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Solving for Minimum Energy Structures with Neural Networks 

Brian Barch and Norman Tubman 

Abstract 

In this paper, we train a neural network on atomic configurations to predict energy as a function of atom 
position, then use this neural network to perform optimization to solve for minimum energy atomic 
configuration. This is a problem of interest because it could potentially provide a boost to both accuracy 
and speed over traditional numeric methods of solving for the structure of molecules. Previous papers 
have shown that neural networks trained on the results of numerical simulations can reproduce those 
results to high accuracy. We construct one such neural network and experiment with new methods of 
optimizing its parameters, then use it as a function to optimize in order to find the minimum energy 
configuration for a systems of a few homonuclear atoms. The results are promising, with our neural 
network accuracy beating that of the baseline neural network for the problem, and the minimization 
results showing an improvement over the data the neural network was trained on. 

1. Introduction 

Simulating atomic systems is a problem of interest to physicists because it has applications to many other 
fields, such as protein folding, solving for crystal structure, and predicting phase transitions. A key tool in 
atomic simulation is the calculation of system energy as a function of atomic positions, known as a 
potential energy surface (PES). Forces calculated from the gradient of the PES can be used to simulate 
molecular dynamics, or the PES can be optimized over to find the minimal energy structures the 
configuration would realistically settle into.  

Classically, mapping from atomic position to energy is a straightforward task, requiring only direct 
interactions between particles. In quantum mechanics however, the existence of electron wavefunctions 
complicate the calculation. In order to fully calculate the quantum mechanical energy of an atomic 
configuration, one would need to fully solve for the three-dimensional wavefunction of each electron 
from Schrödinger’s equation, a task not possible analytically. Quantum chemistry methods such as 
Quantum Monte Carlo (QMC) approximate these wavefunctions numerically to high accuracy, but are 
slow and have poor computational complexity scaling in the number of atoms in the system. Classical 
potentials are a faster but less accurate which are also incapable of predicting purely quantum phenomena, 
such as photosynthesis. A middle ground between the two extremes is struck by Density functional 
Theory (DFT). DFT defines a map known as a density functional from electron density to system energy, 
and uses numerical iterations to approximate both the electron density and the PES.  

Though DFT is useful in general, it is often necessary researchers to reproduce QMC and DFT accuracies 
on larger atomic systems and with faster speeds, to allow larger simulations to complete within realistic 
timeframes. Neural Networks (NNs) have emerged as a possible solution to this. NNs trained to predict 
system energy from atomic coordinate have been shown to be able to reproduce the PESs generated by 
DFT and QMC calculations to high accuracy [1]. Because these NNs are simple and feed-forward, once 
trained they are capable of quickly predicting for large numbers of atoms without the need for successive 
iterations. This allows the simulation of processes that would not otherwise be possible, such as 
determining the effect of Van der Waals interactions on the freezing of water [2]. Furthermore, one can 
analytically derive the gradient of energy with respect to atomic coordinate from a NN, which can be used 
to find forces on the atoms or for minimization of energy. While this is also possible with DFT 



calculations, QMC produces only discrete predictions of energy from atomic position – predictions of 
forces from QMC data have relatively poor accuracy [3]. Since NNs are capable of reproducing a PES to 
higher accuracy than DFT, it is believed that NNs trained on QMC data could then be used for accurate 
calculation of gradients, allowing fast and more accurate simulation and energy minimization than would 
otherwise be possible.  

2. Related Work 

An introduction and overview to the use of NNs to construct PESs is provided by J. Behler, in [1]. This 
paper includes a review of the prediction accuracies of NN models on various atomic systems. While in 
[1], Behler discusses the use of NNs for a number of different types of systems (e.g. molecule on surface), 
this present paper is restricted to atoms in a 3D periodic environment. In [4], Behler goes further into 
detail on the NN structure, as well as providing a full description of how atomic coordinates are featurized 
through the use of symmetry functions. [4] also describes the particular symmetry functions used in the 
present paper. 

An example of the application of NNs to molecular simulation can be seen in [2], in which Moriavietz et. 
al. use NNs trained on DFT data from density functionals with and without Van der Waals interactions to 
compare the accuracies of those functionals in estimating the melting point of water. A method of solving 
for minimum energy structure from QMC data is demonstrated by L. Wagner and J. Grossman in [3] 
using a quadratic fit model. It is believed that by using a NN described in [1] and [2] rather than a 
quadratic fit model, the results of [4] can be improved upon.  

Aenet [5-8] provides a NN package that implements the NN structure described in [1] and [2], and allows 
one to calculate gradients from the predicted PES for simulation and minimization. Aenet served as the 
baseline to which results in this paper could be compared.  

QuantumEspresso [9, 10] provides an environment in which DFT energies of configurations can be 
calculated and molecular dynamics simulations run. It was used to generate data for minimization and to 
evaluate the results. Data for the training of symmetry function parameters was generated by N. Tubman, 
et. al. in [11] using QMC, then augmented with more data generated using Aenet.  

3. Neural Network and Symmetry Functions 

To train a NN to predict a PES for an atomic system, data consisting of atomic configurations and 
associated energies must first be generated either by experiment or numerical methods. Though ultimately 
our goal is to reproduce QMC results with NNs, at present we have only used DFT generated data. Prior 
to training, atomic configurations are featurized through what are known as symmetry functions [1, 4, 7], 
which represent the local environment of each atom as a distinct vector. The NN can then be trained on 
these vectors to predict the PES.  

3.1 Atomic Neural Networks 

The NN structure used for predicting PESs is known as the atomic neural network structure [1,4]. While it 
is feasible to train a fully connected NN on the interatomic distances for configurations of a few atoms 
[1], better accuracy is achieved for larger systems by first representing each atom’s local environment as a 
vector, then training a sub-NN known as an atomic neural network to predict the energy of a single atom 
at a time given that atom’s vector [1,4]. A full configuration of atoms is reexpressed as a set of atom 
vectors, individual atomic energies calculated, and atomic energies summed to get the total energy of the 



system. The total energy is what is used to calculate loss and gradients. This structure is shown 
conceptually in Fig 1. 

Atomic NNs representing the same atom species share weights and are updated each iteration as one. In 
this way a single sample of 50 atoms will be trained on as if it is 50 samples of single atoms in unique 
environments, both reducing the dimensionality of the NN input and increasing the effective number of 
training samples. Furthermore, the structure avoids overfitting to the training data by restricting the NN to 
treat all atoms of the same species equally, as well as reducing the number of trained parameters of the 
NN. For the purpose of this paper only a single atom species was used for each dataset, so the entire NN 
can be thoughts of as many applications of a single atomic NN.  

3.2 Symmetry Functions 

The vector expression of atomic environment occurs through symmetry functions. Symmetry functions 
are nonlinear differentiable functions of interatomic distances and angles that represent an atom’s local 
environment in a form invariant under symmetries of the system. Such symmetries include total system 
shifts, rotation, index swaps, and other transformations that do not affect total system energy. The form of 
the symmetry functions used in this paper is the same as that of [2], and displayed in Fig 2 for clarity. 

Symmetry functions are nonlinear in both their parameters as well as in input distances and angles, so 
multiple of the same type of symmetry function with different parameters can provide a more complex 
description of atomic environment. Though not an orthogonal nor complete representation of the system, 
symmetry functions as NN input have fared better than either raw atomic coordinates or interatomic 
distances and angles in our experiments. The symmetry functions used here all include a cutoff function. 
This ensures that they represent only local atomic environment, which is the primary contribution to the 
atom’s individual energy. This also makes the computational complexity of calculating symmetry 

Fig 1. The NN structure described by J. Behler[1, 2]. The initial atomic coordinates R are 
reexpressed as vectors of symmetry functions G, one for each atom. Each vector is fed into an 
atomic NN to predict the energy of that atom. These are then summed to get the total energy. 
Diagram from [4]. 



function values scale only with atom density of the system rather than total size, allowing efficient 
featurization of large systems. 

3.3 Implementation 

We implemented the atomic NN structure using the Keras [12] wrapper for the Theano [13] deep learning 
Python library. The model used is shown in Fig 3. This model was implemented as a form of 1D 
convolutional NN, with atom index as the dimension and each symmetry function input on a separate 
input channel. The NN used width 1 convolution filters with tanh activations functions, as opposed to 
having separate atomic NNs constrained to share weights. This allowed the NN to utilize GPU 
optimization for convolution via the CuDNN package [16], leading to a large speedup in training and 
prediction. As the atom positions along the 1D input have no spatial significance, using more than width 1 
convolutional filters would only lead to potential overfitting to training data. The number of convolutional 
layers used in our tests ranged from 2 to 4 with varying widths (in this context, number of filters). The 
final layer is a fully connected layer with weights 1 and bias 0 which effectively sums the atomic energies 
into a single total system energy. 

Rather than inputting preprocessed symmetry function vectors, our model uses a symmetry function layer, 
which calculates them efficiently using tensor algebra and outputs a vector of values for each atom. The 
values are then batch normalized before being trained on. Similar to the convolutional layers, the 
symmetry function layer inputs 1D inputs with multiple channels, where in this case each channel 
corresponds to a different interatomic distance or angle. Since angles occur between triplets of atoms, the 
interatomic angle input takes in 2 dimensions of channels. Though the layer could be removed to allow 
training on preprocessed symmetry functions, it was kept in order to speed up the energy minimization 
step, which requires the symmetry function values to be recalculated many times.  

The symmetry function layer is the most complicated part of the NN. Since we used 5 different types of 
symmetry function for this project, the symmetry function layer could not be a single operation. Instead, 
the layer stores a generic form of each symmetry function, as well a set of tensors, each representing a 
single parameter belonging to a single function. The generic function forms take these parameter tensors 
as well as the interatomic distances and angles as input. Whereas symmetry function parameters are 

Fig 2. Symmetry functions used for this problem. Gi means that the function is representing 
atom i, Rij refers to the interatomic distance between atoms i and j, and Өijk refers to the 
interatomic angle between atoms i, j, and k. The cutoff function fc is not itself a symmetry 
function, but ensures that they represent local atomic environment and reduces overall 
complexity. Equations from Behler, 2011 [4].  



normally taken to be hyperparameters and held constant for the NN, this implementation allows them to 
be backpropogated to and trained in the same way that weights are. 

4. Training Symmetry Functions 
 
Normally, symmetry function parameters are be hand-picked and treated as hyperparameters. As this is 
unlikely to be optimal, we experimented with optimizing symmetry function parameters using this 
symmetry function layer.  

The dataset used for this part of the project was composed of previously generated configurations of 54 
hydrogen atoms. An initial 300 samples were produced using QMC as part of [11], then molecular 
dynamics simulations run at various temperatures and pressures using Aenet to produce 8 sets of around 
3000 samples each. The large number of atoms in each sample is representative of the sort of system in 
which symmetry functions are most important for the neural network.  

When training neural networks, 10% of the training data was set aside as a validation set. Our model was 
able to beat Aenet on most of the hydrogen datasets when symmetry function parameter was taken to be 
constant. The validation mean squared error (MSE) results are shown in table 1. The training errors were 
similar – neither neural network overfit significantly more or less than the other.   
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Fig 3. The NN structure used for this project. Vertical bars represent 1D sets of vectors, where 
each bar is a different channel.  



 

Validation MSE in eV across datasets 
dataset Aenet My baseline 

1 0.007309956 0.09202399804 
2 0.01832676 0.01052646236 
3 0.01914833 0.01644411056 
4 0.01831 0.01276252275 
5 0.01335939 0.004068367951 
6 0.01230004 0.01672198484 
7 0.02461408 0.01878864564 
8 0.02553824 0.01870936943 

Avg 0.0173633495 0.0237556827 
Avg w/o set 1 0.01879954857 0.01400306622 

median 0.01831838 0.0165830477 

The triple sum over angles needed to calculate symmetry functions G4 and G5 made these functions 
exceedingly inefficient to train, to the point where we were unable to fully train them. We were only able 
to gather data for training the parameters of the first 3 types of symmetry functions. While our 
calculations with Aenet and untrained symmetry functions all used a set of 36 symmetry functions of 
types G2 and G5, the neural networks with trained functions instead used a set of 24 from G1, G2, and G3. 

Since the model with trained symmetry functions was not able to incorporate and angle information from 
the dataset, its accuracy was worse than our baseline model.  However, trained symmetry functions 
performed better than untrained symmetry functions when given the same initial function types and 
parameters. Allowing symmetry functions to be trained rather than fixed led to lower MSE, as well as 
faster convergence and less overfitting. For good initialization, trained symmetry functions achieved a 
training set MSE of around 10% lower than untrained symmetry functions, with larger decrease on the 
validation set. However, when initialization or hyperparameters were worse, training symmetry functions 
led to a larger decrease in MSE. Interestingly, enabling the training of symmetry functions had purely 
beneficial effects across all cases it was tested. This is as opposed to adding an extra fully connected NN 
layer, which can often make convergence more difficult or increase overfitting. The fact that we were able 
to increase the number of trainable parameters while decreasing overfitting implies that the NN is in fact 
learning a better representation of local atomic environment, as was the goal of training symmetry 
function parameters. Training symmetry function parameters was slow, and was only implemented on a 
single hydrogen dataset. Plots of the training on this dataset showing the faster convergence and less 
overfitting are shown in Fig 4.  

Interpretation of what the symmetry function layer learned during training is more difficult. Learned 
parameters tended to fall into one of two categories. While most parameters stayed very close to their 
initial value, some drifted far and ended up close to other initial values provided for that parameter, 
sometimes skipping over intermediate initial values along the way. This implies that training the NN 
weights creates sorts of local minima in loss near the initial parameter values, causing what parameters 

Table 1: MSE in eV of Aenet and our NN without trained 
symmetry functions on the Hydrogen datasets. Our NN did 
better on the majority of the datasets but very poorly on the 
first due to an implementation issue with the data. 



that do escape their own local minima to eventually fall into another one. Having multiple symmetry 
functions with similar parameters is not inherently harmful, but it is presumably less useful than having a 
wider variety of symmetry functions would be. Ultimately, NNs with trained symmetry functions 
restricted to distance were not able to exceed the accuracy of those incorporating angular dependence, so 
the NNs used for minimization did not incorporate symmetry functions training.  

5. Solving for Minimum Energy Structures 

Once an NN is trained on DFT data, it can be used as a function to minimize to find the minimum energy 
structure. We carried out this minimization using the SciPy optimize library, with the lowest energy 
sample configuration taken as a starting point. Ideally this minimization would use energy gradient 
information calculated analytically from the NN, but we were unable to extract the gradient from the 
Keras NN structure. Instead, the optimization used a numerically calculated gradient. This led to 
numerical limitations in flat areas, which it is possible affected the final results of minimization. 

In order to simplify the PES being minimized over, we used different datasets for this part of the project. 
For this part, we generated new 2, 3, 4, and 5 atom datasets using DFT through the QuantumEspresso 
Pwscf package on the Bridges supercomputer [14, 15]. The configurations were generated by molecular 
dynamics simulations run at 1000 F in 3D boxes with periodic boundary conditions. Each time step was 
taken to be a new configuration. In this way the configurations used to train the NN were representative 
of the configurations the atoms could potentially take in reality. The alternative method of generating data 
is randomly generating atomic configurations, which when tested caused the NN to try to fit unrealistic 
energies and harmed its overall accuracy. The energies calculated for each configuration are total energies 
of that specific time step assuming stationary atoms. That is, they include the potential and kinetic energy 
of all relevant electrons and potential energy of nuclei, but not the kinetic energy of nuclei.   

Prior to training, the data is preprocessed by calculating interatomic distances and angles from 
coordinates. In the Aenet model, symmetry function values are also preprocessed since they are taken as 
constant for a dataset. That was unnecessary for the NN used for this project due to the NN’s included 
symmetry function layer. Configurations with energy two standard deviations above the mean were also 
removed from the training and validation datasets during preprocessing. These points tended to 

MSE 
(eV) 

Fig 4: Loss during training for a NN with static symmetry function parameters (left) and 
with trainable symmetry function parameters (right). Training MSE (red) and validation 
MSE (blue) are measured in eV. We used 8 each of G1, G2, and G3 for this.  



correspond to the first few time steps of molecular dynamics, where the atoms often began in unrealistic 
positions (such as too close together) that they quickly were forced out of. 

There are a number of ways to evaluate the results, including measuring NN accuracy directly, 
qualitatively looking at the PES generated by the NN, and evaluating the results of the final minimization 
process.  

5.1 NN accuracy 

The mean squared error (MSE) of the NN used in this paper on the 3, 4, and 5 atom datasets was 
compared to that of Aenet, which was taken to be the baseline. The results are shown in Table 2. The NN 
used in this paper outperformed Aenet, even with the same numbers of layer and nodes. The reason for 
this is unclear since the two NN models are fundamentally the same – it is possible the difference is due 
to difference in optimizer or even normalization. While Aenet uses the L-BFGS-D [8] optimizer, the NN 
used in this paper was trained with RMSprop. It is also possible that representing the atomic NN as a 
convolutional NN structure increased the accuracy, potentially because NN packages are well trained to 
work with convolutional NNs. Indeed, we noticed a large improvement in NN error after switching from 
separate atomic NNs to a convolutional NN in our own model.  

Comparing the accuracy of NNs between papers is difficult, as different systems will lead to different 
distributions of energy data, and different final NN errors. That being said, the NN used here has lower 
error than nearly all of the NNs used for similar problems in [1]. A large part of this difference is likely 
due to the fact that the datasets used here contained only a single atom species, while those listed in [1] 
generally have at least 2 atom species. 

5.2 PES visualization 

The PES predicted by a NN can be thought of as a surface in n-dimensional space. In a 2 atom system, the 
only coordinate that matters is interatomic distance. This makes the PES easy to visualize, since it is a 
function of a single variable. Such as constructed PES for a 2 atom system is plotted in Fig 5a. For larger 
numbers of atoms the PES becomes a function of multiple variables, making it more difficult to visualize. 

 MSE (eV) 

  3 atom 4 atom 5 atom 

NN structure  train val train val train val 

15t-15t 

This NN 1.13E-04 1.30E-04 5.67E-04 8.30E-04 6.10E-04 7.31E-04 

Aenet 1.76E-04 2.50E-04 8.36E-04 1.20E-03 1.56E-03 2.33E-03 

30t-30t 

This NN 9.94E-05 1.19E-04 3.76E-04 4.13E-04 4.28E-04 6.28E-04 

Aenet 1.85E-03 2.45E-03 6.37E-04 1.15E-03 1.51E-03 2.40E-03 

40t-20t-20t-10t 

This NN 6.49E-05 7.15E-05 1.07E-04 4.92E-04 2.23E-04 4.49E-04 

Aenet 3.58E-04 4.15E-04 1.81E-03 2.21E-03 1.65E-03 2.26E-03 

Table 2. A comparison of the NN used in this paper and Aenet for various structures and 
datasets. The structure is represented as layers with dashes between them. The number for 
each layer is the number of nodes in it, while the t refers to a tanh activation function.   



If one chooses a shape for the atoms to take, the PES can be plotted for that shape at various sizes. This is 
done for a 3 atom equilateral triangle in Fig 5b and a 4 atom tetrahedron in Fig 5c.  

The 2 atom PES can be seen to clearly fit the DFT data, though the data’s own noise complicates the fit. 
The reason for the noise is unclear – the problem did not occur in other systems. The 3 atom PES seems 
to lower bound the DFT data – presumably this is because the equilateral triangle is near the minimum 
energy shape at any size, making it the lower bound of energy at each size. In the 4 atom system, one gets 
the impression that the tetrahedron is not the minimum energy shape at all. In this case and in higher 
dimensions, attempting to visualize the PES becomes less fruitful.   

5.3 Minimization results 

In order to evaluate the NN PES minimization, the configuration predicted by the minimization process 
were used as input for a “relax” DFT calculation in QuantumEspresso, which first calculates the energy of 
those configurations using DFT, then minimizes from there to return the true (to DFT) minimum energy 
of the system. The results are shown in Table 3. 

It would be unrealistic to expect the NN to generate the exact same minimum energy configuration as 
DFT, but from the results one can see that the NN predicted and DFT predicted configurations are in fact 
quite close energetically, especially in the 3 atom case, in which the energy difference is around 3E-6 eV. 
It is also worth noting that the true energy of all predicted configurations is below the lowest energy that 

5a 
5b 

5c 

Fig 5. Plots of the predicted PES (red) and DFT data 
(black) for (a) 2 atoms, (b) 3 atoms, and (c) 4 atoms. The 
vertical axis is system energy, measured in eV, while the 
horizontal axis is average interatomic distance, measured 
in Bohr radii. For b and c, a guess at minimum energy 
shape is taken and scaled to various sized to create the 
shown line.  



the NN was trained on. This means that the NN has in fact improved upon the DFT data on which it was 
trained – a task that would not be possible with linear interpolation, for example. This is promising, 
because it implies that if the NN were then retrained on DFT data closer to the minima, it would then be 
able to further improve on its results. Our previous tests have shown that such an iterative method does 
tend to yield improving results each iteration on simpler datasets. If QMC data were used for this rather 
than DFT, this method could prove a more accurate way of calculating the minimum energy configuration 
than is currently possible. 

6 Conclusion and Future Directions 

It has only been applied to homonuclear configurations so far, but the NN used in this paper has shown 
promising results both in terms of predictive accuracy and for minimization. Though we were unable to 
train the most useful symmetry functions for this application, it is possible other applications will require 
different symmetry functions, potentially ones that are better suited for training. The next step in this 
project will be to train the NN on multiple species of atoms. In particular, the H2O-OH- is of interest 
because we will be able to compare the minimization results of our NN to those in [3]. Should the NN 
minimization process be able to outperform these results, it will be a step forward in the field of solving 
minimum energy configurations.  

 

  

 Energy (eV) 

 3 atom 4 atom 5 atom 

Lowest energy in training data -197.60435 -263.53322 -329.45373 

Minimum energy predicted by NN -197.61155 -263.57965 -329.48131 

DFT energy of NN predicted minima -197.609017 -263.53796 -329.45888 

DFT energy of DFT predicted minima -197.60902 -263.55450 -329.49146 

Table 3.  Energy values associated with the lowest energy configuration in the training 
data, the lowest energy predicted possible by the NN, the true energy of the NN-
predicted minima, and the true energy of the true minimal energy configuration. 
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