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Abstract

Sensor Fusion and Online Calibration of an Ambulatory Backpack System for Indoor
Mobile Mapping

by

Nicholas Giovanni Corso

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Avideh Zakhor, Chair

GPS-denied indoor mobile mapping has been an active area of research for many years.
With applications such as historical preservation, entertainment, and augmented reality, the
demand for both fast and accurate scanning technologies has dramatically increased. In
this thesis, we present two algorithmic pipelines for GPS-denied indoor mobile 3D mapping
using an ambulatory backpack system. By mounting scanning equipment on a backpack
system, a human operator can traverse the interior of a building to produce a high-quality
3D reconstruction. In each of our presented algorithmic pipelines, data from a number of
2D laser scanners, a camera, and an IMU is fused together to track the 3D position of the
system as the operator traverses an unknown environment.

This thesis presents a number of novel contributions for indoor GPS-denied 2.5 and 3D
mobile mapping using a number of 2D laser scanners, a camera, and an IMU. First, for 3D
mapping we develop a tightly coupled EKF estimator for fusing data from all sensors into
a single optimized 3D trajectory. By formulating each sensor’s contributions independently,
we demonstrate a modular algorithm that easily scales to an arbitrary number of 2D laser
scanners. In contrast to existing work that either assumes a known fixed map or limits the
environment to a set of axis aligned planes, we demonstrate the ability to map environments
containing horizontal and vertical planes of arbitrary orientation with no a priori information.
Additionally, through timing and complexity analysis, we demonstrate that the runtime of
the proposed EKF estimator is only linear in the acquisition time. Secondly, by including
in our EKF estimator the laser scanner’s spatial and temporal calibration parameters, we
present a novel laser calibration methodology. Through simulated and real-world data, we
validate that the proposed algorithms are capable of calibrating both the extrinsic and tem-
poral misalignments present in our system’s laser data. Lastly, we address the scalability of
the proposed approach by utilizing a graph optimization post processing step that overcomes
any accumulated drift in the EKF estimator. We then validate the proposed 3D end-to-end
localization system using 3 multi-story datasets collected from real-world environments. The
system’s reconstructions are compared against CAD drawings of the buildings and are shown
to achieve an intersection over union of over 96% on all datasets. Lastly, we demonstrate ac-
curacy improvements over our 2.5D methods using a comparison test against data collected
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with a static scanner.
In addition to 3D mapping, we also present a methodology for 2.5D mapping with three

novel contributions. First, we present a method for automatically segmenting barometric
pressure data based on the floor of the building it was collected from. Specifically, by using
Bayesian non-parametrics we are able to demonstrate simultaneous floor detection and the
corresponding data segmentation. The data segmentation is then used to extend classical 2D
particle filtering across any number of discrete building stories. Secondly, we demonstrate
a genetic scan matching algorithm used to estimate loop closure constraints even without
an accurate initial condition. Through simulation and real-world experiments we show an
improvement over state of the art scan matching techniques. Next, we present two metrics
that are used to validate the results of the genetic scan matching algorithm. We use both a
correlation and shape metric to demonstrate robust and accurate validation of loop closure
constraints in indoor environments. Lastly, we compare and characterize the performance
of the proposed 3D and 2.5D mapping techniques developed in this thesis. Although the
2.5D mapping techniques are more computationally lightweight, we show that the accuracy
of system is significantly improved using the 3D mapping algorithm.
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Chapter 1

Introduction

Recent years has seen a great interest in the modeling of urban indoor and outdoor environ-
ments using mapping technology. By utilizing sensor data captured from a suite of sensors
and tracking the position of the scanner, a full featured reconstruction of the environment
can be created. Modeling, mapping, and reconstruction of indoor and outdoor environments
has many applications in the historical preservation, emergency response, mapping, naviga-
tion, energy simulation, and entertainment industries. As such, there has been significant
motivation to increase accuracy and decrease the acquisition time for mapping systems.

Indoor mapping solutions cover a wide variety of platforms and applications. The avail-
able modalities for indoor mapping can be viewed as a trade-off between portability and
data fidelity. Figure 1.1 illustrates the spectrum of indoor mapping solutions. On the far left
of the spectrum, static scanning provides the highest data quality but is the least portable.
During static scanning, a 3D laser scanning station is placed on a tripod and a small sec-
tion of the environment is captured with high detail. The tripod is then moved around and
the process is repeated until the entire area has been captured. The small 3D point clouds
can then be stitched together to build a single, unified representation of the environment.
Stitching is typically achieved either by placing small markers throughout the environment
or a combination of manual intervention and point matching techniques. While this process
is accurate and reliable, it can be both slow and invasive.

Moving more towards portability, wheeled platforms, such as push-carts, can carry heavy
equipment such as long range laser scanners [1] or high quality inertial systems [2] in
order or provide high accuracy reconstructions of the environment. Furthermore, wheel
encoders have be employed to provide accurate, low-cost odometry for positioning in mapping
applications [3]. While wheeled systems provide many advantages, complex terrain, such as
staircases, often provide significant challenges for data capture and reconstruction.

To address the shortcomings of cart-based solutions, scanning equipment is often mounted
on human operators and carried through the environment [4–8]. By mounting the scanning
equipment on an ambulatory platform, the operator is able to map any environment a human
is able to safely traverse. This allows the mapping systems to easily scale to multistory
buildings in a single data collection. Human mounted mobile mapping systems also present
many unique challenges. The human gait is considerably more complex than a wheeled
system and thus fusing data from multiple sensors can be more challenging. Additionally,
ambulatory systems are not capable of mapping locations, such as a collapsed building, that

1



Chapter 1. Introduction

Figure 1.1: The spectrum of indoor mapping solutions. The existing solutions can be viewed
as a trade-off between portability and data fidelity. In one extreme, static scanning solutions
provide the highest quality data but are slow and cumbersome to use. On the other end of
the spectrum, R-GBD depth cameras are small and mobile, but often contain noisy sensing
technologies.

are unsafe for a human operator.
Moving further right on the spectrum, autonomous robotic platforms have also been

employed for mobile mapping applications. With the widespread availability of low-cost
drones, unmanned aerial vehicles (UAVs) have become a popular choice [9–11]. UAVs are
lightweight and capable of traversing both hazardous environments and locations humans
may be unable to reach. UAVs intended for indoor applications are often limited to small
payloads, and as a result battery life is typically a limiting factor for scalability. Further-
more many indoor environments, such as narrow doorways and HVAC equipment, present
challenging aerodynamic problems that can disrupt a UAV’s flight controller.

Finally, at the other extreme, hand-held devices have become a popular selection for
fast mapping solutions [12–14]. Lightweight, hand-held devices offer unparalleled portabil-
ity, but often only contain noisy and short range sensing technologies. To reduce weight
and power consumption many systems utilize LED time-of-flight depth sensors or structured
light projectors. These types of sensors are capable of capturing the 3D shape of the environ-
ment, but the high sensor noise and short range can limit their usefulness in many mapping
applications.

In this thesis, we utilize an ambulatory backpack data collection system to map indoor
GPS-denied environments. By using a backpack system, we are able to strike a balance
between portability and data fidelity. Backpack systems are capable of carrying a large
suite of high-quality sensors while still being able to seamlessly traverse complicated terrain
without being limited by short battery life. For large-scale indoor mapping, it is crucial that
the data acquisition process be both rapid and provide the flexibility to handle many types
of environments.

2
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1.1 Simultaneous Localization and Mapping

In contrast to static scanning technologies, mobile scanning systems are generally faster than
static scanning techniques. While data collection is more rapid, the process of stitching to-
gether sensor data is considerably more complex. Mobile systems are almost constantly in
motion and thus the position and orientation of the system must be accurately tracked in
order to assemble the sensor readings during reconstruction. For many outdoor mapping
systems, GPS/INS technology is used to solve the tracking problem [15–18]. However, in
dense urban environments the “urban canyon” effect can limit the accuracy of GPS sensors.
Furthermore, environments such as building interiors suffer from poor signal strength and
multi-path interference making GPS/INS tracking solutions impractical. In these environ-
ments, mobile mapping systems typically rely on simultaneous localization and mapping
(SLAM) algorithms for positioning. Common to all SLAM algorithms, the mobile mapping
system must both create a map of the environment while simultaneously tracking its position
within that map.

The SLAM problem has been studied extensively in the academic literature and many
algorithms have been proposed to solve the problem [19–23]. SLAM solutions can logically
be split into two mostly orthogonal steps. First, new sensor data must be referenced against
the current map of the environment using a data association algorithm. Then, a back-end
optimization framework is required to fuse information from the available sensors and update
the system’s estimates of its surrounding environment and position relative to it. As the data
association algorithm is generally defined by the type of sensing modality, more emphasis is
generally placed on the back-end optimization in the SLAM literature. For the remainder of
this section, the term SLAM will refer to the back-end optimization step.

SLAM solutions can be roughly grouped into four categories: particle filtering, graph
optimization, least-squares filtering, and database based solutions. Sometimes termed “fin-
gerprinting” techniques, database based solutions maintain a sparse representation of the
environment in an external database that can be queried similar to GPS technologies. Com-
mon fingerprinting signals include examples such as 802.11 WiFi [22], FM radio [24], and
GSM cellular [25]. While database techniques have been proven to provide reliable posi-
tioning information in indoor environments, the need to pre-survey a location and build a
database of fingerprints makes it unattractive for large-scale mapping.

Least-squares filtering techniques, such as the sliding window filter [26] or Kalman filter
variants [27–29], are another extremely popular choice in the SLAM community due to
straightforward implementation and natural application to real-time systems. Least-squares
filtering techniques however rely on two assumptions: the system dynamics are locally linear
and all sensor noise is Gaussian. To this end, the SLAM problem is modeled as a system of
Gaussian random variables that are operated on by a series of linear transforms. As Gaussian
are characterized by a mean vector and covariance matrix, least-squares filters must keep
an N × N matrix of correlations. As the number of variables increases, the complexity of
least-squares filters can become intractably large for real-time operation.

In order to handle nonlinear or non-Gaussian dynamic models, particle filters have also
been successfully used to solve the SLAM problem [30–32]. Instead of using an explicit
formulation of the SLAM posterior, particle filters use Monte Carlo methods to estimate it
from a set of discrete samples or “particles.” Particle filters have been utilized in both 2D
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Figure 1.2: A high level flowchart of the two-stage SLAM pipeline. First, sensor data is fused
into an initial estimate of the trajectory of the system using some odometry estimation
algorithm. Then, loop closure constraints are detected and combined with the odometry
estimated into a single optimized trajectory using a graph optimizer. Finally, a model is
created by assembling the laser readings into a large point cloud.

and 3D grid mapping applications. While particle filters are robust to nonlinearities, as the
dimensionality of the estimation problem increases the number of particles required increases
substantially. This makes particle filters ill suited for estimation problems involving many
variables.

More recently, non-linear graph based approaches have also been a popular choice to solve
both incremental and batch SLAM problems [23, 33–35]. By formulating the estimation
problem as a network of nodes connected by a sparse set of edge constraints, graph based
optimizers are able to efficiently solve the SLAM problem. Batch optimizers such, as TORO
[36] or g2o [34], or incremental solvers, such as iSAM [23, 33, 35], have been successfully
utilized in both pose graph and landmark based SLAM applications.

Multi-modal approaches are also commonly used to solve the SLAM problem. By combin-
ing high-accuracy least-squares algorithms with sparse graph optimization methods, SLAM
systems are able to naturally fuse sensor data with algorithms such as Kalman filters without
succumbing to the curse of dimensionality. In this thesis, we present two SLAM algorithms
for an ambulatory backpack system. In both instances, we take a two-stage approach to the
SLAM process. A high level flowchart of this processes is shown in Fig. 1.2. First, data from
the individual sensors are combined to create an initial estimate of the path the operator
walked through the environment. Then, we detect locations that were revisited and combine
those with the initial estimate via graph optimization. Using the optimized trajectory, we
combine the laser data readings into a 3D representation of the environment.

1.2 Odometry Algorithms

Odometry estimation algorithms are an important component in the two-stage SLAM pipeline.
Non-linear graph optimizers require an accurate initial condition, and thus accurate odom-
etry is an important consideration when designing a SLAM algorithm. Furthermore, due to
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computational constraints many estimators such as the EKF and sliding window approaches
must marginalize out old observations to maintain scalability in large environments. In doing
so, the estimator looses the ability to perform long-term loop closure and the reconstructed
trajectory begins to accumulate drift.

Odometry algorithms are a widely studied problem in the SLAM literature. With the
rise of low-cost cameras-IMU systems, visual-inertial odometry (VIO) has become a popular
method for high-accuracy odometry [37–42]. These types of odometry systems have been
shown to provide high-accuracy odometry estimates even with extremely low-quality sensors.
In addition, the VIO are often combined with online calibration algorithms to auto-calibrate
the extrinsic, intrinsic, and temporal aspects of the system. Unfortunately, because these
algorithms rely on tracking interesting points in the camera imagery, they often have trouble
in areas that contain few visual features or have extremely poor lighting.

RGB-D cameras have also been utilized for odometry estimation is SLAM systems
[12, 13, 43–45]. RGB-D cameras are capable of provided both imagery and depth infor-
mation for a camera using either structured light projectors or a LED time-of-flight sensor.
RGB-D cameras are typically able to produce a high volume of noise data for estimation.
Techniques, such as KinectFusion [12,13], intelligently average the noisy sensor data to pro-
duce high-quality meshes of scanned objects. These types of approaches however typically
suffer from 2 shortcomings. In order to handle the large quantity of data, methods such
as KinectFusion must maintain a sliding volume of interest which leads to drift in the final
trajectory. Additionally, RGB-D sensors typically have ranges around 4-6m and thus are
ill-suited for large-scale mapping.

Finally, laser scanners have also been considered for 2D odometry estimation [8, 46,47].
By matching successive laser readings from a 2D laser scanner, a scan matching algorithm,
such as ICP, can be used to estimate the 2D trajectory of a system. While these types of
approaches have seen great success in 2D SLAM applications, they are not always appropriate
for full 3D SLAM without making assumptions about the environment.

1.3 Sensor Calibration

Common to all multi-sensor sensors is the importance of calibrating sensors with respect to
one another. Each sensor captures data referenced against its own internal coordinate system
and timestamps. In order to accurately fuse data from multiple sensors, the transformations
and timing offsets must be correctly incorporated into the modeling process. If incorrect
calibration is used, the recovered trajectory can be erroneous and the reconstructed model
will not be self-consistent.

Calibration is generally broken into three groups: extrinsic, intrinsic, and temporal.
Extrinsic calibration refers to the physical location of the sensors relative to one another.
Extrinsic calibration is parameterized using a rotation and translation between sensor co-
ordinate frames. Next, intrinsic calibration describes the internal parameters of a sensor.
For example, a camera’s intrinsic calibration is characterized by the lens’s focal length and
distortion parameters. Finally, temporal calibration describes how the timestamps of a sen-
sor relate against a common system clock. This is especially important when fusing inertial
data with other sensor due to the high dynamic gyroscope motion an ambulatory platform
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undergoes.
Calibration procedures have been explored in both offline and online contexts. For ex-

ample, Zhang [48] presented a widespread offline calibration procedure that calculates a
camera’s intrinsic parameters using a planar target. Similarly, Zhang and Pless [49] pre-
sented an offline method for computing the extrinsic calibration between a camera and laser
scanner also using a planar target. Using a specially created 3D target, Bok et al. [50] built
upon the work of Zhang and Pless and presented an improved system of calibrating a laser
and camera sensor.

Online calibration of both the intrinsic and extrinsic parameters between an IMU and
camera has been extensively studied. In [51], Mirzaei et al. presented an Extended Kalman
Filter estimator for the rotation and translation between an IMU and camera using a checker-
board target. Li et al. expanded upon this work by presenting a visual inertial odometry
(VIO) system that estimated the rotation and translation with no predefined target. [40,52].
Building on this, Li. et al. further expanded the VIO estimator to also compute the timing
offset between the IMU and camera, the camera intrinsic calibration model, and the readout
time of the camera’s rolling shutter.

Laser extrinsic and temporal calibration has also been previously explored in the litera-
ture. In [53] Levinson and Thurn presented a method for calibrating 3D laser scanners and
cameras by detecting mis-calibrations online and updating the sensor parameters in an arbi-
trary environment. The temporal offset between a 2D laser scanner and IMU was considered
by Rehder et al. in [54]. Although the method presented by Rehder et al. is capable of
estimating the timing offset and extrinsic calibration between a 2D laser and an IMU, the
authors assume that a VIO system is also available to compute a sufficiently accurate initial
estimate of the systems trajectory. This makes the algorithm difficult to apply for a system
that only contains lasers and an IMU. He et al. [55] explored direct extrinsic calibration
between 2D laser scanners by optimizing for the rotation and translation during the point
cloud reconstruction process.

Previous calibration methods do not consider warping that occurs when the laser scanner
is moving. The majority of 2D laser scanners are constructed using a single laser and a mirror
that rotates around a central axis. A scan is generated by taking sequential measurements
across one rotation of the central mirror and is assigned a single timestamp. This creates an
effect similar to the rolling shutter in most low-end CMOS camera sensors. When the laser
scanner is subjected to high linear or rotational velocity during the scanning process, the re-
sulting scans become significantly warped. By modeling the laser scanner as a rolling shutter
sensor and calibrating the read-out time, the scanner’s data can be correctly dewarped.

1.4 Contributions and Thesis Organization

In this dissertation we present two methods for localizing an ambulatory mobile mapping
system for the purpose of building large-scale, accurate 3D models of GPS-denied indoor
environments. The objective of the algorithms presented in this dissertation is to be able
to walk around a building using the backpack systems shown in Chapter 2 and produce a
high quality 3D point cloud model with no a priori information about the environment.
Figure 1.3 shows an example of a point cloud created from a large warehouse environment
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Figure 1.3: An example point cloud created using the methods presented in this thesis. Note
that the points have been colored by height to increase the clarity of the screenshot.

using the methods described in this thesis. The points have been artificially colored by height
to increase picture clarity.

The two algorithms in this thesis represent two approaches to the SLAM problem. Chap-
ter 3 describes a 2.5D dimensional approach to mapping interior environments. By splitting
the localization problem into a 2D localization problem followed by a height estimation
problem, we create a series of 2D maps to represent the environment using an IMU and a
horizontally mounted laser scanner. Following that, we use a downward facing laser scanner
to estimate the height of the system relative to the ground. These two estimates are then
fused together with barometer data to create a series of 2D occupancy grid maps via particle
filtering. Finally, graph optimization is performed to create a high-rate optimized trajectory.

The presented 2.5D method however has some drawbacks. In making the 2.5D assump-
tion we explicitly require that the environment be made up of mostly vertical planes. This
assumption works for many types of buildings including office and academic buildings. Fur-
thermore, performing online calibration of the sensors is challenging using a particle filter
due to the curse of dimensionality. Intrinsic and extrinsic calibration parameters must be
precomputed or inferred from CAD drawings. Lastly, sensor data is combined in an ad hoc
manner. Data from camera sensors is not used in the localization process while IMU data is
trusted

To address these concerns, in Chapter 4 we present a tightly-coupled EKF estimator
that fuses data from all available sensors into a single optimized trajectory. By fusing data
from both laser and camera sensors, we show that we are able to more accurately estimate
the trajectory of the system than if we used only a single sensing modality. Secondly,
by formulating the SLAM problem as an EKF estimator, data from individual sensors are
causally fused together to estimate not only the position of the system and a low dimensional
planar representation of the surrounding environment, but also an optimized estimate of the
system’s calibration parameters. Lastly, rather than explicitly requiring the environment be
made of planar objects, the EKF algorithm detects areas that are planar and uses them as
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feedback in the filter. In doing so, we are able to handle environments that are a mixture of
planar and non-planar building elements without degrading the accuracy of the reconstructed
trajectory. In the next sections, we detail the individual novel contributions presented in
this thesis.

1.4.1 Automatic Barometric Floor Segmentation

The first novel contribution of this thesis is an automatic floor segmentation algorithm
using barometric pressure data and Bayesian nonparametrics. Indoor floor detection via
barometric pressure data has been studied before by Fallon et al. [7]. Using the pressure
readings from a low-grade MEMS barometer, Fallon et al. was able to detect when an
operator transitioned between floors of a building. However, in order to detect the number
of floors in the building the authors used an incremental approach based on predefined
heuristics.

In order to eliminate the need for predefined heuristics, we present a new methodology for
automatic floor detection and segmentation based on Bayesian nonparametrics. By modeling
the floor segmentation problem as a Chinese Restaurant Process [56,57] (CRP) we are able
to simultaneously partition the data while detecting the number of floors present in the
dataset using a CRP mixture model. Furthermore, we show through experimentation that
the CRP mixture model is extremely robust to choice of user defined parameters. The details
of the algorithm are presented in Sec. 3.2.3 and the comparison results against both [7] and
another unsupervised clustering algorithm [58] are presented in 3.5.1.

1.4.2 Fractional Genetic Scan Matcher

The second novel contribution of this thesis is an outlier-resistant, genetic scan matching
algorithm that accurately matches scans despite a poor initial condition. The closest related
previous work in genetic scan matching was presented by Lenac et al. [59]. In [59] the
authors present a Hybrid Genetic Scan Matcher, which proposes to use a genetic search
using a correlation based metric followed by a round of ICP to refine the solution.

We present two extensions to this algorithm. First, as our system’s lasers often scan the
ceiling, a large number of outliers can be present in the scan data and therefore a correlation
based metric is not appropriate. To that end, we use the fractional root mean square distance
metric [60] to provide robustness against outlier points. Secondly, we apply scan matching to
force each chromosome into a local minima of the objective function. Under this formulation,
the genetic scan matching algorithm efficiently searches only the local minima of the objective
function. Although genetic scan matching can be a computationally expensive process, we
present a solution space discretization method that significantly speeds up the algorithm
without sacrificing accuracy. We call the extended algorithm the Fractional Genetic Scan
Matcher (FGSM). The FGSM algorithm is detailed in Sec. 3.3.2 and the comparison results
to [60] and [59] are presented in Sec. 3.5.3.
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1.4.3 Loop Closure Validation Metrics

Next, in this thesis, we present two metrics to validate loop closure constraints for 2.5D laser-
based SLAM systems. As graph optimizers are ill-equipped to handle outlier constraints,
it is imperative that only high-quality loop closure constraints are used during pose-graph
optimization. To that end we define two metrics based on the amount and complexity of
overlapping geometry in order to vet the estimated loop closure constraints. Indoor en-
vironments contain many locations, such as long narrow hallways, where scan matching is
ill-conditioned. By examining the quantity and complexity of overlapping geometry we auto-
matically prevent erroneous loop closures from degrading the accuracy of the reconstructed
trajectory.

The closest related work in this area was presented by Bosse and Zlot [47] which validates
loop closure constraints based only on the correlation between matched 2D laser scans. In
contrast to [47] which is focused on outdoor environments, our system is designed to work
in indoors where scan matching is often ill-conditioned. We show that both a correlation
and shape complexity metric are needed for reliable operation in indoor environments. Sec-
tion 3.3.3 defines the metrics and provides visual examples to describe them. The validation
metrics are tested using both automatic and manually defined loop closure constraints. The
classification results are detailed in Sec. 3.5.5.

1.4.4 Online Laser Extrinsic and Temporal Calibration

To our best knowledge this thesis presents the first direct online extrinsic and temporal
calibration between a 2D laser scanner and an inertial sensor that considers the rolling shutter
effect of the laser scanner. By modeling the extrinsic calibration in our EKF estimator, we
are able to obtain a variance reduction in both the rotational and translation components
of the extrinsic calibration. Furthermore, by modeling the timestamping bias and rolling
shutter aspects of the laser scanner, we are able to account for both intrascan distortion and
latency in the data collection process.

Previous works on laser and inertial sensor calibration has been presented in a few con-
texts. Bosse et al. [5] presented a novel data collection system that placed a 2D laser scanner
at the end of a passive spring. By exploiting the temporal offset between the IMU data and
the motion of the spring, Bosse was able to calibrate the timestamping bias between the
laser and IMU sensors. Rehder et al. [54] presented an optimization based framework for
calibrating a 2D laser scanner against a VIO system. While this work achieves promising
results, it makes the assumption that a visual inertial odometry system is available and
ignores the rolling shutter nature of the laser scanner.

The closest method to our online extrinsic and temporal calibration algorithm was pre-
sented by Li et al. [52] but in the context of a VIO system. The authors incorporated a
model for the timestamp bias and rolling shutter nature of a low-cost camera sensor into
their EKF estimator. In contrast to [52], we instead apply the rolling shutter model to a
2D laser scanner and incorporate it into our online calibration procedure. We briefly de-
scribe the model used for modeling a rolling shutter laser scanner in Sec. 2.3, the calibration
algorithm in Sec. 4.6, and present the results of the calibration procedure in Sec. 4.9.1.
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1.4.5 Laser-Aided Inertial Navigation

The main novel contribution of the 3D localization algorithms of Chapter 4 is the laser-
aided inertial navigation (L-INS). In this thesis we present a method for fusing IMU and
any number of 2D laser scanners using a tightly coupled EKF estimator. Furthermore, the
presented algorithm is not only capable of creating a planar representation of the environment
with no a priori map but also can operate even when the environment is not Manhattan.

The contributed L-INS algorithm can be seen as extension of the previous works of Hesch
et al. [61] and Zhao and Farrell [62, 63]. In [61], the authors presented a L-INS system
mounted to a cane to assist the visually impaired. The authors assumed that the operator was
traveling through an environment with only axis-aligned planes. Due to this constraint, the
operator had to go through a calibration procedure to align the L-INS’s internal coordinate
system to the dominant directions of the building. Zhao and Farrell [62,63] built upon this
work and developed an outdoor system that utilized city maps and a 2D laser scanner for
automotive localization in urban environments. While the authors relaxed the Manhattan
assumption by allowing vertical planes of arbitrary orientation, they assumed that an a priori
map was available to the L-INS system.

In this thesis we present an L-INS system that is capable of operating in non-Manhattan
environments even when no a priori plane map is available. Furthermore, we naturally extend
the algorithm to fuse data from any number of 2D laser scanners that are present on the
system. In Sec. 4.6 we detail the L-INS data fusion algorithm and the results for the L-INS
estimator can be found in Sec. 4.9.2.

1.4.6 Tightly Coupled Multi-Sensor Fusion On a Backpack System

The final contribution presented in this thesis is a modular multi-sensor tightly coupled
EKF estimator for sensor fusion. By formulating the SLAM problem as an EKF estimator
we are able to fuse sensor data from lasers, cameras, and IMU sensors in an extensible and
modular fashion. As the sensor data asynchronously arrives into the system, an individual
EKF update algorithm is run for each type of data. In doing so, we are able to handle any
number of lasers, a camera, and an IMU seamlessly.

Multi-sensor systems have also been studied in previous works. In [7], Fallon et al.
presented a ambulatory mobile mapping system that fused data from a 2D laser scanner,
a barometer, and an IMU in a loosely coupled fashion. In [50], Bok et al. presented an
outdoor system was used for historical preservation applications. Bok et al. fused camera,
2D lasers, and a GPS sensor using loose coupling and graph optimization.

In contrast to loosely coupled systems, tightly coupled estimators have also been utilized
for multi-sensor systems. Wei et al. [64] presented an Information Filter approach to fusing
data from laser based ICP, a GPS, and a stereoscopic camera system. The works that comes
closest to our multi-sensor system are those of Lynen et al. [65] and Shen et al. [66]. Both
Lynen et al. and Shen et al. presented a tightly coupled EKF estimator to fuse inertial,
pressure, and monocular visual information for micro-aerial vehicles. Our approach differs
from those previously presented because we not only utilize 2D laser data in the estimation
process, but maintain a compact planar representation of the environment for applying loop
closure within the EKF estimator.
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Chapter 2

Preliminaries

2.1 Notation

The following notation is used throughout this thesis.

Symbol Notation Example

Scalars are denoted in lower case x

Vectors are denoted in bold lower case x

Matrices are denoted in bold upper case X

Cross product of a vector uses b· ×c bω ×c
Quaternion product is denoted as ⊗ q1 ⊗ q2

Time derivative is represented by a dot ṗ = v

Jacobian of function f(·) by vector x Jx

(
f(·)

)
or Hx or Γx

Estimation Notation Example

An estimated value is denoted by a hat x̂

A tilde denotes an estimation error x̃

Rotation error is denoted using θ̃ or δ θ̃
G

or δq

Coordinate Notation Example

Coordinate frames are denoted in upper case G or {G}
A rotation from {G} to {B} B

GR or BqG

The coordinate frame of a point pB in {G} GpB
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(a)
(b)

Figure 2.1: An illustration of a point being projected into a camera image. (a): A cam-
era views a point Cpf in its coordinate frame {C}. (b): The resulting location in pixel
coordinates zf is predicted using the rectilinear projection model.

2.2 Camera Sensor Modeling

As imaging sensors become cheaper and lighter, the demand for algorithms that take ad-
vantage of high-quality low cost imaging sensors has increased. Coupled with the wide
availability of open source tools and a mature literature on sensor modeling, applications
in the localization and mapping communities that take advantage of imaging sensors have
become ubiquitous. In this section, we will detail the camera sensor models used in this
work.

2.2.1 Camera Sensor Models

zf =

uv
1

 =
1
CZ

fx 0 ox
0 fy oy
0 0 1

 Cpf (2.1)

Numerous camera models have been proposed to describe the relationship between 3D
points Cpf = [CX, CY , CZ]T viewed by a camera and their pixel locations in the resulting
image zf . Depending on the type of lens system used by the camera, either a rectilinear
or fisheye model is appropriate. For small field of view lens systems, the rectilinear camera
model has been shown to accurately model image formation [48]. In Eq. 2.1 the quantities
f = [fx, fy]

T and o = [ox, oy]
T represent the focal length and center pixel of the camera.

Figure 2.1 shows an illustration of the camera projection process. Shown in Fig. 2.1 a point
Cpf is viewed by a rectilinear camera. The location of the 3D point in pixel coordinates zf
is predicted using the rectilinear projection model of Eq. 2.1.

Unfortunately, most camera lens systems are built from both rectilinear and aspherical
elements in order to increase the field of view and reduce color scattering as light travels
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(a) (b)

Figure 2.2: An illustration demonstrating omnidirectional camera image distortion applied
to the tree scene from Figure 2.1. (a): The scene under rectilinear projection. (b): The
scene under omnidirectional projective distortion.

though the lens. These types of lens systems cause distortions in the resulting image and
must be modeled appropriately. To this end, the distortion of the lens is typically modeled
to account for such effects using both by a radial component k = [k1, k2, k3]

T and tangential
component t = [t1, t2]

T [48, 67].

zf = h(Cpf )

=

[
ox
oy

]
+

[
fx 0
0 fy

](
(1 + k1r

2 + k2r
4 + k3r

6)

[
u
v

]
+

[
2uvt1 + (r2 + 2u2)t2
(r2 + 2v2)t1 + 2uvt2

])
(2.2)

Here the 3D feature point is expressed as Cpf and the intermediary values u, v, and r are
defined as u = X/Z, v = Y/Z, and r2 = u2 + v2. The expanded model of 2.2 is generally
calibrated offline using a collection of images of a planar checkerboard pattern and any one
of many open source software packages [68,69].

In contrast to rectilinear lens systems, some cameras utilize omnidirectional lenses or ball
mirrors to increase the field of view. By expanding the field of view of the imaging sensor,
more distortion is introduced into the resulting image. Under this type of projection, straight
lines viewed by the camera get warped to be circular in the resulting image. Figure 2.2
shows what the forest scene from Fig. 2.1(a) under rectilinear and omnidirectional projection
models. Notice how in the omnidirectional image of Fig. 2.1(b) lines and edges have become
distorted.

Numerous calibration methods have been proposed to model these lens systems [70,71].
For this work we model the fisheye omnidirectional lenses on the ambulatory backpack system
using the model described by Scaramuzza et al. in [71].
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(a) (b)

Figure 2.3: An example of applying image undistortion to a fisheye image. (a): The input
distorted fisheye image. (b): An undistorted version of a subsection of the input fisheye
image.

zf =

[
ox
oy

]
+
ρ(θ)

R

[
fx 0
0 fy

] [
X
Y

]
(2.3a)

R =
√

CX2 + CY 2 (2.3b)

θ = atan(CZ/R) (2.3c)

ρ(θ) = k0 + k1θ + k2θ
2 + k3θ

3 (2.3d)

In the previous equations we can see that the distortion is now a function of the distance
to the camera via Eq. 2.3b and the radius away from the optical axis via Eq. 2.3c. The
severity of the distortion is modeled by the polynomial ρ(θ) and distortion coefficients k =
[k1, k2, k3, k4]

T . This matches the intuition that omnidirectional lenses cause spherical shaped
distortion around the edges of the image. The omnidirectional projection model of Eq. 2.3
is typically calibrated offline using open source software [72].

2.2.2 Image Undistortion

The backpack systems described in Section 2.4 contain camera sensors equipped with fisheye
omnidirectional lenses. Fisheye lenses offer a good balance between wide field of view and
spherical distortion. For some applications, such as feature tracking or 3D reconstruction, a
wide field of view is beneficial. Unfortunately, many computer vision, graphics, and rendering
algorithms assume that the input images are subjected to rectilinear distortion. To overcome
this limitation, we preprocess the fisheye images to undistort them and remove any spherical
distortion caused by the omnidirectional lens. Given a calibrated omnidirectional camera
model and a target rectilinear camera model, the undistortion process warps an input image
from one projection model to the other [73].

Figure 2.3 shows an example of the undistortion process. Fig. 2.3(a) shows a fisheye image
captured from one of the backpack systems. A 70◦ × 70◦ section of the center of the image
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was selected for undistortion. The resulting rectilinear image is shown in Fig. 2.3(b). Notice
how some vertical and horizontal building elements in the fisheye image have been curved
due to omnidirectional lens distortion. The same building elements have been straightened
out in the resulting rectilinear image.

2.3 Laser Sensor Modeling

Laser scanning technology has quickly begun to dominate the fields of historical preservation,
construction monitoring, and architectural modeling due to their portability and high accu-
racy. As such, numerous companies have produced high-quality laser scanning equipment
based on LiDAR technology. In this section we briefly describe how we model these types of
sensors.

2.3.1 Laser Sensor Model

LiDAR sensors generally operate by emitting light pulses and then timing how long it takes
for a return to be reflected back at the sensor. Since the speed of light is a known constant
the reflection time can be used to compute the distance from the laser scanner to an object in
the environment. By combining many range readings, a laser scanner provides a metrically
accurate representation of the surrounding environment.

Laser scanners come in both 2D and 3D varieties. Termed “profilers”, 2D laser scanners
typically have a single laser and a single mirror that rotates around a central axis. By
spinning the central mirror relative to the laser scanner, a 2D profile of the surrounding
objects is created. 3D laser scanners are either built from an array of profilers or by rotating
the entire 2D laser assembly.

The two ambulatory backpack systems shown in Section 2.4 contain orthogonally mounted
Hokuyo UTM-30LX 2D laser scanners [74]. The UTM-30LX is a mid-range infrared LiDAR
scanner intended for mobile robotics applications. Like other profilers, this laser scanner
consists of a single laser beam and rotating central mirror system. Each laser scan from
the UTM-30LX consists of only a list of range measurements. Assuming a bearing for each
range measurement, the 2D profile is reconstructed.

Lpi = ri

cos(θi)
sin(θi)

0

 (2.4)

The range measured by the scanner ri is converted into a 3D point in the laser frame of refer-
ence using the assumed bearing angle of the measurement θi. The entire collection of range
readings are assigned a single timestamp t. Although the noise in the range measurement
has been shown to be both a function of the color, reflectivity, and distance to target [75,76],
it is typically modeled as being corrupted by white Gaussian noise with standard deviation
around 2 cm.
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Figure 2.4: An illustration depicting the rolling shutter nature of a 2D profiling laser scanner.
The individual points p1 and p2 are captured at different times from a non-level scanner.
Each point’s timestamp is offset by some fixed delay td plus a delay that increases as the
index of the point increases ktr/N .

2.3.2 Rolling Shutter Model

While the simple laser model from the previous section works for low-speed applications, the
laser readings become distorted when the laser scanner is subjected to high dynamic motion.
The 2D profiling scanners do not measure the entire profile simultaneously. As the central
mirror spins around the LiDAR sensor samples the points one at a time in a linear fashion.
If the platform’s dynamics are significantly faster than the frame rate of the laser scanner,
the resulting data will become warped.

We model this phenomena using a rolling shutter model for the laser scanner. Although
the UTM-30LX scanner assigns a single timestamp to the entire laser scan, we model the
timestamp of each individual point.

tn = t+ td +
n

N
tr (2.5)

In the above expression, the true capture time of the nth point tn consists of the base
timestamp t , a constant bias td that models any system latency, and a fraction of the
sensors readout time tr. If the position of the laser scanner is also known, the range data
can be undistorted when it is transformed into a common coordinate system.

Figure 2.4 illustrates the rolling shutter nature of a 2D profiling laser scanner. As the
non-level laser scanner scans the building it takes individual points in a sweeping fashion in
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a 2D scan plane. The timestamp of each laser point linearly increases as the scan moves
from first point to the Nth point in the scan. As shown, a point pi with index ni has a
timestamp that is calculated as t+ td + trni/N .

2.4 Hardware Systems

The Video and Image Processing Lab at University of California has developed a custom
ambulatory backpack system for indoor mapping, navigation, and geometric modeling. In
contrast to static scanning and wheeled robotic platforms, backpack-like systems strike an
important balance between speed of acquisition and system mobility.

Figure 2.5 shows the two revisions of the backpack system used for testing the algorithms
of this thesis. Figure 2.5(a) shows a CAD model of the first generation prototype system used
for testing the 2.5D algorithms presented in Chapter 3. Figures 2.5(b) and 2.5(c) contain a
CAD drawing and a photo of the weight-reduced second generation backpack system used
for testing the multi-story particle filtering algorithm of Section 3.2.3 and the 3D localization
algorithms presented in 4.

Both backpack systems are equipped with a number of 2D Hokuyo UTM-30LX laser
scanners. These laser scanners are capable of measuring the distances up to 30 meters in
a 270◦ arc around the scanner and operate at a rate of up to 40Hz. The laser scanners
are configured so that they scan orthogonal scanning planes. A horizontally mounted laser
scanner is primarily responsible for measuring the velocity in the global xy plane and heading.
Another 2D scanner is mounted so that it scans the floors and ceilings behind the operator
in order to measure the distance to floor and pitch angles. Lastly, the remaining scanners
are positioned so that they measure the distance perpendicular to the operators direction of
motion and are responsible for collecting dense geometric information.

In addition to laser scanners, both systems contain fisheye cameras for capturing imagery
as the operator traverses the environment. The first generation prototype shown in Fig 2.5(a)
contains dual Grasshopper 5MP cameras with Nikon 180◦ fisheye lenses facing opposite
directions to provide a full sphere view of the environment. The updated second generation
system contains a backward facing and two sideways facing Dalsa Teledyne Genie cameras
equipped with Nikkor fisheye lenses that provide a 140◦ diagonal field of view. The backwards
facing Genie camera captures 12MP images using a global shutter at a rate of 7Hz and is
used for data fusion via visual inertial odometry. The other two cameras capture 12MP
images at 1Hz using a global shutter and are used for colorizing the generated point clouds.

InterSense IntertiaCube IMUs are also present on both system to provide high rate ori-
entation, gyroscope, and accelerometer data at 200Hz. This data is utilized to provide
accurate estimation of the gravity direction for the system. Furthermore, the second gen-
eration system has been outfitted with a Bosch SensorTech BMP085 MEMS barometer to
record temperature and pressure data at a rate of 8Hz for detecting floor transitions in the
data.
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XY Scanner 

Left Geometry 
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(a) Generation 1 System - CAD Drawing (b) Generation 2 System - Picture

(c) Generation 2 System - CAD Drawing

Figure 2.5: Images of the hardware systems used for testing the algorithms contained in
this thesis. Two versions of the ambulatory backpack system have been constructed. (a):
A CAD drawing of the first generation prototype backpack system. (b): A labeled photo
of the second generation backpack system. (c): A CAD drawing of the second generation,
weight-reduced backpack system.
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2.5D Localization Algorithms

3.1 Algorithm Overview

In order to address the shortcomings of existing work on 2.5D mobile mapping [77–79], we
present an algorithmic shift from our previous efforts. Previously we relied on appearance
based loop closure detection algorithms to reduce accumulated errors in the dead reckoning
trajectory. Instead, we first use a Rao-Blackwellized particle filter to obtain a coarse grid map
of the environment so that we can robustly detect loop closures. The detected loop closures
are then fused with the dead reckoning trajectory to alleviate the spatial and temporal
quantization effects inherent to grid mapping.

First, rather than relying on loop closure constraints detected from optical imagery, we
derive them from an occupancy grid map created via Rao-Blackwellized particle filtering.
Previous methods for loop closure detection, such as those relying on keypoints [80], fea-
tures learned from a machine learning framework [81], or correlative map matching [47]
all aim to discover loop closures constraints between arbitrary locations in the environment.
Although these methods have successfully been applied to indoor environments, they often
result in erroneous detections when repeated patterns appear in the environment. In indoor
environments repeated structures exist in both the optical imagery, such as a repeated wall-
paper pattern, or in the laser data. Furthermore, because such methods do not incorporate
prior geometric information, they are unable to prune false detections using line-of-sight or
other geometric constraints. To address these issues, we propose to utilize the information
contained in the occupancy grid map as a geometric prior and only detect loop closures in
locations that are suitable for scan matching. By detecting loop closures based on a grid map
representation of the environment, we leverage the information contained in the occupancy
grid map and ensure that constraints are detected only in locations that are well conditioned
for scan matching.

Next, we extend the 2D occupancy grid map based Rao-Blackwellized particle filtering
algorithm across multiple floors of a building. By using a single 2D occupancy grid map,
the Rao-Blackwellized particle filter inherently makes the assumption that the world is well
represented by a single 2D projection of the environment. Unfortunately, many indoor
environments, such as multi-story buildings, violate the single 2D projection assumption
and thus the particle filter must be extended to work in these environments. We overcome
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this limitation by extending the particle filter to use a collection of 2D maps to represent
the individual floors of a building. To this end, we present a novel barometer based floor
segmentation technique that automatically detects the number of floors and segments the
path accordingly using a variant on the Chinese Restaurant Process [56,57].

Our third contribution is our proposed outlier-resistant, genetic scan matching algorithm
that accurately matches scans despite a poor initial condition. Previous genetic scan match-
ing algorithms, such as the Hybrid Genetic Scan Matcher [59], use a genetic search using a
correlation based metric followed by a round of Iterated Closest Point (ICP) [82] to refine
the solution. We propose two extensions to this algorithm. First, as our system’s lasers often
scan the ceiling, a large number of outliers can be present in the scan data and therefore a
correlation based metric is not appropriate. To that end, we use the fractional root mean
square distance metric [60] to provide robustness against outlier points. Secondly, we apply
scan matching to force each chromosome into a local minima of the objective function. Un-
der this formulation, the genetic scan matching algorithm efficiently searches only the local
minima of the objective function.

Lastly, we present two metrics based on the amount and complexity of overlapping ge-
ometry in order to vet the estimated loop closure constraints. Indoor environments contain
many locations, such as long narrow hallways, where scan matching is ill-conditioned. By
examining the quantity and complexity of overlapping geometry we automatically prevent
erroneous loop closures from degrading the accuracy of the reconstructed trajectory.

Figure 3.1 shows a block diagram of our proposed off-line algorithmic pipeline for 2.5D
localization and mapping. Unlike wheeled systems, an ambulatory system is unable to
utilize wheel encoders for dead reckoning and thus we first use the XY scanner and IMU to
generate odometry measurements. Assuming that the environment is composed of vertically
oriented planes, we are able to undistort scan distortion that arises from the pitch and roll
motion of the operators natural gait by using the 2.5D assumption. Furthermore, due to the
ambulatory nature of the system, outlier points are often detected when the laser scans the
ceiling or ground planes. We overcome this problem by applying a scan matching algorithm
which explicitly models the presence of outliers. By segmenting the scan into a set of inlier
points, we automatically detect points which violate the vertical wall assumption without a
priori knowledge of the outlier distribution. The scan matching odometry results are then
concatenated to form a dead reckoning trajectory.

Integrating odometry for dead reckoning results in accumulated error in the reconstructed
trajectory known as drift. In order to correct for accumulated drift, we fuse the odometry
readings and laser data into a single geometrically consistent representation using a particle
filtering approach. Particle filtering is performed using two passes of a Rao-Blackwellized
particle filter (RBPF). We first use the dead reckoning trajectory to aggregate temporally
adjacent laser readings into local submaps by running a small particle filter around small
subsets of the trajectory. Since the XY scanner is subjected to pitch and roll motion,
it contains many points, such as ceiling or ground strikes, which do not fit the vertical
wall assumption. These points must be eliminated before any 2D SLAM approach can
be effectively utilized. Then we fuse the submaps into a single topographically correct,
occupancy grid map by applying another round of RBPF using the created submaps.

In contrast to [79], we detect loop closure constraints using the occupancy grid map
representation of the environment. Unlike our previous approaches [77–79], we utilize a
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Figure 3.1: Block diagram of the algorithms used for localizing an ambulatory backpack
system.

geometrically consistent occupancy grid map to construct loop closures only in regions that
are inherently well conditioned for scan matching. Since the particle filter also computes a
rough estimation of the position for each submap, we are able to derive an initial condition
for the loop closure constraints and compute the metric transformation between locations
by applying a genetic scan matching algorithm. We then vet the detected loop closure
constraints using a combination of metrics that quantify the amount and complexity of
overlapping geometry. This allows us to both detect and vet loop closure constraints without
any tedious manual intervention.

The 2D mapping results are extended to a full 6DOF pose by combining the pitch and roll
from the IMU with a height estimate at each location. We use the adaptive height estimator
of Kua et al. [79] directly to obtain an estimate of the height difference between adjacent
poses ∆z. We concatenate the 2D location and height deltas ∆z to obtain the 3D position
and combine pitch, roll, and heading estimates to recover the orientation. Once we have an
initial estimate of the 3D trajectory of the system, we find additional loop closures to correct
for any accumulated drift in the height estimates. We split the 2D trajectory according to
the recovered floor partitions and place loop closure constraints anywhere the 2D trajectory
intersects itself and is detected to be on flat ground.

Finally, we fuse the 2D dead reckoning trajectory, height information, pitch and roll
data, and verified loop closure constraints via graph optimization. Specifically, we form an
edge directed graph using the odometry to create pairwise connections between temporally
adjacent nodes. We then insert the vetted loop closure constraints between the detected loop
closure locations. We apply a graph optimization procedure such as TORO [36], g2o [34],
or SAM [35] to generate a single 2D optimized trajectory. The optimized 6DOF path is
then combined with the cameras’ and geometric scanners’ data to produce a dense, colorized
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3D point cloud.
The rest of the chapter is organized as follows: First, Section 3.2 describes algorithms

used in computing the 3D trajectory of the system. Then, Section 3.3 presents the proposed
methodology for detecting and validating loop closure constraints from 2D occupancy grid
maps. Next, Section 3.4 describes how the optimized 2D trajectory is extended to a full
6DOF trajectory. Finally, experimental results for the proposed algorithms are included in
Section 3.5.

3.2 2.5D Particle Filtering Localization

3.2.1 2D Dead Reckoning

This section provides a detailed description of the 2.5D off-line algorithmic pipeline shown
in Figure 3.1 which is used for localizing the human-mounted, ambulatory backpack system.
Unlike wheeled systems where wheel encoders provide dead reckoning, human-mounted mo-
bile mapping systems have to derive odometry from other sources such as scan matching or
IMU measurements [7, 61, 77, 83]. We utilize scan matching to align temporally adjacent
sensor readings from the XY scanner to estimate incremental motion. The incremental mo-
tion is then concatenated to produce a dead reckoning trajectory. Since the system is carried
by a human operator, the XY scanner is not always perfectly level. Specifically, pitch and
roll introduced by the operator’s gait causes significant warping of the sensor readings and
direct scan matching leads to large errors in the reconstructed trajectory.

Assuming that the walls are perfectly vertical, we project the scans along the direction of
gravity to undo the warping in the XY scanner’s data. By projecting the scan points along
the direction of the gravity vector, we correct for the warping introduced by non-zero pitch
and roll. Figure 3.2 shows an an example of this procedure. Figure 3.2(a) shows a simulated
scan inside a box-like environment. The raw sensor readings, shown in Figure 3.2(b), contain
warping caused by the non-zero pitch and roll resulting in the angle between lines to be less
than 90◦. Figure 3.2(c) shows the result of scan projection which results in the lines’ angles
of intersection to be 90◦.

Assuming that the environment remains static between scans, we use successive readings
from the lasers to estimate the incremental motion between scans. Many approaches have
been suggested to solve the scan matching problem including global approaches [84] and
iterative approaches [47, 85, 86]. Of particular interest is a class of iterative algorithms
known as the Iterative Closest Point algorithms, or ICP [82].

The classical ICP problem is framed in the following manner. Given two dimensional
points sets, P and Q, ICP iteratively attempts to find transformation T (·, µ) that minimizes
the following objective function:

e =

|Q|−1∑
i=0

‖pi − T (qi, µ)‖2 (3.1)

where pi ∈ P and qi ∈ Q are matched elements, |Q| is the number of elements in set Q, and
T (·, µ) is the transformation operator that rotates and translates point qi into the reference
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(a)

(b) (c)

Figure 3.2: An example of scan projection. (a): An off-axis scanner in a cubic environment.
(b): The raw readings of the laser scanner. Note that the angle ABC is less than 90◦ due to
scan warping. (c): After projection the angle ABC has been corrected to 90◦.

frame of P using transformation parameters µ. Since our system is equipped with 2D lasers,
we are concerned only with the specific case of 2D point matching.

Variants of the metric of Eq. 3.1 have been suggested for improving accuracy and robust-
ness to outliers. The point-to-line metric of [85] uses point-to-surface matching to reduce
inaccuracies caused by the lasers sampling the surfaces at different locations. Additionally,
because an ambulatory backpack system undergoes significant roll and pitch motion due to
the operators natural gait, a large number of outliers may be present from dynamic objects
or ceiling strikes. Proposed originally for arbitrary point cloud matching, the fractional iter-
ative closest point (FICP) algorithm introduces a metric known as the fractional root mean
square distance (FRMSD). The optimal transform parameters T (·, µ) and inlier set Df ⊆ Q
are obtained by iterating the following steps [60]:

• Given an initial transform T (·, µ0), points in Q are matched to their nearest neighbors
in set P .
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• Assuming a given T (·, µ0), an optimal set of inlier points Df is identified.

• Using inlier set Df , the transform parameters µ are recovered using a first-order Taylor
expansion and solving for the optimal linear estimate of µ [47].

Although the vertical wall assumption corrects for the natural gait of the human operator,
scan points that originate from the ceiling, floor, or dynamic objects in the environment are
not well modeled by a vertical plane and must be handled separately. To this end, we use
the point-to-line and fractional metrics in the following objective function:

e =
1

fλ

√
1

|Df |
∑

qi∈Df

‖nTi (pi − T (qi, µ))‖2 (3.2)

where f is the fraction of points that are considered inliers, Df is the set of inlier points, ni
is the normal vector of the surface at point pi, and λ is a free parameter that controls how
aggressively points are labeled inliers. The objective function is then minimized using the
FICP framework [60].

By solving for both the set of inliers and the optimal transformation parameters, the
metric in Equation (3.2) identifies outliers in the data without any prior knowledge of their
distribution. The process of iteratively segmenting geometry and recovering the transfor-
mation allows for accurate recovery of incremental motion even in the presence of a large
number of outlier points.

Fig. 3.3 shows an example of the above scan matching algorithm. Fig. 3.3(a) depicts an
example pair of LiDAR scans, shown in red and blue, aligned using an initial estimate of
the transformation based upon a priori information. Fig. 3.3(b) depicts the alignment of
scan pair from Fig. 3.3(a) after the FICP algorithm has been performed. The portion of
the geometry that has been found to be part of the inlier set Df is shown in green. By
segmenting the inlier points, we detect and ignore points that do not meet the vertical wall
assumption.

We take the incremental changes in position and integrate them to recover the dead reck-
oning trajectory. Since the path is built recursively, any errors in the transformations are
compounded and lead to drift in the reconstructed trajectory. Inaccuracies in the recovered
path lead to a geometrically inconsistent map and thus are not suitable for most mapping
applications. In order to overcome the accumulated drift in the dead reckoning trajectory,
we reformulate the problem to obtain a solution that optimizes both the path and the envi-
ronment simultaneously. Classical solutions such as those involving Kalman filters, particle
filters, and graph based approaches are discussed in [87].

3.2.2 Submap Generation

Since our system is mounted on a human operator, the sensor readings can contain a large
number of outlier points due to clutter, ceiling strikes, or dynamic objects in the environment.
In order to apply classical 2D SLAM algorithms, we must first eliminate the outlier points
that result from the roll and pitch motion of the system. We apply a two-pass particle
filtering algorithm in order to first aggregate temporally adjacent scanner readings into local
submaps to eliminate outlier points and enhance the sensor’s field of view before generating a
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Figure 3.3: An example of performing the FICP algorithm. (a): The individual scans,
depicted in red and blue, aligned using the initial estimate of the transformation. (b) The
scan pairs after the FICP algorithm has been performed. The portion of geometry declared
as the inlier points are denoted in green.
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single geometrically consistent occupancy grid map representation of the environment. This
section discusses the submap generation procedure.

In order to fuse sequential scans into a geometrically consistent local submap, the first
pass of particle filtering only merges scans from a small, temporally close, region of the
environment. Although typically formalized for large scale mapping, we utilize the RBPF
to generate accurate maps of subsections of the environment [88]. The approach we take
here follows the classical grid mapping framework with three distinctions. First, we use the
dead reckoning results of Section 3.2.1 as the odometry and consider only the inlier points
of the scan matching result when merging points into the map or computing the weighting
factor. By considering only the inlier points, we ignore any outlier points that originated
from dynamic objects in the environment. Secondly, rather than using a strict discretization
to create the grid map, we compute the average position of all points that lie in a grid
cell. By using the average position as the representative sample for each grid, quantization
errors can be mitigated. Lastly, we only consider the temporally closest observations when
creating each submap as we are only interested in creating a map for a small subsection of
the environment.

Figure 3.4 show typical results of RBPF based submapping. The red points represent
the sensor’s original readings while the blue points represent geometry that is added by the
submapping procedure. By aggregating temporally adjacent scans, the amount of visible
geometry for scan matching has been substantially increased and ceiling points have been
removed. Additionally, as seen in Fig. 3.4(b), tracking the average point of each grid cell mit-
igates quantization effects that result from the grid mapping approach. The original corner,
denoted by the black square in Fig. 3.4(a), matches very closely to the corner built during
submap construction. For comparison, the same corner generated with a strict discretization
is shown in Fig. 3.4(c).

The number of temporally adjacent scans used in submap construction impacts both the
construction time and the amount of geometry in the reconstructed RBPF based submapping
algorithm. To limit computation time, we choose local submap sizes based on the following
heuristic. Given a location of interest, we collect scans from neighboring locations until either
the estimated cumulative translation has exceeded N meters or the estimated rotation has
exceeded θ degrees. We have empirically determined values of N = 2 and θ = 30◦ to work
well for our experiments.

3.2.3 Automatic Floor Partitioning

Before we can apply occupancy grid map based particle filtering, we must segment the data
based on which floor of the building it originated from. Previous works, such as [8, 10, 32],
have introduced mobile mapping systems that produce a high-quality 2D and 3D maps of
an environment using either an ambulatory or unmanned aerial vehicle (UAV). Each of
these systems track the position of the system using a combination of cameras and 2D
laser scanners. Using a single 2D laser, these systems create a 2D map of the environment.
However, to enable the system to map more than a single floor of the interior of a building,
the laser must be augmented with additional information to detect transitions between floors.
The method of [10] uses a small mirror to redirect part of the laser’s field of view downward
to make a direct measurement of the system’s height above ground. This can then be tracked
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Figure 3.4: A typical result of RBPF based submapping. The original sensor’s readings
are shown in red while the resulting submap is shown in blue. (a): The amount of visible
geometry has been expanded beyond the original sensor’s readings and ceiling points have
been removed. (b): A close up of the section of the submap denoted by the black square
shown in (a) shows how spatial averaging mitigates some quantization errors. (c): The same
corner using a strict discretization.
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as a function of time to detect floor transitions in the environment. The system presented
in [8] uses an additional 2D laser pointed downward to track the vertical velocity of the
system which is then integrated to recover the height.

Barometric pressure data has also been used for floor partitioning on mobile mapping
platforms. Low-grade barometers such as the Bosch BMP085 are capable of providing pres-
sure and altitude readings to approximately 1 meter RMS accuracy. Fallon et al. presented
in [7] an algorithm to group pressure readings by floor from an on-board digital barom-
eter. Using a Gaussian Mixture Model (GMM) [89], Fallon et al. were able to partition
the barometric readings by building floor using the Expectation Maximization [90] (EM)
algorithm.

The contributions of this section are most closely related to the work of Fallon et al. [7]
with one important distinction. In traditional GMM modeling the number of clusters must
be known a priori, and thus either the number of floors in the building must be known or
must be deduced from the data. In contrast to Fallon et al. who solve this problem using
a set of threshold based heuristics to detect when the operator travels to a new floor, we
employ a Bayesian nonparametric approach to automatically determine the number of floors
in the building while simultaneously assigning the pressure readings to a particular floor.
Furthermore, we demonstrate that the proposed nonparametric is extremely insensitive to
choice of the user defined parameter.

The barometer data is modeled most naturally while the barometer is constrained to a
single floor c by a Gaussian distribution with mean pressure φc set by the altitude above sea
level and variance σ2

b set by the sensor’s noise characteristics. As the barometer changes floor,
the mean of the Gaussian distribution changes but retains a constant variance. Due to this,
the variance is assumed to be a known constant derived from the sensor noise characteristics.
This can be obtained through usage training data. If the number of floors was known a priori,
a GMM would be sufficient for clustering the data. However, since this information is not
available, we instead apply a Chinese Restaurant Process Mixture Model [57] (CRPMM) to
allow for an unbounded number of floors to be used during the clustering process.

The CRPMM models the generation of the data according to the following assumptions.
The clustering of N pressure readings into floor partitioning π[N ] is distributed according
to the Chinese Restaurant Process with concentration parameter α. Furthermore, given a
floor partitioning π[N ], the mean pressure readings φc of the floor partitions are distributed
according to the known prior Gaussian distribution G0 with mean set to the mean pressure
reading and the variance set to the variance of all data samples. Lastly, we assume that given
a floor partitioning and prior distribution on each floors mean pressure φc, the pressure
readings xi for floor c are themselves distributed independently according to the known
Gaussian distribution F (φc) with mean φc and variance set by the noise level of the system’s
barometer. We chose these initial distributions to make the following computations tractable.

π[N ] ∼ CRP(α,N)

φc|π[N ]
iid∼ G0 for c ∈ π[N ]

xi|φc, π[N ]
ind∼ F (φc) for c ∈ π[N ], i ∈ c

(3.3)
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Following the derivation presented in [91], we begin by marginalizing out the φ parame-
ters to define the joint probability of the pressure readings and floor partitioning p(π[N ], x).

p(π[N ], x) =
αK

α(N)

∏
c∈π[N ]

(|c− 1|)!f(xc) (3.4)

The probability measure f(xc) in the above equation is defined as the marginal probability
of the pressure readings associated with floor c.

f(xc) =

∫ (∏
i∈c

f(xi|φc)
)
g0(φc)dφc (3.5)

Here g0(φc) is defined as the prior probability, drawn from G0, of floor c having mean pressure
φc and f(xi|φc) is the conditional probability of pressure reading xi given its assignment to
floor c. Using this definition, we define a Gibbs sampling algorithm [92] to efficiently draw
samples of π[N ].

p(π|π−i, xi) ∝


|c|

α +N − 1
f(xi|xc) for π = π−i − c+ (c ∪ xi), c ∈ π−i

α

α +N − 1
f(xi) for π = π−i + i

(3.6)

where π−i is the partitioning with sensor reading xi removed, −c denotes the set subtraction
of readings belonging to floor c, and +(c∪ xi) is set addition of assigning element xi to floor
c. In the above expression the conditional probability of data reading xi given all data from
floor c is given by

f(xi|xc) = f(xc ∪ i)/f(xc) (3.7)

Equation 3.6 therefore recursively defines the probability of partitioning π in terms of the
partitioning with data element xi removed π−i. The top case corresponds to the probability
of assigning data element xi to cluster c and the bottom case is the probability of creating
a new cluster. The above model is sampled using a Monte Carlo Markov Chain (MCMC)
method, such as a Gibbs sampler [93], to generate samples from the target distribution.
MCMC methods create samples from a target distribution by formulating the sampling
process as a Markov Chain and simulating it until it reaches a steady state distribution.

Since the barometric pressure at a given altitude is constant and the sensor is assumed
to be corrupted with Gaussian white noise, the most natural choice for the conditional
probability of a pressure reading given the floor’s mean pressure φc and sensor noise σ2

b is a
Gaussian distribution.

f(xi|φc) =
1√

2πσ2
b

exp
(
− 1

2σ2
b

(xi − φc)2
)

(3.8)
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(a)
(b)

Figure 3.5: An example result of filtering transition sections from the barometric pressure
readings. (a): The raw pressure readings. The transition sections have been highlighted in
red. (b): The filtered pressure readings with transition sections successfully removed.

To make the integral in Eq. 3.5 tractable, we choose the prior distribution of mean pressures
to be Gaussian with mean φ0 and variance σ2

b/k0. This allows the us to rewrite Eq. 3.5 in
closed form. In practice, the pressure data is mean-centered before processing so φ0 = 0 and
k0 is chosen to be the variance of the entire set of pressure readings.

f(xc) =
1

(2πσ2
b )
|c|/2

1

(2π
σ2
b

k0
)1/2

∫
exp

(
−1

2σ2
b

(∑
i∈c

(xi − φc)2 − k0(φ0 − φc)2
))

dφc (3.9)

After algebraic manipulation and omission of any constants of proportionality we are left
with an expression that is only a function of the first and second moments of the pressure
readings associated with the floor assignment.

f(xc) =
1

(2πσ2
b )
|c|/2

1

(2π
σ2
b

k0+|c|)
1/2

exp

(
−1

2σ2
b

(∑
i∈c

x2i −
(k0φ0 −

∑
i∈c xi)

2

k0 + |c|

))
(3.10)

The above expression is efficiently evaluated by a Gibbs sampler since it only contains the
first and second moments of the floor partition’s pressure readings,

∑
i∈c xi and

∑
i∈c x

2
i

respectively. The Gibbs sampling process results in a discrete set of samples from probability
distribution of the partitions. Since the number of partitions is combinatorially large, it
is unreasonable to assume that a dense sampling of the distribution can be obtained for
arbitrarily large datasets. To overcome this, the log-likelihood of all sample partitions S is
computed and the partition s which maximizes the log-likelihood was chosen as the final
clustering.
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Algorithm 1 The CRPMM floor segmentation algorithm.
1: S ← ∅
2: x = filter data(x)
3: while i < num samples do
4: s← make gibbs sample(x)
5: S ← S ∪ {s}
6: i← i+ 1
7: end while
8: π[N ] ← maximize loglikelihood(S)
9: return π[N ]

max
s∈S

∑
c∈π[N ]

log(f(xc)) (3.11)

It is important to note that before the CRPMM can be used to fit the data, sections
where the operator is transitioning between floors must be removed so the data fits the
Gaussian Mixture Model assumption. Although filtering transitioning sections reveals if
the operator is traversing upward or downward through the building, it does not solve the
problem of detecting the number of floors without additional heuristics. When an operator
revisits a floor, data must be clustered across time to group the individual floor’s segments.
The CRPMM is able to simultaneously detect the number of floor while clustering the data
without additional heuristics.

Algorithm 1 summarizes the CRPMM based floor segmentation algorithm. The algo-
rithm begins by filtering the raw pressure readings to zero-center the data and remove any
sections where the operator is transitioning floors. Then, a Gibbs sampler is used to gen-
erate independent samples from the distribution of possible floor partitions using Eq. 3.6 in
conjunction with 3.10. Finally, the best partition is selected by iterating over the generated
samples and selecting the one that maximizes the log-likelihood via Eq. 3.11.

Elimination of transitional sections is performed by first computing the variance of the
pressure readings using a sliding window across the data. Then, if the variance in any segment
is larger than σ2

b then it is safe to assume that the section corresponds to a transition and
thus can be discarded. For all experiments presented here a window size of 10 was deemed
sufficient. Figure 3.5 shows an example result of pressure filtering to remove transitions
sections. Shown in Fig. 3.5(a) is an example dataset consisting of an operator traversing
two stories connected by a stairwell. Figure 3.5 shows the results of filtering out transition
sections. Note that the mean pressure has been removed so that the data is centered around
zero for numeric stability.

Lastly, some important numerical considerations need to be observed when computing
this function to avoid numerical under and over flow problems. In particular, the normal-
izers involve exponentiating 2πσ2

b to the power of |c|/2. When |c| is large this can easily
cause overflow problems. Luckily, these terms are only large when considering f(xi|xc) from
Eq 3.7 and thus we can perform cancellation of this term in the normalizer to avoid this
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issue. Secondly, barometric pressure at sea-level is 101325 Pascals and thus squaring pres-
sure readings and taking the negative exponential can lead to numerical underflow issues.
To compensate for this problem, all data is mean-shifted to have mean zero before being fit
with the CRPMM. Experimental results are shown in Section 3.5.1.

3.2.4 Rao-Blackwellized Particle Filtering

In this section we discuss the process of fusing the local submaps generated in Section 4.8.1
into a series of geometrically consistent occupancy grid maps.

Once the submaps have been created, we combine them into a series of geometrically
consistent occupancy grid maps using a second pass of Rao-Blackwellized particle filtering.
This process begins by matching sequential submaps via FICP scan matching to obtain
new odometry estimates between the submap locations. We then fuse the submaps and
the newly generated odometry estimates using the Sampling Importance (SIR) filter and
adaptive proposal distribution [32] with two main distinctions. First, our submaps are not
directly generated from a laser range finder and thus this model is not appropriate. Rather,
we use a simple approach that approximates the importance weight of each particle by using
the spatial correlation of the new sensor readings with the particle’s current map:

wi ∝
|Si ∪Mi−1|

min(|Si|, |Mi|)
(3.12)

where Si is the set of points in the ith submap, Mi−1 is the map at time i − 1, and wi
is the approximated importance weighting. Secondly, we incorporate the floor assignments
derived from Section 3.2.3 by creating a collection of 2D occupancy grid maps. Since each
cluster detected by the CRPMM corresponds to a single floor of the building, each particle
creates a occupancy grid map for each barometric pressure cluster. In this way, we extend
the standard 2D particle filtering algorithm to multi-story buildings in a natural fashion
without making assumptions about the layout or vertical stacking of the building.

Figure 3.6 shows an example of the RBPF algorithm. A trajectory of approximately
740 m was traversed over a period of 15 min in a hotel. The map formed by using dead
reckoning alone is shown in Fig. 3.6(a) while the map created by the RBPF is shown in
Fig. 3.6(b). The occupancy grid map generated by the RBPF is geometrically consistent
even when traversing previously visited locations.

While the resulting grid maps are geometrically consistent, the accuracy is still funda-
mentally limited by the size of the grid cells used. Despite averaging the contributions to
each grid cell as its representative point, quantization errors still exist. Furthermore, because
temporally adjacent scans are first aggregated into local submaps, the system trajectory re-
sulting from the RBPF contains poses for only the locations of the submaps, not the original
sensor reading locations. In order to compute poses for all sensor readings we must interpo-
late between the locations of the submaps. The interpolation is carried out by formulating
a graph optimization problem where the poses are the nodes of the graph, the odometry
readings serve as the edges between temporally adjacent poses, and loop closures extracted
from the occupancy grid map provide global constraints on the graph. By fusing the full-
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(a)

(b)

Figure 3.6: An example result of applying the Rao-Blackwellized particle filtering algorithm
to the generated submaps. (a): The map generated using only odometry. (b): The map
resulting from the RBPF using 100 particles at a resolution of 10 cm.
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rate odometry and RBPF localization results into a single full-rate trajectory we obtain a
geometrically consistent trajectory with no temporal or spatial quantization.

3.3 Loop Closure

3.3.1 Loop Closure Extraction

This section describes the proposed methodology for extracting loop closure constraints from
the occupancy grid maps created in Section 3.2.4. To detect loop closures we first convert
the map into a representation that defines a measure of similarity between poses in the
trajectory. Using both the grid map and accompanying trajectory, we explicitly recover
which poses observe which occupancy grid cells from the map. We define the correlation
C(i, j) between each pose i and j using the following function:

C(i, j) =
|Zi
⋂
Zj|

min(|Zi|, |Zj|)
(3.13)

where Zi and Zj are the set of occupancy grid cells observed by pose i and j respectively and
|Z| is the number of elements in set Z. We repeat this for all pairs of poses and collect the
resulting coefficients into a correlation matrix C. Fig. 3.7(a) shows the correlation matrix
formed from the grid map of Fig. 3.6(b). Note that regions of high correlation that are
located off diagonal correspond to temporally distant pose pairs that contain a large number
of overlapping grid cells.

Next we apply hierarchical clustering to group the poses into smaller sets that contain
similar geometry in order to reduce the search space of possible loop closure locations. The
clustering algorithm begins with each pose of the trajectory as its own cluster, and iteratively
joins the most similar clusters until either the required number of clusters is obtained or all
remaining clusters have a similarity metric of 0 [94]. The chosen definition of similarity can
dramatically affect the clustering results. We define the similarity between two clusters X
and Y using the arithmetic mean between cluster elements [94]:

s =
1

|X||Y |
∑
i∈X

∑
j∈Y

C(i, j) (3.14)

Additionally, for a hierarchical clustering algorithm it is necessary to first determine the
number of desired clusters. We compute this by inspecting the eigenvalues of the correlation
matrix C. Given the eigenvalues λC1 < λC2 < . . . , < λCmax we choose the number of clusters
by finding the first eigenvalue λCnc where

λCnc
λCmax

≥ rC (3.15)

and denote the number of clusters by nc. We have empirically found that rC = 0.3 provides
a sufficient number of clusters for our experiments.

Figure 3.7(b) shows the results of the hierarchical clustering algorithm on the correlation
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Figure 3.7: Correlation Matrix Based Clustering. (a): Correlation matrix formed from the
occupancy grid map of Figure 3.6. (b): The results of clustering the correlation matrix from
(a).
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(a) (b)

Figure 3.8: Optimization of the correlation matrix used in clustering. (a): The correlation
matrix of a cluster before optimization of pairwise constraints. (b): The correlation matrix
after FICP has been run on the pairwise constraints.

matrix of Fig. 3.7(a). Each cluster’s poses are shown using a different color overlain on the
occupancy grid map. The clustering algorithm correctly groups the poses spatially even when
the poses are temporally distant. This means we only must search for loop closure indices
inside a single cluster which greatly reduces the search space and speeds up the subsequent
cluster correlation matrix optimization.

Once the clusters have been identified, we extract the portion of the correlation matrix
that corresponds to each cluster. Fig. 3.8(a) shows an example of a cluster’s correlation
matrix. However, because the occupancy grid map may still have small errors in the poses,
we optimize the alignment between each pair of poses within a cluster to further refine each
cluster’s correlation matrix. To do so, we run a round of FICP on each pair of scans to
optimize alignment before computing the correlation using Eq. 3.13. Fig. 3.8(b) shows the
result of applying the optimization procedure to the similarity matrix from Fig. 3.8(a). The
resulting matrix contains smoother gradients between regions which adds local consistency.
Additionally, a greater number of strong correlation peaks are present which reduces the
rate of missed loop closure candidates. We then select candidate loop closures using the
local maxima of the clusters’ correlation matrices. The intuition for this is that local max-
ima located away from the matrix diagonal correspond to revisited locations with a large
amount of overlapping geometry. To avoid grouping loop closures candidates too closely,
we smooth the clusters’ correlation matrices using a 3-by-3 averaging filter before selecting
candidate pairs and enforce the restriction that a pose can only be part of a single loop
closure candidate.

Figure 3.9(a) shows the result of detecting correlation maxima on the cluster correlation
matrix of Fig. 3.8(b). The maxima from the lower triangular section of the matrix are shown
using black dots. Fig. 3.9(b) shows a close up of the upper portion of the trajectory. The
candidate pairs corresponding to the detected maxima are connected via green lines and
the red dots indicate poses in the cluster. The result of maxima detection for all clusters
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Figure 3.9: Loop Closure Selection From Cluster Correlation. (a): The detected maxima
of the cluster correlation matrix of Figure 3.8(b). The maxima from the lower triangular
section of the matrix are shown using black dots. (b): The loop closure pairs corresponding
to the detected maxima from (a). (c): The result of detecting maxima from all clusters is
shown by green circles connected by red lines. (d): The fully optimized trajectory.

is shown in Fig. 3.9(c). As shown, the algorithm correctly extracts loop closure constraints
at revisited locations and between poses that contain a significant portion of overlapping
geometry.

3.3.2 Loop Closure Transform Estimation

Once the candidate pairs have been extracted, the transformation and covariance matrices
must be computed before they can be used in a graph optimizer. Since the submaps from
Section 3.2.2 are spatially quantized, we take the original pair of scans corresponding to a
given loop closure, apply the scan projection algorithm of Section 3.2.1, and match them via
a genetic scan matching algorithm. The result is a set of metric transformations between
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loop closure pose indices.
A widely known limitation of non-linear optimization techniques is that they can fall into

local minima of the objective function. To overcome this limitation, the algorithm is typically
supplied with an initial condition T (·, µ0). The resulting solution is often highly dependent
on choice of T (·, µ0) and a poor choice of initial condition can lead to an undesirable solution.
A class of stochastic optimization techniques, known as genetic algorithms, can overcome
this problem by providing a derivative-free approach for exploring the solution space. Each
solution, or chromosome, is evaluated according to a cost function and assigned a fitness
value. Thus, genetic searches are able to better cope with the presence of local minima or
poor initial conditions [95].

Genetic search (GS) algorithms operate by first considering a randomly distributed set of
solution chromosomes. Using an appropriate fitness metric, the population is evaluated and
each chromosome is assigned a fitness value. The most fit chromosomes are retained and the
rest are discarded. The population is then replenished by creating new chromosomes whose
parameters are chosen randomly from the surviving chromosomes. The generated solutions
are mutated by adding random variation to the chromosomes’ parameters and the process is
iterated until the population reaches a stable configuration. In this manner, GS algorithms
avoid local minima while exploring solutions that are not in the original sampling of the
solution space.

Similar to the previous works of Martinez et al. [96] and Lenac et al. [59], we parameterize
the solution space using a three element chromosome. Specifically, each individual in the
population consists of two translational and one rotational parameter.

µ =
[
dx, dy, dθ

]T
(3.16)

In this parametrization dx and dy represent incremental translations in the x and y directions
respectively while dθ represents a counter-clockwise rotation.

In contrast to the existing approaches of [59,96], we propose a new algorithm, Fractional
Genetic Scan Matching (FGSM), which introduces a transformation function into the lifetime
of each chromosome. Specifically, FGSM starts by considering a random set of chromosomes,
S0, sampled uniformly from a rough initial condition, µ0. The initial condition allows for a
priori information, such as odometry, to be incorporated into the FGSM algorithm. Denoting
each individual chromosome si, we transform the initial population by applying the ICP
optimization procedure to obtain the optimal transformation ri. The fitness value for each
chromosome si is set to the residual of the objective function from Eq. 3.2 evaluated at ri.
The chromosomes with the best fitness scores are replaced by their optimal transform and
the rest are discarded. Because each chromosome is replaced by its optimal transformation ri
the FGSM algorithm can be interpreted as a combination of a stochastic and gradient-based
search over a subset of the local minima of the objective function.

To simulate the mutation between generations, random i.i.d. Gaussian noise is added to
the newly generated chromosomes. The variance of the added Gaussian noise is determined
by considering the variance of the remaining chromosomes’ parameters. Specifically, if the
population’s nth parameter has variance σ2

n, then a random sample drawn from N (0, σ2
n) is

added to each of the generated chromosome’s n-th parameter. The process of transformation,
fitness evaluation, selection, and mutation is iterated until the population converges to a
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Algorithm 2 The FGSM Algorithm

1: µ0 ← initial estimate
2: S0 ← random chromosomes(µ0)
3: while Sn+1 6= Sn do
4: Rn ← ∅
5: for si ∈ Sn do
6: ri ← ICP (si)
7: Rn ← Rn ∪ {ri}
8: end for
9: Rn ← best subset of(Rn)

10: Sn+1 ← Rn ∪make children(Rn)
11: end while
12: return µ and Df from best chromosome.

single dominant trait. This procedure is summarized in Algorithm 2.
An example of the FGSM algorithm is shown in Fig. 3.10. Figure 3.10(a) shows the initial

chromosome population sampled uniformly around the supplied initial condition µ0. Shown
in Fig. 3.10(b) is the distribution of chromosomes after a few iterations. Notice that the
chromosomes only inhabit a few locations corresponding to the local minima of the objective
function Eq. 3.2. After enough iterations have passed, the population, shown in Fig. 3.10(c),
has converged to a single dominant chromosome representing the correct transformation
parameters.

As seen in line 6 of Algorithm 2, each chromosome is used as the initial condition to the
ICP procedure and is replaced by the resulting locally optimal transform. While this step
forces each chromosome into a local minima of the objective function, it is also computa-
tionally expensive. Furthermore, as the population nears convergence many chromosomes
reside in approximately the same location resulting in redundant computation that should
be avoided.

Examining Eq. 3.2, we notice that if both the point matches and the inlier set are given,
then the ICP problem reduces to minimizing the following objective function:

e =
∑

qi∈Df

‖nTi (pi − T (qi, µ))‖2 (3.17)

Following [47], Equation (3.17) can be rewritten as:

e = e(µ, Df )
Te(µ, Df ) (3.18)

where i-th element of vector e(·) corresponds the error contributed from the i-th element of
inlier set Df . Using the Taylor expansion with respect to the transformation parameters, a
linearized version of e(·) can be written as:

e(µ0, Df ) ≈ e(µ0, Df ) + Hµ0 (3.19)

where µ0 is the linearization point and H ∈ R|Df |×3 is the Jacobian of e(·) with respect to
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Figure 3.10: An example of the FGSM process. The scans are shown in red and blue while the
chromosomes are shown in green. A black circle denotes the location of the best chromosome
in the population. (a): The initial chromosome sampling. (b): After a few generations the
chromosomes have converged to a subset of the local minima. (c): After enough generations
have passed the population has converged to a single dominant location.
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µ. The i-th row of H is computed via

Hi =

 −ni

nTi

[
sin(dθ) cos(dθ)
−cos(dθ) sin(dθ)

]
pi

T (3.20)

and the optimal transform can be found using

µ = −(HTH)−1HTe(µ0, Df ) (3.21)

Equations 3.20 and 3.21 reveal that when the Jacobian is evaluated around small angles,
dθ ≈ 0, small deviations dµ from the linearization point result in insignificant changes to
the resulting transformation. This analysis relies on the fact that the objective function is
continuous, which in this case is not true. However, Eq. 3.17 is locally continuous provided
the deviations dµ are small enough to not alter the nearest neighbor point matches.

In order to take advantage of the near-linearity of the Jacobian, we take the following
strategy. We first discretize the solution space into small grid cells and bin chromosomes
according to their parameters. Each time a chromosome is used as the initial condition for
ICP, a record is kept of the resulting transformation. In this way, redundant computation
can be eliminated by building a lookup table between initial conditions and the resulting
transforms.

The amount of discretization in the solution space represents a trade-off between speed
and adherence to the underlying assumptions. The discretization must represent small
enough changes so as not to violate the small-angle approximation or the continuity of
the objective function, yet be large enough to effectively speed up the genetic search. We
have empirically found a spacing of 10 centimeters and 1 degree to provide the best trade-off
between computation time and accuracy for our experimental setup. Section 3.5.4 provides
empirical justification for these values.

3.3.3 Loop Closure Transformation Verification

Even though the FGSM algorithm is a robust way of matching loop closure scans with un-
known initial conditions, care must still be taken to eliminate erroneous transformations.
Poor scan matches can arise when a loop closure has been falsely identified or when geome-
try is ill-conditioned. In these situations it is best to recognize that the algorithm has failed
and avoid using the loop closure constraint. In this section we now propose two metrics,
independent of the detection and estimation tasks, to robustly reject erroneous loop closure
transformations while maintaining a high true positive rate. The proposed metrics are de-
signed to encompass two important factors for characterizing a loop closure transformation:
the amount and complexity of the shared geometry.

The first metric characterizes the amount of shared geometry between matched scans.
Using the proposed transformation from Section 3.3.2, the scans are rotated and translated
into alignment. Next, a pair of normalized two-dimensional histograms are built by binning
the scans’ points into equally sized spatial bins. Then the histograms are correlated using
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the intersection kernel [97]:

c =
∑
i,j

min(h1(i, j), h2(i, j)) (3.22)

where h1(i, j) and h2(i, j) corresponds to the i,j-th bin of the respective histograms. This
measure evaluates to c = 1 if the histograms are identical and c < 1 if they differ.

Our second metric measures the complexity of the overlapping geometry. Using the
proposed transform from Section 3.3.2, Eq. 3.2 can be minimized to obtain an inlier set Df .
Considering only the points in Df , the portion of geometry that is shared between grid maps
is identified. Next, the normal vectors of the inlier points, ni are collected into the matrix

N =
[
n1,n2, . . . ,nn

]T
(3.23)

with which the correlation matrix:

R = NTN (3.24)

is formed. The eigenvalues of R, denoted by λR1 and λR2 , are used to form the ratio

rR =
λR1
λR2

(3.25)

assuming λR1 ≤ λR2 . When geometry is ill-defined for scan matching, such as in a long
featureless hallway, the normal vectors of the points lie almost entirely along the line normal
to the walls. This observation implies that λR1 , and by extension rR, is close to zero. On the
other hand, in situations where geometry is well defined, such as in a complex environment
with many corners, λR1 ≈ λR2 and thus rR is close to 1. While the normal vector for each
point is not detected using a range sensor, in practice techniques such as SVD analysis of
the point’s local neighborhood can provide a reasonable estimate.

3.4 3D Point Cloud Generation

3.4.1 Height Estimation

After the optimized 2D path has been obtained, the height of the system must be estimated at
each pose before a full 6DOF path can be recovered. We recover height using the adaptive
method presented in [79] whereby the floor scanner’s, as shown in the CAD drawings of
Figure 2.5, data is classified as either planar or non-planar. If the floor is detected planar,
then a direct estimate of the system’s height to the floor can be made. However, if the
system is not on flat terrain, sequential scan data from the floor scanner can be matched to
recover the incremental change in height [77]. The incremental and absolute measurements
are combined to estimate the height of the system in the global frame of reference.
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3.4.2 IMU and Height Data Fusion

The height information along with the IMU readings and the optimized 2D path are combined
to form a full six degree of freedom trajectory. The six degree of freedom pose at time t, xt,
is comprised of

xt = [xt, yt, zt, φt, ψt, θt]
T (3.26)

where xt, yt, and zt are the x, y, and z positions and φt, ψt and θt are the roll, pitch and yaw
orientations. The methods of this chapter use the 3-2-1 Euler angle convention to describe
orientations in 3D space. Although quaternions are generally preferred for navigation and
optimization applications, Euler angles are used in this chapter because the orientation
components are not directly used in numerical optimization. In the 3-2-1 Euler convention
roll, corresponds to a rotation about the x-axis, pitch corresponds to a rotation about the
y-axis, and yaw corresponds to a rotation about the z-axis. Specifically, if Ra(b) is a rotation
about axis a by angle b, then the rotation matrix that transforms from the local coordinate
frame {B} to the global coordinate frame {G} is given by:

G
BR = Rz(θ)Ry(ψ)Rx(φ) (3.27)

Since the 2D SLAM and height estimation algorithms provide values in the global coor-
dinate system, the position component of xt is built simply by concatenating the previously
obtained values. The rotational components however must be formed more carefully. The
2D path reconstruction recovers the heading angles αt which represent the projection of the
operator’s forward direction into the global xy-plane. Since the operator has non-zero pitch
and roll, the heading and yaw angle are not identical in the general case. However, we
can derive the correct yaw angle by combining the pitch, roll, and heading into the correct
rotation matrix via:

G
BR = Rz(αt − βt)Ry(ψt)Rx(φt) (3.28)

The correction factor βt is the calculated from the rotation matrix if only the roll and pitch
components of the orientation were applied.

G
BR′ = Rz(0)Ry(ψt)Rx(φt) (3.29)

Using G
BR′, the heading correction factor βt is then computed by projecting the systems

look vector into the global xy-plane and finding the angle it makes with the global x-axis.
By accounting for the heading correction factor βt we ensure that even after the pitch and
roll is applied the heading angle remains αt.

The rotation matrix in Equation 3.28 is then decomposed into the correct roll, pitch, and
yaw values using the Given’s rotations [98]. Concatenating the position and orientation val-
ues yields the full six degree of freedom pose. Figure 3.9d shows an example of an optimized
path using the example data shown in Figure 3.9(a)–(c).
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Figure 3.11: An example depicting how control points can be utilized in the graph optimiza-
tion framework. Poses x1 through x3 observe landmarks z1 and z2. The blue arrows depict
the pairwise constraints on the poses from the odometry measurements while the red arrows
depict the range and bearing constraints from the control point observations.

3.4.3 Incorporating Control Points

Control point targeting is a common practice in architectural modeling and historical preser-
vation applications. Static scanning systems, such as the Leica Scanstation [99], must have
target points in order to stitch scans taken from different locations into a single point cloud.
To automatically detect and utilize these points, static scanning systems often require the
user to hang checkerboard like targets throughout the environment. Once registered, the
(x, y, z) location of the control points can be estimated accurately to less than a millimeter.

If control points are available, our ambulatory backpack system can utilize them to im-
prove the accuracy of the reconstructed trajectory. Similarly to static scanning stations, our
backpack system does not require the control points to be pre-surveyed in order to use them
to improve the accuracy of the reconstructed trajectory. Figure 3.11 conceptually shows how
control points can be naturally utilized by a factor graph optimization framework such as
GTSAM [35]. Poses x1 through x3 contain the initial estimate of the trajectory of the back-
pack and are related via the odometry measurements depicted as blue arrows. The control
points z1 and z2 are observed by the system as it travels through the environment. The
control points observations, shown as red arrows, define a range and bearing measurement
from the pose xi to landmark zk. This defines additional constraints on the graph which
improve the overall trajectory of the system. See Section 3.5.8 for the quantitative effects of
adding control points to improve the accuracy of the reconstructed trajectory.

3.4.4 Point Cloud Generation

Using the data collected by the left and right geometry scanners and the recovered trajec-
tory we are able to generate a dense, 3D point cloud by placing the sensor readings at the
correct pose location. Since the system is also equipped with 2 fish-eye cameras, the sensor
readings can be colorized by projecting them into the temporally closest image. Although
the hardware systems used contain global shutter cameras, the 2.5D localization methods of
this Chapter do not consider any timing delays in the laser data. If these effects were com-
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(a)

(b)

Figure 3.12: An example point cloud generated from the 2.5D algorithm. (a): The exterior
view of a dense, colorized, 3D point cloud generated by the backpack system. (b): A close
up view of an interior section illustrates the point clouds high level of detail.

pensated for, the generated point clouds could be generated and colorized more accurately.
Figure 3.12(a) shows an example point clouded generated using the trajectory from Fig. 3.9.
A close up shot of some detailed furniture is shown in Fig. 3.12(b). The point cloud contains
over 106 million points each with a time stamp, position, color, and unique identifier. When
represented in a space delimited ASCII file, the point cloud takes up approximately 4 GB
on disk.

3.5 Results

In this section we present results for the proposed 2.5D localization algorithms. Section 3.5.1
shows the experimental verification of the automatic floor segmentation algorithm. Sec-
tion 3.5.2 shows example results of the multi-story particle filtering algorithm. Section 3.5.3
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presents performance results of the FGSM algorithm using a variety of initial conditions.
Section 3.5.4 provides empirical justification for the FGSM’s discretization parameters used
throughout. A thorough analysis of the vetting criteria is presented in Section 3.5.5 using
both manual and automatically selected loop closure candidates. Finally, end-to-end system
performance and examples are presented in Section 3.5.6.

3.5.1 Automatic Floor Segmentation Results

We tested the CRPMM based automatic floor segmentation algorithm in a variety of sce-
narios. First, we ran the proposed segmentation algorithm on the filtered pressure data
readings from Fig. 3.5(b). We varied the choice of concentration parameter α and compared
the results to determine the sensitivity of the CRPMM segmentation algorithm. Figure 3.13
shows the results of this experiment. When using α = {0.5, 5, 100} the CRPMM segmenta-
tion performed flawlessly. In order to test the limits of the algorithm, we pushed α to one
million before the segmentation algorithm finally broke. This shows that the CRPMM is
robust to choice of user defined concentration parameter α across many orders of magnitude.

Next, the CRPMM was tested against both supervised and unsupervised Gaussian Mix-
ture algorithms to compare performance. The method of [7] uses heuristics to deduce the
number of floors and then performs data clustering using the EM algorithm to fit a GMM to
the data. This can be viewed as a two step process that first identifies the number of floors
and then clusters the pressure readings. In order to perform the fairest comparison possible,
we provide the number of floor clusters directly to the method of [7] and seed the EM al-
gorithm using K-Means [100]. The second method we compare against is the unsupervised
clustering algorithm presented by Figueiredo and Jain [58]. Figueiredo and Jain use the
Minimum Message Length [101] (MML) criterion and the EM algorithm to simultaneously
detect the number of components and cluster the data. We apply the method directly as
presented for comparison purposes.

Figure 3.14 shows the results of the floor segmentation comparison tests. The dataset
used for comparison was taken across 5 floors of an academic building. The filtered and
zero centered pressure readings are shown in Fig. 3.14(a). Figure 3.14(b) shows the results
of our CRPMM based segmentation algorithm. Notice that the correct number of floors
were detected and the pressure data is segmented correctly. Figure 3.14(c) shows the results
of applying the EM algorithm to fit a GMM model with the number of components known
a priori. The EM algorithm incorrectly declares the bottom two clusters as a single floor
and erroneously splits the middle segment. Lastly, Fig. 3.14(d) shows the results of the
unsupervised clustering method of Figueiredo and Jain. For this example, the unsupervised
method has over-segmented the data into 6 components instead of the optimal number of 5.

The final experiment using our automatic, CRPMM-based floor segmentation algorithm
was to test its performance on data that contains systematic bias. Figure 3.15(a) shows the
filtered pressure readings from a building spanning 7 stories. Notice that some of the pressure
reading segments appear to have a linear ramp bias. Figure 3.15(b) shows the segmentation
results. Since the data does not fit the underlying assumptions of the CRPMM, a few data
points around the cluster boundaries have been misclassified. Example misclassifications are
circled in red.

46



Chapter 3. 2.5D Localization Algorithms

(a) (b)

(c) (d)

Figure 3.13: Sensitivity results for the Chinese Restaurant Process Mixture Model segmenta-
tion results. The concentration parameter α of the model was varied to test model sensitivity.
Note that the segmentation results are stable across many orders of magnitude of α. (a):
α = 0.5 (b): α = 5 (c): α = 100 (d): α = 1000000

3.5.2 Multi-Story Particle Filtering Results

In this section we present an example result for the multi-story extension to the standard
Rao-Blackwellized particle filtering algorithm. A dataset was taken across two floors of
an academic building connected by a single staircase. Pressure readings, IMU data, and
laser data from the horizontally mounted scanner were collected. We then ran the CRPMM-
based floor segmentation algorithm to partition the data based on what floor of the building it
originated. The multi-story particle filter was then run to create a collection of geometrically
consistent occupancy grid maps.

Figure 3.16 shows the results of applying the multi-story particle filtering algorithm us-
ing barometric floor segmentation. Figures 3.16(a) and 3.16(b) show the reconstructed oc-
cupancy grid maps for lower and upper levels of the building respectively. The red dots
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(a) (b)

(c) (d)

Figure 3.14: Barometric Floor Segmentation Comparison Results. (a): The filtered pressure
readings from a dataset spanning 5 floors of a building. (b): The results when applying
our CRPMM based segmentation algorithm. (c): The results when applying a GMM based
model with the number of clusters known a priori. (d): The results of the unsupervised
method of Figueiredo and Jain [58].

indicate the locations where the floor transition was correctly detected.

3.5.3 FGSM Performance Evaluation

In this section we compare the proposed FGSM algorithm and a few state of the art alter-
natives. First, we compare against the open source libpointmatcher library [102] because it
contains several implementations of state of the art ICP variants. In particular, we use the
library’s FICP implementation as it provided the best performance on our data. Secondly,
we compare our proposed FGSM algorithm with the original hybrid genetic algorithm from
which it was extended [59].

We construct the following experiment to quantify the performance of each of the three
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(a) (b)

Figure 3.15: An example of the CRPMM segmentation algorithm on a dataset with system-
atic bias. (a): The filtered pressure readings. (b): The segmentation results. Notice that
a few of the clusters contain a linear ramp bias. The resulting segmentation is prone to
misclassification around the cluster boundaries. A few misclassified data points are circled
in red.

(a) (b)

Figure 3.16: The results of the multi-story particle filtering algorithm using barometric floor
segmentation. (a): The grid map reconstructed from the lower level. (b): The grid map
reconstructed from the upper level. The red dot indicates the location where the floors
transition was correctly detected.

chosen algorithms. We first hand-construct a set of 177 ground truth scan matching results
taken from 10 different environments. Then, random initial conditions are created by select-
ing values from a collection of i.i.d. zero-mean Gaussian random variables with increasing
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σT (m) Libpointmatcher [102] Hybrid-GSM [59] FGSM

0.25 93% 90% 94%
0.5 89% 91% 95%
1.0 82% 89% 94%
2.0 68% 73% 91%
3.0 58% 59% 85%
5.0 45% 42% 75%
8.0 30% 36% 66%
10.0 25% 30% 62%

Table 3.1: A comparison of the proposed FGSM algorithm to previous methods in the
case of translation only error. The percentage of trials that succeeded for various standard
deviations in the translational component of the initial condition.

standard deviation. Ten unique trials are conducted for each scan pair resulting in 1,770
attempts for each standard deviation. Each algorithm is run and the resulting transforms
are recorded. We consider any transform within 5 cm or 1 degree to have converged to the
correct solution.

The first experiment assesses the algorithms’ performance in the presence of translation
only error. Using increasing levels of translation offset, ranging from 0.25 m to 10 m in
standard deviation, we ran the experimental setup and computed the percentage of successful
scan matches. Table 3.1 summarizes the results of this experiment. In situations where the
error is small, the algorithms perform nearly identical. However, as the level of errors
is increased, the accuracy rates of libpointmatcher and the hybrid genetic scam matching
(hybrid-GSM) algorithms decay at a much faster rate than the proposed method.

In the second experiment we repeat the same procedure, but add only rotational offset
using standard deviations ranging from 18◦ to 180◦. Table 3.2 presents the results of this
experiment. In contrast to the translation only scenario, the proposed algorithm outperforms
both competitors by a wide margin. Surprisingly, the hybrid-GSM algorithm lags behind
libpointmatcher by a considerable amount in this test. We suspect that this is because the
hybrid-GSM algorithm does not model the presence of outliers data points.

In practical scenarios the error in initial condition is typically a mix of both rotation and
translation. To characterize the effects of both error sources simultaneously, we repeat the
experiment but this time add variations to both the rotational and translational components
of the initial condition. As seen in Table 3.3, the algorithms perform similarly to the case
of rotation only error. This result is not surprising because only the rotational variable
appears as a non-linear in the object functions Jacobian. The results of these experiments
show that the FGSM algorithm clearly outperforms comparable algorithms for data typical
of our system.

3.5.4 Effect of Discretization on the FGSM Algorithm

As stated in Section 3.3.2, the amount of solution space discretization in the FGSM algorithm
represents a trade-off between computational efficiency and accuracy. In order to determine
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σθ (degrees) Libpointmatcher [102] Hybrid-GSM [59] FGSM

18 74% 60% 92%
30 59% 44% 84%
45 45% 31% 73%
60 34% 24% 63%
90 25% 17% 49%
180 17% 11% 37%

Table 3.2: A comparison of the proposed FGSM algorithm to previous methods in the case of
rotational only error. The percentage of trials that succeeded for various standard deviations
in the rotational component of the initial condition.

(σT , σθ) (m,◦) Libpointmatcher [102] Hybrid-GSM [59] FGSM

(0.25, 18) 74% 60% 91%
(0.5, 30) 55% 43% 84%
(1.0, 45) 42% 33% 74%
(2.0, 60) 28% 21% 61%
(3.0, 90) 18% 11% 45%
(5.0, 180) 9% 6% 33%

Table 3.3: A comparison of the proposed FGSM algorithm to previous methods in the case
of both rotational and translational error. The percentage of trials that succeeded for various
standard deviations in the rotational and translational components of the initial condition.

an appropriate level of discretization, we conducted the following test. We selected seven lev-
els of discretization, ranging from no discretization to 1 m and 10 degrees, and evaluated the
performance of the FGSM at increasing amounts of error in the algorithm’s initial condition.
For each chosen level of discretization and error in initial condition, we conducted a trial of
one thousand scan matches drawn from a database of one hundred scan pairs. For each scan
match we used two hundred initial chromosomes and computed the accuracy and running
time by comparing the FGSM results to the manually defined ground truth alignment.

Figure 3.17 shows the results of this experiment. Fig. 3.17(a) shows the effect of dis-
cretization on accuracy while Fig. 3.17(b) shows the corresponding effect on run time. The
baseline, shown in black, corresponds to no approximation. As the solution space discretiza-
tion is increased, both the average runtime and accuracy decreases. For specific discretization
parameters of 0.1 meters and 1 degree, the runtime is decreased by a factor of 3.25 without
sacrificing a significant amount of accuracy compared to the baseline algorithm. Further-
more, Fig. 3.17(b) shows that the FGSM algorithm’s running time is correlated with the
amount of error in initial condition. This result is expected because as the error in initial
condition increases, the algorithm must explore a larger solution space and thus it converges
at a slower rate.
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Figure 3.17: The effect of solution space discretization on the FGSM algorithm for increasing
levels of error in initial condition. (a): Accuracy computed for different amounts of solution
space discretization. (b): The average runtime of the FGSM algorithm for different levels of
discretization.
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3.5.5 Loop Closure Verification

In order to characterize the effectiveness of the proposed metrics for loop closure verification,
a database of 15 datasets has been collected from 10 unique environments. The classification
metrics are evaluated in the following two scenarios. First, between 50–100 true loop closures
are manually defined for each dataset resulting in 590 positive examples. To simulate the
presence of falsely identified loop closures, 10 loop closures are randomly defined for each
dataset yielding 150 potentially erroneous examples. The FGSM algorithm is then run on
each loop closure candidate and the resulting transformations were then manually inspected
and labeled.

Figure 3.18(a) shows a scatter plot of the results. The candidates for which the FGSM
algorithm correctly identifies the transformation is shown using a green ◦, while the incorrect
transforms are shown via a red ×. The two regions form a near disjoint partition of the graph
suggesting the use of a threshold based rule. Specifically, transformations are defined to be
correct if the ratio of eigenvalues exceeds threshold rR and the correlation metric exceeds
threshold c.

Statistics for various thresholds are computed and the resulting receiver operating char-
acteristic (ROC) curve is shown in Fig. 3.19. When the false positive rate is required to
be ≤1%, the corresponding true positive rate is 84.7% for thresholds of rR > 0.132 and
c > 0.207. The computed area under the ROC curve was found to be 94.2%.

Since the existing work on loop closure verification [47] only report statistics for detec-
tion, estimation, and validation combined, a one-to-one comparison is not possible. While
a direct comparison cannot be made, the authors rely on a correlation-like technique to val-
idate loop closure transformations. To demonstrate the performance of a correlation only
scheme in indoor environments, we perform the loop closure vetting again using only the
correlation metric c of Eq. 3.22. Figure 3.19 shows the resulting ROC curves. When the
false alarm rate is required to be ≤ 1%, we obtain true positive rates of 16.9% and 13.5%
for the manual and automatic loop closure sets respectively. This empirically shows that a
correlation metric is insufficient for robust operation in indoor environments.

The same test is repeated, but this time using automatically detected loop closures
via the method of Section 3.3.1. Using 5 new datasets, 361 examples are automatically
detected from grid map data. The FGSM algorithm is run and the results are manually
inspected and labeled. Figure 3.18(b) presents the results of using the proposed classifier on
the automatically detected loop closures. The distribution of points in the plot supports the
use of a threshold based rule. Using the thresholds derived from the manually defined set of
loop closures, a true positive rate of 72.3% and a false positive rate of 4.3% is obtained. This
analysis empirically shows that the false alarm rate and optimal thresholds are only loosely
dependent on the source of loop closure candidates.

3.5.6 End-To-End System Results

We evaluated the end-to-end system performance using the following experiment. We col-
lected data along a 350 meter trajectory from an office building with approximately 1,500
square meters of floor space. The office environment contained 100 pre-surveyed control
points each denoted using a paper target containing a checkerboard-like pattern of known
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Figure 3.18: A scatter plot showing the distribution of loop closure candidates using the
proposed metrics. A red × corresponds to a failed loop closure transformation, while a
green ◦ represents a successful candidate pair. The chosen thresholds are denoted using the
dashed black lines. (a): The results for the manually defined loop closure candidates. (b):
The results for the automatically detect set of loop closures.
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Figure 3.19: Comparison of receiver operating characteristic curves when using both metrics
versus only correlation.

size. Using a Leica HDS6000 and C10 Scanstation, 17 high-density static scans were auto-
matically stitched together to provide millimeter level accuracy for each survey point. We
then localized the system using both the proposed algorithm and our previous approach [79].
We estimated the location of each control point by projecting the temporally closest laser
readings into the optical imagery and then manually selecting all laser points that landed
on the paper target. We then fit a plane to these points using Principal Component Anal-
ysis [103] to determine the precise (x, y, z) location of the control point. The estimated
locations were then compared to the ground truth locations in order to characterize the
accuracy of each method.

Figure 3.20 shows the results of the control point experiment. Figure 3.20(a) shows the
locations of the control points, shown in red, overlain on the reconstructed geometry. A well
trained human engineer tediously spent approximately 10 h manually selecting, estimating,
and vetting 150 loop closure constraints in order to apply the method of [79]. Figure 3.20(b)
shows the resulting histogram of errors for the previous method with a maximum reported
error of 27.66 cm a mean error of 9.91 cm, and standard deviation of 5.30 cm amongst all
control points. The histogram of errors for the proposed method is shown in Figure 3.20(c).
The proposed method utilizes only 63 loop closures, yet still attains a maximum error of
27.73 cm, a mean error of 10.66 cm, and a standard deviation of 5.49 cm. Figure 3.20(d)
and 3.20(e) show the locations of the loop closure constraints used for both the previous and
proposed methods. Despite automatically generating fewer loop closure constraints, the new
method is able to match the performance of the previous method which required manual
intervention.

To further demonstrate the end-to-end performance of the backpack system, we have
applied the proposed algorithms to three more datasets of increasing complexity. Fig-
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(a)

(b) (c)

Loop Closure Locations − Manual Selection

(d)

Loop Closure Locations − Proposed Method Selection

(e)

Figure 3.20: Results from the control point experiment. (a): The locations of the control
points, shown in red, overlain on the reconstructed map. (b): Histogram of the errors in
estimating the control points for the previous method. (c): Histogram of the errors in
estimating the control points for proposed method. (d): The locations of the manually
selected loop closure constraints, shown by green circles connected by red lines, used when
applying the previous method. (e): The loop closure locations automatically selected via
the proposed method.
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Subtask Total Time (min) Per Minute Time (sec)

Dead Reckoning 3 4.5
Floor Segmentation 1 1.5
Submap Generation 50 75.0

RBPF Grid Mapping 60 90.0
Loop Closure Detection 10 15.0
Transform Estimation 2 3.0

Verification 1 1.5
Graph Optimization 2 3.0
Height Estimation 10 15

3D Path Generation 1 1.5

Total 139 208.5

Table 3.4: A rough estimate of the running time for the various stages of the presented
algorithm for a 40 min data collection.

ure 3.21(a)–(c) show a simple dataset taken from a 250 m single loop on one floor of an
academic building. The resulting occupancy grid map is shown in Figure 3.21(a). Global
constraints have been extracted from the grid map and the FGSM algorithm is run to com-
pute the transformation between loop closure locations. The trajectory after optimization
is shown in Figure 3.21(c).

The second set, shown in Figure 3.21(d)–(f) is a longer dataset taken from an entire floor
of an academic building containing a few inner loops. Totaling 22 min, the operator walked
for 750 m through the environment. Figure 3.21(e) shows the dead reckoning trajectory with
the 80 accepted loop closures overlain. The optimized, geometrically consistent trajectory is
shown in Figure 3.21(f).

The final dataset is the most challenging because the trajectory contained many interior
loops and a large portion of the surrounding geometry did not fit the vertical wall assumption
made in Section 3.2.1. Taken from a warehouse-sized retail shopping center, the scanned
area exceeded 5,820 square meters. The operator traversed the environment for 31 min and
covered a total distance of 1,500 m. Despite the large amount of accumulated bias present in
Figure 3.21(h), the 59 accepted loop closure constraints extracted from the occupancy grid
map enforce geometric consistency in the final optimized trajectory. This result shows that
our proposed algorithms are able to scale to buildings of considerable size.

3.5.7 Timing Results

Although the proposed algorithms were designed to be run off-line, it is important to high-
light the approximate running time for the various stages of the algorithms. Table 3.4 lists
the approximate running time for the various subtasks using unoptimized code on a sin-
gle core of an 2.4 GHz Intel Core i7 laptop. For the 40 min data collection taken in the
warehouse-sized retail shopping center, the approximate running time of all stages was 139
min. Based on the results of Table 3.4, we note that the running time is dominated by the
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(a)
(b) (c)

(d) (e)
(f)

(g) (h)
(i)

Figure 3.21: Results of applying the end-to-end system. (a),(d),(e): The occupancy grid
maps that result from the RBPF algorithm. (b),(e),(h): The dead reckoning trajectories
with validated loop closure constraints overlain. (c),(f),(i): The 3D paths viewed from the
top down after optimization has been applied.
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submap generation and grid mapping step of the algorithm. This result is easily understood
due to the fact that both stages require the Monte Carlo based RBPF.

The number of particles used in the RBPF represents a trade-off between accuracy and
computation time. Particle filters require sampling a discrete set of samples from a con-
tinuous posterior distribution and thus as the number of particles increases the posterior is
estimated more accurately. Since each particle must have its contributions computed inde-
pendently, the running time also increases linearly with the number of particles used by the
RBPF. Since the 2.5D localizations algorithms are run in an off-line, we typically use an
overabundance of particles in the RBPFs for maximal accuracy. For a large-scale dataset
the number of particles utilized is typically on the order of 1000.

In addition to the RBPF based sections of the algorithm, loop closure detection also
takes a substantial portion of the runtime. In particular, the optimization of the correlation
matrix is the most computationally expensive portion of loop closure detection. For a cluster
of N poses, correlation matrix optimization requires on the order of N2 applications of FICP.
For clusters involving approximately 100 poses, the time required to optimize the clusters’
correlation matrices is approximately 50 seconds per cluster.

Although the algorithms were designed to be run off-line, several opportunities exist to
make the algorithms more suitable for real-time operation. Since the particles in the parti-
cle filter are computed independently, the RBPF is trivially parallelization across multiple
threads. Furthermore, when performing optimization of the cluster’s covariance matrix each
application of FICP is completely independent and thus will trivially scale with the number
of threads used for computation.

3.5.8 Incorporating Control Points Results

In order to test the effect of the graph-based control point algorithm of Section 3.4.3 on the
accuracy of the reconstructed trajectory, we conducted the following experiment. Starting
with the dataset and control points of Section 3.5.6, we chose a small subset of the 100 total
control points and used them as landmarks during graph optimization. The remaining unused
control points were used to characterize the error in the trajectory in a cross-validation
framework. Since we had pre-surveyed ground truth estimates of all control points in this
dataset, the estimates of the unused control points were compared against the ground truth
to produce an error metric for each point. We then varied the number of control points being
utilized to quantify the effect of the number of control points on the system’s accuracy.

Figure 3.22 shows the results of incorporating control points on the accuracy of the recon-
structed trajectory. The mean alignment error of all remaining control points and the 95%
confidence interval were estimated by computing the results over 100 trials of a bootstrapped
sampling of the data [104]. By inspecting Fig. 3.22, we find that for a small number of con-
trol points there is no statistically significant change in the mean control point alignment
error. However, as the number of utilized control points increases, the mean alignment error
is decreased and the 95% confidence interval shrinks. By utilizing around 90 control points
as landmarks, the mean alignment error drops to around 8 cm. This is a 50% decrease over
the baseline case of utilizing no control points.

In practice, the landmarks must be specified in the graph optimization problem with
some initial covariance to model the uncertainty in their positions. The initial uncertainty
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Figure 3.22: The effect of incorporating control points on the accuracy of the reconstructed
trajectory. Shown in red is the mean error in control point alignment. The blue bounds indi-
cate the 95% confidence intervals. As control point utilization increases, the mean alignment
error decreases.

of the landmarks was chosen to match the noise specifications of the static scanning tech-
nology. For the scanning technology utilized for this experiment, the standard deviation of
the uncertainty was set to 0.5 mm.
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Chapter 4

3D Localization Algorithms

In this Chapter, we present a sensor fusion algorithm for direct 3D localization and mapping
of GPS-denied indoor environment in order to overcome a number of major drawbacks of the
2.5D methods presented in Chapter 3. In contrast to the 2.5D localization algorithm that
combined data from multiple sensors in an ad hoc fashion, the algorithm presented in this
Chapter reformulates the localization and mapping problem using a tightly-coupled Extended
Kalman Filter (EKF) estimator. In doing so, it provides a number of key advantages over
the 2.5D methods presented in Chapter 3. First, there is only a loose coupling of data
between the sensors. Generally, 2.5D methods decouple the localization problem into a 2D
localization problem followed by a height estimation problem. In doing so, data from the
laser scanners and IMU are combined in an ad hoc method to create a full 6DOF trajectory.
Furthermore, data from the IMU is trusted and used without any external feedback or batch
optimization. This means that any errors in the IMU data will directly affect the final
trajectory and cause degradation in the final model.

Secondly, the data from the camera is completely neglected in the localization process.
Camera sensors are capable of providing valuable feedback during the mapping process.
By decoupling the localization problem into a 2D localization problem followed by a height
estimation problem, the methods in Chapter 3 is unable to easily incorporate camera imagery.

The final drawback with the 2.5D approach from Chapter 3 is that it not capable of
calibrating the various intrinsic, extrinsic, and temporal calibration parameters of the system.
Since data from individual sensors are captured in their own coordinate systems, accurate
calibration and synchronization between sensors is essential for accurate mapping.

We address these shortcomings by proposing a tightly-coupled EKF estimator that fuses
data from all available sensors into a single trajectory. By formulating the SLAM problem as
an EKF estimator, data from individual sensors are causally fused together to estimate not
only the position of the system and a low dimensional planar representation of the surround-
ing environment, but also an optimized estimate of the system’s calibration parameters.

4.1 Algorithm Overview

Similarly to the methods of Chapter 3, a two-pass approach is used. First, data from all
sensors is fused into an open-loop estimate of the system’s trajectory. Then, a graph opti-
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Figure 4.1: The block diagram of the 3D localization and online calibration method presented
in this chapter.

mization post-processing step is applied to correct for any accumulated drift and create an
optimized system trajectory. The final system trajectory is then used in creating a high-
quality 3D point-cloud representation of the environment using the methods presented in
Section 4.8.4.

The main contributions of this chapter are threefold. First, we propose a tightly-coupled
EKF estimator that fuses data from all available sensors into a single optimized trajectory.
By fusing data from both laser and camera sensors, we show that we are able to more accu-
rately estimate the trajectory of the system than if we used only a single sensing modality.
Secondly, by formulating the SLAM problem as an EKF estimator, data from individual
sensors are causally fused together to estimate not only the position of the system and a low
dimensional planar representation of the surrounding environment, but also an optimized
estimate of the system’s calibration parameters. To our best knowledge this work presents
the first direct online extrinsic and temporal calibration between a 2D laser scanner and an
inertial sensor that considers the rolling shutter effect of the laser scanner. Lastly, we allow
vertical planes of arbitrary orientation. A direct consequence of this is that our algorithm
does not require the local coordinate system to be axis aligned as in [61]. Furthermore, this
allows the algorithm to be used in a wider variety of indoor environments even when the
map is not known a priori.

Data fusion using multiple separate data sources requires a modular approach. We for-
mulate the EKF-SLAM algorithm by queuing the data according to the timestamp reported
by the sensor. In doing so, the estimator is agnostic to differences in sampling frequency
between the sensors. Furthermore, by processing the data in this fashion, the EKF is capable
of flexibly processing data from an arbitrary number of lasers with no modifications to the
underlying algorithm. A well-known limitation of EKF-SLAM is that the size of the state
vector ultimately limits the number of map features that can be tracked. We address this
problem in two ways. First we limit the number of structural elements tracked by the EKF
using a set of heuristics. In traditional EKF-SLAM this strategy leads to drift in the esti-
mated trajectory. In order to eliminate any accumulated drift, we also apply an incremental
graph optimization as the final step.

Algorithm 3 and Figure 4.1 provide an overview of the algorithms presented in this Chap-
ter. As shown in Figure 4.1, the algorithm begins by first processing the raw sensor data to
produce open-loop odometry via an EKF estimator. Each time a new data reading is avail-
able to the EKF estimator, the appropriate update function is called. If the data is from
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Algorithm 3 Multi-sensor Data Fusion Algorithm Overview

1: while has data to process() do
2: data = read data()
3: if data.type == INERTIAL then
4: propagate imu state(data)
5: else if data.type == LASER then
6: perform laser ekf update(data)
7: else if data.type == IMAGERY then
8: perform camera ekf update(data)
9: end if

10: end while
11: while has submaps to process() do
12: add odometry to graph()
13: if loop closure found() then
14: constraint = compute transform using icp()
15: update incremental graph optimization(constraint)
16: end if
17: end while

the IMU, then it is used to propagate the state and its covariance forward by integrating
the gyroscope and accelerometer measurements. If the data originated from a camera, then
the image is used to perform an EKF update according to the MSCKF algorithm [105].
For laser scans, the EKF extracts line features from the raw range data and matches them
against planes stored in the EKF’s map using our proposed laser processing algorithm. In
this way, the EKF estimator processes the data readings in a causal and modular way.

Once the data is processed using the EKF, we perform a path smoothing step to mitigate
any accumulated drift. Specifically, we assemble the laser scans into small subsections of the
environment. Termed submaps, the small sections are then matched against each other
using an ICP variant to create constraints for an incremental graph optimization procedure.
The incremental graph optimization results in an optimized trajectory that is then used to
assemble all laser data readings into a dense point cloud representation of the environment.

The outline of this section is as follows. Section 4.2 defines the list of symbols used
through this chapter. Section 4.3 describes the state space representation of our EKF esti-
mator. Section 4.4 details how IMU data is used in the Kalman filter’s propagation step.
Next, the processes by which the image and laser data is utilized by the EKF estimator is
detailed in Sections 4.5 and 4.6 respectively. Section 4.8 then describes the iterative graph
optimization procedure used for mitigating accumulated drift during odometry estimation.
Finally, Sections 4.9 and 4.10.1 contain the results and limitations of the proposed algo-
rithms.
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4.2 Notation and Table of Symbols

This section defines the symbols used throughout this chapter. The conventions for the
notation used for scalars, vectors, and matrices is repeated here from Section 2.1.

4.2.1 General Notation

Symbol Notation Example

Scalars are denoted in lower case x

Vectors are denoted in bold lower case x

Matrices are denoted in bold upper case X

Cross product of a vector uses b· ×c bω ×c
Quaternion product is denoted as ⊗ q1 ⊗ q2

Time derivative is represented by a dot ṗ = v

Jacobian of function f(·) by vector x Jx

(
f(·)

)
or Hx or Γx

Estimation Notation Example

An estimated value is denoted by a hat x̂

A tilde denotes an estimation error x̃

Rotation error is denoted using θ̃ or δ θ̃
G

or δq

Coordinate Notation Example

Coordinate frames are denoted in upper case G or {G}
A rotation from {G} to {B} B

GR or BqG

The coordinate frame of a point pB in {G} GpB
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4.2.2 Symbol Definitions

αi Angle coordinate of the ith laser point.

βθ Plane duplication angle threshold.

βd Plane duplication offset threshold.

∆x State update vector.

Γl The stacked laser Jacobian with respect to the laser feature observations.

Γθj The Jacobian of y with respect to the jth line feature.

Γaug The augmentation Jacobian with respect to the laser feature observations.

Γjg The Jacobian of Eq 4.107 with respect to the jth line feature.

Γl1j The Jacobian of rl1j with respect to the laser line feature uj.

Γl2j The Jacobian of rl2j with respect to the laser line feature uj.

ΓdHj The Jacobian of the horizontal offset parameter with respect to the jth line feature
uj.

ω A rotational velocity vector.

ωm The measured rotational velocity vector.

Φ State transition matrix.

Πi The ith plane.

πi The normal vector for the ith plane.

Σ Covariance matrix.

Σpi Covariance matrix of the ith plane.

lj⊥ The out-of-plane intersection line of the jth laser feature observation.

∆t Timestamp difference.

δθ An error in a quaternion.

δθG An error in a global quaternion.

γ Mahalanobis distance.

T̂ Transformation.

x̂ An estimate of quantity x.
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R3 The set of 3D real numbers.

a An acceleration vector.

am The measured acceleration vector.

ba The time-varying bias of the accelerometer.

bg The time-varying bias of the gyroscope.

ez Elementary basis vector for the z-axis.

f The focal length parameters of the camera.

Gc IMU noise transfer function matrix.

h(·) Camera projection function.

Hx General notation for a Jacobian of a function with respect to states x.

Hl The stacked laser Jacobian with respect to the state vector x.

HgB The Jacobian of Eq 4.107 with respect to the IMU body state xB.

HgL The Jacobian of Eq 4.107 with respect to the laser calibration state xL.

Hπi The Jacobian of the camera observation function with respect to the ith camera pose.

HθB The Jacobian of y with respect to the IMU body state xB.

HθL The Jacobian of y with respect to the laser calibration state xL.

Haug The augmentation Jacobian with respect to the state vector x.

Hci The Jacobian of the camera observation function with respect to the camera calibra-
tion.

Hfj Stacked Jacobian of the camera observation of the jth point with respect to the jth

point.

Hfij The Jacobian of the camera observation function with respect to the jth feature point.

Hl1jB The Jacobian of rl1j with respect to the IMU body state xB.

Hl1jL The Jacobian of rl1j with respect to the laser calibration state xl.

Hl1jPi The Jacobian of rl1j with respect to the laser calibration state xpi .

Hl1j The Jacobian of rl1j with respect to the state vector x.

Hl2jB The Jacobian of rl2j with respect to the IMU body state xB.

Hl2jL The Jacobian of rl2j with respect to the laser calibration state xl.
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Hl2jPi The Jacobian of rl2j with respect to the laser calibration state xpi .

Hl2j The Jacobian of rl2j with respect to the state vector x.

HdHB The Jacobian of the horizontal offset parameter with respect to the IMU body state
xB.

HdHL The Jacobian of the horizontal offset parameter with respect to the laser calibration
xL.

I Identity matrix.

Jh The Jacobian of the camera projection function.

Jx,u(θVi) The Jacobian of the vertical offset parameter with respect to x and u.

K Kalman gain.

k The radial distortion parameters of the camera.

n Noise vector.

Nj The null space of matrix Hfj .

na Accelerometer white noise.

ng Gyroscope white noise.

nwa Accelerometer bias driving white noise.

nwg Gyroscope bias driving white noise.

o The image center parameters of the camera.

Qc Continuous time IMU noise matrix.

Qn Discretized noise matrix.

qinc An incremental quaternion.

Qlj The noise covariance matrix of jth laser feature observation.

rj Stacked residual vector for the camera observation of the jth feature point.

r
′
j Marginalized residual vector for the camera observation of the jth feature point.

Ri,j Noise matrix for the observation of the jth point from the ith camera.

ri,j EKF residual from an observation of the jth feature in the ith camera image.

rl1j The residual for the angular constraint for the jth line feature.

rl2j The residual for the distance constraint for the jth line feature.
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t The tangential distortion parameters of the camera.

xB The IMU body states.

xC The camera calibration states.

xP The states for the plane map parameters.

xπi The ith IMU body pose stored in the EKF’s sliding window.

xaug The augmentation state vector.

xlm The laser calibration states for the mth laser scanner.

y The projection of a plane’s normal vector into the global xy-plane.

zi,j An observation of the jth feature in the ith camera image.

zl1j The angular constraint for the jth line feature.

zl2j The distance constraint for the jth line feature.

φj The angle of the jth line observation.

ρj The orthogonal distance of the jth line observation.

θVi The normal vector angle parameter for the ith vertical plane.

x̃ The error in estimating quantity x.

{B} The IMU body coordinate frame.

{C} The camera coordinate frame.

{G} The global coordinate frame.

{L} The laser scanner coordinate frame.

BqG The rotation quaternion from global to IMU body coordinates.

BqL The position of the laser in IMU body coordinates.

BqL The rotation quaternion from laser to IMU body coordinates.

Cpfj The jth 3D feature point expressed in camera coordinates.

CqB The position of the IMU body in camera coordinates.

CqB The rotation quaternion from IMU body to camera coordinates.

Gg The gravity vector expressed in global coordinates.

GpB The position of the IMU in global coordinates.
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Table 4.1: Summary of Coordinate Systems

Coordinate System Symbol
Global Coordinate System {G}
IMU Body Coordinate System {B}
Camera Coordinate System {C}
Laser Coordinate System {L}

Gpfj The jth 3D feature point expressed in global coordinates.

GvB The velocity of the IMU in global coordinates.

dHi The offset parameter for the ith horizontal plane.

dVi The offset parameter for the ith vertical plane.

n/N The delay ratio for the nth point.

ri Radial coordinate of the ith laser point.

td The timing delay parameter.

tr The rolling shutter readout parameter.

Wi Weighting term for the ith laser point.

4.3 State Space Representation

This section details the state space representation used by the Extended Kalman Filter
estimator used in this Chapter. Central to IMU based estimators is the notion of coordinate
systems. Table 4.1 shows a summary of all coordinate systems used throughout this Chapter.
The global coordinate system {G} is defined according to the East-North-Up convention so
that height corresponds to elevation. The other sensor coordinate frames {B}, {C}, and {L}
are chosen to coincide with the IMU body, camera, and laser coordinate frames respectively.

4.3.1 Full State Definition

The EKF state vector can logically be divided into 5 groups of variables. The first is the
time-varying state of the IMU body state xB ∈ R16×1 containing the position (3), orientation
(4), velocity (3), and sensor biases of the IMU (6). The second group is the extrinsic (7),
intrinsic (9), and temporal (2) calibration states of the camera xC ∈ R17×1. Similarly, the
third group, xl1 · · ·xlM , with xlm ∈ R9×1, is the extrinsic (7) and temporal (2)calibration
parameters for each of the M laser scanners in the system. Then, the plane parameters for
both the H horizontal planes ∈ R1×1 and V vertical planes ∈ R2×1 are estimated in the
fourth group xP ∈ R(2V+H)×1. Finally, a sliding window of the past N body poses are stored
for usage by the Visual-Inertial Odometry (VIO) portion of the EKF denoted by xπ1 · · ·xπN
with each xπn ∈ R10×1 containing an orientation (4), a position (3), and a velocity (3).
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x =
[
xTB | xTc | xTl1 · · ·x

T
lM
| xTp | xTπ1 · · ·x

T
πN

]T
(4.1)

The time varying body states xB is comprised of the orientation from the global coor-
dinate to local coordinates BqG ∈ R4×1, the position in global coordinates GpB ∈ R3×1,
the velocity in global coordinates GvB ∈ R3×1, and bias estimates of the gyroscope and
accelerometer sensors, bg ∈ R3×1 and ba ∈ R3×1 respectively. The rotation is expressed in
unit quaternion form. Thus:

xB =
[
BqG

T GpB
T GvB

T
bTg bTa

]T
(4.2)

The camera calibration states xC are comprised of the intrinsic, extrinsic, and temporal
calibration parameters. The projective intrinsic parameters, as defined in Section 2.2, include
the focal length f ∈ R2×1, the image center o ∈ R2×1, the radial distortion parameters
k ∈ R3×1, and the tangential distortion parameters t ∈ R2×1. The extrinsic calibration
consists of the rotation quaternion, CqB ∈ R4×1, and translation vector, CpB ∈ R3×1, from
body to camera coordinates. The temporal calibration consists of the time stamping bias td
between the timestamps reported by the camera and the timestamps reported by the IMU.

xc =
[
CqB

T CpB
T

fT oT kT tT td

]T
(4.3)

Similarly, each of the M laser state blocks xlm contains the rotation quaternion, BqL ∈
R4×1, and translation vector, BpL ∈ R3×1, from laser to body coordinates. In addition to
the extrinsic calibration, each laser block contains estimates of the time stamping bias, td,
and readout time tr as defined in 2.3.2.

xl =
[
BqL

T BpL
T

td tr

]T
(4.4)

The planar map representation contains both horizontal and vertical planes. Horizon-
tal planes are assumed to have their normal vector aligned with the global z-axis and are
characterized by their scalar offset from the global origin dHi along their respective normal
vector. Each vertical plane is assumed perfectly vertical and is characterized by its scalar
offset from the global origin, dVi , and the angle, θVi , its normal vector forms in the global xy
plane. Thus for k horizontal planes and s vertical planes xp is written as:

xp =
[
dH1 · · · dHk | {dV1 θV1} · · · {dVs θVs}

]T
(4.5)

It is important to note that, although not explicitly represented in the state vector, the
delimiting points are tracked for each plane to compute its support. The final block of states
contains a sliding window of the N most recent IMU body states. Each pose in the sliding
window contains a copy of the position GpB ∈ R3×1, velocity GvB ∈ R3×1, and orientation
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BqG ∈ R4×1 from the IMU body state xB at the instant the pose was added to the sliding
window.

xπ =
[
BqG

T GpB
T GvB

T
]T

(4.6)

The total size of the state vector x depends on the number of laser scanners, the size of
map, and the total length of the sliding window of poses. If there are M laser scanners, H
horizontal planes, V vertical planes, and N poses in the sliding window, then the total state
size is 16 + 17 + 9M +H + 2V + 10N .

4.3.2 Error State Definition

While the quaternion representation of orientation requires 4 parameters, only 3 parameters
are required for describing 3D rotations. To obtain a minimal representation of the rotation
parameters in the EKF, an Indirect Kalman Filter [29] is used to track the error in the state
estimate rather than the state itself. We utilize the standard additive error metric x̃ = x− x̂
for all states except for those describing rotation. A tilde over a variable represents an
estimation error and a hat over a variable represents a best estimate with the information
up to the current time. For all quaternion parameters, the multiplicative error model is used.
Specifically, the error between the quaternion estimate q̂ and the true value q is given by the
3 element error vector δθ. This formulation requires only 3 variables to represent rotation
uncertainty and thus is minimal.

[
1
2
δθ
1

]
= q̂−1 ⊗ q (4.7)

The symbol ⊗ in the previous equation represents quaternion multiplication.

q1 ⊗ q2 = (q1w + q1xi + q1yj + q1zk)(q2w + q2xi + q2yj + q2zk) (4.8)

The full error state vector then takes the following partitioned form:

x̃ =
[
x̃TB | x̃Tc | x̃Tl1 · · · x̃

T
lM
| x̃Tp | x̃Tπ1 · · · x̃

T
πN

]T
(4.9)

and has total size 15 + 16 + 8M +H + 2V + 9N . The key difference between the size of the
error state vector and the size of the full state vector in Section 4.3.1 is that all quaternion
errors are now parameterized with 3 dimensions instead of 4. This leads to the 2 + M + N
reduction in state size. Although this reduce is not computationally significant, it allows
errors in rotation to be expressed as linear instead of multiplicative constraints.
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4.4 Filter Propagation

This section describes the process for propagating the EKF forward each time a new IMU
data reading is available.

4.4.1 IMU State Dynamics

The state model chosen to describe the continuous time dynamics of the IMU follows the
well developed models of [29] and [106]:

Bq̇G(t) =
1

2
Ω(ω(t))BqG(t)

GṗB(t) = GvB(t)
Gv̇B(t) = Ga(t)

ḃg(t) = nwg(t)

ḃa(t) = nwa(t)

(4.10)

The input rotational velocity, ω(t) =
[
ωx(t) ωy(t) ωz(t)

]T
, is expressed in the IMU frame

of reference {B}, while the linear acceleration a(t) =
[
ax(t) ay(t) az(t)

]T
is expressed in

the global coordinate frame {G}. The IMU gyroscope and accelerometer biases are driven
by Gaussian white noise processes nwg(t) and nwa(t) respectively. Furthermore, the matrix
Ω(ω) is defined as:

Ω(ω) =

[
−bω×c ω
−ωT 0

]
(4.11)

and the skew-symmetric matrix is defined as:

bω×c =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (4.12)

Unfortunately, the IMU readings are corrupted by both zero mean Gaussian white noise
n(t) and time-varying bias terms b(t). Therefore the measured readings reported by the
IMU sensor are modeled as:

ωm(t) = ω(t) + bg(t) + ng(t)

am(t) = B
GR(t)(a(t)− Gg) + ba(t) + na(t)

(4.13)

where Gg is the gravity vector expressed in global coordinates, BGR(t) is the rotation matrix
form of quaternion BqG(t), ng(t) is the gyroscope sensor noise, and na(t) is the accelerometer
white noise. The time varying biases are modeled as a Brownian motion process whose
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derivatives are driven by zero mean Gaussian white noise. This implies that the combined
noise disturbances are well modeled by a first order Markov process [107]. The input noise
vector is then defined as follows:

n(t) =


ng(t)
nwg(t)
na(t)
nwa(t)

 (4.14)

For simplicity, the covariance of the input noise is modeled as a diagonal matrix whose
standard deviations, σg, σwg, σa, σwa, can be found either from manufacturer specifications
or using Allan variance methods [107–110]. The combined IMU noise matrix is then defined
as:

Qc = E[nnT ] =


σ2
gI3 0 0 0
0 σ2

wgI3 0 0
0 0 σ2

aI3 0
0 0 0 σ2

waI3

 (4.15)

4.4.2 IMU State Propagation

In order to use the sampled readings from the IMU, the continuous time model of Eq. 4.10
must be converted into a discrete time representation suitable for numerical integration.
First, the best estimate for the state propagation model is obtained by linearizing around
the current state estimate and taking the expectation of Eq. 4.10.

B ˙̂qG(t) =
1

2
Ω(ω̂(t))Bq̂G(t)

G ˙̂pB(t) = Gv̂B(t)
G ˙̂vB(t) = Bt

G R̂T â(t) + Gg

˙̂
bg(t) = 0

˙̂
ba(t) = 0

(4.16)

where the measured IMU values from Eq. 4.13 have been bias subtracted via â(t) = am(t)−
b̂a(t) and ω̂(t) = ωm(t) − b̂g(t) using the best estimate of the biases available. Following
the derivation in [111] the discrete orientation quaternion update from time tn to time tn+1

is defined as:

Bq̂G(tn+1) = qinc ⊗ Bq̂G(tn) (4.17)

where the incremental quaternion qinc is computed via 4th order Runge-Kutta numerical
integration of the quaternion dynamics of Equation 4.16 using the bias subtracted rotational
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velocities [112].
Furthermore, the velocity update is found by integrating the acceleration in the global

frame.

Gv̂(tn+1) = Gv̂(tn) +

∫ tn+1

tn

â(τ)dτ

= Gv̂(tn) +

∫ tn+1

tn

(GBnR̂
Gâ(τ) + Gg)dτ

= Gv̂(tn) + G
BnR̂ŝn + Gg∆t

(4.18)

where ∆t = tn+1 − tn and the integral component is calculated as

ŝn =

∫ tn+1

tn

Btn
Bτ

R̂Bâ(τ)dτ (4.19)

Similarly, the position update is found by integrating the velocity update from Eq. 4.18.

Gp̂(tn+1) = Gp̂(tn) +

∫ tn+1

tn

Gv̂(τ)dτ

= Gp̂(tn) + Gv̂(tn)∆t+ G
Btn

R̂ŷn +
1

2
Gg∆t2

(4.20)

with ŷn computed as

ŷn =

∫ tn+1

tn

∫ tn+1

tn

Btn
Bτ

R̂Bâ(τ)dτds (4.21)

In practice, the integrals from Eqs. 4.19 and 4.21 are numerically computed using trapezoidal
integration.

4.4.3 IMU Error Propagation

During the prediction phase of the EKF, the covariance estimate of the error states must
be propagated to accurately reflect the system dynamics. As noisy IMU readings are used
to propagate the system’s state forward in time, the covariance of the IMU related states
should increase.

The error state covariance matrix is propagated by first linearizing the system around
the current state estimates and then propagating it forward using the properties of linear
Gaussian systems. Specifically the covariance matrix at time tn+1 is related to the covariance
matrix at time tn using

Σn+1|n =

[
Φn 0
0 I

]
Σn|n

[
Φn 0
0 I

]T
+

[
Qn 0
0 0

]
(4.22)
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where Φn is the 15 × 15 error state transition matrix for the IMU body states shown in
Eq. 4.23, I is the identity matrix, and Qn is the 15 × 15 contribution from the IMU noise
vector shown in Eq 4.14. Following the derivation presented in [111], the IMU error state
transition matrix takes the following block form:

Φn =


I3 03 03 Φqbg 03

Φpq I3 I3∆t Φpbg Φpba

Φvq 03 I3 Φvbg Φvba

03 03 03 I3 03

03 03 03 03 I3

 (4.23)

The individual blocks Φxy ∈ R3×3 represent the contributions to the state transition
matrix from states x and y.

Φqbg = −BtG R̂

∫ t+1

t

Bt
Bτ

R̂dτ (4.24)

Φpq = −b(Gp̂B(t+ 1)−G p̂B(t)− Gv∆t− 1

2
Gg∆t2)×c (4.25)

Φpbg =

∫ t+1

t

∫ w

t

b(Ga(τ)− Gg)×cBtG R̂

∫ τ

t

Bt
Bs

R̂dsdτdw (4.26)

Φpba = −BtG R̂

∫ t+1

t

∫ τ

t

Bt
Bs

R̂dsdτ (4.27)

Φvq = −b(Gv̂B(t+ 1)−G v̂B(t)− Gg∆t)×c (4.28)

Φvbg =

∫ t+1

t

b(Ga(τ)− Gg)×cBtG R̂

∫ τ

t

Bt
Bs

R̂dsdτ (4.29)

Φvba = −BtG R̂

∫ t+1

t

Bt
Bτ

R̂dτ (4.30)

In practice, the integrals from the previous expressions are computed using trapezoidal
numerical integration. For a full derivation of the individual blocks, see [111, 113, 114].
The IMU noise vector contribution Qn in Eq. 4.22 is computed by utilizing the continuous
time IMU noise matrix Qc from Eq. 4.15 and integrating it through the continuous time
dynamics. In particular we define the Jacobian of the error state x̃B with respect to the
IMU noise vector n as
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Gc =


−I3 03 03 03

03 03 03 03

03 −BtnG R̂
T

03 03

03 03 I3 03

03 03 03 I3

 (4.31)

The discrete time noise matrix Qn is then computed using trapezoidal integration on the
following integral.

Qn =

∫ tn+1

tn

ΦnGcQcG
T
c ΦT

ndτ (4.32)

Rather than using Eq. 4.22 directly, the structure of the covariance matrix can be
exploited to reduce computation. The full state covariance matrix Σ can be partitioned into
the 15× 15 block ΣBB corresponding to the time-varying IMU states xB, and the blocks for
the remainder of the states ΣRR

Σn+1|n =

[
Φn 0
0 I

] [
ΣBB ΣBR

ΣRB ΣRR

] [
Φn 0
0 I

]T
+

[
Qn 0
0 0

]
(4.33)

which reduces to

Σn+1|n =

[
ΦnΣBBΦT

n + Qn ΦnΣBR

(ΦnΣBR)T ΣRR

]
(4.34)

The above form is preferred because it eliminates unnecessary multiplications and helps
ensure that the resulting covariance matrix Σn+1|n stays symmetric.

4.5 Camera Data Fusion

Camera data fusion is carried out using the Multi-State Constraint Kalman Filtering (MSCKF)
framework first presented by Mourikis and Roumeliotis [115]. The MSCKF algorithm is a
EKF based Visual-Inertial Odometry estimator. This means that it fuses both IMU and
camera data to obtain an open loop estimate of the camera trajectory. Since its initial pub-
lication, Li and Mourikis have presented many variants and improvements to the MSCKF
algorithm. First, in [105], the filter was extended to incorporate the extrinsic calibration
parameters. In [116], the authors proposed to keep track of the location of some landmarks
in the state vector to reduce computation. Then, in [52], the MSCKF expanded to calibrate
the camera sensor’s readout and timestamp bias. Finally, in [40], the calibration model was
expanded to recover the calibration parameters for both the IMU and the camera’s intrinsic
calibration parameters. The variant of the MSCKF used in this work only accounts for the
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Figure 4.2: The flowchart for the camera data fusion algorithm.

camera intrinsic, extrinsic, and timestamp bias calibration parameters. In doing so, we only
model the calibration parameters that are appropriate for our hardware setup.

Figure 4.2 shows a flowchart of the MSCKF algorithm used for camera data fusion. The
key insight behind the MSCKF algorithm is to keep a sliding window of the past N poses
where an image was recorded. The algorithm begins by tracking feature points sequentially
though the image data. After a feature point is no longer tracked, its metrically accurate
3D position is triangulated using the poses from the sliding window. The tracked feature
points and their metric 3D locations are then used to formulate an EKF update by first
marginalizing out the component of the residual and Jacobians that is not tracked in the
state vector before correcting the EKF’s state estimate. In doing this, the filter is able to
accurately estimate the velocity and gravity components of the IMU’s attitude. However, it
is worth noting that the MSCKF is only capable of providing accurate odometry estimates.
The position and heading components of the state vector are unobservable and thus have
unbounded error characteristics [105].

The details of the MSCKF algorithm are summarized in this section for completeness of
presentation.

4.5.1 Image Feature Tracking

When a new image is available, the first step of the MSCKF algorithm is to find 2D feature
points z that were present in the previous image. By tracking feature points sequentially
through the images, we create feature tracks that contain the history of a where a point in
3D space appeared through a sequence of images. We perform tracking using a mixture of
optical-flow and feature based tracking techniques as described below.

Optical-flow algorithms use image gradients from a set of images across multiple scales
to generate motion estimates for points in an image [117]. Using the motion estimates,
optical flow can predict the location of a point in the subsequent image. Iteratively applying
the optical-flow algorithm tracks the feature until it is no longer visible. However, because
the trajectory is built by summing incremental motion, accumulated errors can cause the
trajectory to drift and become erroneous.

We address this issue using feature matching techniques. When a feature track is initial-
ized, we cache a binary descriptor of the local image statistics. Binary descriptors are both
computed quickly using thresholding and matched efficiently using Hamming distance [118].
Many binary descriptors, such as BRIEF [119] and ORB [120], have been proposed. We
utilize the ORB feature descriptor in this work because it was designed to provide rotational
invariance.

When a feature point is propagated from time t to t+ 1 using the optical-flow algorithm,
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(a) Optical Flow Example

(b) Lost Feature Trajectories

Figure 4.3: An example of image feature tracking. (a): Optical-flow based motion vectors
computed from sequential images. (b): The full trajectory of features that were unable to
be located in the current image.
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we extract a binary descriptor of its propagated location. We then compare the extracted
descriptor against the database of cached descriptors from the image where the feature was
first observed and find its nearest neighbor. By enforcing that the new descriptor be nearest
neighbors with the cached descriptor from the start of the feature’s trajectory, we eliminate
both erroneous optical-flow results and feature points that are not sufficiently descriptive. If
a feature is unable to be propagated via optical flow or fails descriptor matching, it is flagged
as lost and used in a subsequent MSCKF update to be described in Section 4.5.5.

Figure 4.3 shows an example of feature tracking. Fig. 4.3(a) shows motion vectors com-
puted for an example image. The green lines indicate the estimated motion between succes-
sive image frames and the red circles indicate the propagated location of the feature point
in the current frame. Fig. 4.3(b) shows the full trajectory of features that were no longer
tracked in the example image.

Once feature tracking is complete, new feature tracks must be created for previously
untracked features and thus new feature points are detected using the FAST corner detector
[121]. The FAST feature detector searches for corner points by comparing pixel values in a
local neighborhood around a point. Since the FAST corner detector does not use multiple
scales for detection, it is subject to poor performance under motion blur. Nevertheless, its
speed and high average feature detection count make it an attractive option for odometry
solutions.

4.5.2 Residual Definition

Common to all Kalman Filter formulations is the notion of a measurement process that
allows the filter to estimate quantities observed via sensors and utilize the error, known
as the residual, as feedback to improve its state vector. In this section, we describe the
measurement model and associated Jacobians of the measurement function utilized by our
EKF estimator during IMU-camera data fusion.

Each time a new image is available, the filter’s sliding window of poses is augmented
with the IMU’s orientation, position, and velocity xπ at the reported time of the image t, as
defined in 4.6. Since the images and IMU data may arrive asynchronously, the temporally
closest IMU measurements are used to estimate xπ by integrating the nearest IMU body state
xB using the linearized filter dynamics of Eq. 4.16. Then, the MSCKF algorithm performs
feature tracking to collect all feature trajectories which were no longer tracked in the current
image as described in 4.5.1. Only feature tracks corresponding to features that are no longer
tracked are used to avoid using information from the same measurement multiple times. The
observation function that relates the jth 3D feature point Gpfj and its observation zi,j from
the ith pose in the sliding window xπi is found by transforming the feature point into world
coordinates and then projecting it onto the image plane.

zi,j = h(Cipfj) (4.35)

The position of the 3D feature point Cipfj in the ith camera’s coordinates is computed
by transforming position of the point in global coordinates Gpfj using the camera extrinsic
calibration, {CBR, CpB} temporal calibration td, and the stored position GpBi and orientation
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Bi
G R from the sliding window xπi .

Cipfj = C
BRBi

G R(t+ td)
(
Gpfj − GpBi(t+ td)

)
+ CpB (4.36)

In the above equation, the true time the image was captured is computed as t+td where td is
the camera timestamp bias. The projection function h()̇ that projects 3D points in camera
coordinates is the same of Eq. 2.2. The estimate of the observation ẑi,j is then computed by
combining Eq. 4.35 and 4.36 using the estimate of the ith state from the sliding window x̂πi .

ẑi,j = ĥ

(
C
BR̂Bi

G R̂(t+ t̂d)
(
Gp̂fj − Gp̂Bi(t+ t̂d)

)
+ Cp̂B

)
(4.37)

It is important to note that Eq. 4.37 requires an estimate of the 3D location of the feature
Gpfj in world coordinates. A key difference between the MSCKF and other visual odom-
etry methods is that the MSCKF does not track the positions of the features Gpfj in the
state vector. In order to evaluate ẑi,j the poses and observations from the sliding window
are used to recover an estimate of Gp̂fj using inverse depth triangulation [122]. Inverse
depth triangulation solves for the 3D position of a feature Cipfj by iteratively minimizing
the reprojection error using a non-linear least squares optimization and the inverse depth
parameterization. The residual is then formed by subtracting the observed location of the
feature zi,j and its estimate ẑi,j.

ri,j = zi,j − ẑi,j

≈ Hπix̃πi + Hcx̃c + Hfij
Gp̃fj + ni,j

(4.38)

The matrices Hπi , Hc, and Hfij are the Jacobians of the linearized MSCKF residual from
Eq. 4.35 with respect to the sliding window body pose xπi , camera calibration states, and
3D feature point respectively. The noise vector ni,j is assumed to be a zero mean Gaussian
that is independent of the state vector and whose covariance is Ri,j = σ2

fI2×2. The image
feature noise σf represents the noise from imperfect feature detection and tracking and is in
practice assumed to be 1 pixel.

The Jacobians from Eq. 4.38 are required to apply the EKF update equations and are
computed by applying first order Taylor approximation to Eq. 4.38 and ignoring higher
order terms. For a full derivation of the Jacobians, see the work of [114]. The Jacobian with
respect to the sliding window IMU body state Hπi is given by [114].

Hπi = Jh
C
BR̂Bi

G R̂(t+ t̂d)
[
bGp̂fj − Gp̂Bi(t+ t̂d)×c −I3×3 −t̂dI3×3

]
(4.39)

where Jh is the Jacobian of Eq. 2.2 with respect to the 3D position of the feature pfj
expressed the camera coordinate frame. The Jacobian of the residual Hc with respect to the
camera calibration states xc is given as
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Hc =

[
δr

δCBθ̃

δr

δp̃C
δr

δt̃d

δr

δf̃

δr

δõ

δr

δk̃

δr

δt̃

]
(4.40)

The extrinsic and temporal components of Hc are found using first order Taylor expansion
of the residual and neglecting higher order terms.

δr

δθ̃
C
≈ Jh

C
BR̂bBGR̂(t+ t̂d)(

Gp̂fj − Gp̂Bi(t+ t̂d))×c

δr

δCp̃B
≈ Jh

δr

δt̃d
≈ −Jh

C
BR̂

(
B
GR̂(t+ t̂d)

Gv̂(t+ t̂d)

+ bω̂(t+ t̂d)×cBGR̂(t+ t̂d)(
Gp̂fj − Gp̂Bi(t+ t̂d))

)
(4.41)

Here the best estimate of the rotational velocity ω̂(t+ t̂d) is found by linearly interpolating
the observed rotational velocity to time t + t̂d using the temporally closest IMU readings
and subtracting the best estimate of the gyroscope bias bg. The remaining elements of Hc

correspond to the intrinsic calibration of the camera and can be found by differentiating
Eq. 2.2 with respect to the appropriate calibration parameters.

The final Jacobian needed Hfij is the Jacobian of the residual with respect to the 3D
feature position estimate Gpfj .

Hfij = Jh
C
BR̂Bi

G R̂(t+ t̂n) (4.42)

Once the residual vector ri,j and Jacobian matrices Hπi , Hc, and Hfij are computed for each
of the n cameras that view feature Gpfj , they are stacked to create a single residual vector.

rj =
[
rT1,j . . . rTn,j

]T
≈ Hxx̃ +

Hf1j
...

Hfnj

 Gp̃fj + ni

≈ Hxx̃ + Hfj
Gp̃fj + ni

(4.43)

Here the aggregate Jacobian Hx is the concatenation of Hπi and Hc. The stacked residual
is used in a subsequent Kalman filter update.
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4.5.3 Feature Error Marginalization

Unfortunately, the residual vector from Eq. 4.43 cannot be used directly by the filter. The
residual vector contains a reliance on the feature error Gp̃fj which is not tracked by the
filter. To marginalize out the feature error we project the residual vector rj onto the left
nullspace of Hfj . The left nullspace Nj of Hfj is the matrix defined such that NT

j Hfj = 0.
By projecting Eq. 4.43 onto Nj the MSCKF marginalizes away the feature error.

NT
j rj ≈ NT

j (Hxx̃ + Hfj
Gp̃fj + ni)

r
′

j ≈ H
′

xx̃ + n
′

i

(4.44)

where H
′
x , NT

j Hx and n
′
i , NT

j ni. The new residual and Jacobians can now be used
by the Kalman filter in a subsequent update. The new noise vector has the same noise
characteristics as the original noise vector because NT

j Nj = I.

4.5.4 Outlier Rejection

Before incorporating the new residual and Jacobian into the state estimate using an EKF
update, the MSCKF algorithm applies a statistical outlier rejection step. A Chi-squared
test is performed in order to determine if the observed residual is statistically significant
compared to the residual’s estimate covariance [123, 124]. The Chi-squared test begins by
computing the Mahalanobis distance [125] between the expected and observed measurement
assuming that the measurements are normally distributed as Xi ∼ N (µi, σ

2
i ).

γ =
N∑
i=1

(Xi − µi
σi

)2
(4.45)

The Mahalanobis distance maps exactly to the norm of the residual weighted by the inverse
of its covariance.

γj = r
′

j

T
(H

′

xΣH
′

x

T
+ Rj)

−1r
′

j (4.46)

The distance γj, is then compared to the value X for which the Chi-squared cumulative
distribution function (CDF) with |r′| degrees of freedom takes on a 3σ value of 0.95. If γj is
less than X then the Chi-squared test shows statistical significance and the feature is used
in the next EKF update.

4.5.5 EKF Update

After discarding outliers the MSCKF algorithm stacks the residuals and Jacobians from all
F inlier features into a single residual and Jacobian.
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r
′
1
...

r
′
F

 =

H
′
x1
...

H
′
xF

 x̃ +

n
′
1
...

n
′
F


r = Hx̃ + n

(4.47)

An EKF update would normally involve computing the Kalman Gain and correction vectors,
however, when the number of features becomes large, the complexity of computing the
Kalman gain grows rapidly. To reduce the computational cost of an EKF update, the
Jacobian H from Eq 4.47 is decomposed using QR factorization [126].

H =
[
Q1 Q2

] [Λ
0

]
(4.48)

The unitary matrices Q1 and Q2 form the range and nullspace of H respectively. Premulti-
plying Eq. 4.47 by QT yields a lower dimensional system.

[
Q1 Q2

]T
r =

[
Λ
0

]
x̃ +

[
Q1 Q2

]T
n[

QT
1 r

QT
2 r

]
=

[
Λ
0

]
x̃ +

[
QT

1 n
QT

2 n

]
rQ ≈ Λx̃ + nQ

(4.49)

In the above expression rQ , QT
1 r and nQ , QT

1 n. The last approximation of Eq. 4.49 is
justified because the lower portions of the new residual vector and Jacobian correspond to
only input noise and thus can be discarded.

Finally, the EKF update is performed using the lower dimensional residual and Jacobian.

K = Σn+1|nΛ
T (ΛΣn+1|nΛ

T + RQ)−1

∆x = KrQ

Σn+1|n+1 = (I−KΛ)Σn+1|nΛ)T + KRQKT

(4.50)

The matrix RQ is the noise covariance matrix and is computed as:

RQ = E[nQnTQ] (4.51)

The state vector is then updated using the computed correction vector.

x̂n+1|n+1 = x̂n+1|n + ∆x (4.52)
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Figure 4.4: The flowchart for the laser data fusion algorithm.

Algorithm 4 Laser Data Fusion Algorithm

1: features = generate line features(data)
2: for all feature ∈ features do
3: perform data association(xp, feature)
4: if feature ∈ xp then
5: generate ekf constraint(feature,x)
6: else
7: generate new plane(feature,x)
8: end if
9: end for

10: perform ekf update(x)
11: prune old planes(xp)

4.6 Laser Data Fusion

This section details the laser data fusion portion of the Extended Kalman Filter estimator.
Each time a new laser data reading is available from one of the system’s 2D laser scanners,
an EKF measurement update is performed using the data from that laser scanner. In doing
so, we modularly handle laser data from multiple laser scanners even if their data arrives
into the system asynchronously.

Figure 4.4 and Algorithm 4 describe the steps required for using a laser scan reading
during laser data fusion. First, the raw laser scan points must be converted into laser
measurement features that can be used by the EKF. This is done by first grouping the laser
scan points into continuous line segments and computing the line parameters using non-
linear optimization. Then the laser measurement features must be associated with a plane
stored in the EKF’s plane map xp. If no plane is found, then the line measurement feature
is used to initialize a new plane. Once data association is completed, all laser measurement
features that were successfully associated with an existing plane are used in an EKF update
to correct the state estimate. Lastly, the plane map is pruned of undesirable planes to limit
the computational complexity of the filter.

Laser data fusion is carried out by applying an EKF update whenever a new laser reading
is available. In general, in order for a sensor’s data readings to be used in an EKF estimator,
some measurement zL is required that is either measured directly by sensor data or can be
derived from the state vector, e.g. planes, and sensor data:
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r , zL − ẑL

≈ HLx̃ + ΓLũ
(4.53)

The matrix HL is the Jacobian of the measurement zL with respect to the error state vector,
x̃, and ΓL is the Jacobian of the measurement zL with respect to the measurement noise ũ.
Since 2D laser scanners only measure a set of discrete points sampled from a set of coplanar
lines, they are incapable of making direct measurement of the planes from the compact map
representation chosen in Eq. 4.5. In order for the raw laser points to be used as an EKF
measurement, we must first extract meaningful features to be used as measurements zL for
the EKF.

The rest of this section is organized as follows. First, Section 4.6.1 describes how raw laser
data is converted into line features that can be used by the EKF estimator. Section 4.6.2
then defines the two constraints provided to the EKF for each of the line features detected
in the raw sensor data. The first constraint exploits the orthogonal relationship between any
point in a line and its normal vector to constrain the orientation of the laser with respect
to the plane. Similarly, the second constraint measures the orthogonal distance from the
plane to the global origin in order to constrain the laser’s position with respect to the plane.
In order for the constraints from Section 4.6.2 to be evaluated, the laser line features must
be associated with one of the planes stored in the filter’s plane map xp and this process is
described in Section 4.6.3. Section 4.6.4 then describes how generated constraints are used
by the EKF to update the filter’s state estimate. For all line features that are not associated
with an existing member of xp, Section 4.6.5 details how they are used to initialize new
planes and expand the filter’s map of the environment. Finally, Section 4.6.6 describes our
map management strategy to maintain the filter’s linear computational complexity with
respect to acquisition time.

4.6.1 Laser Feature Extraction

Fundamentally, the laser scanners measure distances from the laser to various objects in the
scene. As the laser traverses the environment, the scanning plane intersects the structural
components of the building. The intersection of the laser scan plane with various horizontal
or vertical planar building elements are considered the EKF measurements and are exploited
as feedback for the EKF.

Figure 4.5 shows an illustration of a laser measurement. The laser scan plane intersects
the ith plane Πi through the 3D jth line segment lj‖ along viewing direction lj⊥. The lines
lj‖ and lj⊥ are formed using the IMU body state, the transformation between laser and
body coordinates, and a 2D line segment in the laser scanner’s coordinates. The angle and
orthogonal distance to the 2D line segment, as measured by the laser scanner, are denoted
as φj and ρj respectively.

Unfortunately, 2D laser scanners do not measure line segments in the environment. A
2D laser scanner, such as the UTM-30LX, only measures distances from the laser scanner to
objects in the environment. Using assumed bearings, the range measurements are converted
into an ordered collection of discrete 2D points expressed in polar coordinates.
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Figure 4.5: An illustration of the laser measurements used by the EKF. The laser scanner
scan plane intersects vertical plane Πi through line lj‖ along the measured direction lj⊥.
The angle and orthogonal distance as measured by the laser scanner are denoted as φj and
ρj respectively.

Before the EKF can use the laser scan in a measurement update, the points must be
converted into line segments. First, the 2D points are segmented using the Split-and-Merge
algorithm [127]. The Split-and-Merge algorithm recursively splits the points using a prede-
fined error tolerance to group consecutive laser readings and then utilizes the ordered nature
of the data to merge neighboring lines. Applying the Split-and-Merge algorithm groups
the raw scan points into range readings originating from the same planar surface in the
environment.

At this stage, filtering is done to remove point groupings that are either too sparse or
represent a line feature that is below a predefined length. Removing undesirable point group-
ings serves two purposes. First, removing small line features keeps the EKF from modeling
small, possibly non-planar, objects. Second, it prevents the state size from becoming in-
tractably large. A minimal point grouping of 20 points and line length of 1 meter were used
throughout this work.

It is important to note that although each point groupings represents a single planar
object in the environment, the rolling-shutter nature of the laser scanner means that the
entirety of a point groupings is not collected simultaneously. In order to model this aspect
of the sensor, the point groupings are further subdivided into smaller groups. The size of
the subdivided groups represents a trade-off between accurately modeling the rolling-shutter
and having enough points for line fitting. A final group size was chosen empirically as 20
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points, or 5◦ degrees of the Hokuyo UTM-30LX’s field of view. This correlates to a maximal
rolling-shutter time quantization of 0.15ms.

The line parameters (φj, ρj) and their covariances Qlj are estimated using Levenberg-
Marquardt non-linear optimization [128, 129]. Specifically, given a set of N points in polar
coordinates {ri, αi}Ni=1 parameterized by radius ri and angle αi, we assume that the points are
corrupted with Gaussian noise nr ∼ N (0, σ2

r) and nα ∼ N (0, σ2
α). The orthogonal distance

between the sampled point (ri, αi) line parameters and (φj, ρj) is given with the following
expression f :

f(ri, αi, φj, ρj) = (ri + nr)cos(φj − (αi + nα))− ρj (4.54)

The non-linear line fitting procedure finds the line parameters (φj, ρj) that minimize the
weighted, orthogonal distance to the points.

N∑
i=1

‖ricos(φj − αi)− ρj‖2Wij
(4.55)

where the weighted norm is defined as

‖x‖W = xTW−1x (4.56)

and for this particular problem the weighting factor is a single scalar Wij calculated using
the Jacobian of Eq. 4.54 with respect to the noise parameters nr and nα.

Wij = σ2
rcos2(φj − αi) + σ2

αr
2
i sin

2(φj − αi) (4.57)

The advantage of this formulation is that it allows the EKF to account for both the noise in
the range measurements as well as inaccuracies in the assumed bearings of the range mea-
surements. In practice the variance of the input noise is chosen to match the characteristics
of the UTM30-LX scanner used in our hardware systems σr = 1cm and σα = 0.25◦.

Figure 4.6 shows an example of the line feature extraction. Fig. 4.6(a) shows the raw scan
points reported by the laser scanner. Fig. 4.6(b) shows the results of the Split-and-Merge
algorithm. Note that different colors are used to denote the point groupings and black ×s
are used to denote points that are not part of any line. Fig. 4.6(c) shows the final extracted
line features. The black dots indicate the start and end points of each line measurement
observation.

4.6.2 Laser Residual Definition

This section describes the constraints and Jacobians needed to use the extracted line features
from Section 4.6.1 in the EKF estimator. After line features are extracted from the raw laser
readings, they are used to define constraints in the EKF. A 2D line feature must originate
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Figure 4.6: An example of extracting line features from a 2D laser scan. (a): The raw
points reported by the laser scanner. (b): The results of the Split-and-Merge algorithm.
Different colored points denote the recovered point groupings and black ×s denote points
not belonging to a line feature. (c): The lines resulting from the non-linear weighted line
fitting algorithm. The black dots indicate the start and end points of each line measurement
observation.
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from some planar object in the environment and thus we treat it as a measurement of a line
that lies on the plane of some existing element of the environment map xp. In this way,
we derive both a constraint on the angle zl1j and a constraint on the orthogonal distance
zl2j between the existing plane and the global origin. Intuitively, the angular constraint zl1j
exploits the fact that any line that originates from inside a plane must be orthogonal to
its normal vector. Similarly, the second constraint, zl2j , takes advantage of the fact that
the projection of the vector between all points on a plane and origin along the normal of
the plane is the same for all points on the plane. These constraints allow for the EKF to
update its estimate of the laser’s orientation and position respectively. Since the system’s
orientation and position are correlated with these estimates through the laser calibration
parameters, the EKF is able to additionally optimize the extrinsic and temporal calibration
parameters for each of the system’s laser scanners.

Once we have the individual constraints, we derive the required Jacobians and combine
both the estimation residual and measurement Jacobians into a single EKF update to correct
the filter’s state estimate x̂. For a full derivation of the Jacobian matrices, see Appendix A.

The jth laser line feature defines two constraints, zl1j and zl2j , that are used as feedback
for the EKF. First, the angle of the line measurement φj combined with the laser extrinsic
calibration and current IMU body pose defines a 3D line, lj‖ that lies on the ith scanned
plane Πi = {(di, θi)}.

lj‖ =

 sinφj
−cosφj

0

 (4.58)

The line lj‖ must trivially lie on plane Πi and therefore must be perpendicular to its normal
vector. If the normal vector is defined as πi, then the first constraint is obtained by rotating
the line lj‖ into global coordinates

Glj‖ = B
GRT (t+ td +

n

N
tr)

B
LR lj‖ (4.59)

and then computing the dot product against the plane’s normal vector πi.

zl1j = πTi
Glj‖ = 0 (4.60)

Although the right hand side of the above equation depends on both the ith plane and jth
line feature, a line feature can only be associated with a single plane and thus by abuse of
notation we drop i from the left hand side.

In order to compute the estimate ẑl1 , the IMU body states must be interpolated to the
actual time the line was observed tn = td + trn/N . This actual time represents shifting the
reported timestamp t using the offset bias td and the rolling-shutter readout delay trn/N
where N is the total number of points in a single laser scan and n is the index number of a
particular point. The current IMU body state is integrated forward to time t + td + trn/N
using the system dynamics from Section 4.4.1. The total time delay caused by both the
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timestamping bias td and rolling-shutter delay trn/N is denoted as tn. This results in the
following expression:

ẑl1j = π̂Ti
B
GR̂T (t+ t̂d +

n

N
t̂r)

B
L R̂ l̂j‖ (4.61)

The residual is then defined as:

rl1j , zl1j − ẑl1j = −ẑl1j (4.62a)

≈ Hl1j x̃ + Γl1j ũj (4.62b)

where Hl1j and Γl1j are the Jacobians of Eq. 4.60 with respect the error state x̃ and the line
measurement parameters ũj = (ρj, φj) respectively. The second equality of Eq. 4.62(a) is a
direct result of Eq. 4.60, i.e. zl1j = 0. Although the residual also depends on which plane
Πi the line is associated with, subindex i is omitted from Eq. 4.62 for ease of notation.

The contribution to the residual from the error state Hl1j x̃ can logically be split into
contributions from the IMU body states Hl1jB, the laser calibration states as defined in
Eq 4.4, Hl1jL, and the plane states Hl1jPi .

Hl1j x̃ = Hl1jBx̃B + Hl1jLx̃l + Hl1jPix̃pi (4.63)

By applying first order Taylor expansion [130] and ignoring the higher order terms, the
Jacobian of the residual with respect to the IMU body state is found to only be a function

of the orientation error δθ̂
G

(t) of the IMU body state pose.

Hl1jB =
[
−π̂Ti bBGR̂T (t+ t̂n)BL R̂ l̂j‖ ×c 01×3 01×3 01×3 01×3

]
(4.64)

Recall that B
L R̂ represents a rotation from coordinate frame {L} to coordinate frame {B}

and tn = td + trn/N . Similarly, by differentiating the residual with respect to the laser
calibration parameters and ignoring the higher order terms, the Jacobian is found to only
be a function of the orientation and temporal calibration parameters.

Hl1jL = π̂Ti
B
GR̂T (t+ t̂n)

[
B
L R̂bl̂j‖ ×c 03×3 Mj

n
N

Mj

]
(4.65)

The matrix Mj is defined as

Mj = bω̂(t+ t̂n) ×cBL R̂ l̂j‖ (4.66)

and the best estimate of the rotational velocity ω̂(t + t̂n) is found by linearly interpolating
the IMU rotational velocity to the best estimate of time t+ t̂n using the temporally closest
IMU readings and removing the bias b̂g.
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ω̂(t+ t̂n) = ωm(t+ t̂n)− b̂g (4.67)

The Jacobian of the residual with respect to the plane parameters must be handled more
carefully. A distinction must be made depending on whether the scanned plane is a vertical
or horizontal plane. If the plane is horizontal, then there is no dependence on the plane
parameters and thus the Jacobian is identically zero.

Hl1jPH = 01×1 (4.68)

This can be intuitively understood because zl1j only relies on the plane’s normal vector πi
and horizontal planes have a fixed constant normal vector. However, for vertical planes, the
Jacobian contains a reliance on the error in the plane’s normal angle θi.

Hl1jPV =
[
01×1 eTz bπ̂i ×cBGR̂T (t+ t̂n)BL R̂ l̂

j‖
]

(4.69)

Here ez is the elementary basis vector
[
0 0 1

]T
.

The Jacobian of the residual with respect to the line observation parameters ΓL1j
is

a matter of taking the derivative of Eq. 4.62 with respect to the parameters (ρj, φj). As
expected, the Jacobian is only a function of the angle of the line.

Γl1j =
[
01×1 −π̂Ti BGR̂T (t+ t̂n)BL R̂b l̂

j‖×cez
]

(4.70)

The second constraint zl2 is an estimate of the orthogonal distance from the origin to the
observed plane. Using the line measurement parameters, we define the line lj⊥ such that
lj‖ ⊥ lj⊥.

lj⊥ =

cosφj
sinφj

0

 (4.71)

By multiplying the line lj⊥ by the line parameter ρj, we generate a point on plane Πi in the
laser’s coordinates. Once converted into global coordinates, the orthogonal distance from Πi

to the origin is computed by projecting it along the plane’s normal vector πi.

di = πTi
(
GpB + B

GRT (BpL + ρj
B
LR lj⊥)

)
(4.72)

The second constraint is formulated by moving all terms in Eq. 4.72 to the right hand side
and setting the expression equal to 0.

zl2 = πTi
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
− di = 0 (4.73)
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Similar to Eq. 4.61, the estimate ẑl2 is formed by interpolating the IMU body states to the
best estimate of the observed feature’s timestamp t̂n and then evaluating Eq. 4.73.

ẑl2j = π̂Ti
(
Gp̂B(t+ t̂n) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

)
− d̂i (4.74)

The second residual vector is defined as the error between the true zl2j = 0 and the observed
measurement ẑl2j .

rl2j = zl2j − ẑl2j = −ẑl2j (4.75a)

≈ Hl2j x̃ + Γl2j ũj (4.75b)

≈ Hl2jBx̃B + Hl2jLx̃l + Hl2jPix̃pi + Γl2j ũj (4.75c)

where Hl2jB is the Jacobian with respect to the IMU body states x̃B, Hl2jL is the Jacobian
with respect to the laser calibration x̃L, Hl2jPi is the Jacobian with respect to the plane
parameters x̃p and Γl2j is the Jacobian with respect to the input noise ũj. The second
equality of Eq. 4.75(a) is a direct consequence of Eq 4.73.

Similar to Eq. 4.63, the expression for the residual vector has been logically split based
on its components. The Jacobian for the second residual vector with respect to the IMU
body states is found by applying Taylor expansion and neglecting any higher order terms.

Hl2j = π̂Ti
[
−bBGR̂T (t+ t̂n)(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) ×c I3×3 t̂nI3×3 03×3 03×3

]
(4.76)

Notice that unlike in Eq. 4.64, the Jacobian for rl2j contains both a dependence on the
position and velocity errors. In a similar fashion, we derive the expression for Hl2jL.

Hl2jL = π̂Ti
[
B
GR̂T (t̂n)ρ̂j

B
L R̂bl̂j⊥ ×c B

GR̂T (t̂n) Sj
n
N

Sj
]

(4.77)

where the matrix Sj is defined as

Sj = B
GR̂T (t+ t̂n)bω̂(t+ t̂n) ×c(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) + Gv̂B(t+ t̂n) (4.78)

The Jacobian Hl2jPi again must be defined separately for horizontal and vertical planes.
For horizontal planes PH , rl2j contains only the offset parameter di and thus the Jacobian is
simply the negated 1× 1 identity matrix.

Hl2jPH = −I1×1 (4.79)

On the other hand, if the plane is vertical, the Jacobian also contains a dependence on the
error in the plane’s normal vector πi and thus the plane’s normal angle θi:

Hl2jPV =
[
−I1×1 eTz bπ̂i×c

(
Gp̂B(t+ t̂n) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

)]
(4.80)
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The final Jacobian needed, Γl2j , is found by differentiating the residual rl2j with respect to
the laser measurement parameters (ρi, φi).

Γl2j = π̂Ti
B
GR̂T (t+ t̂n)BL R̂

[̂
lj⊥ −ρ̂jbl̂j⊥×cez

]
(4.81)

After assembling the Jacobians and residuals for all m line feature measurements, they
are concatenated into a large 2m residual vector and Jacobian matrix. The resulting system
is then used by the EKF in the subsequent update step.

rl =
[
rl11 . . . rl1m rl21 . . . rl2m

]T
≈ Hlx̃ + Γlũ

(4.82)

4.6.3 Laser Data Association

In order to evaluate the Jacobians Hl and Γl from Eq. 4.82, line measurement observations
must be matched to a previously observed plane Πi. We perform data association using
a combination of the projected distance of the laser line features to the candidate plane
and probabilistic inlier thresholding. It is important to note that although in Sec. 4.6.1 we
subdivided the point groupings into smaller line segments (ρj, φj), we desire to associate all
segments originating from a single point grouping to the same previously observed plane. As
such, we denote all line segments originating from a single point grouping as uo = {ρj, φj}Nj=1

and denote the stacked residual vectors, Jacobians, and noise matrices for uo as ro, Ho
l , and

Qo
l respectively.

The Chi-squared test is used to probabilistically test if a set of line segments should
be associated with a previously observed plane Πi [123, 124]. The Chi-squared test for
associating a line feature measurement uo with plane Πi is identical to that of Section 4.5.4
with the exception that the Mahalanobis distance now takes the following form:

γ = roT (Ho
lΣHo

l
T + Γo

lQ
o
lΓ

o
l
T )−1ro (4.83)

Unfortunately, as the number of planes in the state vector increases, the computational
cost of calculating probabilistic data association increases. To reduce computation, we only
evaluate Eq. 4.83 for a small subset of the total planes in the map. The subset of candidate
planes are chosen using fast geometric operations. First, we automatically eliminate all
planes that have an average distance to uo greater than 3 meters. The rationale for this is
that we expect the filter’s position estimate to be locally accurate to better than 3 meters.
Then, we project the line segments uo onto the remaining planes and find the minimal
distance of the projection to the plane’s bounding box. Figure 4.7 shows a diagram of this
distance metric. By using the shortest distance between the projected line and the plane’s
bounding box, we prevent the filter from associating line segments with planes that are have
similar parameterization but appear in separate parts of the environment. If the minimal
distance between the projection and the plane’s bounding box exceeds 0.5 meters, then the
plane is no longer considered.
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Figure 4.7: A diagram describing the distance metric used in the bounding box projection
test during laser data association. The line grouping uo is projection onto plane Πi. The
shortest distance, shown in red, to the plane’s bounding box is used as a rejection criteria
for data association.

The remaining planes are then ordered temporally using the timestamp of their first
observation and γ is computed until a plane association passes the Chi-squared test. By
processing the remaining planes in this order, we introduce a slight bias towards older planes
to encourage the filter to reuse and expand older planes.

4.6.4 Laser EKF Update

After forming the stacked Jacobians and residual vectors from Eq. 4.82, we apply an EKF
update correct the state vector. The EKF update begins by first computing the Kalman
Gain K.

K = ΣHT
l S−1

= ΣHT
l (HlΣHT

l + ΓlQlΓl)
−1 (4.84)

Recall that the EKF’s covariance matrix is denoted as Σ and the laser measurement noise
matrix Ql is computed from the weighted-line fitting procedure of Section 4.6.1 and Hl

and Γl are from Eq. 4.82. The Kalman Gain can be efficiently computed without explicitly
taking the inverse of the residual covariance S using QR factorization [126]. The correction
vector ∆x and updated covariance Σn+1|n+1 are then computed using standard Kalman filter
update equations.

Σn+1|n+1 = (I−KHl)Σn+1|nHl)
T + KΓlQlΓ

T
l KT (4.85)

∆x = Krl (4.86)
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4.6.5 Laser Based New Plane Initialization

This section defines the process for initializing new planes that will be tracked by the Ex-
tended Kalman Filter estimator. Since the environment map is not known a priori, observa-
tions corresponding to new planes must be used to expand the filter’s environment map. In
doing so, we augment the state vector x and error state covariance matrix Σ with estimates
of the new plane’s parameters and error covariance to incorporate them into the EKF’s plane
map xp. This allows the operator to explore and map new locations not already contained in
the filter’s environment map. The remainder of this section describes the process for comput-
ing the initial estimate of a new plane’s parameters and Jacobians required for augmenting
the state vector and error state covariance matrix.

If an observation does not get matched to any plane Πi that already exists in the state
vector, then we attempt use the observations uo to initialize a new plane. Since the horizontal
and vertical planes are modeled separately in the state vector, the line observations uo must
be classified as either a horizontal nor vertical line segment. Unfortunately, since a line
contains only a single degree of freedom, classifying the line as horizontal or vertical is
challenging even if we restrict ourselves to environments with only horizontal and vertical
planes.

Figure 4.8 shows examples of non-degenerate and degenerate configurations for declaring
the orientation of a line in an environment made from only horizontal and vertical planes.
Figure 4.8(a) depicts a line feature that traverses a vertical plane through some angle. This
can safely be classified as non-horizontal. However, if the line originated from a horizontal
plane, then there arises a twofold ambiguity. The line can perfectly be fit to both a horizontal
and vertical plane. In this scenario it becomes impossible to label the line as either originating
from a horizontal or vertical plane.

The task of labeling lines becomes even more complicated when we consider real-world
environments. Real buildings contain many planes, such as ramps, that are neither horizontal
or vertical. For planes of arbitrary orientation, three non-collinear points are required to
specify it uniquely. Using only a single group of observations, uo, it is not possible to classify
the orientation of the line as horizontal, vertical, or neither. However, if we consider the line
segments observed from another non-coplanar laser scanner, the intersection of two lines will
uniquely define the orientation of the line segments uo.

Motivated by this observation, we use the following strategy to classify the orientation of
line segments. We first collect the temporally closest laser scans from all other non-coplanar
scanners on the system and fit line segments using the weighted line-fitting algorithm de-
scribed in Section 4.6.1. Then, we use the current estimate of the state vector and laser
calibration to transform the line segments into the global coordinate frame {G}. Finally, we
search for line segments that intersect uoj and define the surface normal as the cross product
of the intersecting line segments. By comparing the surface normal to the global z vector,
we declare the line as horizontal, vertical, or neither using simple thresholding.

Figure 4.9 shows an example of this process. The algorithm uses all non-coplanar black
lines and attempts to intersect them with the colored query lines. If an intersection is
possible then the lines are colored green for horizontal or blue for vertical. If no intersection
is possible or the line is neither horizontal or vertical the line is colored red.

The example shown in Fig. 4.9 also highlights the conservativeness of our approach. Of
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(a) Non-degenerate case.

(b) Degenerate case.

Figure 4.8: Non-degenerate and degenerate scenarios for declaring a line horizontal or vertical
in a perfectly 2.5D world. (a): A line that scans a vertical plane at an angle can safely be
declared non-horizontal. (b): Any line that lies on a horizontal plane can also perfectly fit a
vertical plane.
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Figure 4.9: An example depicting how lines are declared either as horizontal, vertical, or
neither. The colored query line segments are intersected with the line segments from the
other scanners to determine the surface normal of the plane. In this example, green lines are
declared horizontal, red lines are unknown, and black lines are the lines detected from the
other laser scanners.

the 10 query lines, in only a single instance are we able to declare the orientation of the line.
This however is generally not a major limitation. The high rate of the laser scanners allows
numerous opportunities for the plane to be initialized using a later observation. Since the
EKF is a least-squares approach, it is important to not pollute the filter’s state estimate
with outliers.

Once the orientation of the line has been determined, we must compute the new plane
Πi parameters xpi and an estimate of its error covariance Σpi . The error covariance is found
by writing the expression for the plane parameters in error state notation.

x̃pi = xpi − x̂pi
≈ Haugx̃ + Γaugũj

(4.87)

where Haug and Γaug are the Jacobians of x̃pi with respect to x̃ and ũj respectively. The
covariance of the new plane’s Pi parameters are then computed using the properties of linear
systems of Gaussian random variables.

Σpi = HaugΣHT
aug + ΓaugQljΓ

T
aug (4.88)

Once the new plane state xpi and covariance matrix are known, they are augmented into
the state vector x and error state covariance matrix Σ in order to track them as part of

97



Chapter 4. 3D Localization Algorithms

the filter’s plane map xp. In doing so, we expand the plane map and allow the operator to
explore and map previously unknown regions of the environment.

x̂aug =

[
x̂

x̂pi

]
(4.89)

Σaug =

[
I

Haug

]
Σ

[
I

Haug

]T
+

[
0 0
0 ΓaugQljΓ

T
aug

]
(4.90)

In the above expression, the augmented state vector x̂aug and covariance matrix Σaug, are
the state vector and error state covariance matrix after the new plane’s parameters and error
covariance have been added.

We now define the initial estimate x̂aug and corresponding Jacobians Haug required for
new plane initialization. Specifically, we require the Jacobians of horizontal plane parameter
dHi and vertical plane parameters {dVi , θVi} with respect to the state vector x. Since the
plane parameterization depends on the orientation of the plane, we must derive the plane
parameters and Jacobians separately for the cases of horizontal and vertical planes.

For horizontal planes, the ith plane is parametrized only by the offset from the origin
dHi . An expression for computing the offset d̂Hi is readily available by rearranging the laser
observation from Eq. 4.74 to isolate the offset to the right hand side of the equation.

d̂Hi = eTz
(
Gp̂B(t+ t̂n) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂l̂j⊥)

)
(4.91)

Equation 4.91 is in terms of only known or observed quantities and can readily be evaluated
to obtain an estimate of the plane offset d̂Hi . Note that although the right hand side depends
on both the ith plane and jth line, by abuse of notation we omit j from the right hand side
because the plane is only initialized using a single line estimate. The covariance Σpi for dHi
is estimated by writing Eq. 4.91 in its error form and linearizing around the current state
estimate. For a full derivation of the following Jacobians, see Appendix B.

d̃Hi = dHi − d̂Hi
≈ HdHBx̃B + HdHLx̃L + ΓdHjũj

(4.92)

where HdHB, HdHL, ΓdHj, are the Jacobians of Eq. 4.91 with respect to the IMU body state
xB, the laser calibration xL and the input noise uj respectively. The Jacobian matrices are
computed by applying first order Taylor approximation and neglecting higher-order terms.
The resulting Jacobians HdHB, HdHL, and ΓdHj,are identical to those from Eqs. 4.76, 4.77,
and 4.81 respectively.

The vertical planes are parameterized using both the orthogonal distance to the origin
dVi and the angle of the normal vector in the xy plane θVi . Since the offset dVi depends on
the normal vector πi, we must first solve for θVi . The normal angle is defined as the angle
the normal vector makes in the global xy plane.
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Figure 4.10: A diagram describing the geometry for vertical plane normal angle initialization.
The normal angle θVi is generated by projecting the cross product between observed line lj‖
and the global z vector ez.

θVi = atan2(v, u) (4.93)

where atan2(v, u) is the two argument arctangent function and
[
u v

]T
is the projection of

the normal vector into the global xy plane. The projection of normal vector is formed by
projecting the cross product of the global z vector and the line lj‖ expressed in world coor-
dinates. Figure 4.10 shows a diagram of this process. The cross product between observed
line lj‖ and global z vector ez, shown in red, is projected to a vector in the global xy plane,
shown in blue, to form the normal angle θVi .

y =

[
u
v

]
=

[
1 0 0
0 1 0

]
b ez×cBGRT (t+ tn)BLR lj‖

=

[
1 0 0
0 1 0

]
b ez×cf(x,uj)

(4.94)

Evaluating Eq. 4.93 using the current state estimate x̂ yields an estimate of the normal angle
θ̂Vi . The offset d̂Vi is found by evaluating the expected orthogonal distance from the plane
to the origin.

d̂Vi = π̂Ti
(
Gp̂B(t+ t̂n) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂l̂j⊥)

)
(4.95)

It is important to note that Eq. 4.93 is undefined if both u and v are equal zero. This only
occurs when the laser measurement observation is perfectly vertical. In this case, any vertical
plane will fit the observation perfectly, and thus the situation is degenerate. We handle this
situation by only allowing a line to initialize a new vertical plane when u2 + v2 > 0.

In order to estimate the covariance of the vertical plane we first write the plane’s normal
angle θVi in error state form using first-order Taylor expansion.
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θ̃Vi = θVi − θ̂Vi

≈ Jx,u(θVi)
∣∣
x=x̂,u=û

[
x̃
ũj

]
(4.96)

The Jacobian Jx,u(θVi) in the above expression is computed by applying the chain rule to
Eqs. 4.93 and 4.94 and allows us to estimate covariance of θ̃Vi as a function of the current
error state x̃.

Jx,uj(θi) = Jy(θi)Jx,uj(y)

= Jy(θi)

[
1 0 0
0 1 0

]
bez ×cJx,uj(f(x,uj))

(4.97)

The Jacobian Jy(θi) of the four-quadrant arctangent function is found by taking the partials
of the function atan2(v, u) with respect to the inputs u and v.

Jy(θi) =

[
−v

u2 + v2
u

u2 + v2

]
(4.98)

The Jacobian Jx,uj(f(x,uj)) is found by rewriting the expression for f(x,uj) in error state
form and applying first order Taylor expansion.

f̃(x,uj) = f(x,uj)− f(x̂, ûj)

≈ Jx,uj(f(x,uj))
∣∣
x=x̂,u=û

[
x̃
ũj

]
≈ HθBx̃B + HθLx̃L + Γθjũj

(4.99)

The Jacobian HθB is the derivative with respect to the IMU body states is given by:

HθB = −
[
bBGR̂T (t+ t̂n)BL R̂ l̂j‖×c 03×3 03×3 03×3 03×3

]
(4.100)

and the Jacobian HθL is the Jacobian with respect to the laser calibration states:

HθL =
[
B
GR̂T (t+ t̂n)BL R̂b l̂j‖×c 03×3

B
GR̂T (t+ t̂n)Mj

n
N
B
GR̂T (t+ t̂n)Mj

]
(4.101)

where Mj is the matrix expression from Eq. 4.66. The last Jacobian from Eq. 4.99, Γθ,
needed to evaluate Eq. 4.96 is then simply the derivative with respect to the laser measure-
ment parameters uj.

Γθj = −
[
03×1

B
GR̂T (t̂n)BL R̂b l̂j‖×cez

]
(4.102)
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The Jacobian expressions for d̃Vi are more complex. Using Eq. 4.95, we factor the ex-
pression for dVi into the product of a function relying only on the normal angle θVi and one
relying on the state vector x and line measurement observations uj.

dVi = πTi
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LRlj⊥)

)
= f(θVi)

Tg(x,uj)
(4.103)

where f(θVi) , πi and g(x,uj) is the remainder of the right hand side of Eq. 4.103. We then
write the error form of Eq. 4.103 and recover the needed Jacobians by again using first order
Taylor expansion.

d̃i = di − d̂i
= f(θi)

Tg(x,uj)− f(θ̂i)
Tg(x̂, ûj)

≈ Jx,uj

(
f(θi)

Tg(x,uj)
)∣∣

x=x̂,uj=ûj

[
x̃
ũj

] (4.104)

The total Jacobian Jx,uj

(
f(θi)

Tg(x,uj)
)

is found by applying the multidimensional product
rule for derivatives to the factored expression from Eq. 4.103.

Jx,uj

(
f(θi)

Tg(x,uj)
)

= gT (x,uj)Jθi
(
f(θi)

)
Jx,uj(θi) + fT (θi)Jx,uj

(
g(x,uj)

)
(4.105)

Here the Jacobian Jx,uj(θi) from Eq. 4.105 can be obtained from Eq. 4.97 and the Jacobian
of f(θVi) with respect to θVi is obtained through simple differentiation as follows:

Jθi
(
f(θi)

)
=

−sin(θVi)
cos(θVi)

0

 (4.106)

The final Jacobian needed for Eq. 4.105, Jx,uj

(
g(x,uj)

)
, is found by writing g(x,uj) in error

form and linearizing around the current state estimate.

g̃(x,uj) = g(x,uj)− g(x̂, ûj)

≈ HgBx̃B + HgLx̃L + Γjgũj
(4.107)

The Jacobians HgB, HgL, and Γjg are almost identical to those of Eqs. 4.76, 4.77, and 4.81
respectively, with the exception that they are not pre-multiplied by π̂Ti .

HgB =
[
−bBGR̂T (t+ t̂n)(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) ×c I3×3 t̂nI3×3 03×3 03×3

]
(4.108)

HgL =
[
B
GR̂T (t̂n)ρ̂j

B
L R̂bl̂j⊥ ×c B

GR̂T (t̂n) Sj
n
N

Sj
]

(4.109)
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Γjg = B
GR̂T (t+ t̂n)BL R̂

[̂
lj⊥ −ρ̂jbl̂j⊥×cez

]
(4.110)

The matrix Sj is in the previous equation is identical to the one defined in Eq. 4.78.
Once the Jacobians for d̃Vi and θ̃Vi have been computed, we stack them to mimic the form

found in Eq. 4.87. We then proceed by augmenting the state with the new plane parameters
via Eq. 4.89 and covariance via Eq. 4.90.

4.6.6 Map Management

As the size of the map grows, the computational complexity to perform a Kalman filter
update grows as O(p2) where p is the number of planes currently tracked in the map xp. In
order to keep the computation bounded, we must limit the planes that are currently tracked
by the EKF. We address the size of the map using three strategies: we enforce a minimum
plane size, we forget planes that have not been observed recently, and we merge duplicate
planes to be represented by a single set of states.

Real-world environments contain many small or insignificant planar surfaces. Since the
EKF relies on viewing a plane more than once to update the state estimate, tracking small
planes is typically not useful. Small surfaces, such as desks or pillars, are unlikely to be
viewed multiple times and thus will not contribute to the overall state estimate. Although a
naive approach that simply forbids using a line to initialize a small plane seems attractive,
a slightly more sophisticated approach must be taken. Since planes are initialized from a
single line measurement, any plane may be initialized with a small area regardless of the
actual size of the plane. To avoid prematurely eliminating large planes, we prune planes
that either have too small of a support area or were not viewed enough times only after they
have existed for longer than a minimum time. For experiments presented, we found that a
minimum time of 3 seconds, a minimum observation count of 15, and minimum area of 2
square meters works well in practice.

As the size of the scanned area increases, the number of large planes tracked by the
EKF increases. To keep the computation time bounded, we must limit the size of the error
covariance matrix. We achieve this by marginalizing out planes that the EKF has not been
seen recently. We choose to forget any planes that have not been seen for over 120 seconds.
The EKF models the error’s joint probability distribution as a set of Gaussian random
variables, and thus marginalization of a plane requires only dropping the associated rows
and columns from the covariance matrix [131].

Our final plane management strategy is to eliminate duplicate planes by merging them
together. Duplicate planes are detected by checking if planes Πi and Πj have parameters
that have converged on the same estimate. In practice, this means that for horizontal planes
we check that ‖dHi − dHj‖ < βd and for vertical planes we check that ‖dVi − dVj‖ < βd
and ‖θVi − θVj‖ < βθ for some thresholds βd and βθ. Furthermore, because the planes
are mathematically represented as infinite in extent, we ensure that the observed support
of plane Πi and Πj overlaps before merging. For all experiments presented, we used the
thresholds of βd = 5cm and βθ = 5◦.

Although it is possible to simply marginalize away the duplicate plane, that would lead
to sub-optimal filtering. If the duplicate plane Πj was used for an EKF update, then some
information about its duplicate Πi is contained in its estimate. Marginalizing Πj away
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would neglect that information and lead to sub-optimal filtering. We merge the planes in an
optimal fashion by first marginalizing away Πj and then using it as a direct observation of
plane Πi. Expressed in error state form, the residual expression is expressed trivially.

x̃pi = Hx̃ + Γx̃pj
x̃pi = 0x̃ + Ix̃pj

= x̃pj

(4.111)

This form allows the EKF to incorporate the information from Πj into its estimate of
Πi using the standard EKF update machinery. Although it appears that Eq. 4.111 is a
contradictory statement, collapsing estimates of x̃pi and x̃pj directly via an EKF update
averages their two estimates together into the optimal linear estimate.

4.7 Filter Initialization

Non-linear estimators, such as the EKF, require a reasonable initial condition of the state
vector to ensure proper filter operation. This is in general a difficult problem for IMU based
fusion techniques because the accelerometer is corrupted with both gravity and bias terms.
Furthermore, in order for the IMU to correctly fuse data from other sensors, a reasonable
initial condition of the extrinsic rotation between the IMU and external sensors is required.
To that end, we initialize the filter using a two-stage process. First, we perform a zero
velocity update (ZUPT) [132] on the system to estimate the gyroscope bias and gravity
vector by averaging the data from the IMU. A ZUPT is simply the process of forcing the
IMU to be still in order to constrain the velocity be a constant 0. Then, we run the fusion
algorithms while exciting all rotational and translation axis between the sensors and the
IMU. Specifically, we first translate along all three major axes to excite the translational
degrees of freedom followed by independently rotating around all three major axes to excite
the rotational degrees of freedom. In doing so, we optimize away any error in the bias and
calibration parameters before exploring the environment.

4.8 Path Smoothing

A direct consequence of our plane management strategies is that it does not allow the EKF to
perform arbitrary loop closure. If the EKF estimator was allowed to maintain an infinitely
large map, the system would be able to perform loop closure simply be associating new
measurements with planes seen arbitrarily in the past. By marginalizing out planes that
have not been viewed recently, we lose the ability to loop closure if we return and view that
plane again at a later time. As a result, we are not guaranteed to have bounded error in the
position and heading components of our output trajectory. This will lead to inconsistencies
in the reconstructed model and must be addressed.

We handle the long term loop closure problem using the following approach. First, we
subdivide the trajectory into small sections and create local submaps. We then recursively
create a pose graph using the EKF’s recovered trajectory as odometry estimates. Specifically,

103



Chapter 4. 3D Localization Algorithms

since the EKF generates an estimate of the systems pose after each IMU reading, camera
reading, and laser reading, we first subsample the trajectory to 20Hz to limit computation
time. Although pose estimates corresponding to IMU reading are less accurate than those
from either the laser or camera readings, in practice a naive subsampling algorithm was
determined to be sufficient. We then sequentially add nodes to the graph corresponding to
the subsampled poses and edges generated from the corresponding odometry estimates. Each
time a new pose corresponding to a submap is added to the pose graph, we search in a small
neighborhood of the current pose estimate for other submap locations. If we locate another
submap, a loop closure constraint is added by matching the submaps using the iterative
closest point (ICP) algorithm [82]. The pose graph is then input to an incremental graph
optimizer to compute an optimized estimate of the trajectory using the iSAM2 algorithm
[33]. This process is iterated until all odometry measurements have been used. The final,
optimized 20Hz trajectory is used for point cloud generation.

4.8.1 Submap Generation

We generate submaps by subdividing the trajectory into small, overlapping sections. Each
time the odometry estimates the system has traversed N meters, a new submap is generated
by combining the previous 2N meters and current N meters sections of the path. In doing
this, we generate submaps that contain 3N meters of path trajectory and overlap with
neighboring submaps by 2/3. We empirically found a value of N = 2 meters provided a
good balance between submap size and locality.

The submaps are built from the range readings from the laser scanners. The laser points
are converted into world coordinates using both the best estimate of the laser calibration x̂L
and body state estimate x̂B at the time when the laser scan point was captured. An example
local submap is displayed in Fig. 4.11. Note that the roof has been manually removed and
the submap has been colored according to height for visualization purposes.

4.8.2 Loop Closure Generation

Loop closure constraints are generated using a greedy, distance-based heuristic. Odometry
measurements from the EKF generated path are sequentially added to the trajectory until
we have traversed 3N meters. We then search in a ball around the current pose estimate
for other submaps. If any submap poses are found within the search radius, we greedily
select the closest submap and attempt to create a loop closure constraint. ICP is then run
between the local submaps to generate an estimate of the transformation T̂ between the two
submap poses. We utilize the point-to-plane distance metric and reciprocal nearest-neighbor
rejection criterion to accurately match local submaps even in the presence of a large number
of outliers [133,134].

Although our loop closure selection method is highly dependent on accurate odometry
measurements, this is not a major limitation because iSAM2 incrementally re-estimates the
trajectory each time a new loop closure is added. In doing so, we only have unbounded error
between loop closure constraints instead of throughout the entire dataset. Coupled with the
accuracy of the EKF estimator, a simple neighborhood search was deemed sufficient for the
majority of real-world datasets.
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Figure 4.11: An example image of a local submap created from a 6 meter section of a test
trajectory. Note that the roof has been manually removed and the points have been colored
according to height for visualization purposes.

In the event that the initial condition supplied by the EKF estimator is insufficient
for ICP to correctly estimate the relative transformation T̂, we utilize the genetic search
strategy described in Section 3.3.2 to do a search over initial conditions. We detect ICP
failures by comparing the final ICP alignment error to a threshold. If the final alignment
error is deemed to high, we say ICP has failed an fall back on the genetic search algorithm.
This strategy is utilized only in the event that standard ICP fails for two reasons. First, our
genetic search strategy requires that ICP be run for each candidate initial condition. Since
the submaps can contain hundreds of thousands of points, this process is computationally
expensive. Furthermore, because the space of 3D transformations contains six parameters,
the number of chromosomes, and thus computation time, required is substantially greater
than for 2D scan matching.

Despite its limitations, the genetic search is needed to mitigate drift for datasets that
contain large interior loops. If the operator traverses a large enough loop without ever
revisiting a location, the accumulated drift will grow too large and the initial condition
supplied to ICP will fail to converge. In this scenario, the genetic search algorithm is able
to successfully converge to the correct transformation T̂ despite a poor initial condition.

Figure 4.12 shows an example of a large interior loop in a two story dataset taken from the
interior of an academic building. The operator walked for 10 minutes covering a distance of
approximately 500 meters without ever revisiting a location other than the starting location.
Figure 4.12(a) shows the odometry results of the EKF estimator. The red circles denote
the starting and ending positions while the red line indicates the 4 meters of accumulated
drift. Figure 4.12(b) shows the resulting path after genetic loop closure was applied. In this
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Figure 4.12: An example of drift mitigation using the genetic search strategy for ICP. Red
circles indicate the starting and ending positions of the trajectory while red lines indicate
the accumulated drift. (a): The odometry estimate computed by the EKF estimator. Note
that the starting and ending positions are separated by 4 meters of accumulated drift. (b):
The resulting path after genetic search ICP was applied.

example, the drift distance was too large for standard ICP, but was completely eliminated
by application of the genetic search strategy.

4.8.3 Incremental Graph Optimization

Once loop closure constraints are detected, they are passed to the incremental graph opti-
mization backend. Graph optimization algorithms take as input an initial estimate of the
trajectory and a set of loop closure constraints and attempts to find an optimal set of poses
subject to a set of transform constraints that relate them. Some variants of graph optimiza-
tion are able to account for the confidence in the loop closure constraints, however, for our
purposes we do not utilize these methods. By constraining poses that are temporally far
apart through loop closure, graph optimization enforces long term consistency in the path
by finding a new trajectory that minimizes the following objective function:

J =
∑

(i,j)∈G

‖xj − T̂i→j(xi)‖2 (4.112)

where (i, j) is an edge constraint from the graph G defined from the odometry and loop
closure constraints, xi is a pose of the IMU at time instant i that serve as nodes in graph G
and Ti→j is a constraint that relates pose i and pose j and serve as the edges of G.

Since the EKF has an estimate each time a sensor reading is processed, around 200Hz,
we subsample the poses to 20Hz for computational reasons. The graph optimization backend
estimates a new trajectory by re-optimizing the set of input poses. We utilize the iSAM2
algorithm [33] implemented in the GTSAM [35] library to perform the optimization.

Figure 4.13 shows an example iteration of a fictitious incremental graph optimization
problem. Fig. 4.13(a) shows a trajectory containing 5 poses. Odometry estimates from the
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(a) Odometry Estimate

(b) Loop Closure Constraint Added

(c) Optimized Trajectory

Figure 4.13: An illustration depicting an iteration of incremental pose graph optimization.
(a): Odometry estimates are used to predict the next location x6. (b): A loop closure
constraint T̂6→1 is used to constrain the location of pose x6. (c): The optimization backend
corrects the estimates of all previous states. Notice that pose x6 and constraint T̂5→6 have
been corrected.

EKF are used to estimate the location of the next pose x6. Once x6 has been estimated,
loop closures are detected based on proximity to nearby poses. ICP is then used to generate
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an estimate T̂6→1 of the transform T6→1 that relates x6 to x1. Fig. 4.13(b) depicts the loop
closure constraint being added to the graph. Incremental graph optimization is then run to
recover an optimized set of poses. Fig. 4.13(c) shows the resulting optimized poses.

We apply iSAM2 to incrementally solve the graph optimization problem similar to the
illustrated example. We derive odometry estimates from the EKF trajectory to and in-
crementally add new poses to the graph optimizer. Each time a loop closure constraint is
detected, we add a constraint to the graph and re-optimize the entire past history of poses.
This process continues until all odometry measurements have been used. It is important to
note that, in practice, if an erroneous loop closure is included or one must be added manually,
we must supply that information and then rerun the graph optimization procedure from the
beginning to include or exclude manual loop closure constraints.

4.8.4 Point Cloud Generation

After recovering the optimized trajectory using graph optimization, we next construct a point
cloud representation of the environment using the range readings from the laser scanners.
Each laser range readings is individually timestamped using the best estimates of the laser
temporal calibration parameters. In doing so, we directly take into account the rolling shutter
of the laser scanners and correct for them. We interpolate the pose to that of the corrected
timestamp and convert the range reading into global coordinates using the optimized laser
extrinsic calibration. The process is repeated for each laser range reading resulting in a dense
point cloud representation of the scanned environment.

4.9 Results

We experimentally verified the proposed multi-sensor fusion algorithm on both simulated
and real-world datasets. The results for Monte Carlo simulation and real-world verification
of the laser calibration algorithm are presented in Section 4.9.1. Section 4.9.2 details the
comparison study of the EKF against both the state-of-the-art MSCKF and the ICP based
odometry algorithm of Chapter 3. Lastly, Section 4.9.3 presents end-to-end system results
from a number of large scale datasets.

4.9.1 Laser Calibration Results

An important characteristic for EKF based algorithms is the observability of the different
state vector components. The observability properties of the IMU body state and camera cal-
ibration parameters has already been either experimentally, or theoretically justified [40,51].
In this section, we provide experimental evidence to suggest that the laser calibration pa-
rameters, namely the rotation between laser and IMU body coordinates BqL, the translation
between laser and IMU body coordinates BpL, the sensor time delay td and the rolling shutter
readout parameter tr, are also observable provided the filter is initialized with a sufficiently
accurate initial estimate.

In order to experimentally demonstrate the observability of the laser calibration param-
eters, we ran a Monte Carlo simulation [135] using 500 trials of a simulated dataset. The
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Parameter Initial Standard Dev. Final Standard Dev.

δq 5◦ 2.2◦

δp 20 cm 5.6 cm
δtd 10 ms 3.9 ms
δtr 10 ms 4.8 ms

Table 4.2: Monte Carlo Simulation Results For Laser Calibration

simulated trajectory and environment was chosen to provide rotation and translation across
all axis of the system. The sensor noise characteristics were chosen to mimic that of the
hardware used in real-world testing. For each trial, a random initial condition for the laser
calibration was chosen and the EKF estimator was ran. We then compared the estimated
calibration parameters to the ground truth to compute the final error. The covariance of the
errors across all converging trials was computed and compared to the distribution of initial
conditions.

Table 4.2 shows the results of the Monte Carlo simulation trials. Both the initial er-
ror standard deviation and final error standard deviation are reported for each calibration
parameter. The results show almost a twofold decrease in deviation for the rotation and tem-
poral calibration parameters. The translation parameters experience an even larger decrease
of almost 4×. The results indicate that the EKF is able to decrease the uncertainty in the
calibration parameters when the filter converges. We do however note that filter convergence
is somewhat sensitive to initial condition as only 62% of the 500 trials converged. In practice,
the filter will require a reasonable initial condition of the laser calibration parameters using
either a CAD drawing or offline calibration procedure.

In order to demonstrate the importance of calibrating for the extrinsic and temporal
laser calibration parameters, we collected a real-world dataset from a staircase environment.
Our EKF data fusion algorithm was then run with and without optimizing the calibration
parameters. The resulting geometry was then visually inspected to verify the results.

Figure 4.14 demonstrates the importance of calibrating the extrinsic and temporal laser
calibration parameters. Fig. 4.14(a) shows the reconstructed trajectory from the small stair-
case environment. Fig. 4.14(b) shows a cross section of the reconstructed point cloud for
reference. Fig. 4.14(c) shows the results of using only the CAD model derived calibration.
Fig. 4.14(d) shows a comparison of the reconstructed point cloud if the EKF is allowed to op-
timize the laser calibration parameters starting from the CAD estimates. Notice that when
calibration parameters are not optimized by the EKF, the algorithm is unable to account
for timing errors and intra-scan warping. The resulting point cloud is clearly less accurate
than when accounting for the calibration parameters in the EKF estimator.

Figure 4.15 shows the covariance convergence plots for the results of applying the EKF
estimator to the dataset shown in Fig. 4.14. The red lines in each plot indicate the 3σ confi-
dence interval and the blue lines indicate the estimate of the error state. The results indicate
that the rotation and timing parameters are rapidly determined by the EKF estimator due
to the rapid convergence of the error state covariance. The translational components ex-
perience a slower convergence, but result in an error bound of approximately 4 mm at the
end of the dataset. The results of Figure 4.15 indicate that the EKF estimator is able to
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(a) Estimated Trajectory (b) Reconstructed Point Cloud

(c) Results Without Calibration (d) Results With Calibration

Figure 4.14: A real-world example demonstrating the importance of temporal and extrinsic
calibration of the laser parameters. (a): The trajectory estimated by the EKF. (b): A cross
section of the reconstructed point cloud. (c): A close up of the reconstructed environment
without optimized calibration parameters. (d): A close up of the reconstructed environment
with optimized calibration parameters.

reduce the variance on the calibration parameters in both simulated and real-world datasets.
It is important to note that the majority of the variance reduction happens at the start of
dataset. This is attributed to the fact that a small “calibration sequence” is intentionally
applied to excite all degrees of freedom of the system as described in Section 4.7.
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Figure 4.15: The covariance convergence plots for the laser calibration results from the
dataset shown in Figure 4.14. The red lines indicate the 3σ bounds for the error state
variance. The blue lines indicate the estimated error state at each EKF update. Note that
all parameters experience a marked reduction in covariance as different axis of the system are
excited. (a)–(c): The rotation calibration parameters. (d)–(f): The translation calibration
parameters. (g): The time delay between the IMU and the laser scanner. (h): The rolling
shutter parameter for the laser scanner’s readout time.

4.9.2 Odometry Comparison Results

Next, we compare our multi-sensor EKF estimator against both the popular MSCKF algo-
rithm [111] and the ICP based method of 3. In order to maintain a fair comparison, we
only compare the odometry results across the three algorithms. No batch optimization or
incremental graph optimization was used for this comparison. Two datasets were collected
using our backpack data collection system. The first dataset was collected from Sutardja
Dai Hall on University of California, Berkeley campus and totaled 160 meters. The second
dataset was taken from Cory Hall, an academic building on University of California, Berkeley
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ICP [8] MSCKF [111] Laser+IMU Laser+Camera+IMU

Odometry Dataset 1:
Sutardja Dai Hall

Estimated Distance (m) 152.39 170.50 161.49 160.93
Drift Distance (m) 3.90 1.07 0.43 0.41

Drift Rate (%) 2.56 0.63 0.26 0.25

Odometry Dataset 2:
Cory Hall

Estimated Distance (m) 591.60 644.12 605.38 602.90
Drift Distance (m) 13.61 8.57 0.61 0.48

Drift Rate (%) 2.30 1.33 0.10 0.08

Table 4.3: Odometry Comparison Results.

campus, and totaled 600 meters in length. In both dataset, the operator traveled through
an indoor environment ensuring to start and stop in the same location and orientation. By
comparing the first and last estimated poses and normalizing by distance traveled, we obtain
an estimate of the drift rate of the algorithm on each dataset.

Table 4.3 shows the results of the odometry comparison. As expected, the ICP based
odometry method of Chapter 3 performs the poorest. Not only does it appear to underesti-
mate the total distance, it also has the highest drift rate of any of the algorithms. Comparing
the EKF fusion algorithms, we note that using the IMU and lasers produces a lower drift
rate than the MSCKF algorithm. This result matches our intuition that because the lasers
are capable of measuring absolute distances to the environment, they provide a more accu-
rate odometry estimate than the camera which an lacks independent observation of absolute
scale. Furthermore, as expected we see that including both data sources in our estimates
provides the lowest drift rate amongst the compared algorithms.

These two datasets were chosen because they represent the expected use case of the
system. The first dataset, shown in Figures 4.16(a) and (c), is along a long narrow hallway
while the second dataset, shown in Figures 4.16(b) and (d), are taken from an office type
environment. Long, narrow hallways are challenging environments for laser based algorithms
and thus the drift rate is higher for the Laser+IMU algorithm in the first dataset. On the
other hand, office type environments provide many planes that can be utilized by the laser
data fusion algorithm and thus the Laser+IMU obtains an even lower drift rate on the second
dataset.

Figure 4.16 shows the estimated trajectory and environment map for both of the odom-
etry comparison datasets. Figures 4.16(a) and 4.16(c) show the top-down and 3D views
of Odometry Dataset 1 and Fig. 4.16(b) and 4.16(d) show the top-down and 3D views of
Odometry Dataset 2. Notice that in Fig. 4.16(a) some of the planes near the top of the en-
vironment have been marginalized away due to the plane management strategies discussed
in Sec. 4.6.6. However, we note that despite the incomplete plane map, the algorithm only
has a 0.08% drift rate on this dataset.

Next, we compare estimated error state covariance between the MSCKF algorithm and
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Figure 4.16: The reconstructed trajectories and environment maps of the odometry com-
parison datasets. Results are shown for the case of IMU+camera+lasers. Notice that some
planes have been marginalized away and are missing from the plane map. (a): Top-down
view of Odometry Dataset 1. (b): Top-down view of Odometry Dataset 2. (c): 3D view of
Odometry Dataset 1. (d): 3D view of Odometry Dataset 2
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Figure 4.17: Comparison results for the positional components of the error state standard
deviation for the MSCKF and IMU+lasers cases. The red lines indicate the 3σ bounds while
the blue lines indicate the estimate of the error state. (a),(c),(e): The standard deviation
for the MSCKF case. (b),(d),(f): The standard deviation for the IMU+lasers case. After
an initialization phase the standard deviation does not grow unbounded for the case of the
IMU+lasers. Note the scale difference among the plots.
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the proposed EKF when using only IMU+lasers. The position of the IMU body frame in VIO
algorithms such as the MSCKF is not observable and thus we expect to see an unbounded
growth in the error state variance of the position components. On the other hand, whenever
our laser+IMU based EKF estimator revisits a location and re-observes a mapped plane,
the EKF is able to reduce the positional variance. Figure 4.17 shows the graphs of the error
state standard deviation for the positional components for both the MSCKF and IMU+laser
algorithms on Odometry Dataset 1.

Figures 4.17(a),(c),(e) show the standard deviation of the positional components of the
state vector across the dataset for the MSCKF algorithm. Note that the error grows un-
bounded for the entirety of the dataset. Figures 4.17(b),(d),(f) show the same plots but for
the case of IMU+lasers. Notice that unlike the IMU+camera only configuration, since the
lasers are able to map structural elements of the building, when the system revisits a location
the EKF is able to reduce the error in the position. Note the scale difference different among
the plots shown in Figure 4.17.

4.9.3 End-To-End System Results

Finally, we test the scalability of our algorithm using 3 large-scale datasets against the end-to-
end system of Chapter 3 [8]. Since it is difficult to obtain absolute ground truth positioning
and a GPS comparison is unreliable in indoor environments, we compute the generated point
clouds for each of the 3 large-scale datasets using both methods and compare against CAD
drawings of the buildings. The recovered point clouds are then manually aligned to the CAD
drawings’ coordinate frames. We compare the scanned area against the CAD drawings to
compare both the floor area scanned and the Intersection Over Union (IOU) between the
two shapes. An IOU of 0 indicates that the two shapes are completely disjoint while an IOU
indicates that the shapes are exactly identical. The results of this comparison test for all
three large-scale datasets are summarized in Table 4.4

For dataset 1 of Table 4.4, we collected data from 4 floors of Jacobs Hall on the University
of California, Berkeley campus. The operator walked for 20 minutes and covered a total
walking distance of approximately 860m. The 4 floors were connected via 2 sets of stairwells
located on opposite sides of the building. Figure 4.18 and 4.19 show the results from the
first dataset. Fig. 4.18(a) shows a close up view of the reconstructed point cloud with the
ceiling removed for visualization. Many detailed features such as ladders, tables, and chairs
are clearly visible. Fig. 4.18(b) shows a comparison between the CAD drawings and a height
projection of the point cloud with the ceiling removed. The black lines indicate the CAD
derived floor plan while the colored points are from the reconstructed point cloud. Using the
CAD estimate as a ground truth, the proposed method estimates the area of the building
accurate to 97% and our reconstructed environment shares an IOU with the CAD drawings
of 0.962. In comparison, the method of Chapter 3, only has an area accuracy of 89.2% and an
IOU of 0.890. Figures 4.19(a) and 4.19(b) show 3D and top-down views of the reconstructed
trajectory. Notice that the stairwells on each floor are vertically aligned into tight spirals.

The second large-scale dataset used was collected from 3 floors of Cory Hall on the Uni-
versity of California, Berkeley campus. During data collection the operator walked 1.1km
over the duration of 23 minutes. Figures 4.20 and 4.21 show the results from dataset 2.
Figure 4.20(a) shows a close up view of the point cloud. Note that small building features
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(a) Closeup View of Point Cloud

(b) Single Floor CAD Overlay

Figure 4.18: Results from large-scale dataset 1. (a): A close up view of one section of the
reconstructed point cloud. (b): The CAD floor plan overlain on one floor of the reconstructed
point cloud The black lines correspond to the CAD derived floor plan and the colored points
are the height projection of the reconstructed point cloud after the ceiling has been removed.
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(a) 3D Trajectory View
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(b) Top-down Trajectory View

Figure 4.19: Results from large-scale dataset 1. (a): A 3D view of the reconstructed tra-
jectory. (b): A top-down view of the dataset. Notice that the stairwell regions are nicely
aligned into tight spirals.
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(a) Closeup View of Point Cloud

(b) Single Floor CAD Overlay

Figure 4.20: Results from large-scale dataset 2. (a): A close up view of a section of the
reconstructed point cloud. Note that building elements such as desks, trashcans and com-
puter monitors are visible in the reconstruction. (b): The CAD floor plan overlain on one
floor of the reconstructed point cloud. The black lines correspond to the CAD derived floor
plan and the colored points are from the projection of the reconstructed point cloud after
the ceiling has been removed.
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(a) 3D Trajectory View
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(b) Top-down Trajectory View

Figure 4.21: Results from large-scale dataset 2. (a): A 3D view of the reconstructed tra-
jectory. (b): A top-down view of the dataset. Notice that hallways on all floors are nearly
perfectly aligned vertically.
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(a) Closeup View of Point Cloud

(b) Single Floor CAD Overlay

Figure 4.22: Results from large-scale dataset 3. (a): A close up view of one section of the
reconstructed point cloud. (b): The CAD floor plan overlain on one floor of the reconstructed
point cloud. The black lines correspond to the CAD derived floor plan and the colored points
are from the projection of the reconstructed point cloud after the ceiling has been removed.
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(b) Top-down Trajectory View

Figure 4.23: Results from large-scale dataset 3. (a): A 3D view of the reconstructed tra-
jectory. (b): A top-down view of the reconstructed trajectory. Notice how all hallways are
vertically aligned between floors.
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Large-scale Duration Distance Area Acc. IOU Area Acc. IOU
Dataset [Proposed] [Proposed] Chapter 3 Chapter 3

1 1200s 860m 97.0% 0.962 89.2% 0.890
2 1380s 1100m 96.4% 0.986 93.2% 0.808
3 1644s 1200m 99.6% 0.984 99.1% 0.917

Table 4.4: Large-scale dataset results.

such as desks, computer monitors, and trashcans are clearly visible in the reconstruction.
Figure 4.20(b) shows the a vertical projection of the point cloud overlain on the CAD draw-
ings. For this dataset proposed method estimates the area of the scanned rooms accurate to
96.4% and has IOU of 0.986 shared with the CAD floor plans. Figures 4.21(a) and (b) show
the 3D and top-down views of the reconstructed trajectory. Notice that the hallways on all
floors are nearly perfectly aligned vertically.

Our last large-scale dataset was taken from a five story building, Sutardja Dai Hall, on
the University of California, Berkeley campus containing offices, long narrow hallways, and
large open areas connected by two sets of stairwells located on opposite sides of the building.
The walking time for this dataset was 27.4 minutes and the trajectory was estimated to be
1.2km in length. Figures 4.22 and 4.23 show the results from this dataset. Figure 4.22(a)
shows a close up view of one section of the reconstructed point cloud. Figure 4.22(b) shows
the CAD overlay of a the ground truth floor plan on a single floor of the reconstructed
point cloud. In this dataset, both methods estimate the area to roughly 99% accuracy, but
the proposed method shares an IOU of 0.984 compared to the previous method’s 0.917.
Figures 4.23(a) and 4.23(b) show 3D and top-down views of the reconstructed trajectory.
Note that hallways on all floors nicely align in the trajectory.

It is important to note that for this dataset two manually defined loop closures were
required for correct operation. During the course of data collection, the operator inadver-
tently occluded the sensors by allowing doors to close while the laser scanners were still
scanning them. Since the EKF estimator implicitly assumes that all large planar objects are
static across time, including them into the estimation process added additional drift that
was unable to automatically be mitigated using the loop closure strategies of Section 4.8.2.

Manual loop closures are added by first inspecting the point cloud produced by the 3D
localization algorithm and noting any regions of inconsistent geometry. Then, the sections
of the reconstructed trajectory that generated the inconsistent geometry are identified and
a loop closure constraint is manually specified by running the genetic 3D ICP algorithm
of Section 4.8.2 between submaps nearby to that region. Figure 4.25 shows an example
of a point cloud containing geometric inconsistency and the corresponding section of the
trajectory. Figure 4.25(a) shows two sections of wall geometries that have multiple unaligned
copies. Figure 4.25(b) shows the corresponding section of trajectory. The red line indicates
the manual loop closure that was chosen to fix this example. Notice that without visually
inspecting the point cloud, it is not obvious that a manual loop closure is required in this
section of the trajectory.

The resulting loop closure constraint is then manually added to previously computed
loop closure constraints and the graph optimization process is rerun. Given that the loop
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(a) Inconsistent Geometry In Point Cloud

(b) Corresponding Section of Trajectory

Figure 4.24: An example of a point cloud that requires manual loop closure due to geometric
inconsistency. (a): A section of point cloud containing multiple unaligned copies wall geom-
etry. (b): The corresponding section of the trajectory is highlighted in cyan. The red line
indicates the location of the manual loop closure constraint used to fix this example.
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Figure 4.25: An illustrative example of manual loop closure re-optimization. When the
manual loop closure, denoted in orange.

closure constraints are processed in a fixed order, the incremental optimization algorithm is
Markovian, i.e. only the state of the graph optimization at time n and subsequent constraints
are required to compute the next iteration of optimization. We exploit this property to
speed up computation by saving the state of the optimization each time a new loop closure
constraint is added so that we can restart the optimization from any arbitrary time. In
doing so, we avoid unnecessary computation by restarting the optimization from the location
of the manual loop closure and then only re-optimizing for subsequent constraints. Since
incremental graph optimization scales approximately with O(n1.5) for SLAM problems [33],
for m manually defined loop closures the cost of re-optimization is at worst O(mn1.5).

Figure 4.25 shows an illustrated example of graph re-optimization from a manually de-
fined loop closure. The blue circles and arrows indicated the poses and odometry constraints.
The red and orange arrows denote automatically and manually detected loop closures re-
spectively. When the manual loop closure T12→4 is inserted between poses 12 and 4, only the
contributions from constraints that occur after pose 12, namely T14→3 and T16→1, must be
recomputed. As long as the state of the graph from when pose 12 was added is known and
the constraints are processed in the same order, the contributions from previous constraint
T10→7 do not need to be reprocessed.

Once the manual loop closure has been incorporated into the trajectory, the process of
visual inspection and manual loop closure is iterated until the resulting point cloud no longer
contained obvious geometric inconsistencies. The resulting two manual loop closures needed
to correct for the problems of Large-Scale Dataset 3 took less than 20 minutes of human
intervention. Since we efficiently cache the state of the optimization each time we add a
loop closure constraint, re-optimizing the trajectory takes a negligible amount of processing
time. Although processing the constraints at the same time via a single instance of batch
optimization would be computationally more efficient, manual loop closures are added one at
a time via post-processing and thus the incremental graph optimization significantly reduces
the required processing time. For more discussion on limitations and best practices for
scanning, see Section 4.10.1.
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Control Point Extraction

Figure 4.26: An example of control point estimation using laser and camera data. Once
a control point is located, the center of the target was manually annotated by a pink ×.
Then, the temporally closest 2D laser scans from our backpack system, denoted in red, were
projected into the image and a subset of the points, denoted in yellow, were manually used
to estimate the plane of the target. The reprojection of the estimated control point, shown
in cyan, was used to visually verify the quality of the estimate.

4.9.4 In-Depth Analysis of Large-Scale Dataset 1

In this subsection, we provide in-depth analysis of Large-Scale Dataset 1. In order to char-
acterize the global accuracy of the end-to-end 3D localization algorithms, we repeated the
static scanning, control points experiment described in Section 3.5.6. Using a FARO Focus
3D, 43 high-density scans were automatically stitched together using 83 checkerboard targets
scattered throughout the environment. The (x, y, z) ground truth locations of the center of
the targets were extracted using the 3D static scanner to a reported accuracy of approxi-
mately 1 cm. We then ran the end-to-end system to create point cloud of the building using
the methods of this chapter with the backpack system.

Each time a control point was visible in the system’s camera imagery, we extracted
an estimate of the control point for comparison against the surveyed ground truth values.
Figure 4.26 shows an example of the control point extraction process. Once a control point
was located in an image, the center of the target, denoted by a pink × was annotated
manually. Then, the temporally closest 2D laser scans from our backpack system, denoted
in red, were projected into the image using the optimized calibration values computed by the
EKF. The operator then manually selected a subset of the laser points, denoted in yellow,
lying on the same plane as the targeted point. The target’s plane relative to the camera
was fit using Principal Component Analysis [103] (PCA) and then ray-plane intersection
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was used to calculate the depth of the target into the scene. This process, combined with
the estimate of the cameras location and orientation, allows us to compute an estimate for
the (x, y, z) location of the center of the target. The reprojection of the estimate, denoted
as a cyan ◦, was used to visually verify the quality of the extracted control point. In order
to minimize potential error in this process, only those images where the target was viewed
head-on were used.

Performing control point extraction for all images across all floors of the dataset yielded
377 observations of the 83 control points scattered throughout the environment. The esti-
mates of the control points were then aligned against the ground truth values using least-
squares to compute the error in each observation. Intuitively, least-squares alignment must
be applied because the internal coordinate system between the ground truth points and the
coordinate system of the backpack’s estimated points must be aligned.

Figure 4.27 shows the results of the control point observation experiment. Figure 4.27(a)
shows the estimated locations of the control points for a single floor of the dataset overlain
on the CAD drawings of the building. The estimated trajectory of the system is shown in
blue while the control points estimates are shown in red. Green lines drawn from the control
points to the path denote a control point observation. We observe from this figure that the
control points were evenly spread throughout the environment to not introduce any bias due
to their locations. Figure 4.27(b) shows the histogram of the observation error between the
control points estimated by the static scanning approach and the proposed algorithm. The
average observation error was found to be 9.7 cm from the 377 observations of the 83 control
points. In addition, the maximal error was found to be 33.8 cm while the standard deviation
was computed to be 4.4 cm.

Table 4.5 shows the results computed by floor of the building. It is important to note that
the results from Basement 1 were significantly better than the other floors of the building.
This can attributed to the fact that in contrast to the basement, all other floors were primarily
constructed of glass. Glass can appear either reflective, transparent, or opaque depending
on its angle relative to the scanner. This makes detecting and tracking planes more difficult
in these environments. When the algorithm is unable to utilize laser based feedback it must
rely on only the camera data fusion algorithm for positioning. By reviewing Table 4.3, we
see that the camera data fusion algorithm has a substantially larger drift rate and thus we
see decreased performance on floors of the building made primarily of glass. In addition,
Floor 1 was particularly difficult due to the large amount of foot traffic present during data
acquisition. Dynamic objects present in the camera imagery and laser data violate the
assumptions of the data fusion algorithms and contributes to additional drift during the
reconstruction process.

In order to make a few key observations about the results of Table 4.5, we examined the
Basement 1 to understand the major remaining sources of error in the estimated trajectory.
Figure 4.28(a) shows the estimated trajectory and the direction and estimated locations of
each observation of a control point. The size of the red dots have been sized to reflect the
maximal error in estimating each control point. Based on this plot, we conclude that with
the exception of a few control points, the maximal estimation error for each point is fairly
homogeneous. This can be attributed to the fact that least-squares alignment was used to
align the coordinate systems of the data. Figure 4.28(b) shows the corresponding histogram
of observation errors for this set. From the histogram we can easily see that there is a cluster
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(a) Control Point Estimated Locations
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Figure 4.27: Results from the control point test for large-scale dataset 1. (a): The estimated
locations of the control points from the third story of the dataset overlain on the CAD
drawing. The estimated locations of the control points are shown in red while the estimated
trajectory of the system is shown in blue. The green lines denote an observation of a control
point. (b): The histogram of observation errors for control points from all floors of large-scale
dataset 1. (c): The histogram of control point estimation errors.
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(a) Diagram of Control Point Observation Locations
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Figure 4.28: The observation error results for Basement 1 of Large-Scale Dataset 1. (a):
The estimated trajectory of the system annotated with the locations of each observation
of a control point. The blue line indicates the estimated trajectory while the green lines
and red dots indicate the directions and estimated locations of the control points. The red
dots are sized to reflect the maximal error in each grouping of control point estimates. The
yellow line indicates the region of the room not visible from the pink box due to the range
limit of the 2D scanners. (b): The histogram of observation errors for all observations from
Basement 1. (c): A close up view of the worst case errors from the pink box shown in (a).
The black dot indicates the ground truth position of the control point while the pink dot
indicates the observation with the maximal error.
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Floor Mean (cm) Max (cm) Standard Deviation (cm)

Basement 1 8.1 15.7 3.4
Floor 1 11.3 33.8 5.4
Floor 2 9.0 20.6 3.9
Floor 3 10.1 24.9 4.3

Table 4.5: Observation Error Results for Large-Scale Dataset 1.

Floor Mean (cm) Max (cm) Standard Deviation (cm)

Basement 1 4.4 12.5 2.7
Floor 1 5.2 11.3 2.7
Floor 2 6.2 14.8 3.2
Floor 3 5.8 18.7 3.8

Table 4.6: Control Point Estimation Error Results for Large-Scale Dataset 1.

of errors centered around the maximal value of 12-15 cm. Figure 4.28(c) shows a zoomed
in view of the worst case errors. The spread of estimates from this control point is very
large. Of the 7 worst case estimates from the histogram of Fig. 4.28(b), 6 of them are from
estimating this control point.

This result can be understood by examining the trajectory of the system and the geometry
of the environment. The main room of Basement 1 is an open area around 30 meters in
length. When the operator transitions from the large main room to the left-hand stairwell,
the laser scanner is unable to scan the right side, shown in yellow in Figure 4.28, of the
room large due to the 30 meter range limit of the Hokuyo UTM30-LX. When this happens,
the laser scanners can only see planes whose normals span R2 and thus one dimension of
the accelerometer bias is unobservable to the laser data fusion algorithm. Furthermore,
since the null of the laser scanner is pointed forward, the system is unable to see geometry
in front of itself as it transitions from known to unknown space. During these degenerate
transitional regions, the system must rely on the MSCKF for feedback. Since the drift rate
of the MSCKF algorithm is higher than that of the laser data fusion, the position error grows
in those sections at a much higher rate compared to the rest of the trajectory.

In addition to the observation error metric, we also computed the best estimate of the
control point and compare it against the surveyed ground truth. The key difference in this
metric over the metric of the previous paragraphs is that we first pre-average all observations
of a control point into a single estimate before performing least-squares alignment to align
the backpack’s coordinate system against the ground truth coordinate system. In doing so,
we average out the noise in the path and characterize the error in the control point estimate
instead of the error in the reconstructed trajectory. The mean error using this metric was
computed to be 5.4 cm over 83 control point estimates. The maximum error was found to be
18.7 cm and the standard deviation of all errors was 3.2 cm. The corresponding histogram
for this error metric is shown in Fig. 4.27(c). Table 4.6 summarizes the results separated
by building floor. For all floors of the building, the error in control point estimation is

129



Chapter 4. 3D Localization Algorithms

substantially lower than that shown in Table 4.5. This result is intuitive as the first metric
penalizes each observation while the second metric allows errors to cancel. Since the 3D
estimation algorithm utilizes a least-squares EKF based approach, it is not surprising that
averaging the estimates produces a substantially lower error.

Although, it was not possible to perform a direct comparison against the environment
shown in Fig. 3.20, a comparison between the 2.5D and 3D localization methods was made
using the Basement 1 of Large-Scale Dataset 1. Basement 1 most closely approximates the
environment of Fig. 3.20 as they both are planar environments with few windows. Since
the results reported in Fig. 3.20 only utilize the control point estimation error metric, we
compare the results from Table 4.6 against those reported in Figure 3.20. In Figure 3.20, the
mean and maximum errors resulting from the 2.5D localization algorithms was reported as
10.66 cm and 27.73 cm respectively. For the Basement 1 section of Large-Scale Dataset 1,
we see that the control point estimation error has a mean error of 4.4 cm and a maximum
error of 15.7 cm. The reduction in control point estimation error can be attributed to two
main factors. First, the EKF based 3D approach performs tight sensor fusion of the IMU
data instead of combining them in an ad hoc method. Any errors in the pitch and roll
values of the IMU are corrected and updated instead of being trusted blindly. Secondly,
the EKF optimizes the calibration parameters online instead of using values derived from
a CAD model. Since the control point estimation process requires combining data sources
from multiple sensors and correctly orienting them in the global frame of reference, any
errors in the CAD derived calibration parameters or estimated roll and roll directly leads to
increased error in control point estimation.

In order to further compare the end-to-end 3D mapping and online calibration algorithms
against the 2.5D methods presented in Chapter 3, Basement 1 of Large-Scale Dataset 1 was
also processed using our 2.5D methods. During the graph optimization step of the 2.5D
localization algorithm, we manually added loop closures 10 at a time and computed both
metrics to characterize the performance of the system. This process was repeated until
100 manual loop closures were defined. Figure 4.29 depicts the performance of the 2.5D
methods of Chapter 3 in estimating the control point locations for both observation and
control point error metrics. Notice that after around 40 manual loop closures have been
added, additional loop closures have little to no effect on the error metrics. The reasoning
behind this phenomena is that loop closures can only make the trajectory self-consistent
and cannot correct for errors such as scaling. In this dataset, the noise floor accuracy for
both metrics is approximately 30 cm. Since the 2.5D method tends to underestimate the
distance traveled, the primary source of global error is due to a scaling of the resulting
geometry. Since pre-averaging the control point observations does not remove bias as from
the estimates, we do not see any substantial difference between the two metrics after around
60 manual loop closures. In contrast, the 3D localization algorithms of this chapter obtain a
mean error of 8.1 cm for the observation error metric and a mean error of 4.4 for the control
point estimation metric.

In order to illustrate another difference between the 2.5D and 3D localization methods,
the thickness of the walls in the reconstructed point cloud were examined. Figure 4.30 shows
an example comparison from the basement of large-scale dataset 1. Figure 4.30(a) shows
an a small subsection of the point cloud. Figures 4.30(b) and (c) show the reconstructed
wall thicknesses for the 2.5D and 3D methods respectively. Notice that the wall thickness
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Figure 4.29: The effect of manual loop closures on both observation and control point es-
timation errors. After a certain number of manual loop closures have been added, adding
more provides diminishing returns.

has been reduced from approximately 12.5 cm to approximately 7 cm. The example of
Fig. 4.30 is representative of the dataset as a whole as the majority of wall thicknesses in the
2.5D reconstruction range between 8-20 cm while the range of wall thicknesses for the 3D
methods is 4-12 cm. The explanation for this result is that the laser data fusion portion of
the EKF explicitly attempts to align the laser data readings into planar objects, while the
2.5D method does not explicitly enforce this condition.

4.9.5 Scanner Configuration Results

In order for the laser data fusion algorithm to successfully provide feedback to all states of
the EKF, the union of the normal vectors of all observed planes must span R3. When the
system is unable to observe normal vectors that span R3, one or more dimensions of the IMU
biases are unobservable to the laser data fusion algorithm and the EKF must rely on the
MSCKF algorithm which has a higher drift rate than the Lasers+IMU for feedback. The
position estimate drifts at a faster rate during periods of geometric degeneracy degrading
the accuracy of the reconstructed trajectory.

Motivated by the results of Section 4.9.4, we experimented with the orientation of the
system’s horizontally mounted laser in order to understand the relationship between the
laser’s orientation and the algorithm’s performance. As shown in Figure 2.5(b), the neck of
the operator occupies the 90◦ null in the horizontally mounted laser’s field of view. This
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(a) Point Cloud Section From Large-Scale Dataset 1

(b) Wall Thickness From 2.5D Methods (c) Wall Thickness From 3D Methods

Figure 4.30: Wall thickness comparison between 2.5D and 3D localization methods from
a large-scale dataset 1. (a): A close up view of one section of the reconstructed point
cloud. (b): The wall thickness is approximately 12.5 cm for the 2.5D method. (c): The wall
thickness is approximately 7 cm for the 3D method.
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(a) Normal Laser Configuration (b) Rotated Laser Configuration

Figure 4.31: An illustration depicting how rotating the null of the laser scanner can avoid
some situations with geometric degeneracy. The field of view of the laser is shown in red while
the visible portions of the geometry are shown in green. The direction of travel is indicated
using a black arrow. (a) Since the system is unable to see geometry directly in front of
itself, as the operator walks down a long hallway, the geometry will become degenerate. (b)
By rotating the laser 90◦, the laser can see in front and behind itself thus eliminating the
degeneracy.

means that in the standard configuration the system is unable to scan objects directly in
front of itself. Some geometric configurations, such as large rooms and long hallways, the
chosen orientation of the horizontally mounted laser scanner can cause degeneracies during
the laser data fusion algorithm. By rotating the scanner 90◦, the laser scanner can see
30 meters in front as well as 30 meters behind. This effectively doubles the range of the
laser scanner and therefor the algorithm can obtain a more accurate result by avoiding the
majority of degenerate situations.

Figure 4.31 shows an illustration of rotating the laser scanner to avoid degenerate con-
figurations. Figure 4.31(a) depicts the system as the operator approaches the end of a long
hallway. Shown in green, the visible portions of the geometry do not span R3 and thus the
system will begin to drift at an accelerated rate. Figure 4.31(b) shows that by rotating the
null of the laser by 90◦, the laser can see both in front and behind which minimizes the
chances of degeneracy.

To demonstrate the effect of rotating the laser scanner on the accuracy of the recon-
structed trajectory, we rescanned Basement 1 of Large-Scale Dataset 1 using both the nor-
mal and rotated laser configurations shown in Fig. 4.31. Since we were unable to physically
rotate the scanner on the backpack system, data was collected for the rotated laser config-
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(a) Normal Laser Configuration - Ambulatory (b) Rotated Laser Configuration - Ambulatory

(c) Normal Laser Configuration - Cart (d) Rotated Laser Configuration - Cart

Figure 4.32: Wall thicknesses comparisons. (a): The wall thickness is an estimated 8 cm
for the normal configuration when carried by a human operator. (b): The wall thickness
is an estimated 5 cm for the rotated configuration when the system is carried by a human
operator. (c): The wall thickness is an estimated 5 cm for the normal laser configuration
when the system mounted on a cart. (d): The wall thickness is estimated as 3.5 cm for the
rotated laser configuration when the system is mounted on a cart.

uration by walking sideways to mimic the rotated laser configuration. In addition, we also
mounted the system on a cart and collected data using both laser configurations in order to
explore the interaction between the operator’s gate and the laser scanner configuration. We
examined the wall thicknesses and amount of double surfacing in the reconstructed point
cloud to evaluate the performance of the system.

Figure 4.32 shows the resulting wall thicknesses from the subsection of the point cloud
depicted in Fig. 4.30(a) for the normal and rotated laser configuration when the system is
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Figure 4.33: An illustration of pitch and roll motion causing the horizontally mounted laser
scanner to scan the ceiling or floor. As the scanner undergoes pitch of magnitude θ, the
vertical displacement of the scan plane travels a distance of d tan(θ). For a sufficiently large
room or short operator, the scanner will begin to scan the ceiling or floor.

both carried by a human operator and mounted to a pushcart. In the normal configuration
the wall thicknesses are estimated to be around 6-15 cm when carried by a human operator
and 5-10 cm when mounted in the rotated configuration. By mounting the system to a cart
and orienting the laser scanner in the original configuration, the measured wall thicknesses
are reduced to 5-7 cm. After rotating the laser scanner, the range of wall thickness was further
reduced to an estimated 3.5-5.5 cm. It is important to note that all three results shown in
Fig. 4.32 are better than the 4-12 cm reported in Fig. 4.30. This indicates that both the
smooth motion of the cart and the rotated laser configuration contribute to the decreased
wall thicknesses present in the reconstructed point cloud. In particular, we can conclude
that the smooth motion profile of the cart has a more dramatic effect on reconstructed wall
thickness than the orientation of the scanner.

Mounting the system on a cart provides a number of advantages that increase the accuracy
of the system. First, by mounting the system on a cart, the system does not undergo the
same magnitude of pitch and roll as when carried by a human. By stabilizing the laser
scanner, the horizontally mounted laser scanner always scans in the global xy plane instead
of periodically scanning the ceiling or floor. Figure 4.33 shows an illustration of this process.
As the laser scanner undergoes a pitch of magnitude θ, the horizontal scan plane travels a
vertical distance dtan(θ). For sufficiently large room or short/tall operator, the laser will
scan the ceiling/floor instead of the vertical geometry. Secondly, when the system is carried
by a human operator, the accelerometer reads a large spike every time a step is taken. This
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(a) Original Configuration - Ambulatory (b) Original Configuration - Cart

(c) Rotated Laser Configuration - Ambulatory (d) Rotated Laser Configuration - Cart

Figure 4.34: Double surfacing results for both the original and rotated laser configurations.
Regions of double surfacing are indicated with cyan squares. (a): High double surfacing
is present around the selected door frame in the ambulatory version of the original config-
uration. (b): By mounting the system on a cart, the double surfacing was reduced. (c):
Using the rotated laser configuration eliminates all instances of double surfacing in the re-
constructed point cloud. (d): Using the rotated laser configuration and mounting the system
on a cart eliminates the double surfacing and provides the most accurate results.

process introduces extra noise into the acceleration readings which drives the EKF further
away from its linearization point and degrades the accuracy of the reconstructed trajectory.
Both of these factors help to explain the increase in accuracy even when the laser scanner
configuration remains unchanged.

In addition, we also visually examined the point cloud for any regions of double surfac-
ing. Whenever the system experiences degenerate geometry, the drift rate of the algorithm
increases which leads to misalignments in the reconstructed point cloud. Figure 4.34 shows
a subsection of the point cloud reconstructed using both laser configurations. Figure 4.34(a)
corresponds to the case of normal laser configuration when carried by a human operator
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(a) Original Configuration - Ambulatory
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(b) Rotated Configuration - Ambulatory

(c) Original Configuration - Cart
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(d) Rotated Configuration - Cart

Figure 4.35: Comparison of the variance of the forward direction of the system’s velocity for
the different laser configurations. The blue lines indicate the estimates of the error state while
the red lines denote the 3σ bounds on the error estimate. Pink boxes indicate degenerate
locations. (a): The variance plot for the original configuration when human mounted. Notice
the regions of the dataset where degeneracies caused rapid increase in the velocity’s variance.
(b): The variance plot using the rotated laser configuration when human mounted. (c): The
variance plot after mounting the system on a cart using the normal configuration. (d): The
variance plots for the rotated laser configuration and mounting the system on a cart.
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and shows significant double surfacing in the top region of the indicated subsection of the
point cloud. Figure 4.34(b) corresponds to the same configuration but after mounting the
system on a pushcart. The amount of double surfacing has been reduced, but minor double
surfacing still exists. Figure 4.34(c) corresponds to the case of a rotated laser carried by a
human operator and shows that by rotating the laser scanner, all double surfacing has been
eliminated. Furthermore, Figure 4.34(d) shows that rotating the laser scanner and mounting
the system on a pushcart produces the most visually appealing results.

The above results can be explained by examining the variance of the system’s velocity
along the direction of motion. Whenever the system experiences geometric degeneracy, the
variance in the degenerate dimension increases rapidly. Figure 4.35(a) shows the velocity
variance for the original laser configuration along the dominant direction of the building.
Pink boxes indicate the four regions of the dataset where the laser undergoes geometric
degeneracy. These sections roughly correspond to regions of the point cloud that contain
significant double surfacing. Figure 4.35(b) shows the variance plot using the rotated con-
figuration when the system is human mounted. Notice that by using the rotated laser
configuration, there are no degenerate regions of the dataset. Figure 4.35(c) shows the vari-
ance plot after mounting the system on a cart. Notice that the stabilization of the pitch
and roll and helps to mitigate some degenerate regions because the range of scanner is not
artificially limited by ceiling or floor data as indicated in Figure 4.33. When the range of
the scanner is artificially limited in this manner, some otherwise observable planes may no
longer be visible and the support of scanned planes can drop below R3. Ceiling and floor
planes are often large with respect to wall planes and thus are less important for spanning
R3. Ceiling and floor planes are generally visible to at least one laser scanner, namely the
Floor and Up Geometry scanners shown in Fig. 2.5(c), at all times while a wall plane may
only be visible for a limited amount of time. Although stabilization is beneficial, it does
not mitigate all degenerate regions. Finally, Fig. 4.35(d) shows that using the rotated laser
configuration also mitigates all degenerate locations when the system is mounted to a cart.

4.9.6 Timing Results

Although the data collection system stores all data for offline processing, it is important to
highlight the run-time performance of the algorithms. In this section we detail the basic
processing time needed to run the end-to-end system on the large-scale datasets presented
in Section 4.9.3. Timing experiments were conducted using an unoptimized, single threaded,
C++ implementation of the proposed algorithms on a 2.4GHz Intel i7 processor. The timing
results are presented in Table 4.7.

As seen in Table 4.7, the slowest portions of the end-to-end system are the laser data
fusion and 3D ICP stages of the algorithm. Determining loop closure constraints requires
performing 3D ICP between dense submaps containing hundreds of thousands of points.
Since ICP algorithms requires knowledge of a point’s nearest neighbor to evaluate its ob-
jective function, nearest neighbor lookups dominate the majority of ICP’s processing time.
While preprocessing the submaps using techniques such as k-d trees [136] can significantly
reduce search time, the dense nature of 3D submaps makes the ICP algorithm a processing
bottleneck.

Although data fusion for each laser is only 12.5s, our ambulatory backpack system con-
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Mean Per Min.
Time (min) of Collection

Subtask Dataset 1 Dataset 2 Dataset 3 Time (sec)

Walking Time 20.0 23.0 27.4 -

IMU Integration 0.17 0.24 0.31 0.6
Per Camera Data Fusion 7.70 8.87 10.48 23.1
Per Laser Data Fusion 4.17 5.17 5.31 12.5

3D ICP 18.77 21.37 29.72 59.5
Graph Optimization 2.31 2.67 3.22 7.0

Image Preprocessing 23.56 30.08 32.25 73.2
Submap Creation 5.49 8.06 11.16 21.07

Processing Time
(4 Lasers and 1 Camera) 74.68 91.97 108.4 234.4

Table 4.7: Timing results for the end-to-end 3D localization algorithms. Note that there are
4 laser scanners and 1 camera present in our backpack data collection system.

tains 4 laser scanners and thus the total time required for laser data fusion is almost 60s per
minute of data collection. The laser data fusion algorithm has two compute intensive steps
that require the majority of its processing time. Numerical optimization of the line param-
eters and their covariances is required for every line segment detected. While this process
is inexpensive for a single line segment, the system must process hundreds of line segments
per second. If additional speed is needed, this process can be distributed across many CPUs
or a GPU. Additionally, since the laser data fusion algorithm operates on a dense N × N
covariance matrix, computing the Kalman gain and covariance update via Eqs. 4.84 and 4.85
can become computationally expensive if the number of planes tracked by the filter grows
too large.

Also included in Table 4.7 are timing results for both the image preprocessing and submap
creation tasks. Image preprocessing is required mainly for two reasons. First, instead of
capturing standard RGB images, the camera sensors mounted on our backpack system record
raw Bayer coded images. Images must first be converted into a single 8-bit intensity image
before further processing can be applied. Secondly, the camera data fusion algorithms assume
that the images are subjected to perspective distortion instead of spherical fisheye distortion
and thus must be dewarped before being passed to the camera data fusion algorithm. Submap
creation involves assembling small point clouds and is mainly an I/O bound process as a
separate point cloud file must be created and stored on disk for each submap. While these
steps are not strictly part of the proposed algorithm, they are required and thus effect the
overall run time of the system. Since these tasks are primarily dominated by I/O operations,
their runtime is ultimately limited by the speed of the hard drive that stores the data.

As shown in Table 4.7, the total time required per minute of data collection is around
235 seconds. In order to reduce the required processing time and apply the presented end-to-
end system under real-time constraints, some work would be required to speed up the ICP
and laser data fusion sections. Fortunately, these sections are able to be parallelized across
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Subtask Complexity

IMU Integration O(n) with walking time.

Camera Data Fusion O(n) with walking time.
O(n2) with size of sliding window.

Laser Data Fusion O(n) with walking time.
O(n3) with the number of plane states.

3D ICP O(n) worst case with walking time.

Graph Optimization O(n3) worst case with walking time.
O(n1.5) expected with walking time.

Image Preprocessing O(n) with walking time.

Submap Creation O(n) with walking time.

Table 4.8: Summary of the complexity for different stages of the 3D localization algorithm.

many threads. Since each line feature measurement is independent of all others, the work
is trivially parallelized across many threads. Additionally, in the 3D ICP algorithm nearest
neighbor search consumes the most time and can be directly parallelized as each points
nearest neighbor can be calculated independently. Furthermore, in a strict real-time system,
many I/O operators required for the image preprocessing and submap creation would no
longer be necessary.

In the event of a missed or erroneously detected loop closure, manual loop closure can
take a significant amount of human intervention. Although rare, a human must first diag-
nose and locate the region which either requires a manually added or removed loop closure.
This process is time and labor intensive and can easily dominate the processing time if an
extensive number are needed. A trained technician may spend 1-2 minutes per manual loop
closure required. Once the manual loop closures have been specified, the saved state of
the incremental graph optimization and manually defined loop closure are used to restart
the graph optimization algorithm from the location of the loop closure as described in Sec-
tion 4.9.3. After incorporating the manual loop closure information into the trajectory, the
point cloud is regenerated and visually inspected. This process is then repeated until the
operator is satisfied with reconstructed trajectory.

The scalability of the 3D localization algorithms are affected by a number of different
factors. Table 4.8 summarizes the scalability for the different steps of the algorithm. Many
of the stages of the algorithm, including IMU integration, image preprocessing, and submap
creation, are trivially shown to be linear in the operator’s walking time. Other stages, such as
camera data fusion and graph optimization, have had their complexities previously explored
in the literature. For more details about the run-time complexities of these stages, see [115]
and [33] receptively. Since by design we only a submap to contribute a single loop closure
constraint, the number of loop closures is upper bounded by the number of submaps. In
doing so, the process for detecting of loop closure locations and transform estimation via 3D
ICP detailed in Section 4.8.2 is at worst linear in the operator’s walking time.

The laser data fusion algorithm avoids unbounded computational complexity by marginal-
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(b) Laser Update Timing — Environment Complexity

Figure 4.36: Timing results for a laser based filter update as shown in Eq. 4.85 on Large-Scale
Dataset 2. Notice that the time per update is bounded with respect to walking time and
super-linear with respect to the number of plane states. (a) The time required per update
shown chronologically. (b) The time per update shown with respect to the number of planar
filter states. The red line shown the best fit cubic polynomial to the data.
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izing out planes that have not been used after a fixed period of time. In this way, it imple-
ments a sliding window over a small subsection of the environment’s geometry. This gives
the EKF update portion of the laser data fusion algorithm, Eq. 4.85, a linear complexity
with respect to the operator’s walking time. The complexity of the EKF update portion of
the laser data fusion algorithm is primarily dominated by updating the filter’s dense covari-
ance matrix which scales as O(n3) with the number of planes tracked in the filter’s planar
environment map.

Figure 4.36 demonstrates the linear complexity with respect to walking time and envi-
ronmental complexity on Large-Scale Dataset 2. Figure 4.36(a) shows the time required for
each laser based filter update in chronological order. After a brief period of “warming up,”
the time per update plateaus and remains roughly bounded. Figure 4.36(b) shows the per
update time with respect to the number of plane states tracked by the filter. Based on the
data, we observe an obvious super-linear trend in the data. A best fit cubic polynomial is
overlaid on the data in order to show that the observed timing data fits reasonably well to
the O(n3) complexity of the EKF update.

4.10 Discussions

This section describes the limitations and best practices for using the 3D localization algo-
rithms presented in this Chapter. In addition comparison are made against the strengths
and weaknesses of the 2.5D methods presented in Chapter 3.

4.10.1 Limitations and Best Practices

Although the end-to-end 3D mapping system presented in this chapter was shown to accu-
rately map a wide variety of environments, it does have a number of limitations that prevent
it from being applicable to all environment types. In this section, we will discuss the limita-
tions for each of the data fusion methodologies and provide a list of best practices to obtain
the best results when utilizing the presented algorithms.

The largest limitation of the laser data fusion algorithm is that the normal vectors of the
observed planes must span R3 for full IMU state observability. Since the individual laser
scanners only scan in a single 2D plane, it is unlikely that any single laser scanner will observe
geometry that meets this condition. However, since the laser scanners all operate nearly
simultaneously, it is sufficient for the plane normals from the union of all laser scanners over
a sufficiently small temporal window to span R3. In the event that geometry is degenerate
and the plane normals fail to span R3, one or more dimensions of the IMU’s accelerometer
bias ba will not be observable by the EKF. Without proper feedback, the variance of the
system’s velocity and position estimates will increase rapidly and the trajectory will start to
accumulate drift.

The most common scenario for this to occur is when the operator is traveling down a
hallway that is longer than the range of the laser scanner. Figure 4.37 shows a diagram of
horizontally mounted laser scanner in a long hallway environment in a number of configu-
rations. Figure 4.37(a) depicts the laser scanner observing a well-conditioned set of planar
features. Due to the blind spot in the laser scanner’s field of view, rotating 180◦ from the
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(a) Non-degenerate configuration.

(b) Degenerate configuration.

(c) Performing a turn to mitigate drift.

(d) Positional variance from a long hallway dataset.

Figure 4.37: A diagram of degenerate geometry for laser aided inertial navigation. The blue
circle represents the center of the laser scanner and the red arc indicate the laser scanner’s
field of view. The orange lines indicate portion of the geometry visible to the laser scanner.
(a): A non-degenerate configuration for the laser data fusion algorithm. (b): Due to the laser
scanner’s blind spot, rotating 180◦ from the orientation shown in (a) causes the geometry
to become degenerate. (c): Drift can be mitigated by performing a turn midway down the
hallway. (d): The positional variance plot from a long hallway environment.
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position shown in Fig. 4.37(a) causes the geometric configuration to become degenerate for
laser aided inertial navigation as shown in Fig. 4.37(b). As a best practice, the operator
should avoid degenerate geometric configurations at all cost.

If it is impossible to avoid degenerate geometric configurations, then there are two strate-
gies to mitigate drift. First, by ZUPTing the system, the EKF would be able to reduce the
variance in the dimensions of the accelerometer bias that are perpendicular to gravity. Sec-
ondly, by turning 90◦ midway down the hallway, the operator can temporarily calibrate the
accelerometer bias and reduce the rate at which drift accumulates. This process is highlighted
in Figs. 4.37(c) and (d). Figure 4.37(c) depicts how turning midway down the hallway can
temporarily put the laser scanner back into a well-conditioned geometric configuration.

Figure 4.37(d) depicts the positional variance along the hallway direction from a real-
world dataset. When the operator begins to travel down the long hallway, the geometry
resembles Fig. 4.37(b) and thus the positional variance begins to grow rapidly. By executing
two 90◦ turns as depicted in Fig. 4.37(c), the operator is able to temporarily reduce the
drift. Once the operator reaches the end of the hallway and turns around, the geometry
resembles Fig. 4.37(a) and thus the positional variance is bounded. The relevant portions of
the dataset are labeled in Fig. 4.37(d).

Although the frequency of geometric degeneracies can be reduced by using the rotated
laser configuration as shown in Section 4.9.5, some geometric configurations require a full
360◦ field of view. Figure 4.38 shows one configuration of geometry that causes degeneracies
regardless of the orientation of the null with respect to the direction of travel. As the
operator walks upward through the hallway, the scanner will undergo a short period of
degeneracy regardless of the laser configuration. In order to minimize the frequency of
degenerate geometric configurations, the best laser configuration would contain no gaps in
the horizontal field of view of the system.

Another common reason for poor performance of the EKF estimator is the presence
of moving objects in the environment. Although both the camera and laser data fusion
algorithms use Chi-squared outlier testing to remove bad observations, a scene with too
many moving objects can corrupt the filter estimates. Large planar objects, such as doors,
also present a problem for the data fusion algorithm. Doors are large enough to be modeled
in the EKF’s plane map, but often move during the course of data acquisition. Extreme care
must be taken when walking through doors. It is generally best practice to avoid pointing
the laser scanners at a door while it is in motion. In order to avoid problems related to
moving doors, an operator should ensure that the null of the XY laser scanner is pointed
at the door until the door has closed completely. For the XY scanner configuration used in
Fig. 2.5, null is pointed forward and thus the operator should open the door normally, walk
through and turn around towards the door, and then let it close completely before continuing
to explore the environment.

Motion blur also limits the effectiveness of the MSCKF algorithm in dimly lit environ-
ments. When there is poor ambient lighting in the environment, the camera must increase
its exposure time to avoid images that are too dark. As the exposure time increases, the
effect of motion blur also increases. Motion blur causes smearing in the image which makes
feature detection and tracking more noisy. Noisy feature estimates cause the camera data
fusion algorithm to track fewer features and thus provide less feedback to the EKF. To that
end, it is best practice to limit the rotation velocity of the operator and ensure that areas
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(a) Original Laser Configuration

(b) Rotated Laser Configuration

Figure 4.38: An illustration of a geometric configuration that results in geometric degenera-
cies regardless of the laser configuration. The scan plane of the sensor is shown in red while
the visible portions of the environment are shown in green. As the operator walks upward
through the hallway, both configurations will pass through a region of degenerate geometry.
(a): Original laser configuration. (b): Rotated laser configuration.
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are well lit before scanning.

4.10.2 Comparison Against 2.5D Methods

Although the 3D localization algorithms presented in this chapter provide a number of
strengths with respect to the 2.5D methods of Chapter 3, it is important to highlight the
pros and cons of using the two methodologies. Since the 2.5D algorithm splits the localization
task into a 2D localization problem followed by a height estimation problem, sensor data
is combined in an ad hoc fashion. Since data is not combined in a principled fashion, the
2.5D algorithms do not easily scale to an arbitrarily large number of 2D laser scanners.
Furthermore, since the gravity vector is taken from the IMU directly with no filtering, any
errors attitude errors will degrade the accuracy of the reconstructed trajectory.

In contrast, the 3D localization algorithms directly fuse data from all available laser
scanners, a camera, and an IMU into a single optimized trajectory. Since each sensor’s con-
tributions are formulated using a separate EKF update, it is trivial to extend the algorithm
to an arbitrarily large number of laser scanners. Additionally, because the IMU data is
processed by a tightly coupled EKF, data from other sensors can be used to correct errors
in the data reported by the IMU.

The 3D localization algorithms also have the advantage that they simultaneously calibrate
all relevant calibration parameters while building the optimized trajectory. Each sensor
has its own independent coordinate frame and clock and thus accurate calibration between
sensors is crucial to obtain accurate localization. Since the 2.5D methods cannot account for
any temporal or extrinsic calibration parameters, errors such as misaligned timestamps or
manufacturing deviations from the CAD model lead to errors in the reconstructed trajectory.

While the 3D localization algorithms provide a number of advantages over the 2.5D meth-
ods, the 2.5D methods have two advantages. First, the laser portions of the 3D algorithms
require some large structural planes in the environment for proper operation. Environments,
such as those with vertical non-planar objects or columns, are difficult for the laser data
fusion portion of the 3D localization algorithms. In contrast, since the 2.5D method utilizes
ICP variants to process the laser data, any vertical structure can be utilized. Furthermore,
since the 3D algorithms use camera imagery for localization, time intensive image prepro-
cessing must be performed before the 3D algorithms can be applied. Based on the timing
results in Table 3.4 and Table 4.7, I/O bound tasks such as image preprocessing and submap
creation make the 3D algorithms slower per minute of data acquisition.
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Conclusions and Future Work

In this dissertation we have presented two algorithmic pipelines for robust localization and
mapping of an ambulatory backpack system in indoor GPS-denied environments. The meth-
ods presented in this thesis are capable of allowing a human operator to map the interior of
a building with no a priori knowledge of the building. Furthermore, the presented methods
do not require any external infrastructure or database. Through experimental results, we
demonstrate a number of novel contributions used for large-scale indoor mobile mapping.

We first discussed the algorithmic pipeline for mapping building interiors in 2.5D envi-
ronments. By decomposing the SLAM problem into a 2D localization problem followed by
a height estimation problem, we were able to scale our 2.5D localization scheme to buildings
containing an arbitrary number of discrete floors. In doing so, we demonstrated that a low
cost MEMS barometer can be used to automatically segment the data collection into indi-
vidual floors and detect floor transitions. In addition to the multi-story 2.5D localization
algorithm, we also presented an algorithm to compute an validate loop closure constraints
for 2D laser based SLAM systems. By combining a robust, outlier resistant objective func-
tion and a genetic search, we demonstrated improved performance over state-of-the-art scan
matching techniques. Following this, we proposed and validated two metrics based on scan
overlap and complexity to vet loop closure constraints using both manually and automati-
cally detected loop closure constraints.

To address the shortcomings of 2.5D approaches, we then presented a modular 3D local-
ization algorithm based on a tightly coupled EKF estimator. The objective of this approach
was threefold. First, by formulating the mapping problem as an EKF estimation problem,
we were able to naturally fuse data from many sensors mounted on the backpack system
into a single, optimal estimate of the trajectory of the system. In contrast the 2.5D method
presented in Chapter 3 in which we fused the data the IMU and laser scanners in a ad hoc
fashion, our 3D EKF based localization algorithm fused data from all laser scanners, the
IMU, and a single backwards facing camera in a principled and optimal fashion. Secondly,
using a tightly coupled EKF estimator allowed us to explicitly model the various sensors’
calibration parameters during the mapping process. We demonstrated that by including the
relevant calibration parameters in the EKF’s state vector, we were able to not only over-
come timestamping latency but also calibrate out any deviations from the CAD model of the
relative positions and orientations of the scanners. We then demonstrated the calibration
method reduced parameter variance on both simulated and real-world datasets. Lastly, we
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demonstrated the scalability of the presented 3D algorithms using a few large scale datasets.
There are a number of avenues for extending the presented algorithms to both new

systems and new sensors. First, low-cost depth cameras provide an interesting avenue of
future research. As the cost and size of these sensors decreases, they will become more
commonplace in consumer electronics. By adapting the plane mapping algorithm presented
in this thesis, a small consumer device equipped with an IMU, camera, and depth sensor
could be used to quickly map many locations ill-suited for a backpack system. Additionally,
depth sensors provide a high-rate, dense, method of observing the environment and could
be used to augment the laser scanners and cameras already present on our ambulatory
backpack system. Similar to low-cost depth sensors, high-quality 3D laser scanners could
be used to improve the accuracy of the 3D localization algorithms. True 3D scanners, such
as the Velodyne VLP-16 [137], can directly measure 3D planar segments instead of 2D line
segments and thus would reduce the required number of laser scanners and eliminate the
majority degenerate cases in the laser data fusion algorithm. In order to apply true 3D
scanners, the algorithm would need to extract planar features from the scan data instead of
line features and redefine the residuals from Section 4.6.2 appropriately.

Another possible avenue of future research could be to extend the camera data fusion
algorithms to incorporate data from multiple cameras. Although we only utilize data from a
single backward facing camera, the backpack system also has two additional cameras used for
texture mapping and virtual reality applications. Since the additional cameras have partially
overlapping fields of view, sparse depth reconstruction is possible. This signal would provide
yet another source of information to fuse in the EKF estimator for an even more accurate
trajectory. The major hurdle to incorporating more cameras is that every camera requires
around 100 states to track its sliding window of poses. Without proper precautions, the
EKF would quickly become computationally intractable.

Finally, manually placed targets in the environment can also be utilized to further increase
the accuracy of the system. By placing targets of a predefined size in the environment, loop
closure detection and transform estimation could be a more robust process. Computer vision
techniques such as the PnP algorithm can be used to find the relative position between two
cameras viewing the same calibrated target. These constraints can be naturally fed into the
incremental smoothing algorithm to increase the accuracy of the reconstructed trajectory.
Furthermore, the targets could also be used in a manner similar to control points by defining
them as landmarks similar to the process described in Section 3.4.3. The only modification
that would need to be made for this scenario would be that the initial variance of the
landmarks would need to be set sufficiently high to model the uncertainty in initializing
their locations.
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Appendix A

Laser Residual Jacobian Derivations

In this Appendix we will derive the Jacobians needed for performing a laser based EKF
update as described in Section 4.6.2, namely Equations 4.63 and 4.75. Recall that a line
measurement observation, uj = [ρj, φj]

T , defines two geometric constraints for the EKF.
Denoted z1 and z2, they constrain the orientation and distance of the system to the observed
plane respectively. We will derive the Jacobians for each individually.

A.1 Angular Constraint Jacobians

In this section we derive the Jacobians needed to evaluate Equation 4.63. The orientation of
the observed line measurement φj is first used to define a constraint between the orientation
of the system and the observed plane Πi.

zl1j = πTi
B
GRT (t+ tn)GLR lj‖ = 0 (A.1)

Here the line lj‖ is the 3D line that the laser measures that is in the plane and πi is the
normal vector of the plane Πi. Since the state vector and line observations are noisy, the
estimated observation is found by evaluating Eq. A.1 using the best current estimates.

ẑl1j = π̂Ti
B
GR̂T (t+ t̂n)GLR̂ l̂j‖ (A.2)

The residual vector is then the difference between the expected measurement and the ob-
served measurement.

rl1j = zl1j − ẑl1j
≈ Hl1jBx̃B + Hl1jLx̃L + Hl1jPix̃Pi + Γl1j ũj

(A.3)

To derive the linearized version of the residual and the required Jacobians, we begin first by
substituting the expression for z1 into Eq. A.3. We note that the derivation is identical for
the case of vertical and horizontal planes with the exception that the contributions for the
normal angle θi are omitted for horizontal planes.
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rl1j = πTi
B
GRT (t+ tn)GLR lj‖

− ẑ1

(A.4)

By applying first order Taylor expansion to the normal vector, we note that the normal
vector can be approximated as a function of the error in the normal angle.

πi ≈ π̂i − bπ̂i ×cez θ̃i (A.5)

The above approximation is used to expand the πi term.

rl1j = π̂Ti
B
GRT (t+ tn)GLR lj‖

+ eTz bπ̂i ×cBGRT (t+ tn)GLR lj‖θ̃i

− ẑ1

(A.6)

Next we approximate the true rotation B
GR(t+ tn) by successively applying Taylor approxi-

mation for both the rotation component and the temporal component.

B
GR(t+ tn) ≈ B

GR̂(t+ t̂n)
(
I3×3 − bθ̃

G
(t+ t̂n)×c

)
− bBω̂(t+ t̂n) ×cBGR̂(t+ t̂n)t̃n (A.7)

The above expression is then substituted into the residual expression. We note that any 2nd

order error terms generated from here on are omitted to maintain the linear requirements of
the EKF.

rl1j = π̂Ti
B
GR̂T (t+ t̂n)GLR lj‖

+ π̂Ti bθ̃
G

(t+ t̂n)×cBGR̂T (t+ t̂n)GLR lj‖

+ π̂Ti
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×cGLR lj‖t̃n

+ eTz bπ̂i ×cBGR̂T (t+ t̂n)GLR lj‖θ̃i

− ẑ1

(A.8)

In a similar fashion the rotation between the IMU and the laser frames of reference can be
estimated using the small angle approximation.

B
LR ≈ B

L R̂
(
I3×3 − bθ̃

L×c
)

(A.9)

Which allows for the expansion of the extrinsic rotation term B
LR in Eq. A.8.
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rl1j = π̂Ti
B
GR̂T (t+ t̂n)GLR̂ lj‖

− π̂Ti BGR̂T (t+ t̂n)GLR̂bθ̃L×c lj‖
+ π̂Ti bθ̃

G
(t+ t̂n)×cBGR̂T (t+ t̂n)GLR̂ lj‖

+ π̂Ti
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×cGLR̂ lj‖t̃n

+ eTz bπ̂i ×cBGR̂T (t+ t̂n)GLR̂ lj‖θ̃i

− ẑ1

(A.10)

The final term that must be expanded is the in-plane line lj‖. First order Taylor expansion
is used to find the best linear estimate of lj‖.

lj‖ ≈ l̂j‖ − b l̂j‖ ×cezφ̃j (A.11)

The last substitution that must be made is for the line measurement observation lj‖.

rl1j = π̂Ti
B
GR̂T (t+ t̂n)GLR̂ l̂j‖

+ π̂Ti
B
GR̂T (t+ t̂n)GLR̂b l̂j‖ ×cezφ̃j

− π̂Ti BGR̂T (t+ t̂n)GLR̂bθ̃L×c l̂j‖
+ π̂Ti bθ̃

G
(t+ t̂n)×cBGR̂T (t+ t̂n)GLR̂ l̂j‖

+ π̂Ti
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×cGLR̂ l̂j‖t̃n

− eTz bπ̂i ×cBGR̂T (t+ t̂n)GLR̂ l̂j‖θ̃i

− ẑ1

(A.12)

Examining Eq. A.12 we notice that the first line is exactly the definition of ẑ1 and thus
we are able to cancel that term from the expression. Furthermore, we note that the above
expression contains the IMU body state’s angular error at time t + t̂n instead of at time t.

Applying Taylor expansion we get an expression for θ̃
G

at time t.

θ̃
G

(t+ t̂n) ≈ θ̃G(t) + t̂n
Bω̃(t)

≈ θ̃G(t)− t̂nb̃g
(A.13)

In practice, neglecting the reliance on the error in the gyroscope bias has minimal effect
and can be omitted. To get Eq. A.12 in a the correct form, we use the cross product vector
identity aT bb ×c = −bT ba ×c to rearrange all terms.
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rl1j = −π̂Ti bBGR̂T (t+ t̂n)GLR̂ l̂j‖ ×cθ̃
G

(t)

+ π̂Ti
B
GR̂T (t+ t̂n)GLR̂b l̂j‖ ×cθ̃

L

+ π̂Ti
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×cGLR̂ l̂j‖t̃n

+ eTz bπ̂i ×cBGR̂T (t+ t̂n)GLR̂ l̂j‖θ̃i

− π̂Ti BGR̂T (t+ t̂n)GLR̂b l̂j‖ ×cezφ̃j

(A.14)

The timing error t̃n is easily expressed as a function of the time delay error and the rolling
shutter timing error.

t̃n = tn − t̂n

= t̃d +
k

N
t̃r

(A.15)

Plugging the expanded form of t̃n into Eq. A.14 we obtain the final expression for rij.

rl1j = −π̂Ti bBGR̂T (t+ t̂n)GLR̂ l̂j‖ ×cθ̃
G

(t)

+ π̂Ti
B
GR̂T (t+ t̂n)GLR̂b l̂j‖ ×cθ̃

L

+ π̂Ti
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×cGLR̂ l̂j‖t̃d

+ π̂Ti
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×cGLR̂ l̂j‖

k

N
t̃r

+ eTz bπ̂i ×cBGR̂T (t+ t̂n)GLR̂ l̂j‖θ̃i

− π̂Ti BGR̂T (t+ t̂n)GLR̂b l̂j‖ ×cezφ̃j

(A.16)

Examining Eq. A.16, the elements of the Jacobians from Eq. A.3 are readily available.
The Jacobian of the residual with respect to the IMU body state is denoted by Hl1jB

Hl1jB =
[
−π̂Ti bBGR̂T (t+ t̂n)GLR̂ l̂j‖ ×c 01×3 01×3 01×3 01×3

]
(A.17)

The Jacobian of the residual with respect to the laser calibration parameters is Hl1jL.

Hl1jL = π̂Ti
B
GR̂T (t+ t̂n)

[
B
L R̂bl̂j‖ ×c 03×3 Mj

n
N

Mj

]
(A.18)

Where the matrix Mj is a compact notation for the cross product of the rotational velocity
and observed line.

Mj = bω̂(t+ t̂n) ×cBL R̂ l̂j‖ (A.19)
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The Jacobian with respect to the observed plane’s parameters is denoted as Hl1jPi . For
horizontal planes this matrix is the 1 × 1 zero matrix, but for vertical planes there is a
reliance on the normal angle of the plane θi.

Hl1jPi =
[
01×1 eTz bπ̂i ×cBGR̂T (t+ t̂n)BL R̂ l̂

j‖
]

(A.20)

The final Jacobian, Γl1j , relates the line observations to the residual.

Γl1j =
[
01×1 −π̂Ti BGR̂T (t+ t̂n)BL R̂b l̂

j‖×cez
]

(A.21)

The Jacobians Hl1jB, Hl1jL, Hl1jPi , and Γl1j are the exact expressions recovered from Equa-
tions 4.64, 4.65, 4.69, and 4.70 respectively.

A.2 Distance Constraint Jacobians

In this section we will derive the Jacobians needed for evaluating Equation 4.75. The second
constraint derived from the line observation measurement uj relates the observed and ex-
pected orthogonal distances to the plane Πi. As defined in Sec. 4.6.2, the expected distance
to plane di is computed by projecting the distance the laser scanner measures to the plane
along the plane’s normal vector.

zl2j = πTi
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
− di = 0 (A.22)

The line lj⊥ is the direction of shortest distance to the laser scanner and orthogonal to the
in-plane line lj‖. Again, we form the estimated measurement by evaluating Eq. A.22 using
the current state estimates.

ẑl2j = π̂Ti
(
Gp̂B(t+ t̂n) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

)
− d̂i (A.23)

Again, we then define the residual vector as the difference in the expected observation and
the measured observation.

rl2j = zl2j − ẑl2j
= Hl2jBx̃B + Hl2jLx̃L + Hl2jPix̃Pi + Γl2j ũj

(A.24)

We again begin the Jacobian derivation by substituting the definition of zl2j from Eq. A.22
into the residual expression.

rl2j = πTi
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
− di

− ẑl2j
(A.25)
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Using the best linear estimate of πi, we substitute its linearized expression from Eq. A.5 into
the residual expression above.

rl2j = π̂Ti
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
− di

+ ezbπ̂i ×c
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
θ̃i

− ẑl2j

(A.26)

Next, the GpB(t + tn) term must be rewritten in terms of elements in the state vector. By
applying first order Taylor expansion, we eliminate tn and replace it with its estimate.

GpB(t+ tn) ≈ GpB(t+ t̂n) + GvB(t+ t̂n)t̃n (A.27)

The above expression contains the position and velocity at time t+ t̂n but the error state has
those quantities at time t. We obtain an expression that is in the correct form by applying
linear approximation again and ignoring any higher order terms.

GpB(t+ tn) ≈ GpB(t+ t̂n) + GvB(t+ t̂n)t̃n

≈ Gp̂B(t+ t̂n) + Gp̃B(t) + t̂n
GṽB(t) + Gv̂B(t+ t̂n)t̃n

(A.28)

Eq. A.28 now only contains errors at time t and state estimates at time t̂n as needed by the
EKF. Since the filter estimates both sets of quantities we now can continue by substituting
the previous expression into the residual equation.

rl2j = π̂Ti
(
Gp̂B(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
− di

+ π̂Ti
Gp̃B(t) + π̂Ti t̂n

GṽB(t)

+ π̂Ti
Gv̂B(t+ t̂n)t̃n

+ ezbπ̂i ×c
(
Gp̂B(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
θ̃i

− ẑl2j

(A.29)

Next we apply the approximation from Eq. A.7 to expand the IMU body rotation B
GR(t+tn).

rl2j = π̂Ti
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(BpL + ρj
B
LR lj⊥)

)
− di

+ π̂Ti bθ̃
G

(t) ×cBGR̂T (t+ t̂n)(BpL + ρj
B
LR lj⊥)

+ π̂Ti
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(BpL + ρj

B
LR lj⊥) + Gv̂B(t+ t̂n)

)
t̃n

+ π̂Ti
Gp̃B(t) + π̂Ti t̂n

GṽB(t)

+ ezbπ̂i ×c
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(BpL + ρj
B
LR lj⊥)

)
θ̃i

− ẑl2j

(A.30)

The translation between the IMU and the laser can be simply expanded using the definition
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of the error state BpL = Bp̂L + Bp̃L.

rl2j = π̂Ti
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρj
B
LR lj⊥)

)
− di

+ π̂Ti
B
GR̂T (t+ t̂n)Bp̃L

+ π̂Ti bθ̃
G

(t) ×cBGR̂T (t+ t̂n)(Bp̂L + ρj
B
LR lj⊥)

+ π̂Ti
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(Bp̂L + ρj

B
LR lj⊥) + Gv̂B(t+ t̂n)

)
t̃n

+ π̂Ti
Gp̃B(t) + π̂Ti t̂n

GṽB(t)

+ ezbπ̂i ×c
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρj
B
LR lj⊥)

)
θ̃i

− ẑl2j

(A.31)

In a similar fashion, we expand the lasers measured distance ρj along the line li⊥ and
substitute it into Eq. A.32.

rl2j = π̂Ti
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
LR lj⊥)

)
− di

+ π̂Ti
B
GR̂T (t+ t̂n)BLR lj⊥ρ̃j

+ π̂Ti
B
GR̂T (t+ t̂n)Bp̃L

+ π̂Ti bθ̃
G

(t) ×cBGR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
LR lj⊥)

+ π̂Ti
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(Bp̂L + ρ̂j

B
LR lj⊥) + Gv̂B(t+ t̂n)

)
t̃n

+ π̂Ti
Gp̃B(t) + π̂Ti t̂n

GṽB(t)

+ ezbπ̂i ×c
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
LR lj⊥)

)
θ̃i

− ẑl2j

(A.32)

We then expand B
LR by reusing the linearizion from Eq. A.9.

rl2j = π̂Ti
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ lj⊥)

)
− di

+ π̂Ti
B
GR̂T (t+ t̂n)ρ̂j

B
L R̂bθ̃L×c lj⊥

+ π̂Ti
B
GR̂T (t+ t̂n)BL R̂ lj⊥ρ̃j

+ π̂Ti
B
GR̂T (t+ t̂n)Bp̃L

+ π̂Ti bθ̃
G

(t) ×cBGR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ lj⊥)

+ π̂Ti
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(Bp̂L + ρ̂j

B
L R̂ lj⊥) + Gv̂B(t+ t̂n)

)
t̃n

+ π̂Ti
Gp̃B(t) + π̂Ti t̂n

GṽB(t)

+ ezbπ̂i ×c
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ lj⊥)

)
θ̃i

− ẑl2j

(A.33)

The final term that needs to be expanded is the line lj⊥. The best linear approximation of

lj⊥ is found by linearizing it around the observed measurement φ̂j.
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lj⊥ ≈ l̂j⊥ − b l̂j⊥ ×cezφ̃j (A.34)

Substituting Eq. A.34 into the expression of Eq. A.33 and expanding di into d̂i + d̃i yields
the fully expanded expression for the residual.

rl2j = π̂Ti
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

)
− d̃i
+ π̂Ti

B
GR̂T (t+ t̂n)ρ̂j

B
L R̂b l̂j⊥ ×cezφ̃j

+ π̂Ti
B
GR̂T (t+ t̂n)ρ̂j

B
L R̂bθ̃L×c l̂j⊥

+ π̂Ti
B
GR̂T (t+ t̂n)BL R̂ l̂j⊥ρ̃j

+ π̂Ti
B
GR̂T (t+ t̂n)Bp̃L

+ π̂Ti bθ̃
G

(t) ×cBGR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

+ π̂Ti
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) + Gv̂B(t+ t̂n)

)
t̃n

+ π̂Ti
Gp̃B(t) + π̂Ti t̂n

GṽB(t)

+ ezbπ̂i ×c
(
Gp̂B(t+ tn) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

)
θ̃i

− ẑl2j

(A.35)

Rearranging the above expression into state order and expanding t̃n according to Eq. A.15
allows us to easily see the required Jacobian expressions. The Jacobian of rl2j is denoted as
Hl2jB.

Hl2jB = π̂Ti
[
−bBGR̂T (t+ t̂n)(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) ×c I3×3 (t̂n)I3×3 03×3 03×3

]
(A.36)

Similarly the expression for the Jacobian with respect to the laser calibration parameters
Hl2jL is easily found by examining Eq. A.35.

Hl2jL = π̂Ti
[
B
GR̂T (t+ t̂n)ρ̂j

B
L R̂bl̂j⊥ ×c B

GR̂T (t+ t̂n) Sj
n
N

Sj
]

(A.37)

The matrix Sj is defined as via Eq. A.38.

Sj = B
GR̂T (t̂n)bω̂(t̂n) ×c(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) + Gv̂B(t̂n) (A.38)

We note that the Jacobian for the plane states Hl2jPi is identical for horizontal and vertical
planes with the exception that the horizontal case has reduced dimensionality as there is no
normal angle.

Hl2jPi =
[
−I1×1 eTz bπ̂i×c

(
Gp̂B(t+ t̂n) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

)]
(A.39)
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The final Jacobian needed relates the input error to the residual and is denoted as Γl2j .

Γl2j = π̂Ti
B
GR̂T (t+ t̂n)BL R̂

[
l̂j⊥ −ρ̂jbl̂j⊥×cez

]
(A.40)

The derived expressions for the Jacobians Hl2jB, Hl2jL, Hl2jPi , and Γl2j are exactly those
described in Equations 4.76, 4.77, 4.80, and 4.81 respectively.
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Plane Augmentation Jacobian
Derivations

In this section we will derive the Jacobians needed to perform new plane initialization, namely
those needed to evaluate Equations 4.92, 4.96, and 4.105. When a laser measurement uj is
found to originate from a horizontal or vertical plane not stored in the EKF state vector,
it is used to create a new plane and is augmented into the plane map xP . In addition to
an estimate of the plane parameters xPi , the EKF needs an estimate of the error in those
parameters to augment into the covariance matrix. Since the plane parameters are a function
of both the current state estimate and the laser observation, a function that relates them
is needed for proper augmentation of the covariance matrix. We will derive the required
Jacobians for the normal angle and offset parameters individually. Note that for the case of
a horizontal plane, there is no normal angle and thus the augmentation Jacobians will only
contain the contributions for the offset parameter.

B.1 Normal Angle Jacobians

A vertical plane’s normal angle is defined as the angle that the normal vector makes in
the global xy plane. Mathematically, this is equivalent to saying it is the four-quadrant
arctangent of the x and y components of the normal vector.

θi = atan2(v, u) (B.1)

Here u and v define the x and y components of the normal vector respectively and are denoted
as y = [u, v]T . We compute the vector y by taking the in-plane line lj‖, converting it to
global coordinates, taking the cross product of it with the global z vector, and projecting it
down into the xy plane.
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y =

[
1 0 0
0 1 0

]
bez ×cBGRT (t+ tn)BLR lj‖

=

[
1 0 0
0 1 0

]
bez ×cf(x,uj)

(B.2)

The derivation begins by first evaluating the expression for θi using the observed line mea-
surement feature ûj and state estimate x̂.

θ̂i = atan2(v̂, û) (B.3)

with

ŷ =

[
1 0 0
0 1 0

]
bez ×cBGR̂T (t+ tn)BL R̂ l̂j‖ (B.4)

Since the EKF requires the expression in error state form, we create the error from by
subtracting the true and estimated version of θi.

θ̃i = θi − θ̂i
≈ Jx(θi)

∣∣∣
x=x̂

x̃ + Juj(θi)
∣∣∣
uj=ûj

ũj
(B.5)

In the above expression Jx(θi) indicates the Jacobian of θi with respect to the variable x.
The required Jacobians are found using the chain rule on Eq. B.1.

Jx,uj(θi) = Jy(θi)Jx,uj(y)

= Jy(θi)

[
1 0 0
0 1 0

]
bez ×cJx,uj(f(x,uj))

(B.6)

The Jacobian of the four-quadrant arctangent function is found by simply taking the partial
derivatives with respect to the elements of y.

Jy(θi) =

[
−v

u2 + v2
u

u2 + v2

]
(B.7)

The inner function f(x,uj) is simply the expression that rotates the observed line lj‖ into
world coordinates. The Jacobian of this function is computed by forming the residual ex-
pression for f(x,uj) and linearizing it around the current estimate.

f̃(x,uj) = f(x,uj)− f(x̂, ûj)

≈ HθiBx̃B + HθiLx̃L + Γθiũj
(B.8)
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We begin the derivation for the above Jacobians by substituting the definition of f(x,uj)
into the Eq. B.8.

f̃(x,uj) = B
GRT (t+ tn)BLR lj‖

− f(x̂, ûj)
(B.9)

The true rotation B
GR(t+ tn) is linearized about the current state estimate using the ex-

pression from Eq. A.7 and the resulting linear approximation is substituted into the above
expression.

f̃(x,uj) = B
GR̂T (t+ tn)BLR lj‖

+ bθ̃G(t+ t̂n) ×cBGR̂T (t+ tn)BLR lj‖

+ B
GR̂T (t+ tn)bBω̂(t+ t̂n) ×cBLR lj‖t̃n

− f(x̂, ûj)

(B.10)

Next we expand the true rotation between the laser and IMU frames using the small angle
approximation from Eq. A.9 and substituting it into Eq. B.10.

f̃(x,uj) = B
GR̂T (t+ tn)BL R̂ lj‖

− B
GR̂T (t+ tn)BL R̂bθ̃L ×c lj‖

+ bθ̃G(t+ t̂n) ×cBGR̂T (t+ tn)BL R̂ lj‖

+ B
GR̂T (t+ tn)bBω̂(t+ t̂n) ×cBL R̂ lj‖t̃n

− f(x̂, ûj)

(B.11)

The final substitution that must be made is to expand the line lj‖ using the linear approxi-
mation from A.11.

f̃(x,uj) = B
GR̂T (t+ tn)BL R̂ l̂j‖

− B
GR̂T (t+ tn)BL R̂b l̂j‖ ×cezφ̃j

− B
GR̂T (t+ tn)BL R̂bθ̃L ×c l̂j‖

+ bθ̃G(t+ t̂n) ×cBGR̂T (t+ tn)BL R̂ l̂j‖

+ B
GR̂T (t+ tn)bBω̂(t+ t̂n) ×cBL R̂ l̂j‖t̃n

− f(x̂, ûj)

(B.12)

Inspecting the previous expression, we note that the first line is exactly the definition of
f(x̂, ûj) and thus is canceled from the equation. We are left with an expression that is linear
in the error state and only requires the current state estimate to evaluate. The required
Jacobians can be trivially deduced by visual inspection.
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HθiB =
[
b−BGR̂T (t+ t̂n)BL R̂ l̂j‖×c 03×3 03×3 03×3 03×3

]
HθiL =

[
B
GR̂T (t+ t̂n)BL R̂b l̂j‖×c 03×3

B
GR̂T (t+ t̂n)Mj

n
N
B
GR̂T (t+ t̂n)Mj

]
Γθi =

[
03×1 −BGR̂T (t+ t̂n)BL R̂b l̂j‖×cez

] (B.13)

The matrix Mj in the above expression is identical to that of Eq. A.19. The resulting
Jacobians are then combined with Jacobian from Eq. B.7 to assemble the total Jacobian
Jx,uj(θi) needed for covariance augmentation via the chain rule expression of Eq. B.6.

B.2 Plane Offset Jacobians

The offset parameter di describes the orthogonal distance between the origin and a plane
Πi. We compute di from the state vector and laser line measurements by rearranging the
distance constraint zl2j from Eq. A.22 and isolate the offset parameter to the left-hand side
of the equation.

di = πTi
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
(B.14)

Unfortunately the expression for di is not only a function of the state vector and line mea-
surement parameters, but also a function of the plane’s normal angle θi. This means that the
Jacobian expressions must take into account the uncertainty in normal angle and thus are
slightly more complicated to derive. We begin by noting that Eq. B.14 can be factored into
a function of the normal angle multiplied by a function of the state and input parameters.

di = πTi
(
GpB(t+ tn) + B

GRT (t+ tn)(BpL + ρj
B
LR lj⊥)

)
= f(θi)

Tg(x,uj)
(B.15)

Next, we evaluate Eq. B.14 using the current state estimate and observed line features to
derive the estimate for the plane offset d̂i.

d̂i = π̂Ti
(
Gp̂B(t+ t̂n) + B

GR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ ˆlj⊥)

)
(B.16)

Then we create the error state form of the offset equation by subtracting the estimate d̂i
from the true value di and apply first-order Taylor approximation to obtain the required
linearized form.

d̃i = di − d̂i
= f(θi)

Tg(x,uj)− f(θ̂i)
Tg(x̂, ûj)

≈ Jx,uj

(
f(θi)

Tg(x,uj)
)∣∣

x=x̂,uj=ûj

[
x̃
ũj

] (B.17)
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The Jacobian Jx,uj

(
f(θi)

Tg(x,uj)
)

is computed by applying both the multi-dimensional
product and chain rules to the expression from Eq. B.15.

Jx,uj

(
f(θi)

Tg(x,uj)
)

= gT (x,uj)Jθi
(
f(θi)

)
Jx,uj(θi) + fT (θi)Jx,uj

(
g(x,uj)

)
(B.18)

Note that for horizontal planes f is constant and thus the first term evaluates to zero.
Equation B.18 requires three separate Jacobians to be computed. The first, Jx,uj(θi) is the
Jacobian of the normal angle estimate with respect to state vector and input parameters.
This is exactly Jacobian that we derived in Sec. B.1. The second Jacobian, Jθi

(
f(θi)

)
, is the

derivative of the normal vector with respect to its angle.

Jθi
(
f(θi)

)
=

−sin(θi)
cos(θi)

0

 (B.19)

The final Jacobian needed Jx,uj

(
g(x,uj)

)
is computed by creating the linearized error form

of g(x,uj).

g̃(x,uj) = g(x,uj)− ĝ(x,uj)

≈ HgBx̃B + HgLx̃L + Γgjũj
(B.20)

We begin the derivation begin by substituting the equation for g(x,uj) into the above
equation.

g̃(x,uj) = GpB(t+ tn) + B
GRT (t+ tn)(BpL + ρj

B
LR lj⊥)

− ĝ(x,uj)
(B.21)

Next, we apply the approximation of GpB(t+ tn) from Eq. A.27 and Eq. A.28 and substitute
it into the above equation.

g̃(x,uj) = Gp̂B(t+ t̂n) + B
GRT (t+ tn)(BpL + ρj

B
LR lj⊥)

+ G̃pB(t) + t̂n
GṽB(t)

+ Gv̂B(t+ t̂n)t̃n

− ĝ(x,uj)

(B.22)

Then the rotation is expanded using the small angle approximation and first order approxi-
mation from Eq. A.7 to eliminate the true rotation from the above equation.
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g̃(x,uj) = Gp̂B(t+ t̂n) + B
GR̂T (t+ t̂n)(BpL + ρj

B
LR lj⊥)

+ G̃pB(t) + t̂n
GṽB(t)

+ bθ̃G(t) ×cBGR̂T (t+ t̂n)(BpL + ρj
B
LR lj⊥)

+
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(BpL + ρj

B
LR lj⊥) + Gv̂B(t+ t̂n)

)
t̃n

− ĝ(x,uj)

(B.23)

The remaining additive parameters ρj and BpL are eliminated using the standard additive
error definition and omitting any higher order terms.

g̃(x,uj) = Gp̂B(t+ t̂n) + B
GR̂T (t+ t̂n)(Bp̂L + ρ̂j

B
LR lj⊥)

+ B
GR̂T (t+ t̂n)BLR lj⊥ρ̃j

+ B
GR̂T (t+ t̂n)Bp̃L

+ G̃pB(t) + t̂n
GṽB(t)

+ bθ̃G(t) ×cBGR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
LR lj⊥)

+
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(Bp̂L + ρ̂j

B
LR lj⊥) + Gv̂B(t+ t̂n)

)
t̃n

− ĝ(x,uj)

(B.24)

We then expand the true rotation between the laser and IMU body coordinate frames using
the approximation from Eq. A.9 and substitute it back into Eq. B.24.

g̃(x,uj) = Gp̂B(t+ t̂n) + B
GR̂T (t+ t̂n)(Bp̂L + ρ̂j

B
L R̂ lj⊥)

− B
GR̂T (t+ t̂n)ρ̂j

B
L R̂bθ̃L×c lj⊥

+ B
GR̂T (t+ t̂n)BL R̂ lj⊥ρ̃j

+ B
GR̂T (t+ t̂n)Bp̃L

+ G̃pB(t) + t̂n
GṽB(t)

+ bθ̃G(t) ×cBGR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ lj⊥)

+
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(Bp̂L + ρ̂j

B
L R̂ lj⊥) + Gv̂B(t+ t̂n)

)
t̃n

− ĝ(x,uj)

(B.25)

The final substitution that must be made is to eliminate the true line lj⊥ and replace it via
the Taylor approximation of Eq. A.34.
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g̃(x,uj) = Gp̂B(t+ t̂n) + B
GR̂T (t+ t̂n)(Bp̂L + ρ̂j

B
L R̂ l̂j⊥)

− B
GR̂T (t+ t̂n)ρ̂j

B
L R̂b lj⊥ ×cezφ̃j

− B
GR̂T (t+ t̂n)ρ̂j

B
L R̂bθ̃L×c l̂j⊥

+ B
GR̂T (t+ t̂n)BL R̂ l̂j⊥ρ̃j

+ B
GR̂T (t+ t̂n)Bp̃L

+ G̃pB(t) + t̂n
GṽB(t)

+ bθ̃G(t) ×cBGR̂T (t+ t̂n)(Bp̂L + ρ̂j
B
L R̂ l̂j⊥)

+
(
B
GR̂T (t+ t̂n)bBω̂(t+ t̂n) ×c(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) + Gv̂B(t+ t̂n)

)
t̃n

− ĝ(x,uj)

(B.26)

The first line is now exactly equation to ĝ(x,uj) and is canceled from the expression. The
remaining terms are now in the correct form to form the required matrices by visual inspec-
tion.

HgB =
[
−bBGR̂T (t+ t̂n)(Bp̂L + ρ̂j

B
L R̂ l̂j⊥) ×c I3×3 t̂nI3×3 03×3 03×3

]
HgL =

[
B
GR̂T (t+ t̂n)ρ̂j

B
L R̂bl̂j⊥ ×c B

GR̂T (t+ t̂n) Sj
n
N

Sj
]

Γjg = B
GR̂T (t+ t̂n)BL R̂

[
l̂j⊥ −ρ̂jbl̂j⊥×cez

] (B.27)

We note that the above Jacobians are exactly those needed to evaluate Equation 4.107. The
overall Jacobians are finally constructed via Eq. B.18.
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