
Using Adaptive and Cooperative Adaptive Cruise Control to
Maximize Throughput of Signalized Arterials

Daniel Albarnaz Farias

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-109
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-109.html

May 19, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

I wish to thank Alex Kurzhanskiy for the extensive guidance in the project. I
wish to also thank for Armin Askari for his involvement in the greater
project and for debugging a lot of the code provided in the Appendix.

0

Using Adaptive and Cooperative Adaptive Cruise Control to

Maximize Throughput of Signalized Arterials

 Daniel Farias

 Electrical Engineering and Computer Sciences

 University of California, Berkeley

 May 19, 2017

1

Table of Contents

Abstract ………………………………………………………………………………. 2

Section 1 Introduction ………………….………….………....………….………….. 3

Section 2 Car Following Model ...………….………….………….…………... 4

Section 3 Intersection Flow ………………….………….………….….…………. 6

Section 4 Impact of ACC and CACC ……………………….………….…………... 8

Section 5 Platoons ……………….………….………….………………….……. 11

Section 6 Conclusion ………………….………….…………….………….………. 15

References ………………………………………………………………………………. 16

Appendix ………………………………………………………………………………. 17

2

Abstract

This report discusses how the maximum acceleration and proportion of vehicles using ACC and

CACC technology affect the throughput of a given intersection. In most cases, two scenarios are

simulated and discussed: (1) free flow after an intersection, and (2) a second intersection 300

meters after the first intersection. Lastly, a microscopic-level simulation of a four-mile length

arterial network in Arcadia is used to evaluate the performance of ACC and CACC vehicles.

These simulations use the mean travel time and standard deviation as measures of performance.

Platoon performance is able to achieve near optimal results when compared to best-case

theoretical models. The report concludes the possibility for a very high improvement in urban

road capacity by utilizing ACC and CACC technologies at little cost to infrastructure.

3

1 Introduction

The flow of a freeway is simply the product of speed and density. The headway is the

inverse of the density, so the capacity of a given freeway for vehicles traveling at the speed limit

increases proportionally with a shorter headway. Normal highway driving conditions constitute a

minimum of a two-second headway, translating to about 55 meters between vehicles at 60 mph [1,

2]. Two levels of longitudinal control technologies permit headway reductions by factors of two

to three relative to manual driving; adaptive cruise control (ACC) and cooperative adaptive cruise

control (CACC). A platoon is a group of such vehicles travelling with a very short headway.

Several demonstrations have been made of such technology, with one of the earliest being on the

I-15 freeway in San Diego, 1997, with an 8-car platoon traveling roughly 5 meters apart at 60 mph

[3, 4]. These demonstrations show a headway reduction even beyond the expected factor of two to

three relative to manual vehicles.

These results hold for optimal road conditions: steady flow at the speed limit. However,

many roads have bottlenecks at signaled intersections, in which case the possible improvement

from platooning is not as clear. For example, consider a four-approach intersection with two lanes

in each direction; one for through traffic and one for left turns. Suppose a capacity of 1.8 seconds

between vehicles, translating to a total capacity of 2,000 vehicles per hour (vph) per lane. The total

capacity leading into the intersection is then 16,000 vph, but since the intersection can only allow

two movements at a time, the effective capacity is only 4,000 vph. Thus, increasing the effective

capacity by using platooning will not increase the capacity of the full network.

A study by Lioris et al. [5] delves into this observation, investigating the possibility of

vehicles crossing an intersection in a platoon using ACC or CACC technology. It concludes that

if one increases the saturation flow rates at all intersections in an urban network by a factor Γ, “the

network can support an increase in demand by the same factor Γ, with no increase in queuing delay

or travel time, and using the same signal control. However, the queues will also grow by the same

factor Γ, so if this leads to a saturation of the links, the improvement in throughput will be sub-

linear in Γ. On the other hand, if the cycle time is reduced, the queues will also be reduced, and

this may restore the linear growth in demand.”

However, the study only addresses the case where 100 percent of vehicles use ACC or

CACC technology, i.e. a penetration rate of 100 percent. The scenarios in this report investigate

an arbitrary proportion of vehicles that use manual, ACC, or CACC technology. Additionally, as

4

stated in the study [5], a “second limitation is that in short urban links vehicles will slow down

quickly as queues build up. As a result the saturation flow rate at the upstream intersection will be

reduced, thereby depriving the system of the full productivity benefit. It is important to investigate

this reduction,” which is also addressed in this report.

These results utilize SUMO, an open source microscopic simulator of vehicle traffic; each

vehicle is simulated individually. The vehicles are set to use the Intelligent Driver Model (IIDM)

[7], which improves upon the default SUMO Intelligent Driver Model [8]. The model was

implemented for use in SUMO and the code is available in the Appendix, with further details on

the model in Section 2. Section 3 discusses the default intersection throughput when using

manually driven vehicles (manual vehicles). Section 4 discusses how the throughput changes when

introducing ACC vehicles, and then CACC vehicles. Section 5 discusses the CACC model

implemented. It additionally evaluates the ACC and CACC models using travel time and network

throughput. For this task, a four-mile section of the Colorado Boulevard and Huntington Drive

arterial network in Arcadia, California is used. The network has thirteen signaled intersections.

Section 6 concludes the presents the conclusions.

2 Car Following Model

Table 1 includes the description of all values used in the equations in this section, along with the

default values used when appropriate:

Symbol Description Default Value
t

∆t
l

gmin

g(t)

gd(t)

τ

θ(t)
f(t)
x(t)
xl(t)
vmax
v(t)
vl(t)
amax

Time
Model time step
Vehicle length
Minimal allowed gap
Actual distance, or gap, from front of given
vehicle to tail of leading vehicle
Desired distance from front of given vehicle
to tail of leading vehicle
“reaction time”, or time gap between vehicles
Headway of given vehicle
Flow, or inverse of headway
Vehicle position
Position of lead vehicle
Speed limit
Speed of given vehicle
Speed of leading vehicle
Maximal acceleration of given vehicle

0.05 seconds
5 meters
4 meters

2.05 seconds

20 m/s = 44.7 mph

1.5 m/s2

5

a(t)
b

Acceleration of given vehicle
Desired acceleration for given vehicle

2 m/s2

Table 1: Notation summary

The following are the state equations for the IIDM car-following model:

ݐ)ݒ + ∆t) = (ݐ)ݒ + t (1)∆ (ݐ)ܽ

ݐ)ݔ + ∆t) = (ݐ)ݔ + t∆ (ݐ)ݒ +
௔(௧)∆୲మ

ଶ
 (2)

(ݐ)ܽ =

ە
ۖ
۔

ۖ
௠௔௫ܽۓ ൬1 − ቀ

௚೏(௧)

௚(௧)
ቁ

ஔభ
൰ , ݂݅ ݃ௗ(ݐ) > (ݐ)݃

(ݐ)∗ܽ ൭1 − ቀ
௚೏(௧)

௚(௧)
ቁ

ஔభ௔೘ೌೣ
௔∗(௧)൘

൱ ݁ݏ݈݁ ,
 (3)

Where

(ݐ)∗ܽ = ܽ௠௔௫(1 − (
௩(௧)

௩೘ೌೣ
)ஔమ) (4)

݃ௗ(ݐ) = ݃௠௜௡ + ݔܽ݉ ൜0, τ (ݐ)ݒ +
௩(௧)(௩(௧)ି௩೗(௧))

ଶඥ௔೘ೌೣ௕
ൠ (5)

Here, the critical variable is ܽ(ݐ), the acceleration. For these simulations, we used δ1 = 4 and δ2 =

8. The IIDM model can be tuned to accelerate more aggressively by increasing δ1 and δ2. The

equilibrium headway is achieved when ܽ(ݐ) = (ݐ)ݒ ,0 = ௠௔௫ݒ = (ݐ)݃ and (ݐ)௟ݒ = ݃௠௜௡ =

 :τ. It can then be calculated to be (ݐ)ݒ

 θ௘௤௨௜௟௜௕௥௜௨௠ = τ +
௚೘೔೙ା௟

௩೘ೌೣ
 (6)

Using the default values from Table 1, θe = 2.5 seconds for manual vehicles, which corresponds to

the time period between vehicles from tail to front. This is equivalent to a flow of 0.4 vehicles per

second, or 1440 vph. This aligns generally with empirical estimates of throughput, which vary

between 1200 to 1900 vph.

6

3 Intersection Flow

 Consider the example

in Fig. 1; there is an infinite

number of vehicles queued in

an arterial with the minimum

gap from Table 1 between

them. The light turns green at

time t = 0, at which time the

vehicles begin accelerating.

Two sets of experiments are

shown; first with a free

roadway ahead of the intersection, then with a

second signaled intersection 300 meters down

the road with a fixed red light. The segment

can only accommodate 33 vehicles between

the intersections, which exceeds the number of

vehicles that can cross the signal in one minute

with a default separation of over 2 seconds.

 The trajectories, speeds, and

accelerations of the first ten vehicles are

shown in Fig. 2. The x-axis shows the time

after the signal turns green. The y-axis shows

the given vehicle’s position, velocity, or

acceleration along the road segment. The top

two plots have a black horizontal line at x=0

corresponding to the position of the

signal/intersection. The first vehicle is

infinitely far from any leader, and so in either

scenario it begins to accelerate at the maximal parameter. In the first scenario, the acceleration

curve of the first vehicle follows equation (4), corresponding to free acceleration, asymptotically

reaching 0 acceleration and the maximum velocity. Other vehicles must wait momentarily until

Figure 1: All vehicles are initially still with the minimum gap
between them. The signal turns green at time t = 0, and the vehicles
start to accelerate. In the second experiment, there is an additional
intersection, after 300 meters, at which the vehicles must stop.

Figure 2: Vehicle trajectories, speeds and
accelerations: first additional intersection
with no intersection on left, and second
experiment with red light on right.

7

the increase in gap propagates to their position in

the queue. In the second scenario, the second

intersection is located at x=300. Vehicles slow

down as they approach the intersection, and as the

vehicles stop and the queue grows, the flow

through the first intersection begins to slow down

until it is completely blocked. This reflects the

second limitation cited in [5], where vehicles in a

short link will slow quickly as a queue grows,

leading to reduction in the saturation flow rate at

upstream intersections.

 We can then consider

measurements made for vehicles

by a detector as they pass the

intersection (shown in Fig. 1),

shown in Fig. 3. Each dot in Fig. 3

represents a vehicle passing through

the detector. The instantaneous flow

for each vehicle is calculated by

using the reciprocal of the time elapsed since

the previous vehicle, which corresponds to

the headway. The equilibrium flow for

manual vehicles of 1440 vph, as discussed in

section 1, is shown as a red line in the top left

graph. For the first scenario, with no obstruction

of flow, the gaps and speeds both monotonically

increase, whereas the acceleration monotonically decreases. Additionally, the number of vehicles

that cross the first intersection differs greatly between the two scenarios. At equilibrium flow, 24

vehicles would cross in the first minute. In the first scenario, 23 vehicles cross, and in the second,

only 21 vehicles cross. Thus, there is a roughly ten percent loss in flow in the first minute due to

the backflow when introducing the second intersection.

Figure 3: In order, measurements of flow,
distance to leader, speed, and acceleration
at the detector location shown in Fig. 1.

Figure 4: The total throughput result for three different
values of acceleration for scenario one (on left) and
scenario two (on right).

Table 2: Simulation summary: intersection
flow in first minute after t=0.

amax (m/s2) Scenario IIDM
0.8 Free flow

Second intersection
20
19

1.5 Free flow
Second intersection

23
21

2.5 Free flow
Second intersection

24
22

8

The experiment is then run again with three different values for maximum acceleration:

0.8, 1.5, and 2.5 m/s2. The effect on the throughput is seen in Fig. 4 and summarized in Table 2.

This simulation establishes the flow for the manual case, which is compared to ACC and CACC

results in section 4.

4 Impact of ACC and CACC

 The same experiments are now repeated but with various different levels of ACC and

CACC penetration, corresponding to the fraction of all vehicles that have ACC or CACC

capability. Manually driven, ACC,

and CACC vehicles all have

different values for “reaction

time”, which corresponds to the

minimal time gap between vehicles, and

spatial gap. The values used in

simulation are given in Table 3. The assumption is that ACC and CACC vehicles require a smaller

headway in both seconds and meters. The same car following model, IIDM, is used by all vehicle

classes. The only difference between a manual vehicle and an ACC vehicle are the two parameters

specified in Table 3. CACC vehicles, however, form “platoons”, or groups, of connected vehicles

once multiple CACC vehicles become adjacent within a lane. Within this platoon, all followers

show the further reduced parameters given in Table 3. CACC vehicles that follow manual vehicles,

however, act in the same way as ACC vehicles. Such vehicles include two cases: (1) lone CACC

vehicles surrounded by manual vehicles, (2) the leader of any given CACC platoon. We call this

the CACC car-following model.

 Take the acceleration function for ܽ(ݐ) defined by equation (3). The CACC car following

model is given by [7]:

 ܽ஼஺஼஼(ݐ) = ቊ
(ݐ)஼஺ுܽ ݂݅ ,(ݐ)ܽ ≤ (ݐ)ܽ

ܽ஼஺ு(ݐ) + ܾ tanh ቀ
௔(௧)ି௔಴ಲಹ(௧)

௕
ቁ ݁ݏ݈݁ ,

 (7)

Where

ܽ஼஺ு(ݐ) = ൞

௩మ(௧)௔೗തതത(௧)

௩೗
మ(௧)ିଶ(௫೗(௧)ି௫(௧)ି௟) ௔೗തതത(௧)

ܽ௟ഥ (ݐ) −
൫௩(௧)ି௩೗(௧)൯

మ
஀(୴(୲)ି୴ౢ(୲))

ଶ(௫೗(௧)ି௫(௧)ି௟)
݁ݏ݈݁ ,

 (8)

Vehicle class τ (seconds) Eq Flow (vph) gmin (m)
Manual
ACC

CACC

2.05
1.1
0.8

1,440
2,400
3,000

4
3
3

Table 3: Values for the reaction time and minimal
gap for all three vehicle classes used in simulations.

9

And

ܽ௟ഥ (ݐ) = min {ݒሶ௟(ݐ), ܽ௠௔௫} Θ(ݖ) = ൜
1, ݖ ݂݅ ≥ 0

0, ݁ݏ݈݁

 The same two scenarios as before are simulated with different penetration rates; 10, 25, 50,

75, 90, and 100 percent. Fig. 5 shows the flow, gap, speed and acceleration for the vehicles at three

penetration rates: 0, 50, and 100 percent, with

CACC active and inactive. The equilibrium

flow rates from Table 3 are represented by

three red lines, equivalent to 3600/θ, where θ

is given by equation (6).

 For the blue and teal lines representing

50 percent penetration, the plots switch

between two separate lines. The switches

correspond to when the vehicle going over the

detector switches between being manual and

ACC/CACC. In each case, the vehicle roughly

follows the curve of the 0 percent or 100

percent scenarios, alternating between the

two. For the CACC example, it alternates

between three lines since, as discussed

previously, CACC vehicles behave as ACC

vehicles when behind a manual vehicle. Thus,

three behaviors and sets of gap parameters are

possible.

 The same behavior can be seen in

Figure 6 in the scenario that utilizes an

additional intersection.

For penetration rates between 0 and 100

percent, the ordering of the vehicles can cause

high variance in results. For example, if there is

a disproportionately high number of ACC vehicles at the front of the queue, it will distort the

Figure 5: Measurements of flow, distance to
leading vehicle, speed and acceleration,
speed, and acceleration at the detector
location for free flow scenario.

Figure 6: Measurements of flow, distance to
leading vehicle, speed and acceleration,
speed, and acceleration at the detector
location for extra intersection scenario.

10

detected throughput at the intersection under short

periods such as one minute. Additionally, the

distribution of CACC vehicles among manual

vehicles can greatly alter their ability to form

platoons, also affecting throughput measurements

for small periods. Thus, for mixed-class

simulations, 100 one-minute simulations are used

and their median vehicle count is extracted. Fig. 7

demonstrates these simulation results, including

results for full manual and full ACC/CACC

simulations.

The blue line in each of the plots

corresponds to the equilibrium flow. Take a penetration rate p ∈ [0, 1], corresponding to the

fraction of ACC vehicles in the queue. Define τ஺஼஼ and ݃ ௠௜௡
஺஼஼ as the reaction time and minimal gap

given in Table 3. The average headway is given by using equation (6):

θ(λ) = λ τ஺஼஼ + (1 − λ)τ +
஛௚೘೔೙

ಲ಴಴ା(ଵି஛)௚೘೔೙ା௟

௩೘ೌೣ
 (9)

And the equilibrium flow will correspond to:

 ݂(λ) =
଺଴

஘(஛)
 (10)

For the scenario with an additional intersection, the flow is further restricted by the capacity of the

road segment between the two signals. This results in the following equation:

݂(λ) = min{
଺଴

஘(஛)
,

௞∆

஛௚೘೔೙
ಲ಴಴ା(ଵି஛)௚೘೔೙ା௟

} (11)

Where ∆ is the length of the road segment and k is the number of lanes in that segment. As

previously discussed, our scenario utilizes ∆ = 300 and k = 1.

Figure 7: Throughput at intersection as a
function of penetration rate. ACC (top) vs
CACC (bottom) and scenario one (left) vs
scenario two (right).

11

5 Platoons

Vehicles equipped with CACC can form platoons. With 50% CACC penetration rate,

platoons provide between 24 and 44% increase in intersection throughput on average, depending

on the proximity of intersections.

In simulation, platoon management

and formation is divided into three phases: 1)

Identifying vehicles that can be grouped into

platoons; 2) Adjusting parameters of leaders

and followers in platoons; 3) Performing

maintenance on the platoon. This behavior is

modeled by the state machine in Fig. 8. Leader

\ Normal Behavior Follower within range of

ACC Vehicle split from platoon Accelerate Decelerate leader accelerates leader decelerates no

new instruction.

To form a platoon, vehicles must be in sequence with one another on a given lane. However,

vehicles need not share the same final destination and are free to switch lanes or leave the platoon

if necessary. If an intermediate vehicle in the platoon changes its route by making a turn or

Figure 8: State machine describing behavior of
platooned vehicle.

Figure 9: The Huntington-Colorado network (top) and its model in SUMO (bottom).

12

changing lanes, the platoon splits into two: one platoon for the vehicles ahead of the intermediate

vehicle and another for all the vehicles behind.

A platoon's lead vehicle has the same properties as ACC vehicles. An isolated CACC

vehicle is a leader of a platoon of size 1. When a platoon leader comes into range of another CACC

vehicle in front, it joins the platoon becoming a follower. Followers have reduced headway and

travel much closer to one another than standalone vehicles. In addition, followers are able to

receive information from the leader, such as to accelerate after a green light at an intersection or

to decelerate approaching an obstacle, e.g. red light, downstream.

Since followers are not bound to the same route as the platoon leader, they are free to

separate. After leaving the platoon, the headway and acceleration parameters are restored to their

original values. This can happen for example when the follower changes its route or becomes

separated from the rest of platoon, e.g., due to switching traffic signal as it crosses the intersection.

To first study the theoretical potential impact of platooning, we looked at an infinite

geometric sequence with value p corresponding to the penetration rate. Given any ACC vehicle,

the probability distribution for its platoon size is a negative binomial distribution with n=2, starting

at k=1. The sum of two geometric distributions has a distribution given by:

݂(݇ ; (݌ = ݇ ∗ ௞ିଵ݌ ∗ (1 − ଶ (9)(݌

Fig. 10 shows the distribution of vehicles

by size of the platoon they would be a part of in

such an infinite train for the 50 percent

penetration case. Thus, 25 percent of vehicles

would be alone, 25 percent of vehicles would

have one other adjacent CACC vehicle, and so on.

We can then calculate the percent of vehicles who

are followers by excluding the lone CACC

vehicles and excluding platoon leaders:

Lone CACC vehicles: ݂(1; (݌ = (૚ − ૛(࢖

Platoon leaders: ∑
1

݇
∗ ݇ ∗ 1−݇݌ ∗ (1 − ∞2(݌

݇=2 = (1 − ଶ(݌ ∗ ∑ ∗ ௞ஶ݌
௞ୀଵ = ࢖ ∗ (૚ − (࢖

And so followers are given by:

Pr
ob

ab
ili

ty

Platoon Size

Figure 10: The distribution of platoon
size for the 50 percent penetration case.

13

 1 − (1 − ଶ(݌ − 1)݌ − (݌ = (10) ࢖

Indicating that followers grow linearly with the penetration rate. In other words, suppose 60

percent of vehicles have CACC technology. Then 36 percent of vehicles will act as CACC

vehicles, the remaining 24 percent will act as ACC vehicles, and the other 40 percent will act as

manual vehicles. The relationship between flow and penetration rate is thus calculated similarly as

in equation (9) through:

2.5 ∗ (݌)ܨ ∗ (1 − (݌ + 1.5 ∗ (݌)ܨ ∗ ݌ ∗ (1 − (݌ + 0.75 ∗ (݌)ܨ ∗ ଶ݌ = 3600

Which simplifies to:

(݌)ܨ =
ଷ଺଴଴

ଶ.ହି௣ି଴.଻ହ∗௣మ (12)

The resulting plot is shown in Fig. 11 in black. The

blue line corresponds to the ACC-only case, in

which the flow is simply:

(݌)ܨ =
ଷ଺଴଴

ଶ.ହି௣
 (13)

 Fig. 11 demonstrates that below 30 percent

penetrations, CACC shows very little improvement

over ACC since CACC vehicles are not adjacent often

enough to form platoons. At roughly 50 percent, there

is moderate improvement, but very high levels of penetrations are required for large improvements.

It is worth noting that for the 50 percent penetration case, the simulation performed slightly

better than theoretically expected in terms of throughput (24 to 44 percent improvement). This is

primarily because regular ACC vehicles underperformed during simulations relative to the

expected curve in Fig. 11, whereas the simulations that utilized CACC vehicles were closer to its

theoretical curve.

To simulate the practical impact of platooning, we used a SUMO model of the 4-mile

stretch of Colorado Boulevard / Huntington Drive arterial with 13 signalized intersections in

Arcadia, Southern California, shown in Fig. 9. IIDM and CACC models were implemented in

SUMO, and platoon management and formation were handled via SUMO/TraCI API. Using real

world ow measurements and estimated turn ratios at intersections, we generated 1 hour of origin-

Figure 11: Theoretical throughput as a
function of penetration for CACC (black)
and ACC-only (blue).

14

destination (OD) travel demand data. Then, we ran a series of simulation varying the fraction of

ACC/CACC vehicles from 0 to 75%. In each simulation two vehicle classes were modeled:

ordinary vehicles and ACC (or CACC) vehicles. In simulations with CACC vehicles platoons were

formed. The total number of OD pairs in this network is 399. The same number of vehicles was

processed in each simulation. The rates and locations at which cars were generated were identical

in all scenarios to eliminate the variance in randomly generated routes. For cases of 0, 25, 50 and

75 percent ACC (CACC) penetration rate, we computed average travel time for the route O→D,

where O and D identify origin and destination of the selected west-east route in Fig. 9. Table 4

lists the mean travel time (MTT) and its standard deviation (STD), in seconds. As expected, the

mean travel time reduces as the fraction of ACC/CACC vehicles increases. Surprisingly the

standard deviation also decreases. Furthermore, the travel time of ordinary vehicles is also reduced,

although that of ACC/CACC vehicles is reduced more.

ACC/CACC Vehicle
Class

ACC CACC
Median TT STD Median TT STD

0 Manual 653 102 653 102

25 %
Manual

ACC/CACC
All

640
605
631

96
82
94

638
600
629

96
76
94

50 %

Manual
ACC/CACC

All

583
583
583

66
61
64

579
570
575

60
64
62

75 %

Manual
ACC/CACC

All

595
558
567

45
58
57

583
540
550

41
52
48

Table 4: Mean travel time (MTT) and standard deviation (STD) in seconds for varying

percentage of ACC vehicles on the main arterial of Fig. 9.

15

6 Conclusion

Increased penetration rate of ACC vehicles in traffic increased the throughput at all main

road segments and reduced travel time for all vehicles, including those that did not utilize the

technology. At higher penetrations, CACC vehicles are able to form platoons which further

increased the throughput at intersections. However, at lower penetration rates, CACC vehicles

become intertwined between manual vehicles, in which case they perform just as effectively as

ACC vehicles.

Queues are a significant obstacles in the urban networks simulated, reducing the flow of

upstream intersections through backflow. ACC and CACC vehicles reduced the queue sizes at all

observed intersections, translating to more efficient flow through intersections. Additionally,

simulations show that platoon sizes and improvement matches closely to expected theoretical

results. The results on this report corroborate the results in [5], showing that ACC and CACC

technology can significantly increase urban road mobility at little cost to infrastructure.

16

References

[1] NAHSRC, “Automated Highway Demo 97,” https://www.youtube.com/watch?v= C9G6JRUmg_A.

[2] S. Shladover, “Why automated vehicles need to be connected vehicles,” 2013,

http://www.ewh.ieee.org/tc/its/VNC13/IEEE_ VNC_BostonKeynote_Shladover.pdf.

[3] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw, and H. Nijmeijer, “Design and

experimental evaluation of cooperative adaptive cruise control,” Proc. 14th ITSC IEEE Conf, pp. 260–265,

2011.

[4] V. Milanes, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, “Cooperative

adaptive cruise control in real traffic situations,” IEEE Trans. Intelligent Transportation Systems, vol. 15,

no. 1, pp. 296–305, Feb 2014.

[5] J. Lioris, R. Pedarsani, F. Tascikaraoglu, and P. Varaiya, “Platoons of connected vehicles can double

throughput in urban roads,” Transportation Research, Part C, to appear.

[6] H. S. Mahmassani, “50th anniversary invited articleâĂŤautonomous vehicles and connected vehicle

systems: Flow and operations considerations,” Transportation Science, 2016, published online.

[7] M. Treiber and A. Kesting, Traffic Flow Dynamics: Data, Models and Simulation. Springer, 2013.

[8] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and

microscopic simulations,” Physical Review E, vol. 62, no. 2, pp. 1805–1824, 2000.

[9] D. Krajzewicz, “Traffic simulation with SUMOsimulation of urban mobility,” in Fundamentals of Traffic

Simulation. Springer, 2010, pp. 269– 293, http://www.dlr.de/ts/en/desktopdefault. aspx/tabid-

9883/16931_read-41000, accessed 04/28/2016.

17

Appendix

This section includes relevant code used to implement various functions discussed in this

paper. It only includes files that were written by me, though in some cases edited or modified to

run in a modular environment.

Below is the code implementation of the IIDM model used in this report:

MSCFModel_IIDM.cpp

// ===
// included modules
// ===
#ifdef _MSC_VER
#include <windows_config.h>
#else
#include <config.h>
#endif

#include <iostream>
using namespace std;

#include "MSCFModel_IIDM.h"
#include <microsim/MSVehicle.h>
#include <microsim/MSLane.h>
#include <utils/common/RandHelper.h>
#include <utils/common/SUMOTime.h>

// ===
// method definitions
// ===
MSCFModel_IIDM::MSCFModel_IIDM(const MSVehicleType* vtype,
 SUMOReal accel, SUMOReal decel,
 SUMOReal headwayTime, SUMOReal delta,
 SUMOReal internalStepping)
 : MSCFModel(vtype, accel, decel, headwayTime), delta2(delta),
 myAdaptationFactor(1.), myAdaptationTime(0.),
 myIterations(MAX2(1, int(TS / internalStepping + .5))),
 myTwoSqrtAccelDecel(SUMOReal(2 * sqrt(accel* decel))) {
}

MSCFModel_IIDM::MSCFModel_IIDM(const MSVehicleType* vtype,
 SUMOReal accel, SUMOReal decel,
 SUMOReal headwayTime,
 SUMOReal adaptationFactor, SUMOReal adaptationTime,
 SUMOReal internalStepping)
 : MSCFModel(vtype, accel, decel, headwayTime), delta2(4.),
 myAdaptationFactor(adaptationFactor), myAdaptationTime(adaptationTime),
 myIterations(MAX2(1, int(TS / internalStepping + .5))),
 myTwoSqrtAccelDecel(SUMOReal(2 * sqrt(accel* decel))) {
}

MSCFModel_IIDM::~MSCFModel_IIDM() {}

SUMOReal
MSCFModel_IIDM::moveHelper(MSVehicle* const veh, SUMOReal vPos) const {
 const SUMOReal vNext = MSCFModel::moveHelper(veh, vPos);
 if (myAdaptationFactor != 1.) {
 VehicleVariables* vars = (VehicleVariables*)veh->getCarFollowVariables();
 vars->levelOfService += (vNext / veh->getLane()->getVehicleMaxSpeed(veh) - vars-
>levelOfService) / myAdaptationTime * TS;
 }
 return vNext;

18

}

SUMOReal
MSCFModel_IIDM::followSpeed(const MSVehicle* const veh, SUMOReal speed, SUMOReal gap2pred,
SUMOReal predSpeed, SUMOReal /*predMaxDecel*/) const {
 //return _v(veh, gap2pred, speed, predSpeed, veh->getLane()->getVehicleMaxSpeed(veh));
 return _v(veh, gap2pred, speed, predSpeed, MIN2(veh->getLane()->getSpeedLimit(), veh-
>getMaxSpeed()));
}

SUMOReal
MSCFModel_IIDM::stopSpeed(const MSVehicle* const veh, const SUMOReal speed, SUMOReal gap2pred)
const {
 if (gap2pred < 1) {
 return 0;
 }
 //return _v(veh, gap2pred, speed, 0, veh->getLane()->getVehicleMaxSpeed(veh), false);
 return _v(veh, gap2pred, speed, 0, MIN2(veh->getLane()->getSpeedLimit(), veh-
>getMaxSpeed()), false);
}

/// @todo update interactionGap logic to IIDM
SUMOReal
MSCFModel_IIDM::interactionGap(const MSVehicle* const veh, SUMOReal vL) const {
 // Resolve the IIDM equation to gap. Assume predecessor has
 // speed != 0 and that vsafe will be the current speed plus acceleration,
 // i.e that with this gap there will be no interaction.
 const SUMOReal acc = myAccel * (1. - pow(veh->getSpeed() / veh->getLane()-
>getVehicleMaxSpeed(veh), delta2));
 const SUMOReal vNext = veh->getSpeed() + acc;
 const SUMOReal gap = (vNext - vL) * (veh->getSpeed() + vL) / (2 * myDecel) + vL;

 // Don't allow timeHeadWay < deltaT situations.
 return MAX2(gap, SPEED2DIST(vNext));
}

SUMOReal
MSCFModel_IIDM::_v(const MSVehicle* const veh, const SUMOReal gap2pred, const SUMOReal egoSpeed,
 const SUMOReal predSpeed, const SUMOReal desSpeed, const bool respectMinGap)
const {
// IIDM speed update
 SUMOReal headwayTime = myHeadwayTime;
 if (myAdaptationFactor != 1.) {
 const VehicleVariables* vars = (VehicleVariables*)veh->getCarFollowVariables();
 headwayTime *= myAdaptationFactor + vars->levelOfService * (1. - myAdaptationFactor);
 }
 SUMOReal newSpeed = egoSpeed;
 SUMOReal gap = gap2pred;

 for (int i = 0; i < myIterations; i++) {
 const SUMOReal delta_v = newSpeed - predSpeed;
 // s is S* in IIDM equation
 SUMOReal s = MAX2(SUMOReal(0), newSpeed * headwayTime + newSpeed * delta_v /
myTwoSqrtAccelDecel);

 if (respectMinGap)
 s += myType->getMinGap();

 // This is equation for IDM:
 //const SUMOReal acc = myAccel * (1. - pow(newSpeed / desSpeed, delta2) - pow(s/gap,
delta1));

 ////////////// For IIDM:
 SUMOReal afree;
 SUMOReal acc = myAccel * (1. - pow(s / gap, delta1));

 if (newSpeed <= desSpeed) { // if we want to speed up or remain (V <= V0)

19

 afree = myAccel * (1 - pow(newSpeed / desSpeed, delta2)); // free
acceleration function

 if ((s / gap) < 1) { // we are too close to leader
 acc = afree * (1 - pow(s / gap, delta1 * myAccel / afree));
 }
 }
 else { // if we want to slow down (V > V0)
 afree = -myDecel * (1 - pow(desSpeed / newSpeed, myAccel * delta2 /
myDecel)); // free acceleration function

 if ((s / gap) >= 1) {
 acc += afree;
 }
 else {
 acc = afree;
 }
 }

 ////////////// End IIDM

 SUMOReal oldSpeed = newSpeed;
 newSpeed += ACCEL2SPEED(acc) / myIterations;
 //TODO use more realistic position update which takes accelerated motion into account
 gap -= MAX2(SUMOReal(0), SPEED2DIST((newSpeed - predSpeed) / myIterations));
 }
// return MAX2(getSpeedAfterMaxDecel(egoSpeed), newSpeed);
 return MAX2(SUMOReal(0), newSpeed);
}

MSCFModel*
MSCFModel_IIDM::duplicate(const MSVehicleType* vtype) const {
 return new MSCFModel_IIDM(vtype, myAccel, myDecel, myHeadwayTime, delta2, TS / myIterations);
}

MSCFModel_IIDM.h

#ifndef MSCFMODEL_IIDM_H
#define MSCFMODEL_IIDM_H

// ===
// included modules
// ===
#ifdef _MSC_VER
#include <windows_config.h>
#else
#include <config.h>
#endif

#include "MSCFModel.h"
#include <microsim/MSLane.h>
#include <microsim/MSVehicle.h>
#include <microsim/MSVehicleType.h>
#include <utils/xml/SUMOXMLDefinitions.h>

// ===
// class definitions
// ===
/** @class MSCFModel_IIDM
 * @brief The Improved Intelligent Driver Model (IIDM) car-following model
 * @see MSCFModel
 */
class MSCFModel_IIDM : public MSCFModel {
public:
 /** @brief Constructor
 * @param[in] accel The maximum acceleration
 * @param[in] decel The maximum deceleration

20

 * @param[in] headwayTime the headway gap
 * @param[in] delta a model constant
 * @param[in] internalStepping internal time step size
 */
 MSCFModel_IIDM(const MSVehicleType* vtype, SUMOReal accel, SUMOReal decel,
 SUMOReal headwayTime, SUMOReal delta, SUMOReal internalStepping);

 /** @brief Constructor
 * @param[in] accel The maximum acceleration
 * @param[in] decel The maximum deceleration
 * @param[in] headwayTime the headway gap
 * @param[in] adaptationFactor a model constant
 * @param[in] adaptationTime a model constant
 * @param[in] internalStepping internal time step size
 */
 MSCFModel_IIDM(const MSVehicleType* vtype, SUMOReal accel, SUMOReal decel,
 SUMOReal headwayTime, SUMOReal adaptationFactor, SUMOReal adaptationTime,
 SUMOReal internalStepping);

 /// @brief Destructor
 ~MSCFModel_IIDM();

 /// @name Implementations of the MSCFModel interface
 /// @{

 /** @brief Applies interaction with stops and lane changing model influences
 * @param[in] veh The ego vehicle
 * @param[in] vPos The possible velocity
 * @return The velocity after applying interactions with stops and lane change model
influences
 */
 SUMOReal moveHelper(MSVehicle* const veh, SUMOReal vPos) const;

 /** @brief Computes the vehicle's safe speed (no dawdling)
 * @param[in] veh The vehicle (EGO)
 * @param[in] speed The vehicle's speed
 * @param[in] gap2pred The (netto) distance to the LEADER
 * @param[in] predSpeed The speed of LEADER
 * @return EGO's safe speed
 * @see MSCFModel::ffeV
 */
 SUMOReal followSpeed(const MSVehicle* const veh, SUMOReal speed, SUMOReal gap2pred, SUMOReal
predSpeed, SUMOReal predMaxDecel) const;

 /** @brief Computes the vehicle's safe speed for approaching a non-moving obstacle (no
dawdling)
 * @param[in] veh The vehicle (EGO)
 * @param[in] gap2pred The (netto) distance to the the obstacle
 * @return EGO's safe speed for approaching a non-moving obstacle
 * @see MSCFModel::ffeS
 * @todo generic Interface, models can call for the values they need
 */
 SUMOReal stopSpeed(const MSVehicle* const veh, const SUMOReal speed, SUMOReal gap2pred)
const;

 /** @brief Returns the maximum gap at which an interaction between both vehicles occurs
 *
 * "interaction" means that the LEADER influences EGO's speed.
 * @param[in] veh The EGO vehicle
 * @param[in] vL LEADER's speed
 * @return The interaction gap
 * @todo evaluate signature
 * @see MSCFModel::interactionGap
 */
 SUMOReal interactionGap(const MSVehicle* const , SUMOReal vL) const;

21

 /** @brief Returns the model's name
 * @return The model's name
 * @see MSCFModel::getModelName
 */
 int getModelID() const {
 return myAdaptationFactor == 1. ? SUMO_TAG_CF_IDM : SUMO_TAG_CF_IIDM;
 }
 /// @}

 /** @brief Duplicates the car-following model
 * @param[in] vtype The vehicle type this model belongs to (1:1)
 * @return A duplicate of this car-following model
 */
 MSCFModel* duplicate(const MSVehicleType* vtype) const;

 VehicleVariables* createVehicleVariables() const {
 if (myAdaptationFactor != 1.) {
 return new VehicleVariables();
 }
 return 0;
 }

private:
 class VehicleVariables : public MSCFModel::VehicleVariables {
 public:
 VehicleVariables() : levelOfService(1.) {}
 /// @brief state variable for remembering speed deviation history (lambda)
 SUMOReal levelOfService;
 };

private:
 SUMOReal _v(const MSVehicle* const veh, const SUMOReal gap2pred, const SUMOReal mySpeed,
 const SUMOReal predSpeed, const SUMOReal desSpeed, const bool respectMinGap =
true) const;

private:
 /// @brief The IDM delta exponent
 const SUMOReal delta1 = 2;
 const SUMOReal delta2;

 /// @brief The IDMM adaptation factor beta
 const SUMOReal myAdaptationFactor;

 /// @brief The IDMM adaptation time tau
 const SUMOReal myAdaptationTime;

 /// @brief The number of iterations in speed calculations
 const int myIterations;

 /// @brief A computational shortcut
 const SUMOReal myTwoSqrtAccelDecel;

private:
 /// @brief Invalidated assignment operator
 MSCFModel_IIDM& operator=(const MSCFModel_IIDM& s);
};

#endif /* MSCFMODEL_IIDM_H */

22

Below are the core parts of the platoon implementation of the CACC model. They have been

modified to run in a modular format:

platoon_functions.py
import os
import sys
import optparse
import subprocess
import random
import traci
import settings
import pdb

########## Global variables used in runner file ################################
settings.platoonedvehicles = []
settings.platoons = []
settings.platoonleaderspeed = []
Note - whenever trying to modify the global variables, they must be referenced
as settings.platoonedvehicles or settings.platoons, etc...

Platoon Control function
This function controls the platoons and performs inter-vehicle communication
to prevent crashes

def platoon_control(accTau, accMinGap, targetTau, targetMinGap, platoon_comm,time):
 allvehicles = traci.vehicle.getIDList();

 # Go through and make sure all vehicles are still in simulation
 for veh in settings.platoonedvehicles:
 if not (veh in allvehicles):
 settings.platoonedvehicles.remove(veh)

 index = -1

 merge_platoons(targetTau,targetMinGap)

 for platoon in settings.platoons:
 index += 1

 if platoon_maintenance(platoon, accTau, accMinGap,
allvehicles,targetTau,targetMinGap,time) == -1:
 continue

 # Communication step
 leader = platoon[2]
 try:
 leader_accel = traci.vehicle.getAccel(leader)
 leader_speed = traci.vehicle.getSpeed(leader)
 if len(settings.platoonleaderspeed) > index: # if we are not in the first
time step for this platoon
 leader_accel = (leader_speed - settings.platoonleaderspeed[index])
/ (settings.step_length*platoon_comm)
 else:
 leader_accel = 0
 target_speed = traci.lane.getMaxSpeed(traci.vehicle.getLaneID(leader))

 if (leader_accel < -1.0) or (leader_speed < target_speed):
 for car in platoon[3:]: # go through all followers and have them
slow down accordingly
 try:
 leading_temp = traci.vehicle.getLeader(car, 100)

23

 if leading_temp:
 dist = leading_temp[1]
 else:
 dist = 100
 if dist < leader_speed * targetTau: # if we're too
close
 traci.vehicle.slowDown(car,
leader_speed, settings.step_length*platoon_comm) # slows down the vehicle for the appropriate
period
 continue
 except:
 print("no leader")
 continue
 continue
 except:
 print("no leader anymore")
 continue
 del settings.platoonleaderspeed[:] # clears the list
 for platoon in settings.platoons: # records the speed of all platoon leaders to calculate
acceleration # records the speed of all platoon leaders to calculate acceleration
 try:
 settings.platoonleaderspeed.append(traci.vehicle.getSpeed(platoon[2]))
 continue
 except:
 print("platoon leader left simulation")
 continue

Platoon Maintenance function
This function performs maintenance on platoons by removing vehicles from
them for various reasons

def platoon_maintenance(platoon, accTau, accMinGap, allvehicles,targetTau,targetMinGap,time):
 # Remove vehicles that reached destination

 for car in platoon[2:]:
 if not (car in allvehicles): # car not in simulation anymore
 platoon.remove(car)
 if car in settings.platoonedvehicles: # shouldn't be necessary,
read below
 settings.platoonedvehicles.remove(car) # this is
causing issues and it should not. Only started after I moved code to a function, come back to it

 if len(platoon) < 3: # no vehicles in platoon
 settings.platoons.remove(platoon)
 return -1

 if len(platoon) < 4: # only one vehicle in platoon
 try:
 make_unplatooned(platoon[2], accTau, accMinGap)
 settings.platoons.remove(platoon)
 except:
 print("one vehicle in platoon left simulation")
 return -1

 # Check to see lane divergence
 leader = platoon[2]

 try:
 curr_lane = traci.vehicle.getLaneID(leader) #if in middle of intersection, will
give random numbers
 if (curr_lane != platoon[0]) and (curr_lane != platoon[1]) and (curr_lane[:-1] ==
platoon[1][:-1]):
 # the leader switched lanes within the same road segment, so remove it as
leader
 platoon.remove(leader)
 make_unplatooned(leader, accTau, accMinGap)
 # Configure the new leader
 leader = platoon[2]
 curr_lane = traci.vehicle.getLaneID(leader)

24

 make_leader(leader,accTau,accMinGap)

 if (curr_lane != platoon[0]) and (curr_lane != platoon[1]) and (":" not in
curr_lane):
 # our leader has moved on to a new lane.
 platoon[0] = platoon[1];
 platoon[1] = curr_lane
 except:
 print("leader left simulation")
 pdb.set_trace()

 lane1 = platoon[0]; lane2 = platoon[1];

 # Go through follower vehicles
 lane_check = False
 leading_check = True
 flag = False

 # checks whether the leading vehicle is still in the platoon
 if leading_check:
 remove_counter = 0
 index = 2;
 for car in platoon[3:]:
 index += 1;

 try:
 leading_temp = traci.vehicle.getLeader(car, 100) # gets the car
ahead, up to 100m

 if leading_temp:
 curr_leading = leading_temp[0]
 else:
 curr_leading = None

 curr_lane = traci.vehicle.getLaneID(car)
 # checks leading vehicle but also whether it's this car's lane
which changed -> if it has simply remove it
 if not (curr_leading in platoon) and (curr_lane != platoon[0]) and
(curr_lane != platoon[1]):
 remove_counter += 1
 platoon.remove(car)
 make_unplatooned(car, accTau, accMinGap)

 # make_leader(car,accTau,accMinGap)

 # new_platoon = platoon[1:2] #should be just platoon[1],
but platoon[1:2] makes it an array
 # new_route = traci.vehicle.getRoute(car) # gets the route
for the leading car
 # road,lane = get_RoadLane(traci.vehicle.getLaneID(car))
 # new_platoon.append(get_next_segment(new_route, road)) #
gets the leading car's next segment
 # new_platoon.append(car)
 for car2 in platoon[index+1-remove_counter:]: #add +1 to
index, move cars behind to this platoon to be processed after
 #new_platoon.append(car2)
 #traci.vehicle.setColor(car2, (255,255,255,0)) #
Here we can use 255,255,255 to mark platoon splits
 make_unplatooned(car2,accTau,accMinGap)
 platoon.remove(car2)
 #settings.platoons.append(new_platoon)
 break

 # if the lane has not changed, it's the leader that has moved, so
make this car the new leader of a new platoon if there are
 # more vehicles behind it
 if not (curr_leading in platoon) and ((curr_lane == platoon[0]) or
(curr_lane == platoon[1])):

25

 remove_counter += 1
 platoon.remove(car)

 make_leader(car,accTau,accMinGap)

 if index == 3 and curr_leading == None: #the leader changed
route, so remove it from platoon
 make_unplatooned(platoon[2],accTau,accMinGap)
 flag = True

 if index+1 >= len(platoon) + remove_counter: # this is the
last vehicle in platoon, so don't make a new platoon
 traci.vehicle.setColor(car, (0,255,0,0))
 if car in settings.platoonedvehicles:
 settings.platoonedvehicles.remove(car)
 if len(platoon) == 4: #last vehicle in platoon, so
make the leader normal

 make_unplatooned(platoon[2],accTau,accMinGap)
 break

 new_platoon = platoon[0:1]
 new_route = traci.vehicle.getRoute(car) # gets the route
for the leading car
 road,lane = get_RoadLane(traci.vehicle.getLaneID(car))
 new_platoon.append(get_next_segment(new_route, road)) #
gets the leading car's next segment
 new_platoon.append(car)
 for car2 in platoon[index+1-remove_counter:]: #add +1 to
index, move cars behind to this platoon to be processed after
 new_platoon.append(car2)
 #traci.vehicle.setColor(car2, (255,255,255,0)) #
Here we can use 255,255,255 to mark platoon splits
 make_platooned(car2,targetTau,targetMinGap)
 platoon.remove(car2)
 settings.platoons.append(new_platoon)
 break
 continue #everything normal
 except:
 print("car not in simulation anymore")
 pdb.set_trace()
 continue

 if flag:
 platoon.remove(platoon[2])
 flag = False

 # uses lane check to filter vehicles
 if lane_check:
 index = 2;
 for car in platoon[3:]:
 index += 1;
 curr_lane = traci.vehicle.getLaneID(car)
 if (curr_lane != lane1) and (curr_lane != lane2) and
(curr_lane[:-1] == platoon[1][:-1]): # vehicle just changed lane
 # car has switched lanes or reached a new road
 platoon.remove(car)
 make_unplatooned(car, accTau, accMinGap) #
remove car and revert it to regular ACC

 elif (curr_lane != lane1) and (curr_lane != lane2) and (":"
not in curr_lane): # vehicles are lagging behind or branched out, split platoon
 # car has switched lanes or reached a new road
 platoon.remove(car)
 settings.platoonedvehicles.remove(car)
 traci.vehicle.setMinGap(car, accMinGap)
 traci.vehicle.setTau(car, accTau)
 traci.vehicle.setColor(car, (0,255,255,0))

 leader_route = traci.vehicle.getRoute(car)

26

 next_lane = get_next_segment(leader_route,
curr_lane[:-2])
 new_platoon = [curr_lane,
get_next_segment(leader_route, curr_lane[:-2]) + curr_lane[(len(curr_lane)-2):]]
 new_platoon.append(car)
 for car2 in platoon[index+1:]: # move cars
behind to this platoon to be processed after
 new_platoon.append(car2)
 traci.vehicle.setColor(car2,
(255,255,255,0))
 print 'CANT POSSIBLY BE HERE'
 platoon.remove(car2)
 settings.platoons.append(new_platoon)
 #settings.platoonleaderspeed.append() # no
need for this, I believe
 break
 # If platoon is gone, delete it
 if len(platoon) < 4:
 try:
 make_unplatooned(leader, accTau, accMinGap)
 settings.platoons.remove(platoon)
 return -1
 except:
 return -1

 # make sure leader has correct parameters --> this should not be necessary, check back on
code to see where bug is but it does fix it technically
 try:
 make_leader(platoon[2],accTau,accMinGap)
 except:
 print("leader correct parameters")
 return -1

Create Platoons function
This function creates platoons in a given road segment and cycle time
interval

def create_platoons(road, lane, start_range, end_range, accTau, accMinGap, targetTau,
targetMinGap, programPointer):
 road_segment = road + lane;
 if (programPointer >= start_range and programPointer <= end_range):
 first = True # for leader in platoon
 cars = traci.lane.getLastStepVehicleIDs(road_segment)
 platoon = [road_segment]

 # iterate through cars in order of closest to last and check to see if ACC to add
to platoon
 for car in cars[::-1]:

 # if 'veh2470' == car: #t =1306, platooning creation error somewhere
 # pdb.set_trace()

 # if 'veh282' in car: #veh765' in car:
 # aa = ['veh282' in a for a in settings.platoons]
 # print (True in aa)
 # pdb.set_trace()

 cartype = traci.vehicle.getTypeID(car)
 if ("CarA" in cartype) or ("CarIIDM" in cartype):
 if (car in settings.platoonedvehicles):
 # If this vehicle is a leader, first do a check to see if
 # car ahead can be the leader instead
 if get_platoon(car): #car already in a platoon, don't need
to do anything except check
 #if platoon infront
you can join
 if car == cars[-1]: #first car in line, nothing you
can join (if not here, itll loop and make a

27

 # a cylical
platoon)
 continue
 else:
 if traci.vehicle.getColor(car) ==
(0,255,255,0): #you're a leader
 car_array = cars[::-1]
 front_car =
car_array[car_array.index(car)-1]
 front_pltn = get_platoon(front_car)
 ff = traci.vehicle.getLeader(car)
 dist = ff[1]

 if front_pltn and dist <= 70: #if car
infront is part of a platoon and within 70m, join in
 behind_pltn =
get_platoon(car)

 for car_pltnB in
behind_pltn[2:]:

 make_platooned(car_pltnB,targetTau,targetMinGap)

 front_pltn.append(car_pltnB) #add the trailing platoon vehicles to the front one

 settings.platoons.remove(behind_pltn) #get rid of the trailing platoon
 continue
 else: #you're a follower
 continue

 if (traci.vehicle.getColor(car) == (0,255,255,0)):
 leading_temp = traci.vehicle.getLeader(car, 100)
 # There is a vehicle ahead
 if leading_temp:
 type_alt =
traci.vehicle.getTypeID(leading_temp[0])
 platoon_alt = get_platoon(leading_temp[0])
 if (("CarA" in type_alt) or ("CarIIDM" in
type_alt)) and (not platoon_alt) and (leading_temp[1] <= 70): # no, the leading vehicle is not in
a platoon, but it could be and within 70m
 platoon_curr = get_platoon(car)

 if platoon_curr != None: #stupid bug
where cars are technically platooned but not showing up in platoons variable
 platoon_curr.insert(2,
leading_temp[0])
 make_platooned(car, targetTau,
targetMinGap) # make it a regular follower, instead of a leader

 make_leader(leading_temp[0],accTau,accMinGap)

 first = False
 leader_route =
traci.vehicle.getRoute(leading_temp[0]) # gets the route for the leading car

 settings.platoonedvehicles.append(leading_temp[0])
 continue

 if (("CarA" in type_alt) or ("CarIIDM" in
type_alt)) and (platoon_alt) and (leading_temp[1] <= 70): # yes, the leading vehicle IS in a
platoon, so we can merge and within 70m
 platoon_curr = get_platoon(car) # get
current platoon
 if platoon_curr != None:
 for veh_alt in
platoon_curr[2::]: # iterate through vehicles in current platoon and add them to the platoon in
front

 platoon_alt.append(veh_alt)

28

 make_platooned(car, targetTau,
targetMinGap) # make it a regular follower, instead of a leader

 if platoon_curr != None:

 settings.platoons.remove(platoon_curr) # remove the platoon that merged with the one in
front
 #traci.vehicle.setSpeed(car,
target_speed)

 first = False
 try:
 leader_route =
traci.vehicle.getRoute(platoon_alt[2]) # gets the route for the leading car
 continue
 except:
 print("no leader anymore")
 pdb.set_trace()
 continue
 continue
 else:
 continue

 if (traci.vehicle.getColor(car) == (255,255,255,0)): #if
already a follower
 follower_pltn = get_platoon(car)
 leading_temp = traci.vehicle.getLeader(car, 100)
 if leading_temp:
 type_alt =
traci.vehicle.getTypeID(leading_temp[0])

 if follower_pltn and (leading_temp[1] <= 70)
and \
 (("CarA" in type_alt) or ("CarIIDM" in
type_alt)): #car belongs to another platoon, but changed lanes so can be part of another one
 platoon.append(car)
 follower_pltn.remove(car)
 if len(platoon) == 3:
 make_leader(car)
 else: #its a follower but not part of a platoon (bug
catcher b/c not possible)
 platoon.append(car)

 # Leading car is not a leader, so continue
 if len(platoon) == 3: # if there was a single ACC vehicle
 make_unplatooned(platoon[2], accTau, accMinGap)
 if len(platoon) > 3: # if there were multiple ACC vehicles
 settings.platoons.append(platoon) # add the platoon
 platoon = [road_segment]
 first = True
 platoon = [road_segment]
 continue

 if first:
 # Checks if the car ahead is in a platoon it can join
 leading_temp = traci.vehicle.getLeader(car, 100)

 # if car == cars[0] and leading_temp: #
 # if (leading_temp[1] > 70):# if we have a vehicle
which is last in the lane and car infront too far
 # # don't make it into a
platoon
 # continue
 # else:

 if leading_temp: # and (leading_temp[0] not in
settings.platoonedvehicles): #if there is a platoonable car infront, that becomes the leader and
u become follower

29

 platoon_alt = get_platoon(leading_temp[0])
 if platoon_alt and (leading_temp[1] <= 70):
yes, it can join a platoon and within 70m
 platoon_alt.append(car)
 make_platooned(car, targetTau,
targetMinGap)
 #traci.vehicle.setSpeed(car,
target_speed)
 continue
 # elif leading_temp and (leading_temp[0] in
settings.platoonedvehicles): #car infront is in a platoon, giddy up
 # make_platooned(car,targetTau,targetMinGap)
 # platoon_alt = get_platoon()

 if car == cars[0]: # and (not leading_temp): #vehicle at
end, with no one infront - don't make platoon
 continue

 car_array = cars[::-1]
 behind_car = car_array[car_array.index(car)+1]

 if get_platoon(behind_car): #if the next car is in a
platoon, add that platoon to the front car
 first = True
 platoon_alt = get_platoon(behind_car)

 lead_platoon_alt = platoon_alt[2]
 try:
 ff =
traci.vehicle.getLeader(lead_platoon_alt,100)
 dist = ff[1]
 except:
 #pdb.set_trace() #IIDM 75, time 240 #DEBUG
HEREE###
 continue

 if dist <= 70: #platoon is within 70m of the front
vehicle, so mere

 make_leader(car,accTau,accMinGap)
 leader_route = traci.vehicle.getRoute(car) #
gets the route for the leading car

 platoon.append(get_next_segment(leader_route, road) + lane) # gets the leading car's next
segment
 platoon.append(car)

 for cars_pltnB in platoon_alt[2:]:
 try:
 platoon.append(cars_pltnB)

 make_platooned(cars_pltnB,targetTau,targetMinGap)
 except:
 print ("follower left
simulation")
 settings.platoons.remove(platoon_alt)

 settings.platoons.append(platoon)
 platoon = [road_segment]
 continue
 else: #shouldnt continue platoon formation
 continue

 else: #not in platoon, so acc too far or manual - do
regular formation
 make_leader(car,accTau,accMinGap)
 #traci.vehicle.setSpeed(car, target_speed)
 # set its speed higher to help ease propogation delay

30

 leader_route = traci.vehicle.getRoute(car) # gets
the route for the leading car
 platoon.append(get_next_segment(leader_route, road)
+ lane) # gets the leading car's next segment
 platoon.append(car)
 first = False

 else:
 leading_temp = traci.vehicle.getLeader(car, 100)
 if leading_temp[1] <= 70 and
(traci.vehicle.getColor(leading_temp[0]) == (255,255,255,0) or\
 traci.vehicle.getColor(leading_temp[0]) == (0,255,255,0)):
#if within 70m to make platoon, and the car infront is follower

 #or leader
 make_platooned(car, targetTau, targetMinGap)

 platoon_infront = get_platoon(leading_temp[0])
 if platoon_infront: #this is if a legit platoon
exists infront, if not a platoon is being formed
 platoon_infront.append(car)
 continue
 else: #forming new platoon
 #traci.vehicle.setSpeed(car, target_speed)
 # set its speed higher to help ease propogation delay
 platoon.append(car)
 if car == cars[0]: # this platoon includes
the last car on this segment
 settings.platoons.append(platoon) #
add the platoon
 else: #theres more cars
 car_array = cars[::-1]
 behind_car =
car_array[car_array.index(car)+1]
 if get_platoon(behind_car): #if the
next car is in a platoon - just end platoon formation here

 #later the merge platoon function will take care of making them 1 platoon
 first = True

 if len(platoon) == 3: #no
platoon, just 1 car

 make_unplatooned(platoon[2],accTau,accMinGap)
 platoon =
[road_segment]
 continue

 settings.platoons.append(platoon)
 platoon = [road_segment]
 else: #not in platoon, so regular acc
or manual
 continue #since if either,
platoon formation continues or gets halted by else case at bottom

 else: #the car cannot join the platoon because too far, so
stop the platoon formation here and start another one
 if len(platoon) == 3: # if there was a single ACC
vehicles
 make_unplatooned(platoon[2], accTau,
accMinGap)
 if len(platoon) > 3: # if there were multiple ACC
vehicles
 settings.platoons.append(platoon) # add the
platoon
 first = True

 if car != cars[0]: #its not the last car so we can
still try to make platoons, else we're done
 platoon = [road_segment]

31

 make_leader(car,accTau,accMinGap)

 leader_route = traci.vehicle.getRoute(car) #
gets the route for the leading car

 platoon.append(get_next_segment(leader_route, road) + lane) # gets the leading car's next
segment
 platoon.append(car)
 first = False

 # if it is manual, stop making the platoon, since no cars behind can
accelerate anyways
 else:
 if len(platoon) == 3: # if there was a single ACC vehicles
 make_unplatooned(platoon[2], accTau, accMinGap)
 if len(platoon) > 3: # if there were multiple ACC vehicles
 settings.platoons.append(platoon) # add the platoon
 first = True
 platoon = [road_segment]

Get next segment function
Simply returns the next segment in a vehicles route

def get_next_segment(leader_route, road_segment):
 index = 0
 for segment in leader_route:
 index += 1
 if segment == road_segment:
 break
 if len(leader_route) > index:
 return leader_route[index]
 else:
 return "destination"

Merge platoons function
Combines two platoons if they happen to be on the same road together
--covers a bug where you can have two platoons beside each other with
--one car that overlaps between the platoons BUT there is no manual
--vehicle inbetween preventing the formation of one large platoon

def merge_platoons(targetTau,targetMinGap):
 idxs = []
 for i in range(len(settings.platoons)):
 for j in range(i+1,len(settings.platoons)):
 platoon1 = settings.platoons[i]
 platoon2 = settings.platoons[j]
 # if (platoon1[0] == platoon2[0]) and (platoon1[1] == platoon2[1]) and \
 # (i != j):

 if (i!=j):
 try:
 if (platoon1[-1] == platoon2[2]): #last car of platoon1 ==
first car of platoon2
 idxs.append([i,j])
 if (platoon1[2] == platoon2[-1]):
 idxs.append([j,i])
 except:
 #pdb.set_trace()
 print "platoon error somewhere"

 try:
 for k in idxs:
 idx1 = k[0]
 idx2 = k[1]
 platoon2_veh = settings.platoons[idx2][3:]
 settings.platoons[idx1].extend(platoon2_veh)
 make_platooned(settings.platoons[idx2][2],targetTau,targetMinGap)

32

 except:
 print "middle man car has left simulation"
 try:
 for l in idxs:
 idx1 = l[0]
 del settings.platoons[idx1]
 except:
 print "index out of range"

Get platoon function
Returns the platoon the a vehicle belongs to

def get_platoon(veh):
 for platoon in settings.platoons:
 if veh in platoon:
 return platoon
 return None

Make Platooned function
Sets vehicle parameters to that of a following car in a platoon

def make_platooned(veh, targetTau, targetMinGap):
 traci.vehicle.setType(veh,'CarIIDM')
 traci.vehicle.setMinGap(veh, targetMinGap) # temporarily set its minimum gap
 traci.vehicle.setTau(veh, targetTau) # temporarily set its tau
 traci.vehicle.setColor(veh, (255,255,255,0)) # set its color to white, signifying
car follower
 traci.vehicle.setSpeedFactor(veh, 1.5) # allow it to speed up to close gaps

 if not (veh in settings.platoonedvehicles): # might be leader
 settings.platoonedvehicles.append(veh)
 #traci.vehicle.setVehicleClass(veh,"IIDM")

Make Unplatooned function
Remove vehicles from being platooned

def make_unplatooned(veh, accTau, accMinGap):
 if veh in settings.platoonedvehicles: # shouldn't be necessary
 settings.platoonedvehicles.remove(veh)

 traci.vehicle.setType(veh,'CarA')
 traci.vehicle.setMinGap(veh, accMinGap)
 traci.vehicle.setTau(veh, accTau)
 traci.vehicle.setColor(veh, (0,255,0,0))
 traci.vehicle.setSpeedFactor(veh, 1.0)

Make Leader function
Make platoon leaders (same parameters as ACC vehicles but cyan color)

def make_leader(veh,accTau,accMinGap):
 traci.vehicle.setType(veh,'CarA')
 traci.vehicle.setMinGap(veh, accMinGap)
 traci.vehicle.setTau(veh, accTau)
 traci.vehicle.setColor(veh, (0,255,255,0))
 traci.vehicle.setSpeedFactor(veh, 1.0)
 if not (veh in settings.platoonedvehicles): # might be leader
 settings.platoonedvehicles.append(veh)

get_RoadLane function
Get the road and lane that a car is on

def get_RoadLane(path):
 road,lane = path.split('_')
 return road,lane

