
GreenThumb: Superoptimizer Construction

Framework

Phitchaya Phothilimthana
Aditya Thakur
Rastislav Bodik
Dinakar Dhurjati

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-8

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-8.html

February 10, 2016



Copyright © 2016, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work is supported in part by Qualcomm Innovation Fellowship,
Microsoft Research Fellowship, Grants from National Science Foundation
(CCF--1139138, CCF--1337415, and ACI--1535191), U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences Energy Frontier
Research Centers (FOA--0000619), and DARPA (FA8750--14--C--0011),
as well as gifts from Google, Intel, Mozilla, Nokia, and Qualcomm
Research.



GREENTHUMB: Superoptimizer Construction Framework

Phitchaya Mangpo
Phothilimthana

Aditya Thakur Rastislav Bodik Dinakar Dhurjati

University of California, Berkeley Google Inc. University of Washington Qualcomm Research
mangpo@eecs.berkeley.edu avt@google.com bodik@cs.washington.edu dinakard@qti.qualcomm.com

Abstract
Developing an optimizing compiler backend remains a laborious
process, especially for nontraditional ISAs that have been ap-
pearing recently. Superoptimization sidesteps the need for many
code transformations by searching for the most optimal instruction
sequence semantically equivalent to the original code fragment.
Even though superoptimization discovers the best machine-specific
code optimizations, it has yet to become widely-used. We propose
GREENTHUMB, an extensible framework that reduces the cost of
constructing superoptimizers and provides a fast search algorithm
that can be reused for any ISA, exploiting the unique strengths of
enumerative, stochastic, and symbolic (SAT-solver-based) search
algorithms. To extend GREENTHUMB to a new ISA, it is only nec-
essary to implement an emulator for the ISA and provide some
ISA-specific search utility functions. This paper demonstrates re-
targetability of GREENTHUMB by showing how to construct a
superoptimizer for a small subset of LLVM IR.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program Transformation; D.3.4 [Programming Languages]:
Processors-Optimization

Keywords Superoptimization, Program Synthesis, SMT

1. Introduction
Processors with new ISAs are constantly being developed [4, 6,
9, 10], and optimizing for them requires new architecture-specific
optimizations. Peephole optimizations are introduced into compil-
ers to perform such machine-specific optimizations by applying the
rewrites specified by expert developers. Nevertheless, these human-
written rewrite rules can miss many optimizations, and they can be
buggy even in a well-developed compiler [7]. Additionally, some
optimizations are difficult to realize because they are legal only un-
der certain preconditions [17].

Superoptimization [8] is a method for obtaining a more opti-
mal implementation of a given program fragment. Instead of ap-
plying predefined transformations, a superoptimizer searches for a
sequence of instructions that is equivalent to a given reference pro-
gram and optimal according to a given performance model. A few
x86 superoptimizers [3, 5, 15] and a LLVM IR supertoptimizer [1]
have been developed and shown to be very effective. For example,
the stochastic superoptimizer offers 60% speed up over gcc -O3
on a complex multiplication x86 kernel gcc -O3 [15]. However,
superoptimization has yet to become widely-used.

Superoptimization is not commonly used because implement-
ing a superoptimizer for a new ISA is laborious, and the optimizing
process can be slow. First, one must implement a search strategy for
finding a candidate program that is optimal and correct on all test
inputs, as well as a checker that verifies the equivalence of a can-
didate program and a reference program when the candidate pro-
gram passes on all test inputs. The equivalence checker is usually
constructed using bounded verification, which requires translating

programs into logical formulas. This effort requires debugging po-
tentially complex logical formulas. Second, it is equally, if not more
difficult to develop a search technique that scales to program frag-
ments larger than ten or more instructions.

In this paper, we present GREENTHUMB, an extensible frame-
work for constructing superoptimizers. Unlike existing superop-
timizers, GREENTHUMB is designed to be easily extended to a
new target ISA. Specifically, extending GREENTHUMB to a new
ISA involves merely describing the ISA—a program state repre-
sentation, a functional ISA simulator, and a performance model—
and some ISA-specific search utility functions. The framework
provides a fast search strategy that can be reused for any ISA.
GREENTHUMB is available on github at https://github.com/
mangpo/greenthumb. The overview of the framework is presented
in Section 2. In Section 3, we illustrate GREENTHUMB’s ability
to support diverse ISAs by showing some results from running
the ARM and GreenArrays (GA) [6] superoptimizers built from
GREENTHUMB. Last, we demonstrate how to construct a superop-
timizer for a small subset of LLVM IR in Section 4.

2. Framework Overview
Figure 1 depicts the major components of GREENTHUMB and their
interactions. At the core is the cooperative search algorithm that
launches parallel search instances. Each instance consists of multi-
ple components. First, the encoder-decoder parses a program into
an IR. It is also used to print output optimized programs to files. On
large programs, GREENTHUMB performs a context-aware window
decomposition and uses a search technique to optimize a fragment
p in the context of prefix ppre and postfix ppost. The search tech-
nique searches for a candidate program that is semantically equiv-
alent to the reference program but more optimal according to the
given performance model. An ISA simulator evaluates the correct-
ness of a candidate program on concrete test cases. If a candidate

Encoder-
Decoder

Search 
Technique

ISA 
Simulator

Equivalence 
Validator

Search 
Space

IR
(inst … …)

(inst … …)

(inst … …)
(inst … …)

(inst … …)

(inst … …)
(inst … …)

Ppre

Ppost

P

Window
decom-
position

Search Instances

update 
best 
program

get best 
program

return 
optimized 
program

get 
reference 
program

Shared 
Data

input code fragment

Figure 1. Overview of major components in GREENTHUMB



passes all test cases, the search technique verifies the candidate pro-
gram against the reference program on all inputs using a constraint
solver. If they are equivalent, and the candidate program is bet-
ter than the current best program, the search instance updates the
shared data. If they are not equivalent, the counterexample input is
added to the set of concrete test cases.

Each search instance executes one of the three state-of-the-art
search techniques provided in GREENTHUMB. Each instance is
asked to find a program p such that ∀(i, o) ∈ T . p(i) = o, where
T is the set of input-output test cases.

Symbolic search Our symbolic search exploits an SMT solver to
perform the search. The search problem is written as a logical for-
mula whose symbolic variables encode the choices of the program
p. The formula embeds the ISA semantics and ensures that the pro-
gram p computes an output o given an input i. Using Rosette [18],
we obtain the symbolic search for free without having to imple-
ment a translator for converting programs to SMT formulas and
vice versa. Compared to the other two algorithms, the symbolic
search is slow, but it is able to synthesize arbitrary constants, which
are sometimes needed in optimal code.

Enumerative search Our enumerative search implements the
LENS algorithm [12], which refines equivalence classes only in
the promising subspaces. It uses a goal-directed search strategy
to exploring candidates forwards from inputs and backwards from
outputs. The enumerative search synthesizes relatively small pro-
grams the fastest, but it does not scale to large programs by itself.

Stochastic search Our stochastic search explores the search
space through a random walk using Metropolis Hastings accep-
tance probability with a cost function that reflects the correctness
and performance of candidate programs [15, 16]. The stochastic
search can synthesize larger programs compared to the symbolic
and enumerative search because of the guidance of the cost func-
tion. However, it sometimes misses optimal programs because it
can get stuck in local minima.

GREENTHUMB exploits the unique strengths of the three tech-
niques to find a better program than each of them can alone. The
search instances aid each other by sharing information about the
best programs they have found so far (hence, the name coopera-
tive). For example, the enumerative and symbolic search with the
window decomposition may take the current best program and op-
timize some small fragments of the program further. The stochastic
search may restart its random walk from the current best program
found by the other. Additionally, when the symbolic search finds
a better program with new constants, the other search techniques
may include the new constants into its list of constants to try. The
details about the cooperative search, context-aware window decom-
position, and the LENS algorithm can be found in [12].

3. Case-Study ISAs
We used GREENTHUMB to build superoptimizers for ARM and
GreenArrays (GA). Although ARM and GA are drastically differ-
ent, our framework is able to support both ISAs. This demonstrates
the retargetability of our framework.

ARM is a widely-used RISC architecture. An ARM program state
includes 32-bit registers, memory, and condition flags. We extended
GREENTHUMB for ARMv7-A and modeled the performance based
on ARM Cortex-A9 [2]. In [12], we used the ARM superoptimizer
built from GREENTHUMB to optimize some basic blocks gener-
ated from gcc -O3 on Hacker’s Delight benchmarks, WiBench (a
kernel suite for benchmarking wireless systems), and MiBench (an
embedded benchmark suite). Table 1 displays information about
the basic blocks that the superoptimizer successfully optimized fur-
ther. The ‘runtime speedup’ column reports the speedup measured

Program gcc -O3 Output Search Runtime Search
length length time (s) speedup techniques

hd-p18 7 4 9 2.11 E
hd-p21 6 5 1139 1.81 E, SM, ST
hd-p23 18 16 665 1.48 ST,E
hd-p24 7 4 151 2.75 ST,E
hd-p25 11 1 2 17.8 E

wi-txrate5a 9 8 32 1.31 SM,ST
wi-txrate5b 8 7 66 1.29 E
mi-getbit 10 6 612 1.82 SM,E

mi-bitshift 9 8 5 1.11 E
mi-bitcount 27 19 645 1.33 ST,E

mi-susan-391 30 21 32 1.26 ST

Table 1. Code length reduction, search time, runtime speedup over
gcc -O3 code, and search techniques involved in finding the so-
lution. In the ‘program’ column, hd, wi, and mi represent code
from hacker’s delight, WiBench, and MiBench respectively. In the
‘search techniques’ column, SM,E, and ST represent the sym-
bolic, enumerative, and stochastic search, respectively.

by running the code on an actual ARM Cortex-A9 machine. The
‘search techniques’ column reports the search techniques used by
the cooperative search that contributed to finding the final opti-
mized code. According to the table, superoptimization offers sig-
nificant speedup on many programs, and all the search techniques
GREENTHUMB provides are necessary for finding the best pro-
grams.

GreenArrays GA144 is a low-power, stack-based, 18-bit proces-
sor, composed of many small cores. Each core consists of two reg-
isters, two 8-entry stacks, and memory. Each core can communi-
cate with its neighbors using blocking read and write instructions.
A program state for GA, thus, includes registers, stacks, memory,
and a communication channel, which is an ordered list of (data,
neighbor port, read/write) tuples representing all the data a core
reads and writes. We extended GREENTHUMB for GA and mod-
eled the instruction timings according to [6]. We used the superop-
timizer to optimize code generated from Chlorophyll [11] without
any optimization. For MD5 hash, the largest program implemented
in Chlorophyll, our superoptimizer found code that was 68% faster
than the unoptimized code and only 19% slower than the expert-
written code. In three critical functions of MD5, the superoptimizer
actually found 1.3–2.5x faster code than the expert’s.

4. Framework Demonstration
To demonstrate the retargeting of GREENTHUMB, our demo will
implement a superoptimizer for a small subset of LLVM IR (32-bit
arithmetic and logical instructions). GREENTHUMB is available on
github at https://github.com/mangpo/greenthumb. The demon-
stration for LLVM IR is in the llvm-demo directory. In the demon-
stration, we highlight only the major steps of building a superopti-
mizer. In the rest of this section, the pronoun ‘we’ is used to denote
the authors of the LLVM IR superoptimizer.

4.1 Organization
Figure 2 shows the relationship between the classes in the frame-
work. GREENTHUMB is implemented in Racket and utilizes inher-
itance to provide retargetability. The classes in the top half of the
figure will be used to describe the ISA, while the classes in the bot-
tom half constitute the search procedure. To support LLVM IR, we
will extend the classes in yellow as follows:

Step 1: Extend machine% to define the basic information about the
ISA: the machine state and the supported instructions.

Step 2: Extend parser% and printer% to implement the encoder-
decoder (see Figure 1).



StochasticSymbolic

MachineInst Simulator-
Racket

Search Driver Decomposer
Enumerative

ParserPrinter

New Search Forward-
Backward

Inverse-
Simulator

Enumerator

Simulator-
Rosette

ISA Description

Search Strategy

Validator

Figure 2. Dependency and class diagram. Each box represents a
class. X → Y denotes X depends on Y , while X 99K Y denotes
X is a subclass of Y . Users must extend the classes in yellow to
create a new superoptimizer.

Step 3: Extend simulator-racket% and simulator-rosette% to
implement the functional ISA simulators.

Step 4: Extend symbolic% to enable the symbolic search.

Step 5: Extend stochastic% to enable the stochastic search.

Step 6: Extend forwardbackward%, enumerator%, and inverse%
to enable the enumerative search.

Step 7: Set up the cooperative search.

4.2 ISA Basic Description
We first define the basic description of the ISA, including the list of
opcodes, the ISA bitwidth, and the structure of the program state.

Step 1: Machine We define such information in the class
llvm-machine%, which extends the class machine%. First, we define
how many bits are used to represent the smallest unit of value by
setting the field bitwidth. Since we are supporting LLVM IR 32-
bit arithmetic and logical instructions, we set bitwidth to 32. Next,
we initialize the opcodes field to a vector containing all opcodes.

(define llvm-machine%
(class machine%
(super-new)
(inherit-field bitwidth opcodes)
(set! bitwidth 32)
(set! opcodes ’#(nop and or xor add sub and# or# xor#

add# sub# _sub shl lshr ashr shl# lshr# ashr# _shl
_lshr _ashr ctlz))))

Notice that LLVM has up to three instruction variants. For example,
there are three subtractions: sub, sub#, and _sub. The prefix _ and
suffix # indicate one of the input arguments is a constant. # indicates
a variable as the first input argument and a constant as the second
input argument; whereas, _ indicates the opposite.

Next, we implement the set-config and get-state methods to
define the program state. GREENTHUMB restricts program states
to contain only Racket primitive data structures: pair, list, and
vector. Since this demonstration excludes load/store instructions,
our program state is simply represented as a vector of variable
values. The parameter describing the representation of the program
state is, thus, an integer representing the number of variables. The
method set-config takes in the program state parameter config
and update the field(s) storing the parameter. This method is used
during the initialization of a machine% object. get-state generates
a fresh program state by initializing each value in the program state
using the given lambda init. This method is used by the search
techniques throughout the search procedure.

(define llvm-machine%
...
;; Field for storing program state parameter.
(define vars #f)

;; Configure program state parameter.
(define/override (set-config config) (set! vars config))
;; Generate program state using init lambda.
(define/override (get-state init)
(for/vector ([i (range vars)]) (init)))

4.3 Intermediate Representations
GREENTHUMB provides a default instruction representation, de-
fined as (struct inst (op args)). In this demo, we will use this de-
fault representation. However, if necessary, users can extend inst
with additional fields; for instance, the instruction representation
for ARM has additional fields for conditional code and an optional
shift argument. An instruction representation is a building block for
constructing program representations. GREENTHUMB uses three
levels of program representations:

Source is a plain-text source. For example, the program p below
is an LLVM IR program in the source format:

%1 = lshr i32 %in, 3 ; %1 = %in >> 3
%out = shl i32 %1, 3 ; %out = %1 << 3

String IR is an IR after parsing a source, which is a vector of
inst. Each inst includes an opcode in its field op and a vector of
arguments in its field args. Opcodes and arguments are represented
as strings. We assign an output variable to be the first element in an
arg vector. The program p in the string-IR format is:

(vector
(inst "lshr" (vector "%1" "%in" "3")))
(inst "shl" (vector "%out" "%1" "3")))

Note that programs are stored using Racket data structures.

Encoded IR is an IR after encoding a String IR. It is also a vector
of inst, but its op and args fields contain integer IDs instead
of strings. An opcode ID is an integer indexing into opcodes in
machine%. A variable ID is an integer that maps to a variable name.
For constants, we simply convert strings to numbers. The program
p in the encoded-IR format is:

(vector
(inst 16 (vector 1 0 3)) ; 1 = %1 = 0 = %in
(inst 15 (vector 2 1 3))) ; 2 = %out

All components except parser% and printer% work with an en-
coded IR, because it enables representing programs with bitvector
logic formulas used in the symbolic search and equivalence valida-
tor (which verifies the equivalence of two programs).

Step 2: Parser and Printer Since parser% and printer% are
responsible for converting sources to encoded IRs and vice versa,
we must extend them for LLVM IR by implementing:

• the class llvm-parser%, which parses LLVM IR source code
into string-IR format.

• Three methods in the class llvm-printer%: print-syntax-inst
prints string-IR program in source format; encode-inst con-

verts string-IR to encoded-IR format; and decode-inst con-
verts encoded-IR to string-IR format.

4.4 ISA Semantics
In order for GREENTHUMB to understand the semantics of LLVM
IR and evaluate the performance of different code fragments, we
have to implement an LLVM IR functional simulator and define its
performance model.

Step 3: Simulator We must implement the methods interpret
and performance-cost of the classes llvm-simulator-racket%
and llvm-simulator-rosette%. The implementations of
llvm-simulator-racket% and llvm-simulator-rosette% are in



fact identical except that the former is implemented in #lang
racket, while the latter in #lang s-exp rosette. The Racket sim-
ulator is used to interpret sequences of instructions on concrete
inputs in the stochastic and enumerative search. The Rosette sim-
ulator is used by the symbolic search and equivalence validator.
Although the Rosette simulator can also be used in the stochastic
and enumerative search, it is slower than the Racket simulator.

We implement llvm-simulator-rosette% as follows. Our per-
formance model is the length of the code fragment, excluding nop.

(define llvm-simulator-rosette%
(class simulator-rosette%
(super-new)
(init-field machine)
(define opcodes (get-field opcodes machine))

(define-syntax-rule (bvop op)
;; finitize: truncate to 32 bits and convert to signed
(lambda (x y) (finitize (op x y))))

(define bvadd (bvop +))
(define bvsub (bvop -))

;; Required method. Interpret a given program.
(define/override (interpret program state)
(define state-out (vector-copy state))
;; Interpret an instruction.
(define (interpret-inst this-inst)
(define op (inst-op this-inst))
(define args (inst-args this-inst))
;; For one input variable and a constant.
(define (xxi f)
(define d (vector-ref args 0))
(define a (vector-ref args 1))
(define b (vector-ref args 2))
(define val (f (vector-ref regs a) b))
(vector-set! state-out d val))

(define-syntax-rule (inst-eq name)
(equal? name (vector-ref opcodes op)))

(cond
[(inst-eq ‘add#) (xxi bvadd)]
[(inst-eq ‘sub#) (xxi bvsub)]
...))
;; Iterate and interpret each instruction.
(for ([x program]) (interpret-inst x))
;; Return the output program state.
state-out)

;; Required method. Evaluate performance cost.
(define/override (performance-cost code)
(vector-count
(lambda (x) (not (= (inst-op x) nop-id))) code))))

Testing the Emulator
Now, we can interpret LLVM IR code!

> (define string-ir (send parser ir-from-string
"%1 = lshr i32 %in, 3
%out = shl nuw i32 %1, 3"))

> (define encoded-ir (send printer encode string-ir))
> (define input-state #(22 0 0)) ;; %in = 22
> (send simulator-rosette interpret encoded-ir input-state)
’#(22 2 16) ;; %in = 22, %1 = 2, %out = 16

4.5 Extending Search
Once we have the simulators working, we build a superoptimizer.

Step 4: Symbolic Search To enable the symbolic search, we need
to implement the gen-sym-inst method to returns the maximal
skeleton of an instruction, which can be constructed by using the
provided lambda functions sym-op and sym-arg. The framework
expects a program skeleton to be an inst with (sym-op) as its
opcode and (sym-arg) as its arguments. The LLVM IR instructions
that we support have up to three input/output arguments, so our
maximal skeleton consists of three arguments.

(define llvm-symbolic%
(class symbolic%
(super-new)
(inherit sym-op sym-arg)
(define/override (gen-sym-inst)
(inst (sym-op)

(vector (sym-arg) (sym-arg) (sym-arg))))))

Defining Search Space for Other Search Techniques
Although we can use the same instruction skeleton from the sym-
bolic search to define the search space for the other search tech-
niques, it will not be very efficient. This is because the symbolic
search exploits conflict clauses to prune the search space, while the
other search techniques cannot. When the symbolic search tries an
opcode, it can implicitly derive the valid values of arguments of the
opcode. In contrast, the stochastic and enumerative search cannot
derive this knowledge automatically.

Thus, we have to provide the following methods for computing
this information in llvm-machine%. The method (get-arg-types
opcode) should return a vector of types of opcode’s arguments.
An argument type indicates whether the argument is an input
variable, output variable, or constant. (get-arg-ranges opcode
live-in live-out) should return the valid values of opcode’s ar-
guments given live-in and live-out, specifying which variables
are live before and after executing an instruction with the given
opcode, respectively. live-in and live-out are given in the same
format as a program state containing true (live), and false (not
live). (update-live live-in this-inst) should return the live-out
information after executing this-inst given a live-in informa-
tion. Additionally, since the enumerative algorithm searches from
both forward and backward directions, we have to implement the
method (update-live-backward live-out this-inst), which re-
turns the live-in information given a live-out information.

Step 5: Stochastic Search We need to implement the method
(correctness-cost s1 s2 live) of the class stochastic%. [15]
suggests a correctness cost to be the number of non-matching
bits between the live outputs of program states s1 and s2 with
rewards for correct (or nearly correct) values in wrong locations.
stochastic% provides the method (correctness-cost-base s1 s2
live diff-bits) to calculate the suggested correctness cost when
s1 and s2 are a vector of values, given a lambda function diff-bits
that counts number of non-matching bits between two values. Thus,
we can extend stochastic% as follows.

(define llvm-stochastic%
(class stochastic%
(super-new)
(inherit pop-count32 correctness-cost-base)

;; Count non-matching bits between two 32-bit values.
(define (diff-bits x y)
(pop-count32 (bitwise-xor x y))

;; Required method. Compute correctness cost.
(define/override (correctness-cost s1 s2 live)
(correctness-cost-base s1 s2 live diff-bits))))

Step 6: Enumerative Search The enumerative search consists
of the classes forwardbackward%, enumerator%, and inverse%, as
shown in Figure 2. forwardbackward% implements the LENS algo-
rithm. It uses enumerator% to enumerates all possible instructions
with all combinations of constants and variables that agree with the
given live-in and live-out information. It explores the search space
in a forward direction from input program states and a backward
direction from output program states. The backward search relies
on an inverse simulator provided by inverse%.

Thus, in llvm-enumerator%, we must implement the method
(generate-inst live-in live-out) to return a generator [13] that



generates all possible instructions. The (gen-inverse-behavior
this-inst) method of llvm-inverse% will be invoked once for ev-
ery instruction during the initialization. The method should gen-
erate and memorize the inverse behaviors of this-inst in the
reduced-bitwidth (4-bit) domain to be used later during the search.
One can simply generate the inverse behaviors of an instruction
by executing the instruction on all possible program states in the
4-bit domain. The inverse behaviors can be stored as a map from
an output program state to a list of input program states. Lastly,
the method (interpret-inst this-inst state) in llvm-inverse%
functions as an inverse simulator by looking up the memorized in-
verse behaviors of this-inst and returning a list of input states
given an output state state.

Step 7: Window Decomposition and Cooperative Search Driver
To help a search instance determine an appropriate size of a win-
dow in the context-aware window decomposition, we have to im-
plement the method (len-limit) of llvm-forwardbackward% and
llvm-symbolic% to return L, the size of code fragment (the number
of instructions) that can be synthesized within one minute. Accord-
ing to our preliminary experiments, the size is 3 and 5 for the sym-
bolic and enumerative search, respectively. The cooperative search
varies the window size used for the different search instances; in
particular, it uses L, 2L, 3L, and 4L window sizes.

We now have all the ingredients to run the complete cooperative
search, which launches multiple search instances. The program to
run the cooperative search is automatically generated by the setup
script provided by the framework.

Testing the Search
We can use any search technique to quickly optimize:
%1 = lshr i32 %in, 3 ; logical shift right
%out = shl i32 %1, 3 ; shift left

which is taken from [14], to:
%out = and i32 %in, -8

We then try to optimize a larger code fragment. We use clang
to generate the following LLVM IR code from a C program that
rounds a number up to its power of two:
%1 = add i32 %in, -1
%2 = ashr i32 %1, 1 ; arithmetic shift right
%3 = or i32 %2, %1
%4 = ashr i32 %3, 2
%5 = or i32 %4, %3
%6 = ashr i32 %5, 4
%7 = or i32 %6, %5
%8 = ashr i32 %7, 8
%9 = or i32 %8, %7
%10 = ashr i32 %9, 16
%11 = or i32 %10, %9
%out = add i32 %11, 1

Running one search instance without the decomposition, the sym-
bolic or stochastic search cannot optimize this program within five
minutes, while the enumerative search can find a shorter program
that uses count-leading-zeros instruction within six seconds:
%1 = sub i32 %in, 1
%2 = ctlz i32 %1 ; count leading zeros
%3 = lshr i32 -1, %2
%out = add i32 %3, 1

Using the context-aware window decomposition and four search
instances, the symbolic search can also find the optimal or near-
optimal solution within one minute, while the stochastic search
seldom finds the solution. When we run our complete cooperative
search, an instance that runs the enumerative search will find the
solution quickly, and sometimes multiple instances of all search
techniques can collaboratively find the solution more quickly than
just the enumerative search alone.

5. Conclusion
We introduced GREENTHUMB, an extensible framework for con-
structing superoptimizers for diverse ISAs, providing a variety of
search techniques. We believe that this framework represents an
important step towards making superoptimization more widely
used. That is, GREENTHUMB is an enabling technology supporting
rapid development of superoptimizers and retargetability of effi-
cient search techniques across different architectures. We plan to
further explore the practicality of superoptimization in a compiler
backend by targeting only frequently-executed parts of a program
and using memoization.

Acknowledgments
This work is supported in part by Qualcomm Innovation Fel-
lowship, Microsoft Research Fellowship, Grants from National
Science Foundation (CCF–1139138, CCF–1337415, and ACI–
1535191), U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences Energy Frontier Research Centers (FOA–
0000619), and DARPA (FA8750–14–C–0011), as well as gifts
from Google, Intel, Mozilla, Nokia, and Qualcomm Research.

References
[1] Souper. URL http://github.com/google/souper.
[2] ARM. Cortex-A9: Technical Reference Manual, 2012. URL

http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0388i/DDI0388I_cortex_a9_r4p1_trm.pdf.

[3] S. Bansal and A. Aiken. Automatic generation of peephole superopti-
mizers. In ASPLOS, 2006.

[4] A. Duller, D. Towner, G. Panesar, A. Gray, and W. Robbins. picoarray
technology: the tool’s story. In Design, Automation and Test in Europe,
2005.

[5] T. Granlund and R. Kenner. Eliminating branches using a superopti-
mizer and the gnu c compiler. In PLDI, 1992.

[6] GreenArrays. G144A12 Chip Reference, 2011. URL
http://www.greenarraychips.com/home/documents/greg/
DB002-110705-G144A12.pdf.

[7] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably
correct peephole optimizations with alive. In PLDI, 2015.

[8] H. Massalin. Superoptimizer: a look at the smallest program. In
ASPLOS, 1987.

[9] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. Modha. A digital neurosynaptic core using embedded crossbar
memory with 45pj per spike in 45nm. In Custom Integrated Circuits
Conference (CICC), 2011 IEEE, 2011.

[10] Mill Computing, 2013. URL http://millcomputing.com/.
[11] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and

R. Bodik. Chlorophyll: Synthesis-aided compiler for low-power spa-
tial architectures. In PLDI, 2014.

[12] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati. Scaling
up superoptimization. In ASPLOS, 2016.

[13] Racket. Generators, 2015. URL http://docs.racket-lang.
org/reference/Generators.html.

[14] J. Regehr. Embedded in academia: A few synthesizing superoptimizer
results. URL http://blog.regehr.org/.

[15] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization.
In ASPLOS, 2013.

[16] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization of
floating-point programs with tunable precision. In PLDI, 2014.

[17] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken. Conditionally
correct superoptimization. In OOPSLA, 2015.

[18] E. Torlak and R. Bodik. A lightweight symbolic virtual machine for
solver-aided host languages. In PLDI, pages 530–541, 2014.


