
Solving Minimum Energy Structures with Neural Networks

Brian Barch
Norman Tubman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-104
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-104.html

May 12, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Solving for Minimum Energy Structures with Neural Networks

Brian Barch and Norman Tubman

Abstract

In this paper, we train a neural network on atomic configurations to predict energy as a function of atom
position, then use this neural network to perform optimization to solve for minimum energy atomic
configuration. This is a problem of interest because it could potentially provide a boost to both accuracy
and speed over traditional numeric methods of solving for the structure of molecules. Previous papers
have shown that neural networks trained on the results of numerical simulations can reproduce those
results to high accuracy. We construct one such neural network and experiment with new methods of
optimizing its parameters, then use it as a function to optimize in order to find the minimum energy
configuration for a systems of a few homonuclear atoms. The results are promising, with our neural
network accuracy beating that of the baseline neural network for the problem, and the minimization
results showing an improvement over the data the neural network was trained on.

1. Introduction

Simulating atomic systems is a problem of interest to physicists because it has applications to many other
fields, such as protein folding, solving for crystal structure, and predicting phase transitions. A key tool in
atomic simulation is the calculation of system energy as a function of atomic positions, known as a
potential energy surface (PES). Forces calculated from the gradient of the PES can be used to simulate
molecular dynamics, or the PES can be optimized over to find the minimal energy structures the
configuration would realistically settle into.

Classically, mapping from atomic position to energy is a straightforward task, requiring only direct
interactions between particles. In quantum mechanics however, the existence of electron wavefunctions
complicate the calculation. In order to fully calculate the quantum mechanical energy of an atomic
configuration, one would need to fully solve for the three-dimensional wavefunction of each electron
from Schrödinger’s equation, a task not possible analytically. Quantum chemistry methods such as
Quantum Monte Carlo (QMC) approximate these wavefunctions numerically to high accuracy, but are
slow and have poor computational complexity scaling in the number of atoms in the system. Classical
potentials are a faster but less accurate which are also incapable of predicting purely quantum phenomena,
such as photosynthesis. A middle ground between the two extremes is struck by Density functional
Theory (DFT). DFT defines a map known as a density functional from electron density to system energy,
and uses numerical iterations to approximate both the electron density and the PES.

Though DFT is useful in general, it is often necessary researchers to reproduce QMC and DFT accuracies
on larger atomic systems and with faster speeds, to allow larger simulations to complete within realistic
timeframes. Neural Networks (NNs) have emerged as a possible solution to this. NNs trained to predict
system energy from atomic coordinate have been shown to be able to reproduce the PESs generated by
DFT and QMC calculations to high accuracy [1]. Because these NNs are simple and feed-forward, once
trained they are capable of quickly predicting for large numbers of atoms without the need for successive
iterations. This allows the simulation of processes that would not otherwise be possible, such as
determining the effect of Van der Waals interactions on the freezing of water [2]. Furthermore, one can
analytically derive the gradient of energy with respect to atomic coordinate from a NN, which can be used
to find forces on the atoms or for minimization of energy. While this is also possible with DFT

calculations, QMC produces only discrete predictions of energy from atomic position – predictions of
forces from QMC data have relatively poor accuracy [3]. Since NNs are capable of reproducing a PES to
higher accuracy than DFT, it is believed that NNs trained on QMC data could then be used for accurate
calculation of gradients, allowing fast and more accurate simulation and energy minimization than would
otherwise be possible.

2. Related Work

An introduction and overview to the use of NNs to construct PESs is provided by J. Behler, in [1]. This
paper includes a review of the prediction accuracies of NN models on various atomic systems. While in
[1], Behler discusses the use of NNs for a number of different types of systems (e.g. molecule on surface),
this present paper is restricted to atoms in a 3D periodic environment. In [4], Behler goes further into
detail on the NN structure, as well as providing a full description of how atomic coordinates are featurized
through the use of symmetry functions. [4] also describes the particular symmetry functions used in the
present paper.

An example of the application of NNs to molecular simulation can be seen in [2], in which Moriavietz et.
al. use NNs trained on DFT data from density functionals with and without Van der Waals interactions to
compare the accuracies of those functionals in estimating the melting point of water. A method of solving
for minimum energy structure from QMC data is demonstrated by L. Wagner and J. Grossman in [3]
using a quadratic fit model. It is believed that by using a NN described in [1] and [2] rather than a
quadratic fit model, the results of [4] can be improved upon.

Aenet [5-8] provides a NN package that implements the NN structure described in [1] and [2], and allows
one to calculate gradients from the predicted PES for simulation and minimization. Aenet served as the
baseline to which results in this paper could be compared.

QuantumEspresso [9, 10] provides an environment in which DFT energies of configurations can be
calculated and molecular dynamics simulations run. It was used to generate data for minimization and to
evaluate the results. Data for the training of symmetry function parameters was generated by N. Tubman,
et. al. in [11] using QMC, then augmented with more data generated using Aenet.

3. Neural Network and Symmetry Functions

To train a NN to predict a PES for an atomic system, data consisting of atomic configurations and
associated energies must first be generated either by experiment or numerical methods. Though ultimately
our goal is to reproduce QMC results with NNs, at present we have only used DFT generated data. Prior
to training, atomic configurations are featurized through what are known as symmetry functions [1, 4, 7],
which represent the local environment of each atom as a distinct vector. The NN can then be trained on
these vectors to predict the PES.

3.1 Atomic Neural Networks

The NN structure used for predicting PESs is known as the atomic neural network structure [1,4]. While it
is feasible to train a fully connected NN on the interatomic distances for configurations of a few atoms
[1], better accuracy is achieved for larger systems by first representing each atom’s local environment as a
vector, then training a sub-NN known as an atomic neural network to predict the energy of a single atom
at a time given that atom’s vector [1,4]. A full configuration of atoms is reexpressed as a set of atom
vectors, individual atomic energies calculated, and atomic energies summed to get the total energy of the

system. The total energy is what is used to calculate loss and gradients. This structure is shown
conceptually in Fig 1.

Atomic NNs representing the same atom species share weights and are updated each iteration as one. In
this way a single sample of 50 atoms will be trained on as if it is 50 samples of single atoms in unique
environments, both reducing the dimensionality of the NN input and increasing the effective number of
training samples. Furthermore, the structure avoids overfitting to the training data by restricting the NN to
treat all atoms of the same species equally, as well as reducing the number of trained parameters of the
NN. For the purpose of this paper only a single atom species was used for each dataset, so the entire NN
can be thoughts of as many applications of a single atomic NN.

3.2 Symmetry Functions

The vector expression of atomic environment occurs through symmetry functions. Symmetry functions
are nonlinear differentiable functions of interatomic distances and angles that represent an atom’s local
environment in a form invariant under symmetries of the system. Such symmetries include total system
shifts, rotation, index swaps, and other transformations that do not affect total system energy. The form of
the symmetry functions used in this paper is the same as that of [2], and displayed in Fig 2 for clarity.

Symmetry functions are nonlinear in both their parameters as well as in input distances and angles, so
multiple of the same type of symmetry function with different parameters can provide a more complex
description of atomic environment. Though not an orthogonal nor complete representation of the system,
symmetry functions as NN input have fared better than either raw atomic coordinates or interatomic
distances and angles in our experiments. The symmetry functions used here all include a cutoff function.
This ensures that they represent only local atomic environment, which is the primary contribution to the
atom’s individual energy. This also makes the computational complexity of calculating symmetry

Fig 1. The NN structure described by J. Behler[1, 2]. The initial atomic coordinates R are
reexpressed as vectors of symmetry functions G, one for each atom. Each vector is fed into an
atomic NN to predict the energy of that atom. These are then summed to get the total energy.
Diagram from [4].

function values scale only with atom density of the system rather than total size, allowing efficient
featurization of large systems.

3.3 Implementation

We implemented the atomic NN structure using the Keras [12] wrapper for the Theano [13] deep learning
Python library. The model used is shown in Fig 3. This model was implemented as a form of 1D
convolutional NN, with atom index as the dimension and each symmetry function input on a separate
input channel. The NN used width 1 convolution filters with tanh activations functions, as opposed to
having separate atomic NNs constrained to share weights. This allowed the NN to utilize GPU
optimization for convolution via the CuDNN package [16], leading to a large speedup in training and
prediction. As the atom positions along the 1D input have no spatial significance, using more than width 1
convolutional filters would only lead to potential overfitting to training data. The number of convolutional
layers used in our tests ranged from 2 to 4 with varying widths (in this context, number of filters). The
final layer is a fully connected layer with weights 1 and bias 0 which effectively sums the atomic energies
into a single total system energy.

Rather than inputting preprocessed symmetry function vectors, our model uses a symmetry function layer,
which calculates them efficiently using tensor algebra and outputs a vector of values for each atom. The
values are then batch normalized before being trained on. Similar to the convolutional layers, the
symmetry function layer inputs 1D inputs with multiple channels, where in this case each channel
corresponds to a different interatomic distance or angle. Since angles occur between triplets of atoms, the
interatomic angle input takes in 2 dimensions of channels. Though the layer could be removed to allow
training on preprocessed symmetry functions, it was kept in order to speed up the energy minimization
step, which requires the symmetry function values to be recalculated many times.

The symmetry function layer is the most complicated part of the NN. Since we used 5 different types of
symmetry function for this project, the symmetry function layer could not be a single operation. Instead,
the layer stores a generic form of each symmetry function, as well a set of tensors, each representing a
single parameter belonging to a single function. The generic function forms take these parameter tensors
as well as the interatomic distances and angles as input. Whereas symmetry function parameters are

Fig 2. Symmetry functions used for this problem. Gi means that the function is representing
atom i, Rij refers to the interatomic distance between atoms i and j, and Өijk refers to the
interatomic angle between atoms i, j, and k. The cutoff function fc is not itself a symmetry
function, but ensures that they represent local atomic environment and reduces overall
complexity. Equations from Behler, 2011 [4].

normally taken to be hyperparameters and held constant for the NN, this implementation allows them to
be backpropogated to and trained in the same way that weights are.

4. Training Symmetry Functions

Normally, symmetry function parameters are be hand-picked and treated as hyperparameters. As this is
unlikely to be optimal, we experimented with optimizing symmetry function parameters using this
symmetry function layer.

The dataset used for this part of the project was composed of previously generated configurations of 54
hydrogen atoms. An initial 300 samples were produced using QMC as part of [11], then molecular
dynamics simulations run at various temperatures and pressures using Aenet to produce 8 sets of around
3000 samples each. The large number of atoms in each sample is representative of the sort of system in
which symmetry functions are most important for the neural network.

When training neural networks, 10% of the training data was set aside as a validation set. Our model was
able to beat Aenet on most of the hydrogen datasets when symmetry function parameter was taken to be
constant. The validation mean squared error (MSE) results are shown in table 1. The training errors were
similar – neither neural network overfit significantly more or less than the other.

Batch
normalization

Sum of atomic
energies

D

ѳ

Preprocess

Atoms

NN

Sym. Func.
Layer Conv layers

Ê +

Fig 3. The NN structure used for this project. Vertical bars represent 1D sets of vectors, where
each bar is a different channel.

Validation MSE in eV across datasets
dataset Aenet My baseline

1 0.007309956 0.09202399804
2 0.01832676 0.01052646236
3 0.01914833 0.01644411056
4 0.01831 0.01276252275
5 0.01335939 0.004068367951
6 0.01230004 0.01672198484
7 0.02461408 0.01878864564
8 0.02553824 0.01870936943

Avg 0.0173633495 0.0237556827
Avg w/o set 1 0.01879954857 0.01400306622

median 0.01831838 0.0165830477

The triple sum over angles needed to calculate symmetry functions G4 and G5 made these functions
exceedingly inefficient to train, to the point where we were unable to fully train them. We were only able
to gather data for training the parameters of the first 3 types of symmetry functions. While our
calculations with Aenet and untrained symmetry functions all used a set of 36 symmetry functions of
types G2 and G5, the neural networks with trained functions instead used a set of 24 from G1, G2, and G3.

Since the model with trained symmetry functions was not able to incorporate and angle information from
the dataset, its accuracy was worse than our baseline model. However, trained symmetry functions
performed better than untrained symmetry functions when given the same initial function types and
parameters. Allowing symmetry functions to be trained rather than fixed led to lower MSE, as well as
faster convergence and less overfitting. For good initialization, trained symmetry functions achieved a
training set MSE of around 10% lower than untrained symmetry functions, with larger decrease on the
validation set. However, when initialization or hyperparameters were worse, training symmetry functions
led to a larger decrease in MSE. Interestingly, enabling the training of symmetry functions had purely
beneficial effects across all cases it was tested. This is as opposed to adding an extra fully connected NN
layer, which can often make convergence more difficult or increase overfitting. The fact that we were able
to increase the number of trainable parameters while decreasing overfitting implies that the NN is in fact
learning a better representation of local atomic environment, as was the goal of training symmetry
function parameters. Training symmetry function parameters was slow, and was only implemented on a
single hydrogen dataset. Plots of the training on this dataset showing the faster convergence and less
overfitting are shown in Fig 4.

Interpretation of what the symmetry function layer learned during training is more difficult. Learned
parameters tended to fall into one of two categories. While most parameters stayed very close to their
initial value, some drifted far and ended up close to other initial values provided for that parameter,
sometimes skipping over intermediate initial values along the way. This implies that training the NN
weights creates sorts of local minima in loss near the initial parameter values, causing what parameters

Table 1: MSE in eV of Aenet and our NN without trained
symmetry functions on the Hydrogen datasets. Our NN did
better on the majority of the datasets but very poorly on the
first due to an implementation issue with the data.

that do escape their own local minima to eventually fall into another one. Having multiple symmetry
functions with similar parameters is not inherently harmful, but it is presumably less useful than having a
wider variety of symmetry functions would be. Ultimately, NNs with trained symmetry functions
restricted to distance were not able to exceed the accuracy of those incorporating angular dependence, so
the NNs used for minimization did not incorporate symmetry functions training.

5. Solving for Minimum Energy Structures

Once an NN is trained on DFT data, it can be used as a function to minimize to find the minimum energy
structure. We carried out this minimization using the SciPy optimize library, with the lowest energy
sample configuration taken as a starting point. Ideally this minimization would use energy gradient
information calculated analytically from the NN, but we were unable to extract the gradient from the
Keras NN structure. Instead, the optimization used a numerically calculated gradient. This led to
numerical limitations in flat areas, which it is possible affected the final results of minimization.

In order to simplify the PES being minimized over, we used different datasets for this part of the project.
For this part, we generated new 2, 3, 4, and 5 atom datasets using DFT through the QuantumEspresso
Pwscf package on the Bridges supercomputer [14, 15]. The configurations were generated by molecular
dynamics simulations run at 1000 F in 3D boxes with periodic boundary conditions. Each time step was
taken to be a new configuration. In this way the configurations used to train the NN were representative
of the configurations the atoms could potentially take in reality. The alternative method of generating data
is randomly generating atomic configurations, which when tested caused the NN to try to fit unrealistic
energies and harmed its overall accuracy. The energies calculated for each configuration are total energies
of that specific time step assuming stationary atoms. That is, they include the potential and kinetic energy
of all relevant electrons and potential energy of nuclei, but not the kinetic energy of nuclei.

Prior to training, the data is preprocessed by calculating interatomic distances and angles from
coordinates. In the Aenet model, symmetry function values are also preprocessed since they are taken as
constant for a dataset. That was unnecessary for the NN used for this project due to the NN’s included
symmetry function layer. Configurations with energy two standard deviations above the mean were also
removed from the training and validation datasets during preprocessing. These points tended to

MSE
(eV)

Fig 4: Loss during training for a NN with static symmetry function parameters (left) and
with trainable symmetry function parameters (right). Training MSE (red) and validation
MSE (blue) are measured in eV. We used 8 each of G1, G2, and G3 for this.

correspond to the first few time steps of molecular dynamics, where the atoms often began in unrealistic
positions (such as too close together) that they quickly were forced out of.

There are a number of ways to evaluate the results, including measuring NN accuracy directly,
qualitatively looking at the PES generated by the NN, and evaluating the results of the final minimization
process.

5.1 NN accuracy

The mean squared error (MSE) of the NN used in this paper on the 3, 4, and 5 atom datasets was
compared to that of Aenet, which was taken to be the baseline. The results are shown in Table 2. The NN
used in this paper outperformed Aenet, even with the same numbers of layer and nodes. The reason for
this is unclear since the two NN models are fundamentally the same – it is possible the difference is due
to difference in optimizer or even normalization. While Aenet uses the L-BFGS-D [8] optimizer, the NN
used in this paper was trained with RMSprop. It is also possible that representing the atomic NN as a
convolutional NN structure increased the accuracy, potentially because NN packages are well trained to
work with convolutional NNs. Indeed, we noticed a large improvement in NN error after switching from
separate atomic NNs to a convolutional NN in our own model.

Comparing the accuracy of NNs between papers is difficult, as different systems will lead to different
distributions of energy data, and different final NN errors. That being said, the NN used here has lower
error than nearly all of the NNs used for similar problems in [1]. A large part of this difference is likely
due to the fact that the datasets used here contained only a single atom species, while those listed in [1]
generally have at least 2 atom species.

5.2 PES visualization

The PES predicted by a NN can be thought of as a surface in n-dimensional space. In a 2 atom system, the
only coordinate that matters is interatomic distance. This makes the PES easy to visualize, since it is a
function of a single variable. Such as constructed PES for a 2 atom system is plotted in Fig 5a. For larger
numbers of atoms the PES becomes a function of multiple variables, making it more difficult to visualize.

 MSE (eV)

 3 atom 4 atom 5 atom

NN structure train val train val train val

15t-15t

This NN 1.13E-04 1.30E-04 5.67E-04 8.30E-04 6.10E-04 7.31E-04

Aenet 1.76E-04 2.50E-04 8.36E-04 1.20E-03 1.56E-03 2.33E-03

30t-30t

This NN 9.94E-05 1.19E-04 3.76E-04 4.13E-04 4.28E-04 6.28E-04

Aenet 1.85E-03 2.45E-03 6.37E-04 1.15E-03 1.51E-03 2.40E-03

40t-20t-20t-10t

This NN 6.49E-05 7.15E-05 1.07E-04 4.92E-04 2.23E-04 4.49E-04

Aenet 3.58E-04 4.15E-04 1.81E-03 2.21E-03 1.65E-03 2.26E-03

Table 2. A comparison of the NN used in this paper and Aenet for various structures and
datasets. The structure is represented as layers with dashes between them. The number for
each layer is the number of nodes in it, while the t refers to a tanh activation function.

If one chooses a shape for the atoms to take, the PES can be plotted for that shape at various sizes. This is
done for a 3 atom equilateral triangle in Fig 5b and a 4 atom tetrahedron in Fig 5c.

The 2 atom PES can be seen to clearly fit the DFT data, though the data’s own noise complicates the fit.
The reason for the noise is unclear – the problem did not occur in other systems. The 3 atom PES seems
to lower bound the DFT data – presumably this is because the equilateral triangle is near the minimum
energy shape at any size, making it the lower bound of energy at each size. In the 4 atom system, one gets
the impression that the tetrahedron is not the minimum energy shape at all. In this case and in higher
dimensions, attempting to visualize the PES becomes less fruitful.

5.3 Minimization results

In order to evaluate the NN PES minimization, the configuration predicted by the minimization process
were used as input for a “relax” DFT calculation in QuantumEspresso, which first calculates the energy of
those configurations using DFT, then minimizes from there to return the true (to DFT) minimum energy
of the system. The results are shown in Table 3.

It would be unrealistic to expect the NN to generate the exact same minimum energy configuration as
DFT, but from the results one can see that the NN predicted and DFT predicted configurations are in fact
quite close energetically, especially in the 3 atom case, in which the energy difference is around 3E-6 eV.
It is also worth noting that the true energy of all predicted configurations is below the lowest energy that

5a
5b

5c

Fig 5. Plots of the predicted PES (red) and DFT data
(black) for (a) 2 atoms, (b) 3 atoms, and (c) 4 atoms. The
vertical axis is system energy, measured in eV, while the
horizontal axis is average interatomic distance, measured
in Bohr radii. For b and c, a guess at minimum energy
shape is taken and scaled to various sized to create the
shown line.

the NN was trained on. This means that the NN has in fact improved upon the DFT data on which it was
trained – a task that would not be possible with linear interpolation, for example. This is promising,
because it implies that if the NN were then retrained on DFT data closer to the minima, it would then be
able to further improve on its results. Our previous tests have shown that such an iterative method does
tend to yield improving results each iteration on simpler datasets. If QMC data were used for this rather
than DFT, this method could prove a more accurate way of calculating the minimum energy configuration
than is currently possible.

6 Conclusion and Future Directions

It has only been applied to homonuclear configurations so far, but the NN used in this paper has shown
promising results both in terms of predictive accuracy and for minimization. Though we were unable to
train the most useful symmetry functions for this application, it is possible other applications will require
different symmetry functions, potentially ones that are better suited for training. The next step in this
project will be to train the NN on multiple species of atoms. In particular, the H2O-OH- is of interest
because we will be able to compare the minimization results of our NN to those in [3]. Should the NN
minimization process be able to outperform these results, it will be a step forward in the field of solving
minimum energy configurations.

 Energy (eV)

 3 atom 4 atom 5 atom

Lowest energy in training data -197.60435 -263.53322 -329.45373

Minimum energy predicted by NN -197.61155 -263.57965 -329.48131

DFT energy of NN predicted minima -197.609017 -263.53796 -329.45888

DFT energy of DFT predicted minima -197.60902 -263.55450 -329.49146

Table 3. Energy values associated with the lowest energy configuration in the training
data, the lowest energy predicted possible by the NN, the true energy of the NN-
predicted minima, and the true energy of the true minimal energy configuration.

Bibliography

1. J. Behler, “Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations”
Phys. Chem. Chem. Phys. 2011, http://pubs.rsc.org/en/content/articlehtml/2011/cp/c1cp21668f

2. Moravietz et. al., “How van der Waals interactions determine the unique properties of water”
PNAS 2016

3. L. Wagner, J. Grossman, “Quantum Monte Carlo Calculations for Minimum Energy Structures”
Phys. Rev. Lett. 2010, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.210201

4. J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neural network
potentials” J. Chem. Phys. 2011

5. N. Artrith and A. Urban, Comput. Mater. Sci. 114 (2016) 135-150

6. J. Behler and M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401

7. J. Behler, J. Chem. Phys. 134 (2011) 074106

8. R. H. Byrd, P. Lu and J. Nocedal, SIAM J. Sci. Stat. Comp. 16 (1995) 1190-1208

9. P. Giannozzi, et al J.Phys.:Condens.Matter, 21, 395502 (2009) http://dx.doi.org/10.1088/0953-
8984/21/39/395502

10. We used the Au.blyp-d-hgh.UPF pseudopotential from www.quantum-espresso.org for DFT
calculations

11. N. Tubman et. al. Phys. Rev. Lett. 115 (2015) 045301
https://doi.org/10.1103/PhysRevLett.115.045301

12. Francois Chollet, Keras, 2015, Github Repository: https://github.com/fchollet/keras

13. Theano Development Team. “Theano: A Python framework for fast computation of mathematical
expressions”

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number OCI-1053575. Specifically, it used the
Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh
Supercomputing Center (PSC).”

14. Towns, J., et. al. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science &
Engineering. 16(5):62-74. http://doi.ieeecomputersociety.org/10.1109/MCSE.2014.80

15. Nystrom, N. A., et. al. 2015. Bridges: A Uniquely Flexible HPC Resource for New Communities
and Data Analytics. In Proceedings of the 2015 Annual Conference on Extreme Science and
Engineering Discovery Environment (St. Louis, MO, July 26-30, 2015). XSEDE15. ACM, New
York, NY, USA. http://dx.doi.org/10.1145/2792745.2792775

16. S. Chetlur, et. al. “cuDNN: Efficient Primitives for Deep Learning”,
arXiv:1410.0759

http://pubs.rsc.org/en/content/articlehtml/2011/cp/c1cp21668f
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.210201
http://www.quantum-espresso.org/?page_id=814
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://www.quantum-espresso.org/
https://doi.org/10.1103/PhysRevLett.115.045301
https://github.com/fchollet/keras
http://arxiv.org/pdf/1605.02688.pdf
http://arxiv.org/pdf/1605.02688.pdf
http://doi.ieeecomputersociety.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1145/2792745.2792775
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1410.0759

	Image (2)
	BrianBarch-MSfinal

