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Abstract 
 

For our dataset, we tried to collect data that includes accidents as well as diverse 
conditions described below. For data acquisition, we used YouTube to collect videos that have a 
Creative Commons License. For deduplication, first we split the videos into scenes, and then we 
used fingerprinting methods. Lastly, we created annotations on some of the scenes using Video 
Annotation Tool from Irvine, California (VATIC) software. The goal was to annotate every 
instance for each class: ‘cyclist’, ‘van’, ‘tram’, ‘car’, ‘misc’, ‘pedestrian’, ‘truck’, ‘person 
sitting’, and ‘dontcare’ as KITTI has done.  
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Chapter 1 
 

Introduction 
 

1.1 Background 
 
A large and diverse training data set can improve the accuracy of deep learning. To train 

a model for object detection in autonomous driving, the KITTI dataset [1] is used in most 
research; however, KITTI is a relatively small dataset. And it is towards many visual elements 
such as time of day and camera orientation; one needs only to look at few images from the data 
to recognize them as belonging to the KITTI dataset [6]. The problems we are attempting to 
solve from this dataset are to reduce its bias, increase its size, and add instances. Also, we 
believe our dataset can improve object detection on the KITTI test set by 5% (Moderate) and 
10% (Hard) by providing training data that are hard to recognize. In this paper, we present how 
to create such unbiased dataset with annotations. 
 

 
Figure 1: Recording zone. This figure shows the GPS traces of recordings in the metropolitan 

area of Karlsruhe, Germany. [3] 
 

1.2 Problems Addressed 
 

The improvements in our dataset include reducing its bias, improving its size, and adding 
examples. First, we tried to reduce its bias by collecting data from YouTube. Videos on 
YouTube are recorded under different lighting conditions, in different locations, and with 
different cameras. We also captured abnormal driving scenes that other datasets such as KITTI 
do not contain. We tried to include various driving scenes in unconstrained conditions. Our 
random YouTube sampling method also established sampling validity [2]. 
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Second, we tried to create a larger dataset than the KITTI dataset by providing more 
training images. The KITTI dataset uses only about 1 hour of video as training data. In our 
proposed dataset, we collected about 200 hours of video and provided annotations. 
 

Lastly, we tried to create a dataset that provides more instances that are hard to recognize. 
The KITTI dataset defines small or occluded instances as “hard” instances. We tried to obtain 
many of these samples in our proposed dataset. 
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Chapter 2 
 

Data Acquisition Methodology 
 

1.1 Sources 
 

YouTube is the main source for our proposed dataset. We chose it as our main source 
because we wanted to collect driving videos and to create images based on the videos and 
YouTube had the largest body of videos to select from. We used the following search terms to 
collect videos: “car crash compilation,” “cyclist dashcam,” “dashcam video,” “motorcycle 
dashcam,” “pedestrian car accidents,” and “pedestrian’s compilation.” We used these terms to 
collect videos that contain accident scenes recorded from the driver’s point of view, as does the 
KITTI dataset. We also only collected videos that had a Creative Commons license. 
 

1.2 Methodology 
 

First, we used the BeautifulSoup Python package to download the URL. This 
Python package allowed us to get URLs of videos in YouTube. Once the URL was downloaded 
in text file, youtube-dl was used to download the actual video without the sound content. 
Before we downloaded the video, we removed the URLs that appeared several times in the text 
file or that had a YouTube Standard license. 

 
1.3 Results 
 
We downloaded videos with a Creative Commons License only. Before we de-duplicated 

videos, we collected about 2,084 videos adding up to 152 GB.  

 
Figure 2: Examples from KITTI dataset 
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Figure 3: Examples from our dataset 

 
Sample images in Figure 2 and Figure 3 show differences between the KITTI dataset and our 
dataset. As one can see, the size and the quality of images in the KITTI dataset are exactly the 
same, and they were recorded only during the daytime. Figure 3 shows that our dataset consists 
of videos that were recorded at different times, in different locations, and with different cameras. 
Also, our dataset has regular driving scenes, and additionally it has many abnormal scenes as 
seen in Figure 3c and 3e. Many of our videos have crash scenes, as the two images in Figure 3 
show. 

 
Figure 4: Completely irrelevant images 

 
Figure 5: Unrealistic mark on image 
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The main problem with our dataset is that some videos contain totally irrelevant images, as 
Figure 4 shows. Another problem is that, as Figure 5 shows, some videos have marks drawn on 
scenes where accidents occurred. There will be more discussion about this in the Future Work 
section, but currently there is no good way to remove these videos from our dataset without 
manually filtering them out.  
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Chapter 3 
 

Deduplication of Data 
 
 

1.1 Problems Addressed 
 
Since we collected videos that had Creative Commons license, other users were free to 

include these videos in their compilation, and as a result many video segments were duplicated in 
multiple videos. One of the goals for our proposed dataset is to create annotations on instances 
using Amazon Mechanical Turk; however, it would be a waste of our resources to annotate 
videos that are essentially identical. Therefore, we first removed duplicated contents from our 
dataset using the fingerprinting method. The fingerprinting method uses images as hash values to 
check whether videos are identical. We explored parallel process for this method. 
 

1.2 Scene splitting 
 

 
Figure 6: Visual example of the parameters used in threshold mode for PySceneDetection [4]  

 
In order to remove duplicated contents from our dataset, we needed to split the videos 

first and remove replicated videos. We used PySceneDetection to slices videos into a 
several scenes. This Python package detects split points in a video, as shown in Figure 6. With 
given parameters, the algorithm detects the frame of a video where the mean pixel intensity of an 
image changes. Before we used the package, we converted frames per second of all videos to 20 
and resolution was set at 800 by 600. We used ffmpeg for conversion and stored them to 
videos-normalized directory. Once we sliced the videos into smaller clips of the videos, 
we were had 58,042 scene files total, or 85.17 GB of files. The total duration was 201.22 hours. 
They are stored in six different folders. More details can be found in README.  
 

1.3 Fingerprinting Method 
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Once we split the videos, we used a fingerprinting algorithm to determine the duplicated 
scenes. Each scene was divided into a series of images, and the fingerprinting algorithm for each 
image was converted into a hash value and checked to determine whether or not the value existed 
in the fingerprint.p file. The phash package converts an image into a hash value. It creates a 
hash value that is robust enough to deform the image. It does not create a different hash value for 
different pixel values of the same images. Using the package, we implemented an algorithm that 
counts how many images exist in the fingerprint.p file already; if it has too many similarities, 
then it is not included in our dataset.  

 

 
Figure 7: Simple fingerprinting algorithm for deduplication of video 

 
1.4 Parallel Process 

 

 
Figure 8: Scalable parallel deduplication process 

 
This deduplication process can be done in parallel, and it is also scalable, as Figure 8 shows. It is 
parallel because the de-duplication process for subsets of video can be done within the videos in 
the subset. Once the de-duplication process was done on these subsets, they were reduced and 
the fingerprint algorithm method was repeated on these videos. Lastly, it is scalable because 
creating a bigger dataset with new videos does not require comparing them to other videos. They 
can just use the final fingerprinting method and in that way extend the dataset.  
 
We developed the software architecture and implementation of our solution using the pattern-
based approached described in [10]. The most relevant structural pattern for our parallel 
deduplication process is MapReduce, where computations are mapped onto independent data 
sets. During the process, we first distributed videos images, and mapped the computation of hash 
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values of images. Computation in the fingerprinting process is a comparison between hash values 
of images and values in a fingerprint file. The most relevant computational pattern is the graph 
traversal computational pattern. At a reduced stage, the results of the map stage are summarized. 
 

1.5 Results 

 
Figure 9: Detailed description of final dataset 

 

 
 

Figure 10: Histogram for durations of all videos in each directory (Left: Before deduplication; 
Right: After deduplication) 

 
Figure 9 shows the final dataset structure.	After removing duplicate contents in our dataset, we 
were able to create a dataset of 23 GB in size and 45 hours in length with ~20,054 clips of video. 
Our dataset contained irrelevant videos such as shown in Figure 4. We manually watched over 
40 hours of video and removed irrelevant videos because there is no good way to remove these 
videos automatically. We additionally removed the following content:	

1. Videos with really low resolutions. 
2. Videos with too little variation. For an example, objects in video are not moving. 
3. Distorted videos. 
4. Videos displaying multiple scenes from different camera at the same time. 
5. Videos with too low or too high viewing angles. 
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Chapter 4 
 

VATIC 
 
 

1.1 Introduction 
 

For annotation, we used the VATIC (Video Annotation Tool from Irvine,  
California) software tool [11]. VATIC is a free video annotation tool for computer vision 
research that can run on Amazon Mechanical Turk.  
 

 
Figure 11: Annotation process using VATIC 

 
Figure 11 shows how VATIC creates annotations on video. First, a user annotates objects in two 
frames. Then, VATIC creates automatic annotations of the same objects on the frames between 
the two user-designated frames.  
 

1.2 Linear Interpolation 
 

 
Figure 12: Linear interpolation [8] 

VATIC performs linear interpolation. Figure 12 shows, linear interpolation process of VATIC. 
For an example, a user sets a point in frame 1 and frame 3, then VATIC automatically generates 
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a point in frame 2. If objects move nonlinearly, then VATIC does a poor job and a user needs to 
manually adjust the size and position of an annotation between two frames.  
 

1.3 Tracking Integration with OpenCV 
 
The main problem of VATIC is linear interpolation for creating annotation on video. Linear 
interpolation is inadequate for tracking non-linear behaviors of automobiles. A technical solution 
for the linear interpolation of VATIC is to implement tracking integration with OpenCV [9]. 
This is already implemented by John Doherty and it will show significant improvements in speed 
for the annotation of a video.  
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Chapter 5 
 

Annotation 
 

1.1 Annotation Methodology 
 

 
Figure 12: Annotation examples in KITTI dataset 

 
We used the same annotation rules as KITTI. We annotated the following classes on 

videos: ‘cyclist’, ‘van’, ‘tram’, ‘car’, ‘misc’, ‘pedestrian’, ‘truck’, ‘person_sitting’, and 
‘dontcare’.   
  

After we observed annotations in the KITTI dataset, we realized that KITTI annotates a 
person as “pedestrian” if the person is standing and visible on the images, regardless of where 
they are standing. If a person is visible and riding something that is neither a bicycle nor a 
motorcycle, we annotated that person as “misc.” It is ambiguous because KITTI does not have 
such an image and we might need to think about different rules. Some objects, such as deer in 
Figure 2, we annotated as “misc.” 
 

KITTI defines difficulties of its dataset for object detection as easy, moderate, or hard as 
follows [1]: 
Easy: Minimum bounding box height: 40 Pixels,  
Max. occlusion level: Fully visible. 
Max. truncation: 15%.  
Moderate: Min. bounding box height: 25 Pixels. 
Max. occlusion level: Partly occluded. 
Max. truncation: 30%.  
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Hard: Min. bounding box height: 25 Pixels  
Max. occlusion level: Difficult to see.  
Max. truncation: 50 %.” 
 

Objects in the KITTI dataset that have a minimum bounding box height less than 25 
pixels are labeled as “dontcare.” After finishing annotation using VATIC, we realized that it is 
not easy to annotate these “dontcare” instances. Also, if they are annotated by different people, 
then these “dontcare” objects might not really be reliable. It would be much more reliable and 
faster to annotate every instance and then change instances’ classes in the annotation file by 
using scripts. Also, if there are too many cars or objects, then there is a problem. As a result we 
are limited to up to a maximum of 15 cars and 30 pedestrians per image as in the KITTI dataset. 

To decide the most efficient workflow for Amazon Mechanical Turk, we timed how long 
annotation takes. Because VATIC supports only linear interpolation, it took more time. During 
annotation, we realized that often a camera shakes a lot during recording and linear interpolation 
does not help at all for these cases. 

For a more effective process, integration of tracking using OpenCV [7] can be used. 
Another problem that appeared when using VATIC is labeling objects that are occluded. It was 
hard to label objects when they were occluded because sometimes they start out occluded but 
then become fully visible later. Lastly, after a worker annotates instances in VATIC, somebody 
should check his or her work because sometimes instances are added and not labeled. 
 
   

 
Figure 13: Annotation examples in our dataset 

 
Using VATIC, on average annotating every instance in a clip (10~13 seconds, 300 

frames) takes about 23 minutes. Annotating one object in a video takes about 2 minutes, and a 
video clip generates about 300 images, which means we can annotate 300 instances in 2 minutes.  
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1.2 Results 
 
 

 
    Figure 14: Distribution of the number of instances within an image 

 
We were able to get 36,515 instances from 55 clips of video, which is 23,297 images. We have 
21,852 cars, 4,756 trucks, 3,808 pedestrians, 3,613 cyclists, 1,684 vans, 651 misc., and 151 
dontcares. 
 

Once annotation was done, a development package is needed for training on any 
machine-learning framework. A framework such as Caffe [11] uses the PASCAL format and 
VATIC allows a user to create PASCAL-formatted data. 
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Chapter 7 
 

Conclusion 
 

 
The purpose of this research was to investigate some of the key problems that must be 

solved to create a dataset consisting of images that simulate driving conditions. The KITTI 
dataset is currently used for this purpose but it is small in size and uniform with regard to visual 
elements such as time of day and camera orientation. We aimed to investigate the feasibility of 
creating a dataset with less bias and more diverse driving situations.  

 
Creating our dataset required us to consider many challenges that are common to creating 

a dataset for deep learning. First, once videos are collected from sources such as YouTube, many 
of them are duplicated. It was not possible to manually identify and remove all the duplicated 
video segments, even with multiple people. We resolved this issue by using a fingerprint method. 
We used images as the fingerprints of a file and found similarities among the videos. Bottlenecks 
due to serial work during the deduplication process was another technical problem we faced in 
constructing our dataset. As shown in Figure 8, instead of using a serial process, we divided 
videos into different directories and applied the deduplication in parallel. Using this process, we 
greatly reduced the number of hash-value comparisons for each image.  

 
To be useful for supervised deep learning, the data needs to be annotated. There are many 

ways to create annotations for images, but we employed a tool called VATIC. VATIC provides 
faster annotation methods for video by supporting linear interpolation between frames. However, 
it takes a lot of extra effort to label every instance in images. One of the contributions of this 
project was to get a good average estimate of annotation time for this dataset. Using VATIC, on 
average, annotating every instance in a clip (10~13 seconds, 300 frames) takes about 23 minutes. 
Annotating one object in a video takes about 2 minutes, and a video clip generates about 300 
images, which means we can annotate 300 instances in 2 minutes.  

 
 
The results of this project enable subsequent researchers to estimate the effort to 

implement the amount of raw data, human effort, and computing resources needed to create a 
dataset for computer vision problems associated with self-driving cars. We also presented a 
solution to one of the key technical problems to be addressed, the elimination of duplicated data.   
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