coarser resolution for back-facing and out-of-frame faces based on user-

specified parameters νback,νout < 1. However, simply defining ν in this piecewise-constant

fashion causes severe artifacts because of the discontinuous change in the sizing field. First,

the discontinuity in sizes at the boundary between in-frame and out-of-frame faces leads to

noticeable motion artifacts such as popping due to the influence of spurious forces from the

out-of-frame region. Second, rapid camera movements and jump cuts can cause previously

coarse regions with inaccurate geometry to suddenly become visible. To eliminate these

discontinuities and obtain artifact-free results, we define the view factor in a way that is

continuous over both space and time.

3.1.1 Spatial smoothing

Instead of using a spatially discontinuous field, we enforce a continuous falloff of the view

factor between in-frame and out-of-frame faces. For a given mesh face, let d be its distance

from the view frustum in world space. We define the spatially smoothed view factor ν̃ by
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Figure 2: An example of spatial smoothing. Cyan edges indicate out-of-view faces under
spatial smoothing, and green edges indicate out-of-view faces far from the view frustum.

linearly interpolating to νout over a user-specified margin length m:

ν̃ =


νfb if d = 0,

νfb− d
m(νfb−νout) if 0 < d < m,

νout if d ≥ m,

(3)

where νfb is 1 or νback depending on the direction of the face normal. Thus, we have ν̃ = 1

or νback for visible faces and ν̃ = νout for faces far from the view frustum, with a continuous

transition region in between, as Figure 2 shows.

There is still a discontinuity on the boundary between front-facing faces and backward-

facing faces. While it is tempting to use the direction of the normal of back-faces to create a

smooth transition, we find that normals can vary too rapidly across silhouettes to offer any

useful smoothing this way. Instead, we address this discontinuity with a different approach,

described later in Section 3.3.
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3.1.2 Temporal smoothing and anticipation

We use temporal smoothing to avoid visibly discontinuous changes in mesh size due to

camera motion, which may cause noticeable popping artifacts. We include anticipation

that ensures the cloth gets refined to sufficient resolution before it appears in the frame,

preventing undesirable transients.

For any given face, we can treat the view factor before temporal smoothing ν̃ as a function

of time, holding the face fixed and considering the prescribed motion of the viewpoint. We

smooth ν̃ over a time interval [t, t +T ] based on the current time t as follows. Define a

temporal window function w(τ) which satisfies w(0) = 1 and falls off to zero at τ = T . The

temporally smoothed view factor is

ν(t) = max
τ∈[0,T ]

w(τ)ν̃(t + τ). (4)

This is analogous to dilation by a non-flat structuring element in mathematical morphology.

In our implementation, we take w(τ) = 1− τ/T .

Unlike smoothing by, say, moving averages, our approach is conservative in that

ν(t) ≥ ν̃(t); in particular, visible regions always have ν = 1. Further, in the presence

of discontinuities such as jump cuts, ν increases continuously from νout to 1 over a time

period T in advance of the jump. This anticipatory refinement allows enough time for the

system to settle into a feasible high-resolution state before becoming visible, as shown in

Figure 3.

3.2 Screen-space resolution of visible regions

In non-visible regions, it is sufficient to uniformly coarsen the mesh resolution as above.

However, for visible regions, we wish to preserve the geometrical and dynamical detail

resolved by the original sizing field as much as possible, only coarsening when such detail
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would not be visually important.

Our objective is that faces and edges in visible regions should be large enough to affect

the visual appearance of cloth in the final image. The farther a face is from a camera, the

smaller it appears under perspective projection. The projected area of a triangle also becomes

smaller as the face normal becomes perpendicular to the viewing direction. Therefore, in

regions that are distant, or are not normal to the view direction, a high-resolution mesh will

be wasteful as any detailed features resolved by the fine elements will appear extremely

small in the final image.

In this section, we describe how to limit the refinement of mesh elements based on their

projected sizes in screen space. We do so by constraining the allowed edge lengths to a

specified minimum visual angle in screen space. This approach takes both orientation and

depth into account in unified and consistent way. Previous work [NSO12] constrains the

allowed edge lengths in material space to a range [`min, `max] by clamping the eigenvalues of

the sizing tensor to lie between `−2
max and `−2

min. In our work, however, we constrain the sizing

tensor with respect to screen space rather than material space. We transform the sizing tensor

Mvd to screen space, apply the bound on the shortest allowable edge length, and transform it

back to material space.

For a given configuration of the sheet, consider the function from material-space coordi-

nates of vertices to their screen-space coordinates. On visible faces, this function is locally

invertible and its Jacobian S is a full-rank 2× 2 matrix that can be evaluated locally for

each face. As the sizing tensor Mvd acts as a quadratic form acting on vectors in material

space, the corresponding tensor that acts on screen-space vectors can be obtained via the

transformation

S (Mvd) = S−TMvdS−1. (5)

We seek the minimum change to the screen-space sizing tensor M̃vd = S (Mvd) such

that edges of screen-space length `min will not be refined further. This modification can be
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achieved by clamping the eigenvalues of M̃vd to not exceed `−2
min:

M̃vd = Q

λ̃1 0

0 λ̃2

QT, (6)

λ̂i = min(λ̃i, `
−2
min), (7)

M̂vd = Q

λ̂1 0

0 λ̂2

QT. (8)

We transform this modified screen-space tensor back into material space to obtain the final

sizing field we use for remeshing, S −1(M̂vd) = STM̂vdS.

3.3 Transferring sizing field from faces to vertices

The sizing field defined by the procedure above is represented as a tensor on each face. This

tensor field must be resampled onto mesh vertices so that it can be used in the sizing criterion

(1). Previous work [NSO12] has used a simple area-weighted averaging procedure. However,

we have found that that approach tends to lose detail in regions with rapid variation in the

sizing field, such as at silhouettes where the view factor changes from 1 to νout. The issue

is exacerbated because coarser regions, which have larger faces, are given higher weight,

leading to excessive coarsening at boundary vertices.

In order to handle this discontinuity on view factors, we first resample per-face view

factors before the simple area-weighted averaging procedure. If the values of ν differ by

more than a specified threshold across any edge, we do simple averaging between two

adjacent view factors, and assign the averaged value to one of the faces as shown in Figure 4.

As we don’t want to change the view factors of the visible faces from 1, we always assign

the averaged view factor to a non-visible face.

This approach ensures that silhouette boundaries are refined to the same extent as other
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Num. Faces Num. Vertices Time / Frame (seconds) Speed-up
min max mean min max mean min max mean

Karate
Non-adaptive 123,790 123,790 123,790 63,889 63,889 63,889 136.47 288.01 161.44 0.49×
Adaptive 25,785 71,142 41,973 14,135 37,199 22,358 31.41 184.39 79.04 1×
View-dependent 5,223 39,139 21,501 3,142 20,770 11,670 5.52 83.29 33.02 2.39×

Solo Dancer
Non-adaptive 43,710 43,710 43,710 22,736 22,736 22,736 27.31 58.09 29.27 0.54×
Adaptive 12,030 21,763 18,041 6,593 11,535 9,659 7.78 22.00 15.80 1×
View-dependent 730 15,951 9,638 560 8,599 5,314 0.83 13.81 7.55 2.09×

Multiple Dancers
Non-adaptive 437,100 437,100 437,100 227,360 227,360 227,360 273.13 580.85 292.73 0.47×
Adaptive 119,515 184,340 161,028 65,505 98,630 86,897 79.97 178.24 136.99 1×
View-dependent 11,216 102,945 36,339 7,619 56,285 21,228 12.02 82.54 30.76 4.45×

Table 1: Statistics and timing numbers for the examples. Non-adaptive simulations use a
fixed high-resolution mesh. Adaptive simulations use the unmodified scheme implemented in
ARCSim. View-dependent simulations use the method described in this thesis. The adaptive
simulations are used as a baseline for comparison. The non-adaptive mesh resolution was
selected to match the visual quality of the adaptive simulations.

visible regions of the cloth, improving the appearance of silhouettes. This change affects

the simulation mesh only in a limited area near silhouette boundaries, so it does not hinder

overall performance.

3.4 Interpenetration handling

Remeshing invariably produces changes in the geometry of the cloth mesh, and can introduce

interpenetrations of the cloth with itself or with obstacles. We found that the simple approach

for interpenetration handling used in previous remeshing work [NSO12] does not always

converge to an interpenetration-free configuration in the presence of the agressive coarsening

we perform in non-visible regions. Instead we use the approach of intersection contour

minimization proposed by Volino et al. [VMT06], which we found to be robust to large and

complex interpenetrations.
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4 Results and Discussion

We have implemented the methods described in this thesis as an extension to the ARCSim

code. To test the utility of the proposed methods, we ran comparisons with adaptive and

non-adaptive simulations on several examples. All simulations were run on a machine

with an Intel Xeon E5-2680 v2 processor and 16 GB RAM using 4 execution threads. The

constants for view-dependent refinement that were used for these examples are νback = 0.2,

m = 0.4 m, T = 5 frames, and νout = 0.01. For the example shown in Figure 1, we used

larger νout = 0.1 to avoid intersection problems with the layered garments.

Figure 1 shows a character wearing a layered outfit consisting of three interacting

garments. As the accompanying video shows, the character’s clothing exhibits complex

dynamic motion with detailed wrinkles. As the camera moves continuously or transits

between cuts, the simulation mesh is updated to maintain a constant level of visible detail

while out-of-view regions are aggressively coarsened. Figure 5 plots the time per frame and

total cumulative computation time for this example for both the basic adaptive simulation

and the view-dependent version.

Figure 6 shows a character wearing a simple dress, showing a similar degree of view-

dependent refinement and coarsening to Figure 1. A group of ten such characters is shown

in Figure 7. Note that while these characters are all performing the same actions in the

same type of dress, they are simulated individually with different resolutions depending on

their location relative to the viewpoint. In practical applications, multiple characters in a

crowd would have different garments and motions and would therefore have to be simulated

individually even without view dependence.

Timings for these three examples are reported in Table 1. The single characters realize a

speed-up between 2.1× and 2.4×. This speed-up becomes more substantial for the group

of ten characters where it is roughly 4.5×. The greater speed-up occurs because when

a single character fills the screen, requiring full adaptive resolution, it tends to obscure
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others which then switch to low resolution and generate substantial savings. In order for all

characters to be visible, the camera must be fairly far back which yields savings across all

characters. These observations would hold more strongly for larger groups. Accordingly

we hypothesize that massive scenes involving thousands of characters would likely realize

speed-up substantially larger than those we have observed for small groups.

Remeshing does introduce small amounts of motion that might be visible if the character

is otherwise still. As shown in the video, however, this motion does not manifest as visible

popping because the dramatic remeshing generally happens off screen. The motion that

appears on screen is gentle swaying that looks fairly natural. If the subject is moving, then

the artificial motion is completely masked by the normal motion of the cloth. Even with a

still subject, the artificial motion can be hard to detect due to the movement of the camera.

5 Conclusions

The methods we have described provide a simple way of achieving computational savings for

cloth simulation. For scenes involving multiple characters or large crowds, these savings can

be substantial. We have demonstrated our approach in simulations of clothing, but believe

that it could equally well be applied to other objects that can be simulated in an adaptive

framework, including materials that can crumple [NPO13] or fracture [PNdJO14].

The main limitation of our method is that it requires an adaptive framework. However,

once that framework is in place, view-dependent adaptivity is relatively simple to implement.

For the group of dancers, our view-dependent adaptive simlation is nearly ten times faster

than non-adaptive simulation. We believe that such large performance gains outweigh any

costs associated with changing mesh topology. We also believe that our approach would

scale very well to massive scenes with thousands of actors, where it would produce even

larger savings.

In general, simulations used for physically based animation in graphics have been

15



designed so that they capture visible phenomena for realistic appearance. These simulations

typically avoid the type of error analysis that one finds in most engineering contexts because

it is difficult to quantify a measure of perceptual error that would be relevant to graphics

simulations. The work we’ve presented here explicitly drives adaption according to a

heuristic measure of visible error. Future work in this area could more explicitly take

perceptual error into account so that reduced resolution could be used where masking effects

due to motion, complexity, or other phenomena cause humans to be less sensitive to apparent

detail.
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Figure 3: A sequence of frames with a jump cut, showing a dress simulated with temporal
anticipation (above), and without (below). Blue edges indicate faces visible in the current
view. Temporal anticipation allows the cloth to reach the correct high-resolution state before
it becomes visible.
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Figure 4: Locally interpolating discontinuous view factors at silhouettes to ensure smooth
silhouettes.
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Figure 5: A comparison of view-independent and view-dependent adaptive simulations for
the example of Figure 1 in terms of per-frame and cumulative simulation times.
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Figure 6: A solo dancer is shown from the camera’s perspective (left, middle) and from an
external perspective with the camera’s view frustum drawn in black wireframe (right).
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Figure 7: A group of multiple dancers is rendered from the camera’s perspective (top), while
an external view showing the camera’s view frustum is shown below. Characters completely
outside the view frustum are simulated at very low resolution.
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