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Abstract—Software specializers and hardware accelerators
share the common goal of decreasing the runtime of an operation
while being parameterizable and abstracting away underlying
optimizations from users. The competition for reconfigurable
hardware resources among candidate hardware accelerators
means that tuning must take place at an application level and
not at an operation level as is the case for software specializers.
This paper presents a methodology for the co-tuning of software
specializers and hardware accelerators so that both may be
simultaneously used in applications. To explore the validity of
this approach, experiments were carried with software specialized
and hardware accelerated 2D stencils performing convolutions
for trial convolutional neural networks. The results demonstrate
that an application level co-tuner can discover which operations
are best suited for software specializers and which merit the
limited reconfigurable hardware resources required for hardware
acceleration.

I. INTRODUCTION

A. Motivation

Shrinking the size of transistors in computational devices
has historically yielded performance benefits beyond what
can solely be attributed to a Moore’s law increase in the
number of transistors on an integrated circuit. In 1974 it was
demonstrated that shrinking the dimensions of a MOSFET
by a factor of k would result in a equivalent factor of k
decrease in the delay through the device, provided other
parameters like doping concentration and voltage were scaled
appropriately [1]. This Dennard scaling has for three decades
allowed applications to become viable which were formerly
prohibitively computationally intensive, simply by allowing
sufficient time for the underlying technology to improve. This
trend had been greatly inhibited since the mid to late 2000s
due to supply voltage stagnation and the heightened impact of
subthreshold leakage current [2].

Instead of relying on the diminishing benefits of device
scaling to achieve performance improvements, an increasingly
popular alternative is the use of specialized hardware circuitry
like coprocessors. A notable example of this technique are
graphics processing units, which despite their origins as visual
accelerators for computer gaming are now employed widely in
high performance scientific computing applications [3]. One
important drawback of using hardware coprocessors is that
programming them has proven to be a challenging departure
from traditional software programming. It is frequently the
case that existing software design methodologies are not trans-
ferable to heterogeneous systems without significant modifica-
tion. Returning to the GPU example, new tools were required

for effective utilization, like OpenCL, which is a framework
for programs that execute on heterogeneous computing envi-
ronments consisting of CPUs and GPUs [4].

The ASPIRE (Algorithms and Specializers for Provably op-
timal Implementations with Resilience and Efficiency) project
is therefore interested in investigating strategies for the co-
design and co-tuning of hardware and software within hetero-
geneous systems. Towards this end, an essential consideration
for these systems is determining which of an application’s
operations are suitable to run on commodity processors and
which might be worthwhile implementing with custom hard-
ware. Two branches of the ASPIRE effort (SEJITS and Chisel,
described below) are used in this report to investigate the
combination of software and hardware representations of sten-
cils, a computational pattern that underlies many applications.
In addition to the initial results, limitations of the co-tuning
methodology proposed are discussed along with challenges
that are faced in general while orchestrating simultaneous
software and hardware operations on heterogeneous systems.

B. SEJITS Software Specializers

SEJITS (Selective Embedded Just-In-Time Specialization)
is a methodology used to encapsulate the performance benefits
of operations expressed in efficiency level languages and make
them available to users of productivity level languages [5].
SEJITS achieves this through the use of constructs called
specializers which perform transformations on an abstract
syntax tree of the PLL code to be specialized and then compiles
to an ELL backend like C or OpenCL. An important benefit
of this approach is that the users of a given specializer do not
need to be knowledgeable of the low level optimizations being
made, or the trade-offs of different choices, in order to benefit
from the performance improvement. The optimal specializer is
found just-in-time by applying different permutations of passes
to the AST and tuning over them to find the best performing
one for the provided operation. The JIT nature of SEJITS
specializers means that specific knowledge of the data types
for a given operation can be leveraged during transformations.
This work upfront can be cached for later calls, provided that
both the operation and data types match a specializer that has
already been tuned.

C. Chisel Hardware Accelerators

Chisel (Constructing Hardware in a Scala Embedded Lan-
guage) is a hardware construction language embedded in Scala
as a DSL [6]. Circuits defined with Chisel can be emitted
as C for efficient simulation and debugging or emitted as



Verilog for synthesis into physically realized circuits. Of great
importance to this paper is that the full force of a modern
programming language can be leveraged to produce highly
parametric generators for hardware circuitry. In fact, entire
processor generators have been made which require of users
only architectural parameters (e.g. cache size) in order to
produce a custom processor [7]. More modest designs like
the hardware acceleration of a single operation are certainly
within Chisel’s parametric generation capabilities. Parallels can
be drawn between Chisel hardware accelerators and SEJITS
software specializers. Both can be customized based on the
type and size of input and both can provide performance
advantages to a user without requiring them to know how the
advantages are gained.

D. Co-tuning Opportunity

There are two key differences between using software spe-
cializers and hardware accelerators to decrease the runtime of
an operation. Firstly, JIT is assumed for this paper to be out of
the question for hardware accelerators given current synthesis
tools and reconfigurable hardware technology. Secondly, by
only locally tuning to find an optimal software specializer for
a given operation, an implicit assumption is made that this
specializer won’t be significantly impacted by the use of other
possible software specializers within the same application. This
assumption could be violated by contention over shared hard-
ware resources like competing for cache space or threads of
execution, but the simplifying assumption of independence is
made regardless. Contrastingly, the different possible hardware
accelerators of a given application are inextricably bound by
their shared need for reconfigurable hardware resources. It will
be the position of this paper that only one hardware accelerator
can exist in reconfigurable hardware for the entire duration of
an application, although alternative perspectives are considered
at the end of this paper.

With the above differences in mind, a method co-tuning
software specializer and hardware accelerators was devised
which takes into consideration the operations of an entire
application. First, operations which can be SEJITS specialized
are tuned over locally (i.e. considering only the operation at
hand) to derive optimal software specializers. Then operations
which can be hardware accelerated are tuned over globally
(i.e. running the entire application with one type of operation
sent to hardware at a time) to find which candidate accelerator
is best suited for being expressed on the physical hardware.
Different factors which impact the worthiness of a hardware
accelerator for a given application are the performance im-
provement relative to software alternatives, the number of
times an accelerator will be exercised during the runtime of the
application, and the ability of the main processor to perform
useful work concurrently with the accelerator. If a hardware
accelerator is found to be optimal for a given application
and a software specializer also exist for the same operation,
it means that the time spent deriving the specializer will
have been wasted. Doing so is required in order to obtain
an accurate understanding of the opportunity cost of using a
specific hardware accelerator. Ultimately, an application could
use an arbitrary number of software specializers an arbitrary
number of times and 0 or 1 hardware accelerators an arbitrary
number of times during the course of its execution, as shown
in Fig. 1.

Fig. 1. Throughout the runtime of an application the same functions are
called an arbitrary number of times. Software specializers (orange) may be
used whenever they would improve performance. Only one type of hardware
accelerator (blue) may be used during the entire execution of an application,
even if unused accelerators would be an improvement over software alterna-
tives.

II. SETUP

A. Zynq SoC

The Zynq 7000 series SoCs manufactured by Xilinx incor-
porates an ARM Cortex A9 processor (called the Processing
System, or PS) and FPGA fabric (called the Physical Logic,
or PS) on a single chip [8]. The PS runs at 667 MHz and has
32KB L1 Instruction and Data caches as well as a 512KB L2
cache. The PL is equivalent to a standalone Atrix-7 FPGA with
85K logic cells, 560KB of block RAM, and 220 DSP slices.
This SoC makes for a good candidate to perform software spe-
cializer/hardware accelerator co-tuning experiments because it
has all of the requisite pieces of hardware.

Although it is able to run co-tuning experiments, the
ARM is not capable of the computationally demanding task
of synthesizing hardware. Therefore, a host computer with a
desktop x86 processor is required to generate the accelerators
in advance, as demonstrated in Fig. 2. This step is by no means
a requirement for using software specializers and hardware
accelerators together in an application. A desktop with an x86
processor could run both the software synthesis and application
software with reconfigurable hardware attached via a daughter
card communicating over PCIe. The IP used in this paper
for communication between PS and PL is also available for
communicating over PCIe so this modification would not even
require changes to be made to application code or accelerator
circuitry.



Fig. 2. The Zynq SoC (orange) contains the necessary components to run
applications with software specializers and hardware accelerators. Synthesis
of accelerator circuits is computationally intensive and requires a desktop x86
host computer (blue).

B. Xillybus

Xillybus is an IP core for FPGAs along with software
drivers that is used for the communication of streaming data
between the FPGA and a processor running Linux or Windows
[9]. A version of this IP is available for Zynq SoCs which
leverages the AXI interconnect to transmit data between PS
and PL. On the processor side device files are made available
to the programmer to read from and write to. A low level file
I/O API is used to communicate with these device files in order
to avoid unwanted buffering as shown in Fig. 3 and Fig. 4.

On the reconfigurable hardware side data streams are
terminated with generic inbound and outbound FIFOs. One
side of these FIFOs is connected to the Xillybus IP block and
the other is connected to the user defined hardware accelerator
circuitry (Fig. 5).

III. EXPERIMENTS

A. Convolutional Neural Nets

CNNs are a machine learning technique that have been
applied with great success to the task of classifying images
[10]. In this setting, the CNN takes as input a 2D array of data
values representing an image, and each internal layer sees a
modified image derived from the previous layer. The output
is a label classifying the image and its comparison with an
expected value is used by backpropagation to update coeffi-
cients stored within the network. CNN layers are comprised
of convolution layers which perform 2D convolutions on an
image and pooling layers which downsample the images they
receive. The net effect of these types of layers is that there are

int write_xillybus(int fd, unsigned char *buf, int numbytes) {
int rc = 0;
int byteswritten = 0;
while (byteswritten < numbytes) {

rc = write(fd, buf+byteswritten, numbytes-byteswritten);
if (rc < 0) {

if (errno == EINTR){
continue;

} else {
perror("write_xillybus failed to write");
exit(1);

}
} else {

byteswritten += rc;
}

if (rc == 0) {
break;

}
}
return byteswritten;

}

Fig. 3. C code for writing streaming data to device files which the Xillybus
IP can read from.

int read_xillybus(int fd, unsigned char *buf, int numbytes) {
int rc = 0;
int bytesread = 0;
while (bytesread < numbytes) {

rc = read(fd, buf+bytesread, numbytes-bytesread);
if (rc < 0) {

if (errno == EINTR) {
continue;

} else {
perror("read_xillybus() failed to read");
exit(1);

}
} else {

bytesread += rc;
}

if (rc == 0) {
break;

}
}
return bytesread;

}

Fig. 4. C code for reading streaming data from device files which the Xillybus
IP can write to.

typically a greater number of convolutions being performed
at deeper stages, acting on smaller images and with smaller
convolution windows.

CNNs are a good application to experiment with co-tuning
because they contain a multitude of operations which have the
same logical functionality but are parameterized differently.
Furthermore, convolutions are conducive to being computed
as software specializers or hardware accelerators. For the ex-
periments performed in this paper a model was devised which
captures the salient features of a CNN’s convolutions while
omitting other operations. Starting from a 9 by 9 convolution,
the window size decays each new layer to 7 by 7, 5 by 5, and
finally 3 by 3. The image size either decays by a power of two
each layer or else remains constant, representing both extremes
of pooling. Finally, deeper layers have more convolutions
which in encoded by a branching factor β. Specifically, a
layer L where the index starts at 0 would perform β times
as many convolutions as the previous layer for a total of βL
convolutions at that layer. It is important to note that because
other operations are missing which would occur in a full CNN,
absolute changes in runtime due to the use of specializers and
accelerators would be achieved by co-tuning the full CNN but



Fig. 5. Streaming data is sent from and received by user applications running
on the ARM processor (green) to device files with low level file I/O API calls.
This data is transmitted across to the programmable logic (purple) over the
AXI bus. An Xillybus IP core resides in the reconfigurable hardware and
exposes the data streams to accelerators as generic FIFOs.

relative changes need not be the same. Relative changes would
necessarily be smaller for a full CNN unless the additional
operations are also specialized and accelerated.

B. Streaming 2D Stencils

The 2D convolution operation required by the CNN can be
realized as a stencil expressed in hardware on an FPGA. For
the setup of hardware accelerators outlined previously, data
enters and exits as a 1 element wide stream of 32 bit floating
point numbers. The stencil operation is parameterized by the
image size I and window size W which represent the number
of elements along one axis of the square image and window,
respectively. The first portion of the 2D streaming stencil in
hardware introduces the appropriate delays so that all of the
elements within a W by W box are made available on the same
cycle. This is achieved by W rows of shift registers, nominally
of length I (except for the last row), with specific intermediate
values tapped and sent to the next segment (Fig. 6). The W 2

image elements received every cycle are then multiplied with
the proper coefficient and the products are added together until
a final result is generated to stream out.

The use of floating point units within the 2D stencil exposes
a dilemma brought about by the assumption that software
specializers and hardware accelerations need to be interchange-
able with respect to functionality. Floating point units require
more hardware resources than their fixed point counterparts,
leading many past implementations of neural networks in
hardware to employ the latter for data representation [11].

Fig. 6. The hardware accelerator for a 2D stencil passes input streaming data
through W rows of shift registers which are nominally of length I (gray).
Specific intermediate values are tapped and sent to W 2 parallel multipliers
(blue) which also take in the stencil coefficients (green). These products are
added together with W 2 − 1 addition units (pink) and the result is streamed
out.

The reduction in numerical precision brought about by a fixed
point representation could be compensated for by changing the
structure of the network to achieve comparable accuracy with
an implementation that employs floating point units. For the
co-tuning approach presented above, there is no mechanism
available to modify an application’s structure to accommodate
variations in functionality between software accelerators and
hardware specializers. Furthermore, such a mechanism would
probably be highly application specific and consequently
resistant to general automatic co-tuners. Therefore, floating
point units were used in the hardware accelerators of the
following experiments to maintain functional consistency with
their respective software specializers.

IV. RESULTS

For the following results, each data point represents the av-
erage across 10 trials unless otherwise noted and all times are
in milliseconds. Absolute changes are calculated by new − old
and relative changes are calculated by new−old

old × 100%.

A. Standalone Convolutions

[ms] Software Convolutions Hardware Convolutions

W=3 W=5 W=7 W=9 W=3 W=5 W=7 W=9

I=32 0.418 0.968 1.631 2.262 0.241 0.238 0.186 0.232
I=64 1.753 4.367 8.025 12.17 0.295 0.291 0.288 0.288
I=128 7.200 18.60 35.38 55.75 0.558 0.560 0.518 0.573
I=256 29.21 76.65 148.4 238.3 1.768 1.768 1.766 1.792
I=512 118.3 313.4 603.7 990.7 5.688 5.602 5.618 5.614
I=1024 475.2 1285 2512 4280 22.05 22.02 22.13 22.05
I=2048 1962 5816 11399 18658 87.49 87.57 87.50 91.27

TABLE I. TIME IN [MS] TO PERFORM SOFTWARE AND HARDWARE
CONVOLUTIONS ACROSS VARIOUS WINDOW AND IMAGE SIZES.



The number of output image elements for which a stencil
computation must be performed scales quadratically with the
image size dimension I . As expected, a quadratic dependence
was found in the standalone convolution data (Table I.) for
both software and hardware convolutions. For each image
element in the output, the number of floating point operations
required scales quadratically with the window size W . Again
this dependence can be found in the standalone convolution
data for software convolutions. For the hardware convolutions
all of the floating point operations can be mapped to distinct
physical units which execute concurrently (provided there are
sufficient hardware resources as is the case for the window
sizes explored). This explains why there is no prominent
quadratic increase in runtime for the hardware convolutions
like was seen in software.

There are, however, theoretical reasons to suspect a modest
increase in runtime given an increase in window size for
hardware convolutions. Prior to streaming the image data,
stencil coefficients must be sent to hardware. The amount
of coefficients scales quadratically with the window size but
the total number is nevertheless significantly smaller than
amount of image data to be sent and received. Additionally,
larger window sizes increase the number of shift register
rows and the depth of the floating point addition tree. This
deeper pipeline does not change the throughput but contributes
a constant additional latency between streaming input and
output data. Regardless, no definitive trend was observed that
correlates window size to runtime for the standalone hardware
convolutions.

There is a confounding factor introduced by the buffering
of data streams sent through Xillybus which could introduce
a variability in performance greater that the previously men-
tioned window size effects. Attempts were made to mini-
mize this effect by using the low level API for file I/O to
avoid an extra layer of buffering (e.g. write() instead of
fwrite()). Also, a call to write with a zero length buffer,
write(fd, NULL, 0), is not well defined in general but
Xillybus interprets it as an explicit flush and these instructions
were placed after writing the coefficients and image data [12].

[ms] Absolute Change from SW to HW Relative Change from SW to HW

W=3 W=5 W=7 W=9 W=3 W=5 W=7 W=9

I=32 -0.177 -0.730 -1.445 -2.029 -42.29% -75.4% -88.6% -89.7%
I=64 -1.458 -4.075 -7.738 -11.89 -83.18% -93.3% -96.4% -97.6%
I=128 -6.641 -18.04 -34.86 -55.18 -92.24% -97.0% -98.5% -99.0%
I=256 -27.44 -74.89 -146.7 -236.5 -93.95% -97.7% -98.8% -99.3%
I=512 -112.6 -307.8 -598.1 -985.1 -95.19% -98.2% -99.1% -99.4%
I=1024 -453.1 -1263 -2490 -4258 -95.36% -98.3% -99.1% -99.5%
I=2048 -1874 -5728 -11311 -18567 -95.54% -98.5% -99.2% -99.5%

TABLE II. ABSOLUTE AND RELATIVE CHANGE IN THE TIME TO
PERFORM A CONVOLUTION IN HARDWARE VERSUS SOFTWARE.

Dividing the runtime of the software convolutions by the
total number of image elements computed, I2, yields the amor-
tized runtime of computing a single image element. Across all
choices of W this amortized single element runtime increased
monotonically with increased image size. It is necessarily the
case that the same amortized runtime does not increase as
rapidly with image size for hardware convolutions because
they become proportionally faster than software convolutions
as image size increases (Table II.).

Software convolutions can leverage the fact that fewer

floating point operations need to be carried out on border
elements (where the stencil window extends beyond the edge
of the image) than non-border elements. In contrast, identical
throughput is achieved for both border and non-border ele-
ments calculated in hardware convolutions. For larger image
sizes, proportionally fewer image elements are border elements
and so software convolutions enjoy less of a benefit in handling
this special case.

The image data exists in memory as a one dimensional
array of floats. When a convolution accesses elements from
different rows, the spatial distance between these accesses is a
function of image size. Also, depending on the order in which
the resulting image elements are calculated, a larger image size
could increase the temporal distance between accesses of the
same element. Both of these effects will cause the software
specializer to experience degraded cache performance as the
image size increases and in turn increases the amortize runtime
of computing a single element. Conversely, the shift registers
of the hardware convolution act as a bespoke cache for the
streaming array of image data. A window’s worth (W 2) of
image values and coefficients are present each cycle. Provided
there are sufficient hardware resources to build the shift register
(as is the case for the image sizes explored), only one access
to higher layers of the memory hierarchy is required for each
value. For larger image sizes, software convolutions face worse
caching behavior than experienced by hardware convolutions.

B. CNN Convolutions

[ms] CNN with a HW Convolution Absolute Relative

β
SW

Only
W=9

I=512
W=7

I=256
W=5

I=128
W=3
I=64

Change from SW
Only to Best Result

1 1173 175 1037 1155 1189 -998 -85.1%
2 1389 391 1106 1316 1394 -998 -71.9%
3 1663 665 1234 1500 1639 -998 -60.0%
4 2005 1007 1430 1715 1925 -998 -49.8%
5 2425 1428 1704 1973 2253 -997 -41.1%
6 2935 1938 2067 2283 2625 -997 -34.0%
7 3543 2547 2530 2656 3040 -1013 -28.6%
8 4261 3266 3102 3103 3502 -1159 -27.2%
9 5099 4104 3794 3634 4011 -1465 -28.7%
10 6067 5074 4617 4259 4568 -1808 -29.8%
11 7176 6184 5581 4988 5168 -2188 -30.5%
12 8435 7445 6696 5833 5823 -2612 -31.0%
13 9856 8868 7973 6803 6533 -3323 -33.7%
14 11448 10463 9422 7908 7296 -4152 -36.3%
15 13222 12239 11053 9160 8109 -5113 -38.7%

TABLE III. TIME IN [MS] TO PERFORM THE CONVOLUTIONS OF A
CNN WHEN THE IMAGE SIZE I DECREASES BY A FACTOR OF 2 AT EVERY

LAYER. EACH LAYER CONTAINS β TIMES MORE CONVOLUTIONS THAN
THE PREVIOUS LAYER. UP TO ONE TYPE OF CONVOLUTION IS REPLACED

BY A HARDWARE ACCELERATOR.

It is significantly more advantageous to run convolutions
with larger window sizes on hardware than in software. There-
fore, for small branching factors β, the convolution chosen by
tuning to be hardware accelerated should be the one with the
largest window size. This effect is compounded by the fact that
latter stages in a CNN typically operate on shrinking image
sizes. As the branching factor increases, the sheer number of
instances of smaller window and image sizes tilts the scale
towards hardware accelerators of the smaller instance being
optimal for hardware acceleration.



The results in Table III. demonstrate that hardware con-
volutions which attain an inferior performance improvement
relative to a software alternative can ultimately be the optimal
choice when looking at an application on the whole. This is not
surprising as there are global interactions between the set of
all functions that could be sent to hardware. Namely, selecting
one to accelerate with hardware uses physical resources and
blocks the other functions from being accelerated in the same
manner. Software specializers do not interact in the way and so
focusing on the performance of software specialized functions
in isolation remains a valid approach.

[ms] CNN with a HW Convolution Absolute Relative

β
SW
Only

W=9
I=512

W=7
I=512

W=5
I=512

W=3
I=512

Change from SW
Only to Best Result

1 2042 1042 1453 1740 1939 -1000 -49.0%
2 4407 3405 3219 3182 3523 -1225 -27.8%
3 8806 7800 7016 6038 5800 -3006 -34.1%
4 15930 14927 13547 11013 8807 -7123 -44.7%
5 26496 25488 23516 18807 12575 -13921 -52.5%

TABLE IV. TIME IN [MS] TO PERFORM THE CONVOLUTIONS OF A
CNN WHEN THE IMAGE SIZE I REMAINS CONSTANT. EACH LAYER

CONTAINS β TIMES MORE CONVOLUTIONS THAN THE PREVIOUS LAYER.
UP TO ONE TYPE OF CONVOLUTION IS REPLACED BY A HARDWARE

ACCELERATOR.

The choice of which convolution is optimal to represent in
hardware is not exclusively a function of the branching factor
β. Supposing no pooling was performed between convolution
layers in a CNN, each convolution would have the same image
size (Table IV.). The runtimes of convolutions with smaller
window sizes are larger in proportion to ones with larger
window sizes than was the case when the image size decreased
as well. Accordingly, smaller convolutions are found to be
the best candidate for hardware resources at lower branching
factors, and the transition occurs more rapidly.

Although it is possible to spend time analyzing the reasons
why the optimal hardware accelerator varies across different
CNN structures, in reality the goal is to find a way to improve
runtime performance for a specific structure. Fortunately, the
CNN examples show that it is feasible to locally tune software
specializers to speed up those operations in isolation and then
globally tune over a whole application to determine which
operations should be accelerated in hardware. Furthermore, a
programmer who uses these techniques is not required to be
knowledgeable of the specific trade-offs between the software
and hardware techniques or how they change with the structure
of the application.

V. CONCLUDING REMARKS

A. Embedded Hardware Accelerators

Along the border of an image, the stencil window extends
beyond the edge and so the typical calculation for output
image elements is ill-defined. Suppose the operation for border
elements is defined so that all of the locations where the stencil
window extends beyond the edge are ignored and the others
are multiplied by their respective coefficient and summed as
usual. In this case, convolutions with smaller window sizes
could be embedded inside of convolutions over larger window
sizes by centering the coefficients of the smaller convolution
within the window of the larger one and padding the difference

[ms] CNN with ≥ 1
HW Convolutions

Change from Best
Single HW to All HW

β Single HW All HW Absolute Relative

1 1042 22.26 -1019 -97.9%
2 3182 83.25 -3099 -97.4%
3 5800 222.4 -5577 -96.2%
4 8807 478.1 -8328 -94.6%
5 12575 880.2 -11695 -93.0%

TABLE V. TIME IN [MS] TO PERFORM THE CONVOLUTIONS OF A CNN
WHEN THE IMAGE SIZE I REMAINS CONSTANT. THE BEST TIMES WHEN

ONE HARDWARE ACCELERATOR IS PERMITTED ARE COMPARED AGAINST
CNN CONVOLUTIONS WHERE ALL ARE PERFORMED WITH HARDWARE

ACCELERATORS.

with zeros (Fig. 7). If locally tuning over hardware specializers,
there would be no reason to suspect that a smaller convolu-
tion embedded in a larger one would outperform a smaller
convolution that was deliberately sized. Broadening the scope
to the entire application, the utility of embedded convolutions
changes dramatically because hardware accelerators with dif-
ferent window sizes no longer block each other by competing
for the same hardware resource.

An auxiliary experiment was run to compare the perfor-
mance of CNN convolutions that were all hardware accelerated
against the best previous results where only one type was
allowed to be hardware accelerated (Table V.). Due to Am-
dahl’s law, when one type of convolution is accelerated with
hardware the contribution of the other software convolutions
become a greater proportion of the total running time. Because
these were all replaced with hardware in this experiment, the
relative change in runtime is almost as dramatic as the change
in runtime between the standalone hardware and software
convolutions.

B. Concurrent Operations

Sequential Execution of
HW and SW Convolutions [ms] Change from Average

to Mixed Convolutions

SW/HW HW/SW Average Mixed Absolute Relative

2.4840 2.4849 2.4844 2.4607 -0.0237 -0.96%

TABLE VI. TIME IN [MS] TO PERFORM BOTH A SOFTWARE AND A
HARDWARE CONVOLUTION. EITHER THE HARDWARE CONVOLUTION AND

SOFTWARE CONVOLUTION ARE RUN SEQUENTIALLY OR ELSE THE
SOFTWARE CONVOLUTION IS PERFORMED IN BETWEEN READING AND

WRITING DATA FOR THE HARDWARE CONVOLUTION.

Hardware accelerators offer another benefit over their
software specializer counterparts. The addition of physically
separate circuitry to accelerate computations allows for the
possibility of concurrent work to be performed on the main
processor. Tuning at an application level could take advan-
tage of this benefit by opting to perform some instances of
operations in software even when the type of operation has
been selected for hardware acceleration. Unfortunately, for this
application the hardware convolutions are significantly faster
than the software convolutions and most of the time is spent
transmitting data which ties up the main processor as well.



Fig. 7. A stencil with window size W = 3 (green) embedded in a stencil
with larger window size W = 5 (red) extending beyond the left border of an
image. If the border policy allows for the portion of the window which remain
in the image to be summed, then padding the larger window with zeros yields
the correct results. For brevity the row index of the image starts at 0 instead
of an arbitrary n.

Therefore, selectively replacing some instances of convolutions
that could be sent to the hardware by software convolutions is
suboptimal in this instance but this need not be the case for
different types of hardware accelerators.

Even so, the effects of concurrent work can still be demon-
strated. An auxiliary experiment was performed to measure
the runtime of two independent convolutions where one was
performed in software and one in hardware. Either a software
and a hardware convolution were issued sequentially, or else
the two were mixed by calling a software convolution after the
writing of data to hardware convolution but prior to reading
back the results (Table VI.). Because the effect is small in
this case and there is variability introduced by buffering the
hardware convolution streams, 10,000 trials were performed.

Capitalizing on this effect presents many challenges for the
co-tuner model proposed. Previously, the co-tuner only had to
consider which type of convolution is best suited for hardware
which is a modest enough space that exhaustive tuning is prac-
tical. Now the space explodes to every permutation of software
or hardware for every instance of a given type of hardware
convolution and a new tuning approach would be required.
Heuristics could be applied in order to only consider changing
hardware convolution instances to software when there is a

good chance that concurrent processing is worthwhile, but this
undermines the objective that a user need not have explicit
knowledge of the trade-offs between the software specializer
and hardware accelerator. Another difficulty is that the call
to the hardware accelerator must be split up in a rational
way to insert the concurrent software operations. In the above
example this was done by hand but preferably it would be done
automatically. Fortunately, there is a natural partition between
the streaming write of data to the hardware accelerator and the
streaming read of results back and this can serve as a general
insertion point for concurrent software operations.

C. Alternative Reconfigurable Hardware

One of the fundamental assumptions about hardware accel-
erators which shaped the decisions about how to apply them
to an application is that only one configuration can be resident
in hardware at a given point in time. Extending this to the
statement that only one configuration can be used during the
runtime of an application makes the implicit assumption that
the time to reconfigure the hardware is prohibitively large rel-
ative to the runtime of the application. Academic efforts have
been made to explore reconfigurable accelerator architectures
that are quicker to reconfigure on the fly. One example is
the Garp coprocessor [13], which is built from an array of
functional elements that communicate over a regular array of
predefined interconnects. This allows for less data to be used
in encoding the circuit, resulting in less time to transmit the
configuration. It also allows for cached configurations to reside
in situ which can be switched to in only a few cycles. Fast
context switching that takes negligible time breaks the global
interaction between different types of hardware accelerators
in a given application. The best choice of acceleration for
a specific operation could again be found by locally tuning
over the appropriate software and hardware specializer. In
between, when switching configurations takes considerable
time but is still permissible, exhaustive tuning over different
types of configurations becomes the more challenging problem
of scheduling the use of scarce hardware resources.

For the setup outlined in this paper, applications are run
on an ARM processor which is incapable of synthesizing
the required hardware accelerators that had to be synthesized
beforehand. Even if the main processor was more capable,
hardware synthesis is a computationally intensive process that
cannot currently be completed anywhere near as fast as the
tree manipulations and c compilation performed by just-in-
time software specializers. There have been academic efforts to
decrease the time to synthesize hardware designs which could
perhaps allow hardware accelerators to also be generated just-
in-time instead of beforehand. Increasingly, the time required
to synthesize a hardware design is dominated by routing. One
proposed solution is to leverage the network structure of the
target hardware itself to assist in distributed routing algorithms
by augmenting the switches with additional hardware [14].
While an application is running, generating new configurations
would prevent the reconfigurable hardware from being used
elsewhere but this is entirely analogous to main processor
cycles being spent to generate software specializers on the fly.
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