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Abstract
In this report we lower the bounds on the number of required sampled entries for reconstructing low-

rank positive semidefinite matrices through nuclear norm minimization. We show for an n × n matrix
of rank r only O(rn log n log log n) samped entries are needed to complete the matrix as compared to
previous work’s O(rn log2 n) entries. We obtain this result by using rejection sampling when constructing
a dual variable certificate.

1 Introduction
In many applications, one desires to reconstruct a low-rank matrix from only a small sample of its entries.
This problem appears in collaborative filtering [1], dimensionality reduction [2], and multi-class learning [3].
While many approximation algorithms and heuristics have been created to solve this, the general problem
of finding the lowest rank matrix subject to equality constraints is NP-hard.

However, Candès and Recht [4] show that many low-rank matrices can be recovered exactly from suffi-
ciently large sample sets by minimizing the nuclear norm of a matrix with entries equal to the samples. The
nuclear norm of a matrix X, symbolized as ‖X‖∗, is the sum of the singular values of the matrix. It is a
convex function which means it can be minimized through semidefinite programming. The rank function of
a matrix counts the number of nonvanishing singular values while the nuclear norm is their sum, much like
how the `1 norm of a vector is a useful approximation for the the `0 norm of a vector.

The minimization of the nuclear norm has long been used as a heuristic for low-rank matrix completion
in practice [5], but only recently has there been any theoretical basis for it. Recht, Fazel, and Parrilo [6]
first provided the foundations by studying the behavior of nuclear norm minimization in the average case,
and showed that it solved most instances of the problem with sufficiently large sample sizes. In [4] and
Candès and Tao [7], these bounds were improved for most low-rank matrices. Keshavan, Montanari and
Oh [8] showed how matrices could be reconstructed exactly in a special case by sampling a set of entries
a polylogarithmic factor larger than the intrinsic dimension of a rank r matrix, which is the number of
measurements required to represent a rank r matrix. Recht [9] and Gross [10] both present results lowering
the bound on the required entries to reconstruct the matrix with minimal assumptions.

In this report we lower the bound in [9] even further for positive semi-definite matrices.
Not all matrices can be reconstructed exactly, however. Consider an n× n matrix with a single 1 entry

and 0’s in every other entry. To reconstruct this matrix with high probability one would have to sample all
of its entries. Therefore, the matrices that can be reconstructed with a few samples need to have entries that
provide similar amounts of information. To state this more precisely Candès and Recht in [4] introduce the
following definition:

Definition 1.1. (Coherence) Let U be a subspace of Rn of dimension r and PU is the projection onto S.
Then the coherence of U is defined as:

µ(U) ≡ n

r
max

1≤i≤n
‖PUei‖ (1.1)

The smallest the coherence of a subspace can be is 1, which happens if all the vectors spanning U have
entries ± 1√

n
. The largest the coherence can be is n

r , which corresponds to U being spanned by at least one
standard basis element. If the matrix has low coherence, then all entries can be expected to provide the
same amount of information.

Our main result is the following theorem:

1



Theorem 1.2. Let M be an n× n positive semidefinite matrix of rank r with singular value decomposition
UΣU∗. We assume that

A0 The row and column spaces have coherence bounded by µ(U) ≤ µ0 for some positive µ0

A1 The matrix UU∗ has a maximum entry bounded in absolute value by µ1
√
r/(n2) for some positive

µ1
Suppose m entries of M are observed, the locations sampled uniformly at random. If

m ≥ O(µ0rn log(n) log logn) (1.2)

the minimizer to the problem
minimize ‖X‖∗
subject to Xi,j = Mi,j , (i, j) ∈ Ω

(1.3)

is unique and equal to M with high probability, where Ω is the set of sampled indices.

The assumptions A0 and A1 were introduced in [4] and [9]. In addition to A1, Candès and Tao [7]
require a much stronger incoherence condition than A0 with additional conditions on r. Keshavan et. al
[8] require conditions on the ratio between the largest and smallest singular values of M and the rank r of
the matrix. In [9] Recht presents a more compact proof using just A0 and A1 and requires O(µ0rn log2(n))
entries. Gross [10] shows a similar result using tools from quantum information theory and improves the
bound for matrices that are incoherent to every basis to O(µ0rn logn)

From the coupon collectors problem, at least n logn entries have to be sampled to guarantee that every
column and every row is sampled at least once. Candès and Tao show that O(µ0rn logn) entries are necessary
for completion in [7] as well. The bound in Theorem 1.2 is then within a factor of log logn of optimal.

As in [4] and [9], our proof relies on the construction of a dual variable to certify that M is the exact
minimizer of equation 1.3. The dual is constructed in [9] through an iterative process guaranteeing that at
each iteration, the dual variable gets closer and closer in Frobenius norm to UU∗ and a low spectral norm.
Here we instead reject samples that do not fit those criteria since we are constructing the solution ourselves.
Because of this we use rejection sampling on each column of the dual variable to lower its spectral norm.
The columns of the dual are independent so we reject any sampled column that exceeds a threshold norm.
We show that the sampled columns do not exceed their expected norm with high probability and therefore
guarantee with a certain number of iterations that the dual variable fulfills the necessary conditions.

2 Preliminaries
Throughout this report, I will follow the convention that matrices are in bold, vectors are bold lowercase,
and scalars and entries are unbolded lowercase. The transpose of matrices and vectors will be indicated with
a star—X∗ is the transpose of the matrix X.

There will also be a few different matrix norms used throughout this report. The nuclear norm of a
matrix is denoted ‖X‖∗. The spectral norm (the largest singular value) is ‖X‖ and the Frobenius norm is
‖X‖F . The Euclidean inner product between two matrices is 〈X,Y〉 = Tr(X∗Y). The maximum entry of a
matrix in absolute value is denoted as ‖X‖∞. The norm of vectors is always the `2 norm denoted as ‖x‖.

Linear transformations that operate on matrices will be denoted with calligraphic letters. The spectral
norm of these operators will be denoted as ‖A‖ = supX:‖X‖F≤1 ‖A(X)‖F .

Fix a matrix M obeying assumptions A0 and A1, with singular value decomposition UU∗. Let uk be
the kth column of U. We can now define a subspace T as the linear space formed by the span of uky and
xuTk from 1 ≤ k ≤ r where x and y are arbitrary vectors. The projection operator onto T is defined as:

PT (Z) = PUZ

The projection operator onto T⊥ is then:

PT⊥(Z) = (I − PT )(Z)
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It will be of use to note that any unit vector z ∈ T has a small maximum entry value, using A1.

zj =
∑

αiuij ≤
∑

αi

√
r

n2 ≤
√

r

n2

2.1 Useful Theorems
The following theorems will be useful in the main argument.

Theorem 2.1 (Standard Bernstein Inequality). Let X1 . . . Xn be independent, zero-mean random variables.
If |Xi| ≤M for all i, then for positive τ

P

[∑
i

Xi > τ

]
≤ exp

(
τ2/2∑

j E[X2
j ] +Mτ/3

)

Theorem 2.2 (Matrix Bernstein: Rectangular Case). Let {Zk} be a sequence of independent random ma-
trices with mean 0 and of dimension d1 × d2. Assume that for surely all k

‖Zk‖ ≤M

Let

σ2 := max
(
‖
∑
k

E(ZkZ∗k)‖, ‖
∑
k

E(Z∗kZk)‖
)

Then for all τ ≥ 0,

P

[
‖
∑
k

Zk‖ ≥ τ
]
≤ (d1 + d2) · exp

(
−τ2/2

σ2 +Mτ/3

)

3 Setup
We define a sampling operator, RΩ which samples each entry of a column with probability k

n and scales it
by n

k . In this way, each entry is sampled independently from the other entries.
if we construct a dual variable Y in the range of RΩ that satisfies the two following conditions, we will

show that the minimizer of equation 1.3 is M because Y will be a dual certificate.

‖PT (Y)−UU ∗ ‖F ≤
√

r

2n (3.1)

‖PT⊥(Y )‖ ≤ 1
2 (3.2)

4 Constructing a Dual Certificate.
First, we start by using the construction of the dual found in [9]. We partition samples into p partitions
of size q ≥ 512

3 max µ0, µ
2
1rnβ log(2n). Let RΩl

be the sampling operator that samples indices of the lth
partition.

Let W0 = UU∗ and Yl = n2

q

∑l
j RΩl

(Wj−1), with Wl = UV∗ − PT (Yl). Using the definitions of Wl

and Theorem 3.4 from [9] we have

‖Wl‖F = ‖Wl−1 −
n2

q
Wl−1‖F = ‖(PT −

n2

q
PTRΩl

PT )(Wl−1)‖F ≤
1
2‖Wl−1‖F

which implies that ‖Wl‖ ≤ 2−l‖W0‖F = 2−l
√
r for l = 1, . . . p.

If we set p = 10 log logn, then the frobenius and spectral norms become:

‖UU∗ − PT (Yp)‖F ≤
1
2p ‖UU∗‖F ≤

1
log10 n

‖UU∗‖F (4.1)
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‖PT⊥Yp‖ <

√
32u2

1rnβ log(2n)
3q <

1
4 (4.2)

Let ‖z‖c be the the maximum `2 norm of a column of Z. After the initial p rounds, the maximum column
measure of the Y’s is also reduced:

‖Wp‖c ≤
1
2p ‖UU∗‖c ≤

1
log10 n

‖UU∗‖c ≤
1

log10 n
‖UU∗‖c (4.3)

For the second part of the construction, we continue sampling Wl’s but we sample column by column.
If a column has too large of an `2 norm we reject it. We show below that the probability that a column is
rejected is < 1

2 . We now need to see how many rounds of this rejection sampling we need to guarantee that
the spectral norm decreases to 1

4 .
We also have the following theorem which states that the norms of columns sampled with O(r) samples

do not deviate from their expected value with high probability.

Theorem 4.1. Let k = r
α , α <

1
2 . For Z ∈ T , if we have k entries sampled in expectation

E[‖(PTRΩl
PT − PT )Z‖F ] ≤ α‖Z‖F (4.4)

Moreover, with high probability, if k = 100µ0r logn
α , we get that

‖(PTRΩl
PT − PT )Z‖F ≤ α‖Z‖F ≤ 3α‖Z‖F (4.5)

And finally if M is a positive semi-definite matrix, for a sufficiently small constant α, we have

‖(PTRΩl
PT − PT )‖ ≤ 1

2 (4.6)

Proof. We want to sample k entries from each column vector z of the matrix Z. Let ẑ be the sampled
column of Z. We want PT (ẑ) to be close to PT (z). Because U is a basis for the space, we only have to check
that ‖U∗ẑ‖F is close to ‖U∗z‖F . Each entry will be sampled independently with probability k

n . Let Xi be
a random variable that is n

k if entry zi of the column vector is selected with p = k
n and 0 otherwise. Let

αj =
∑
ziuij and α̂j =

∑
Xiziuij . The squared error in the norm of the column z is then

∑r
j=1(αj − α̂j)2.

We can write this sum as a sum of independent random variables as follows.
r∑
j=1

(αj − α̂j)2] =
r∑
j=1

n∑
i=1

(ziuij(1−Xi))2 =
n∑
i=1

z2
i (1−Xi)2

r∑
j=1

u2
ij ≤

µ0r

n

n∑
i=1

z2
i (1−Xi)2 (4.7)

Using the fact that E[(1−Xi)2] = n
k , we obtain the following.

E[
r∑
j=1

(αj − α̂j)2] ≤ µ0r

k
‖z‖

We can choose k = µ0r
α , and due to U being a basis, and reasoning column by column yields

E[‖UU∗(Z− Ẑ)]‖F ] ≤ α‖Z‖F
This is equation 4.4.
When k = 100µ0r logn

α , we observe that each the total variance of the sum of random variables is 4.7 is at
most E[(µ0r

n )2∑
i |zi|4(1 − Xi)4] which is at most (µ0r

n )2(nk )3|zi|4
∑
i v

2
i v

2
i , where vi = zi

|zi| . We know that
|vi| ≤

√
rn since z is in T . Thus, we get that the variance is at most ( rk )3‖z‖4. Moreover, the maximum

value of any term is r
k‖z‖

2. Thus, we get that the deviation τ is at most 2 max(α‖z‖2,
√

2α3‖z‖2) with high
probability (> 1− n−100) if k = 100 r logn

α . This yields equation 4.5.
To bound the spectral norm of this process, we again view the sampling as applied to each column of a

matrix Z in T , and call it Zj . We note that ZjZ∗j is the matrix whose (j, j) entry corresponds to equation 4.7
for column j. Thus, we have that E[‖

∑
j ZjZ∗j‖] is bounded by the maximum of these n values as the sum is

diagonal. Using the previous argument, each is at most 3α‖zj‖F , with high probability. Moreover, with high
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probability ‖Zj‖ is bounded by the square root of this quantity. Thus by the Matrix Bernstein inequality, we
can conlude that ‖PTRΩPT −PT )(Z)‖ ≤ 5α‖Z‖ as long as k > 100 r logn

α with high probability (> 1− n−c
for some constant c.) Equation 4.6 follows by choosing α < 1/10.

We now set s = O(kn), the expected number of entries sampled in each round, and let Y′i =
(RΩl

PTW′
i−1). However, we zero out or reject, any column, j, where ‖(PTY′i −W′

i−1)(j)‖ > ‖W′(j)
i−1‖.

We continue this rejection sampling for i = 1 . . . 10 logn rounds and then we have the final Wi satisfying
equations 3.1 and 3.2. Now we argue that the Frobenius norm and the spectral norm both drop in these
remaining rounds.

Theorem 4.2. For each column with probability 1− α the remaining Frobenius norm drops.

Proof. By Markov and 4.1 we know that on expectation the column norm is decreased if α < 1
2 by Markov.

Theorem 4.3. For 10 logn steps of the rejection sampling, all the column norms will be small.

Proof. There will be logn successes in 10 logn trials wiih high probability if α < 1
2 .

Finally, we need to argue that ‖
∑
i Y′i‖ is small. This trivially follows from the equation 4.3 and the

following theorem, which will be proven below.

Theorem 4.4. Let Z be an n × n positve semi-definite matrix in T and RΩ the sampling operator that
samples k = µ0

α r samples per column of a matrix. Let ‖z‖c be the norm of the largest column of Z. Then

‖(RΩ − I)(Z)‖ ≤ α log3/2(n)‖z‖c
√

10µ0
n

r
(4.8)

with high probability with 0 < α < 1 for some α.

5 Proof of Theorem 4.4
Proof. First we show that the operator norm can be bounded above by the maximum column norm

‖Z‖ = sup
‖x‖=1,‖y‖=1

∑
a,b

Zabyaxb ≤

∑
a,b

Z2
aby

2
a

1/2∑
a,b

x2
b

1/2

≤
√
nmax

a

(∑
b

Z2
ab

)1/2

≤ n‖z‖c

Next, we want the norms of the sampled columns to not exceed the norm of the maximum column with
high probability. We will show this using the Standard Bernstein Inequality. Let ẑ be the jth column of
(RΩ − I)(Z)

‖ẑ‖2 =
n∑
i=1

(XijZij − Zij)2

where Xij = n
k with probability k

n and 0 otherwise. Note that this value is a sum of independent, zero-mean
random variables. Let Yi = (1 − Xi)2Z2

ij . Let v = z
‖z‖ and note that the maximum entry is

√
µ0

n
r since

Z ∈ T . Therefore

max
i
Yi = ‖z‖2 max

i

(
vi
n

k

)2
≤ n

r
‖z‖2α2

The variance of the norm is similarly calculated∑
i

E[Y 2
i ] = ‖z‖4

∑
i

(vi)4
(n
k

)3
≤ ‖z‖4µ0n

r

(n
k

)3∑
i

(v2
i ) ≤ ‖z‖4α

(n
k

)2
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Thus, by the Bernstein Inequality, we have ‖ẑ‖2 ≤ 10µ0
n
r α

2‖z‖2c logn with high probability. The 10 logn
factor is added to make sure the event occurs with high probability.

Now that we have an upper bound on the norms of the estimated columns of Z with high probability,
we can use the Matrix Bernstein inequality to bound ‖(RΩ − I)(Z)‖. Let Zj be the matrix which is zero
except for the jth column, which has each entry sampled with probability k

n from Z’s jth column. Let

σ2 = ‖
∑
j

Z∗jZj‖ = 10µ0α
2n

r
‖z‖ logn

since the sum is a diagonal matrix with column norms on the diagonal.
Using the matrix Bernstein Inequality on the Zj ’s with τ ≥ α log3/2(n)‖z‖c

√
10µ0

n
r yields equation 4.8

with high probability.

6 Discussion
The results here extend from the use of rejection sampling independent columns. We strongly suspect that
the number of entries required can be reduced to O(rn logn) for positive semidefinite matrices by extending
this rejection sampling scheme. They key is to guarantee that the spectral norm of PT⊥(Y) is not too large
and does not increase later on in the construction. A beginning is to use a refined Matrix Bernstain type
bound to prove a version of Theorem 4.4 where the log3/2 n is replaced by a logn. This would allow us to
forgo the use of the sampling in [9] entirely.

Moreover, we may be able to extend this line of reasoning for general matrices but we would have to
understand how to reject both columns and rows if the norm of either became too large. It also may be
possible to eliminate assumption A1 as no one has shown that an assumption similar to A1 is necessary for
matrix completion. However all prior results impose such an assumption so it may be necessary after all.
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A Proof that M is the minimum
Here I will outline the proof in [9] that shows that M is the unique and exact minimizer to equation 1.3 with
high probability. Assume we have dual variable Y satisfying equations 3.1 and 3.2

It shown in [9] that for any Z ∈ kerRΩ

‖PT⊥(Z)‖F >
√

2r
n
‖PT (Z)‖F

Since, we use O(rn logn log logn) rather than O(rn log2 n) samples, we get a slightly weaker bound.

‖PT⊥(Z)‖F >

√
2r log logn
n logn ‖PT (Z)‖F

For any Z ∈ kerRΩ, choose U⊥ such that [U,U⊥] is a unitary matrix and that 〈U⊥U∗⊥,PT⊥(Z)〉 =
‖PT⊥(Z)‖∗. Note that 〈Y,Z〉 = 0 for all Z ∈ kerRΩ. The nuclear norm can also be defined as ‖A‖∗ =
sup‖B‖≤1〈A,B〉. Note that for any matrix X, ‖X‖F ≤ ‖X‖∗.

‖M + Z‖∗ ≥ 〈UU∗ + U⊥U∗⊥,M + Z〉

This follows from the variational characteristics. Continuing on we get:

= ‖M‖∗ + 〈UU∗ + U⊥U∗⊥,Z〉

= ‖M‖∗ + 〈UU∗ − PT (Y),PT (Z)〉+ 〈U⊥U∗⊥ − PT⊥(Y),PT (Z)〉

‖M‖∗ −
√

r

2n logn‖PT (Z)‖F + 1
2‖PT⊥(Z)‖∗ ≥ ‖M‖∗

The last inequality differs from that in [9] by a log n factor to compensate for the smaller lower bound
on PT⊥(Z)‖F . The correspondingly small upper bound on PT (Z) is obtained by running O(log logn) more
interations of our rejection sampling process.

7


	ms-cover1
	main

