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Abstract

Productive Design of Extensible On-Chip Memory Hierarchies

by

Henry Michael Cook

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Patterson, Chair

As Moore’s Law slows and process scaling yields only small returns, computer architecture
and design are poised to undergo a renaissance. This thesis brings the productivity of modern
software tools to bear on the design of future energy-efficient hardware architectures.

In particular, it targets one of the most difficult design tasks in the hardware domain:
Coherent hierarchies of on-chip caches. I have extended the capabilities of Chisel, a new
hardware description language, by providing libraries for hardware developers to use to
describe the configuration and behavior of such memory hierarchies, with a focus on the cache
coherence protocols that work behind the scenes to preserve their abstraction of global shared
memory. I discuss how the methods I provide enable productive and extensible memory
hierarchy design by separating the concerns of different hierarchy components, and I explain
how this forms the basis for a generative approach to agile hardware design.

This thesis describes a general framework for context-dependent parameterization of
any hardware generator, defines a specific set of Chisel libraries for generating extensible
cache-coherent memory hierarchies, and provides a methodology for decomposing high-level
descriptions of cache coherence protocols into controller-localized, object-oriented transactions.

This methodology has been used to generate the memory hierarchies of a lineage of
RISC-V chips fabricated as part of the ASPIRE Lab’s investigations into application-specific
processor design.
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Chapter 1

Introduction

The last decade has been revolutionary for computer architecture, and the next decade
promises to be even more so. While we have long had to adapt our design philosophies
to account for changing physical constants, fundamental relationships between technology
properties have begun to drift from their comfortable trends. We will no longer be able to
rest on the twin laurels of Moore’s Law and Dennard scaling to achieve the expontential
increases in computational performance that our information society has grown to depend
upon. As process scaling fails to produce further returns, architecture and design will have
to take its place.

New design challenges call for the creation of new tools and the adoption of new methogolo-
gies. Best practices for the hardware design industry have been complacently static, as
reflected in the languages used by practitioners and the costs of bringing new chip designs to
market. In the meantime, software engineers have continued to push the boundaries of what
is possible with the computers we have architected for their use. The open source and agile
development movements have fundamentally altered the landscape of how new software tools
are produced.

This thesis is an attempt to apply the productivity of modern software tools to the design
of future hardware architectures. In extending the capabilities of a new hardware description
language, I hope to have brought the agility and composability of functional, object-oriented
software design to one of the most difficult design tasks in the hardware domain, namely that
of coherent hierarchies of on-chip caches.

This chapter provides an introduction to a current set of challenges facing the field of
computer architecture. I first discuss the genesis of modern hardware design objectives, and
then constrast those needs with the capabilities of modern design practices. In doing so, I
hope to illustrate the role my thesis plays in improving the latter and bringing them to bear
on the former.
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1.1 The Landscape of Computer Architecture
As I began my tenure at Berkeley, the computer processor industry was pivoting to

adopt multicore chip designs, in which multiple processor cores with a shared memory
hierarchy are integrated into a single chip. This change was not perceived as welcome; the
difficulties in achieving improved software performance that strongly scales with core count
are substantial [4]. Over the preceding decade, the processor industry had been backed into
the multicore corner by three fundamental bottlenecks:

ILP Wall. There are diminishing returns on automatically extracting more Instruction-Level
Parallelism from sequential programs [34].

Memory Wall. Memory latency improvement has been lagging memory bandwidth, and
now even complex arithmetic operations are hundreds of times faster than loads and
stores [82].

Power Wall. We can put more transistors on a chip than we can dissipate the heat of
switching at high frequency [65].

However, despite the ongoing dominance of multicore designs in the market, in the
intervening years it has not proven to be pragmatic for industry to exponentially increase
core counts per chip alongside transistor counts. Amdahl’s law ensures that communication
costs will eventually dominate any parallel program, so the marginal energy cost of increasing
performance with parallelism increases with the number of cores. Furthermore, parallelism
itself does not intrinsically lower the energy per operation. Faced with such diminishing
returns, chip designers have instead looked to increasing the heterogeneity of the cores
available on each chip, leading to the rise of System-On-a-Chip designs (SoCs) containing a
variety of specialized cores. The rest of this section provides context on how our industry got
us where we are now, and where further technology scaling issues are likely to lead us.

1.1.1 The End of Dennard Scaling and Moore’s Law
In 1965, Gordon Moore noted that the number of transistors that could economically be

made to fit on an intergrated circuit had been doubling approximately every year and forecast
that this trend would continue [56]. While he was only making an empirical observation
rather than stating a law of nature, history has proven his prediciton so accurate that the
term “Moore’s Law” is now synonymous with ceaseless technology scaling in a variety of
contexts.

Robert Dennard in turn described how the transistor scaling predicted by Moore would
translate into the device characteristics of metal-oxide semiconductor (MOS) devices [24].
Dennard showed that when voltages are scaled along with all physical dimensions, a device’s
electric fields remain constant. Therefore, most device characteristics are preserved with
scaling, and specifically, power usage remains proportionate to area. This relationship
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enabled chip designers to pursue several decades of aggressive, high-frequency designs based
on assumptions of unchanging power consumption.

Unfortunately, in the last decade Dennard scaling has broken down. As voltages have
dropped, exponentially increasing static leakage power losses take up an ever greater propor-
tion of the overall power supplied. Leakage losses heat up the chip, which further exacerbates
static power loss and raises the spectre of thermal runaway. Fear of leakage has thereby
halted voltage scaling by preventing threshold voltage from decreasing. The lack of voltage
scaling in turn leads to dramatic increases in power density as we continue to try to increase
the average number of gate switches per second. While this power wall has previously spurred
industry towards multicore designs, some forecasts predict a rapidly approaching era of “dark
silicon,” where significant fractions of a chip must be power-gated off at any given time [27].
Already some commercial products, such as Intel’s Turboboost-enabled multicore chips, have
adopted the “dim silicon” approach of trading off decreasing the number of simultaneously
active cores to achieve much higher operating frequency [80].

Ironically, our struggles with dim or dark silicon design may be superseded by the fact
that Moore’s Law itself seems to be beginning to falter. In July 2015, Intel announced that
their next generation will not be ready until 2017 and that a third iteration on the design of
the current processor generation would be used to fill in the gap. This scheduling change
pushed the cadence of their technology node jumps out to nearly three years. It also broke
the “tick/tock” model of design-change-or-technology-shrink per generation that the company
had been holding fast to since 2007. In March 2016, Intel announced in their 10-K that
“[we] expect to lengthen the amount of time we will utilize our 14 nanometer and our next-
generation 10 nanometer process technologies, further optimizing our products and process
technologies while meeting the yearly market cadence for product introductions.” They went
on to introduce an alternative, three step “Process-Architecture-Optimization” model, a
perfect example of how the proximal effect of this slowdown will be to cause companies to
increase the number of design iterations they cycle through at each technology node. In order
to add value to the next product, companies will have to improve the design while working
with the same transistor resources.

Taken together, the rise of power constraints and increasing cost per transistor at new
technology nodes puts the emphasis of the computer processor industry back on chip design
and architecture, rather than process technology scaling.

1.1.2 Designing for Energy Efficiency
In this brave new power-constrained, post-Dennard world, energy efficiency becomes a

first-order design goal. Power is the product of performance (operations per second) and
energy per operation. Therefore, subject to power constraints, the only way in which hardware
designers can continue to offer increasing performance is to lower energy per operation. Energy
efficiency demands for high-performance and embedded computing have converged due to
the former’s hunger for maximal performance and the latter’s dependence on battery life.

Providing specialized hardware is a natural solution to reducing energy per operation
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Task (performed on 32b value) Energy (pJ)
ALU operation 0.3
read from register 0.6
read from 8KB SRAM 3.0
transfer across chip 17.0
read from off-chip DRAM 400.0

Table 1.1 : Energy costs of computation versus communication in 45nm, from [21].

while also playing nicely with the dark silicon paradigm [27]. For a particular problem,
some subset of the transistors can be used to arrive at a solution as efficiently as possible
while less suitable portions of the chip remain power-gated. This trend has already become
manifest in the embedded and mobile device industry via the adoption of SoC designs, which
boast an ever increasing number of specialized co-processors on each chip. These specialized
units handle applications as diverse as voice recognition, audiovisual codec playback, image
stabilization, radio and WiFi signal processing, and many more. The reseach community
has also begun to study frameworks for exploring design spaces of extremely heterogenous
designs. Some researchers have advocated building chip generators that can be retargeted for
application-specific needs [65]. Others have focused on creating seas of specialized units from
High-Level Synthesis tools [68, 79].

Moving beyond specialized cores, energy consumption within the memory hierarchy
is rapidly becoming a significant design concern. The trend can be seen most clearly by
contrasting the energy costs of performing arithmetic operations with the costs of transporting
the operands to the unit which will carry out the computation. Table 1.1 presents an overview
of the relative costs of computation versus communication in a 45nm process [21]. As these
estimates make clear, data movement energy costs far outweigh the computation’s energy
costs, even for simple reads of local register files. Transferring data across the entire chip
is yet more expensive. The high cost associated with communication thereby increases the
value of managing the memory hierarchy well. Ineffective heuristics for data placement and
replication within the on-chip memory hierarchy can potentially waste a vast amount of
energy relative to the base cost of the computation itself.

In a multicore chip with a signficant hierarchy of on-chip caches, the majority of the data
movement activity that occurs within the chip is done automatically at the behest of the cache
controllers and the coherence policy that governs their behaviors. Since traditional cache
coherence protocols preserve the abstraction of a global memory shared by all the cores, they
must work behind the scenes to keep copies of data in the right places, potentially trading off
additional communication for improved performance. How to define customizable coherence
policies, implement the associated protocols efficiently, and manage the aforementioned
communication/performance tradeoff is an important design challenge for future energy-
efficient architectures.
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1.1.3 The Future of Cache Coherence
Modern multicore processors communicate by executing load and store instructions that

reference a shared global address space, or shared memory. However, the cores also make use
of hardware-managed caches to reduce the expected latency of these memory requests, as
well as to filter outbound memory traffic. Generally these caches are organized into a tree,
where the root is a large shared cache and the leaves are private caches co-located with each
core. Because the levels of the memory hierarchy closest to the cores are private, hardware
mechanisms must be provided by the chip designer to ensure that all caches agree on the
value stored at each memory address at a given point in time. This agreement is what makes
the system coherent.

In a system with hardware-managed cache coherence, the cache controllers and memory
controllers communicate among themselves according to some protocol to maintain coherence.
While they might have vastly different implementations, all such protocols maintain coherence
by ensuring the same single-writer, multiple-reader (SWMR) invariant [70]. For a given block
of cached memory, at any given moment in logical time, there is either: (1) a single core that
may write (or read) the block, or (2) there are zero or more cores that may read the block.
Violating this invariant could lead to values stored out by one core never becoming visible to
other cores.

The cache-coherent shared memory paradigm has dominated the multicore marketplace,
from servers to mobile devices, for both technical and legacy reasons. In many cases,
hardware-management of cache coherence provides performance that is superior to that of
software-managed solutions, while vastly reducing programmer effort [52]. At the same time,
hardware-management innately provides backwards compatibility for operating systems and
user-level software that has been written in the shared memory paradigm.

Despite its innate appeal, the future scalability of hardware-managed coherence has
been a debated topic. As core counts continue to grow, some researchers fear that the
forthcoming growth of coherence-related traffic, coherence metadata storage overhead, and
the maintenance cost of inclusive caches will dominate the performance benefits of hardware-
managed coherence [15, 47, 35]. Others have argued that backwards compatibility/legacy is
too important to give up and that scalability challenges can be addressed [54].

The scalability issue is somewhat mitigated by the fact that industry has shied away from
exponentially increasing core count per chip, and instead has moved to focus on specialization
and heterogenous cores. It seems probable that we will observe a continued inclusion of
hardware-managed cache coherence, albeit possibly alongside software-managed solutions. As
the energy consumed by data movement continues to grow relative to that required to perform
computations, more design effort will be put into optimizations for purely hardware-based
protocols or into protocols that support optional software control of coherence for certain
memory regions [47].

In general, we will see protocols that have been extended in order to reduce the average
energy consumed in transferring the data required by particular accelerators or application-
specific co-processors to the proper place and in the ideal layout. This increase in complexity
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means that protocol design and verification will grow both more difficult and more important,
which is unfortunate because correctly implementing cache coherence protocols is one of the
most difficult tasks in hardware design.

1.1.4 Correctly Implementing Cache Coherence Protocols
Designing new cache coherence protocols or supporting a wider variety of more complicated

protocols is not a task hardware engineers can undertake lightly. Verifying the correctness of a
cache coherence protocol is a challenging task, and verifying that a correct protocol has been
implemented correctly (using simulations or silicon) is even more difficult [25, 8, 11, 16, 26, 81].
Traditionally, protocol correctness is verified using an abstracted version of the distributed
system of caches upon which the protocol operates [78, 23, 62, 81, 55]. The abstraction
employed at this stage makes the verification process tractable by eliding many details of the
underlying modules’ implementations. Upon verification of protocol correctness, hardware
designers must then use a hardware description language (HDL) to write cache controller
logic that correctly implements the protocol.

Unfortuntately, the semantic gap between high-level abstract descriptions of protocols
and concrete HDL implementations of those same protocols is so wide that verifying the
correctness of the protocol does not come close to guaranteeing the correctness of the final
implementation [22]. There are a huge number of ways in which details of the implementation
can interfere with the behavior of the coherence protocol. Hardware designers must work
from scratch to manually maintain the implicit semantics of the abstracted protocol model in
the controllers and networks they build. Many modules designed by different teams must
interact in the expected ways. State machines must be correctly transliterated from the
protocol’s specification, possibly by hand.

As we will see, improving the capabilities of HDLs offers us a path to lighten this design
burden. By raising the level of abstraction at which cache controller logic can be described
and at which synthesizable designs can be generated, we can smooth over the gap between
protocol specification and implementation. In doing so, we can make cache coherence protocol
selection another knob in the toolbox of a hardware designer focused on exploring a space of
heterogenous hardware designs.

1.2 Productivity in Hardware Design
In this new world of energy-efficient, heterogeneous, application-specific designs, it will be

essential to both improve the productivity of hardware designers as well as enable extensive
design-space exploration of alternative system microarchitectures [65]. On the productivity
side, we hope to take lessons learned from the software world and apply them to hardware
design tasks. On the design space exploration side, we need to expand the capabilities of
hardware development tools and make our hardware development methodology more iterative.
For example, we hope that by introducing language constructs that support metaprogramming,
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we can allow developers to write design generators, rather than instances of designs, which in
turn will encourage them to develop their designs more iteratively while incorporating design
space exploration between each step. This section provides context for what we hope to
accomplish by mining the software development community’s best practices in both language
and methodology areas.

1.2.1 The Role of Language
Today’s dominant hardware-description languages (HDLs), Verilog and VHDL, were

originally developed as hardware simulation languages and were only later adopted as a basis
for hardware synthesis [61]. Because the semantics of these languages are each primarily
focused on describing extensible simulation environments, synthesizable designs must be
inferred from a particular subset of the language, complicating tool development and designer
education. These languages also lack many powerful abstraction facilities present in modern
software languages. For example, only in the last decade has SystemVerilog introduced
object-oriented concepts as basic as C-style structs to the hardware synthesis domain [75].
Limited abstraction capabilities lower designer productivity by making it difficult to reuse
code by building up libraries of components.

To work around these limitations, one common approach is to use another language as a
macro-processing language to stitch together leaf components expressed in a traditional HDL.
This philosophy reflects a bottom-up approach, where frameworks are created to wire together
and abstract simple components, improving the productivity of humans exploring the design
space. For example, Genesis2 [64] uses Perl to provide more flexible parameterization and
elaboration of hardware blocks written in SystemVerilog. Unfortunately, these multi-language
approaches to bottom-up design are cumbersome, as they combine the poor abstraction
facilities of the underlying HDL with a completely different high-level programming model
that knows nothing about the semantics of hardware construction.

An alternative approach is to express the design in terms of a domain-specific application
programming language from which hardware blocks can be synthesized. This approach is
generally termed High-Level Synthesis (HLS) [30]. The HLS philosophy reflects a top-down
approach, in which designers describe the intent or behavior of the design, and automated
tools derive acceptable implementations. While HLS can improve designer productivity when
the pattern encoded in the high-level programming model is a good match for the purpose
of the hardware block being designed, it can be a struggle for designers to express tasks
outside the domain of the high-level language. Expanding the scope of tasks describable by a
particular high-level language is difficult, and in general the broader the high-level language
is, the more difficult it becomes for the tools to derive an efficient microarchitecture. The lack
of direct control over the amount of hardware resources generated by the synthesis process
also concerns some designers.

As described later in this thesis, we have pursued a syncretic language approach that
allows for collections of components to be built up into reusable libraries, while also providing
a substrate upon which HLS tools can be built. By leveraging first-order language support
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for object-orientation and metaprogramming, our goal is to allow developers to write design
generators rather than individual instances of designs, which in turn will encourage them
to develop families of customizable designs in new ways. By embedding implicit microar-
chitectural and domain knowledge along with explicit evaluation data in the generators
we construct, we can iteratively create different chip instances customized for particular
design goals or constraints [65]. As constructing hardware generators, rather than creating
hardware designs, requires support for reconfiguring individual components based on the
context in which they are deployed, our new language also improves on the limited module
parameterization facilities of traditional HDLs.

1.2.2 The Role of the Development Model
The design productivity crisis created by the demands of energy-efficient, post-Dennard

SoC design has implications that reach beyond languages and tools to methodology itself.
As a small group of researchers attempting to design and fabricate multiple families of
processor chips, and lacking the massive resources of industrial design teams, we were forced
to abandon standard industry practices and explore different approaches to design hardware
more productively. This thesis thereby serves as a case study in leveraging lessons learned
from the software world by applying aspects of the software agile development model to
hardware design, and particularly coherent memory hierarchy design.

Traditionally, software was developed via the waterfall development model, a sequential
process that consists of distinct phases that rigidly follow one another, as is typically
done in hardware design today. Over-budget, late, and abandoned software projects were
commonplace, motivating a revolution in software development, demarcated by the publication
of the Agile Manifesto in 2001 [7]. Inspired by the positive disruption on software development
instigated by the Agile Manifesto, we have proposed a set of principles to guide a new agile
hardware development methodology [51]. The tenets of this agile hardware methodology
emphasize:

• Incomplete, fabricatable prototypes over fully-featured models.

• Collaborative, flexible teams over rigid silos.

• Improving tools and generators over improving the instance.

• Responding to change over following a plan.

When applied in unison, these principles have substantially changed our development
model. Figure 1.1 contrasts our agile development model with the waterfall model. When
applied to the hardware domain, the waterfall model encourages designers to rely on Gantt
charts, high-level architecture models, rigid processes such as RTL freezes, and CPU-centuries
of simulations in an attempt to achieve a single viable design point (Figure 1.1.A). In our
agile hardware methodology, we first push a trivial prototype with a minimal working feature
set all the way through the toolflow to a point where it could be taped out for fabrication.
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Figure 1.1 : Contrasting the agile and waterfall models of hardware design. The labels FN represent
various desired features of the design. A. The waterfall model steps all features through each activity
sequentially, only producing a tapeout candidate once all features are complete. B. The agile model
adds features incrementally, resulting in incremental tapeout candidates as individual features are
completed, reworked, or abandoned. C. As validation progresses, designs are subjected to lengthier
and more accurate evaluation methodologies. The circumfrence of each circle represents the relative
time it takes to validate the design using a particular technology.

We refer to this tape-out-ready design as a tape-in. Then we begin adding features to it
iteratively (Figure 1.1.B). After spec’ing out a particular feature and implementing it, we then
deploy it against an increasing series of more complex tests on more heavyweight evaluation
platforms, up to and including taping out prototype chips (Figure 1.1.C). Emphasizing a
sequence of prototypes reduces verification simulation effort, since early hardware prototypes
run orders of magnitude faster than simulators.

Conventional wisdom holds that the frequent deliverable prototypes required by agile
methodology are incompatible with hardware development, but our research group has
not found this to be the case [51]. First, using fabricatable prototypes increases validation
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Figure 1.2 : Lineage of UC Berkeley chip tape-outs during the completion of my thesis. The 28nm
Raven chips combines a 64-bit RISC-V vector microprocessor with on-chip switched-capacitor
DC-DC converters and adaptive clocking [83]. The 45nm EOS chips integrate a 64-bit dual-core
RISC-V vector processor with monolithically-integrated silicon photonic links [50]. In total, we
have taped out four Raven chips on STMicroelectronics’ 28nm FD-SOI process, six EOS chips on
IBM’s 45nm SOI process, and one SWERVE chip on TSMC’s 28nm process.

bandwidth, as a complete tape-in RTL design can be mapped to FPGAs to run end-application
software stacks orders of magnitude faster than with software simulators. In agile hardware
development, the FPGA models of tape-in designs (together with accompanying QoR numbers
from the VLSI toolflow) fulfill the same function as working prototypes do in agile software
development, providing a way for end-customers to give early and frequent feedback to
validate design decisions. Second, while mask costs for modern designs are on the order
of multiples of millions of dollars depending on process technology [71], organizations like
MOSIS continue to offer multi-project wafers, where many independent projects are put on
the same reticle, to help amortize these mask costs. As Moore’s Law continues to slow down,
industry will spend more time on each process technology node, leading to further reductions
in the cost of doing multiple design iterations at a given node.

Adopting the agile methodology dovetails nicely with our previously discussed tooling
preference for building chip generators over particular chip design instances. As we iteratively
add features to the generator, we can retarget our efforts to adapt to performance and
energy feedback from the previous iteration. By parameterizing the design generator, we
can smoothly scale the size of its output from test chip to final product without rewriting
any hardware modules. Chapter 2’s focus on design parameterization techniques reflects the
criticality of generator parameterization capabilities to our agile developement process. Note
that we produced three distinct families of chips over four years in an interleaved fashion,
all from the same source code base, but each specialized differently to evaluate distinct
research ideas. Figure 1.2 presents the complete timeline of tapeouts that occurred using
software components discussed in this thesis. In total, we have taped out four Raven chips
on STMicroelectronics’ 28nm FD-SOI process, six EOS chips on IBM’s 45nm SOI process,
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and one SWERVE chip on TSMC’s 28nm process.
As we will see in Chapter 3 and Chapter 4, even a design choice as complicated and

pervasive as a multi-level cache coherence protocol can be made into a tuneable design
parameter when properly factored out from the rest of the design. By providing support
for generating a family of compatible protocols rather than one single protocol, my thesis
has enabled us to iterate on protocol design as we scaled up the size and complexity of the
memory hierarchy across chip iterations.

1.2.3 Chisel and Rocket Chip
In order to increase the agility of hardware design, together with my collaborators I have

developed Chisel (Constructing Hardware In a Scala Embedded Language), a new hardware
design language that addresses the aforementioned language deficiencies [6]. Chisel is a
Domain-Specific Embedded Language (DSEL) that is built on top of the Scala programming
language [59]. Chisel is intended to be a substrate that provides a Scala abstraction of
primitive hardware components, such as registers, muxes, and wires. Any Scala program
whose execution generates a graph of such components is now a feasible way to fabricate
hardware designs — the Chisel compiler translates the graph into a backend language suitable
for simulation or hardware synthesis. For a particular design represented as a component
graph, Chisel’s backend can generate a fast, cycle-accurate C++ simulator, or it can generate
structural Verilog suitable for either FPGA emulation or ASIC synthesis. However, this
low-level interface to convenient backend automation is only scratching the surface of Chisel’s
capabilities.

Because Chisel is embedded in Scala, hardware developers can now use Scala’s modern
programming language features to encapsulate many useful high-level hardware design
patterns. Designers may selectively deploy these patterns so as to generate graphs of Chisel
components as productively as possible. Each module in a Chisel project can employ whichever
design patterns best fit the problem at hand, and designers can freely compose modules and
programming paradigms as they build up more complicated designs.

Metaprogramming, code generation, and hardware design tasks are all implemented in
the same source language. A single-source language approach encourages developers to write
parameterized hardware generators rather than discrete instances of individual hardware
blocks, which in turn improves code reuse both within a given design and across generations
of design iterations. When combined with multiple backends catering to different stages of the
verification process, the generator-based approach is essential to enable a more agile approach
to hardware design, in that it encourages the development of families of customizable designs.
By encoding microarchitectural and domain knowledge these generators, we can quickly
create different chip instances customized for particular design goals and constraints [65]. As
constructing hardware generators requires support for reconfiguring individual components
based on the context in which they are deployed, a particular focus of my contributions
to Chisel was enable it to improve upon the limited module parameterization facilities of
traditional hardware description languages.
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Beyond implementing the Chisel compiler and releasing it as an open source software
tool, my research group has worked to understand what types of hardware designs tasks can
be encapsulated within reusable libraries that extend Chisel’s functionality. In some cases,
these libraries have taken the form of discrete modules or parameterized functional units. In
other cases, the correct abstraction takes the form of a compiler pass, higher-order-functional
API, or even a self-contained mini-DSEL. Additionally, we have developed some pure Scala
software utilities that aid in the hardware design process. We have composed these various
libraries of tools and generators into a complete SoC chip generator.

The Rocket Chip generator [3] is written in Scala and Chisel and constructs a RISC-
V-based SoC platform [5]. The generator is open source, and consists of a collection of
parameterized chip-building libraries that we can use to generate different SoC variants.
Figure 1.3 presents the collection of library generators and their interfaces within the Rocket
Chip generator. By standardizing the interfaces that are used to connect different libraries’
generators to one another, we have created a plug-and-play environment in which it is trivial
to swap out substantial components of the design simply by changing configuration files,
leaving the hardware source code untouched. We can also both test the output of individual
generators as well as perform integration tests on the whole design, where the tests are also
parameterized so as to exercise the entire design-under-test. All the tape-outs enumerated in
the previous section were created from different parameterizations of this single source code
base. In the next section, I outline the specific contributions my thesis makes to the Chisel
and Rocket Chip ecosystems to aid in the design of cache coherent memory hierarchies.

1.3 Contributions
Given the increasing difficulty and ongoing importance of implementing efficient memory

hierarchies and cache coherence protocols, it was natural to bring the productive power of
Chisel to bear on these design problems. My contributions focus on extending Chisel by
providing libraries for hardware developers to use in describing the configuration and behavior
of on-chip memory hierarchies, and particularly cache coherence protocols. In this thesis,
I will make the case for how the abstractions I provide enable productive and composible
memory hierarchy design. My specific contributions are as follows:

1. A general framework for context-dependent parameterization of hardware generators.

2. A set of Chisel libraries for generating extensible cache-coherent memory hierarchies.

3. A methodology for decomposing high-level descriptions of cache coherence protocols
into controller-localized, object-oriented transactions.



1.3. CONTRIBUTIONS 13

Tile1

BOOM L1I$

L1D$

RoCC
Accel.

FPU

L1toL2 Network

Tile2

Rocket L1I$

L1D$

RoCC
Accel.FPU

L2toIO Network

L2$ Bank

TileLink/AXI4
Bridge

AXI4 Crossbar

DRAM
Controller

High-
Speed

IO Device
AHB & APB
Peripherals

A

B

C

D

E

F

TIleLink

Core

Cache

RoCC

TIle

Periph.

Figure 1.3 : The Rocket Chip generator consists of the following sub-components: A) Core generator
B) Cache generator C) RoCC-compatible coprocessor generator D) Tile generator E) TileLink
generator F) Peripherals



1.4. COLLABORATIONS 14

1.4 Collaborations
This work would not have been possible without a variety of fruitful collaborations, and I

would like to take the time to draw attention to certain individuals.
Jonathan Bachrach, Huy Vo, and Andrew Waterman were my primary collaborators

in developing the common utilities made available as part of the Chisel core distribution.
Jonathan’s vision for what Chisel had the potential to become has been borne out in this
thesis and in all the chips taped out at Berkeley during my time here [6]. John Bachan and
Adam Izraelevitz were instrumental in the development of the context-dependent environment
parameterization library. Many other members of the Berkeley Architecture Research group
also contributed to Chisel development and features.

Andrew Waterman and Yunsup Lee entrusted me with the design and implementation of
the memory hierarchy for multiple generations of the Raven and EOS lineages of test chips.
Working with them gave me a context and focus that forced me to search for both more
productive abstractions and more efficient implementations. I also recognize the efforts of our
other tape-out collaborators at the Berkeley Wireless Research Center and MIT. Detailed
discussions of our prototype chips were previously published in [50], [83], and [74], while our
proposal for an agile hardware development methodology was presented in [51].
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Chapter 2

Context-Dependent Environments:
A Parameterization Paradigm for
Hardware Generators

As Moore’s law fails, increasing demand for computational efficiency is no longer being
matched by gains from process scaling. Instead, chip designers are improving efficiency by
combining special-purpose accelerators with general-purpose processors in increasingly het-
erogeneous systems-on-chip. In this new world of energy-efficient, heterogeneous, application-
specific designs, it will be essential to both improve the productivity of hardware designers as
well as enable extensive design-space exploration [65].

Since it is not possible to build custom chips from scratch for every application, we need
hardware design tools that allow us to capture decisions made during the process of designing
one chip, yet easily make them differently when tackling a new target. Creating parameterized
hardware generators, rather than individual design instances, not only allows for application-
specific customization of the final hardware, it also gives designers the capability to preserve
knowledge related to performance and energy trade-offs from previous design iterations. By
parameterizing aspects of the design, we can scale it from test chip sizes to final product
without rewriting any modules, amortizing verification costs and increasing the validation
confidence over time without rewriting code. This templated, meta-programming approach is
integral to our agile approach to hardware design.

The most salient feature of a hardware generator or template, as compared to a single
design instance, is that certain features of the design are left under the control of the user
deploying the generator within their chip. We term these features the parameters of the
generator. Parameterization is the process by which a generator supplies values for each
parameter, i.e. binds the name of the parameter to a particular value, before using that
evaluation to elaborate details of the particular design instance at hand. A parameterization
paradigm codifies a particular way of expressing parameters and provides tools to support
their application within generators, as well as mechanisms to constrain their valuations.

The parameters and their constraints become the interface through which the generator
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author and the system architect communicate. Constrained parameters serve as boundaries
that define the space of designs it is possible for the architect to explore. By searching
over the top-level parameters exposed by a set of such generators, System-on-Chip (SoC)
chip architects can explore tradeoffs between performance, area, and energy efficiency. By
recording the outcomes of these explorations, these designers can build up a map of how to
customize pieces of their design for a particular application’s requirements.

Parameterization is clearly a first-order concern in the creation of tools based around spe-
cialized hardware generation. In order to use generators productively, we need to understand
how the choice of parameterization paradigm affects the design process. We claim that the
mechanism by which generator-based designs are parameterized can greatly influence three
metrics of design robustness: reusability, composability, and modifiability. We define these
three metrics as follows:

Reusing generators means that they can be instantiated as components of different broader
hardware contexts with no internal source code changes, only differing parameterizations.
Reusability amortizes verification overhead by reducing the number of lines of code
used to create larger design instances.

Composing generators requires mechanisms to specify cross-generator parameter constraints
and dependencies. Composability is mandatory to build up larger SoC designs consisting
of multiple generators.

Modifying a generator (by adding a new parameters to it) should not cause a cascade
of changes throughout any nested modules which instantiate that generator’s output.
Modifiability is predicated on modularity in the code base, and mitigates technical debt
that would encumber changing a generator’s capabilities.

This chapter first provides a background discussion of how the concepts of parameterization
and meta-programming are intertwined, as well as how software languages have addressed
parameterization in the past. We then provide a taxonomy of extant parameterization
paradigms found in previous hardware description languages, and evaluate them in terms
of the above metrics. To correct for their deficiencies, we introduce context-dependent
environments (CDEs), a new parameterization paradigm. In the CDE paradigm, a key-value
dictionary containing parameter bindings is passed through a hardware module hierarchy,
and the value returned for each parameter identifier can depend on other parameter values
at that query’s origin within the design. As we will see in this chapter, the dynamic nature
of a CDE’s scoping, coupled with its context-specific knowledge, serves to support generator
reusability and composition, while also improving a generator’s robustness to any external
module hierarchy modifications.

We provide both a case study and a formal analysis of design robustness with respect to
each of the parameterization paradigms in our taxonomy, and prove that CDEs are the most
robust option. We then provide examples of how our open-source Scala implementation of
CDEs is used in various sub-components of our RocketChip SoC generator.
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As we will see later in this thesis, even a design choice as complicated and pervasive as a
multi-level cache coherence protocol can be made a tunable design parameter when properly
factored out from the rest of the design. By providing support for generating a family of
protocols rather than one single protocol, my thesis has enabled us to iterate on protocol
design as we scale up the size of the memory hierarchy across chip iterations.

2.1 Background
To provide context for our study of the applicability of various parameterization paradigms

to hardware generation, as well as to motivate the value of our new CDE paradigm, we will
first review two concepts at the heart of parameterization: meta-programming and name
binding. Meta-programming allows us to create parameterized hardware templates, into
which values can be injected to make concrete design instances. Name binding is the process
by which parameter identifiers are associated with particular values.

2.1.1 Meta-programming
When we talk about creating libraries of hardware generators instead of design instances,

the underlying concept that our design tools need to support is meta-programming of hardware
descriptions. A meta-program is a program that generates or manipulates program code [66].
Specifically in the case of this thesis, Chisel [6] is a meta-programming language (that is itself
embedded in a host languagage, Scala). Using Chisel, we can describe parameterized templates
for particular hardware modules as Scala classes. Executing a Scala program that instantiates
particular instances of these classes allows the Chisel compiler to elaborate a concrete design
instance in Verilog or some other target language. Because Chisel is embedded in Scala, we
can use the full capabilities of this modern software language to implement our generators.
This chapter will make the case that one of the most essential capabilities that this embedding
has put at our disposal is the ability to use Scala to parameterize our hardware descriptions,
be it through built-in language capabilities or through parameterization frameworks written
in the host language.

Traditional hardware description languages have lacked the language features to support
parameterization of configurable designs. Section 2.2 will discuss how specific existing
parameterization paradigms in Verilog, VHDL, SystemVerilog, and Bluespec SystemVerilog
limit design modifiability and customizability. However, because the outputs of our generators
will be fully elaborated designs with parameter values automatically embedded in them,
we can free generator authors from the constraints of the backend language with respect
to choice of parameterization paradigm. This approach also allows us to supply parameter
bindings from external tools at hardware generation time, which is a critical features for
design space exploration [67]. It is important to note that there are several different times
during the hardware elaboration process where we might decide to supply parameter values,
and in particular, this chapter will discuss tradeoffs between binding parameters to values at
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generator compile-time as opposed to generator run-time.
How parameters are expressed and referenced within and among generators is another

important design question. From the perspective of the author of a hardware generator, it
is impossible to know the full context in which the components created by their generator
will be instantiated. The goal of the author of a hardware generator is to expose as many
parameters as they possibly can to the user (e.g., an SoC architect) while also recording any
constraints the internals of the design put on those parameters’ values. Our parameterization
paradigm must also accept constraints that are imposed by parent modules on their children,
in the service of interoperability, or by completely external tools, in the service of design space
exploration. Again, we are aided by the expressionality of the host language and the ability
to connect with outside tools at hardware generation time. Finally, while the parameters
themselves are often merely instances of simple numeric or boolean types depending on the
nature of the meta-programming language, we can also consider utilizing parameters that are
bound to functions, user-defined objects, or other parameters. As we will see, exploiting a
host language’s capability to use more complicated types in the parameterization framework
is an essential requirement for using it to support customizable cache coherence protocols.

Given the limitations of extant HDLs, adopting new ones with first class support for meta-
programming (and thereby parameterization) is critical to our hardware design methodology.
Chapter 3 of [67] provides additional discussion of the parameterization advantages related
to meta-programming in the context of Genesis2, a next-generation HDL embedded in Perl.
We include a comparison with Genesis2’s Perl-based dynamic parameterization paradigm in
Section 2.2.3.

2.1.2 Name Binding and Scoping
The opportunity presented by embedding Chisel in Scala inspired us to examine pa-

rameterization solutions that have been investigated in software contexts. Fundamentally,
parameterization is a name binding problem, in which a data or code entity must be bound
to an identifying name. In our case, generators express the hardware they elaborate in terms
of the parameters’ identifiers, while the framework is in charge of supplying the matching
data as the hardware is generated. What data is supplied for a particular name depends on
the scoping of the identifier, which might be handled lexically or dynamically. Lisp languages
were the first to explore tradeoffs between dynamic scoping and lexical scoping [32].

With lexical scoping, in order to bind a name to an entity, we first search within the
local function, then within the scope in which this function was defined, and so on. “Lexical”
in this case refers to the text of the source code itself. Lexical scoping provides referential
transparency, which is a boon for both the programmer and compiler. By analyzing the
source code, it is possible to determine at compile time whether or not a particular binding is
within scope. Unfortunately, bindings needed by deeply nested components must be explicitly
threaded throughout the class or function hierarchy.

With dynamic scoping, we again search first in the local function, but then search the
function that called this function, and so on up the call stack of the running program.
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“Dynamic” in this case refers to the fact that the call stack can be different every time a
given function is called, and so the binding created for the variable can thereby differ as well.
Dynamic binding is useful as a substitute for globally-scoped variables, and is excellent for
deep customization of nested subsystems. In cases where the necessary bindings may radically
change from program instance to program instance, dynamic binding allows us to only specify
those bindings that we know the current instance will use. Unfortunately, in some cases
programmer errors that could have been caught at compile time in a lexically-scoped system
become runtime errors in a dynamically-scoped system.

While lexical binding is now the norm for most programming languages, many mechanisms
have been developed to allow programmers to explicitly tie in dynamic binding benefits where
they are useful. These include special binding forms in most Lisp variants (e.g., fluid-let in
Scheme [72] and parameterize in Racket [29]), implicit parameters [53], and the Reader monad
in Haskell [44]. While these approaches all focus on re-enabling the parameterization flexibility
of dynamic binding in a more controlled manner, the context-dependent environments we
propose here are actually a strictly more powerful mechanism than traditional dynamic
binding. In general, taking advantage of later-binding solutions enables both more concise
uniquification of elements of nested, heterogeneous systems [67], and also allows us to deal
with modifications to the hierarchy of generated modules more robustly. The following
taxonomy illustrates how selectively deploying our dynamic scoping solution is the best fit for
hardware generation by contrasting it with other lexically- and dynamically-scoped solutions.

2.2 Taxonomy of Parameterization Paradigms
Before introducing context-dependent environments, we first define and contrast three

existing parameterization paradigms: argument lists, structs, and dynamic environments.
We examine how these paradigms could be or have been used in hardware description
languages. We then evaluate them in terms of a simple case study in which we describe
making modifications to a hierarchical hardware generator that is composed from multiple
sub-generators. The three paradigms we contrast in this section are:

Argument Lists. The default lexical binding approach wherein all parameters are explicitly
passed to the constructor function of each hardware module class.

Structs. A more sophisticated lexical binding approach wherein user-defined datatypes are
used to abstract away specific parameter binding sites.

Environments. A dynamic binding approach wherein an associative array of key-value
pairs is used to supply parameter values at runtime.

We do not consider some other simple alternative parameterization solutions, such as a
flat namespace of global constants, because such implementations lack composability and
reuseability. First, without a mechanism to manage namespace collisions between different
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third-party generators, composing generators without having to modify their internals becomes
impossible. Second, without a mechanism that allows designers to override parameter values
within certain subsets of the module hierarchy, creating heterogeneous systems where the
same generator produces differently parameterized output becomes impossible. For these
reasons we only contrast the aforementioned three paradigms, as they support both design
goals in their own ways.

We can evaluate the robustness of these parameterization paradigms by adding new
parameters or inserting additional modules, and then examining the source code changes
required to bring the new parameter binding into scope. We differentiate three types of
source code changes.

Local changes (LCs) are the initial insertion or appending of a module instantiation with
a new parameter.

Top-level changes (TLCs) are new parameter bindings performed at the root of the
module hierarchy.

Non-local changes (NLCs) are any additional changes required to pass a top-level pa-
rameter value (bound by a TLC) to the scope of a lower-level module instantiation
(created by an LC).

LCs and TLCs are simply inherent to instantiating a new parameterized module or adding
a new parameter to an existing module. The module using the parameter must be instantiated
somewhere in the hierarchy (LC), and the parameter must be bound to a value somewhere
in that instantiation’s scope (TLC). In some cases, additional LCs are needed to resolve
conflicting parameter names at the location where the module is instantiated.

In contrast, NLCs only serve to bring a new parameter binding into scope for the new
module instantiation, or alternatively to correct an inter-module parameter reference that has
been outdated by a module insertion. We view being forced to manually make NLCs within
our generators’ source code as representative of the brittleness of a particular parameterization
paradigm in the face of changes to child generator interfaces or module hierarchy depth.
In this way, NLCs are a form of technical debt imposed by the choice of parameterization
framework on a hardware generator library. According to our robustness metric, an ideal
parameterization paradigm would eliminate all NLCs, while simultaneously minimizing the
number of LCs and TLCs needed to implement any given design modification. In general,
NLCs are the cost of deploying a paradigm dependent on lexical binding rather than dynamic
binding.

The following sections use examples written in Verilog-like pseudo-HDL code which elides
non-parameter-related expressions. Figure 2.1 displays the block diagram organization of
a set of nested hardware modules that we will use in our robustness case study. We take
a Tile generator that is hierarchically composed of Core, Cache, and FPU generators, and
investigate how making modifications to the parameters of the leaf generators impacts the
rest of the design, as expressed in our pseudo-HDL. Figure 2.2 outlines the syntax for object
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Tile

Core L1I$

L1D$FPU

Figure 2.1 : Organization of nested modules used in our running example. A Tile contains one
Core and multiple Caches. A Core may or may not contain an FPU, which may or may not be
parameterized.
struct S {f:Bool,g:Int} // struct declaration

module A #(p1,p2,p3,p4,p5)(...): ...

// module declaration: parameters use 1st argument list #(p1,...)

// other RTL constructs like IOs use 2nd argument list (elided)

module B #()(...):

a = new S(true, 1) // struct instantiation

b = a.f // struct access

myA = new A #(a,b,c,d,e)(...) // module instantiation

Figure 2.2 : Syntax for object declaration and instantiation in our HDL pseudocode.

declaration and instantiation in our pseudo-HDL. In this pseudo-HDL, we assume every
hardware module can be made into a templated hardware generator through the use of the
additional #() constructor parameter list. Fields of that list (or fields of objects within the
list) are the parameters of the generator/module in question.

2.2.1 Argument List Parameterization
Argument list parameterization is a paradigm wherein parameters are passed-by-value

through class constructor function argument lists. It is the most basic, lexically-scoped way
of binding parameters. Verilog and VHDL are examples of existing HDLs that solely support
this paradigm for parameterizing hardware modules.

Figure 2.3 shows code describing the hierarchical Tile generator from Figure 2.1 using
argument list parameterization. At the root of the module hierarchy, each parameter is bound
to a value which is then passed into the module hierarchy via the argument list of Tile’s
constructor. These values are then propagated through the module hierarchy via the Core

and Cache modules’ constructors’ argument lists.
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module Top#()():

hasFpu = true // Whether our core should instantiate an FPU

icSize = 64 // Size of the instruction cache’s blocks

dcSize = 64 // Size of the data cache’s blocks

myTile = new Tile #(hasFpu, icSize, dcSize)(...)

module Tile #(hasFpu, icSize, dcSize)(...):

myCore = new Core #(hasFpu)(...)

icache = new Cache #(icSize)(...)

dcache = new Cache #(dcSize)(...)

assert (icSize == dcSize) // The tile is multiplexing a single port

module Cache #(blockSize)(...): ... // icSize/dcSize each renamed blockSize

module Core #(hasFpu)(...):

if(hasFpu) myFpu = new FPU()(...) ...

module FPU #()(...): ...

Figure 2.3 : An example module hierarchy containing a tile with a processor core and two caches,
parameterized through constructor arguments.

module Top #()():

hasFpu = true // Whether our core should instantiate an FPU

fpuLat = 6 // Latency of FPU // TLC

icSize = 64 // Size of the instruction cache’s blocks

dcSize = 64 // Size of the data cache’s blocks

myTile = new Tile #(hasFpu, icSize, dcSize,fpuLat)(...) // NLC

module Tile #(hasFpu, icSize, dcSize,fpuLat)(...): // NLC

myCore = new Core #(hasFpu, fpuLat)(...) // NLC

icache = new Cache #(icSize)(...)

dcache = new Cache #(dcSize)(...)

assert (icSize == dcSize)

module Cache #(blockSize)(...) : ...

module Core #(hasFpu,fpuLat)(...) : // NLC

if(hasFpu) myFpu = new PFPU #(fpuLat)(...) ... // LC

module PFPU #(latency)(...): ... // Add parameter to FPU

Figure 2.4 : Example of the source changes (highlighted in red) that are required to append a new
leaf submodule (PFPU) that contains a new parameter.
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In addition to injecting values into the design, we can enforce constraints on certain
parameters. For example, in this particular Tile architecture, both the instruction and data
cache must have identical cache block sizes because they are multiplexing the same memory
port to the rest of the system. This requirement is a property of this particular Tile generator;
it was unknown to the designers of the Cache module. Furthermore, other variations on a
tile generator might not enforce this particular requirement, and so we would like to expose
icSize and dcSize to the design space explorer as independent, top-level variables. Thus, the
proper place to enforce the constraint is within Tile, making reference to the parameters that
must be bound together.

Figure 2.4 illustrates how the argument list paradigm is brittle to modifications. We
modify Core to use a parameterized FPU, PFPU #(fpuLatency), which takes as a parameter
the desired latency for the unit. In order to enact this modification, we must make several
changes to the extant source code: (1) a TLC to bind parameter fpuLatency in Top; (2) a LC to
instantiate the new PFPU within Core; (3) four NLCs to Tile and Core’s declaration parameter
lists, as well as Tile and Core’s instantiations. The four NLCs represent the brittleness of this
particular paradigm, in that adding a parameter to a leaf module causes many non-local
changes to be required in any interstitial modules. For small designs with simple class
hierarchies, the total number of NLCs might be small. However, as we will see in Section 2.4,
in this paradigm the number of NLCs scales with module hierarchy size, making modifications
increasingly burdensome as the collection of generators in a particular library grows.

Further complexity arises if we consider a set of different FPU implementations, each
with a unique or even partially overlapping set of parameters. The set of parameters included
in each intervening module’s constructor becomes the superset of all the child modules’
parameters. Determining which parameters are actually unique and supplying default values
for any which are unused in a particular design instance becomes onerous as more and more
combinations of generators are composed.

2.2.2 Struct Parameterizations
If the HDL provides user-defined struct types, these can be used to encapsulate mul-

tiple parameters within individual statically-typed objects. SystemVerilog and Bluespec
SystemVerilog are two HDLs that provide this capability. For the purposes of our taxonomy,
we posit that parameterization paradigms based on structs can be organized in two particular
ways. In flat-struct parameterization, each generator is paired with a used-defined struct
type containing all parameters used by that generator and all of its children. This approach
provides only a very limited advantage over the previously discussed argument list paradigm.
In nested-struct parameterization, instead of a generator’s companion struct consisting of a
flat list of parameters, it contains its own local parameters, as well as the parameter structs
for its immediate children. This nesting allows further abstraction of the specific fields of the
child generators’ structs.

Both of these schemes are still lexically scoped, but we have moved the site of the bindings
into a class hierarchy of struct types, which may be distinct from the module hierarchy itself.
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struct TilePars {hasFpu:Bool, icSize:Int, dcSize:Int} // Structs definitions

struct CorePars {hasFpu:Bool}

module Top #()():

tp = new TilePars(true, 64, 64) // Struct instantiation

myTile = new Tile #(tp)(...)

module Tile #(params)(...):

cp = new CorePars(params.hasFpu) // Struct instantiation

myCore = new Core #(cp)(...)

icache = new Cache #(params.icSize)(...)

dcache = new Cache #(params.dcSize)(...)

assert (params.icSize < params.dcSize)

module Cache #(blockSize)(...) : ...

module Core #(params)(...):

if(params.hasFpu) myFpu = new FPU()(...) ...

module FPU #()(...): ...

Figure 2.5 : The same example module hierarchy, but parameterized through flat structs instead of
argument lists.

struct TilePars {hasFpu:Bool, icSize:Int, dcSize:Int, fpuLat:Int} // NLC

struct CorePars {hasFpu:Bool, fpuLat:Int} // NLC

module Top #()():

tp = new TilePars(true, 64, 64, 6) // TLC

myTile = new Tile #(tp)(...) // No NLC

module Tile #(params)(...): // No NLC

cp = new CorePars(params.hasFpu, params.fpuLat) // NLC

myCore = new Core #(cp)(...) // No NLC

icache = new Cache #(params.icSize)(...)

dcache = new Cache #(params.dcSize)(...)

assert (params.icSize < params.dcSize) ...

module Cache #(size)(...) : ...

module Core #(params)(...) : // No NLC

if(params.hasFpu) myFpu = new PFPU #(params.fpuLat)(...) ... // LC

module PFPU #(latency)(...): ... // Add parameter to FPU

Figure 2.6 : Example of the source changes (highlighted in red) that are required to append a new
leaf submodule (PFPU) that contains a new parameter, under the flat-struct paradigm.
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This level of indirection affords us, as generator authors, some opportunities to abstract away
the specifics of what parameters are needed by which children. By reducing the number
of places we have to explicitly pass individual parameters’ bindings from parent module to
child module, we congruently reduce the amount of work it takes to thread new parameters
through the same module class hierarchy. Encapsulation through structs can reduce the
burden of lexical scoping in the face of design modifications.

Taking this idea a step further, we can recognize that we do not have to maintain a
one-to-one mapping between the class hierarchy of structs and the class hierarchy of modules.
In the most extreme case, we could put all top-level parameters into a single struct which is
passed to every module in the design, essentially recreating a flat parameter paradigm based
on global constants. Such a solution improves modifiability by eliminating all NLCs but is
problematic for composability, because it means that sub-modules within the design cannot
be reused in other contexts without providing default bindings for all possible parameters
from all contexts. However, more moderate solutions that exploit differences in the struct
hierarchy and module hierarchy are possible at the designers’ discretion. For simplicity,
the rest of this section utilizes the simpler one-to-one mapping to illustrate the differences
between the struct paradigms.

Figure 2.5 and Figure 2.6 show how the flat-struct paradigm, applied with a one-to-one
mapping between modules and structs, can still eliminate some non-local changes in the
face of appending the PFPU module as before. This reduction happens because the module
constructor argument lists do not grow with additional parameters. While the definitions
of all the structs must be changed to account for the new parameter, instances where a
single struct instance is passed to multiple module instantiations do not need to be changed,
because the module instantiation no longer references the individual parameters as they are
now encapsulated fields of the struct. However, Figure 2.6 shows that when inserting the
newly parameterized PFPU, this scheme still requires some non-local changes because every
parent generators’s parameter struct declaration and instantiation must be changed. In
Section 2.4 we will see that the flat-struct paradigm is only a constant factor less brittle than
the argument list paradigm.

We can instead adopt nested-struct parameterization to avoid the aforementioned cas-
cading changes to all parent parameter structs’ declarations and instantiations. Instead of
a generator’s companion struct consisting of a flat list of parameters, it contains only its
own locally-consumed parameters as well as the parameter structs for its immediate children.
Figure 2.7 applies this approach to the previous example of appending a parameterized FPU.
Only PFPU’s immediate parent’s companion struct, CorePars, needs modification. The fact that
CorePars now has an additional parameter associated with it is now abstracted away from
both Tile and TilePars.

Although the nested-structs paradigm eliminates almost all NLCs related to appending
new leaf modules to the hierarchy, it retains another disadvantage related to inserting new
levels into the module hierarchy. Figure 2.8 provides an example of a such a scenario. Suppose
we want to add a prefetcher to our instruction cache. We insert module CacheWithPF, with
a single parameter (distance), that instantiates our original Cache module inside of itself.
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struct CorePars {hasFpu:Boolean, fpuLat:Int} // NLC

struct TilePars {cp:CorePars, icSize:Int, dcSize:Int} // No NLC

module Top #()():

cp = new CorePars(true ,fpuLat) // TLC

tp = new TilePars(cp, 64, 64) // No NLC

myTile = new Tile #(tp)(...) // No NLC

module Tile #(params)(...): // No NLC

myCore = new Core #(params.cp)(...)

icache = new Cache #(params.icSize)(...)

dcache = new Cache #(params.dcSize)(...)

assert (params.icSize < params.dcSize) ...

module Cache #(size)(...): ...

module Core #(params)(...): // No NLC

if(params.hasFpu) myFpu = new PFPU #(params.fpuLat)(...) ... // LC

module PFPU #(latency)(...): ... // Add parameter to FPU

Figure 2.7 : Example of the source changes (highlighted in red) that are required to append a new
leaf submodule (PFPU) that contains a new parameter, under the nested-struct paradigm.

struct CorePars {hasFpu:Bool, fpuLat:Int}

struct TilePars {cp:CorePars, cpf:CachePFPars, dcSize:Int} // NLC

struct CachePfPars {dist: Int, size:Int} // New struct for Prefetcher

module Top #()():

cpf = new CachePfPars(16, 64) // Icache size now nested // TLC

cp = new CorePars(true, 6)

tp = new TilePars(cp, cpf, 64) // NLC

myTile = new Tile #(tp)(...)

module Tile #(params)(...):

myCore = new Core #(params.cp)(...)

icache = new CacheWithPF #(params.cpf)(...) // LC

dcache = new Cache #(params.dcSize)(...)

assert (params.cpf.size < params.dcSize) // NLC

module CacheWithPF #(params)(...): // New module that adds prefetch functionality to cache

myCache = new Cache #(params.size)(...)

... // Cache, Core, FPU declarations are unchanged

Figure 2.8 : Example of the source changes (highlighted in red) that are required to insert a new
interstitial submodule (CacheWithPF) that contains a new parameter, under the nested-struct
paradigm.
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CacheWithPF wraps Cache’s output with additional logic to perform prefetching of expected
instructions up to a specified distance.

The nested-struct paradigm does allow us to add distance without changing Tile’s con-
structor, avoiding an NLC. Unfortunately, adding a new level of nesting in the parameter
structs breaks our previously-existing assert statement in Tile. Because the nested structure
of the parameter objects explicitly mirrors the generator hierarchy, any changes to the nesting
will break references to any child’s parameters on which parent generators are enforcing
constraints. This restriction results in a whole new class of NLCs to deal with, ones that
could never have arisen with the simpler argument list approach!

While both struct paradigms are acceptable for flat class hierarchies with limited possible
nestings, generators often have deep module hierarchies or interoperate with other generators
from multiple libraries (correct interoperation often necessitates the imposition of constraints
in parent generators). These lexically-scoped paradigms embrittle such designs because
changes to the module hierarchy break a parent’s references to its childrens’ parameters. Note
that these broken references can be located anywhere in the design and are often not located
near the LC that inserts the new module. Overall, even nested-structs cannot guarantee a
robust design, despite significantly reducing NLCs related to appending new leaf modules.
Unsatisfied with lexical scoping for deeply nested generator hierarchies, we now turn our
attention to dynamic scoping solutions.

2.2.3 Environment Parameterization
We begin by characterizing an environment-based approach to dynamic scoping of param-

eters. An environment is an associative array (i.e., map, dictionary), where each key and
value pair consists of a parameter identifier and value respectively. Environments can be
inherited by an instance of a module and then passed along to its children, possibly with
modifications made to the key-value bindings. Code within modules can gain access to certain
parameter values by looking up the parameter’s key in the environment.

Environments are a dynamic scoping solution because the value returned for each key is
determined based on the execution of the program, not the hierarchy of the source classes. As
alluded to earlier in this chapter, there are some tradeoffs inherent to dynamism. Critically for
composability, we do not have to pass bindings for all possible parameters through the module
hierarchy explicitly. This flexibility is a great boon for generators where some parameters are
only used if certain other parameters are set a particular way, or in cases where homogenous
designs may be uniqueified to form heterogeneous ones. If a particular instance of a design
does not use a particular parameter, that parameter never has to be bound. If a new module
is added, bindings for its parameters can be supplied to the environment from any parent
location in the hierarchy. The cost we pay for this flexibility is that unbound parameters can
only be detected at runtime, rather than at compile time.

A popular use of dynamic environments in the software world are those used for processes
in all flavors of Unix. Whereas shell languages in Unix systems have a first-class syntax
for accessing environment values (e.g. $HOME), attempts to implement environments in a
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x = {’key1’ -> 1,’key2’ -> 3} // Environment instantiation

y = x ++ {’key1’ -> 2} // Environment modification

print x(’key1’) // Environment query, prints ’1’

print y(’key1’) // Environment query, prints ’2’

print y(’key2’) // Environment query, prints ’3’

Figure 2.9 : Syntax for environment instantiation, modification and querying in our pseudo-HDL.

previously existing HDL would have to explicitly pass the environment object through the
module hierarchy to query it. Unfortunately, SystemVerilog and BluespecSV (as well as
Verilog and VHDL) cannot support environments, as environments require either nested
functions or HashMaps. While the SystemVerilog language includes associative arrays (similar
to HashMaps), most SystemVerilog compilers do not support it. This type of environment
could be implemented in Bluespec or SystemVerilog using tagged unions or associative arrays.
Unfortunately, neither language supports dynamically typed parameters, and thus cannot
pass associative arrays as parameter objects. Bluespec requires that all type checking be
resolved prior to elaboration; since the compiler cannot guarantee that the returned value is
type safe, associative arrays are not supported. Tagged unions, however, can be safely used if
the types of all parameters are statically known. While both BluespecSV and SystemVerilog
claim support for tagged unions, many SystemVerilog compilers lack support for them.

Chisel and Genesis2 leverage Scala and Perl, respectively, for metaprogramming the
module hierarchy generation stage of hardware elaboration. Because Scala and Perl support
first-class functions and maps, both HDLs can easily provide the type of environment discussed
here using either. As we will see in Section 2.5, Scala’s support for implicit parameters
makes it syntactically concise to distribute the environment object through the module
hierarchy. Perl allows the programmer to select whether a variable is a dynamic global
variable or a lexically-scoped local variable. Rather than depend on the functionality global
Perl environment, Genesis2 defines its own parameter environment framework that provides
additional features.

Genesis2 supplies a parameter environment for each module and provides an API that
allows users to: define parameters, assign them default values, override those values from
external configuration files, force parameters to always take certain values, and define
additional parameters at module instantiation time [67]. A module can use a reference to
any other module to make a reference to that module’s parameters’ values. Parameters are
read-only, and queries return deep copies of mutable objects. Because Perl is a dynamically-
typed language, no type checking can be done on the return type of parameter queries. The
framework outputs XML to encapsulate the full “configuration”, i.e., the text description
of how SystemVerilog module declarations are composed. This organization allows for
iterative customization of certain parameters values within the design in accordance with the
experimental design of external tools.

Figure 2.9 provides an overview of the additional syntax we introduce to our pseudo-HDL
in order to allow it to support instantiation, modification, and querying of environments.
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module Top #()():

topPars = {’hasFpu’->true, ’icSize’->64, ’dcSize’->64} // Top-level bindings

myTile = #(topPars)(...)

module Tile #(params)(...):

myCore = new Core #(params)(...)

icache = Cache #(params(’icSize’))(...) // Parameter lookup

dcache = Cache #(params(’dcSize’))(...) // Parameter lookup

assert (params(’icSize’) < params(’dcSize’)) ... // Parameter lookups

module Cache #(size)(...) : ...

module Core #(params)(...) :

if(params(’hasFpu’) myFPU = new FPU #()(...) ... // Parameter lookup

Figure 2.10 : The same example module hierarchy, but parameterized through dynamic environments.

module Top #()():

topPars = {’hasFpu’ -> true, ’icSize’ -> 64, ’dcSize’ -> 64, ’fpuLat’ -> 6, ’dist’ -> 16 } // TLCs

myTile = Tile #(topPars)(...) // No NLC

module Tile #(params)(...): // No NLC

myCore = Core #(params)(...) // No NLC

// The following rename from ‘icSize’ to ‘size’ must be handled here by icache’s parent

icPars = params ++ {’size’ -> params(‘icSize’)} // LC for CacheWithPF

icache = new CacheWithPF #(icPars)(...) // LC for CacheWithPF

dcache = new Cache #(params(’dcSize’))(...)

assert (params(’icSize’) < params(’dcSize’)) ...

module CacheWithPF #(params)(...) :

Cache #(params(’size’))(...) ... // CacheWithPF queries ’size’

module Core #(params)(...) :

if(params(’hasFpu’) myFPU = new PFPU #(params(’fpuLat’))(...) // LC for PFPU

... // Cache, PFPU module declarations are unchanged

Figure 2.11 : Simultaneously appending a new submodule that contains a new parameter (highlighted
in blue), while also inserting a new interstitial module that contains a new parameter (highlighted
in red). Dynamic environments eliminate NLCs.
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An important note is that the ++ operator, which adds a binding to the store, returns a new
environment and does not affect the original environment. In addition, all values in key-value
pairs are lazily evaluated only when a query matches on a particular key.

Figure 2.10 shows the code for our running example of the tile generator, modified to
use the environment to supply parameters to all modules with two or more parameters. To
parameterize a child module, a parent copies its own environment and adds/overwrites any
needed key-value mappings before passing it to the child. While keys can be overridden in
certain sub-modules, the overall namespace provided by the environment is flat and does not
codify anything about the structure of the module hierarchy. Figure 2.11 demonstrates the
advantages of this flexiblity by applying both of the modifications from previous case study
examples (replacing the appended FPU with PFPU and inserting CacheWithPF). Significantly, the
only changes required are LCs and TLCs, with no NLCs whatsoever. Even the cross-module
assertion on cache sizes in Tile does not require modification.

Although the environment passing paradigm succeeds in removing all NLCs, there is an
additional LC required to rename the icSize parameter to size. Why does CacheWithPF query
for size instead of icSize? The generator designer engineered it to be composable with any
cache, and to avoid binding it to a particular instance. We should not contextualize the
parameter name (e.g., change size to icSize), because in a different design the sub-module
that is instantiated could be a data cache. Thus, an explicit renaming step is necessary
to customize the parameter environment passed to CacheWithPF, telling it which top-level
parameter to use in response to any internal queries made regarding size. We consider the
source code change, required to perform the renaming by modifying the environment, an LC
rather than an NLC, because it always occurs in conjunction with the LC that instantiates
the newly inserted module. However, it is worth noting that the renaming must be performed
for each unique instance of the module that takes on a different, heterogeneous value.

In general, we will often have modules that have either intentionally picked a context-free
key or have simply used parameter keys that coincidentally overlap with those used by
some other imported generator. Differentiating these conflicting keys and assigning them
to the proper top-level key bindings is both the power and the burden of the dynamic
environment paradigm. For designs that do not have a large number of parameter key
collisions, environment passing is a great solution as it will significantly reduce the number of
NLCs. Unfortunately, in the prevalent case of designs that have many instances of the same
child module class (e.g., a mesh of routers), the re-mapping of unique top-level parameters
onto generic, re-used child parameters, that must occur every time one of these children
is instantiated, becomes onerous. To mitigate this burden through the use of geographic
information, we now turn to context-dependent environments.

2.3 Context-Dependent Environments
We now describe the functionality of our novel context-dependent environments paradigm

for parameterization and assess its robustness using the case study introduced in the previous
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module Example :

env1 = {’whoami’ -> site(’coord’)} // CDE instantiation

env2 = env1 ++ {’coord’ -> ’environment 2’} // CDE modification

print env1(’whoami’) // CDE query, prints ’Error: ’coord’ is not defined’

print env2(’whoami’) // CDE query, prints ’environment 2’

Figure 2.12 : Syntax for CDE instantiation and querying in our pseudo-HDL.
module Top #()():

constPars = { ’coefficient’ -> 4 } // Constant function

indexPars = { ’coefficient’ -> List(4,5,6,7).at(site(’index’)) } // Function on ’index’

myHomogenousDSP = new DSP4MultArray(constPars) // Makes a DSP with identical coefficients

myHeterogenousDSP = new DSP4MultArray(indexPars) // Makes a DSP with unique coefficients

module DSP4MultArray #(params)(...):

mult0 = new Mult #(params ++ {’index’ -> 0}) m0(...) // DSP4MultArray provides context

mult1 = new Mult #(params ++ {’index’ -> 1}) m1(...)

mult2 = new Mult #(params ++ {’index’ -> 2}) m2(...)

mult3 = new Mult #(params ++ {’index’ -> 3}) m3(...) ...

module Mult #(params)(...):

c = params(’coefficient’) ... // Mult only knows about coefficient, not index

Figure 2.13 : Example of specifying geographic information using site in pseudo-HDL.

section. In the CDE paradigm, we again pass an associative array called an environment
through a hardware module hierarchy, but the environment itself has an additional capability:
the value returned for a query on a key can depend on other parameter values at that query’s
origin within the design. This feature is deceptively simple; the level of additional indirection
provided in a CDE is a powerful tool for describing parameters in terms of one another, which
aids us in cascading uniquifying changes through subsets of a heterogeneous design.

While we previously demonstrated how we can use environments to provide the flexibility
of dynamic binding on-demand from within a lexically-scoped module hierarchy, the CDEs
we propose here are actually a strictly more powerful mechanism than traditional dynamic
binding. We owe this power boost to our decoupling of “how” and “when” to compute a
parameter’s value, allowing the “how” to be specified at binding time, but deferring evaluation
until the time at which the parameter is actually queried during elaboration. This “lazy”
evaluation strategy permits more parameter bindings to be in scope at evaluation time than
were available at binding time, with the advantage that these other parameters may come
from code locations not visible to the original binding site.

Mechanically, the sole additional feature of a CDE over a regular environment is a special
object, called site, that dynamically points to the originating CDE of the parameter query.
site is available to be queried when defining the value bound to a particular identifier. In other
words, environment values bound within the environment are no longer mere literals, instead
they have been promoted to functions that take as an argument a dictionary representing
the view of the world as seen from the query’s point of origin. When the environment is
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asked to evaluate a particular parameter identifier, the function stored for that key in the
dictionary is evaluated against the dictionary itself. Regular style environment variables are
still possible in this paradigm, but now are just functions that ignore the dictionary argument
and return a constant value (i.e. constant functions). We call these enhanced environments
context-dependent because the valuations taken by their bindings depend on where the query
is made.

Figure 2.12 provides a basic example of syntax and behavior for using the CDE site
functionality in our pseudo-HDL. We can see that env1 is queried with the key ’whoami’. This
key is contained within env1, and its value, site(’coord’), is evaluated. Because the original
queried object is env1, site points to env1 (i.e. site(’coord’) == env1(’coord’)). Since env1

does not contain the key ’coord’, this query fails. The second query, env2(’whoami’), matches
because env2 contains a ’whoami’ key. When ’whoami’’s value is evaluated, site(’coord’) now
points to env2 (i.e. site(’coord’) == env2(’coord’)). Because env2 contains a ’coord’ key,
site(‘coord’) returns ’environment 2’. This return value is propagated back to the original
env2(’whoami’) callee and printed.

Now that every value in the environment can actually be a function of the bindings in
the environment that is evaluating it, we can trivially build meta-parameters that are based
on formulae consisting of existing parameters, e.g. {"area" -> site("length") * site("width")}.
This feature is a powerful capability for forming chains of parameter dependencies, in which
parameters can be derived from other parameters. Most importantly, these valuations
can include reference to other parameters’ keys which were not known to the original
generator authors, but which are instead being defined by other generators in the hierarchy.
For example, while the original author of the "area" key may have specified only that it
returns an integer, composition with a Circle generator would override it to be bound to
{"area" -> pi * site("radius") * site("radius")}, whereas composition with a Square generator
would override it to be bound to the above example. Furthermore, the actual bindings for
"width", "length", or "radius" do not have to be supplied at the same time that the meta-
parameter "area" is bound to its value function. As long as any interstitial generator binds
those keys before the generator that uses "area" actually evaluates its query on that key,
everything will dynamically resolve to the correct value.

This site functionality is particularly useful in the context of hardware generation because
it allows for specialization of parameter values based on contextual or “geographic” information
that was injected into the environment by any intermediate generator in the module hierarchy.
This capability is at the heart of how we uniquify certain modules in a heterogeneous design.
Exploiting this capability requires that modules in a generator library built around the
CDE paradigm follow the practice of placing geographic information as new parameters in
the environments they produce for their child modules, at the point where such geographic
distinctions are clear. For instance, a network generator will instantiate and wire together the
output of many router generators. We would like a convenient way to assign different parameter
values to the routers based on their location in the topology. To achieve this effect, we place
the burden on the parent generator (network) to append each child (router)’s inherited CDE
with a constant parameter, e.g. {"location" -> (x, y)}. Assuming this geographic information
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module Top #()() :

topPars = {’hasFpu’ -> true,

’size’ -> if(site(’loc’) == ’iCache’) 64 else 64 }

myTile = new Tile #(topPars)(...)

module Tile #(params)(...):

myCore = new Core #(params)(...)

icache = new Cache #(params ++ {’loc’ -> ’iCache’})(...) // Insert geographic location

dcache = new Cache #(params ++ {’loc’ -> ’dCache’})(...) // Insert geographic location

assert (icPar(’size’) < dcPar(’size’)) ...

module Cache #(params)(...):

... params(’size’) ... // Cache queries CDE directly

module Core #(params)(...):

if(params(’hasFpu’) myFpu = new FPU()(...) ...

Figure 2.14 : The same example module hierarchy, but parameterized through context-dependent
environments.

module Top :

topPars = {’hasFpu’ -> true,

’dist’ -> 16, // TLC

’fpuLat’ -> 6, // TLC

’size’ -> if(site(’loc’) == ’iCache’) 64 else 64 }

myTile = new Tile #(topPars)(...)

module Tile (params)(...):

myCore = new Core #(params)(...)

icache = new CacheWithPF #(params ++ {’loc’ -> ’iCache’})(...) // LC

dcache = new Cache #(params ++ {’loc’ -> ’dCache’})(...)

assert (icPar(’size’) < dcPar(’size’)) ...

module Cache #(params)(...):

... params(’size’) ...

module CacheWithPF (params)(...):

Cache #(params)(...) // CacheWithPF simply passes CDE

module Core (params)(...) :

if(params(’hasFpu’) myFpu = new PFPU #(params)(...) // Core simply passes CDE // LC

Figure 2.15 : Simultaneously appending a new submodule that contains a new parameter (highlighted
in red), while also inserting a new interstitial module that contains a new parameter (highlighted in
blue). Dynamic environments eliminate NLCs.
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will be dynamically inserted into the environment by the parent, the top-level environment is
free to tune each router’s behavior according to "location" by referencing it in the site-based
function {"route" -> if(site("location") == (1, 2)) ... }. In a homogeneous system, "route"
will be bound to a constant value. In a heterogeneous system, we will supply whatever
function we please on "location" such that the individual locations will elaborate different
designs.

Figure 2.13 provides a more detailed example of geographic specialization. We present an
array of multipliers that use a parameterized coefficient, such as might be found in a DSP
engine or FIR filter. The structure of the design is fixed: DSP4MultArray has four multipliers.
However, we want to leave the binding of particular coefficients to particular multipliers up
to the top level. If we want a homogeneous set of multipliers, we can make the ’coefficient’

parameter a constant function. If we want a heterogeneous set of multipliers, we can make
the ’coefficient’ parameter a function of ’index’. The top-level parameter assignment may
dispatch different values to the same query by using the geographic information known only at
the origin of the query. In this case, Mult need know nothing about ’index’. Furthermore, we
can use ’index’ in the top-level environment even though no generator has yet injected that
key into the environment. When we finally query ’coefficient’ inside of Mult, site resolves
to an environment where the ’index’ key has since been defined (in the heterogeneous case).
This example demonstrates how components in a generator library built around CDEs can
leave a hook (e.g. index) by which external modules can specialize them, and shows how this
capability is based on decoupling “how” and “when” to compute a parameter’s value.

While the context-dependent specialization provided by CDEs is a useful property for
expressing heterogeneous hardware, CDEs also improve on regular environments in terms of
the robustness they provide in the face of module hierarchy modifications. We return to the
tile generator example from the previous section in Figure 2.14, but now deploy the CDE
topPars. Note that, in this example, we show how we could use site to specialize queries
on ’size’ in order to uniquify the block size for each cache, even though this particular tile
generator requires them both to dynamically be set to have the same block size.

In Figure 2.15 we now apply both modifications from Section 2.2 (i.e. replacing FPU with
PFPU and inserting CacheWithPF). Under the CDE paradigm, these modifications require only
two TLCs and two LCs. As before, using environments for dynamic binding eliminates the
constructor-related NLCs and broken cross-module parameter references. Furthermore, using
site to specialize the cache line sizes means that we do not have to explicitly rename the
’size’ paramter, as we had to do for regular environments. Changes to parameter bindings are
handled through site-based indirections instead of in-line renamings. This example supplies us
with some intuition that the CDE paradigm is qualitatively superior to all previous paradigms.
It has fewer LCs and fewer NLCs, with an equivalent number of TLCs. We formalize this
qualitative assessment in the following section.
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Inserting Appending

Figure 2.16 : Appending or inserting a generator to the hierarchy. Module types are represented as
shapes, and the newly inserted or appended modules are red.
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(1) 𝜃 = 1; 𝜋 = 3; 𝛿 = 3; 𝜇 = 0; 𝜌 = 0;

(2) 𝜃 = 1; 𝜋 = 3; 𝛿 = 4; 𝜇 = 0; 𝜌 = 0;

(3) 𝜃 = 2; 𝜋 = 3; 𝛿 = 3; 𝜇 = 0; 𝜌 = 0;

(4) 𝜃 = 2; 𝜋 = 3; 𝛿 = 3; 𝜇 = 0; 𝜌 = 1;

(5) 𝜃 = 2; 𝜋 = 1; 𝛿 = 1; 𝜇 = 0; 𝜌 = 0;

x
y

(5)

x
y

(6)

x
y

(6) 𝜃 = 2; 𝜋 = 1; 𝛿 = 1; 𝜇 = 1; 𝜌 = 0;

Figure 2.17 : (1)-(6) are example module hierarchy modifications. Module types are shapes, the
newly inserted or appended modules are red, and inter-module parameter references are curved
arrows.
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2.4 Source Code Change Analysis
Section 2.2 and Section 2.3 used the case study of a tile generator to qualitatively

contrast the efficacy of all five parameterization paradigms at dealing with some specific
modifications to the structure and hierarchy of hardware generators. In this section, we
instead attempt to analytically describe the robustness of each paradigm to any possible set
of design modifications. The results show that using CDEs always results in a more robust
design according to our metric, but they also provide insight into when other paradigms
could be equally appropriate.

As in the previous sections, we define robustness as the number of source code changes
that cascade from making a modification to an existing design consisting of a hierarchy of
generators that elaborate hardware modules. We generalize the initial modifications into one
of two categories: appends or insertions. An append is when a new generator is incorporated
as a leaf node whose instantiations do not affect the overall organization of the existing
module hierarchy (e.g. the addition of PFPU in Section 2.2). In contrast, an insertion is when a
new generator is incorporated between an existing parent and child node in the hierarchy (e.g.
the addition of CacheWithPF). Insertions change the overall structure of the module hierarchy.
See Figure 2.16 for an illustration of this distinction.

We assume all parameters added as part of a modification each require a unique value
to be bound to their identifier at the top-level of the module hierarchy. In other words,
multiple copies of the same generator must be capable of being assigned different parameter
values. These unique bindings must then be brought into the scope of the place where the
parameters are evaluated. Therefore, each original modification will trigger a varying number
of scoping-related source code changes, depending on both the existing module hierarchy as
well as the parameterization paradigm being employed.

In order to characterize how many source code changes of each type will be required for
each class of modification under each parameterization paradigm, we define the following
attributes of a modification that introduces a new module, M , to the hierarchy:

• θ, the number of parameters used by M .

• π, M ’s depth in the module hierarchy.

• δ, the number of times any parent generator of M is instantiated.

• µ, whether any other instances of M ’s type exist.

• ρ, the number of references to M ’s children’s parameters from any of M ’s parents.

Figure 2.17 depicts six examples calculating these attributes for different module hierarchies
In (1), a new module M with one parameter is appended to a 3-level hierarchy with each level
being of a unique type. In (2), a module with one parameter is appended to a 3-level hierarchy
where one of its ancestors is instantiated twice (δ = 4), and the other two are instantiated
once each. In (3), a module with two parameters is appended to a 3-level hierarchy with a
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Paradigm LC NLC Total Changes
arg-lists 1 (δ + π) ∗ θ 1 + θ ∗ (δ + π + 1)
flat-struct 1 π ∗ θ 1 + θ ∗ (π + 1)
nested-struct 1 1 + ρ 2 + θ + ρ
regular-env 1 + µ ∗ θ 0 1 + θ ∗ (1 + µ)
CDE 1 + µ 0 1 + θ + µ

Table 2.1 : Models of source code change for appending or inserting a module under any parameter-
ization paradigm.

cross-module reference (θ = 2, ρ = 0). In (4), a module with two parameters is inserted into
a 3-level hierarchy with a cross-module reference (ρ = 1). In this case, M ’s parent has a
single reference to a parameter that is contained in M ’s child. In (5), a module with two
parameters is appended to a 1-level hierarchy alongside a sibling of a different type than M
(µ = 0). In (6), a module with two parameters is appended to a 1-level hierarchy alongside a
sibling that is the same type as M and therefore uses the same parameter names internally
(µ = 1).

Given these attributes, we can calculate the number of top-level, non-local, and local
changes per modification type under each paradigm. Table 2.1 lays out analytical models for
each combination. Top-level changes are always equal to the number of parameters added
by the modification (θ). Local changes consist of instantiating the new module and local
manipulations of the module’s parameter bindings. Non-local changes include any other
modifications, including parent instantiations, parent declarations, modifying any parent’s
parameter object’s instantiation/declaration, and correcting references to parameters in
parent modules. Total changes are simply the sum of all LCs, NLCs, and TLCs.

We begin by breaking down the NLCs required under each paradigm. The arg-list
paradigm requires (δ + π) ∗ θ NLCs, because each of θ parameters must be threaded through
the declarations (π) and instantiations (δ) of all of its parent modules in the hierarchy. The
flat-struct paradigm reduces this overhead to π ∗ θ because the δ instantiations now refer to
the struct instead of the individual parameters. The nested-struct paradigm requires only
1 + ρ changes; a single change to the declaration of the parent module’s companion struct, as
well as ρ changes based on how many references to parameters in M ’s children there are in
all of M ’s parents. If we are appending M rather than inserting it, ρ will of course equal
0 because there cannot be any references to nonexistent children. The dynamically-scoped
solutions require no NLCs, because the bindings created by the TLC are automatically put
within the scope of M .

As for LCs, the lexically-scoped paradigms each only require a single LC, simply instanti-
ating the module in question. In the case of the dynamic environments, more than one LC is
needed to both instantiate the module and differentiate the parameter bindings if necessary.
In particular, we use µ to indicate whether M is instantiated anywhere else in the design
hierarchy. If it is, we must now differentiate the top-level bindings that are to be used for each
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instance of M and re-map those bindings onto the identifiers used within M as we instantiate
it. For regular environments, we introduce θ additonal LCs, because every new parameter
needs to be renamed in order to disambiguate it from that of its peers. For context-dependent
environments, only a single additional LC is required, assuming the existence of a single
geographical parameter whose value can be overridden for the new module.

The terms in these models help to clarify the kinds of tradeoffs we are making when we
offer developers the opportunity or advice to use a particular parameterization paradigm. For
example, from the perspective of the author of a generator that will serve as the “leaf” node in
the hierarchical graph of instantiations, there is no reason not to use argument lists. However,
as that generator becomes embedded within deeper and deeper generator hierarchies, the
burden born by all the parent generators grows and grows, as captured by the π term. In
fact, δ has an even larger potential to grow, since it is based on the number of different
instantiations made anywhere in the source code, rather than the number of parent generator
constructor declarations represented by π. The ρ term governing nested-structs is highly
design dependent, but it is an important signifier of the work that has been done within a
design to ensure composability by making assertions about the behavior and configuration of
child generators. In other words, more robust nested designs will have higher values of ρ.

The µ term captures whether the module being added is reusing parameter identifiers that
are being used elsewhere. It only matters for dynamically-scoped paradigms, because they
must provide their own namespaces for identifiers, independent of the module hierarchy’s
lexcical scope. In cases where we are heterogeneously adding an instance of a new module
type or homogeneously adding an identical instantiation of an existing module type, no
further work needs to be done. Otherwise, each parameter must be uniquified as the module
is instantiated. Overall, we are making an argument that the δ, π, and ρ terms are the ones
most likely to grow, as well as the fact that NLCs are much more difficult to resolve than
LCs because they could occur anywhere in the overall source codebase.

Despite the poor scalability of argument lists, all designs with a shallow module hierarchy
are manageable with them, because the number of potential modifications is itself limited.
Designs with shallow but wide hierarchies that have expect no insertions and have few cross-
module parameter references (e.g. networks) could be made robust with the nested-struct
paradigm, assuming the number of child parameters is not itself determined by a parameter.
Deep hierarchical designs with minimal module reuse (e.g. processor pipelines) must support
insertions as well as appends, but the diversity of the module types involved means there
will be few parameter namespace collisions. These designs will remain robust with regular
environment passing. Complicated designs with deep hierarchies, significant module reuse,
and many cross-module references that must address all flavors of appends and insertions
(such as our SoC generator) clearly benefit from CDEs.

This analysis is predicated on the idea that the design in question will undergo further
development and be deployed in new contexts, but that agenda is central to our agile approach
to hardware development. The qualitative benefits of using CDEs extend beyond modifiability
to composability and reusability. While CDEs have disadvantages as well, we discuss how
these can be mitigated through good software engineering practices in the following sections.
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val fraction: PartialFunction[Int, Int] =

{ case d: Int if d != 0 => 42 / d }

val statusHandler: Int => String = {

case 200 => "Okay"

case 400 => "Your Error"

case 500 => "Our error"

}

val config: PartialFunction[String, Any] = {

case "size" => 32

case "name" => "divider"

case "func" => fraction

}

Figure 2.18 : Partial functions in Scala.

2.5 Implementation of CDEs in Scala
We will now provide some specifics about our implementation of Context-Dependent

Environments in Scala. After an overview of functionality offered by our CDE implementation,
we will discuss the Scala language features we employed to create it, as well as provide some
insights into how we integrate CDEs with Chisel-based hardware generators.

At a high level, the values returned by identifiers stored in a CDE are not constant, rather
they are functions whose arguments are:

pname, the name of the parameter being queried.

site, the CDE against which the query was originally made.

here, the CDE currently being defined.

up, the last CDE created before this alteration.

The function bound to a particular identifier can choose to ignore the site, here, and up

arguments and just return a constant value, which provides the same functionality that
would be found in a regular environment. However, the use of more sophisticated parameter
valuations based on querying site and the others allows users to create chains of parameter
dependencies and easily specialize deeply nested portions of their designs. Scala provides
some language features that significantly informed our implementation of this construct,
particularly first-class functions and partial functions, as well as typed dispatch via match
statements.
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2.5.1 Environments as Partial Functions
At an abstract level, environments are associative arrays (also called key-value stores,

maps, or dictionaries) wherein identifiers are bound to particular values. Scala provides a
map collection as part of its standard collections library, but we chose to use an even more
fundamental built-in primitive as the basis of our CDE implementation: partial functions. In
a mathematical context, a partial function provides a function f : X ′ → Y for some subset
X ′ of X. If X ′ = X we would call f a total function. The critical feature of a partial function
is that we can define it without knowing the exact domain X ′.

Scala provides first class support for functions (and partial functions), meaning that they
are not only declared and invoked but can be used in every segment of the language as just
another data type. A first-class function may be [76]:

• created in literal form without ever having been assigned an identifier;

• stored in a container such as a value, variable, or data structure; or

• used as a parameter to another function or used as the return value from another
function.

Figure 2.18 shows some examples of partial functions defined as function literals.
The applicability to maps is obvious, and in fact, Scala provides built-in functionality for

converting between map data structures and first class partial function types. Our CDEs
are built on top of this capability by composing hierarchies of partial functions that map
from an identifier to a parameter value (or Scala object created using multiple parameters).
Our framework is permissive about what type of Scala objects can be used as an identifier,
accepting Any Scala type. We can then use the pattern matching tools built in to Scala to
match certain parameter names and extract additional information that may be stored in
them. Figure 2.19 provides some examples of making use of different types of identifiers and
alterations.

We provide the Field wrapper class to improve the syntax for looking up a particular
identifier, allowing us to elide declaring the expected return type on each lookup of the
identifier. By giving the identifier its own Scala class, we also can leverage the Scala type
system to check that identifiers from different projects to do not conflict.

The values returned by our framework can also be of Any Scala type. The framework uses
the type specified in the Field definition or the one provided by the user at the query site
to dynamically cast the value obtained from the environment to the intended type. This
cast can fail at runtime if the wrong type of object is provided, an inherent weakness of our
dynamic scoping approach.

Partial functions can naturally be composed with one another. If an identifier fails to
match within a certain context, we can catch the MatchError thrown and then go on to search
in the remaining ones. We exploit this functionality to create hierarchies of environments,
where modifying a parent creates a child with new bindings that can override the parent’s
bindings, and which in the absence of new bindings will fall back on the parent’s bindings.
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val p1 = Parameters.empty.alter(Map("a" -> 1))

val a = p1[Int]("a")

val p2 = p1.alterPartial({"b" => 2})

val b = p2[Int]("b")

case class Location(x: Int, y: Int) extends Field[String]

val p3 = p2.alterPartial({

case Location(x, 1) => "y is 1, x is " + x

case Location(1, y) => "x is 1, y is " + y

})

val s = p3(Location(0,1))

Figure 2.19 : Using partial functions and maps to bind parameter values.

2.5.2 site, here, and up
As discussed in the previous section, the fundamental additional feature of a CDE over a

regular environment is a special object, called site, that dynamically points to the originating
CDE of the parameter query. site is available to be queried when defining the value bound
to a particular identifier. In other words, environment values bound within the environment
are no longer mere constant literals, instead they have been promoted to functions which
take as an argument a dictionary representing the view of the world as seen from the query’s
point of origin. When the environment is asked to evaluate a particular parameter identifier,
the function stored for that key in the dictionary is evaluated against the dictionary itself.
We call parameters that use the site functionality context-dependent because the valuations
taken by their bindings depend on where the query is made. We call site itself a view of the
environment.

In addition to the view from site, we also provide users attempting to alter their environ-
ments with the views called here and up. site gives the user access to parameter valuations
based on the value they have been defined to have to the call site. here gives the user access
to parameter valuations that are being defined within the very same alteration statement. up

gives the user access to parameter valuations that were available in the previous, unaltered
version of the environment. Figure 2.20 shows examples of how site, here, and up can be used
to evaluate parameters based on their particular view of the environment.

2.5.3 Constraints
As the author of a hardware generator library, it is important to expose to external users

(e.g., SoC architects) not only the free parameters of the design, but also any constraints that
must be placed on the values bound to those parameters. While preventing illegal parameter
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val p1 = Parameters.empty

val p2 = p1.alter(

(key, site, here, up) => key match {

case "width" => 64

case "double" => here("width") * 2 // here reference

case "hetero" => site("loc") match {

case Location(x, 1) => "In core location #" + x

case Location(y, 2) => "In uncore location #" + y

}

}

)

val core1 = Module(new Core(p2.alter("loc" -> Location(1,1))))

val core2 = Module(new Core(p2.alter("loc" -> Location(2,1))))

val uncore = Module(new Uncore(p2.alter("loc" -> Location(1,2))))

Figure 2.20 : Using site, here and up for context-dependent parameterization.

case object NClients extends Field[Int]

class MyScalableNetwork extends Module {

params.constrain( ex => ex(NClients) > 0 )

...

}

class MyTinyNetwork extends Module {

params.constrain( ex => ex(NClients) > 0 && ex(NClients) <= 4 )

...

}

class MyPairsNetwork extends Module {

params.constrain( ex => ex(NClients) > 0 )

params.constrain( ex => ex(NClients) <= 32 )

params.constrain( ex(NClients)\%2 === 0 )

...

}

Figure 2.21 : Constraining parameter values.
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bindings from producing incorrect designs can be done with elaboration-time assertions in the
generator source code, we feel a better strategy is to give SoC authors enough information so
as to avoid even attempting to generate bad designs in the first place.

We provide a constraint expressions library that operates on Fields. Users can deploy
this library to create simple expressions that describe relationships between parameters.
Figure 2.21 shows some examples of constraint expressions. Within any Module or Bundle

component of our library, we can constrain the values of arbitrary fields using these expressions
and register them using the constrain function. We support a set of expressions compatible
with many constraint solving tools as well a range checking bound.

In addition to using constraints as runtime assertions while elaborating a particular
hardware design instance, we also experimented with extracting them from a design during
elaboration and serializing them to an external format compatible with a constraint solving
tool. When using the Chisel compiler in this mode, at least one safe set of parameter
bindings must be known (we discuss a mechanism for encoding safe default values in the next
subsection). As we elaborate a design instance using these default parameters, we record
all the constraints registered by the compiler. This set of constraints can then be fed to an
external tool capable of enumerating all legal parameter bindings. This enumerated design
space can then be explored in order to find the optimal design point for a particular workload
or metric.

2.5.4 External Interfaces
We provide two further abstractions as part of our Scala CDE library, both focused on

interactions with external tools.
Knobs are hooks intended for use by design space explorers using CDEs to inject parameters

into a design. They provide another level of name binding indirection available within the
top-level definitions (TopDefs) of a Parameter environment. They essentially serve as meta-
parameters to which multiple other parameters’ names can be bound, depending on the use
case of the exploration process. Knobs values are automatically flagged to be dumped to
external files when a particular design instance is created using them.

ChiselConfigs are representations of complete or partial parameter bindings, associated
with a particular name and expressed using Scala source code. ChiselConfigs consist of
the three primary components potentially needed to elaborate a design instance based on
CDEs: top-level Parameter definitions, Knob value bindings, and top-level Constraints. We
chose to express configurations via Scala source code rather than an external serialization
format for economy of design. Given the name of a ChiselConfig sub-class, we can instantiate
it using Scala’s reflection capabilities and feed the Parameters thereby generated to Chisel.
ChiselConfigs can extend one another through Scala’s multiple inheritance as well as be
composed by name dynamically. Figure 2.22 provides a simple example of ChiselConfig

definition and inheritance.
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class DefaultConfig extends ChiselConfig {

val topDefinitions:World.TopDefs = {

(pname,site,here) => pname match {

case NTiles => Knob(’NTILES’)

...

}

}

override val topConstraints:List[ViewSym=>Ex[Boolean]] = List(

ex => ex(NTiles) >= 1 && ex(NTiles) <= 8 && (ex(NTiles)\%2 === 0 || ex(NTiles) === 1)

)

override val knobValues:Any=>Any = {

case ’NTILES’ => 1 // generator parameter assignment

}

}

class With2TilesConfig extends DefaultConfig {

override val knobValues:Any=>Any = {

case ’NTILES’ => 2

}

}

Figure 2.22 : ChiselConfigs and Knobs.

2.6 Parameterization Best Practices In Chisel
The goal of this section is to distill some of the learned wisdom about effective software

engineering strategies for deploying CDEs in a Chisel-based hardware generator. Beyond
which parameterization paradigm to use, there are additionally a wide variety of design
decisions that aid the process of injecting parameters into a design. In particular, Scala
provides several built-in features that we exploit, which are not innately coupled to our choice
of using CDEs for paramterization but do complement it. The following subsections attempt
to capture some of the tradeoffs we have explored while taping out chips using our SoC
generator.

2.6.1 Scala’s Implicit Parameter Lists
Implicit parameters are a form of lexical scoping that offer some of the perks of dynamic

scoping in a limited (but safe) context. They are another built-in feature of the Scala language.
When a method or constructor declares one of its parameters as implicit, users of that method
can decide whether or not to supply a value for that parameter. In cases where no explicit
value is supplied, the compiler automatically searches the context of the method call for a
matching “implicit” value. Resolution rules for implicit parameters guarantee that only a
single matching value will be allowed to be bound by the compiler. The salient feature of
the implicit resolution rules is that they are based on only a single value of a matching type
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class A(implicit p: Parameters ) extends Module {

val w = p[Int]("width")

}

class B(implicit p: Parameters) extends Module {

val a16 = Module(new A) // A’s constructor’s implicit parameter resolves to p

val a32 = Module(new A(p.alterPartial({"width" => 32})))

}

val b = Module(new B(Parameters.empty.alter(Map("width" -> 16}))))

Figure 2.23 : Using Scala’s implicit parameters to pass Parameter instances to Modules when no
fields are overridden.

being marked with the implicit keyword in lexical scope.
Implicit parameters simplify Scala APIs by eliding parameters with which standard users

do not need to concern themselves. In our case, we have found them to be particularly useful
for passing our Parameters objects through a hierarchy of Modules and Bundles. In cases
where none of the Parameter fields are being altered (which is the common case), users do
not have to explicitly pass the Parameter instance into the Module or Bundle’s constructor.
Figure 2.23 shows examples of how implicit parameters are expressed in Scala and how we
use them to make Parameters available throughout a hardware Module hierarchy.

2.6.2 Scala Traits and Mix-ins
Scala supports multiple inheritance, wherein member definitions of multiple classes can be

reused in the definition of a new class. This multiplicity is accomplished without inheritance
ambiguity by way of mixins, which are classes that contain methods for use by other classes
without having to be the parent class of those other classes. Specfically, Scala allows users to
define mixin traits that represent a distinct feature or aspect orthogonal to the responsibility
of a concrete type. A trait cannot itself be instantiated, instead the trait’s functionality is
mixed-in when defining or using a class. Since traits are innately abstract, they can contain
abstract methods and members that are to be filled in by the concrete class.

We have found it productive to use traits to encapsulate the process of extracting parameter
values from CDEs and binding them to local variable names. Parameter lookups need only
occur once per class instantiation instead of every time a particular parameter is used. Code
reuse is improved across many classes that make use of the same parameters, such as all the
Bundles in a multi-channel protocol specification. Figure 2.24 shows examples of how we
mix-in traits containing parameter bindings to Module and Bundle sub-classes.
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trait HasTileLinkParameters {

val p: Parameters // Abstract member

val co = p[CoherencePolicy]("TLCoherencePolicy") // Parameters bound to local vals

val nM = p[Int]("TLNManagers")

val nC = p[Int]("TLNClients")

val dataBits = p[Int]("TLDataBits")

val dataBeats = p[Int]("TLDataBeats")

val dataBitsPerBeat = dataBits / dataBeats // Derived parameter

}

trait HasCacheParameters {

val p: Parameters // Abstract member

val nSets = p[Int]("NSets")

val nWays = p[Int]("NWays")

}

class MyBundle(implicit val p: Parameters) extends Bundle // Concrete type

with HasTileLinkParameters { // supplies p for trait

val data = UInt(INPUT, width = dataBits) // Use a val from the trait

}

class MyCache(implicit val p: Paramaeters) extends Module

with HasCacheParameters

with HasTileLinkParameters { // Multiple inheritance

val io = new MyBundle // Implicit parameter passed here

val managers = for (i <- 0 until nM) yield { ... }

val sets = for (i <- 0 until nSets) yield { ... }

}

Figure 2.24 : Using traits to factor out and mix in parameter bindings.
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// Using Fields

class TLCoherencePolicy extends Field[CoherencePolicy]

class TLNManagers extends Field[Int]

class TLNClients extends Field[Int]

class TLDataBits extends Field[Int]

class TLDataBeats extends Field[Int]

trait HasTileLinkParametersFromFields {

val p: Parameters

val co = p(TLCoherencePolicy)

val nM = p(TLNManagers)

val nC = p(TLNClients)

val dataBits = p(TLDataBits)

val dataBeats = p(TLDataBeats)

val writeMaskBits: Int = ((dataBits / dataBeats) - 1) / 8 + 1

val dataBitsPerBeat: Int = dataBits / dataBeats // Derived parameter

}

// Using case classes

case class TileLinkParameters(

coherencePolicy: CoherencePolicy,

nManagers: Int,

nClients: Int,

dataBits: Int,

dataBeats: Int = 4,

overrideDataBitsPerBeat: Option[Int] = None

) {

val writeMaskBits: Int = ((dataBits / dataBeats) - 1) / 8 + 1

val dataBitsPerBeat: Int = overrideDataBitsPerBeat.getOrElse(dataBits / dataBeats)

}

class TLKey extends Field[TileLinkParameters]

trait HasTileLinkParametersFromStructs {

val p: Parameters

val tl = p(TLKey)

val co = tl.coherencePolicy

val nM = tl.nManagers

val nC = tl.nClients

val dataBits = tl.dataBits

val dataBeats = tl.DataBeats

val writeMaskBits = tl.writeMaskBits

val dataBitsPerBeat = tl.dataBitsPerBeat

}

Figure 2.25 : Two alternative approaches to representing sub-fields of interrelated parameters. In
the first example, we use Fields representing individual parameters, and relate them inside of a
trait. In the second example, we use a case class that wholly encapsulates the parameters and their
relationships.
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2.6.3 Case Classes versus Fields
Another parameterization design decision that is orthogonal to the choice of paradigm

is the granularity with which individual parameters are exposed to the rest of the design.
Figure 2.25 shows two alternative approaches that generator authors can take to expose the
parameters used by their generator to external clients. Each approach has pros and cons,
and designers using our tools have employed each in different instances.

In the first approach, every independent parameter is represented by an individual Field
definition. Dependent parameters are then defined in traits after the parameters have been
bound to local variables. This approach plays nicely with our Constraints framework, which
relies on individual parameters being referenced in the expressions built up to describe a
constraint. However, it requires users to mix-in the traits to gain access to their members
that are storing parameter values. It also imposes an additional burden when we work with
context-dependent parameters, as we will discuss in the next subsection.

In the second approach, every independent parameter is made a member of a case
class. Scala case classes export their constructor parameters, provide a succinct syntax for
copy constructors, and provide a recursive decomposition mechanism via pattern matching.
Dependent parameters are defined within the class itself. This approach is not as compatible
with our Constraints framework, which at this time does not support constraints defined
on individual class members. However, it provides all dependent parameters inherently,
requiring no mixins. It also provides a convenient syntax for working with context-dependent
parameters.

2.6.4 Geography and Heterogeneity
Figure 2.26 shows examples of how geographical information can be embedded in a

CDE and exploited by making use of the site functionality. For each parameter that varies
heterogeneously across the design, we use site to reference another parameter that abstractly
describes the “location” of that parameter within the design. Parameters that vary together
are keyed off of the same geographic parameter. It is important to note that the original
generator library does not need to know anything about this geographical parameter: it can
be introduced by external users and injected into the design at the top-level or anywhere in
between. site is what allows us to decouple the definition of the parameters’ bindings from
the run-time evaluation of their values, which vary based on “where” they are queried.

2.6.5 The FindBy Pattern
While allowing each parameter to vary independently based on geographical parameters

is a powerful capability, in practice many sets of parameters vary together because they are
controlling the same generator. We have found that users are often discontent with varying
each of these correlated parameters independently. When many locations are possible for each
parameter, the replicated code to select among them can take up a significant fraction of the
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case object CacheName extends Field[String] // New geographical fields

case object TLId extends Field[String]

class DefaultConfig extends Config(

topDefinitions = { (pname,site,here) =>

pname match {

case "NSets" => 128 // A context-independent (constant) lookup

case "NWays" => if(site(CacheName) == "L1I") 2 else 4 // A context-dependent lookup

case TLKey => if(site(TLId) == "L2ToMC") { // and another

TileLinkParameters(

coherencePolicy = new MEICoherence(new NullRepresentation(site(NBanksPerMemoryChannel))),

nManagers = 1,

nClients = site(NBanksPerMemoryChannel),

dataBits = site(CacheBlockBytes)*8)

} else {

TileLinkParameters(

coherencePolicy = new MEICoherence(new NullRepresentation(site(NBanksPerMemoryChannel))),

nManagers = 1,

nClients = site(NBanksPerMemoryChannel),

dataBits = site(MemoryInterfaceBytes)*8)

}

//...

}

}

)

// Inject geography into context

val l2toMCNetwork = Module(new TLNetwork()(params.alter({TLId => "L2toMC"})))

// A different location

val outerNetwork = Module(new TLNetwork()(params.alter({TLId => "Outermost"})))

// Can be multiply located

val icache = Module(new ICache()(params.alter({CacheName => "L1I"; TLId => "L2toMC"})))

Figure 2.26 : Using CDEs to express geographical heterogeneity.
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case object CacheName extends Field[String]

case object TLId extends Field[String]

case class TLKey(id: String) extends Field[TileLinkParameters]

class DefaultConfig extends Config(

topDefinitions = { (pname,site,here) =>

type PF = PartialFunction[Any,Any]

def findBy(sname:Any):Any = here[PF](site[Any](sname))(pname)

pname match {

case "NSets" => findBy(CacheName) // Pivot to lookup by cache name

case "NWays" => findBy(CacheName) // Likewise

case "L1I" => { // Icache location

case "NSets" => 128

case "NWays" => 2

}:PF

case "L1D" => { // Dcache location

case "NSets" => 128

case "NWays" => 4

}:PF

case TLKey("L2toMC") => // First

TileLinkParameters(

coherencePolicy = new MEICoherence(new NullRepresentation(site(NBanksPerMemoryChannel))),

nManagers = 1,

nClients = site(NBanksPerMemoryChannel),

dataBits = site(CacheBlockBytes)*8)

case TLKey("Outermost") => site(TLKey("L2toMC")).copy(dataBeats = site(MemoryDataBeats))

//...

}

}

)

Figure 2.27 : Using a transformation to collate related parameters in a Config based on geography.
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Config description. Figure 2.27 shows examples of other strategies for managing correlated
parameters.

The first method we introduce we term the findBy pattern. We add a utility function that
makes use of both site and here in order to pivot the parameter lookup such that we first
lookup the geographic key and then within that namespace lookup the original parameter
query. This pivot has the effect of allowing us to organize parameter bindings that change in
the same way so as to be sorted by geographical location.

The second method performs a similar transformation, but builds on the earlier design
decision to use case classes to store related parameters rather than individual fields. This
pattern is concise and allows us to make use of the copy constructor syntax built into case
classes, because we can reference other geographic keys directly. In cases where we do not
need to define constraints on individual parameters, we find we prefer this syntax. However,
this is more of a stylistic choice than a functional one, as the two approaches are functionally
equivalent.

We will return to some of these examples in later chapters after we define further properties
of TileLink networks and CoherencePolicies.

2.7 Discussion and Future Work
Unlike high-level synthesis tools that transform abstract descriptions of a computation into

gates, hardware generators are parameterized, programmatic descriptions of how to elaborate
a templated RTL module hierarchy. Because parameters are so essential to generators, we
have devoted significant effort to developing a parameterization paradigm that supports
composing them. As we look forward, we envision Chisel serving as the basis on which more
abstract and high-level tools will be layered. We contend that parameterization will be just
as important for such tools. Even though some of the details of the implementation may
become hidden, we will need to provide direction for how the high-level computations should
be mapped onto hardware structures. Furthermore, the space of possible implementations for
a HLS description can be quite large, so expressing those tradeoffs in a way that is compatible
with design space exploration is important.

While I will not discuss it further as part of this thesis, we have prototyped some initial
implementations of hooking up our Parameters and Constraint abstractions to a design space
exploration tool called Jackhammer. Given a set of free top-level parameters and a set of
constraints placed upon them, Jackhammer can create a design of experiments and execute
that design against a cloud-based service for design point evaluation. Further work is required
to automate the exploration process and close the loop between feedback from one iteration
of examining a set of design instances and selecting points for further exploration.

The biggest downside to relying on a dynamically-scoped solution for parameterization is
that there is a class of errors that would be compile-time errors in a lexically-scoped system
that are run-time errors in a dynamically-scoped one. These errors include things such as:
parameters never being bound to a value, function, or Knob; parameters being bound to return
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a type that does not match that expected by their query site; or infinite recursion of the CDE
implementation due to loops in the site call graph. While we have attempted to provide
sensible error messages for some of these cases, it is difficult to wholly absolve ourselves of
introducing the possibility of run-time failures. In the future, it might be possible to use
Scala’s support for macros to do a better job of eliding the need for runtime type casts in
cases where the top-level configuration is itself specified as Scala source code. Overall, we feel
that the power of dynamic scoping for modification of parameters in deeply nested hierarchies,
such as those seen in our RocketChip generator, is worth the cost.

2.8 Conclusion
We have presented a taxonomy of existing parameterization paradigms in HDLs and

demonstrated that our context-dependent environments paradigm is provably more robust
in the face of modification to any given design’s module hierarchy. We have also provided
case studies of how CDEs are particularly appropriate for hardware generators and offered
insights into how best to deploy them within a new HDL embedded in Scala. In the following
chapters, we will move on to the specifics of how to express cache coherence protocols with
hardware generators and build on the CDE framework to effectively parameterize both the
protocols themselves and the hardware modules that implement them.
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Chapter 3

TileLink: A Protocol Substrate for
Coherence Policy Transactions

TileLink is a protocol framework designed as a substrate for multiple cache coherence
policies. Its purpose is to separate the design of the communication network and the im-
plementation of the cache controllers from the design of the coherence protocol itself. This
separation of concerns improves the modularity of the HDL description of the memory hierar-
chy, while also making validation and verification of individual memory system components
more tractable.

Any cache coherence protocol that conforms to TileLink’s transaction structure can be
used interchangeably alongside the physical networks and cache controllers we provide. By
supplying a framework to apply transactional coherence metadata updates throughout the
memory hierarchy, TileLink enables simplified expressions of the coherence policies themselves.
Conversely, as long as newly designed controllers and networks make certain guarantees about
their behavior, system-on-chip designers can be confident that incorporating them into their
TileLink-based memory hierarchy will not introduce coherence-protocol-related deadlocks.
As part of the Rocket Chip Generator project, I have supplied an initial library of cache
controllers and on-chip physical networks that conform to this TileLink specification.

TileLink is roughly analogous to the data link layer in the IP network protocol stack, but
exposes some details of the physical link necessary for efficient cache controller implementation.
This tradeoff avoids imposing any deserialization overhead on data being refilled between
levels of an on-chip cache hierarchy, while also allowing for data bus widths that are tractable
to place-and-route between the different caches in the hierarchy. Despite the emphasis on
on-chip deployment, TileLink is suitable for implementing a coherence protocol in a multi-chip
system as well.

TileLink is designed to be extensible and supports a growing family of custom cache
coherence policies. TileLink also codifies a set of transaction types that are common to all
protocols. In particular, it provides a set of transactions to service memory accesses made
by agents that do not themselves have caches containing coherence policy metadata. These
built-in transactions make TileLink a suitable target for the memory interfaces of accelerators,
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co-processors and DMA engines, and allow such agents to automatically participate in a
global shared memory space.

TileLink is hierarchical, in that protocols based on it can be nested inside one another.
This structure comports well with the tree-based structure of on-chip cache hierarchies.
Memory requests that cannot be satisfied within a particular hierarchy level are translated
into the protocol assigned to the next-outermost level. TileLink uses a variation on the
Manager-Client Pairing framework [9] to provide encapsulation and translation between
levels.

The rest of this chapter lays out the case for TileLink and provides a detailed specification
of its architecture. I discuss the assumptions and guarantees made by the various components
of a TileLink system and explain how components implementing them interact to supply
deadlock and starvation-free, coherent, global shared-memory implementations. Details of
how specific coherence policies extend TileLink are discussed in Chapter 4.

3.1 Background
In a system with hardware-managed cache coherence, the cache controllers and memory

controllers communicate among themselves according to some protocol to maintain coherence.
While they might have vastly different implementations, all such protocols maintain coherence
by ensuring the same single-writer, multiple-reader (SWMR) invariant [70]. For a given block
of cached memory, at any given moment in logical time, there is either: (1) a single core
that may write and read the block, or (2) there are zero or more cores that may only read
the block. However, because this definition is based on a notion of logical time rather than
physical time, it does not preclude a variety of important optimizations that would otherwise
appear to violate this constraint. Our definition of coherence must also augment the SWMR
invariant with a data value invariant that pertains to how values are propagated from one
logical epoch to the next. This invariant states that the value of a memory location at the
start of an epoch is the same as the value of the memory location at the end of its last
read-write epoch [70]. Violating either of these invariants could lead to values written by one
core never becoming visible to other cores.

For the rest of this chapter, I distinguish coherence policies from coherence protocols. A
coherence policy governs how the SWMR invariant is represented as metadata identifying
available permissions on data blocks and how to change those permissions. A coherence
protocol specifies the exact flows of messages and state updates that must be propagated
through the memory hierarchy in order to effect a policy. In other words, a policy specifies
what access permissions are possible and when those permissions should be changed, whereas
a protocol specifies how any changes are communicated to the rest of the hierarchy. TileLink
provides a single coherence protocol template on top of which many policies can be imple-
mented. A particular cache coherence policy will specify permissions changes that must occur
as a result of a serialization of memory operations. Using these policy-based decisions to fill
in the TileLink template results in a complete coherence protocol.
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Figure 3.1 : Sketches of various coherence transaction shapes. A. Exploiting a globally synchronous
broadcast medium, client agents can directly reply to one another in two hops. B. With point-to-
point communication, a manager agent provides a possible point of serialization. C. With unordered
message delivery, a fourth hop can symplify the complexity of maintining a global serialization.

A protocol comprises a specified set of allowable interactions between any agents that
access copies of blocks of shared memory. A “transaction” made up of a subset of these
interactions effects a single memory operation at the policy level, and a complete protocol
will include many such transactions. We term legal sets of interactions between agents
“transactions” because the SWMR invariant must be preserved, even though the permissions
metadata being accessed is distributed throughout the hierarchy. Futhermore, all agents must
agree on the serialization of permissions changes to a particular block. The distributed agents
must achieve consensus about permission states and data values despite the fact that there
may be no ordering guarantees provided by the underlying communication network, and so
no trivial notion of global serialization of the transactions. Increasing memory operation
throughput by allowing multiple transactions to be in-flight through the cache hierarchy
at the same time is essential to efficiency, but significantly increases the complexity of the
protocol implementation.

The transactions that make up a coherence protocol tend to assume a particular shape
depending on what assumptions are built into the underlying message transport network they
rely upon. Figure 3.1 shows how certain transport assumptions result in different numbers
of messages sent per transaction and different points of serialization. In Figure 3.1.A, by
exploiting a globally synchronous broadcast medium (such as a bus), client agents can directly
reply to one another in only two hops. When only point-to-point communication is available
(Figure 3.1.B), a manager agent provides a possible point of synchronization, as well as
forwarding certain filtered messages to other clients. However, those clients then respond to
the transaction originator directly. If the point-to-point network cannot guarantee ordered
message delivery, transactions can include a fourth hop (Figure 3.1.C) that will add latency,
but which provides opportunities for more fine-grained concurrency control to maintain a
global serialization. The symmetry of a four-hop transaction style also enables hierarchical
composability in multi-level memory systems. TileLink is based around a four-hop structure.
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Figure 3.2 : Nested coherence realms in the MCP paradigm. The innermost realm consists of client
agents and their manager, which may in turn be the client of a second tier manager in an outer
realm, and so on. Hierarchical agents act as both inward managers and outward clients.

Thus far we have discussed the concepts that inform the behavior of TileLink within a
single level of the memory hierarchy. In order to extend TileLink to support protocols that
span multiple levels of the hierarchy, we apply a variation of the Manager-Client Pairing
(MCP) framework [9]. MCP defines an interface between users of data (client agents) and
the mechanisms that monitor coherence of these users (manager agents) on the two sides of a
coherence protocol interface. A given agent can act also as both a client and a manager, and
serve as the bridge between two nested realms of the multi-level coherence protocol. Figure 3.2
shows how this strategy can be applied in a divide-and-conquer manner to arbitrarily deep
hierarchies by carving them up into nested coherence realms. Applying the MCP framework
to a memory sytem is advantageous because it provides encapsulation within each tier of the
hierarchical protocol, which in turn mitigates the state-space explosion that makes multi-level
protocol designs prohibitively expensive to verify. Standardization and encapsulation enable
more rapid design of hierarchical coherence protocols via community-validated building blocks
that can be readily compared, tested and evaluated [9].

3.2 Architecture
The fundamental components of the Tilelink specification are agents, channels, and

transactions. Agents are the active participants in the protocol that send and receive
messages in order to access copies of data through the memory hierarchy. Five independent
channels transfer messages containing metadata and data between agents. A transaction is
a specific sequence of messages sent between agents via these channels that cause certain
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agents to gain or lose permissions to access copies of cached data blocks.
TileLink is a hierarchical protocol, wherein a Manager-Client Pairing (MCP) methodology

encapsulates the complexity of supporting multiple levels of protocol within a single memory
hierarchy [9]. Within any one level of the memory hierarchy, TileLink is based off of a
symmetric, four-hop transaction structure (Figure 3.1.C). Manager agents serve as a point of
serialization for coherence transactions on a block occuring within their coherence realm. All
messages sent to clients are eventually acknowledged, which allows the manager to ensure
that all clients have individually serialized transactions on a particular cache block in the
same order.

TileLink tries to impose as few constraints as possible on the implementation of both the
agents’ controllers and the underlying physical network. This design emphasis somewhat
increases protocol complexity, but it makes TileLink applicable to a wide variety of physical
design constraints and application domains. With regards to agents, TileLink does not make
assumptions about what state the agents are capable of storing about each cache block, though
it does require agents without state to operate in particular, conservative ways. TileLink
does not assume that messages are delivered in order between two particular endpoints by
the underlying physical network, though it does require an extra transaction message absent
point-to-point ordering. The ramifications of these design decisions are discussed in more
detail in the following sections.

3.2.1 Agents
Agents are the active participants in the protocol that send and receive messages in order

to transfer copies of data through the memory hierarchy. Agents participating in the TileLink
protocol are either:

Clients that request permissions to read or write data within cache blocks, or

Managers that oversee the propagation of cache block permissions and data.

A client may be a cache, a DMA engine, an accelerator, or any other component that
would like to perform memory operations in a coherent global shared memory. Even clients
that do not actually cache a copy of the data within themselves may use TileLink in order
to see a coherent view of memory with respect to other clients that do have caches (i.e., to
see dirtied data currently stored in those clients, see Section 3.3). Clients are responsible
for initiating transactions to gain or cede permissions on copies of cache blocks, and also for
reporting on whether they possess certain permissions on those blocks at the behest of their
manager.

A manager may be an outer-level cache controller, a directory, or a broadcast medium such
as a bus controller. Managers may or may not posses a local copy of a data block themselves,
but they must know how to source and supply data in response to their clients’ requests. In
addition to supplying data, managers are responsible for tracking which clients have been
granted which permissions on a data block, and for probing those clients in order to ensure
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that the single-writer, multiple-reader (SWMR) invariant [70] is upheld. If a manager does
not track the propagation status of individual blocks in precise detail it must be pessimistic
in terms of the quantity and type of probe messages that it sends. A manager also provides
a point of serialization for coherence transactions initiated by any of the clients within its
domain.

In a multi-level memory hierarchy with multiple nested realms of TileLink protocols, a
particular agent can function as both a client (with respect to caches further out in the
hierarchy) and a manager (with respect to caches closer in to the processors). We term such
an agent hierarchical. These hierarchical agents must perform a translation of the various
message types between the inner and outer protocol. This translation process is described
in more detail in Chapter 4. Hierarchical agents may or may not store a copy of the data
locally, but they must at least track a set of ongoing transactions and serve as a serialization
point for the inner protocol.

3.2.2 Channels
TileLink defines five independent transaction channels over which messages can be sent

by agents in order to transfer information through the memory hierarchy. These channels
may be multiplexed over the same physical link, but to avoid deadlock, TileLink specifies a
priority amongst the channels that must be strictly enforced. Channels may contain both
coherence metadata and actual copies of data. The amount of data associated with and
tracked by a piece of metadata within a particular level of TileLink is called a data block.

The channels are:

Acquire. Initiates a transaction to acquire access to a cache block with proper permissions.
Also used to write data without caching it locally.

Probe. Queries a client to determine whether it has a cache block or revoke its permissions
on that cache block.

Release. Acknowledges probe receipt, releasing permissions on the block along with any
dirty data. Also used to voluntarily write back dirty data.

Grant. Provides data or permissions to the original requestor, granting access to the cache
block. Also used to acknowledge voluntary Releases.

Finish. Final acknowledgment of transaction completion from requestor, used for transaction
serialization.

At the present time, all channels are routed from clients to their manager or from the
manager to its clients. Future extensions to TileLink may add support for client-to-client
messaging.

The prioritization of channels is Finish » Grant » Release » Probe » Acquire, in order
of decreasing priority. Preventing messages of a lower priority from blocking messages of a
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higher priority from being sent or received is necessary to avoid deadlock [70]. Since Finish
messages must always be consumed by manager agents, overall forward progress in the system
is guaranteed.

Every channel presents a decoupled interface, meaning that each contains ready and valid
signals. Ready is driven high by the recipient when it can accept a message over that channel,
and valid is driven high by the sender when it has a message to offer.

Channels that contain data may send the data over multiple beats, where each beat
contains a subset of the block’s data. The relationship between the size of the data beat and
the size of the data block is configurable. Typically the lower bound of data block size is set
based on the desired ratio of metadata to data storage overhead, while the upper bound is set
by the diminishing returns on exploiting spatial locality in most programs, as well as other
cache coherence performance concerns that will be discussed in the next chapter. The data
beat size, in contrast, is set based on the width of the underlying physical network. In the
current implementation, thhe width of the underlying network is exposed to TileLink agents
in order to improve the efficiency of refilling data into caches whose data array rows are of a
matching size to the network width. Any agent generating messages that contain multiple
beats of data is always responsible for incrementing the addr_beat field, as we will discuss in
Section 3.5. Exposed beats are just one possible physical implementation of TileLink, and
are independent from the overall transaction message flow organization.

3.2.3 Transactions
All changes in the coherence state can be understood as a series of transactions. Each

transaction consists of a series of messages sent between clients and their manager and the
actions that those agents take upon receipt of a particular message. Typical agent actions
are updating local metadata, forwarding the message to other clients, or supplying copies
of data in response. The overall outcome of a transaction is to change the permissions that
some client has on a particular block.

We term these interactions “transactions” because the SWMR invariant must be preserved
even though the permissions metadata is distributed throughout the hierarchy. Futhermore,
all clients must agree on the serialization of permission changes to a particular block. The
distributed agents must achieve consensus about permissions and data despite the fact that
there are no ordering guarantees provided by the channels, and so no trivial notion of global
serialization of the transactions.

The directed acyclic graph (DAG) of messages sent and actions taken as part of a
transaction is termed a “message flow” [78]. The figures in this and the following sections
plot message flows as message sequence charts, which display the ordering and dependencies
of the messages sent between agents and the actions they take in response over time. In
addition to providing an intuitive understanding of protocol behavior, message flows are also
a potentially rich source of behavior invariants that can be used for verification of protocol
correctness, as will be discussed in Chapter 4.

There are two fundamental templates of transactions that can occur on a cache block
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Figure 3.3 : Overview of the transaction flow whereby a client acquires permissions on a cache block.
A client sends an Acquire to a manager. The manager sends any necessary Probes to other clients.
The manager waits to receive a Release for every Probe that was sent. The manager communicates
with backing memory if required. Having obtained the required data or permissions, the manager
responds to the original requestor with a Grant. Upon receiving a Grant, the original client responds
to the manager with a Finish to complete the transaction.
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Figure 3.4 : Overview of the transaction flow whereby a client voluntarily releases permissions on a
cache block, typically due to evicting the block for capacity reasons. A client sends a Release to
a manager, specifying that it is voluntary. The manager communicates with backing memory if
required. The manager acknowledges completion of the transaction using a Grant.

managed by TileLink. The first flow enables clients to acquire permissions to read or write
data in a cache block. Figure 3.3 shows the message flow for this transaction in more detail.
After this transaction has completed, the client has acquired permissions to either read or
write the cache block, as well as a copy of the block’s data. Other clients may have had to
release their permissions on the block and write back dirty data in their possession. If the
manager is capable of tracking which clients have copies of the block using a directory, this
metadata has been updated.

The second type of transaction allows clients to voluntarily release their permissions on a
cache block. Figure 3.4 shows the message flow for this transaction in more detail. Typically,
this type of transaction occurs when a cache must evict a block that contains dirty data, in
order to replace it with another block being refilled into the cache. It might also be triggered
by software hints, as we will discuss in Chapter 4. After this transaction has completed, the
client has lost permissions to read or write the cache block, as well as its copy of the data. If
the manager is capable of tracking which clients have copies of the block using a directory,
this metadata has been updated.

While these two flows form the basis of all TileLink transactions, there are a number



3.2. ARCHITECTURE 62

of edge cases that arise when they are overlaid on each other temporally or composed
hierarchically. The following sections discuss how responsibility for managing this complexity
is distributed across the different TileLink agents.

3.2.4 Concurrency in TileLink
TileLink does not make any assumptions about the ordering of messages sent point-to-

point over particular channels. Therefore, concurrency must be managed by agents at several
points in the system. Imposing restrictions on agent behavior makes it possible for us to
guarantee that a total ordering of transactions can be constructed, despite the distributed
nature of the problem and the lack of a global point of communication synchronization.
At the same time, we want to allow as much concurrency as possible among transactions
whenever it is safe to do so. There are three fundamental responsibilities to limit concurrency
placed on TileLink agents:

• A manager should not accept another request for a transaction on a block that is
already in-flight (unless it knows how to merge the two transactions as discussed below).
Specifically, the manager must wait until it has received a Finish from the original
client in order to ensure proper ordering of any future Grants on the same block to the
same client.

• If client has an outstanding voluntary writeback transaction, it cannot respond to an
incoming Probe request on that block with Releases until it receives a Grant from the
manager acknowledging completion of the writeback. It also cannot issue an Acquire
on that block until it receives such a Grant.

• If a client has an outstanding Acquire transaction, it should not issue further Acquires
on that block unless they are of different types (for “cached” transactions) or target
different sub-block addresses (for “uncached” transactions). See Section 3.3 for details.

We will first discuss the concurreny-limiting responsibility put on the manager. The
manager serves as a convenient point of synchronization across all the clients. Since every
transaction must be initiated via an Acquire message sent to a manager, the manager can
trivially order the transactions. A very safe implementation would be to accept only a single
transaction’s Acquire on a given cache block at a time, but the performance implications of
doing so are potentially dire, and it turns out we can be much more relaxed while continuing
to provide a correct serialization. Chapter ?? will provide an evaluation of the performance
overheads of more limited TileLink concurrency.

At this time, TileLink forbids managers from accepting Acquires on the same cache block
from different client sources. Figure 3.5 lays out this scenario in message sequence chart
form. Clients must continue to process and respond to Probes even with an outstanding
Acquire pending in the network. Managers must include an up-to-date copy of the data in
Grants responding to Acquires upgrading permissions unless they are certain that that client
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Figure 3.5 : Interleaved message flows demonstrating a manager blocking Acquires from multiple
sources. Clients A and B send an Acquire to a Manager, with Client B winning the race. The
manager blocks Client A’s transaction from making forward progress. Client A must process any
Probes issues by Client B’s transaction, even though Client A has an Acquire outstanding. The
manager must respond with the correct type of Grant (including a copy of the data), given that
Client A has been Probed since sending its Acquire. Once Client B responds with a Finish, Client
A’s transaction can proceed as normal.
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Figure 3.6 : Interleaved message flows demonstrating the need for Finishes to serialize Grant
ordering. Client A sends an Acquire to a manager, which in turn Probes Client B to Release dirty
data. This dirty data is forwarded by the manager in the form of a Grant to the transaction source,
Client A. Unfortunately, this Grant becomes delayed arbitrarily long in the unordered channel.
Meanwhile, Client B initiates a transaction on the same block, Acquiring it in order to perform a
write. Client A must respond to the resultant Probe, even though it is still waiting for the missing
Grant. Client B is Granted permission to perform the write. Client A then initiates a second
transaction on the block, perhaps to upgrade its permissions, even though it is still waiting for the
missing Grant. Client B Releases the modified data, and it is Granted to Client A. The second
Grant bypasses the first Grant, and when the second Grant arrives, it overwrites the modified data
with the original data. Thus, from the perspective of Client A, the write to the block performed by
Client B is lost.
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Figure 3.7 : Interleaved message flows demonstrating acknowledgment Grants of voluntary writeback
Releases. Client A sends an Acquire to a manager, which then sends a Probe to Client B. At the
same time, Client B chooses to evict the same block and issues a voluntary Release. The manager
waits to receive a Release for every Probe that was sent, but additionally first accepts the voluntary
Release. The manager sends a special Grant that acknowledges receipt of the voluntary release.
Client B does not respond to the Probe until it gets the acknowledgment Grant. Once Client B
responds with a Release, Client A’s transaction can proceed as normal.
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has not been Probed since the Aquire was issued. Multiple acquires from the same source
may be accepted, which we will discuss in more detail at the end of this section. Assuming
a manager has blocked on processing a second transaction Acquiring the same block, the
critical question becomes: When is it safe for a manager to accept the pending Acquire?

If we were to assume point-to-point ordered delivery of messages over a particular channel,
it would be sufficient for the manager merely to have sent the Grant message to the original
client source. The manager could process further transactions on the block, and further
Grants to the same client would arrive in order. The act of updating the block’s metadata
and sending the Grant message is sufficient to serialize the transaction in the total ordering
of transactions on the block.

However, TileLink intentionally does not make the point-to-point ordered delivery assump-
tion. Grants on the same block sent to the same client can arrive out of order. Figure 3.6 lays
out this scenario in message sequence chart form. Because Grants can arrive out of order,
TileLink requires the addition of a final acknowledgment channel (Finish), which ensures
that each Grant has been received by the client. Note that some prior coherence protocols
have addressed this particular complexity by blocking Probes until the Grant gets back to
the source, but we will discuss why this solution can cause deadlock in a hierarchical, nested
system in the next section.

We now turn to the second concurrency-limiting responsibility, which is put on the
client. If a client has an outstanding voluntary writeback transaction on a block, it cannot
respond to an incoming Probe request on that block with Releases until it receives a Grant
from the manager acknowledging completion of the writeback. This limitation serializes the
ordering of the voluntary writeback relative to the ongoing Acquire transaction. The manager
cannot simply block the voluntary release transaction until the Acquire transaction completes,
because the Release message in that transaction will be blocked behind the voluntary Release.
Figure 3.7 lays out this scenario in message sequence chart form.

From the manager agent’s perspective, it must handle the situation of receiving a voluntary
Release for a block which another client is currently attempting to Acquire. The manager
must accept the voluntary Release as well as any Releases resulting from any Probe messages
that have already been sent, and afterwards provide Grant messages to both clients before the
transaction can be considered complete. The voluntary write’s data can be used to respond to
the original requestor with a Grant, but the transaction cannot complete until the expected
number of Releases have been collected by the manager. This scenario is an example of two
transaction message flows being merged by the manager agent.

The final concurrency-limiting responsibility put on the client agent is to issue multiple
Acquires for the same block only when the transactions can be differentiated from one another.
Typically, this differentiation takes the form of having different Acquire types or different
transaction identifiers. One possible case is for a client that has a write miss under a read miss
to issue an Acquire asking for write permission before the Grant providing read permissions
has arrived. Managers are not obligated to accept both Acquires and merge the transactions’
message flows, though they may choose to do so. Further restrictions on issuing multiple
Acquires to sub-block addresses via built-in transactions are detailed in Section 3.3.
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3.2.5 Hierarchical TileLink
TileLink is a hierarchical protocol that ascribes to the Manager-Client Pairing (MCP)

architecture. Each manager tracks and serializes transactions for all the clients within its
coherence realm. In situations where a manager does not have access or permissions on a
particular piece of data, it will in turn initiate a transaction in an outer realm. Memory
controllers at the root of the memory hierarchy are the ultimate managers, and they always
have permission to supply the data in the address range they control.

This structure results in nested sequences of messages, and we discuss some of the
concurrency edge cases for these message flows here. Details of how a transaction initiated in
an inner realm is translated into the protocol of the outer realm are left to the next chapter.
Figure 3.8 lays out a basic multi-level transaction in message sequence chart form. The
transaction between the hierarchical agent and the outermost manager is nested within the
inner transaction. The outer Acquire is sent based on the inner Acquire. The inner Grant is
dependent on the outer Grant response. Probes may be launched into other branches of the
memory hierarchy.

Figures 3.9 and 3.10 lay out concurrency races between two multi-level transactions in
message sequence chart form. The transaction whose Acquire is first to reach the outermost
Manager required to gain sufficient permissions happens before the other transaction. The
final state of the data and permissions in the system must reflect this ordering in order for
their to be a global serialization of the transactions on the block.

The transaction that won the race in the outer level may issue Probes into the branch of
the memory hierarchy where the other transaction has begun to be processed. These Probes
must be responded to with Releases to prevent deadlock in the outer level. However, this
means that the inner transaction and outer transaction must be merged successfully. If the
inner transaction has not yet sent a Grant to the originator (Figure 3.9), the Grant sent must
take into account the fact that Client A was Probed mid-transaction. If the inner transaction
has already sent a Grant to the originator (Figure 3.10), then the outer Probes must not be
forwarded until the receipt of the Grant is acknowledged with a Finish message from the
original client.

3.3 Built-in Transactions
One of the design goals of TileLink was to support heterogeneous SoC designs that consist

of a wide variety of agents. In particular, we wanted to support accelerators that operate on
the same global shared memory space as the general-purpose cores, possibly at very high
bandwidths. However, while these accelerators need a coherent view of memory, they do not
necessarily cache copies of data themselves. We wanted cacheless accerators to be able to
interoperate with any coherence policy implemented on top of the TileLink protocol, without
having to know anything about coherence policies internally.

These design goals led us to create a set of built-in transactions available to any client
connected to a TileLink substrate. We provide seven built-in transaction types that are
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Figure 3.8 : Overview of a multi-level transaction’s message flow. After the hierarchical agent has
Probed the clients under its purview, it falls back on initiating a transaction in the outer realm,
which is serviced by the outermost manager. Other branches of the memory hierarchy are Probed,
and any Released data is Granted back to the original source Client A by way of the hierarchical
agent.
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Figure 3.9 : Overview of a multi-level transaction’s message flow including an Acquire race. Client
A and Client C both issue Acquires. However, Client C’s Acquire is the first to reach the outermost
Manager, which means it happens before Client A’s transaction. Client A must deal with Probes
generated as part of Client C’s transaction without deadlocking, even though it has already sent its
own Acquire. The Grant sent by the Hierarchical agent must take into account the fact that Client
A was Probed mid-transaction.
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Figure 3.10 : Overview of a multi-level transaction’s message flow including an Acquire race. Client
A and Client C both issue Acquires. Client A’s transaction is satisfiable locally, and a Grant is
issued for it, which becomes delayed in the network. Client C’s Acquire is the first and only to reach
the outermost Manager. Client A must deal with Probes generated as part of Client C’s transaction
without deadlocking, even though it has already sent its own Acquire and the Hierarchical agent has
issued a Grant in response. The Hierarchical Agent must wait until the Grant’s Finish is received
before forwarding the outer Probes inward.
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available to all clients that want to participate in the coherence protocol, even if they
themselves will not keep cached copies of the data. Because these transactions do not create
a new private copy of the targeted cache block, we term them “uncached” transactions.
However, they still participate in the standard TileLink transaction flow, meaning that they
will result in probes of other caches and return coherent answers.

3.3.1 Built-in Transaction Types
The uncached transactions available to all TileLink clients are as follows:

Get: Fetches a single beat of data from a cache block and returns only that beat.

GetBlock: Fetches an entire cache block and serves it back to the requestor.

GetPrefetch: Prefetches a cache block into the next-outermost level of the memory hierarchy
with read permissions.

Put: Writes up to a beat’s worth of data to backing memory. Uses a write mask to determine
which bytes contain valid write data.

PutBlock: Writes out an entire cache block to backing memory.

PutPrefetch: Prefetches a cache block into the next-outermost level of the memory hierarchy
with write permissions.

PutAtomic: Performs an atomic memory op in the next-outermost level of the memory
hierarchy. The maximum available operand size is 64b (sizes and opcodes per RISC-V
atomic instructions).

There are five built-in types of Grant that are available to all managers that want to
participate in the coherence protocol. Because “uncached” transactions do not create a new
private copy of the targeted cache block, we use these Grant types mostly as acknowledgments.
The available types are as follows:

GetDataBlock: Full cache block in response to Acquire.GetBlock.

GetDataBeat: Single beat of data in response to Acquire.Get or Acquire.PutAtomic.

PutAck: Acknowledgement of Acquire.{Put, PutBlock}.

PrefetchAck: Acknowledgment of Acquire.{GetPrefetch, PutPrefetch}.

VoluntaryAck: Acknowledgement of any voluntary Release.
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The PutBlock message is unique among the built-in Acquire types in that it contains
multiple beats of data (if the cache block size is larger than the parameter TLDataBits). The
client controller that generates this message is responsible for generating multiple sequential
PutBlock messages and incrementing the addr_beat field as it does so. The GetDataBlock
message also contains multiple beats of data (again, if the cache block size is larger than
TLDataBits). The manager controller that generates this message is responsible for generating
multiple sequential GetDataBlockmessages and incrementing the addr_beat field as it does so.
In contrast, a GetDataBeat message only ever consists of a single beat. A single VoluntaryAck
is used to respond to each voluntary Release, even if that Release consists of multiple beats.
Similarly, a single PutAck is used to respond to a PutBlock message containing multiple
beats.

Acquire Grant Effect
Get GetDataBeat Copy data in to client
GetBlock GetDataBlock Copy data in to client
GetPrefetch PrefetchAck Fetch data to outer memory with read permissions
Put PutAck Update data in outer memory
PutBlock PutAck Update data in outer memory
PutPrefetch PrefetchAck Fetch data to outer memory with write permissions
PutAtomic GetDataBeat Update data in outer memory and return old value.

Table 3.1 : Overview of built-in, uncached transactions. Each type of Acquire results in a particular
acknowledgment or data Grant.

Table 3.1 provides and overview of the built-in transactions and their effect on memory.
In a hierarchical system, uncached transactions may be turned into cached transactions in
outer levels of the memory hierarchy. We provide an allocation flag on the Acquire messages
to govern whether this conversion is allowed.

Whether an address is cached or uncached is a property of the transaction, not the
address. Certain clients may cache an address, while other clients at the same level may not.
If the allocation flag is set to true, a hierarchical agent may choose to convert an uncached
transaction into a cached one, which will result in the data becoming cached at the outer
level. It will still not be cached by the original requestor (who asked for it uncached). If the
allocation flag is false, the hierarchical agent must also issue the transaction uncached and
merely forward the grant back to the original requestor without caching the data locally.

3.3.2 Memory Model for Built-In Sub-Block Transactions
TileLink is intended to be compatible with the weak memory consistency model adopted

by the RISC-V ISA, and its design will not impose any performance overhead on any similarly
weak model. Specifically, TileLink channels are not required to perform in-order delivery of
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messages, and hierarchical and manager agents are not required to process transactions in
a particular order. Therefore, client agents are responsible for enforcing orderings between
memory operations by waiting to initiate new transactions until all relevant outstanding
transactions have been completed. Uncached transactions that do not return data to the
client still receive acknowledgments of operation completion from the manager, which allows
for clients to make decisions about when to issue further requests. This division of labor
means that TileLink can support stronger memory models, such as Sequential Consistency, by
placing the burden of enforcing the stronger model on the agents that are issuing the memory
operations. It is worth noting that even in a system with a weak memory model, clients
should always avoid issuing multiple requests to any particular address at the same time,
as the Acquire messages may be reordered, resulting in non-sequential memory operation
orderings to a single address.

3.3.3 Concurrency for Built-In Sub-Block Transactions
In order to support high-bandwidth access to cached data blocks from data-parallel

accelerators, TileLink enables many outstanding built-in, sub-block transactions to be in
flight in the memory hierarchy at once. In general, it is preferable to merge such transactions
on the client side, before they are even exposed to the TileLink interface. However, in order
to provide support for secondary misses in hierarchical agents, we define the following rules
for transaction merging.

As long as the Acquires used to initiate the transaction target different sub-block addresses,
it is safe to interleave their processing by merging the transactions with one another. The
Acquires must be attempting to gain the same permissions and perform the same operation.
They must also have unique transaction identifiers. Acquires from multiple client agents can
be merged so long as they meet the above requirements.

Figure 3.11 illustrates a merging scenario from a single client. Multiple Grants and
Finishes can also be in flight simultaneously, and the overall merged transaction terminates
when the correct count of Finishes is accepted. In order to prevent starvation of other
clients, merging secondary sub-block transactions should not be prioritized over processing
transactions initiated by other clients. Merging transactions is an allowable performance
optimization, not a requirement.

3.4 Assumptions and Guarantees
As we move towards a formal specification of TileLink, an important step is to provide a

set of invariants to which any implementation must conform. If any of these assumptions
are not met by a particular implementation of physical network, client agent, or manager
agent, then the system can either deadlock or produce an incoherent view of global shared
memory. Conversely, composing a set of implementations that meet all these assumptions
will guarantee a deadlock-free implementation of cache coherency. The following list collects
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Client A Manager Client B

Acquires

Probe

Release

Grants
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Figure 3.11 : Interleaved message flows demonstrating merging of multiple “uncached” transactions
from the same client. As long as the Acquires target different sub-block addresses they are safe to
interleave. Multiple Grants and Finishes can also be in flight simultaneously, and the transaction
terminates when the correct count of Finishes is accepted.
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the requirements necessary for a correct TileLink implementation:
• If a message contains multiple beats of data, all beats will eventually be sent.

• A client issuing an Acquire will eventually receive a corresponding Grant.

• A client receiving a Grant will issue a corresponding Finish, unless the physical network
is known to provide in-order delivery.

• A client receiving a Probe will issue a corresponding Release.

• A client issuing a voluntary Release will receive a corresponding Grant (of type Volun-
taryAck), unless the physical network is known to provide in-order delivery.

• Managers always consume any available Finish messages.

• No duplicate messages will be created by any agents or within any channels.

• All messages will eventually be delivered by the physical channels; a message cannot be
lost.

• No Finish is ever blocked by another message type.

• Grants may only be blocked by Finishes.

• Releases may only be blocked by Finishes and Grants.

• Probes may only be blocked by Finishes, Grants, and Releases.

• If a client has an outstanding voluntary Release on a block, it will not respond to
a Probe on that block until it receives the Release’s corresponding acknowledgment
Grant.

• If a client has an outstanding voluntary Release on a block, it will not issue an Acquire
on that block until it receives the Release’s corresponding Grant.VoluntaryAck.

• If a manager has already has accepted an Acquire on a block, it will not issue Probes
or Grants in response to a second Acquire on that block until it receives a Finish from
the first Acquire’s source.

• A manager will always include a copy of the data in a Grant, unless it can prove that
the client had a copy of the block when the Acquire was accepted and no Probes from
outer memory for that block have been received.

• Clients may not issue multiple Acquires with the same client_xact_id and addr_block

fields, unless they have different addr_beat, a_type, or union fields.

• A Hierarchical agent will block Probes from being forwarded from its outer client
interface to its inner manager interface until it has received Finishes for all Grants on
that block.
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3.5 Channel Signal Descriptions
This section details the specific signals contained in each channel of the TileLink protocol.

Every channel is wrapped in a decoupled interface, meaning that each contains ready and
valid signals as well as the following bundles of signals. Channels whose message types may
contain data (i.e., Acquires, Releases and Grants) may send the data over multiple beats if the
cache block size is larger than TLDataBits. The agent controller that generates these multi-beat
messages is responsible for generating the correct number of sequential beat messages and
incrementing the addr_beat field as it does so. Tracking beat counts in this way exposes the
width of the underlying network to the controllers, but we propose that this encapsulation
deficiency is necessary in order to improve the efficiency of refilling data into caches whose
data array rows are of a matching size to the physical network.

Acquires initiate a transaction to acquire access to a cache block with proper permissions
for a particular memory operation. Acquires are also used to write data into outer memory
(acquiring permissions for the write as it does so), perform an atomic operation in outer
memory, or prefetch data with particular permissions. Table 3.2 shows all the fields of the
Acquire channel. Some of the fields used for certain built-in transactions are multiplexed
onto the Union field. Table 3.3 shows all these sub-fields and indicates which are used for
each type of built-in Acquire message.

Probes query a client to determine whether it has a cache block or to revoke that client’s
permissions on that cache block. Table 3.4 shows all the fields of the Probe channel.

Releases provide an acknowledgment of Probe receipt by clients, releasing certain permis-
sions on the block along with any dirty data back to the manager. Releases are also used by
clients to voluntarily write back data or cede permissions on the block. Table 3.5 shows all
the fields of the Release channel.

Grants provide data or permissions to the original requesting client, granting it access to
the cache block. Grants are also used to acknowledge voluntary Releases. Table 3.6 shows all
the fields of the Grant channel.

Finishes provide a final acknowledgment of transaction completion from requestor and
are used to preserve transaction ordering. Table 3.7 shows all the fields of the Finish channel.

3.6 Agent-Specific Views of Logical TileLink Networks
For the convenience of designers implementing Client and Manager agents, we provide

TileLinkNetworkPort modules which abstract away the details of the on-chip network im-
plementation. These network ports automatically generate networking headers, perform
serialization/deserialization for narrower physical network channels, and generate appropriate
control flow logic. The ports then expose simplified subsets of the TileLink channels to the
agent modules. Figure 3.12 provides an overview of these two interfaces.

ClientTileLinkIO consists of standard Acquire, Probe, Release, and Grant message
channels. It does not include the Finish channel as generating those acknowledgments is
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Name Type Purpose
addr_block UInt Physical address of the cache block, with block offset removed
client_xact_id UInt Client’s id for the transaction
data UInt Client-sent data, used for Put transactions
addr_beat UInt Offset of this beat’s worth of data within the cache block
built_in_type Bool Whether the transaction is a built-in or custom type
a_type UInt Type of the transaction. For built-in transactions, one of:

{Get, GetBlock, GetPrefetch, Put, PutBlock, PutPrefetch, PutAtomic},
Otherwise defined by the coherence protocol

union Union Used to derive and derive the sub-fields in Table 3.3

Table 3.2 : Fields of the Acquire channel.

Name Type Get Put Atomic Prefetch Purpose
allocate Bool X X Hints whether to allocate data in outer caches

when servicing this request
op_code UInt X X X X Memory op code; see Appendix A)
op_size UInt X Size of the AMO operands (b/h/w/d)
addr_byte UInt X X Address of the word within the block
wmask UInt X Byte write mask for Put data

Table 3.3 : Input sub-fields used to fill in the Union field of the Acquire channel for built-in messages.
‘X’ indicates which subfields are meaningful for which built-in message types.

Name Type Purpose
addr_block UInt Physical address of the cache block, with block offset removed
p_type UInt Transaction type, defined by coherence protocol

Table 3.4 : Fields of the Probe channel.
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Name Type Purpose
addr_block UInt Physical address of the cache block, with block offset removed
client_xact_id UInt Client’s id for the transaction
data UInt Used to writeback dirty data
addr_beat UInt Offset of this beat’s worth of data within the cache block
r_type UInt Transaction type, defined by coherence protocol
voluntary Bool Whether this release is voluntary or in response to a Probe

Table 3.5 : Fields of the Release channel.

Name Type Purpose
built_in_type Bool Whether transaction type is built-in or custom
g_type UInt Type of the transaction. For built-in transactions, one of:

{VoluntaryAck, PrefetchAck, PutAck, GetDataBeat, GetDataBlock}.
Otherwise defined by the coherence protocol

client_xact_id UInt Client’s id for the transaction
manager_xact_id UInt Manager’s id for the transaction, passed to Finish
data UInt Used to supply data to original requestor
addr_beat UInt Offset of this beat’s worth of data within the cache block

Table 3.6 : Fields of the Grant channel.

Name Type Purpose
manager_xact_id UInt Manager’s id for the transaction

Table 3.7 : Fields of the Finish channel.
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ManagerClient Logical TileLinkNetwork

Acquire AcquireWithDstAcquire

Release ReleaseWithDstRelease

Grant GrantFrom SrcGrant

Finish Finish

Probe ProbeFromSrcProbe

ClientTileLinkIO ManagerTileLinkIO

Figure 3.12 : Overview of the logical view of the TileLink interface presented to each type of agent.
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Name Type Function
TLId String Ids a TileLink in a multi-level hierarchy
TLCoherencePolicy CoherencePolicy Coherency policy used on this TileLink
TLNManagers Int Number of manager agents
TLNClients Int Number of client agents
TLNCachingClients Int Number of client agents that cache data
TLNCachelessClients Int Number of client agents that do not cache data
TLMaxClientXacts Int Max number of concurrent transactions per client
TLMaxClientsPerPort Int Max number of clients sharing a single network port
TLMaxManagerXacts Int Max number of concurrent transactions per manager
TLBlockAddrBits Int Address size
TLDataBits Int Amount of block data sent per beat, must be >= XLEN
TLDataBeats Int Number of beats per cache block

Table 3.8 : Exposed top-level TileLink independent parameters. These can be set uniquely for each
realm of the memory hierarchy.

handled by the ClientTileLinkNetworkPort.
ManagerTileLinkIO consists of Acquire, Probe, Release, and Grant message channels that

have additional data appended about the source or destination of messages, expressed in
terms of the client and managers’ network identifiers. Acquires and Releases include their
source id, and Probes and Grants are supplied a destination id. The Client id format and
numbering is determined by the characteristics of the physical network and is encapsulated
from TileLink. This interface does include a Finish channel so that the manager knows when
to register the transaction as complete.

Clients and managers may share a network port of the associated type as long as their
pools of transaction identifiers are unique. In practice, we often support this requirement
by utilizing routers that automatically prepend bits to the client_xact_id field for outgoing
messages, while using the same bits to route incoming messages. This capability is useful for
multiplexing ports in cases where the width of the interface is constrained.

3.7 TileLink Parameters
This section defines a set of parameters that are exposed by the TileLink to the top-level

design. Table 3.8 provides an overview of the available parameters. The majority are used to
determine the widths of the various channels fields that we have previously discussed.

We use the Context Dependent Environments described in Chapter 2 to define and supply
these values at each level of the memory hierarchy during the hardware elaboration process.
Presently, we encode all parameters with a single Scala case class, and then supply an instance
of that class in response to query points within the Chisel Module and Bundle classes that serve
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as Tilelink endpoints or channels. Each case class corresponds to a single TileLink realm.
We also provide a geographical TileLinkKey that external generators can use to specialize
heterogeneous TileLink networks when multiple networks are instantiated within a given
chip, by providing a different case class for each realm.

Figure 3.13 outlines a sketch of how we can provide multiple configurations of TileLink to
an individual Module using CDEs. The trick is to recursively use two Parameters objects to
disambiguate the inner and outer TileLink channel width parameters. These parameters can
be bound to specific instances of TileLinkParameters defined in the top-level definitions. The
recursive use of Parameters here allows for another level of indirection, which in turn allows
each agent in a hierarchical tree of agents to be specialized according to the parameters of
its inner and outer network. The code inside of the agents refers to them purely in terms of
“inner” and “outer,” without requiring any further knowledge of where this level exists in the
global hierarchy. A set of parameters that is “inner” for one manager agent can be assigned to
be the “outer” parameters of‘its clients. This encapsulation of geographical information and
indirection based on nested parameter values would not be possible without the capabilities
afforded us by deploying CDEs.

3.8 Discussion and Future Work
TileLink does not not include any specific bandwidth requirements as part of its specifi-

cation, nor does it provide any quality-of-service (QoS) guarantees. It is up to the user to
provision the widths of the data buses underlying each channel and fix the speed of their
operation. A QoS layer provided by the underlying physical network implementation could
be used to guarantee the relative priorities of channels, or to enforce performance targets for
certain message types.

Currently, TileLink does expose aspects of the physical network layer in the form of
the TLDataBeats parameter, which controls what subset of a cache block can be provided
to endpoints of a particular network per clock cycle. Current implementations resend the
metadata for each beat of data. Future work could investigate the energy efficiency tradeoff
between providing metadata per beat with no deserialization overhead, versus implementations
that provide metadata only per block but must serialize/deserialize the block into multiple
beats.

One of the foundational goals of TileLink is to set no limit to user-defined coherence
protocols, as long as they conform to its four-hop transaction structure. While many protocols
can be expressed in this paradigm, there are some major classes of protocol performance
optimization that utilize different transaction structures. One of these exceptions is the
concept of “ownership”, where a particular client with write privileges on a block is delegated
by the manager to respond to coherence requests on that block. Inherent to ownership is
the concept of direct, client-to-client data and permissions transfer. Along similar lines, so
far only invalidation-based protocols have been expressed using the TileLink framework,
and it is an open question whether update-based protocols could be handled with the same
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case class TileLinkParameters(

coherencePolicy: CoherencePolicy,

nManagers: Int,

nClients: Int,

dataBits: Int,

dataBeats: Int = 4,

overrideDataBitsPerBeat: Option[Int] = None

) {

val writeMaskBits: Int = ((dataBits / dataBeats) - 1) / 8 + 1

val dataBitsPerBeat: Int = overrideDataBitsPerBeat.getOrElse(dataBits / dataBeats)

}

case object TLKey extends Field[TileLinkParameters]

case object InnerTLId extends Field[String]

case object OuterTLId extends Field[String]

trait HasCoherenceAgentParameters {

implicit val p: Parameters

val outerTLId = p(OuterTLId)

val outerTLParams = p(TLKey(outerTLId))

val outerDataBeats = outerTLParams.dataBeats

...

val innerTLId = p(InnerTLId)

val innerTLParams = p(TLKey(innerTLId))

val innerDataBeats = innerTLParams.dataBeats

}

class DefaultConfig extends Config (

topDefinitions = { (pname,site,here) =>

...

case BuildL2CoherenceManager => (id: Int, p: Parameters) =>

Module(new L2BroadcastHub()(p.alterPartial({

case InnerTLId => "L1toL2"

case OuterTLId => "L2toMC" })))

case TLKey("L2toMC") =>

TileLinkParameters(

coherencePolicy = new MEICoherence(...)

nCachingClients = site(NBanksPerMemoryChannel), ...)

...

})

Figure 3.13 : An example of using recursive parameters to encapsulate geographic information,
such that a single Module can make use of two heterogeneous TileLink networks. This capability is
essential for creating hierarchical trees of coherence agents.
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infrastructure. Probe messages would have to be augemented to carry data as well. The
challenge of adopting such measures is proving that TileLink will remain hierarchically
composable, which is trivially the case for such transfers among clients within a particular
realm, but may be more difficult to extend to cross-realm transactions.

Addressing the ownership question has bearing on another area of future work: The
applicability of TileLink to multi-chip coherent shared memory designs. While all extant
implementations provide coherence over on-chip networks in on-chip memory hierarchies,
there is no fundamental reason why TileLink could not be applied to multi-chip shared
memory designs. However, in addition to requiring new modules to implement classical
in-memory directories, certain classes of optimizations may prove to be critical to performance
for which TileLink, as specified here, cannot provide. In addition to the aforementioned
client-to-client transfers, large-scale coherence protocols often include elements of speculation
and rollback that we have yet to attempt to express within the TileLink transaction structure.
Other design decisions may prove unnecessarily detrimental in the bandwith/latency space of
chip-to-chip communications. It is unclear whether addressing these concerns is best done
within the context of TileLink, or whether we would do better to keep the specification
specialized for the on-chip domain and fall back on other protocol substrates to provide
chip-to-chip coherence. We are beginning to work with RapidIO to reuse the chip-to-chip
coherence framework they have deployed with ARM’s ACE to extend it to multiple sockets.

I am already confident that TileLink as a whole, and particularly the baked-in “uncached”
transactions, are sufficiently general to be mapped to other coherence substrates. Interoper-
ability with AXI has already been shown with roof-of-concept prototypes of modules offering
conversion between “uncached” TileLink messages and AXI4. Plans are already underway
to provide converters to RapidIO bus architectures as well. One remaining challenge is to
see where support can be added for conversions between TileLink’s user-defined, custom
coherence states and message types and other coherence protocols, such as ARM’s AXI-based
ACE or IBM’s CAPI. TileLink’s use of the memory opcodes, discussed in Appendix A, may
provide the key to inter-protocol conversions of this sort. Future revisions of the TileLink
specification will attempt to better incorporate the memory opcode into different channels so
as to more efficiently express sub-block accesses.

Finally, we are working to develop a complete formal specification of the TileLink interface.
Our current approach uses logical clocks to define the manager/client interface in terms of
composable transducers. Proving that TileLink agents and channels are transducers allows
us to connect them to one another so as to create a memory hierarchy, while guaranteeing
that they implement one coherent memory history. We are also working to use this type of
specification to derive sets of unit tests for individual modules implementing one or more
TileLink interfaces in order to provide directed testing of the hardware implementations to
prove that they are TileLink-compatible.
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3.9 Conclusion
TileLink is a protocol designed to be a substrate for a set of cache coherence transactions

that implement a particular cache coherence policy within an on-chip memory hierarchy.
Any cache coherence protocol that conforms to TileLink’s transaction structure can be used
interchangeably alongside the physical networks and cache controllers we provide. In this
way, TileLink is roughly analogous to the data link layer in the IP network protocol stack.
TileLink is hierarchical, meaning that protocols based on it can be nested inside one another
to create multi-level memory hierarchies. TileLink is designed to be extensible and supports
a growing family of custom cache coherence policies that I have implemented on top of it. It
also codifies a set transaction types that are common to all protocols. In the next chapter we
will discuss how specific coherence policies implemented on top of TileLink can be expressed
in a concise and composable way.
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Chapter 4

Productive Abstractions of Cache
Coherence Policies

In a multicore chip with a sizeable hierarchy of on-chip caches, the majority of the
data movement activity that occurs within the chip is done automatically, in accordance
with a cache coherence protocol. The cache coherence protocol is a distributed protocol
implemented by a system of cache controllers and memory controllers spread across the chip
that communicate through on-chip networks. As traditional cache coherence protocols preserve
the software abstraction of a global memory shared by all the cores, the controllers must
work behind-the-scenes to keep copies of data in the right places, while managing tradeoffs
between communication volume, storage capacity and performance. Going forward, due to the
increased percentage of energy consumpution taken up by the memory hierarchy, we predict
the rise of customizable, heterogeneous cache coherence policies. Specifically, protocols that
minimize data movement for particular use cases will become an increasingly desirable feature
of an on-chip memory hierarchy. How to define customizable coherence policies, implement the
associated protocols efficiently, and manage the aforementioned communication/performance
tradeoff is an important design challenge for future energy-efficient architectures.

Unfortunately, designing more complex, customizable cache coherence protocols is not a
task hardware engineers can easily take on. Protocol correctness can be determined via formal
analysis of an abstract model of the protocol and memory system. However, there are a huge
number of ways in which details of the concrete implementation can undermine abstract
correctness. As in any distributed system, modules designed by different teams may interact
in unexpected ways, and assumptions about atomically visible behaviors or event priority
levels may be violated, leading to corrupted data or system deadlock. Hardware designers
shoulder the burden of maintaining the implicit semantics of the abstracted protocol model
throughout the concrete controllers and networks that they build. This chapter proposes
that improving the capabilities of hardware description languages (HDLs) offers us a path
forward to lighten this design burden. By raising the level of abstraction at which cache
controller logic can be described, and from which synthesizable designs can be generated, we
can smooth over the gap between protocol specification and implementation.



4.1. BACKGROUND 86

A coherence protocol specifies the exact sequences of messages that must be propagated
through the memory hierarchy in order to service memory operations, while preserving the
Single-Writer-Multiple-Reader invariant throughout a logical epoch. Preserving this invariant
implies that the system creates a global total ordering of reads and write to any given memory
location. Because metadata related to the permissions available on each cache block are
distributed throughout the cache hierarchy, implementing a protocol becomes an exercise
in atomically applying metadata updates across a distributed storage system. This mindset
leads us to consider an approach to specifying coherence protocols based on transactions and
factoring out the expression of the transactions from their content and implementation.

In the previous chapter, I presented TileLink, a protocol framework designed to be a
substrate for cache coherence transactions that implement a particular cache coherence policy.
TileLink provides structure by defining sequences of messages that can be sent between
interacting, coherent agents in order to implement a protocol that is guaranteed to be deadlock
free in a nested, hierarchical memory system. However, TileLink by design says nothing
about the particular details of the coherence policy, which drives the creation and use of these
message types. Filling in details is a task left up to the designers of the cache controllers.

This chapter fills in the aforementioned gaps in the TileLink framework by introducing
two further abstractions. The first is a high-level language, called message flows, taken
from the verification literature, that describes all the global transactions that make up a
particular coherence protocol. A collection of flows describes every sequence of actions that a
protocol can take, where actions consist of sending TileLink messages and accessing data and
metadata in local memories. The second abstraction is coherence metadata objects. These
objects encapsulate the states that distinguish protocol message flows from one another and
provide methods for generating TileLink messages and making policy-based decisions within
flow transactions. The abstraction provided by the metadata objects separates the concerns
of the controller design from the concerns of the policy design, while the underlying TileLink
substrate ensures forward progress of global protocol transactions.

4.1 Background
Designing new cache coherence protocols or supporting a wider variety of more complicated

protocols is not a task hardware engineers should underestimate. Verifying the correctness of
a cache coherence protocol is a challenging task, and verifying that a correct protocol has been
implemented correctly (using simulations or silicon) is even more difficult [25, 8, 11, 16, 26, 81].
Traditionally, protocol correctness is verified using an abstracted version of the distributed
system of caches upon which the protocol operates [78, 23, 62, 81, 55]. The abstraction
employed at this stage makes the verification process tractable by eliding many details of the
underlying modules’ implementations. Upon verification of protocol correctness, hardware
designers must then use a HDL to write cache controller logic that correctly implements
the protocol. Unfortuntately, the semantic gap between high-level abstract descriptions of
protocols and concrete HDL implementations of those same protocols is so wide that verifying
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the correctness of the protocol does not come close to guaranteeing the correctness of the
final implementation [22].

I am not the first to propose using a higher level of abstraction to describe cache coherence
protocol behavior in such a way that cache controller implementations can be synthetized
from the same description that has been verified. The following approaches each offer a
Domain Specific Language (DSL) built around an abstraction of state machines that perform
certain actions when certain conditions are met. This conditional execution model is a good
fit for the requirements of a coherent cache controller, which must update metadata and data
based on a series of messages it sends and receives. Each high-level description is used to
drive the creation of implementations (hardware or simulator code), as well as correctness
(verification rules or documentation) from the same source.

Teapot [13, 14] is a Pascal-like DSL for describing coherence protocols using “continuations”
as an abstraction. A Teapot program consists of a set of states; each state specifies a set of
message types and the actions to be taken on receipt of each message, should it arrive for a
cache block in that state. Teapot provides suspend/resume semantics within each state-based
description; these continuations are used to automatically infer the set of intermediate states
and handle unexpected messages. Continuations in Teapot allow developers to avoid having to
manually decompose a handler into atomically executable pieces and sequence them. Teapot
outputs C code for distributed memory implementations and Murφ models for verification.

Bluespec SystemVerilog (BSV) [58] is an HDL that produces synthesizeable hardware
implementations based on an absraction called guarded atomic actions (GAAs). BSV has
been proposed as a particularly suitable language for describing distributed cache coherence
controllers [22]. GAAs consist of a guard (boolean logic predicate) and an action (some
kind of state update) that is executed atomically by the hardware control logic when the
predicate evaluates to true. Becuase GAAs are also an abstraction that are compatible with
many formal verification tools, and because the BSV compiler produces implementations of
rules automatically, verification overhead for implementations of coherence protocols in this
language should be reduced.

The gem5 simulation environment [10] provides SLICC, a DSL for generating state
machines for coherence protocols. SLICC consists of descriptions of individual controller
state machines in terms of events, as well as the set of available message types used to
communicate between controllers. The SLICC compiler outputs C++ simulator code and
HTML documentation.

All of the above approaches are based on specifying local descriptions of pieces of a
global coherence transaction; when the state machines they describe are interconnected, the
intention is to produce correct global behavior. This approach reflects a bottom-up philosophy
to protocol implementation. In contrast, we wished to adopt a top-down approach, wherein a
global description of transactions is decomposed into local sub-transactions, which then drive
the design of the individual controllers. We therefore turned to the verification literature to
find verification strategies based on expressing global descriptions of protocol behavior.

While many transactional models of coherence protocols have been proposed, the one
best suited to our goals was the message flow approach to parameterized protocol verification
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[78, 60]. A message flow is a sequence of messages sent among agents following a protocol
that logically constitutes a single transaction of the protocol. In the next section, we discuss
how a global, flow-based description of a protocol can be decomposed into a set of local
controller transactions, as well as how we implement those local transactions in Chisel, our
meta-HDL embedded in Scala.

So far we have discussed prior art in how to implement protocols, but we should also
review what protocols to consider implementing. Heterogeneity in memory access behavior
as been a major focus of study for distributed shared memory systems. Memory access
patterns can generally be grouped at a high level into a few common sharing patterns, such
as read-modify-write, producer-consumer, and migratory. Systems that support adaptive
cache coherence protocols allow the behavior of the protocol to change with detected changes
in program behavior. There are many examples of such adaptive protocols in the distributed
memory space, including [1, 49, 73, 20]. Note that these designs have a single protocol, but one
that varies its behavior dynamically. In particular, we used two academic proposals [73, 20]
as inspiration for the migratory policy provided in our Rocket Chip Generator [3].

In the shared memory space, designs like FLASH [48] have incorporated multiple protocols
on top of a single hardware substrate in order to provide adaptability. Generally, transitions
between protocols have been triggered by heuristic mechanisms [57]. Others [14, 28] have
proposed creating application-specific protocols that are tailored to match a particular
application’s needs. These efforts indicate that multiple protocols can share the same
underlying communication framework and memory system, which served as an inspiration
for the TileLink/CoherencePolicy separation of interests described in this chapter and the
previous.

4.2 Protocol Message Flows
Talupur and Tuttle showed that message flows are a succinct and readily available source

of high-level invariants that have historically gone unused in the formal verification of cache
coherence protocols [78]. Flows are often illustrated by protocol designers in the form of
message sequence charts, which are frequently found in design documents. Protocol designers
use message flows to describe the basic organization of a protocol and to reason about its
requirements. Message flows impose constraints on the order in which the actions appearing
within them can happen: an action can execute only after any actions it depends upon have
been executed.

It is worth noting that the TileLink transactions we illustrated in the previous chapter
using message sequence charts are a form of message flows. The only information that the
flows in that chapter lack is information about what coherence protocol related events take
place in between the sending and receiving of TileLink particular messages. Thus, TileLink
is a framework that describes the shapes of a set of possible flows, and these outlines can be
filled in to create more concrete specifications of protocol behavior.

The simplest flows are linear ordering of events, usually involving two agents. Each



4.2. PROTOCOL MESSAGE FLOWS 89

ManagerClient

cs = meta.read()

writeback req

if(cs.needWB)
Release

meta.write(r)
Grant

data.write(r)

meta.write(g)

Figure 4.1 : A voluntary writeback message flow in a single realm.

entry in the flow is either a simple event, corresponding to a single protocol update being
committed, or a sub-flow recursively composed of simple events. Figure 4.1 shows a simple
flow based around a voluntary writeback of dirty data from a client cache using a TileLink
Release/Grant transaction.

The notion of sub-flow allows us to chop up a complicated flow into smaller units such
that each unit shows interaction between two or more agents engaged in a tightly-coupled
causal interaction. An event might have multiple preceding actions, or might have more
than one succeeding event. Flows may only express a partial order of events and not a total
order. For all of the above reasons, O’Leary et al. proposed that it is best to represent flows
as Directed Acyclic Graphs (DAGs) [60]. Figure 4.2 shows a more complicated flow that
involves acquiring write permissions on a block that is currently being shared by multiple
clients, again using a 5-step TileLink transaction. Figure 4.3 shows another example flow,
one that involves acquiring read permissions on a block that the manager does not possess,
forcing it to forward the query to an outer realm.

An important part of verifying protocols using flows is to specify rules that govern non-
interference between flows, i.e., which flows are allowed to execute in the system at the same
time. For our family of coherence protocols, these rules are reflected in the specification
of the TileLink substrate described in the previous chapter. Correct implementations of
TileLink will, by definition, enforce the non-interference rules required by our flows. While we
cannot infer the flow non-interference rules automatically from the TileLink specification, this
congruence is still significant in that it means proofs of a correct TileLink implementation
are sufficient to guarantee correct flow non-interference.



4.2. PROTOCOL MESSAGE FLOWS 90

ManagerClient
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if(!cs.isValid)

Acquire
ms = meta.read()

if(ms.isValid)

if(!ev.needsWB)

Grant

meta.write(g)

data.write(r)

if(ms.hasSharers)
Probe

if(cs.isValid)

meta.write(p)

d = data.read(p)

cs = meta.read()

Release

Finish

meta.write(g)

data.write(g)

store ack resp

Figure 4.2 : A processor store flow in a single realm, which must probe other clients in the realm.
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ManagerClient

cs = meta.read()

load req

if(!cs.isValid)

Acquire
ms = meta.read()

if(!ms.isValid)

if(!ev.needsWB)

Grant

meta.write(g)

data.write(r)

Finish

meta.write(g)

data.write(g)

load resp

load req

load resp

Figure 4.3 : A processor load flow in a single realm, which must make a request to outer memory.
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4.2.1 From Global Flows to Local Transactions
Recognizing that a global flow can be divided into sub-flows is useful for providing non-

interference lemmas to CMP-based formal verification tools [60]. However, this process also
provides a mechanism for us to decompose and re-aggregate the contents of sub-flows based
on their geographical location. In other words, if each flow touches several distinct agents,
we can collect all those sub-flows applied within an individual type of agent. Then, if we can
generate agent controllers that are capable of performing each sub-flow atomically, as well as
send messages to other agents and wait for responses, we will have furnished ourselves with a
controller that correctly implements the sub-flows of all possible global flows. This top-down
approach to controller design is central to the productivity of our approach.

In this section, we present an algorithm for turning a collection of flows into multiple
collections of localized sub-flows. First, we express the flows as DAGs in Scala, where vertices
are events or actions and edges are happens-before dependencies between them. Next, we
walk each DAG looking for components that are separable sub-graphs of events that all occur
at the same agent. We can sever the graph around these points, leaving us with input vertices
that represent receiving a message of a particular type. These input nodes are the events
that kick off local sub-transactions. Conversely, these mini-DAGs may also contain nodes
that require sending a message to another agent or agents. Figure 4.4 presents the algorithm
for flow decomposition.

Once we have partitioned all the global flow DAGs into smaller DAGs representing local
sub-flows, it is trivial to collect the set of sub-flows that correspond with a particular agent
type. Figure 4.5 illustrates an example decomposition using the three flows from the previous
section. Each sub-flow begins and ends with some kind of messaging event. Note how some
of the sub-flows were duplicated across the original flows and have been deduplicated here;
this deduplication is the basis of some significant opportunities for code reuse.

The per-agent-type subset of sub-flows then forms the basis of the operations that we will
expect this agent to be able to perform atomically. In the next section, we discuss how to
turn any of these collections of localized sub-flows into a cache or directory controller.

4.2.2 Implementing Local Sub-Flows and Their Dependencies
Given a collection of sub-flows that must be implemented by the particular agent we

are designing, our task is now to implement the control logic that allows those sub-flows to
operate atomically. Ideally, we would be able to perform this transformation automatically,
but for now some hand-coding is still required in our Rocket Chip Genereatorr [3]. However,
we are able to use Scala to create very concise descriptions of sub-flow behaviors, which are
easily composed together to create complete cache controllers.

Part of our strategy is to create Transaction Status Handling Registers (TSHRs). These
modules contain all the state needed to track the progress of one type of sub-flow with
some handlers capable of merging multiple sub-flows. We provide a way to execute the
actions themselves, as well as to implement the dependencies between actions for each flow.
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abstract class FlowNode {

def findSubgraphs: (Seq[MessageNode], FlowNode) = {

this match {

case mn: MessageNode => {

val (subgraphs, currentGraph) = mn.child.findSubgraphs

(subgraphs :+ mn.copy(child=currentGraph), DoNode("Send message to " + mn.dst))

}

case cn: ControlNode => {

val recurse = cn.children.map(_.findSubgraphs)

(recurse.map(_._1).reduceLeft(_ ++ _), cn.copy(children=recurse.map(_._2)))

}

case dn: DoNode => (Nil, dn)

}

}

def subgraphs: Seq[MessageNode] = findSubgraphs._1

}

case class ControlNode(

children: Seq[FlowNode],

parallel: Boolean,

condition: Option[String] = None) extends InnerNode

case class MessageNode(child: FlowNode, src: Location, dst: Location) extends InnerNode

case class DoNode(doFunc: String) extends FlowNode

class Flow(val name: String, val head: FlowNode) {

def subgraphs = head.subgraphs

}

case class Location (name: String)

abstract class Protocol {

var flows: Seq[Flow]

}

def getSubFlows(prot: Protocol, loc: Location): Seq[Flow] = {

val flows = prot.flows

val list = flows.map(_.subgraphs)

val distinct = list.map(_.distinct)

return distinct.filter(_.head.dst == loc)

}

Figure 4.4 : An algorithm for decomposing a set of global flows into local sub-flows.



4.2. PROTOCOL MESSAGE FLOWS 94

Acquire

ms = meta.read()

if(ms.isValid)

if(ms.hasSharers)

Probe

data.write(r)

Release

Grant

meta.write(g)

Finish

Grant

data.write(r)

load resp

Acquire

ms = meta.read()

if(!ms.isValid)

load req

Release

meta.write(r)

Grant

data.write(r)

Manager Sub-Flows

Probe

if(cs.isValid)

meta.write(p)

d = data.read(p)

cs = meta.read()

Release

Grant

Finish
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proc resp

cs = meta.read()

store req

if(!cs.isValid)

Acquire

if(!ev.needsWB)

cs = meta.read()

writeback req
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meta.write(g)

Client Sub-Flows

Figure 4.5 : We can decompose flows into sub-flows, and collect sub-flows that occur within the
same agent.



4.2. PROTOCOL MESSAGE FLOWS 95

Actions include reading and writing the metadata and data arrays, performing atomic memory
operations (AMOs), as well as sending TileLink messages and waiting for matching responses.

We want to factor our HDL code such that code describing common sub-flow actions and
their relative ordering dependencies are well encapsulated, but still made available to each
TSHR that uses them as part of its particular sub-flows. Scala’s traits and mix-in multiple
inheiritance are a ideal match for this source code factoring task, as we will show in the
following examples. Each trait consists of functions that actually update state or send a
message, and bits that are added to a “scoreboard” ?? that tracks the progress of concurrent
sub-flows. As execution of the sub-flow progresses, additional actions are performed once
their dependencies are satisfied.

Dependencies among sub-flows from different traits are expressed inside of the TSHRs
themselves, by referencing the pending bits and providing an additional layer of inter-flow
dependencies. Trackers also contain code to implement the global rules restricting what flows
are allowed to execute at the same time. This step is the portion of the system that we could,
but do not yet, derive automatically from the global flows. However, we have found that
expressing the dependencies via sub-flow pending bits is conscise and much easier to reason
about than constructing interacting state machines to handle each sub-flow.

We now show examples of some examples of traits containing methods that generate logic
implementing sub-flow actions. Figure 4.6 shows the AcceptsVoluntaryReleases trait, which
accepts voluntary writebacks from clients, writes the data to some kind of backing storage
(which may be local or require further messaging), and then acknowledges the writeback
with a Grant message to the original client. Note that this trait provides an output hook
for ensuring that the intial Release is completed and an input hook for ensuring that the
writeback has been committed to some kind of backing memory. Figure 4.7 shows the
EmitsInnerProbes trait, which sends Probes to clients in order to prompt them to Release
permissions on a cache block. The tracker must wait until an appropriate number of Release
acknowledgements or writebacks have been collected before advancing to the next stage,
and this trait provides an output hook to do so. The two traits are composable, in that a
particular tracker generator can mix-in both so as to handle Release associated with both
voluntary writebacks and probe responses. Figure 4.8 shows the ReadsFromOuterCacheDataArray

trait, which sends requests to a local SRAM array contain the actual copies of the data blocks
in order to read one. This trait is composable with the previous two, and is used in cases
where no accepted Release provided a copy of the data and there is a local SRAM data array.

Trackers are composed of these traits, and additionally consist of logic to manage de-
pendencies among the sub-flows. They do this by referencing names bits in the score-
board logic. Figure 4.9 outlines CacheVoluntaryReleaseTracker, a tracker that combines the
WritesToOuterCacheDataArray, AcceptsVoluntaryReleases, and HasDataBuffer traits. This tracker
guarantees forward progress in a hierarchical cache by always being available to sink voluntary
writebacks. It writes written-back data into a local SRAM data array. Figure 4.10 summarizes
BroadcastAcquireTracker, a tracker that combines the BroadcastsToAllClients, AcceptsVoluntaryReleases,
EmitsVoluntaryReleases, AcceptsInnerAcquires, EmitsInnerProbes, EmitsOuterAcquires, and HasDataBuffer

traits. This tracker is used in conjuction with in a broadcast-based messaging medium to
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trait AcceptsVoluntaryReleases extends HasVoluntaryReleaseMetadataBuffer {

// Scoreboard bits tracking sub-flow progress

lazy val pending_irel_data = Reg(init=Bits(0, width = innerDataBeats))

lazy val pending_vol_ignt = connectTwoWayBeatCounter(up = io.inner.release, down = io.inner.grant)

// Logic to control whether this sub-flow can be merged

def irel_can_merge: Bool

def irel_same_xact: Bool

def irel_is_accepted: Bool = io.inner.release.fire() &&

(io.alloc.irel || irel_can_merge || irel_same_xact)

def irel_is_allocating: Bool = state === s_idle && io.inner.release.valid && io.alloc.irel

// Actually wiring to accept Releases and send Grant responses

def innerRelease(block_vol_ignt: Bool = Bool(false), next: UInt = s_busy) {

pending_irel_data := (pending_irel_data & dropPendingBitWhenBeatHasData(io.inner.release))

when(irel_is_allocating) {

xact_addr_block := io.irel().addr_block

state := next

}

when(io.inner.release.fire()) {

when(io.alloc.irel || (irel_can_merge && io.irel().first())) {

xact_vol_irel := io.irel()

pending_irel_data := Mux(io.irel().hasMultibeatData(),

dropPendingBitWhenBeatHasData(io.inner.release),

UInt(0))

}

}

io.inner.grant.valid := (state === s_busy || state === s_inner_probe) &&

pending_vol_ignt &&

!(pending_irel_data.orR || block_vol_ignt)

io.inner.grant.bits := inner_coh.makeGrant(xact_vol_irel)

scoreboard += (pending_irel_data.orR, pending_vol_ignt)

}

}

Figure 4.6 : The AcceptsVoluntaryReleases trait contains the innerRelease function that generates the
logic associated with this sub-flow, which accepts Releases from clients and issues acknowledging
Grants.
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trait EmitsInnerProbes extends HasBlockAddressBuffer

with HasXactTrackerStates

with HasPendingBitHelpers {

// Scoreboard bits tracking sub-flow progress

val pending_iprbs = Reg(UInt(width = innerNCachingClients))

val curr_probe_dst = PriorityEncoder(pending_iprbs)

lazy val pending_irels = connectTwoWayBeatCounter(up = io.inner.probe, down = io.inner.release)

def full_representation: UInt

def initializeProbes() { pending_iprbs := full_representation & ~io.incoherent.toBits }

def irel_same_xact = io.irel().conflicts(xact_addr_block) &&

!io.irel().isVoluntary() &&

state === s_inner_probe

// Actual wiriing to send Probes and await Release responses

def innerProbe(prb: Probe, next: UInt) {

pending_iprbs := pending_iprbs & dropPendingBitAtDest(io.inner.probe)

io.inner.probe.valid := state === s_inner_probe && pending_iprbs.orR

io.inner.probe.bits := prb

when(state === s_inner_probe && !(pending_iprbs.orR || pending_irels)) {

state := next

}

scoreboard += (pending_iprbs.orR, pending_irels)

}

}

Figure 4.7 : The EmitsInnerProbes trait defines the innerProbe method that generates the logic
associated with this sub-flow, which sends Probes to clients and awaits acknowledging Releases.
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trait ReadsFromOuterCacheDataArray extends HasCoherenceMetadataBuffer

with HasRowBeatCounters

with HasDataBuffer {

// Scoreboard bits tracking sub-flow progress

val pending_reads = Reg(init=Bits(0, width = innerDataBeats))

val pending_resps = Reg(init=Bits(0, width = innerDataBeats))

val curr_read_beat = PriorityEncoder(pending_reads)

// Actual wiring to send messages and await responses

def readDataArray(drop_pending_bit: UInt,

add_pending_bit: UInt = UInt(0),

block_pending_read: Bool = Bool(false)) {

val port = io.data

pending_reads := (pending_reads & dropPendingBit(port.read) & drop_pending_bit) | add_pending_bit

port.read.valid := state === s_busy && pending_reads.orR && !block_pending_read

port.read.bits := L2DataReadReq(

id = UInt(trackerId),

way_en = xact_way_en,

addr_idx = xact_addr_idx,

addr_beat = curr_read_beat)

pending_resps := (pending_resps & dropPendingBitInternal(port.resp)) |

addPendingBitInternal(port.read)

scoreboard += (pending_reads.orR, pending_resps.orR)

mergeDataInternal(port.resp)

}

}

Figure 4.8 : The ReadsFromOuterCacheDataArray trait defines the readDataArray method that generates
the logic associated with this sub-flow, which sends requests to the local data SRAM array and
awaits data responses.
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class CacheVoluntaryReleaseTracker(trackerId: Int)(implicit p: Parameters)

extends VoluntaryReleaseTracker(trackerId)(p)

with HasDataBuffer

with WritesToOuterCacheDataArray {

// Initialize and accept pending Release beats

innerRelease(block_vol_ignt = pending_writes.orR, next = s_meta_read)

io.inner.release.ready := state === s_idle || irel_can_merge || irel_same_xact

// Begin a transaction by getting the current block metadata

metaRead(io.meta, s_busy)

// Write the voluntarily written back data to this cache

writeDataArray(add_pending_bit = addPendingBitWhenBeatHasData(io.inner.release))

// Wait for any pending sub-flows

quiesce(s_meta_write)

// End a transaction by updating the block metadata

val new_meta =

L2Metadata(

tag = xact_addr_tag,

inner = xact_old_meta.coh.inner.onRelease(xact_vol_irel),

outer = Mux(xact_vol_irel.hasData(),

xact_old_meta.coh.outer.onHit(M_XWR),

xact_old_meta.coh.outer)),

metaWrite(io.meta, new_meta, s_idle)

}

Figure 4.9 : The CacheVoluntaryReleaseTracker is intialized upon receiving a voluntary writeback
Release. It reads the current state of the block from the metadata array, writes backs the new dirty
data, and updates the metadata array.
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class BroadcastAcquireTracker(trackerId: Int)(implicit p: Parameters)

extends AcquireTracker(trackerId)(p)

with EmitsVoluntaryReleases

with BroadcastsToAllClients

with HasByteWriteMaskBuffer {

// First, take care of accpeting new acquires or secondary misses

// Handling of primary and secondary misses’ data and write mask merging

innerAcquire(can_alloc = Bool(false), next = s_inner_probe)

io.inner.acquire.ready := state === s_idle || iacq_can_merge || iacq_same_xact

// Track which clients yet need to be probed and make Probe message

// If a writeback occurs, we can forward its data via the buffer,

// and skip having to go outwards

val skip_outer_acquire = pending_ignt_data.andR

innerProbe(

inner_coh.makeProbe(curr_probe_dst, xact_iacq, xact_addr_block),

Mux(!skip_outer_acquire, s_outer_acquire, s_busy))

// Also accept any voluntary releases received during this time

innerRelease(block_vol_ignt = pending_vol_ognt)

io.inner.release.ready := irel_can_merge || irel_same_xact

mergeDataInner(io.inner.release)

// If there was a writeback, forward it outwards

outerRelease(outer_coh.onHit(M_XWR), data_buffer(orel_data_idx))

// Send outer request for miss

outerAcquire(caching = !xact_iacq.isBuiltInType(), coh = outer_coh, next = s_busy)

// Handle the response from outer memory

mergeDataOuter(io.outer.grant)

// Acknowledge or respond with data

innerGrant(

ignt_data = data_buffer(ignt_data_idx),

ignt_pending = pending_orel || pending_ognt || pending_vol_ognt)

// Wait for everything to quiesce

quiesce()

}

Figure 4.10 : The BroadcastAcquireTracker is initialized upon receiving a new Acquire request. It
issues probes to all the other clients and collects responses into its data buffer. If no Release has
dirty data, it queries the backing memory in the outer realm to get a copy, and then Grants it to
the originally requesting client.
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handle Acquire transactions and is an example of combining two traits that use the same
messaging channel (i.e., AcceptsVoluntaryReleases and EmitsInnerProbes).

These traits and TSHRs, which are derived from common sub-flows and from global flows
respectively, demonstrate how we are able to transform high-level descriptions of protocol
behavior into HDL descriptions that produce synthesizeable hardware. The scoreboard logic
they produce and compose manages concurrency and atomicity within the agent. However, we
have not yet discussed how policy-specific decisions are expressed within the flows, and how
we can abstract such decisions such that the same tracker designs can be used for multiple
protocols. This policy-centric abstraction is the focus of the next section.

4.3 Object-Oriented Coherence Policies
As in the previous chapter, we distinguish between coherence policies and coherence

protocols. A coherence policy governs how the Single-Writer-Multiple-Reader invariant is
represented as metadata identifying available permissions on data blocks. A coherence
protocol specifies the exact flows of messages and actions that must be propagated through
the memory hierarchy in order to effect a policy. While decomposing flows into sub-flow
traits has proven to be an effective strategy for managing concurrency and complexity in
cache controller design, this approach does not address how different coherence policies are
represented within the flows. For example, what do the state update functions actually store
in the metadata arrays? How are the specific messages required to be sent between agents
actually created? These questions are a matter of policy.

In this section, we present an interface that allows protocol designers to answer these
questions in a well-factored way. Our goal in introducing this abstract interface is to hold
some parts of the controller design constant, swapping out only the elements of controllers that
differ across different policies. To this end, we have created a unified CoherencePolicy interface
that provides the functionality required to fill out the implementation of all required sub-flows
generated by our global flow decomposition. Specifically, we propose an object-oriented API
that is based around an abstraction of coherence policy metadata.

Metadata objects are the fundamental abstraction used in this interface. These objects
are opaque sets of bits which are evaluated and mutated by the coherence policy. In the
object-oriented programming (OOP) paradigm, “objects” are abstractions that contain fields
of data that are mutated and accessed by procedural methods. In OOP, computer programs
are designed by making them out of objects that interact with one another. In our case,
we are forming critical portions of the cache controller logic by interacting with objects
representing the metadata about cache block permissions that is stored in local memories.

One advantage of deploying this particular abstraction is that the specific format and
contents of the metadata can be changed without changing the methods that cache controller
transactions use to generate control logic. This encapsulation allows these aspects of the cache
controller to be developed independently and different metadata implementations and policies
to be easily swapped for one another. By making calls to the methods of these metadata
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objects, cache controller designers can create state machines or sub-flow transactions that
cleanly and correctly implement metadata updates. Conversely, designers of new coherence
protocols are provided a framework within which to implement their desired policy; by filling
out the response to each method call, they can be certain that the policy will be applied
correctly across any compatible cache or directory controller.

Recall from the previous chapter that TileLink supports hierarchical nesting of protocols
via the Manager-Client Pairing (MCP) framework [9]. Based on this hierarchical structure,
we are required to define two distinct types of Metadata objects, one for agents that act
as clients and one for agents that act as managers. ClientMetadata store the permissions
available to a client as it attempts to apply incoming memory operations to a particular block
of cached data. They may also store protocol-specific information about the block, such as
whether or not it has been dirtied by a write. ManagerMetadata store information about
how the block has propagated through the clients for which this manager is responsible. This
information might include some representation of the number of client sharers, or patterns of
movement observed on that block. Any agent with access to a particular type of metadata is
capable of utilizing the methods available on that metadata inside of its sub-flow transactions,
and particular agents can store and utilize either or both types. For example, L1 caches store
only ClientMetada, directories or last-level caches store only ManagerMetadata, caches that
are intermediate in the hierarchy may store both types.

The following subsections delineate the specific methods that we provide on each type of
metadata. The methods fall into four main categories. Permissions check methods compare
an incoming operation against the permissions available in the current metadata state, and
they determine whether the operation is allowed to proceed or what kind of followup action
to take. Message creation methods are used to fill in the fields of TileLink message bundles,
based on information about the ongoing transaction and messages that have been received in
the past. Update methods mutate the metadata in response to an incoming operation or
message. We also provide functions to fill in metadata values on hardware reset. Finally, we
have defined a further object-oriented extension to the interface, which abstracts “directory”
information about how copies of a cache block have been propagated among a manager’s
clients.

4.3.1 Client Metadata
A ClientMetadata object consists of a set of bits that represent the “state” of a certain

cache block, i.e., the permissions that the policy has made available on that block inside
this particular client cache controller. The metadata may also store other information about
the cache block, for example, whether it has been dirtied by a store operation. There are
three types of method calls that a cache controller can make against ClientMetadata objects:
permissions checks, message creation, and metadata updates. Permissions are expressed with
respect to memory operations, which we define in Appendix A. When a permissions check
fails, the ClientMetadata methods provide the controller logic with information about what
actions are required next. Some of these actions may involve sending TileLink messages
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to the client’s manager, and we provide methods to create those messages based on the
current metadata. Another action may be to update the local metadata based on the
memory operation. The complete API for ClientMetadata can be found in the Rocket Chip
Generator [3] documentation, but we provide a summary here.

Permissions Checks

These boolean functions answer questions about the permissions on a cache line, and in
particular, are used to determine what actions to take relative to specific memory operations.
Memory operation representations are discussed in Appendix A, but the salient feature is
that all of them require either read or read-and-write permissions.

isValid(): Is the block’s data present in this cache?

isHit(opcode: UInt): Does this cache have permissions on this block sufficient to perform
the specified memory operation? If true, the controller can perform the memory
operation immediately.

isMiss(opcode: UInt): Does this cache lack permissions on this block sufficient to perform
the specified memory op? If true, the controller needs to initiate a TileLink coherence
transaction using makeAcquire.

requiresAcquireOnSecondaryMiss(first: UInt, second: UInt): Does a secondary miss
on the block require another Acquire message? If true, in a controller that supports
miss-under-miss transactions, initiate a second coherence transaction using makeAcquire.

requiresReleaseOnCacheControl(opcode: UInt): Does a cache control operation (e.g.,
a voluntary flush) require a Release message to be sent to outer memory? If true, the
controller needs to initiate a TileLink coherence transaction using makeVoluntaryRelease.

requiresVoluntaryWriteback(): Does an eviction caused by a capacity miss require a
Release to be sent to outer memory? If true, the controller needs to initiate a TileLink
coherence transaction using makeVoluntaryWriteback.

Message Creation

These functions return TileLink channel bundles, which are constructed based on a
combination of the current metadata state and particular memory operation types.

makeAcquire(opcode: UInt, id: UInt, addr: UInt): Constructs an Acquire message,
based on this metadata, for a memory operation.

makeVoluntaryRelease(opcode: UInt, id: UInt, addr: UInt, data: UInt): Constructs
a Release message, based on this metadata, for a cache control op.



4.3. OBJECT-ORIENTED COHERENCE POLICIES 104

makeVoluntaryWriteback(id: UInt, addr: UInt, data: UInt): Constructs a Release
message, based on this metadata, for a capacity eviction.

makeRelease(prb: Probe, data: UInt): Constructs a Release message, based on this
metadata, in order to respond to a Probe message from outer memory.

Metadata Updates

These functions return mutated ClientMetadata objects whose internal state has been
updated based on a particular coherence event or received message type.

onHit(opcode: UInt): New metadata after an operation hits on this cache block.

onCacheControl(opcode: UInt): New metadata after an operation releases permissions
on this block.

onProbe(incoming: Probe): New metadata after receiving a Probe message.

onGrant(incoming: Grant, pending: UInt): New metadata after receiving a Grant
message in response to the pending memory operation.

onReset(): New metadata initialized after machine reset.

4.3.2 ManagerMetadata
A ManagerMetadata object consists of a set of bits that represent the “state” of a

particular cache block, i.e., the existence of copies of that block in any client caches managed
by this agent. The metadata may also store other information about the cache block, for
example, information about its history, pattern of movement between clients, or “ownership”
by clients. As with ClientMetadata, there are three types of method calls that an agent can
make against ManagerMetadata objects: permissions checks, message creation, and metadata
updates. Messages created by managers include Probes of their clients to trigger them to
Release permissions and Grants of additional permissions to clients trying to Acquire them. In
addition to these method calls, ManagerMetadata incorporates an additional object-oriented
abstraction, DirectoryRepresentation, which encapsulates how information about the location
of copies of the managed cache blocks is stored. The complete API for ManagerMetadata can
be found in the Rocket Chip Generator documentation [3], but we provide a summary here.

Permissions Checks

These boolean functions answer questions about the permissions on a cache block, and in
particular, are used to determine whether it is necessary to Probe any clients that currently
may have copies of a particular cache block, with respect to a client’s request to Acquire new
permissions or a Release of the block from this agent.
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requiresProbes(acq: Acquire): Does this Acquire require Probes to be sent to any other
clients with copies?

requiresProbes(opcode: UInt): Does this memory operation require Probes to be sent
to any clients with copies?

requiresProbesOnVoluntaryWriteback(): Does an eviction caused by a capacity missed
require Probes to be sent to any clients with copies?

Message Creation

These functions return TileLink channel bundles to use as responses to Clients, which are
constructed based on the combination of current metadata state and past TileLink messages
received.
makeProbe(dst: UInt, acq: Acquire): Construct a Probe message based on this meta-

data in response to a particular Acquire message.

makeProbe(dst: UInt, opcode: UInt, addr: UInt): Construct a Probe message based
on this metadata in response to a particular cache control operation.

makeProbeForVoluntaryWriteback(dst: UInt, addr: UInt): Construct a Probe mes-
sage based on this metadata for a capacity eviction.

makeGrant(rel: Release, id: UInt): Construct an appropriate Grant message to ac-
knowledge a Release message.

makeGrant(acq: Acquire, id: UInt, data: UInt): Construct an appropriate Grant mes-
sage to acknowledge an Acquire message. May contain single or multiple beats of data,
or just be a permissions upgrade.

makeGrant(pri: Acquire, sec: SecondaryMissInfo, id: UInt, data: UInt): Construct
an appropriate Grant message to acknowledge an Acquire message, overriding some
fields Used to respond to secondary misses merged into this transaction. May contain
single or multiple beats of data.

Metadata Updates

These functions return mutated ManagerMetadata objects whose internal state has been
updated based on a particular coherence event or TileLink message.
onRelease(incoming: Release): New metadata after receiving a Release message.

onGrant(outgoing: Grant): New metadata after sending a Grant message.

onReset(): New metadata initialized after machine reset. This method can also be used
to generate a generic ManagerMetadata object to access other API methods within
controllers that do not store any metadata (for example a bus controller).
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Directory Representation

As a member of the ManagerMetadata objects, we also provide an object-oriented API
for accessing and maintaining directory information. These directory objects are responsible
for tracking the propagation of cache blocks across all the clients under the purview of a
particular manager. They abstract the details of the storage format used in the directory
portion of the ManagerMetadata. For example, rather than using a full bit vector (where
every bit represents whether or not a particular client contains a copy of the data block), a
designer might instead choose to use a coarser representation or one based on a limited set
of pointers to individual sharers [70]. Our goal was to allow the directory representation to
be changed independently from the rest of the cache coherence policy or controller design.
These DirectoryRepresentation objects’ methods are intended to be called from within the
CoherencePolicy’s ManagerMetadata functions by policy authors, rather than externally by
controller designers. The methods currently included in the DirectoryRepresentation API
are:

pop(id: UInt): Remove id from the prior set of sharers, returning a new set.

push(id: UInt): Add id to the set of sharers, returning a new set.

flush(): Provide an empty set that indicates no sharers.

none(): True if there are no shared copies among clients.

one(): True if there is a single copy at a client.

count(): Total count of the sharers among clients.

next(): Provide the id of the client that should be Probed next.

full(): Provide a full bitmap of all sharers, where a 1 indicates a copy.

Our intention when designing this inteface was to provide a way for CoherencePolicies
to find out all information about sharer propagation that they need to operate correctly,
without having to explicitly refer to the particular bits of the representation stored in the
agents’ metadata array. As we define additional policies and representations, we may expand
this interface to address other questions.

4.3.3 Creating New Coherence Policies
So far we have discussed the object-oriented API that our methodology provides to

protocol flow and cache controller designers, which presents them with coherence metadata
objects to manipulate. We now discuss provisioning the other side of the interface, from the
perspective of developers of new coherence policies.

We give designers planning to implement new coherence policies several Scala traits
containing abstract declarations of a variety of methods, which are themselves in turn used
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to implement the coherence metadata object methods discussed in the previous subsections.
These three traits are combined to form the complete CoherencePolicy interface. The three
traits are:

HasCustomTileLinkMessageTypes defines the custom, coherence-policy-defined mes-
sage types, as opposed to the built-in ones. Policies must enumerate the custom
messages to be sent over each channel, as well as which of them have associated data.

HasClientSideCoherencePolicy contains all functions required for client coherence agents.
Policies must enumerate the number of client states and define their permissions with
respect to memory operations. Policies must fill in functions to control which messages
are sent and how metadata is updated in response to coherence events.

HasManagerSideCoherencePolicy contains all functions required for manager coherence
agents. Policies must enumerate the number of manager states. Policies must fill in
functions to control which Probe and Grant messages are sent and how metadata should
be updated in response to coherence events.

By filling in the missing implementations of the methods defined in these traits, coherence
policy developers can provide a complete coherence policy that will interoperate seamlessly
with our supplied cache controllers and TileLink networks. It is possible to reuse implementa-
tions of certain traits to improve code reuse across CoherencePolicy implementations, in cases
where a Client or Manager agent’s behavior is the same as under another policy. In either
case, a concrete CoherencePolicy subclass provides implementations for every method. An
instance of such a class is a Scala object that can be passed through a hierarchy of Chisel
Modules and used by any associated coherence metadata object implementations. We discuss
the parameterization of the memory system components by CoherencePolicies in the next
section.

The complete API for the CoherencePolicy interface can be found in the Rocket Chip
Generator documentation [3]. It is similar enough to the ClientMetadata and ManagerMetadata

interfaces that we do not reproduce it here. The differences mainly revolve around taking the
state information encapsulated in Metadata objects and making them explicit parameters
of the CoherencePolicy methods. Under this organization, the functions defined in these
traits are called from within the ClientMetadata and ManagerMetadata member methods. This
encapsulation means that the internals of those classes do not have to be changed when new
coherence policies are defined. Similarly, if we change the Metadata representations in the
future, modules which use the Metadata objects’ methods will not have to be changed.

The decisions captured by the CoherencePolicy are exposed to cache controller authors
through the coherence metadata objects. As discussed in more detail in the next section, an
additional advantage of this organization is that the Parameters object associated with the
coherence metdata object can be used to set the widths of the fields of the TileLink channel
bundles that are the outputs of many of the inteface’s methods.
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4.4 Parameterization and Coherence Policies
In this section we will discuss the interplay between Context-Dependent Environments

(CDEs), which we introduced in Chapter 2, and the CoherencePolicy and Metadata objects.
CoherencePolicy objects are parameterized by the DirectoryRepresentation that they use,
as well as their data block size. More complicated policies could potentially be additionally
parameterized in order to tune their heuristic behavior. Metadata objects are parameterized
by the TileLinkParameters objects of the TileLink network with which they are associated.
Figure 4.11 illustrates these relationships using an L2CacheBank as an examples

We include a CoherencePolicy as a member of the TileLinkParameter case class that
stores all the information about channel widths associated with a particular TileLink realm
(see Chapter 3.7). In other words, there is a one-to-one mapping between CoherencePolicies
and TileLink networks. However, we can use the context-dependent capability of our CDEs
to inject multiple TileLink realms into a single controller, which allows us in turn to stitch
together multi-level protocols through hierarchical agents that have coherence metadata
objects associated with each TileLink realm.

TileLinkParameters are therefore associated with and used by the coherence policy
metadata objects. Specifically, the “geographical” parameter TLKey is set based on whether
the metadata belongs to the inner or outer realm. Thus, in hierarchical agents with multiple
types of metadata objects, accessing the methods discussed in this chapter automatically and
correctly parameterizes the width of the bundles those methods produce. This organization
reduces code complexity by automatically determining the correct set of TileLinkParameters
to use to produce data on a particular channel, as well as to reference the correct coherence
policy when making flow control decisions in a hierarchical system.

4.5 Hierarchical Translation Between Protocols
TileLink supports a hierarchical transaction structure that allows protocol transactions to

be nested inside one another, as we discussed in Chapter 3.2.5 based on the MCP framework
proposed by [9]. Building off of this capability, our goal is to enable different coherence policies
to be employed at each level, depending on that level’s particular scale and requirements. At
the protocol level, this means that when sub-flows of a protocol transaction occur in different
coherence realms, we need to provide capabilities for new sub-flows to be initiated based
on information taken from the previous sub-flow that happened in the other realm. Doing
so requires a translation between inner and outer realms, which we facilitate via memory
operation codes and the metadata object methods previously discussed in this chapter.

A set of pre-defined memory opcodes form an interface through which different policies in
our protocol family can communicate. Appendix A delineates the current set of opcodes used
in the Rocket Chip generator. The salient detail is that these operations encode information
about whether read permission or write permission must be acquired or released in order to
effect the desired operation.
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Figure 4.11 : Parameterizing an L2CacheBank agent using CDEs. We inject specialized parameters
into different objects and interfaces within the same generator depending on which TileLink realm
they are associated with. Additional parameters control agent-specific design decisions, such as
cache array organization.

Any hierarchical agent has both ClientMetadata (associated with the outer realm) and
ManagerMetadata (associated with the inner realm). Performing a translation between realms
necessitates utilizing methods on both types of metadata objects, based on the TileLink
messages that triggered the new inner or outer sub-flow. TileLink determines the ordering/in-
terleaving of the outer transaction with the inner transaction; and the CoherencePolicy’s
job is to determine which translated transaction is needed. There are two pairs of TileLink
messages that cross realm boundaries, Acquire/Grant and Probe/Release. We discuss each
in turn.
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To continue an Acquire transaction originating in the inner realm by initiating a sub-flow
in the outer coherence realm, we check the opcode of the original transaction’s Acquire
message against the ClientMetadata stored in this agent. If the metadata indicates that an
outer transaction is required, this agent (acting as a client), sends a further request to its
manager and awaits a Grant response.

Another translation occurs when a hierarchical agent receives a Probe message from the
outer coherence realm. In this case, the outer Probe’s opcode must be compared against the
permissions stored in the ClientMetadata. If these permissions would be reduced, the inner
realm’s ManagerMetadata must be consulted in order to determine what Probe messages to
forward to which agents. Only after the inner realm’s Release messages have been collected
can an outer Release message be generated based on the ClientMetadata.

Overall, TileLink determines the ordering/interleaving of the outer transaction with the
inner transaction; and the CoherencePolicy’s job is to determine which outer transaction is
needed. By defining a set of operations in terms of which permissions they acquire or release,
we enable multiple policies to intermesh in the formation of a single, multi-level, hierarchical
protocol.

4.6 Concrete Protocols in the Rocket Chip Generator
We now present a family of five protocols that we have implemented using Chisel, TileLink,

CoherencePolicy and our flow-based cache controllers in the Rocket Chip Generator [3]. These
protocols are based around a subset of the classic five state MOESI model first introduced by
Sweazey and Smith [77]. The protocols contain some subset of the following stable client
metadata states [70]:

I: The block is invalid. The cache either does not contain the block or it contains a potentially
stale copy that it may not read or write.

M: The block is valid, exclusive, owned, and potentially dirty. The block may be read or
written. The cache has the only valid copy of the block, the cache must respond to
requests for the block, and the copy of the block at the LLC/memory is potentially
stale.

S: The block is valid but not exclusive, not dirty, and not owned. The cache has a read-only
copy of the block. Other caches may have valid, read-only copies of the block.

E: The block is valid, exclusive, and clean. The cache has a read-only copy of the block.
No other caches have a valid copy of the block, and the copy of the block in the
LLC/memory is up to date.

We have also implemented a more advanced migratory protocol. This protocol is a reactive
protocol, based on proposals by [73, 20], that tracks the behavior of cache blocks over time,
identifies migratory behaviors of individual cache blocks, and proactively Releases permissions
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Name C. States R+W RO Clean Adaptive
MI 2 4

MEI 3 4 4

MSI 3 4 4

MESI 4 4 4 4

Migratory 7 4 4 4 4

Table 4.1 : Overview of features of protocols currently available in the Rocket Chip Generator.

on a newly written block in order to make it available to be consumed with requiring a
Probe/Release sub-flow. The specialization of the protocol to adapt to migratory movement
patterns is captured dynamically by additional Client states.

Table 4.1 lays out the relative capabilities of these five policies. The client states that
effectively differentiate the protocols are not strictly supersets of one another, allowing us to
choose a protocol appropriate to the context in which it is deployed.

In addition to the five different policies, we also provide three different hierarchical agent
implementations. These include two types of Broadcast networks, and an LXCache. The
LXCache can be used to implement any outer cache. All the controller implementations can
be combined with any policy, as well as a TileLink-compatible Network-on-Chip (NoC), in
order to make a complete protocol fabric.

The interoperability and abstracts deployed in our memory hierarchy generator allow the
680 lines of Chisel code we use to express the local transactions to be reused across the three
manager agent implementations. At the same time, the 85–143 lines of code used to express
each policy share 110 lines of common policy decision-making logic. Table 4.2 provides a
breakdown of the number of lines of Chisel code used to express each type of component in
the complete protocol implementation. The critical point is that individual policies can be
easily understood by a developer; they fit on a single screen! Overall, the entire memory
generator, including cache storage arrays, networks and converters, is expressed in less than
4000 lines of Chisel code.

4.7 Discussion
“The essence of abstractions is preserving information that is relevant in a given context,

and forgetting information that is irrelevant in that context” [33]. This chapter has introduced
a set of abstractions and interfaces that make it more productive to write extensible coherence
protocols. In that spirit, in this section I attempt to distill the relationships between our
various protocol abstractions and highlight which information they encapsulate and expose.

In our paradigm, a protocol consists of many transactional message flows. Flows may
share common sub-flows, which can be codified as local transactions on state and then mixed
together to form controller logic, with dependencies among sub-flows being inferred from the
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Task Lines of code
Policy (common) 110
Policy (individual) 85, 95, 112, 114, 143
DirRep (individual) 10, 10
TileLink channels 951
TileLink traits 531
Cache traits 149
Cache trackers 351
Broadcast trackers 126
Bufferless trackers 67
Total 3554

Table 4.2 : Breakdown of the lines of Chisel code used to express features of the coherence protocol
implementation in the Rocket Chip Generator, including portions that are reused across different
implementations.

global flows. Flows utilize our metadata objects to define policy-based permissions and and
are shaped by our TileLink substrate for deadlock-free ordering. Figure 4.12 highlights the
interplay between message flows, coherence metadata objects, and TileLink.

Coherence metadata objects abstract the policy decisions inherent to the protocol. Queries
made against coherence metadata objects act to determine which flow or sub-flow is occuring.
The policy encapsulated by the metadata objects defines the complete set of custom TileLink
message types associated with a particular protocol and determines which ones are sent
within a given flow. A metadata-based policy is not concerned with anything having to do
with time or ordering, only with what action needs to be taken when the system is in a
particular state. This factoring allows multiple policies to be plugged in without changing
controller design or network implementation.

The TileLink framework acts a substrate that guarantees message flows will make forward
progress as long as certain guarantees about agent behavior are satisfied. The framework
thereby determines the possible shapes and relative priorities of flows, defining several sub-flow
shapes that are safe to compose hierarchically. The framework determines what types of
messages any coherence policy methods can possibly output. It is not concerned with which
messages should be sent under what conditions, just the relative priority and allowed orderings
of the general message types. This factoring allows multiple network implementations to be
plugged in without changing controller design or policy contents.

Message flows act as the glue between the policy control logic and the network substrate by
informing the design of the agent controller logic itself. In specifying the local sub-flows that
occur within each controller type, message flows determine which policy methods a particular
agent calls upon receipt of particular TileLink message types, how it sends particular message
types in response, and the ordering constraints in data and metadata reads and writes. This
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Figure 4.12 : The separation of concerns between message flows, coherence metadata objects, and
the TileLink framework.

factoring allows the implementation of the cache controller logic to be changed without
requiring changes to the policy description or network implementation.

Taken together, we can see how the trade-offs in information available within each
abstraction help to make protocol design more productive. By separating information about
timing from policy decisions, policy designers only have to consider current state and desired
operation, yet know what general type of message needs be produced. By eliding information
about policy from the networking substrate, NoC designers know what priority channels to
provision to support any compatible policy. Agent implementations use both abstractions to
simplify their code density and increase code reuse, and both abstractions provide structure
to the high-level, global message flows that can be productively verified.
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4.8 Future Work
The most concrete direction for future work in this area is to use our CoherencePolicy

interface in the design of custom protocols that feature additional adaptability features.
These features could involve automatically detecting memory access patterns in hardware and
proactively managing data placement policies accordingly, similar to the Migratory policy
whose features we discussed in a previous section of this chapter. Alternatively, we might
want to enable hooks to allow for software control of coherence states, possibly via further
memory opcodes targeting individual cache blocks and triggering new transaction flows. This
approach could also involve integration with other software-based data placement strategies,
such as VLS [18]. Appendix B provides an overview of related work in this area.

Past designs for adaptively coherent shared memory systems, such as Standford FLASH
[48], have incorporated multiple protocols on top of a single hardware substrate. We expect
that it will be relatively straightforward to emulate this strategy by running multiple protocols
on a single TileLink interconnection substrate. The open question is how best to enable
software control over which protocol to use for which data. For example, should this
specialization be specified via a global mode switch, or instead differentiated for particular
memory regions. The latter implies that multiple protocols would be in operation on the same
network at the same time. Ideally, we will be able to capture such complicated meta-protocols
using the same set of interfaces we have defined here.

Moving from investigations of concrete policy designs to the process of designing policies,
we hope that future work will exploit improvements in Chisel functionality to close the
remaining gap in automating the process of producing verification and synthesis from the
same description. While we expect the message flows described in this chapter are compatible
with CMP-based tools, actually automating such a fully integrated verification workflow is
not within the scope of this thesis.

The next step in accomplishing the aforementioned verification goal is to furnish capabilities
for automatic generation of controllers via Bluespec-style rules built on top of Chisel. While
this thesis has provided an algorithm for breaking a set of global message flow transactions
into sets of localized rules, we still manually implemented the non-interference control logic for
those localized rules. While our current Chisel description is concise enough that is it easier to
reason about than the traditional Verilog approach, it still introduces opportunity for human
error in translating the sub-flows and constructing the TSHRs. A superior approach might be
for a Bluespec-style “rule engine” generator to automatically infer the control dependencies
between sub-flows. Ideally, future investigations will address the verification advantages of
automatically generated rule engines while contrasting them with the resource efficiency of
the hand-written scoreboard logic that we currently deploy.

Along similar lines of attack, we would also ideally be able to automatically infer the
implementations of CoherencyPolicy methods based on a set of decision points extracted from
flow descriptions. For now, the policy methods are filled in manually. Since we already identify
the nodes in the message flow graphs that differentiate the flows by inroducing divergent
sub-flows, it should be possible to re-cast those decision nodes as the implementations of
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certain methods, particularly those related to permission checks.
As this toolset matures, we anticipate a wealth of design space exploration opportunities

to arise. The hierarchical nature of TileLink makes it possible to generate arbitrarily nested
multi-level memory hierarchies. Improvements to the Chisel ecosystem are advancing the
state of the art in FPGA-based energy consumption modeling. Future work should deploy
these capabilities to measure the efficacy of data movement strategies, as well as questions
related to storage versus communication costs; for example, the coarseness of directory
representations. We hope that our open source frameworks will prove to be a valuable tool
for memory hierarchy researchers.

4.9 Conclusion
Cache coherence protocol design is one of the toughest challenges in computer architecture.

Through better abstractions, we have attempted to reduce the burden put on hardware
developers to correctly interpret the implicit semantics of abstract coherence models in their
implementations. We propose a top-down approach to protocol specification based on message
flows, and we provide a strategy for transforming such specifications into Chisel implemen-
tations of cache controllers. We also utilize object-oriented programming to encapsulate
the policy-specific decisions encoded in the flows, making it easy to swap policies without
changing any controller HDL source code. This approach opens the door to more flexible
and customizable protocol design, which will be important to the future of energy-efficiency
in the on-chip memory hierarchy.
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Chapter 5

Conclusion

As Moore’s Law slows and process scaling yields only small returns, computer architecture
and design are poised to undergo a renaissance. This thesis brings the productivity of modern
software tools to bear on the design of future energy-efficient hardware architectures, and
lays the groundwork for new methodologies in customizable hardware design. In extending
the capabilities of a new hardware description language, I hope to have brought the agility
and composability of functional, object-oriented software design to one of the most difficult
design tasks in the hardware domain, namely that of coherent hierarchies of on-chip caches.
In this chapter, we will review my contributions and summarize the potential for design space
exploration and iterative, agile hardware development that they enable.

5.1 Contributions
In order to increase the agility of hardware design, together with my collaborators I have

developed Chisel (Constructing Hardware In a Scala Embedded Language), a new hardware
design language that addresses the aforementioned language deficiencies [6]. Chisel is a
Domain-Specific Embedded Language (DSEL) that is built on top of the Scala programming
language [59]. My contributions focus on extending Chisel by providing libraries for hardware
developers to use in describing the configuration and behavior of on-chip memory hierarchies.
My specific contributions are as follows:

1. A novel general framework for context-dependent parameterization of hardware genera-
tors.

2. A set of Chisel libraries for generating extensible cache-coherent memory hierarchies.
These include the TileLink protocol transaction framework, an object-oriented coherence
metadata API, and generators for cache controllers and datapaths, as well as hierarchical
on-chip networks.

3. A methodology for decomposing high-level descriptions of cache coherence protocols
into controller-localized transactions.
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Because Chisel is embedded in Scala, hardware developers can now use Scala’s modern
programming language features to encapsulate many useful high-level hardware design
patterns. Metaprogramming, code generation, and hardware design tasks are all implemented
in the same source language. A single-source language approach encourages developers to
write parameterized hardware generators rather than discrete instances of individual hardware
blocks, which in turn improves code reuse both within a given design and across generations of
design iterations. Chapter 3 and Chapter 4 demonstrated how a design choice as complicated
and pervasive as a multi-level cache coherence protocol can be made into a tuneable design
parameter when properly factored out from the rest of the design. Chapter 2’s focus on
extending Chisel with novel parameterization techniques reflects the criticality of generator
parameterization capabilities to our agile development process. By providing support for
generating a family of interchangable protocols rather than one single protocol, my thesis
has enabled us to iterate on protocol design as we scaled up the size and complexity of the
memory hierarchy across chip iterations.

We have composed these various libraries of tools and generators into a complete, open
source SoC chip generator, called Rocket Chip. Rocket Chip standardizes the interfaces that
are used to connect different libraries’ generators to one another, enabling a plug-and-play
environment in which it is trivial to swap out substantial components of the design through
parameterization. We can also both test the output of individual generators as well as
perform integration tests on the whole design, where the tests are also parameterized so as to
exercise the entire design-under-test. The Rocket Chip generator and its test suites are freely
available as an open source project, and we hope that it will form the basis of future research
projects and industrial applications. We used Rocket Chip to produce three distinct families
of chips over four years in an interleaved fashion, all from the same source code base, but
each specialized differently to evaluate distinct research ideas.

5.2 Limitations
While Chisel and Rocket Chip have proven to be highly productive tools for our research

group, it is my belief that we have only uncovered the tip of the agile hardware development
iceberg. As the tools continue to mature, the design patterns that they make it easy to
express will multiply. Until that time, we have had to constrain the space of designs that
our abstractions make it possible to express. We now review some of the limitations of the
current implementations.

TileLink limits the shape of coherence transaction flow graphs so as to ensure they are
both composable and deadlock-free. However, the current shapes are not an exhaustive list of
safe flow graphs, and restricting use of said additional safe flows may limit designers deploying
TileLink networks in their designs from being able to adopt protocols with performance
optimizations based around more complicated flows. TileLink has so far only been deployed
within relatively small on-chip memory hierarchies, and as we strive to scale it to larger client
counts involving multiple sockets, we expect some of these concerns to begin to manifest. So
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far, only invalidation-based protocols have been expressed using the TileLink framework, and
it is an open question whether update-based protocols could be handled within the same
infrastructure.

The metadata objects that encapsulate the coherence policy are designed to be easily
extensible with further custom states and custom TileLink messages. Currently, they are only
parameterized by the format of the directory information held in ManagerMetadata and the
cache block size, and it might be desirable to add additional parameters for protocols with
more complicated heuristics. While different realms may employ different coherence policies,
the existing design assumes only a single policy will ever be used in a particular realm, and
that the block size used in all realms is the same. Allowing the policy to be switched at
runtime or allowing multiple policies to be deployed at the same time will require the ability
to expand the encapsulated state automatically. Allowing different realms to use different
block sizes will require reasoning out the constraints these parameters will impose on one
another and decoupling how hierarchical metdata are stored.

5.3 Future Challenges
As I envision how future efforts in this area can build on the groundwork provided by this

thesis and address its limitations, the unifying theme is increased automation and closing the
loop between design, specification, implementation, deployment, evaluation, and verification.

5.3.1 Design Space Exploration
Context-dependent environments are a powerful way to express the parameters of a design

and allow free ones to be filled in at elaboration time by an external tool. We can search a
design for constraints and use those we extract to limit the space of designs that we consider.
However, further work is required to automate the exploration process and to close the loop
between feedback from one iteration of examining a set of design instances and selecting
points for further exploration. By capturing and storing the results of past explorations that
included certain parameterizations of certain subsets of a design, we can inform the direction
of future searches. By building up models based on parameter values, we can potentially
avoid ever having to elaborate those portions of the design for some evaluations. Intelligent
design space exploration is the next frontier for improving designer productivity.

5.3.2 Formal Specification and Verification
While many protocols can be expressed within TileLink’s’s MCP paradigm, there are some

major classes of protocol performance optimization that could utilize different transaction
structures. The challenge of adopting such measures is proving that TileLink will remain
hierarchically composable if these additional flows are introduced. Ideally, as we develop a
formal specification of TileLink, we will be able to be more confident in proposing modifi-
cations to TileLink while guaranteeing that the fundamental properties of the framework
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remain unchanged. We are also working to use this type of specification to derive sets
of unit tests for individual modules implementing one or more TileLink interfaces. Such
automatically generated unit test suites should be able to provide directed testing of the
hardware implementations to prove that they are TileLink-compatible. There may be further
opportunities afforded by hooking such automated test generation into our design space
exploration tools.

I also hope that future work will exploit improvements in Chisel functionality to close
the remaining gap in automating the process of producing verification and synthesis results
from the same high-level description. While the techniques proposed in this thesis greatly
reduce the burden put on cache controller designers, they still require human intervention to
translate from the the local flow descriptions into the logic of individual controllers. Deriving
the entirety of controllers by employing Bluespec-style rule engines would be the next step in
automated protocol development.

5.3.3 Energy Consumption of Application-Specific Protocols
The most concrete direction for future work is to use our coherence policy interface in

the design of custom protocols that feature additional adaptability features. These include
policies that are entirely driven by hardware heuristics, like the Migratory policy I created,
as well as novel policies based on software intervention in protocol behavior. Given the focus
on specialization, creating protocols that target specific memory traffic patterns that are
characteristic of important applications or design patterns is likely to be a fruitful approach.

As this toolset matures, I anticipate a wealth of design space exploration opportunities to
arise from the combination of policy decision and storage resource allocation. The hierarchical
nature of TileLink makes it possible to generate arbitrarily nested multi-level memory
hierarchies. Improvements to the Chisel ecosystem are advancing the state of the art in
FPGA-based energy consumption modelling. Future work should deploy these capabilities to
measure the efficacy of data movement strategies, as well as questions related to storage versus
communication costs, for example, the coarseness of directory representations. I hope that
our open source frameworks will prove themselves valuable to memory hierarchy researchers.

5.4 Final Remarks
In this brave new power-constrained, post-Dennard world, energy efficiency has become a

first-order design goal. As Moore’s law falters, companies will have to iteratively reduce the
energy consumed by each operation of their designs while working with the same transistor
resources. This trend towards specialization has already become manifest in the embedded
and mobile device industry via the adoption of System-on-Chip designs, which boast an ever
increasing number of application-specific co-processors on each chip. It seems clear to me
that heterogeneous clouds comprising collections of application-specific processors cannot be
far behind.
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Moving beyond specialized cores, energy consumption within the memory hierarchy is
rapidly becoming a significant design concern. The high cost associated with communication
thereby increases the value of managing the memory hierarchy well. The majority of the data
movement activity that occurs within a multicore chip’s on-chip memory hierarchy is done
automatically at the behest of the cache controllers and the coherence policy that governs
their behaviors. How to define customizable or specialized coherence policies and implement
the associated protocols efficiently is an important design challenge for future energy-efficient
architectures.

Designing new cache coherence protocols or supporting a wider variety of more complicated
protocols is not a task hardware engineers can undertake lightly. Verifying the correctness of a
cache coherence protocol is a challenging task, and verifying that a correct protocol has been
implemented correctly is even more difficult. The semantic gap between verifiable, high-level
abstract descriptions of protocols and concrete HDL implementations of those same protocols
is so wide that verifying the correctness of the protocol does not come close to guaranteeing
the correctness of the final implementation. As I have shown, improving the capabilities of
hardware description languages offers us a way to lighten this burden: By raising the level
of abstraction at which cache controller logic can be described and at which synthesizable
designs can be generated, we can smooth over the gap between protocol specification and
implementation. In doing so, we can make cache coherence protocol selection another knob
in the toolbox of a hardware designer focused on exploring a space of heterogeneous hardware
designs.

The design productivity crisis created by the demands of energy-efficient, post-Dennard
SoC design has implications that reach beyond languages and tools to methodology itself.
As a small group of researchers attempting to design and fabricate multiple families of
processor chips, and lacking the massive resources of industrial design teams, we were forced
to abandon standard industry practices and explore different approaches to design hardware
more productively. The development model we adopted as a result of our limited resources,
changing requirements, and more productive hardware tools eventually led us to define a set
of principles to guide a new agile hardware development methodology.

In our agile hardware methodology, we first generate a trivial prototype with a minimal
working feature set and push it all the way through the toolflow to a point where it could
be taped out for fabrication. Emphasizing a sequence of prototypes by building generators
over design instances ultimately reduces verification simulation effort, since early hardware
prototypes run orders of magnitude faster than simulators. As we iteratively add features to
the generator, we can retarget our efforts to adapt to performance and energy feedback from
the previous iteration. By parameterizing the design generator, we can smoothly scale the
size of its output from test chip to final product without rewriting any hardware modules. In
the three lineages of chips that we constructed over the course of my thesis, I was able to
iteratively add features to the memory hierarchy as we scaled it up in size and complexity.
This thesis thereby serves as a case study in leveraging lessons learned from the software
world by applying aspects of the software agile development model to hardware design, and
particularly, coherent memory hierarchy design.
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My thesis is that the semantic gap between productive, verifiable descriptions and param-
eterized, efficient implementations is not a fundamental hurdle to the design of increasingly
customized cache coherent memory hierarchies. By separating the concerns of message flows
from policy decisions and the underlying network substrate, I provide tools that naturally
produce correct, composable implementations based on a high level description, smoothing
over the semantic gap between them through beneficial layers of abstractions. By deeply
parameterizing memory heirarchies, I encourage new SoC developers to rely on hardware
generators and use them to explore novel areas of this rich design space. The power to rapidly
compose and extend designs in this way will be at the heart of the nascent agile hardware
development movement.
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Appendix A

TileLink Memory Opcodes

In this appendix I define the current set of memory operation codes used by the various
sub-components of our Rocket Chip generator [3]. These opcodes are used primarily at the
interface between the processor core and the L1 cache, but are currently repurposed for use
with the L2 atomic memory operation ALUs, as well as for translation between different
coherence realms via the op_code field of TileLink’s Acquire messages.

Table A.1 lays out the codes for operations that can be inserted into the op_code field of
Acquire transactions. They are derived from the interface between the Rocket pipeline and
its data cache. They correspond to some degree with the RISC-V RV64A memory operations.
Similarly, Table A.2 lays out the codes for expressing the size of operation that should
occur in memory (for atomic operations). Table A.3 proposes an alternative organization for
expressing memory operations, which at the time of writing is currently being considered for
the next generation of the TileLink specification.
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Name Code Operation δ perm.
M_XRD b00000 integer load +R
M_XWR b00001 integer store +RW
M_PFR b00010 prefetch with intent to read +R
M_PFW b00011 prefetch with intent to write +RW
M_XA_SWAP b00100 atomic swap +RW
M_NOP b00101 no op
M_XLR b00110 load release +RW
M_XSC b00111 store conditional +RW
M_XA_ADD b01000 atomic add +RW
M_XA_XOR b01001 atomic xor +RW
M_XA_OR b01010 atomic or +RW
M_XA_AND b01011 atomic and +RW
M_XA_MIN b01100 atomic min +RW
M_XA_MAX b01101 atomic max +RW
M_XA_MINU b01110 atomic min unsigned +RW
M_XA_MAXU b01111 atomic max unsigned +RW
M_FLUSH b10000 write back dirty data –RW
M_PRODUCE b10001 write back dirty data –W
M_CLEAN b10011 write back dirty data

Table A.1 : Operations expressible via the op_code field of Acquire transactions, and their effect on
the coherence policy permissions.

Name Code Meaning
MT_B b000 byte
MT_H b001 half
MT_B b010 word
MT_D b011 double
MT_BU b100 byte unsigned
MT_HU b101 half unsigned
MT_WU b110 word unsigned

Table A.2 : Operation sizes expressible via the op_size field of Acquire transactions, for atomic
memory operations and sub-block loads.
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168 41 40 8 7 6 5 43 2 1 0

— addr — w 00 Prefetches

data addr size a w 01 Uncached Get and Puts

data addr size aluop 10 Uncached Atomics

— addr size u w 11 Cached

Table A.3 : Proposed memory opcode encodings for Acquire and Probe messages. There are four
major op codes, and then fields to express whether write permissions are being acquired or released
(w), whether intermediate cache may allocate copies (a), and custom user-defined operations (u).
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Appendix B

Survey of Software-Memory
Management Extensions

Software memory management techniques allow the programmer to explicitly control
where copies of data are placed in the memory hierarchy as their program runs. While many
application programmers favor the productivity gained by relying on hardware caches to
manage data placement automatically, expert programmers with stringent performance or
efficiency demands may prefer to shoulder the burden of precisely controlling data placement.
In this appendix I offer a literature survey of the wide variety of ways that past architectures
have allowed programmers to manually express where and how data should be put in the
memory hierarchy. I also offer some proposals for future research directions that add software
memory management on top of the memory hierarchy generators discussed in this thesis.

B.1 Background
Past offerings from commercial architectures can be grouped into three high-level categories.

The first category contains mechanisms dealing with setting the mode and behavior of the
underlying hardware data buffers. The second category is mechanisms for specifying the
behavior of particular load and store instructions, including prefetches. The third category is
mechanisms for modifying the status of data currently in a particular cache.

Data buffer management operations are expressed in terms of the actual physical hardware.
They include such concrete directives as: deactivate an entire cache, partition some particular
ways of some particular cache, change the indexing mode of a cache slice. Once reconfigured
by these mechanisms, the data buffer in question behaves differently until a new management
directive is supplied.

Load, store and prefetch operations (i.e. data accesses) may take on a variety of additional
specifiers that govern their behavior as they interact with the memory hierarchy. Examples
of these specifiers include whether capacity for data from this access should be allocated in a
particular hierarchy level, what coherence state that data should be in, what replacement
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policy status that data should have, and whether the access has any particular memory
ordering requirements. Prefetches may have additional specifiers not provided for normal
loads and stores. These specifiers are optional in many architectures, though VLIW placement
flags and vector memory ordering flags are two notable exceptions.

Rather than flagging every instruction with the specifiers explicitly within the opcode,
some processors provide modes that govern what specifiers are appended to every load or
store issued by the processor while a given mode bit is set. This mode bit setting is similar to
how floating point rounding modes are generally implemented. Another option is to append
certain specifiers only to instructions whose target address (virtual or physical) falls within a
certain range or ranges.

The specifiers for data accesses may be expressed using concrete terms (e.g. “Put in
L1,” “Make CC state O,” “Make data LRU position 0”) or more abstract terms (e.g. “Data
is streaming,” “Data will be read by others soon”). Abstract terms may make code more
portable, but are also best suited for cases when functional correctness does not depend on
the implementation of the specifier.

The third category is mechanisms for modifying the status of data currently in a particular
cache. The directives again address placement (e.g. evict this line), coherence (e.g. clean
this line), and replacement policy (e.g. mark this line as next-to-evict). Again, the behavior
may be specified concretely (e.g. “evict from L1”) or abstractly (e.g. “evict from all private
levels”). The target for these modifications can be expressed in terms of individual addresses,
address ranges, particular physical subsets of the cache (ways or sets), or just the entire cache.
The concrete mechanisms differ from data buffer management operations in that they target
a dataset currently in the cache, rather than governing future data buffer behavior.

In the case of concretely-specified mechanisms, the interface for specifying behavior
needs to transparently expose the implementation of memory hierarchy. Even abstract
specifications make some assumptions. Since ISAs are designed to be portable across many
implementations, most architectures hedge even on concrete mechanisms by stating that
the actual behavior is implementation dependent or optional. However, in systems where
functionally correct execution is dependent on the behavior of software memory management
instructions, such ill-specified behaviors will not be acceptable. Mandatory enforcement of
abstracted specifications of behavior are a promising middle-ground between the burdens of
portability and the requirements for correct functionality.

Mandatory vs. optional is another axis on which software memory management instruc-
tions can be classified. The two degrees of enforcement correspond with two distinct goals:
those instructions that optimize performance, and those instructions that are necessary
for correct functionality. This functionality might be data placement, in which case we
can contrast optional prefetches with mandatory VLIW explicit placement flags. Or this
functionality might be cache coherence, in which case we might contrast instructions that
proactively clean dirty data that is known to be needed by remote processors with abstract
load flags that prevent data from being refilled into levels of the hierarchy that are not kept
coherent by hardware. While it is acceptable for the former types to be treated as optional
hints, the later types must be obeyed.
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Deactivate entire cache (mode) 4

Allocate capacity to scratchpad (mode) 4 4 4 4 4 4

Allocate line of capacity to scratchpad (inst) 4

Separate insts for sep mems 4 4

Don’t allocate capacity in cache (flag, specific) 4 4

Don’t allocate capacity in cache (flag, L/G) 4 4 4 4 4 4

Don’t allocate capacity in cache (range) 4 4 4

Don’t allocate capacity in cache (mode) 4

Allocate block with specific CC state (flag) 4 4 4 4

Allocate block with specific LRU state (flag) 4

Memory ordering requirement (flag) 4

Prefetch into data cache 4 4 4 4 4 4 4 4 4 4

Data prefetch into special buffer 4 4 4

Pre-allocate capacity for stores 4 4

Lock/unlock data present in entire cache (mode) 4

Lock data placed in cache in future (mode) 4

Lock/unlock data present in cache line (inst) 4 4

Adjust LRU status of line (inst) 4 4

Invalidate cache line 4 4 4 4 4

Invalidate cache range 4 4

Invalidate cache ways 4

Invalidate entire cache 4 4 4

Clean cache line 4 4

Clean cache range 4

Clean entire cache 4 4

Clean and evict cache line 4

Clean and evict cache range 4

Clean and evict entire cache 4

Table B.1 : Overview of features in past architectures

B.2 Overview
Table B.1 provids an overview of the software memory management features available in

a broad sampling of past architectures. The specific features provided by each architecture
are detailed below. We group the architectures into the following broad categories: vector in-
struction sets, SIMD/SIMT instruction sets, VLIW instruction sets, various RISC instruction
sets, instruction sets for embedded processors, and academic research proposals.

B.2.1 Vector Machines
Cray-2

The Cray-2 was a supercomputer with four vector processors built by Cray Research
starting in 1985 [38, 12]. Background processors can serve as engines for memory-to–memory
transfers, and each contains a small local memory for holding operands during the transfer.
Local memories are used as register files during computation. Separate instructions are
provided for accessing local versus common memory.
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Cray X1

The Cray X1 wass a non-uniform memory access, vector processor supercomputer built
by Cray Inc. in 2003 [37]. Its vector memory references can have cache hints, expressed as
flags on vector load and store operations:
• Data should not allocate space in cache if not present.

• New allocations should be in shared state.

• New allocations should be in exclusive state (default).
The vrip instruction is used at the end of a sequence of vector instructions to reduce

the size of the processor state that must be saved and restored when switching processor
contexts, and also to release physical registers in implementations that rename the vector
registers. Scalar memory references include prefetch from a registered address, plus scaled
offset or scaled index. Memory ordering flags (G,M,L) can be attached to instructions, and
interact with barriers.

Cray T3D and T3E

The Cray T3D and T3E were two generations of massively parallel supercomputer
architectures, both supporting global-memory access, prefetch, atomic operations, barriers,
and block transfers [2, 39, 40]. They support a variety of read operations: cacheable read,
cacheable atomic swap read, cacheable “readahead”, non-cacheable, non-cacheable atomic
swap. “Readahead” accesses buffer data in support circuitry to avoid local DRAM access.
Writes may be cacheable or uncacheable. Data prefetch operations transfer data from a
remote memory to a prefetch queue in the local support circuitry, not to the data cache.

B.2.2 SIMD/SIMT Architectures
NVIDIA PTX

PTX ISA version 2.0 introduced optional cache operators on load and store instructions [19].
Note that in sm_20 implementations of the architecture, the L2 cache is shared by all cores,
but no hardware coherence is provided amongst the cores’ private L1 caches.

PTX provides the following cache operators and flags for loads:
• “ca”: Default. Cache at all levels, has temporal locality. Allocates in L1/L2 with

normal eviction policy.

• “cg”: Cache only at global level (L2). Data bypasses L1. Existing matching lines in
bypassed L1 will be evicted.

• “cs”: Cache streaming, implying the data lacks temporal locality. Allocates global
memory addresses with evict-first policy in L1 and L2. For a local memory addresses,
this performs a ld.lu.
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• “lu”: Last use, implying that the line will not be used again. For local addresses, this
prevents unecessary writebacks of spilled registers and stack frames by discarding the
line from the L1. For global addresses, this performs a ld.cs.

PTX provides the following cache operators and flags for stores:

• “wb”: Default. Cache writeback at all coherent levels. Stores of local data may be
cached in L1 or L2, but global data is only cached in L2 since L1s are not kept coherent
by hardware. Note that ld.ca’s issued by other cores could still hit on stale data.

• “cg”: Cache at global level (L2). Data bypasses L1. Same as st.wb for global data, for
local data marks L1 lines as evict-first.

• “cs”: Cache streaming, implying no temporal locality. Allocates in same place as st.wb

would, but with evict-first policy.

• “wt”: Cache write-through to system memory. Applies only to global System Memory
addresses to allow a CPU program to poll on the location.

Data prefetch is provided by prefetch instructions. The level of cache intro which the data
should be prefetched is specified explicitly. Prefetch instructions to shared memory addresses
do nothing.

AltiVec

AltiVec is a single-precision floating point and integer SIMD instruction set. A prefetch
instruction specifies one of four data streams, each of which can prefetch up to 128K bytes,
12K bytes in a contiguous block. Reuse of a data stream aborts prefetch of the current data
stream and begins a new one. The data stream stop instructions can be used when data
from a stream is no longer needed, for example for an early exit of a loop processing array
elements.

Additional AltiVec instructions for cache control are lvxl (Load Vector Indexed LRU) and
stvxl (Store Vector Indexed LRU), which indicate that an access is likely to be the final one
to a cache block and that the address should be treated as least recently used, to allow other
data to replace it in the cache [31].

Intel Larrabee

Intel’s graphics-focused Larrabee architecture extended x86 with new instructions and
instruction modes for explicit cache control [63]. Examples include instructions to prefetch
data into the L1 or L2 caches and instruction modes to reduce the priority of a cache line
or evict lines. For example, streaming data typically sweeps existing data out of a cache.
Larrabee is able to mark each streaming cache line for early eviction after it is accessed.
These cache control instructions also allow the L2 cache to be used similarly to a scratchpad
memory, while remaining fully coherent.
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Intel x86 SSE

Data prefetch is provided by prefetch instructions, which take locality hints (in bits 5:3 of
the ModR/M byte) about into which level of the cache the data should be placed. The hints
are:

• “t0”: Temporal data, fetched into all cache levels

• “t1”: Data is temporal with respect to first-level cache, fetched into all levels except
“0th-level” cache.

• “t2”: Data is temporal with respect to second-level cache, fetched into all levels except
0th-level and 1st-level cache.

• “nta”: Nontemporal data, fetched into non-temporal cache structure.

These hints are processor implementation-dependent, and can be overloaded or ignored
by a given processor implementation. The amount of data prefetched is also implementation-
dependent, but is at least 32B. The other bits in the ModRM byte are reserved. movntq, movntps,
and maskmovq are nontemporal SIMD store variants from register to memory that avoid
polluting the cache hierarchy, are no-write-allocate, and are weakly-ordered.

B.2.3 VLIW Architectures
HPL-PD

HPL-PD was a parameterized ILP research processor architecture from HP Labs [45].
HPL-PD load operations have two modifiers: Source cache specifiers are used by the compiler
to know the estimated data access latency (default is L1). Violation of the latency implied by
this modifier means that a stall is required; Target cache specifiers are used by the processors
to indicate the highest level at which data should be kept. Encoded in instruction, but may
be ignored.

Itanium and Itanium 2

The Itanium VLIW architectures provide int instructions for instruction prefetching, both
to activate/deactivate prefetch engine as well as to providea special hint on branches [69, 69].
They also include a emphbias hint, indicating that the software will modify data withnin
cache line (i.e., it should be loaded as E in MESI coherence). Ordered loads and stores can
be used to force ordering in memory accesses (along with fences). Explicit data prefetching
is done via lfetch instruction. Implicit data prefetch is based on the address post-increment
of loads, stores, and explicit prefetches.

Loads, stores and explicit data prefetches allocate space according to temporal locality
hints, which may either case data not to be allocated, or may affect LRU position. The hints
are organized according to an abstraction of a N-level memory hierarchy, in which each level
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contains both a structure for caching data with temporal locality and a structure for caching
data with non-temporal locality. An access treated as nontemporal at level N is treated
as temporal at level N+1. Obviously the existence of such structures is “implementation
dependent”. Finding a line closer than the hinted distance does not cause demotion.

Example data cache hints:

• “NTA”: Nontemporal all levels. Don’t allocate in L1, mark as next to replace in L2,
don’t allocate in L3.

• “NT2”: Nontemporal 2 levels. Don’t alloc in L1, mark as next in L2, allocate in L3.

• “NT1”: Nontemporal 1 levels. Don’t alloc in L1, allocate in others.

• “T1”: Default, normal allocation in all.

• “Bias”: Allocate with intent to modify. L2 and L3 have line in exclusive state.

The flush cache instruction fc invalidates a particular line in all levels. Write buffers can
be flushed with fwb. Cache specifiers are V1 (prefetch cache), and C1-C3(main memory).

The data prefetch cache is used to prefetch large amounts of data having little or no
temporal locality without disturbing the conventional first level data cache. In other words,
the emphasis in the case of data prefetch cache is more on masking load latencies than
on reuse. Accesses to the data prefetch cache don’t touch the first-level cache. Prefetch
operations are encoded by instructions that load to register 0.

B.2.4 RISC Architectures
PA-RISC

Some load and store instructions modify the base register, providing either pre-increment
or post-increment, and some provide a cache control hint; A load instruction can specify
spatial locality, and a store instruction can specify block copy or spatial locality. The spatial
locality hint implies that there is poor temporal locality and that the prefetch should not
displace existing data in the cache. The block copy hint indicates that the program is likely
to store a full cache line of data [31].

SPARC

The SPARC v9 instruction set architecture defines the PREFETCH (Prefetch Data) and
PREFETCHA (Prefetch Data from Alternate Space) instructions, with several variants [31]:

• Prefetch for several reads: Move the data into the cache nearest the processor (high
degree of temporal locality).

• Prefetch for one read: Prefetch with minimal disturbance to the cache (low degree of
temporal locality).
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• Prefetch for several writes (and possibly reads): Gain exclusive ownership of the cache
line (high degree of temporal locality).

• Prefetch for one write: Prefetch with minimal disturbance to the cache (low degree of
temporal locality).

• Prefetch page: Shorten the latency of a page fault.

POWER

PowerPC 603e controlled write-back/write-through and caching-enabled capabilities on a
per page basis, and had two data prefetch instructions [31].

Power 2.06 has the following cache control instructions [36]:

• “dcbi”: data cache block invalidate.

• “dcbt”: data cache block touch, data prefetch into a touch buffer, may use Data Stream
Control Register to affect HW behavior.

• “dcbtst”: data cache block touch for store, data prefetch, read with intent to modify.

• “dcbz”: data cache block clear to zero, zeros all bytes, treated as a store.

• “dbca”: data cache block allocate, allocates undefined space in the cache, treated as a
store.

• “dcbst”: data cache block store, stores the block to memory if it has been modified.

• “dcbf”: data cache block flush, invalidates unmodified block or writes back modified
one.

• “icbt”: instruction cache block touch, prefetch into instruction cache.

Power 2.06 has cache locking instructions that target specific cache block addresses. These
instructions are not hints, meaning they cannot be issued speculatively. It is implementation
dependent whether coherence invalidate requests and cache control invalidates unlock these
cache lines. Over-locking of a given set is reported in an implementation-dependent manner.
The instructions are:

• “dcbtls”: Data cache block touch and lock set.

• “dcbtstls”: Data cache block touch for store and lock set.

• “icbtls”: Instruction cache block touch and lock set.

• “dcblc/icblc”: Clear cache block lock in data/instruction cache.
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Some of the aforementioned cache management instructions contain a 4-bit CT field that is
used to specify a cache level within a cache hierarchy or a portion of a cache structure to which
the instruction is to be applied. The correspondence between the CT value specified and the
cache level is 0 = primary cache, 2 = secondary cache, with other implementation-dependent
options possible.

B.2.5 Embedded Architectures
TI TMS320C6000 / VelociTI

These embedded architectures allow the L2 cache to be reconfigured as a software0managed
SRAM scratchpad [41]. After a reset, L2cache is disabled and all capacity is L2sram. The L2
cache can be enabled in the program code by issuing the appropriate chip support library
(CSL) commands. Additionally, in the linker command file the memory to be used as L2
SRAM has to be specified.

The user can also control whether external memory addresses are cacheable or noncacheable.
Each external memory address space of 16 Mbytes is controlled by a single bit of the MAR
registers The CSL also has support for software-directed invalidates, writebacks or writeback-
invalidates from L2 or L1 based on either address ranges or for the entire cache. The CSL
also has routines to set a mode of cache behavior. All these routines work by writing to
special purpose registers. Block/range cache operations execute in the background, allowing
other program accesses to interleave with the block cache operation.

Intel X-SCALE

Intel’s X-SCALE [42] is an embedded architecture based on ARM. It can disable and
enable the ability of the L1 caches to fill lines. Even when ‘disabled,’ the cache is still checked,
but no lines will be filled or evicted. This cache mode is enabled and disabled via control
registers.

Individual lines can be locked in the instruction cache with special instructions that use
special registers. For correct operation, the line cannot be already present in the cache, so
the line must be explicitly invalidated first, using the same special instruction with a different
special register value. Way 0 can never be locked. There is no way to check full-ness, so a
table of locked addresses must be maintained by software. The entire cache can be unlocked
at once. Invalidating a line also unlocks it.

For the data cache, a mode bit in a special register can be turned on to cause all following
loads to be locked in the cached. Locking mode is turned off by another write to the special
register. A RAM can also be created in the data cache using the same locking mode and
a separate special register to allocate new lines with unique virtual addresses, instead of
fetching existing data. It is possible to clean, invalidate, or unlock individual cache lines in
the data cache, or all lines in the cache at once. Lines can also be allocated in advance of
stores, which avoid unnecessary data fetches. Lines can also be locked, unlocked, allocated,
cleaned and invalidate in the L2 cache using writes to different special registers. Set- or
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way-based invalidates of many L2 lines simultaneously are also possible. As with the L1
cache, software-managed RAM can be allocated and and deallocated in the L2 cache on a
line-by-line basis.

B.2.6 Academic and Research Proposals
Intel SCC: Flags cache lines with an “MBPT” bit in page table, then applies that marking

to all cache lines from that page, resulting in them being marked dirty. Dirty cache
lines interact correctly with the gets and puts to the message passing buffer. Provides
a per-core LookUp Table for mapping which addresses map to which memory space
(i.e. shared DRAM, private DRAM) [17].

Rigel: Rigel LPI supports cache management instructions, explicit software-controlled flushes
at the granularity of both the line and the entire cache, memory operations that bypass
local caches, and prefetch instructions [46].

VLS: Allocation of virtual local store regions via control registers [18].

Conditional Kill: Modifies the LRU position of block or evicts when a condition is met.
A cache line kill state is updated only if an access generated by the kill instruction
satisfies the cache line offset condition [43].

B.3 Future Directions
The following proposals are predicated on adding software cache control instructions as

extensions to RISC-V. These could be part of a language extension in support of DMA engine
accelerators, or their own separate extension. The primary question is which instructions
would be the most beneficial to add, and how the behavior they produce should be specified
by the programmer. For example, one possibility would be to evaluate the benefit conferred by
the specificity of cache control operations with respect to memory regions: What granularity
provides the most benefit for the least overhead?

A different direction would be to explore software-managed cache coherence. Coherence
between un-synchronized memory accesses is a useless property to provide programmers,
because the unpredictable behaviors of data races are often untenable to them, even if all the
possible runtime behaviors are well defined. By identifying synchronized operations and only
providing coherence for their target addresses, perhaps the amount of effort expended by the
hardware can be reduced. Such an approach demands a specification for software interaction
with some enhanced cache coherence protocol. Blocks in a software-managed state should
move when their thread migrates but remain stationary otherwise. Permissions checks on
them can be skipped. Such an approach may confer many of the same benefits as Virtual
Local Stores.

Because software has more information about the global state of the system, for example,
which threads are associated and where they have been scheduled, it may be possible to
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calculate tradeoffs that are inaccessable to reactive hardware mechanisms. For example, if
software is provided with a model of the cost of sending particular cache coherence messages
(i.e., how much more expensive it is to send data than to send acknowledgments over certain
distances), it may be able to make different scheduling decisions or manage the data placement
in a different way. Creating energy-based models and incorporating them into scheduling
decisions is a more sophisticated way of deploying software memory management.

A major concern with software-managed data is dealing with context switches. Future
studies must account for the overhead of adding software-managed data to the process’s
state. It is possible that this overhead could be mitigated by fast flush and restore operations
provided via DMA engines. The location and capabilities of DMA engines provided in SoC
systems is itself a fruitful area of design space exploration.

As we continue to follow the arc of application-specific approaches to energy efficiency,
software-based solutions tuned to particular algorithms are going to become increasingly
appealing. Past HPC and embedded architectures have focused on these sorts of capabilities
with good reason. Going forward, I expect that introducing heterogeneity into the memory
hierarchy by allowing programmers to opt in to when and where they explicity control data
movement will be highly effective at reducing overall energy per operation.
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