
Verification and Synthesis of Clock-Gated Circuits

Yu-Yun Dai

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-122
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-122.html

June 26, 2017



Copyright © 2017, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.



Verification and Synthesis of Clock-Gated Circuits

by

Yu-Yun Dai

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Robert K. Brayton, Chair
Professor Sanjit Seshia

Professor Alper Atamtürk

Summer 2017



Verification and Synthesis of Clock-Gated Circuits

Copyright 2017
by

Yu-Yun Dai



1

Abstract

Verification and Synthesis of Clock-Gated Circuits

by

Yu-Yun Dai

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert K. Brayton, Chair

As system complexity and transistor density increase, the power consumed by digital
integrated circuits has become a critical constraint for VLSI design and manufacturing. To
reduce dynamic power dissipation, clock-gating synthesis techniques are applied to circuits
to prune register updates by modifying the next-state functions of the registers. Hence to
verify this kind of synthesis, sequential equivalence checking (SEC) of clock-gated circuits is
required.

In this thesis, we examine the application of reverse engineering and control logic extrac-
tion to assist in the analysis and verification of clock-gated circuits. The proposed method-
ology also enables sequential clock-gating synthesis to further reduce dynamic power. A
secondary focus is on recognizing circuit functionalities with deep learning techniques.

The first part of the work deals with the use of transparent logic to recognize control
and data paths of gated-level circuits. We invent abstraction models (dependencies graphs,
DGs) of sequential circuits and then explain how they can be used to formulate sufficient
conditions for legal clock-gating. It is then demonstrated how to perform efficient sequential
equivalence checking (SEC) between a circuit before and after clock-gating synthesis based
on DGs. The proposed formulation is extended to allow sequential clock-gating synthesis to
be done systematically and automatically.

The second part of the thesis introduces the use of neural networks to recognize circuit
properties, which can be used to benefit and improve reverse engineering methods. We invent
a representation of gate-level circuits to work with neural networks and build a framework for
circuit recognition, including function classification and detection. The proposed framework
can also be used to locate high-level constructs in the sea of logic gates.



i

To people who have made me a better person.



ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Verification with Characteristic Graphs 5
2.1 Characteristic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Sequential Redundancy and Clock-Gating . . . . . . . . . . . . . . . . . . . 9
2.3 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Transparent Logic in Hardware Designs 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Extending Transparent Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Transparency Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Practical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Summary and Possible Applications . . . . . . . . . . . . . . . . . . . . . . . 37

4 Dependency Graphs 39
4.1 Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Construction of Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



iii

5 Legal Clock-Gating Conditions 47
5.1 Problem Formulation using DGs . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 LTL and Past LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Observability Clock-Gating Conditions . . . . . . . . . . . . . . . . . . . . . 48
5.4 Satisfiability Clock-Gating Condition . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Proving on Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Sequential Equivalence Checking of Clock-Gated Circuits 71
6.1 Identifying Clock-Gating Conditions . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Algorithm Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Depths and Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Clock-Gating Synthesis 78
7.1 Synthesis with Update Conditions . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Synthesis with Observable Condition . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Synthesis Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Circuit Recognition with Convolutional Neural Networks 86
8.1 Preliminary: Modern Machine Learning Algorithms . . . . . . . . . . . . . . 87
8.2 CNN-Adaptive Circuit Representation . . . . . . . . . . . . . . . . . . . . . 91
8.3 Convolution on Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.4 Pooling for Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.5 Classification Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Conclusions and Future Directions 104

Bibliography 106



iv

List of Figures

1.1 Standard representation of a sequential circuit. . . . . . . . . . . . . . . . . . . . . 1
1.2 An equivalent model for clock-gating a FF. . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A sequential circuit (a) with its characteristic graph (b). Each circle stands for a group

of signals, while selection-edges, on-edges and off-edges are represented respectively

by solid lines with white arrows, solid lines with black arrows, and dotted lines with

black arrows. Q is switched between F2 and B, where F1 is the selection signal. The

selection-edges of the inputs, E, A and B, are connected to True. The selection-edge

of F1 is driven by True, because F1 has no off-edge. . . . . . . . . . . . . . . . . . 6
2.2 A typical 2-to-1 multiplexer represented as an AIG, where A and B are the two inputs,

S is the selector, and O is the output: O = SA + S′B. . . . . . . . . . . . . . . . . 7
2.3 A clock-gated sequential circuit (a) with its characteristic graph (b). Each clock-gated

FF is represented by a FF feeding back to a MUX controlled by a selection signal.

The clock-gated FFs, F2 to F6, are updated only when their corresponding selection

signals, E1, E2 or F1 is 1; otherwise, they keep the same values as already saved in the

corresponding FFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The revised circuit for Figure 2.1 with its characteristic graph, where the inputs, outputs

and FFs are perfectly mapped to those in the golden design. . . . . . . . . . . . . . 11
2.5 A CG with three stages of FFs. The vertex A is a PI, where the selection-edge is driven

by True. The signals, s1, s2 and s3 represent the updating conditions for FFs F1, F2

and F3, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 A transparent word can be implemented by composing smaller transparent words. . . 24
3.2 A longer transparent word may be obtained from smaller transparent words and an

NPN isomorphism class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 A compound word composed of three depth-one words. . . . . . . . . . . . . . . . . 29
3.4 An example containing proceeding words. . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 An example with disjoint transparent blocks. . . . . . . . . . . . . . . . . . . . . . 31
3.6 A transparent block which is not the result of compositions of NPN isomorphism classes. 33

4.1 Considering transparent logic in clock-gating. . . . . . . . . . . . . . . . . . . . . . 40
4.2 Eight types of vertices used in a dependency graph . . . . . . . . . . . . . . . . . . 40



v

4.3 Dependency graph for the circuit in Figure 4.1. . . . . . . . . . . . . . . . . . . . . 42
4.4 (a) Circuit with transparent blocks and gated FFs. (b) Corresponding DG. . . . . . . 43
4.5 (a) Transparent block with two possible constant outputs. (b) Corresponding depen-

dency graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 (a) Three arithmetic operators with shared input words. (b) Corresponding DG. . . . 45

5.1 An example to demonstrate the observable condition of the input for a set of gated

FFs at the nth time frame, labelled as in(n). The bottom diagram represents the top

diagram unrolled k time frames when en again becomes 1. . . . . . . . . . . . . . . 50
5.2 Example DG demonstrating an observable condition for the target gated FF. . . . . . 51
5.3 Three cases when deriving observable conditions for FFs in loops. . . . . . . . . . . . 54
5.4 An example to demonstrate how the ouput of a gated FF can be updated. . . . . . . 57
5.5 An example to demonstrate how a satisfiability clock-gating condition can be verified. 59
5.6 Two examples with FFs on sequential loops. The initial states and combinational logic

are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.7 The formulated property includes more cases for updates than necessary. . . . . . . . 61
5.8 An example with a sequence of gated FFs before the target FF. . . . . . . . . . . . . 62
5.9 DG for all circuits in Figure 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.10 Circuit that can be clock-gated by satisfiability or by observable conditions separately. 64
5.11 Verification flow for a target set of FFs. . . . . . . . . . . . . . . . . . . . . . . . . 65
5.12 Circuit for Z{[en] ∧ [U(in) ∨Y([¬en]S[U(in) ∧ ¬en])]} based on old enable en and the

update condition of the input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.13 Circuits for the observable condition of a gated FF input based on its old and new

enable signals and the observable condition of its output. . . . . . . . . . . . . . . . 68
5.14 (a) A sequential circuit clock-gated using with both satisfiability and observability. (b)

the corresponding characteristic graph, (c) the corresponding dependency graph . . . 69

6.1 (a) Golden circuit for the one in Figure 4.4. (b) Corresponding dependency graph for

the above circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 Example for synthesizing ennew = X(O(out)). In (a), Oout has been built as a new

signal in the circuit. Then in (b), the combinational circuit A supporting Oout is

duplicated and added to the other combinational block B which supports A across one

time frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 An example for observability clock-gating synthesis. (a) A sequential circuit with two

sets of target FFs, F1 and F2. (b) The corresponding DG. . . . . . . . . . . . . . . 82
7.3 Synthesis flow for a target set of FFs. . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 A typical convolution network for image processing. There are five expected outputs

(classes), and the input object is most likely to belong to the third class in this case. 88
8.2 A convolution layer with two 2× 2 filters for image processing. . . . . . . . . . . . . 89
8.3 Max-pooling layer for image processing. . . . . . . . . . . . . . . . . . . . . . . . . 90
8.4 A running example of circuit convolution. . . . . . . . . . . . . . . . . . . . . . . . 92



vi

8.5 The subject circuit after technology mapping. The cell index for each node refers to

the corresponding library cell in Figure 8.4. . . . . . . . . . . . . . . . . . . . . . . 93
8.6 The proposed framework for circuit classification. . . . . . . . . . . . . . . . . . . . 96
8.7 The average probability (likelihood) versus each LUT for an example circuit, which

contains one multiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



vii

List of Tables

2.1 Comparisons with super prove and Absec on three OpenCores [33] cases and two syn-

thetic cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Comparisons with super prove and Absec on qmult, a design from OpenCores [33], with

varying bit-widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Statistics of the selected benchmarks from HWMCC’14 [17]. . . . . . . . . . . . . . 34
3.2 Experimental results of the structural and functional approaches on ten selected cases

from HWMCC’14 [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Experimental results of the functional approaches on unrolled cases from HWMCC’14 [17]. 35

5.1 Observable condition for the input of each type of vertex. . . . . . . . . . . . . 49
5.2 Update condition for the output of each type of vertex. . . . . . . . . . . . . . 55

6.1 Comparisons with the CG method on three OpenCores [33] cases, two synthetic cases

and three industrial cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Comparisons with the CG method on qmult, a design from OpenCores [33], with varying

bit-widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Experimental results of the proposed clock-gating synthesis flow. . . . . . . . . . . . 85

8.1 Sample runtime of converting AIGs into Boolean matrices. . . . . . . . . . . . . . . 97
8.2 Statistics of running CNNs for different data formats. . . . . . . . . . . . . . . . . 98
8.3 The average and standard deviation of accuracy rates for each setting of operator

classification. The numbers under Training Number indicate the number of training

cases in each class; the total training size is triple of the number. . . . . . . . . . . . 99
8.4 The average and standard deviation of accuracy rates for each setting of operator

detection. The value of n indicates the total number of arithmetic operators for each

case, where at most one is a multiplier. . . . . . . . . . . . . . . . . . . . . . . . . 99



viii

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Robert Brayton for all the
guidance, help, support and encouragement during my graduate study in Berkeley. He has
been a wonderful mentor and living example for me to be a better researcher and human
being. Many thanks to Ruth for sharing her observations of Bob and a lot of heartwarming
moments. I wish I could become a person like Bob who has been an incredible role model
for many people.

It has been my pleasure to work with Dr. Alan Mishchenko during the past four years.
Without his ABC framework, my research projects might be significantly delayed. His
selfless sharing has provided me plenty of ideas about not only researches on verification and
synthesis, but several aspects of life.

My thanks goes to Professor Sanjit Seshia, Professor Alper Atamtürk and Prof. Andreas
Kuehlmann for their valuable feedback to my thesis work. Their courses on verification,
mathematical programming and logic synthesis have established essential foundations for
my research works.

I have enjoyed the interactions with my colleagues in our group, Sayak Ray, Baruch Sterin,
Jiang Long and Yen-Sheng Ho. Indeed, I need to express my special thanks to Baruch for all
of his generous and patient helps. Also, I thank Tianshi Wang, Karthik Aadithya, Antonio
Iannopollo, Baihong Jin, Shromona Ghosh, Pierluigi Nuzzo, Chung-Wei Lin and Ben Zhang
from other groups for the many wonderful moments and conversations I have had with them
in the DOP center.

Prof. Jajeet Roychowdhury has dramatically changed my graduate study since my first
year in Berkeley. His courses on numerical methods, his challenging questions in my first pre-
liminary exam, and his demands for my paper writing and presentation skills have sharpened
me a lot. Without his push, I might not be able to proceed forward so quickly.

Working with Prof. Anant Sahai and Michel Maharbiz for the EE16B course has been a
unique and unforgettable experience in Berkeley. I have learned a lot from my fellow GSIs
and uGSIs, as well as my students. I also thank Prof. Stavros Tripakis for giving me the
chance to teach in EE244 as the way I wanted.

I would like to express my special thanks to Kei-Yong Khoo, who was the manager for
my internship in Cadence. He introduced the concept of clock-gating to me, which has been
the main focus of this thesis. I have had a great time with my mentor Danny Ho and other
members from the Conformal team. I would recommend this team to everyone who might
want to work on combinational equivalence checking or ECO problems.

The weekly lunches and chats with members in WICSE have been significant entertain-
ments during the four years. I thank Qie Hu, Fanny Yang, Vidya Muthukumar, Mindy
Perkins, Regina Eckert, Sandy Huang, Rashmi Vinayak, Cathy Wu, Alice Ye, Penporn
Koanantakool and Mangpo Phitchaya Phothilimthana for many marvelous conversations we
have had together.

I would like to give a special note of thanks to Shirley Salanio, for her prompt and cheerful
help for all concerns or issues I have during my graduate study in the EECS department.



ix

I thank my family members, especially my parents, for shaping me to the person who I
am. Their influences on all of my characteristics can hardly be reciprocated. I hope I have
made them proud.

I want to express my deepest gratitude to my husband, Wei-Hsun (Wish) Lin, for his
consistent and unconditional support, even before I applied for the Ph.D. program. We have
been the best friend to each other, and I believe we will share more monumental moments
in the future.



1

Chapter 1

Introduction

This dissertation is a study of how formal methods and reverse engineering can be used to
verify and synthesize digital circuits for minimizing dynamic power consumption. In the
course of this study, several new concepts and techniques are introduced to analyze and
extract circuit properties to build a framework for verification and synthesis to achieve low
power circuit designs.

Before moving to the main part of this work, we begin with some background about se-
quential clock-gating in Section 1.1, and existing methods for sequential equivalence checking
in Section 1.2.

It is assumed throughout that the reader has some familiarity with algorithmic notation,
the vocabulary and terminology of digital design, Boolean logic and temporal logic.

1.1 Preliminaries

A sequential circuit, as shown in Figure 1.1, consists of a combinational logic part (CL), and
sets of primary inputs (PIs), outputs (POs) and memory components (flip-flops, FFs).
The combinational part represents a functional mapping from PIs and current states of FFs,
to POs and the next state of each FF.

Combinational 
Logic Part (CL)

PIs

FFs

POs

Figure 1.1: Standard representation of a sequential circuit.

In modern VLSI design flows, combinational and sequential synthesis techniques [23] are
applied to sequential circuits to minimize chip area, reduce power consumption, optimize



CHAPTER 1. INTRODUCTION 2

the clock period, etc. Combinational synthesis preserves the sequential behavior of FFs to
reduce the cost functions, while sequential synthesis provides more flexibility by possibly
changing the next state functions and thereby producing further reductions in the power
consumption.

To manufacture chips while considering power consumption, static and dynamic power
of running the circuits are analyzed. Static power refers generally to the power required to
maintain the state of a circuit, while dynamic power refers to power needed during switching
activity. In this thesis, we only focus on dynamic power consumption.

To reduce the power consumed for updating FFs, synthesis tools apply satisfiability (for-
ward) and observability (backward) clock-gating [20]. Satisfiability clock-gating is used to
disable the clock of a FF when its input data remains unchanged during the current clock
period. Thus, a FF need not be updated if the incoming data remains the same as that
saved in the register. Observability clock-gating turns off the clocks to FFs when the current
values of the FFs input can never be observed at the POs.

Generally, satisfiability and observability clock-gating techniques modify the clocks of
FFs by using enabling signals. These are sequentially redundant in that they can be re-
moved without modifying any observed sequential behavior. These redundancies are used
to minimize the frequency of updating some of the FFs, hence reducing dynamic power con-
sumption. Therefore, the clock-gated circuit will keep the same sequential properties but
with fewer updates of the memory components.

E

D  Q

FF

clk

I O

E

D  Q

FF

clk

I O
1 

0

Figure 1.2: An equivalent model for clock-gating a FF.

As shown in Figure 1.2, clock-gating a FF can be modeled with a feedback loop through
a multiplexer, where the enable signal, E, controls the switching of O between I and its
old value. This allows the modeling of clock-gated circuits to be done with only generic
FFs. Notice that in practice, the circuit on the left-hand side of Figure 1.2 can result some
latch issues, so in practice, real clock-gating construct can be more complicated; however its
modeling is the same as shown in Figure 1.2.

Once synthesis is applied to a circuit, sequential equivalence checking (SEC) is used be-
tween the circuits before and after synthesis [24]. As the need for SEC techniques increases,
efficient methods become not only more necessary but also enable the use of sequential
synthesis in the first place as such synthesis has usually avoided due to verification complex-
ity. The complexity of general SEC is P-SPACE complete, and hence more complex than
combinational equivalence checking (CEC), which is only NP-complete.



CHAPTER 1. INTRODUCTION 3

1.2 Background

After synthesis, we need to ensure that the circuits before and after synthesis are sequentially
equivalent [2]. SEC for general circuits is typically formulated as a model checking problem
on the miter between two sequential circuits (where the PI pairs are merged and the PO pairs
are XORed to form the outputs of the miter circuit). Thus, sequential model checking tech-
niques, including induction [42], bounded model checking (BMC) [5] and property-directed
reachability (PDR) [14], can be applied to check if the outputs of the two circuits are identical
forever. If an output of the miter can ever become 1, meaning this pair of POs are evaluated
to distinct values under the same input sequences, sequential equivalence is violated. In this
case, model checking can provide an input sequence leading to the violation. Otherwise, the
two circuits are proved sequentially equivalent.

Due to the P-SPACE complexity of model checking, applying this to SEC problems
may be too hard. Of course, CEC can be tried and if successful, the two circuits are
also sequentially equivalent. However, most effective sequential synthesis techniques tend
to change the next state functions. For circuits under retiming and resynthesis, when the
history of sequential synthesis is kept, the SEC problems can be reduced and solved more
easily [21]. Similarly, to verify circuits after clock-gating synthesis, the SEC problem can
be reduced to a CEC problem by an existing technique. Savoj at el. [41, 40] proposed a
combinational approach to SEC for clock-gating synthesis. This approach aimed at circuits
synthesized using satisfiability and observability don’t cares (SDC and ODC) [39]. Although
it worked well compared to existing methods, this approach has several weaknesses: (1) it
cannot conclude non-equivalence, and therefore cannot supply a witness to help understand
the reason for this, (2) it requires unrolling and there is no suggested number of timeframes
for unrolling, (3) it still has a scalability problem, especially when the combinational logic is
extremely complicated.

It is therefore important to develop a systematic approach to verify proposed clock-
gating conditions on circuits. Additionally, an automatic method is proposed to find further
clock-gating conditions for synthesis to reduce dynamic power consumption.

1.3 Contributions

In this thesis, we first propose an SEC method to apply to clock-gated circuits, based on the
fact that sequential clock-gating synthesis usually only adds extra control logic to disable
clocks when applicable. Given a pair of circuits, golden (G) and revised (R), where R
is clock-gated from G, we build abstraction models, characteristic graphs, for both. Then
for each candidate of a set of clock-gated FFs, we formulate sufficient conditions for legal
clock-gating based on the characteristic graph. Once the sufficient properties are justified
and the clock-gating condition is proved legal, the extra control logic is indeed a sequential
redundancy for the original circuit. By reducing all proved sequential redundancies on the
input circuits, the two circuits become more similar to each other, so the SEC problem gets



CHAPTER 1. INTRODUCTION 4

easier and hence can be solved usually by existing general SEC engines quickly.
Moreover, to resolve more complicated clock-gating conditions, we should consider more

properties of the circuits which are excluded by characteristic graphs. To extract detailed
control logic and data dependencies from circuits, we introduce a concept called transparent
logic to model data flow under control. We also propose a functional approach to identify
transparent logic from gate-level circuits. Unlike structure approaches which rely on struc-
ture matching, the proposed method can recognize more transparent logic and provide more
insights of the target circuit. This concept can be used widely in verification and reverse
engineering.

Based on recognized transparent logic, we invent another abstraction model, dependency
graphs, to describe clock-gating structures and data dependencies for sequential circuits.
Those graphs represent the essential information of clock-gating, but bypassing irrelevant
combinational logic blocks. Then we formally formulate sufficient properties of legal clock-
gating on dependency graphs using temporal logic. Those properties can be represented as
circuits and verified by hardware model checkers. Dependency graphs are compatible with
the proposed SEC flow that relies on characteristic graphs.

Moreover, the formulation of dependency graphs leads to clock-gating synthesis algo-
rithms. We propose an automatic flow to synthesize enable signals which turn off the clocks
of target FFs to reduce the frequency of their updating. This flow can be adopted into a
modern VLSI design flow to achieve low power circuits.

To retrieve more high-level information from gate level circuits, we also experiment with
deep learning techniques to recognize functionalities (like datapath operators) of circuit
blocks. We invent a new representation for circuits to work with machine learning techniques
and demonstrate how it can capture essential features for circuit recognition. To the best of
our knowledge, this is probably the first work applying neural networks to recognize circuit
types.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents characteristic graphs and
the usage in verification of clock-gating conditions. Chapter 3 introduces transparent logic
and a functional approach to recognize transparent logic in hardware designs. The definition
and construction of dependency graphs are stated in Chapter 4, while Chapter 5 shows how
to formulate legal clock-gating conditions on dependency graphs. The proposed clock-gating
verification and synthesis flows are demonstrated in Chapter 6 and 7, respectively. Chapter
8 explains how to recognize functional blocks with deep learning techniques. Lastly, Chapter
9 concludes this thesis.



5

Chapter 2

Verification with Characteristic
Graphs

The methodology introduced in this chapter is based on the observation that some sequential
synthesis methods only modify a circuit by introducing control structures that are sequen-
tially redundant [20]. Hence equivalence checking can be based on detecting and proving
these redundancies, eliminating them, and then doing SEC between the resulting (simplified)
circuit and a golden model. We propose such a method that uses an abstraction, charac-
teristic graph (CG), of a circuit to formulate legal clock-gating conditions. We apply them
to sequentially clock-gated circuits, and give some experiments comparing the new method
against existing techniques.1

In the next two chapters we further extend and generalize these ideas with the con-
cepts of dependency graphs (DGs) and transparent paths. DGs address more detailed data
dependencies than CGs do. Recognizing transparent logic blocks can decompose larger com-
binational blocks into smaller sub-circuits and provide more detailed data flow information.
The use of DGs complements CGs in that they provide more information, but it takes more
time to analyze and build DGs for circuits. However, DGs are able to provide more precise
properties for legal clock-gating conditions, which can benefit clock-gating synthesis as well
as verification.

This chapter is organized as follows: In Section 2.1, a method for representing some
essential features of a clock-gated circuit using a characteristic graph is described. Section 2.2
discusses the connection between the CG and sequential redundancy in clock-gated circuits.
The overall flow of our SEC method for clock-gated circuits is given in Section 2.3, and
Section 2.4 compares the performance of the proposed method with previous works, using
several sets of experiments. Section 2.5 summarizes the results and discusses some limitations
of the proposed method.

1The full version of this chapter has been published in Design Automation Conference 2015 [12].



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 6

2.1 Characteristic Graphs

A characteristic graph (CG) is an abstraction of its corresponding circuit. It is a high-level
description, which represents only essential characteristics needed for equivalence.

2.1.1 Characteristic Graph

A characteristic graph G = (V, E) is a directed graph, where a vertex stands for a group of
PIs, POs, FFs or internal signals in the corresponding circuit. Each directed edge represents
a signal dependency from one group to another. There are three types of edges: selection-
edge, on-edge and off-edge. A selection-edge connects exactly one signal to its target group,
to indicate the conditional switch of the group dependency. On-edges and off-edges connect
the different sets of support groups to the target group if the selection signal is 1 or 0,
respectively. The selection-edge of each PI is driven by a constant True, which means the
value of each input signal is unconditionally updated. A group containing PIs cannot be
driven by other groups. Some FFs can be in the same group with POs because those FFs
are also combinational ouputs and controlled by the same selector. Hence this type of group
can have edges to other vertices. An algorithm is given in Algorithm 2.1 for constructing
the CG of a sequential circuit.

(a) (b)

D  Q

D  Q

1

0

A

B
Q

E

F

F
A

E F 

F Q
B

True

True

True

True
True

1

2

1

2

Figure 2.1: A sequential circuit (a) with its characteristic graph (b). Each circle stands for a group
of signals, while selection-edges, on-edges and off-edges are represented respectively by solid lines
with white arrows, solid lines with black arrows, and dotted lines with black arrows. Q is switched
between F2 and B, where F1 is the selection signal. The selection-edges of the inputs, E, A and
B, are connected to True. The selection-edge of F1 is driven by True, because F1 has no off-edge.

Figure 2.1 depicts a sequential circuit with its corresponding characteristic graph. A
line with a white arrow represents a selection-edge, while solid and dotted lines with black
arrows are on-edges and off-edges. The circles (vertices) stand for sets of signals in the
original circuit, including PIs, E, A and B, the PO, Q, and FFs, F1 and F2. Note that there
is no on-edge or off-edge into each PI, and their selection-edges are driven by constant True.
Thus the value of each PI is not driven by any other signal, and it is updated at every clock
tick. For the output, Q, the value of F1 (selection-edge) determines if its value is driven by



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 7

B (on-edge) or F2 (off-edge). Finally, F1 is only driven by E, so it has no off-edge and its
selection is True.

To sum up, a characteristic graph abstracts the data dependency among ’essential’ sig-
nals, while ignoring combinational logic parts, which are usually irrelevant for proving clock-
gating equivalence. Although this abstraction is especially motivated by the SEC problem
for clock-gated circuits, the idea might be used in similar problems.

2.1.2 Construction of Characteristic Graph

Given a sequential gate-level circuit, the characteristic graph is constructed in three steps:
(1) recognize selection signals (2) create vertices (3) build dependencies.

Recognize selection signals: When the input circuit is generated from a synthesis tool,
in which 2-to-1 multiplexers (MUXes) are supported and explicitly expressed, the selector
inputs of these MUXes are easily recognized and designated as selection signals. If the input
circuit is an and-inverter-graph (AIG), the instances of a MUX structure shown in Figure 2.2
needs to be identified. The output signal O is controlled by S and conditionally switched
between A and B. Therefore, the signal S here is recognized as the selection signal for the
group consisting of output O. This structural matching can be performed over the AIG very
quickly. However, it is possible that some essential MUX controls could be missed. Also, in
this chapter, it is assumed there is at most one MUX in front of each FF, so it is possible that
some clock-gating conditions might be overlooked, which would make the final equivalence
check harder.

O

 
 

 
 

A

S   

B

Figure 2.2: A typical 2-to-1 multiplexer represented as an AIG, where A and B are the two inputs,
S is the selector, and O is the output: O = SA + S′B.

Create vertices: Initially, all POs and FFs are grouped by their common selection
signals, while signals without selection conditions are put into individual groups. For exam-
ple, in Figure 2.1, E, A, B and F1, F2 are put in individual vertices. Each selection signal
occupies an individual vertex. Each signal must be in no more than one vertex.

Build dependency: Edges in the CGs represent data dependency in the sequential
circuits. Starting with each signal covered by a vertex, we backtrack the original circuit
for one time frame to find its set of supports (PIs or FFs), and then connect the vertices



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 8

containing those supports with edges to the target signal. If a vertex (a set of signals) is
driven by a selection-edge (controlled by a selection signal), we need to find the two groups
of supports, which determine the target value when the selection signal is 1 or 0, and then
connect through on-edges and off-edges, respectively. After all vertices have been processed,
a complete characteristic graph has been constructed.

Algorithm 2.1 Characteristic Graph Construction

Require: Cir: a gate-level sequential circuit with the sets of primary inputs PI, primary
outputs PO and flip-flops FF

Ensure: G = (V,E): characteristic graph for Cir, with the sets of vertices, V and edges,
E

1: V = ∅ and E = ∅
2: S = recognize(Cir) . S is the set of selection signals
3: for all PIi in PI do
4: V = V ∪ {PIi}
5: for all si in S do
6: V = V ∪ {si}
7: T = findTarget(Cir, si) . T is the set of FFs and POs controlled by si
8: V = V ∪ {T}
9: for ffi in PO or FF not covered by any v in V do

10: V = V ∪ {ffi}
11: for all v in V do
12: if v is controlled by selection signal s then
13: connect(v, getV ertex(V, s), selection)
14: for all t covered by v do
15: Supon = Supon ∪ backtrack(Cir, t, s, on)
16: Supoff = Supoff ∪ backtrack(Cir, t, s, off)

17: for all each support supon in Supon do
18: E = E ∪ connect(v, getV ertex(V, supon), on)

19: for all each support supoff in Supoff do
20: E = E ∪ connect(v, getV ertex(V, supoff ), off)

21: else
22: for all t covered by v do
23: Sup = Sup ∪ backtrack(Cir, t)

24: for all support sup in Sup do
25: E = E ∪ connect(v, getV ertex(V, sup), on)

Given a sequential circuit, Cir, with the sets of primary inputs PI, outputs PO and flip-
flops FF, the algorithm for constructing the characteristic graph G = (V,E) is shown in
Algorithm 2.1. The function recognize(Cir) at Line 2 is used to detect the MUX structures



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 9

in Cir and collect their set of selection signals S. Based on S, PI, PO and FF, vertices are
created and added into V through Line 3 to Line 10. The function findTarget(Cir, si) is
used to collect the set of signals, which are controlled by si. From Line 11 to 25, the vertices
are connected according to the data dependencies in Cir. For the function connect(...) at
Line 13, 18, 20 and 25, the first argument is the target vertex, the second is the support
vertex, and the third is the edge type. The function getV ertex(V, sup) returns the vertex
which covers sup.

The function backtrack(...) at Lines 15, 16 and 23 goes back one time frame from target
t and returns the supports (PIs or FFs) on the boundaries. If the third argument, s, and
fourth argument, on or off, are specified, this function will only backtrack the specified input
side of each target MUX, and collect the corresponding supports.

Once the characteristic graph is constructed, it is used to detect sequential redundancy
candidates.

2.2 Sequential Redundancy and Clock-Gating

Given a sequential circuit, sequential redundancy refers to a signal that can be replaced by
another signal or a constant value (1 or 0), while preserving sequential equivalence to the
given circuit. Thus, the fanouts of such signals can be moved to other existing signals or to
constants without changing the observed behavior.

Clock-gating synthesis can be based on either satisfiability or observability of signals.
During this, additional control signals are created in a sequential circuit to reduce the
frequency of updating the FFs. These extra signals, by definition, must be sequentially
redundant in order to preserve sequential equivalence.

In this section, sufficient conditions are proposed for legal satisfiability and observability
clock-gating on sequential circuits that result in sequential redundancies. Those sufficient
conditions of legal clock-gating are formulated using CGs and then proved on the original
circuits. Here we only demonstrate standard examples for this thesis, while the proposed
theorems and algorithms, as well as proofs are detailed in [12].

2.2.1 Satisfiability Clock-Gating

Satisfiability clock-gating aims at turning off clocks for FFs when the input data is identical
to the value in the previous time frame. One special case is that their support FFs remain
at their previous states. Thus, the clock-gating is legal if all target FFs are guaranteed to
update their states when their support FFs are updated. Otherwise, if none of the supports
are updated, it is immaterial (don’t care) if the target FFs are updated. Under proper initial
states, the signal for disabling a clock is redundant and can be set to a constant.

The circuit in Figure 2.3 is an example of satisfiability clock gating: F1 (initialized as
1) is sequentially redundant because it can be replaced by constant 1, while the behavior
observed at the outputs, Q1 and Q2, remains the same. The sequential redundancy, F1 to



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 10

the MUXes in front of F5 and F6, is added to avoid updating F5 and F6 when their support
FFs (F2, F3 and F4) remain in the same states.

1

0
D  Q 1

0
D  Q

1
0

D  Q

1

0
D  Q

1

0
D  Q

D  Q

 
 

 
 

 
 

E1
E2

A

B

C

Q1

Q2

F1 

F2

F3

F4

F5

F6

(a) (b)

A

E F 

F 

True

True

True

1

2

F 3

F 4

B

C

True

True

1

E
True

2

F  Q 5 1

F  Q 6 2

Figure 2.3: A clock-gated sequential circuit (a) with its characteristic graph (b). Each clock-gated
FF is represented by a FF feeding back to a MUX controlled by a selection signal. The clock-gated
FFs, F2 to F6, are updated only when their corresponding selection signals, E1, E2 or F1 is 1;
otherwise, they keep the same values as already saved in the corresponding FFs.

To verify if the clock-gating condition on F5 and F6 is legal, i.e. the connection from F1

to the MUXes is sequentially redundant, a sufficient condition proposed by the CG method
(detailed in [12]) is that both the following conditions are satisfied:

1. The initial value of F1 is 1.

2. The LTL property
G(E1 ∨ E2 ⇒ XF1) (2.1)

must hold all the time.

Proof : For time frame 0, because the initial state of F1 is 1, it is safe to replace the
selector of each MUX in front of F5 and F6 with constant 1. Then, the LTL property in
Equation 2.1 guarantees F5 and F6 must be updated in the next time frame whenever any
support FFs, F2, F3 or F4 get updated (E1 = 1 or E2 = 1) in the current time frame. In
other words, if all support FFs are unchanged from the previous clock cycle (E1 = 0 and
E2 = 0 ), the input value for F5 or F6 is the same as the old one, and is immaterial if F5 or
F6 is updated or not. Thus the selector can be 1 or 0 in those cases. By choosing it to be 1
in those cases as well, F1 becomes constant 1, i.e. F1 is stuck-at-1 sequentially redundant.
Q.E.D.

Note that the above condition is not a necessary condition because even if F2, F3 or F4

may change to new states, it might be that the combinational logic actually computes a next



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 11

state for F5 or F6 which is the same as its current state. In general, such a condition would
be difficult to identify and/or expensive to implement, although an easy case would be a
multiplier with an argument equal to zero.

The above example demonstrates the legality of a single time frame satisfiability, which
can be formulated on the CG entirely. Moreover, given a target control signal Csat, which is
the updating condition of a set of FFs, the CG method can propose sufficient conditions of
legal clock gating that go across multi-time frames. Based on the characteristics of the input
circuit, there is a natural number N , such that for each k between 1 and N (1 ≤ k ≤ N),
the CG method can propose a corresponding k-time frame sufficient condition for Csat being
stuck-at-1 sequentially redundant. That is, once any of the N conditions can be justified,
Csat is sequentially redundant.

2.2.2 Observability Clock-Gating

Observability clock-gating is used to disable updating FFs when these updates are not ob-
servable at the POs. In other words, the differences (updating or not updating) of gated
FFs cannot be propagated to any POs before the FFs are updated. Recall the example in
Figure 2.1, a set of FFs, F2, can be gated by using observability as shown in Figure 2.4. If
the connection from E to the MUXes before F2 can be proved as sequential redundancy, the
observability clock-gating applied on F2 is legal and can be reduced.

D  Q

D  Q

1

0

A

B
Q

E

F

F
A

E F 

F 

Q

B

True

True

True

True
1

0

(a) (b)

     

1

2

1

2

Figure 2.4: The revised circuit for Figure 2.1 with its characteristic graph, where the inputs,
outputs and FFs are perfectly mapped to those in the golden design.

To verify if the clock-gating condition applied to F2 is legal, a sufficient condition proposed
by the CG method is that the following LTL property

G(XF1 ⇒ E) (2.2)

holds all the time.
Proof : The LTL property in Equation 2.2 guarantees F2 is updated when its target Q

depends on the value of F2 in the next time frame. If E is 0, this property implies that Q
is independent of F2 in the next time frame due to F1 = 0. This blocks any new state of



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 12

F2 to be observed at any output. Thus the selector of the MUX in front of F2 can be 0 or
1 in these cases. By choosing it to be 1, the selector is sequentially stuck-at-1 redundant.
Q.E.D.

Similar to the satisfiability clock-gating cases described in Section 2.2.1, given a target
control signal Cobs, which determines if a set of FFs is updated, we can also formulate
sufficient conditions for observability clock-gating across multiple time frames, which justify
the target signal, Cobs, as sequential stuck-at-1. According to the properties of the input
circuit, there is a natural number N , such that the proposed CG method can formulate a
corresponding k-time frame condition for each k between 1 and N . If one of the N conditions
can be proved, Cobs is sequentially redundant.

2.2.3 Using the Characteristic Graph

A characteristic graph exposes the essential properties of the corresponding circuit, including
signal dependency and control signals. It contains information required to formulate proper-
ties for the legality of a clock-gated circuit. The on-edges and off-edges of a CG connect the
targets and supports across each time frame, while each selection-edge indicates the updating
condition for a group of signals. As discussed in Section 2.2.1 and 2.2.2, sufficient conditions
for the legality of satisfiability and observability clock-gating can be formulated with LTL
properties. Each selection signal associated with a proved condition has its corresponding
signal in the original circuit which can be replaced by 1.

 A F F F   Q 

s s sTrue 1 2 3

1 2 3

Figure 2.5: A CG with three stages of FFs. The vertex A is a PI, where the selection-edge is
driven by True. The signals, s1, s2 and s3 represent the updating conditions for FFs F1, F2 and
F3, respectively.

Consider the CG in Figure 2.5, where F1, F2 and F3 are FFs, Q is a PO and s1, s2 and s3
are their corresponding control signals. Control signal s1 only can be from an observability
clock-gating case, where a sufficient property for s1 being sequential stuck-at-1 is G(Xs2 ⇒
s1). The CG method cannot formulate observability clock-gating conditions across more
than one time frame for F1 because there is a sequential loop due F2.

For s2, it can be a satisfiability clock-gating case with the property G(s1 ⇒ Xs2) and
s2 is 1 in the first time frame, or else an observability clock-gating case with the property
G(Xs3 ⇒ s1).



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 13

s3 can only be a satisfiability clock-gating case, and the sufficient condition requires
(1) G(s2 ⇒ Xs3) holds and (2) the initial condition of s3 is 1. The proposed algorithm
terminates when trying to go across F2, because its selection-edge is not driven by True.

The sufficient conditions proposed by the CG method can be proved on circuits by gen-
eral hardware model checkers. As implied by the LTL safety properties, only the fanin cones
of those control signals need to be considered by model checking, and hence irrelevant com-
binational logic will be excluded automatically by state-of-the-art model checking methods.
Thus, when model checking the generated properties on the original circuit, the problem size
is effectively much less.

There are some limitations on finding sequential redundancy on CGs. Currently each
vertex on a CG covers all signals controlled by the same selection signal, so some sequen-
tially redundant points may be missed. For example, if a set of FFs is clock-gated by a
satisfiability condition with a control signal, s, while another set of FFs is clock-gated by an
observability condition also with s, both cases could be legal but cannot be proved by the
current formulation. This issue can be resolved by separating all FF into different vertices,
but that may result in duplicate properties to be proved.

2.3 Overall Flow

Given two sequential circuits, golden (G and clock-gated, R), with a mapping correspondence
between PIs and POs of the circuits, SEC verifies if the output sequences are identical when
the same input sequences are applied. If R is known to be a clock-gated version of G,
instead of applying general SEC methods, the difficulties of SEC can be reduced using the
CG approach. Here the overall flow of this method is outlined.

As the use-model, it is assumed that the golden model G may be already be clock-gated
in the RTL, possibly manually by the designer. Therefore in comparing G and R, we propose
to reduce them both with the CG method and apply the proved redundancies to get G’ and
R’, which will be compared.

Algorithm 2.2 outlines an algorithm to perform SEC between two circuits, G and R, and
report if they are sequentially equivalent(EQ) or not(NON-EQ).

The function CEC(...) at Line 1 performs general combinational equivalence checking
between corresponding signals for each pair and returns a set of unproved pairs. The function
charGraph(...) returns the corresponding characteristic graph for the specified circuit.

The loop between Lines 7 and 15 verifies each candidate and revises the corresponding
CG according to the proved redundancy one by one. At Line 7, the function comparison(...)
analyzes these unresolved pairs and proposes a candidate for sequential redundancy by com-
paring their CGs. The function defineProperty(...) applies the ideas in Section 2.2 for each
target signal, and generates the set of corresponding LTL properties (P) to be proved. No-
tice that not only R but also G can contain sequential redundancies, so from Line 8 to 11,
properties are defined for CG or CR, respectively.



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 14

Algorithm 2.2 Proposed SEC Flow

Require: G and R: two circuits with mapped PIs, POs and FFs.
Ensure: SEC result: EQ or NON-EQ

1: nonEQ = CEC(G,R)
2: if nonEQ = ∅ then
3: return EQ

4: CG = charGraph(G)
5: CR = charGraph(R)
6: proved = ∅
7: while candidate = comparison( nonEQ, CG, CR) do
8: if candidate ∈ G then
9: P = defineProperty(candidate, CG)

10: else
11: P = defineProperty(candidate, CR)

12: proof = multiProve(P)
13: if isLegal(proof) then
14: revise(candidate, CG, CR)
15: proved = proved ∪ candidate

16: (G’,R’) = simplify(proved,G,R)
17: return SEC(G’,R’)

The function multiProve(...) at line 12 verifies a circuit with multiple outputs. Given a
set of properties P, multiProve(P) verifies all properties simultaneously, and then returns
the resulting set proof, which lists both proved and disproved properties. At Line 13,
isLegal(proof) analyzes the result and determines if candidate is sequentially redundant
using theorems stated in [12]. When any of the sufficient conditions proposed by the theorems
is satisfied, the candidate is proved. Due to the possible dependencies among candidates,
the corresponding CG should be revised using proved redundancies before the next run. All
proved candidates are used to simplify G and R into G’ and R’ at once (Line 16).

Finally, we perform SEC(G’,R’) to check if G’ and R’ are sequentially equivalent. If
G’ and R’ are proved to be NON-EQ, SEC(G’,R’) can return a counter-example, which
is also valid for G and R. Therefore, the proposed algorithm can provide counter-examples
to users for debugging.

A limitation of the structural approach used is that previous synthesis done on R might
have destroyed some of the MUX structures in the circuit. Then some MUXes might not
be recognized during the CG construction and thus the algorithm might fail to identify all
sequentially redundant points. In any case, as much redundancy as possible is identified.
The resulting simplification might be enough for SEC to still be able to prove the property.

To show how this algorithm works, consider the circuits in Figure 2.1 and 2.4 as G and
R respectively. At line 1, only the pair for F2 fails CEC and is added into nonEQ. At Line



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 15

7, E, the selection signal of F2, is a candidate of sequential stuck-at-1 redundancy. Since it
can only be observability clock-gating, the corresponding property, G(XF1 ⇒ E), is created
and proved. Then R is simplified into R’ by replacing the selector of the MUX of F2 by
constant 1, while G’ is the same as G. Therefore G’ and R’ become identical to Figure 2.1,
and can be proved equivalent by SEC easily. Finally, the algorithm returns that G and R
are sequentially equivalent.

2.4 Experimental Results

We compare the CG method against two state-of-the-art methods.

1. Model checker super prove [7]. This is a general purpose gate-level model-checker,
which won the single-output track in the Hardware Model Checking Competition 2014
(HWMCC’14) [17].

2. Absec, a command implemented in ABC [8] which uses the algorithm in [40]. This is
specific to checking clock-gated circuits. It unrolls the circuit a determined number of
clock cycles and uses CEC to prove the desired result.

The CG method, SEC(G,R) is implemented in ABC. The multiProve(...) function used
is multi prove, which won the multi-output track in HWMCC’13 [16] (not held since). We
also apply super prove to the final SEC between G’ and R’.

All experiments were performed on a 16-core 2.60GHz Intel(R) Xeon(R) CPU with a
1500 second time limit. The example circuits were clock-gated manually at the RTL, and
then synthesized into AIGs to create R. Each input for super prove is a multi-output miter
between a golden design (G) and its clock-gated circuit (R). The inputs for Absec and the
CG method are G and R are given separately before mitering.

2.4.1 Performance for General Clock-Gated Cases

First the applicability and efficiency of the three methods applied for general clock-gated
cases are compared. Table 2.1 lists five cases with their circuit sizes, along with how they
were clock-gated. The first three circuits were downloaded from OpenCores [33](G) and
modified (R) manually, while the last two cases were created manually (both G and R) for
this comparison. The CG results are separated into two stages: Simplify includes Line 1 to
16 in Algorithm 2.2, while SEC refers to the final SEC at Line 17.

Because Absec is implemented in ABC only for observability clock-gating, it is not ap-
plicable to the satisfiability clock-gating cases (indicated with N/A in Table 2.1).

As can be seen in Table 2.1, the proposed CG method significantly outperforms the other
two methods. Although the general model checking method super prove can prove some of
the satisfiability and observability clock-gating cases, it requires much more run time than
the specialized methods. We see that Absec can reduce the sequential complexity and prove



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 16

Table 2.1: Comparisons with super prove and Absec on three OpenCores [33] cases and two syn-
thetic cases.

Clock-Gating AND FF super prove Absec CG method(s)
Circuit Techniques # # (s) (s) Simplify SEC

aes.Round Observability 125k 645 208.2 5.31 0.67 2.95
Md5Core Satisfiability 95k 40k 80.33 N/A 0.92 7.92
CLA fixed Observability 3k 97 T.O. 1169.78 0.66 1.97
Synthetic 1 Observability 4k 73 T.O. 166.28 0.56 0.23
Synthetic 2 Both 877 74 177.06 N/A 0.65 0.43

equivalence for backward cases. The final two columns of Table 2.1 show that the CG method
is very efficient in both the redundancy finding phase (simplify) and the final SEC proof after
the redundancies have been removed.

2.4.2 Comparisons of Scalability

The second set of experiments compares the scalability of the three above methods by apply-
ing them to the same design (qmult taken from OpenCores [33]), but with varying bit-widths
(8-16). As the widths increase, the combinational part gets more complex. All of these cases
were modified using only observability clock-gating in order to allow Absec to be applied.

Table 2.2: Comparisons with super prove and Absec on qmult, a design from OpenCores [33], with
varying bit-widths.

AND FF super prove Absec CG method(s)
Circuit # # (s) (s) Simplify SEC

qmult 8 487 25 0.35 0.90 0.58 0.33
qmult 9 632 28 4.09 3.61 0.64 0.34
qmult 10 791 31 23.14 10.50 0.65 0.34
qmult 11 964 34 61.28 98.28 0.65 0.35
qmult 12 1151 37 113.92 153.96 0.65 0.35
qmult 13 1352 40 T.O 229.61 0.66 0.36
qmult 14 1567 43 T.O. 1308.66 0.65 0.37
qmult 15 1796 46 T.O. 425.79 0.54 0.36
qmult 16 2039 49 T.O. 620.23 0.65 0.37

Table 2.2 shows that as the complexity of the circuit increases, the runtimes of super prove
and Absec increase sharply. In contrast, the CG method is not affected by the increased
complexity because the complicated combinational logic is effectively excluded by the CG
method.



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 17

2.5 Summary

This chapter presented a novel SEC method for clock-gated circuits. The proposed method
is based on constructing a characteristic graph (CG) to model only essential signals of a
circuit deemed necessary to prove equivalence. It uses control graphs, CGs, to formulate
sufficient properties for sequential redundancies. These properties are proved and used to
simplify the circuit after which SEC becomes easy. The experimental results show that the
CG method is scalable and effective, and substantially outperforms existing techniques.

The contributions of this chapter are summarized below:

1. We formulate graph representations (CGs) of AIG circuits, (G or R). The CG expresses
the essential underlying control structure of the circuit. An algorithm is provided that
constructs a CG from the corresponding circuit.

2. We show how to use the CG to formulate LTL properties (P) about the flow control
of the original circuit. These properties can justify both satisfiability and observability
clock-gating conditions spanning several time cycles. P can be model checked on the
circuit easily because their supports rely only on signals highlighted in the CG.

3. We prove that each property in P, if proved, implies that an associated control signal
directing the flow is sequentially stuck-at-1 redundant. This redundancy is used to
simplify R into R’. Similarly, G is simplified to G’.

4. R’ and G’ are SEC checked. Since R’ and G’ are typically structurally more similar
to each other, the subsequent model checking becomes very efficient.

5. This method was implemented and applied to a number of academic and industrial
clock-gated circuits to check (SEC) them against the original circuits. Experimen-
tal results show that this method is much more efficient than existing methods for
performing SEC on clock-gated circuits.

The proposed SEC flow works well when only the control condition over FFs is used for
clock-gating synthesis. However, there are some drawbacks of this method:

1. The MUX structures for clock-gating might be destroyed by synthesis applied after
clock-gating. Unrecognized clock-gating conditions might cause the final SEC to be
too difficult and cause the verification of legal cases to fail.

2. The construction of CGs assumes there is at most one MUX in front of each FF. In
real cases, multiple clock-gating conditions can be applied together, resulting in a series
of MUXes. Thus, the CG method cannot be used to address a case where multiple
clock-gating conditions are applied to the same set of gated FFs.

3. The CG construction flow does not distinguish FFs gated by the same control value
but under different data dependencies and gating conditions. This issue could result
in a false negative when proving legal clock-gating conditions.



CHAPTER 2. VERIFICATION WITH CHARACTERISTIC GRAPHS 18

4. The proposed CG method only checks the cases where the control signals are sequen-
tial redundancies. It is possible that another signal in the fanin cones of controls is
redundant but the CG method cannot identify it and reduce it. Hence the clock-gating
condition remains and the final SEC is still challenging.

5. The CG method only considers the cases where only control signals of MUXes in front
of FFs are used to perform clock-gating. This might exclude some legal clock-gating
conditions that rely on more sophisticated analysis of control logic.

6. The CG method cannot handle conditions with sequential loops properly. It is in-
capable of analyzing satisfiability clock-gating conditions with branches across time
frames.

All issues above can be resolved by extracting all control paths and analyzing data depen-
dencies in detail. To recognize more control logic in circuits, we propose to use a functional
approach presented in the next chapters and to analyze data dependencies thoroughly using
a ”dependency graph” (DG). While this might be more computationally expensive, it does
lead to a more complete theory of clock-gating and in fact to automatic synthesis methods.
It is still efficient and can be combined with the methods of this chapter to lead to an overall
very efficient hybrid CG/DG method.



19

Chapter 3

Transparent Logic in Hardware
Designs

In hardware, control logic regulates the data flow and dictates circuit functionalities. A logic
that simply moves data from one part of a circuit to another without modifying it can be
referred to as transparent logic. Another category of logic transforms data by some word-
level operator, e.g. a bit-vector operator defined in Verilog [34]. A third category, control,
determines which data is moved and when, or which operation is applied and when.

The basic example of transparent logic is a multiplexer (MUX) structure, which selects
from several data signals and forwards it unaltered towards the outputs. Efficient identifica-
tion of MUXes can be performed over gate-level circuits using structural matching, but this
can be unreliable, especially if synthesis has been applied.

In this chapter, we focus on functional approaches which do not depend on the actual
gate-level structure of the circuit. These can augment structural methods and provide a
much more reliable technique as we show in the experiments.

In general, identifying transparent logic is widely applicable to other applications like
reverse engineering but we develop it here to be used in Chapter 4 to identify controlled
dependencies for constructing dependency graphs for synthesizing and verifying clock-gating
in circuits.

3.1 Introduction

Functional methods, which rely only on functional dependencies, have been used generally
to augment structural approaches. Examples are:

• Li and Subramanyan et. al. [27, 45] identified internal words based on bitslice aggre-
gation (functional approach) and shapehashing (structural approach). The candidate
words found were used as boundaries of operators for further recognition. However,
they did not recognize found boundaries as inputs or outputs of operators before iden-
tifying functionality.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 20

• Li et. al.[29, 27] identified functional operators in gate-level circuits, based on an
existing library of blocks. Word-level information at the primary inputs was assumed
available, but in many applications such information is not given.

• Sterin et. al. [44] extracted word-level operators functionally, given a library of opera-
tors and a slice of logic containing inputs and outputs of such operators. The possible
location and ordering of the inputs and outputs of an operator and word-level infor-
mation were not required. However, the slice of logic cannot include transparent logic,
based on the algorithm.

We present methods to identify functional transparent logic. This is inherited from func-
tional isomorphism. Using this approach, an algorithm to identify words, word-level operator
boundaries and control logic in gate-level circuits is proposed and applied to a variety of test
cases. Indeed, we can rewrite a gate-level circuits hierarchically (i.e. hierarchical Verilog
format) with the recognized logic as sub-circuits. Once operator boundaries are (roughly)
located, techniques like [44] can be used to identify the precise location of the operators and
their functionalities.

The remainder of this chapter is organized as follows. Section 3.2 introduces functional
isomorphism. In Section 3.3, we describe the definition and propagation of transparent logic.
Proposed algorithms for identifying transparent logic are given in Section 3.4. Some practical
challenges of identifying transparent logic are discussed in Section 3.5. Experimental results
are shown in Section 3.6, while Section 3.7 concludes this chapter.

3.2 Overview

Roughly, a transparent path in a circuit has width n and a set of controls s = {si}, which
when evaluated appropriately at a minterm s = {si} = {msi}, moves a data-word (width n)
from the beginning of the path to the end. Different minterms for s select different input
words to be transported. Such paths can fork and join in the circuit, and can begin and end
at a set of inputs, outputs or internal signals. A path is maximal if there is no transparent
path that can extend it. The terminals of maximal transparent paths are of interest because
they likely delineate the input or output of an operator, e.g. an arithmetic function.

A sink terminal can have many source terminals. Each data signal at a sink terminal is
a Boolean function of a) data signals Dk = {djk} at the source terminals and b) the set of
associated controls {si} of transparent segments of any path from source to sink. Such a set
of functions at a sink forms an NPN equivalence class (or equivalently an NPN isomorphism
class). The isomorphism between the inputs of any two signals fp and fq (where p, q ∈ [1, n])
in the sink terminal is djp ↔ djq, i.e. different bit positions in the same data word are
isomorphically mapped to each other, while control signals si are isomorphically mapped
into themselves. It is possible that some bits of a terminal have been inverted, hence NPN
equivalence is considered in the subsequent discussions.

Thus, the outputs of a transparent path are a subset of an NPN isomorphism class.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 21

3.2.1 NPN Isomorphism

Two graphs, G1(V1, E1) and G2(V2, E2), are isomorphic, if there exists a bijective mapping,
M12: V1 → V2, such that any two vertices u and v are adjacent in G1, if and only if M12(u)
and M12(v) are adjacent in G2 [1]. Two circuits, C1 and C2, are isomorphic to each other
if their logic gates and connections form two isomorphic graphs, while any gate g of C1 and
the mapped gate M12(g) in C2 are the same type. The relation between C1 and C2 is called
structural isomorphism, which has been applied to reverse engineering [15]. In contrast,
NPN isomorphism is a functional isomorphism, which is a relation between two signals in a
circuit.

A signal f in a circuit, supported by a set of other signals, Sf , is a Boolean function of
these inputs: f : B|Sf | → B, for B = {0, 1}.

In the following sections, for a Boolean variable xi with its polarity pi, (xi)
pi represents

the function: pi = 0→ (xi)
pi ≡ xi and pi = 1→ (xi)

pi ≡ inv(xi).

Definition 3.1 A pair of Boolean functions f(x1, . . . xn) and g(y1, . . . , yn) are NPN iso-
morphic1, if there exists a permutation π of size n and polarities pout and {p1, . . . , pn} ∈ Bn

such that
f(x1, . . . , xn) = gpout(xp1π(1), . . . , x

pn
π(n)) (3.1)

i.e., g can be made equivalent to f by selectively negating inputs, permuting inputs, and
negating the output. The implied isomorphic mapping between the supports of g and f is
{yi, xpiπ(i)} and pi is said to be the relative polarity between inputs yi and xπ(i).

A set of signals in a circuit, in which every pair is functionally NPN isomorphic is called an
NPN isomorphism class.

3.2.2 Composition of NPN Isomorphism

Although improved methods for computing NPN equivalence can be found in Soekin et.
al. [43], this calculation can still be time-consuming. This effort can be reduced immensely
by proving NPN isomorphism on smaller logic blocks and then composing proved classes to
obtain larger ones. Larger classes help extend paths of transparency (discussed in Section 3.3)
in a circuit and to more reliably find transparency boundaries, and hence the input/output
boundaries of word-level operators.

The following discussion provides details on when compositions lead to larger NPN iso-
morphisms.

Definition 3.2 (polar consistency) Let (f(s), g(t)) be a pair of NPN isomorphic functions
with sets of supports s = {si} and t = {tj}, respectively. Suppose each pair of mapped
input supports si ↔ tj are NPN isomorphic functions, i.e. si(x) is NPN isomorphic to tj(y).
Let pijout be the relative output polarity between si(x) and tj(y), and pij be the relative

1or Negation-Permutation-Negation (NPN) equivalent



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 22

input polarity between inputs si and tj in the NPN isomorphism between f(s) and g(t).

The compositions f(s(x)) and g(t(y)) are polar consistent, if p
iπ(i)
out = piπ(i), where π is the

permutation in the isomorphism mapping of (f(s), g(t)).

Theorem 3.1 The compositions of (f(s(x)), g(t(y))) are polar consistent if and only if
f(s(x)) and g(t(y)) are NPN isomorphic.

3.3 Extending Transparent Logic

As already stated, the identification of maximal transparent logic can be used to identify
input/output boundaries of arithmetic operators.

3.3.1 Transparent Words

Intuitively, a transparent word is a set of signals, {wk}, with supports, {Sk}, where under
some evaluation of ∩kSk (common control), {wk} is equivalent to a subset (data-word) of
∪kSk. In other words, the control evaluation makes the word transparent from some input
data-word.

Example: An m-bit word from a set of 2-to-1 multiplexers (MUX) controlled by the
same selector signal s,

C[m− 1 : 0] = s?A[m− 1 : 0] : B[m− 1 : 0], (3.2)

comprises a transparent word C, where ∀j ∈ [0,m − 1], (C[j] = sA[j] + s′B[j]). For this
case, word C is transparent from word A or word B, depending on the value assigned to s.

Definition 3.3 Functions W = {wk|k ∈ [1,m]} of an NPN isomorphism class comprise an
m-bit transparent word, if:

1. Each function wk : BSk → B, has support Sk = (Control,Datak), i.e. Control is the
set of common signals, and each bit of Control is isomorphically mapped into itself.

2. Formula 3.3 below is True, where mc is a minterm of Control, ≡ denotes functional
equivalence, and wkmc

denotes the co-factor of function wk(Control,Datak) with respect
to mc.

(∃mc∀k∃dki ∈Datak∃pki (wkmc
(Datak) ≡ (dki )

pki )). (3.3)

3. For any (wx, wy) ∈ W , the associated isomorphic support mapping Mxy, satisfies
Mxy(Data

x) = Datay.

Thus a transparent word W is conditionally (by mc) equivalent to an input data word
[(d1i )

p1i , . . . , (dmi )p
m
i ]. Based on the above definition, the vector of conditionally equivalent



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 23

data support bits that have a common condition mc, Di = {d1i , . . . , dmi } is called an input
word.

Given a transparent word, W = {wk}, with the corresponding support partitions
{(Control,Datak)}, the entire support set of W can be partitioned into Control and
DataW =

⋃iDi. The definition of transparent words can be restated as follows:

Definition 3.4 A transparent word W is a set of NPN isomorphism functions supported
by control Control and data DataW =

⋃iDi, such that the following formula is True:

∀Di∈DataW∃mc∃Pi
(Wmc(DataW ) ≡ (Di)

Pi), (3.4)

where Pi is the set of polarity bits for Di.

Although, for an input word Di, there could be multiple minterms of Control satisfying
Formula (4), the assignments of mc ∈ Control for different Dis are disjoint.

Example: Consider Equation 3.2: for each C[j], the support set {s, A[j], B[j]} can be
partitioned into Dataj = {A[j], B[j]} and Control = {s}, such that (s = 1)⇒ (C[j] = A[j])
and (s = 0) ⇒ (C[j] = B[j]). Hence a common (control) assignment applied to all bits
of the transparent word, makes them simultaneously transparent from the corresponding
supports. The supports of C can be partitioned into DataC ≡ {A[m− 1 : 0], B[m− 1, 0]},
and Control ≡ {s}.

Since negations of some bits of transparent words might occur during synthesis, it seems
reasonable to consider the logic still as ”transparent”. Note that in the example: C[j] =
sA[j] + s′B[j] the negation of bit C[j] can be done by negating the data inputs, A[j] and
B[j]:

inv(C[j]) = inv(sA[j] + s′B[j])

= s inv(A[j]) + s′inv(B[j]).
(3.5)

but C (with some phase changes) can still be considered transparent from A and B because
the assignments to the control bits are unchanged.

In Section 3.3.2 and 3.3.3, as we compose transparent sections to form a larger transparent
path, we will need to resolve cases where only some bits of a transparent word are negated.
However, for composing transparencies to find larger ones i.e.f(g(x)) it is required that the
polarities of the inputs to the fanout logic (f) and outputs (g) of the fanin logic are consistent
as defined in Definition 3.2. This can be done by negating some of the inputs (x) of the
path (using NPN isomorphism) to get a polarity of (g) that is compatible with the input
polarity of (f).

Theorem 3.2 Given a transparent word W , the negation of any output bit wk can be
effected by negating the corresponding input data support bits, without changing any control
assignment.

The upshot is that when finding another transparent section of logic and composing it to
extend a transparent path, this can always be done simply by negating the inputs to get
compatible polarities at the point of composition.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 24

3.3.2 Composition of Transparency

Similar to the composition of NPN isomorphism, larger transparent functions are frequently
created by composing smaller transparent blocks.

Example: In Figure 3.1, word C is transparent from A and B under the control of
s1, while a second transparent block consists of word E, transparent from C and D under
the control of s2. Thus (s1 = 1, s2 = 1) → E ≡ A, while (s1 = 0, s2 = 1) → E ≡ B i.e.
transparency of E from A and B is obtained by composing of smaller transparent blocks. If
some bits of C are negated before feeding into the MUXes controlled by s2, the composition
can be done by pushing the negation to the corresponding bits of A and B to maintain polar
consistency.

1

0

1

0

s1

s2
A

B
C

D

E

Figure 3.1: A transparent word can be implemented by composing smaller transparent words.

Definition 3.5 Let W = {W k(X)|k = [1, n]} be a set of n m-bit transparent words, and
let Y = {yj|j = [1,m]} be another transparent word with support DataY = W

⋃
V and

common control ControlY . Suppose each input word of Y is exactly one transparent word
in W or one word in V . The set of compositions,

Z = {zj} = {yj(W(X), V, ControlY )} (3.6)

forms a compound word, and is denoted as Z = Y ◦ W.

Theorem 3.3 Assume Y is a transparent word and W is a set of transparent words. Let
{αki } be the set of minterms of Controlk, which enable W k to be transparent from an input
word xki ∈ Datak, and {βk} be the set of minterms of ControlY for (Y ≡ W k). Using the
notation:

ControlZ = ControlY
⋃

[∪kControlk],
DataZ = V

⋃
[∪kDatak],



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 25

a compound word, Z ≡ Y ◦W is a transparent word controlled by ControlZ if

∀k∀i({α̂ki} ∩ {β̂k} 6= ∅) (3.7)

is True, where {α̂ki} and {β̂k} are {αki } and {βk} extended to cubes of the larger space of
ControlZ , respectively.

Proof:

1. Based on Theorems 1 and 2, Z can be an NPN isomorphism class by flipping the
polarities of W kwhenever its output polarity is not compatible with the input polarities
of yk.

2. Because Y is a transparent word, for each input word in V , there must exist an assign-
ment of ControlY to enable the transparency from V.

3. Conditions satisfying Formula 3.7 imply that for each input word xki of W k, there exists
an assignment of ControlZ such that a) W k is transparent from xki , b) Y is transparent
from W k, and c) Y is transparent from xki . Therefore, Z ≡ Y ◦W is a transparent
word with (ControlZ , DataZ) as control and data supports.

3.3.3 Propagation of Transparency

Example: Figure 3.2 illustrates how a longer transparency can be obtained from non trans-
parent sections of logic. C is transparent from A when s1 = 1, and D is transparent from B
when s2 = 1, but the logic block from C and D to E is not transparent (there is no common
control support for each bit of E). However, E is transparent from A when (s1 = 1, s2 = 0),
while (s1 = 0, s2 = 1) makes E transparent from B.

A

B

n{s  }

n{s  }

C

D

n

n

n

n

n

n

E1

2

n

Figure 3.2: A longer transparent word may be obtained from smaller transparent words and an
NPN isomorphism class.

When a transparent function block is obtained partly non-transparent sections, it is
called propagation of transparency. The conditions when this can happen are stated in the
following.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 26

Definition 3.6 (proceeding word) Let W be a set of n m-bit transparent words, and let
Y (W) = {yj(W)} be an NPN isomorphism class. Suppose each yj is supported by exactly
one bit of each W k, and the isomorphically mapped supports of yj are always from the same
word of W. We say that Y is a proceeding word of W and denote this by Z = Y ◦W .

Theorem 3.4 Assume Y is a proceeding of W as in Definition 3.6 and the supports of
W k are supp(W k) = (Controlk, Datak). Let {αki } be the set of minterms of Controlk which
cause (W k ≡ xki ), and {βk} be minterms of ∪kControlk which cause (Y ≡ W k). Using the
notation ControlZ = ∪kControlk, and DataZ = ∪kDatak, a proceeding word, Z ≡ Y ◦ ◦W,
is a transparent word controlled by ControlZ if

∀k∀i({α̂ki } ∩ {βk} 6= ∅), (3.8)

where {α̂ki} refers to {αki } extended to cubes of ControlZ .

Proof:

1. Similar to the proof of Theorem 3, Z can be an NPN isomorphism class by flipping
the polarities of W k if needed.

2. For each input word xki in DataZ , Formula 3.8 implies that there exists an assignment
of ControlZ , such that W k ≡ xki , Y ≡ W k, and thus, Y ≡ xki , implying Z ≡ Y ◦ ◦W
is a transparent word with (ControlZ , DataZ) as control and data supports.

Example: In Figure 3.2, W = (C,D) and {α̂k1} = s1s2 + s1s2 makes C transparent
from A, while {α̂k2} = s1s2 + s1s2 makes D transparent from B. {βk} = s1s2 (s1s2) causes
E ≡ C (E ≡ D). Note that {α̂k1} ∩ {βk} = s1s2 6= ∅ and {α̂k2} ∩ {βk} = s1s2 6= ∅. Thus the
conditions for propagation of transparency are met, and therefore E is transparent from A
and B.

3.4 Transparency Identification

The functional approach proposed for transparency identification relies only on dependencies
among signals. It can be used to complement a structural approach, leading to a method
that is still efficient but with more reliable results.

In general, we want to identify transparent logic anywhere it occurs in the circuit -
from inputs to internal words (forward), from internal words to outputs (backward), and
between internal words. A general problem is formulated and solved in this paper: Given a
combinational circuit, find:

1. all (disjoint) transparent logic blocks, specified by corresponding support and output
boundaries,

2. transparent words on each output boundary,



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 27

3. input words on each support boundary, and

4. assignments of Control for moving each input word to the output transparent word.

The proposed algorithm can be decomposed into four parts:

1. collect candidate controls,

2. find transparent words controlled by one signal,

3. find proceeding words and

4. rearrange proved words.

3.4.1 Find Transparency with Given Controls

A sub-process, findTransparency(...), is developed to identify all transparent words controlled
by a set of signals. Algorithm 3.1 shows the proposed algorithm for this sub-process.

Algorithm 3.1 Find Transparency

Require: Circuit,Controls
Ensure: TransparentWords = (Inputs, Outputs, Minterms)

1: Minterms = enumerateControls(Controls)
2: for all minterm in Minterms do
3: Candidates = applyMinterm(minterm,Circuit)

4: TransparentWords = analyzeWords(Candidates)
5: splitWords(TransparentWords) return TransparentWords

In Line 1, the function enumerateControls(...) enumerates all possible minterms for the
input control set. For each minterm, the function applyMinterm(...) finds the co-factor of
the input circuit. It returns a set of conditionally transparent paths, Candidates, where
each sink signal is functionally equivalent to the corresponding source. The output of each
transparent path must be supported by all signals in Controls. Note that a sink signal can
be driven by multiple transparent paths controlled by different minterms of the same set of
controls.

In Line 4, the function analyzeWords(...) examines all candidate paths and merges
paths with the same sink signal. Then this function partitions those sink signals into several
transparent words. To match the requirement of NPN isomorphism, in each transparent
word, all output signals are controlled by an identical set of minterms, and the depths
(number of signals along each path, excluding sources) of all transparent paths are the same.
Also, if some input bits are primary inputs, while the other mapped bits (under the same
set of minterms) are internal signals, they are classified into separate words.

The function splitWords(...) partitions a word if some output bits of it are primary
outputs, while others are internal signals.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 28

3.4.2 Overall Algorithm Flow

Based on the function in Algorithm 3.1, Algorithm 3.2 outlines the steps for finding all
transparent words and identifying words on support or output boundaries for an input circuit.

Algorithm 3.2 Functional Approach

Require: Circuit
Ensure: TransparentBlocks = (Outputs, Supports, Words)

1: ProvedWords= ∅
2: CandidateControls = findHighFanoutSignals(Circuit)
3: for all control in CandidateControls do
4: NewWords = findTransparency(Circuit, {control})
5: ProvedWords

⋃
= NewWords

6: for all word in ProvedWords do
7: if notFullyTransparent(word) then
8: ControlSets = findPossibleCombinations(word)
9: for all controlSet in ControlSets do

10: if newCombination(controlSet) then
11: NewWords = findTransparency(Circuit, controlSet)
12: extend(ProvedWords,NewWords)

13: cleanMultiplyDrivenWords(ProvedWords)
14: partitionWords(ProvedWords)
15: disposeWords(ProvedWords)
16: TransparentBlocks = analyzeBlock(ProvedWords)
17: return TransparentBlocks

To find control candidates, the function findHighFanoutSignals(...) in Line 2 uses the
fact that all bits of a transparent word must be controlled by the same condition. It collects
all signals with more than 3 immediate fanouts.

Lines 3 to 5 find all transparent words controlled by a single signal, including the standard
2-to-1 MUXes and depth-one words.

To recognize proceeding words, Lines 8 to 12 work on words which so far are not fully
feeding into transparent paths. For each candidate word, the function findPossibleCombina-
tion(...) collects its depth-one fanouts and finds other transparent words which also support
those fanouts. If the signal dependencies of supporting words and fanouts satisfy Definition
3.6, they may result in proceeding words. Note that if the input circuit is an and-inverter-
graph (AIG), when only depth-one fanouts are considered, each proceeding word can only
come from two proved words.

Then the union of the control sets of the two words is a candidate control set. The
algorithm executes findTransparency(...) if this control set has never been considered before.
The newly found words are appended at the end of ProvedWords for being examined by
the same flow later.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 29

Lines 13 and 14 rearrange all proved transparent words to achieve a legal word dependency
graph, in which multiply-driven signals are absent, and all bits of one word are driven by
the same set of words. The function cleanMultiplyDrivenWords(...) examines every signal
driven by more than one transparent path and assigns it to the most preferred word. This
process favors wider words first, and then deeper ones. The function partitionWords(...)
partitions each word into smaller words if some bits are supported by different input words.
Also, outputs driving different sets of words are grouped into different words.

The function disposeWords(...) discards transparent words with bad properties; it ex-
cludes all words with fewer than 4 bits after the above processes have been executed; it can
also discard some depth-one words if they are suspected as bad transparent words - more
details are discussed in Section 3.5.2.

Finally, the function analyzeBlocks(...) finds (1) input words on support boundaries
which are not directly supported by transparent signals, and (2) output boundaries where
words are not fully feeding into transparent signals. This information can be used later in
other applications like reverse engineering.

3.4.3 Running Examples

The following three examples demonstrate how the proposed algorithm works on various
unconventional cases.

A[0]

s1 s2 s3
A[1]

s2
s1

s3

D[0]

D[1]
A[2]

s2
s1

s3
A[3]
s1

s3

D[2]

D[3]s2

B[0]

B[1]

B[2]

B[3]

C[0]

C[1]

C[2]

C[3]

Figure 3.3: A compound word composed of three depth-one words.

Example 1: Figure 3.3 shows a compound word composed of three depth-one transpar-
ent words. First, high-fanout signals, s1, s2 and s3, are collected as control candidates. Then
depth-one transparent words, s1 → (B ≡ A), s2 → (C ≡ B) and s3 → (D ≡ C) are proved
by Lines 3 to 5 in Figure 3.2. Lines 7 to 14 are skipped because all words found above are



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 30

either fully connected to another word or support nothing. The function disposeWords(...)
might drop some depth-one words in this circuit when certain strategies are applied. See
Section 3.5.2 for a further discussion. If no word gets dropped, the whole circuit is reported
as one transparent logic block, where A and D are input and output boundaries, respectively.

A

B

C

D

n{s }

n{s }

n{s }

n{s  }

E

F
G

H
I

J

K
n

n

n
n

n

n

n
n

n

n

n

n

n

n

n

1

2

3

4

Figure 3.4: An example containing proceeding words.

Example 2: Figure 3.4 demonstrates how proceeding words can be found by the pro-
posed algorithm. As before, s1, s2, s3 and s4 are recognized as control candidates. Then
s1 → (E ≡ A), s2 → (F ≡ B), s3 → (H ≡ C) and s4 → (J ≡ D) are proved as depth-one
transparent words.

Starting from E, findPossibleCombinations(...) finds that the combination of E, F and
G satisfies the definition of a proceeding word, so {s1, s2} is a new combination of controls.
According to this control set, the function findTransparency(...) returns s1s

′
2 → (G ≡ A)

and s′1s2 → (G ≡ B). Following the similar procedure, I is proved as transparent from
A (s1s

′
2s

′
3), B (s′1s2s

′
3) and C (s′1s

′
2s3). Finally I and J are associated together and K is

transparent from A (s1s
′
2s

′
3s

′
4), B (s′1s2s

′
3s

′
4), C (s′1s

′
2s3s

′
4) and D (s′1s

′
2s

′
3s4). The only word

on the output boundary, K, is a depth-four transparent word supported by A, B, C and D.
Example 3: Consider Figure 3.5 as the input circuit. First, s1 is recognized as a high-

fanout signal. Then applyMinterm(...) in findTransparency(...) (Figure 3.1) finds s1 →
({E,G} ≡ {A,F}) and s′1 → ({E,G} ≡ {B,D}). Then analyzeWords(...) in Figure 3.5
merges the two sets of paths into one word, {E,G}, and then partitions the word into
(E ≡ s1A+ s′1B) and (G ≡ s1F + s′1D), because sources of E (bits of A) are primary inputs,
while those of G (bits of F ) are internal signals. There are no more transparent words in
this circuit.

There are two disjoint transparent blocks, because all paths through the adder are not
transparent. For the block with output E, A and B are reported as support words, while F
and D are support words for the other block with G as the output.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 31

1

0

1

0

s1

s1
A

B
C

D

E

Adder
C

F G

n

n

n

n

n+1
n+1 n+1

Figure 3.5: An example with disjoint transparent blocks.

3.5 Practical Challenges

Finding transparent words and performing perfect reverse engineering for real circuits can
be challenging, but the proposed algorithm provides more possibilities to address issues that
cannot be resolved by structural approaches.

3.5.1 Generalized Transparent Words

Often a word is transparent from words with different bitwidths - for example,

C[m− 1 : 0] = s?A[m− 2 : 0] : B[m− 1 : 0]. (3.9)

The most significant bit of C, C[m−1] = s′B[m−1], is not NPN isomorphic to other bits of
C. Hence this word is partitioned into one word with m− 1 bits and one with 1 bit by the
proposed algorithm. Therefore, some reverse engineering algorithms based on precise word
boundaries can fail due to the decomposition of the whole word.

Also, it is possible that control signals can be part of input data words, i.e.

C[m− 1 : 0] = s?A[m− 1 : 0] : B[m− 1 : 0], (3.10)

where s ≡ A[m− 1]. That is, C[m− 1] = sA[m− 1] + s′B[m− 1] = A[m− 1] + B[m− 1].
Thus, C[m − 1] is different from other bits of C. These excluded bits are discarded by
disposeWords(...) because of bit-width differences, and then the transparent boundaries are
imperfect.

The above cases can be handled by modifying analyzeWords(...) in Algorithm 3.1. For
both the above cases, when s is 1, C[m−1] is constant, which is excluded from Candidates.
When s is 0, C[m− 1] is transparent from B[m− 1], through a path with depth one, while
other bits of C are through paths of depth two. Hence, analyzeWords(...) can merge all bits
of C into one word even though some bits are controlled by only one minterm, and their
depths are different. In other words, we can relax the requirement of NPN isomorphism to
achieve generalized transparent words.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 32

However, it is possible that the bits with different depths are indeed different words, so
a practical reverse engineering process should consider both cases and use other information
to revise the word boundary.

3.5.2 Ambiguity of Transparency

Some data signals are recognized as control candidates because they drive more than three
fanouts. For example, a word-level multiplier can be synthesized as a set of adders among
internal words,

C[2m− 1 : 0] = A[m− 1 : 0]×B[m− 1 : 0]

= A[m− 1 : 0]B[0] + A[m− 1 : 0]B[1] << 1

+ · · ·+ A[m− 1 : 0]B[m− 1] << (m− 1).

(3.11)

These words are depth-one transparent words from one input word of the multiplier, con-
trolled by bits of the other input word. These depth-one transparent words can be recognized
and excluded by disposeWords(...), considering they are directly feeding into non-transparent
paths.

However, it is excessive to discard all depth one transparent words which do not sup-
port other transparent words. Consider the example in Figure 3.3. Bits of D are sinks of
transparent paths, while they do not support other transparent words and can be discarded.

Also, if a word (a set of MUXes) is switching between one constant word and one variable,
these MUXes can be synthesized as AND or OR gates, which comprise depth-one transparent
words. Discarding these would lead to overlooking some transparencies.

Moreover, compared to the flow in Algorithm 3.2, the resulting words and boundaries are
different when the function disposeWords(...) (discarding some depth-one words) executes
before partitionWords(...).

To resolve this issue for reverse engineering, it is preferable to run the proposed algo-
rithm with different settings of disposeWords(...), and combine the information of recognized
operators to decide suitable boundaries.

3.5.3 Limitations of Proposed Algorithms

The proposed algorithm only considers composition and propagation of transparency, so it
cannot recognize transparent blocks outside these categories.

Consider the circuit in Figure 3.6. It is a transparent block because s1s2s3 → (B ≡
A), but it cannot be found by the proposed algorithm, which will find several depth-one
transparent words controlled by s1, s2 and s3, but then signal dependencies cannot satisfy
the definition of proceeding words.

Note that this logic block still satisfies the definition of a transparent word, so it can
be recognized by finding NPN isomorphism functions and permuting supports. However,



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 33

A[0]

s1 s2 s3

A[1]
s2

s1

s3

B[0]

B[1]
A[2]

s2 s1 s3

A[3]
s1

s3

B[2]

B[3]s2

Figure 3.6: A transparent block which is not the result of compositions of NPN isomorphism
classes.

searching for all NPN isomorphism classes can be time-consuming, especially if finding and
revising ideal support and output boundaries is done.

In real (industrial) benchmarks, these types of cases do not seem to happen a lot, so they
can be overlooked by the proposed algorithm without much loss.

3.6 Experimental Results

The proposed algorithms were implemented in ABC [8]. All experiments were performed on
a 16-core 2.60GHz Intel(R) Xeon(R) CPU with no time limit. All cases were processed as
AIGs as inputs. Sequential circuits were converted into combinational designs by replacing
flip-flops inputs and outputs with primary outputs and inputs respectively.

As a reference for the functional approach, we implemented a purely structural approach:
1) structural matching is used to locate all 2-to-1 MUXes in the AIGs, 2) signals with the
same control are grouped into one word, and these connected words are collected into larger
transparent blocks and 3) words are partitioned into sub-words if they are supported by
different input words or drive different output words.

We wanted to compare the efficiency and effectiveness of the structural algorithms versus
our functional algorithms applied to highly-transparent cases. To select these, the proposed
functional algorithm was applied to all 230 cases of the single-output track in the Hardware
Model Checking Competition 2014 [17] after their conversion to combinational circuits. For
each case, some POs were proved conditionally equivalent to some primary inputs. We
computed the proportion of those POs to all POs, and ran experiments on the top 10
cases with the highest percentages of transparent POs. Among the 230 cases, there are
20 cases with more than 50% transparent POs, while another 38 cases have more than



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 34

25% transparent POs. Table 3.1 shows the statistics of the selected cases after they were
converted to combinational circuits. The last column of Table 3.1 indicates the percentages
of transparent POs to all POs. The 6sxxx cases are industrial problems from IBM and the
beem examples come from different applications areas such as protocols, planning, scheduling,
communication, or puzzles.

Table 3.1: Statistics of the selected benchmarks from HWMCC’14 [17].

Case PI PO AND Trans. PO
Name # # # %

6s195.aig 1344 1258 8046 87.1
beemfrogs1b1.aig 323 159 8493 86.0

6s171.aig 1357 1263 8074 84.6
beemloyd3b1.aig 237 118 3970 82.1
6s282b01.aig 1977 1934 10264 81.2
6s384rb024.aig 22367 14953 47933 79.0
6s206rb103.aig 37847 28644 103375 71.4
6s302rb09.aig 36962 27777 100571 70.3
6s348b53.aig 15797 15561 89567 70.1

beemldelec4b1.aig 2559 1215 34252 67.5

3.6.1 Comparison between Functional and Structural
Approaches

Table 3.2 shows the comparisons between the structural approach and the proposed func-
tional method. Column 2 indicates the total number of signals (AIG nodes or primary inputs)
that were classified as belonging to words. Columns 3-8 (labeled Structural Approach) give
the statistics of the transparencies found using the reference structural approach. Column 3
lists the total number of structural MUXes recognized. Column 4 lists the number of AIG
nodes plus inputs covered by all the transparent logic blocks found; Column 5 gives the (min-
imum, maximum) widths (the number of MUXes grouped together as a word) of found and
partitioned words, and Column 6 shows the (minimum, maximum) depths of transparent
words on boundaries. The depth of each word is the total number of AIG nodes between itself
and the primary inputs, where one MUX is counted as depth 2. Column 7 (labeled Forward)
lists the total number of signals which are in the transparent block where all input words
are primary inputs. Column 8 shows the run-time of the overall structural approach. Here
we only identify 2-to-1 MUXes and MUXes with negation on outputs or inputs. We omit
counting words (after partitioning) with less than 4 bits. Columns 9-13 (labeled Proposed
Functional Approach) show similar statistics for the proposed algorithm. Here we include
all depth-one transparent words when counting signals or depths of transparent blocks.

Observation of Structural Results Table 3.2 shows that most benchmarks contain
wide transparent words. The run times show that this approach is very efficient as expected.

Although these cases have high percentages of transparent POs, for some cases (beemld-
elec4b1.aig) the structural approach cannot find any transparent words reachable from pri-



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 35

T
ab

le
3.

2:
E

x
p

er
im

en
ta

l
re

su
lt

s
o
f

th
e

st
ru

ct
u

ra
l

an
d

fu
n

ct
io

n
al

ap
p

ro
ac

h
es

on
te

n
se

le
ct

ed
ca

se
s

fr
o
m

H
W

M
C

C
’1

4
[1

7]
.

C
a
se

T
o
ta
l

S
tr
u
ct
u
ra
l
A
p
p
ro
a
ch

P
ro
p
o
se
d
F
u
n
ct
io
n
a
l
A
p
p
ro
a
ch

N
a
m
e

S
ig
.
#

M
u
x
#

S
ig
.#

W
id
th
s

D
ep

th
s

F
o
rw

a
rd

ti
m
e(
s)

S
ig
.
#

W
id
th
s

D
ep

th
s

F
o
rw

a
rd

ti
m
e(
s)

6
s1
9
5
.a
ig

9
3
9
0

2
3
5
7

8
0
9
0

4
,
5
1
2

2
,
1
2

4
6
2
0

0
.1
3
3

8
8
2
0

4
,
5
1
2

1
,
1
6

7
2
2
1

0
.1
8
3

b
ee
m
fr
o
g
s1
b
1
.a
ig

8
8
1
6

2
0
1
6

5
3
8
1

6
,
8

2
,
3
2

5
2
0

0
.1
4
2

6
3
6
5

4
,
1
8

1
,
3
4

8
2
7

0
.2
6
7

6
s1
7
1
.a
ig

9
4
3
1

2
3
6
2

8
1
3
5

4
,
5
1
2

2
,
1
2

4
7
3
7

0
.1
6
1

8
8
4
7

4
,
5
1
2

1
,
1
6

7
2
4
9

0
.2
4
6

b
ee
m
lo
y
d
3
b
1
.a
ig

4
2
0
7

9
8
5

2
7
7
1

6
,
8

2
,
2
8

3
6
0

0
.1
2
5

3
0
7
1

4
,
1
3

1
,
2
9

1
5
1
2

0
.1
6
7

6
s2
8
2
b
0
1
.a
ig

1
2
2
4
1

2
4
7
2

8
4
9
0

4
,
9
8
2

2
,
5
4

6
1
7
5

0
.1
4
2

1
0
3
6
9

4
,
9
8
2

1
,
6
6

8
0
7
2

0
.2
9
1

6
s3
8
4
rb
0
2
4
.a
ig

7
0
3
0
0

1
4
4
9
2

5
3
3
8
0

4
,
3
7
2
3

2
,
8

4
6
0
8
3

0
.1
8
3

5
7
7
1
7

4
,
3
6
6
3

1
,
1
1

5
1
9
1
8

0
.5
9
1

6
s2
0
6
rb
1
0
3
.a
ig

1
4
1
2
2
2

2
8
6
8
4

1
0
6
8
2
2

4
,
7
3
7

2
,
8

8
7
3
2
8

0
.2
5
8

1
1
6
9
9
6

4
,
6
5
1

1
,
1
0

1
0
1
3
8
8

2
.3
6
5

6
s3
0
2
rb
0
9
.a
ig

1
3
7
5
3
3

2
7
8
1
8

1
0
3
8
6
4

4
,
5
9
0

2
,
8

8
4
9
4
3

0
.2
5
0

1
1
3
8
0
3

4
,
4
7
1

1
,
1
0

9
8
8
8
8

2
.2
5
0

6
s3
4
8
b
5
3
.a
ig

1
0
5
3
6
4

2
8
7
7
5

6
6
3
5
6

4
,
4
2
7

2
,
1
6

5
2
1
0
7

0
.2
1
7

7
8
7
5
7

4
,
4
2
7

1
,
1
7

6
9
5
2
5

1
.2
7
4

b
ee
m
ld
el
ec
4
b
1
.a
ig

3
6
8
1
1

8
4
5
8

1
4
5
6
1

5
,
4
1

2
,
7
6

0
0
.1
6
7

2
4
1
6
9

4
,
9

1
,
1
0
4

9
1
9
9

1
.8
5
7

T
ab

le
3.

3:
E

x
p

er
im

en
ta

l
re

su
lt

s
of

th
e

fu
n

ct
io

n
al

ap
p

ro
ac

h
es

on
u

n
ro

ll
ed

ca
se

s
fr

om
H

W
M

C
C

’1
4

[1
7
].

C
a
se

T
w
o
T
im

e
F
ra
m
es

T
h
re
e
T
im

e
F
ra
m
es

N
a
m
e

S
ig
.
#

W
id
th
s

D
ep

th
s

F
o
rw

a
rd

ti
m
e(
s)

S
ig
.
#

W
id
th
s

D
ep

th
s

F
o
rw

a
rd

ti
m
e(
s)

6
s1
9
5
.a
ig

1
6
1
4
9

4
,
5
1
2

1
,
1
8

9
6
9
3

0
.3
0
0

2
3
4
8
4

4
,
5
1
2

1
,
2
0

1
0
1
1
2

0
.5
3
3

b
ee
m
fr
o
g
s1
b
1
.a
ig

1
2
7
5
0

4
,
1
8

1
,
4
1

1
6
7
4

0
.5
9
1

1
9
1
3
5

4
,
1
8

1
,
4
1

2
5
2
1

0
.8
7
4

6
s1
7
1
.a
ig

1
6
1
9
4

4
,
5
1
2

1
,
1
8

9
7
4
0

0
.3
5
8

2
3
5
4
7

4
,
5
1
2

1
,
2
0

1
0
1
7
8

0
.5
3
3

b
ee
m
lo
y
d
3
b
1
.a
ig

6
1
9
5

4
,
1
3

2
,
2
9

3
0
5
5

0
.2
1
7

9
3
1
9

4
,
1
3

1
,
2
9

4
5
9
8

0
.3
0
8

6
s2
8
2
b
0
1
.a
ig

1
8
7
8
2

4
,
8
8
1

1
,
6
8

9
7
2
2

0
.5
0
0

2
5
3
3
2

4
,
8
8
1

1
,
7
2

1
1
5
8
4

1
.0
7
4

6
s3
8
4
rb
0
2
4
.a
ig

1
0
1
0
5
9

4
,
2
9
9
3

1
,
1
3

8
5
1
9
3

1
.9
1
5

1
4
4
2
9
9

4
,
2
6
9
1

1
,
1
7

1
1
5
3
6
8

4
.2
0
5

6
s2
0
6
rb
1
0
3
.a
ig

2
0
7
1
7
2

4
,
5
8
5

1
,
1
2

1
6
4
6
1
9

6
.5
5
3

2
9
7
3
1
2

4
,
5
8
5

1
,
1
9

2
1
9
0
3
5

1
3
.5
8
0

6
s3
0
2
rb
0
9
.a
ig

2
0
1
6
3
9

4
,
4
5
5

1
,
1
2

1
6
0
8
7
6

6
.3
0
3

2
8
9
4
5
1

4
,
4
5
5

1
,
1
9

2
1
4
3
6
4

1
2
.9
3
1

6
s3
4
8
b
5
3
.a
ig

1
4
1
4
5
2

4
,
2
5
6

1
,
2
1

1
1
7
9
4
6

3
.7
8
9

2
0
3
9
7
5

4
,
2
5
6

1
,
3
1

1
6
0
9
2
3

7
.5
4
7

b
ee
m
ld
el
ec
4
b
1
.a
ig

4
8
3
0
8

4
,
9

1
,
1
1
6

1
8
3
6
8

4
.4
3
8

7
2
4
4
7

4
,
9

1
,
1
1
6

2
7
5
3
7

7
.0
1
2



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 36

mary inputs. Many MUXes are recognized but there are several reasons why the structural
approach misses many transparent words:

1. Structural matching only considers standard 2-to-1 multiplexers, while there are other
types of transparent functions.

2. Many of the identified MUXes are controlled by different selection signals, and thus
lead to words of less than 4 bits, which are excluded in the analysis. Moreover, some
words are partitioned into small words because their output or input dependencies are
different.

3. Forward transparent words are required to be reachable from primary inputs through
fully transparent paths. If a transparent word originates from the output word of an
arithmetic operator (e.g. words G and F in Figure 3.5) or a depth-one transparent word,
it would not be reported, yet many MUXes would be involved in such a transparency.

Although quite fast, this approach itself is not enough for finding many of the whole transpar-
ent blocks that exist in these benchmarks as shown in the columns which show the forward
and total signals found by the functional approaches.

Comparing Functional and Structural Approaches Based on Table 3.2, we observe
the following:

1. According to the signals covered by transparent blocks, the proposed functional ap-
proach can find more and larger transparent blocks. Note that for some cases the
differences are not huge, which leads to a conclusion that most transparent logic in
those cases are comprised by standard 2-to-1 MUXes.

2. The minimum and maximum widths of transparent words are different for the struc-
tural and functional approaches.

3. For most cases, the proposed functional approach can find deeper transparent paths,
because the functional approach can find depth-one transparent words and compose
them into larger transparent blocks.

4. In general, the proposed algorithm can find many more transparent words reachable
from primary inputs. It might be that some transparent paths start with MUXes
between a constant integer and an input word, which cannot be recognized by the
structural approach. Therefore all transparent words supported by that will not be
reported as forward transparent words by the structural approach.

5. Although the functional method takes more time than the structural approach, the run
times for the selected cases do not exceed 3 seconds. Hence the proposed algorithm is
efficient enough for most applications.



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 37

For real applications, the particular final usage of the found words might dictate a suitable
balance between performance and the number of proved words.

Even though some transparent words found by the functional approach may be discarded
when combined with other techniques for recognizing arithmetic operators, it is better to
have more candidates words for more refined reverse engineering applications.

3.6.2 Experiments on Unrolled Circuits

Table 3.3 shows the experimental results of running the proposed algorithm on circuits
unrolled for two and three time frames. The columns are similar to those in Table 3.2.

Observation of Unrolled Circuits
Table 3.2 shows that, for each circuit, the number of signals covered by transparent blocks

grows as the number of time frames increases. The changes of other statistics vary among
the different circuits:

1. The maximal width of words remains the same for most of the cases, but for some, the
maximal width decreases after unrolling. The reason is, after unrolling, more words
are partitioned into smaller words because some bits support different words in their
fanout cones.

2. For many cases, the maximal depths of transparent blocks increase as the numbers
of time frames increases. These deeper paths indicate that some transparent paths
continue from the first time frame to the second, and some continue into the third
time frame. If the maximal path is not connected to another transparent path in the
next time frame, the maximal depth remains the same.

3. The total number of signals in transparent blocks supported by primary inputs (labeled
Forward) increases for all circuits, but the growth rate is distinct for each circuit. For
some cases, many transparent POs are connected to other transparent paths in the next
time frame, so after unrolling, there are more internal transparent words reachable from
primary inputs.

The distinct statistics of transparent blocks found in different circuits show that finding
transparent logic may be important for understanding circuit properties, and by finding as
many as possible transparent blocks the proposed approach may be very useful in providing
useful information about a circuit.

3.7 Summary and Possible Applications

This chapter presented an algorithm to identify transparent logic, which can be used to
extract word-level information from gate-level circuits. Some challenges for finding the most



CHAPTER 3. TRANSPARENT LOGIC IN HARDWARE DESIGNS 38

accurate boundaries for the transparencies were discussed. Experimental results demon-
strated that the proposed algorithms can be very effective in extracting words as well as
some control logic.

The concept of transparent logic and the proposed functional approaches can be applied
to, but not limited to the following directions:

1. Reverse engineering: the proposed method can be integrated with other reverse engi-
neering techniques that can identify word-level operators. Through iterations between
different approaches, word-level information and found boundaries can be revised, ben-
efiting both, by finding more transparencies and identifying more operators.

2. Datapath synthesis: to minimize areas of datapath modules in modern microproces-
sors and embedded systems, some high-level optimization technique, such as resource
sharing, have been applied to gate-level circuits [47]. Finding transparent logic blocks
can extend the existing MUX-based method to identify more common specification
logic and to minimize the area.

3. Abstraction for model checking: the transparent words found by the proposed method
could be input or output of word-level operators. Identifying arithmetic operators,
such as multipliers, enables black-boxing and using uninterpreted function (UIF) con-
straints [18] for more efficient model checking. Also, knowing control logic boundaries
can guide co-factoring and abstraction of hard verification problems. In hardware se-
curity, identification of datawords and datapaths is critical for validating safety of data
propagation [37].

In the following chapters, transparent logic is used to build abstraction models of sequential
circuits to assist in clock-gating verification and synthesis.



39

Chapter 4

Dependency Graphs

The goal here is more aggressive than in Chapter 2. It is to derive ”maximal” sufficient
conditions for a data signal to be not influencing the computation (satisfiability), or a com-
putation result to be never observable at any output (observability). It is to be maximal,
given the constraint that combinational logic, other than transparent logic, should not be
considered. This is because we want our verification algorithms to be able to abstract this
logic away, making verification easier.

A major part of this effort is identifying all transparent logic in the design, as discussed
in Chapter 3. Considering transparent blocks of logic can strengthen clock-disabling con-
ditions for some FFs, and hence save more dynamic power. For satisfiability clock-gating
cases, more detailed information about data dependency can assist in defining more general
conditions when input data need not be updated. For observability clock-gating cases, paths
to observable outputs can be blocked by transparent logic and result the clock being disabled
more often.

Example: Figure 4.1 contains a set of gated FFs, F2, which are processed by a word-
level square root operation (

√
) and then fed into a transparent block (words A,B,C to I.)

I depends on A (through F2) only when F1 = s1 = 1. Hence, F2 need not be updated when
s1 = 0 in the next time frame; when s0 = 0, the clock to F2 can be disabled. This example of
legal observability clock-gating can be identified only when transparent logic is considered.

To formulate legal clock-gating conditions on circuits that may have transparent blocks,
we propose to construct a dependency graph, DG, and then formulate a set of properties
sufficient for legal clock-gating.

A dependency graph (DG) is an abstraction of a circuit. The DG addresses clock-gating
conditions related to data dependencies at a high-level, providing essential information for
synthesis and verification.

The definition of dependency graphs is introduced in Section 4.1. Section 4.2 states the
proposed algorithm to construct DGs. Section 4.3 compares DGs with CGs and summarizes
this chapter.



CHAPTER 4. DEPENDENCY GRAPHS 40

A

B

C

n{s }

n{s }

n{s }

E

F
G

H

n

n

n

n
n

n

n

n

n

n

1

2

3

0

1
D  Q

F2

D  Q

F1

A0

s 0

n

I

√

Figure 4.1: Considering transparent logic in clock-gating.

4.1 Dependency Graph

A dependency graph G = (E, V) is a directed graph, where each vertex associates a set of
signals with a certain sub-circuit in the corresponding circuit. Each directed edge represents
a data dependency.

We define eight types of vertices: (1) primary inputs, (2) constants, (3) primary outputs,
(4) standard flip-flops, (5) transparent blocks, (6) combinational clouds, (7) gated flip-flops,
and (8) signal branches. The eight types with related signals are shown in Figure 4.2.

(1) Primary Inputs (2) Constants (3) Primary Outputs (4) Standard Flip-Flops

(5) Transparent Blocks (6) Combinational Clouds (7) Gated Flip-Flops (8) Signal Branches

CST
out

PI
out

PO
in

Trans.
out

in1
in2

inn

sel

... Comb.

in1
in2

inn
...

out1
out2

outn
...

in out
FF

FF
in out

en

in
out1

...

out2

outn

Figure 4.2: Eight types of vertices used in a dependency graph

• Vertices for primary inputs and constants have no inputs, while primary outputs only
receive data from other vertices.

• A standard flip-flop vertex receives input data and propagates it to its output in the
next time frame.



CHAPTER 4. DEPENDENCY GRAPHS 41

• A transparent block receives multiple inputs and forwards one of them to its output
according to the value of sel. sel can represent multiple signals. For example, a set
of n-to-1 MUXes controlled by MUX inputs in1, ..., inn can be mapped into one DG
vertex labeled with a single selector signal with dlog2(n)e values.

For incompletely specified transparent blocks, as in Figure 4.1, the assignments for
transparency as well as all possible assignments for selector signals should be repre-
sented in the DG. When constructing a DG for analyzing clock-gating conditions, it is
a must to represent the complete functionality of an incompletely specified transparent
block, because (1) there is no guarantee that only the control assignments for trans-
parency can happen, and (2) the other assignments can still result output updating,
which should be considered for satisfiability clock-gating conditions.

Example: In Figure 4.1, the complete specification for the data dependency of I
includes that it depends on the value of A when s1 = 1, regardless of the assignments
for s2 and s3. The same idea applies to B and C with s2 = 1 and s3 = 1, respectively.
But when more than one of (s1, s2, s3) is 1, I depends on multiple words. Also, when
all (s1, s2, s3) are 0, I = 0. All these data dependencies should be represented with a
transparent block vertex having an extra constant vertex as input, in the case shown
in Figure 4.3.

• A combinational cloud represents a sub-circuit with no transparent logic. It can cover
arithmetic operators and other complicated computational units. This type of vertex
is used to abstract away irrelevant logic when formulating clock-gating properties. It is
possible that some of this logic is relevant to a more detailed understanding of depen-
dencies, but we chose to ignore these complications. This approach is conservative but
still produces strong enabling signals, while making verification and synthesis easier.

• A gated FF vertex represents a set of already gated FFs, gated by the same signal en.
These FFs are updated to the data input only when en = 1. In practice, a set of FFs
can be clock-gated by a sequence of MUXes. These FFs and all MUXes are collapsed
and modeled as one gated FF vertex with one enable signal. More details for MUX
collapsing are discussed in Section 4.2.

• A signal branch is used for signals with multiple fanouts.

Example: Figure 4.3 demonstrates the dependency graph constructed for the circuit
in Figure 4.1. The square root operator is represented by a combinational cloud. The
transparent block, which is from words A,B,C to I, is mapped to a single transparent
vertex, controlled by (s1, s2, s3). A constant node is introduced to represent the condition
when all (s1, s2, s3) are zero, and thus I = 0. The set F2 of gated FFs is covered by one
gated FF vertex, which includes the MUXes controlled by s0. Note that a FF F1 is not
represented, because it is irrelevant to the overall data flow. The edges in the DG represent
data dependencies but not the control signals for gated FFs or transparent blocks.



CHAPTER 4. DEPENDENCY GRAPHS 42

A0 F2

s 0

Trans. PO

B

C

Const 
0

s 1 s 2 s 3

AComb.

I

Figure 4.3: Dependency graph for the circuit in Figure 4.1.

4.2 Construction of Dependency Graph

A DG is constructed from a sequential circuit and its identified transparent blocks as follows:
(1) recognize gated FF vertices, (2) complete incomplete transparent block vertices, (3) create
other vertices, including combinational clouds, and (4) build dependencies.

According to the algorithm for identifying transparent blocks in Chapter 3, initially a
set of bits is grouped together because of identical control signals and assignments. Then
for each group, if some bits are supported by different sources, or some of them drive dif-
ferent transparent words in their fanout cones, the group is decomposed into sub-groups as
transparent words. Thus, the identified transparent blocks are examined and decomposed
to ensure that 1) all bits of one word are supported by identical input words and 2) all bits
support the same set of words their fanout cones. Hence for each DG, a vertex depends on
all bits of each vertex supporting it, so there are no redundancies where a bit is connected
to a vertex but cannot influence the vertex value.

Recognize gated FF vertices: MUXes that support FFs are investigated first. When
a fully-specified transparent block forms a clock-gating structure, where the FF output drives
one data input of a corresponding 2-to-1 MUX (a MUX feedback loop), the other input word
is examined. If it comes from another transparent word, and each bit of this is supported by
the FF in its fanout cone under the same control condition, then this transparent block is
regarded as part of a clock-gated FF. The procedure continues until no such MUX connects to
the target FFs can be found. Then all selector signals of the collected MUXes are combined



CHAPTER 4. DEPENDENCY GRAPHS 43

0

1
D  Q

F

1

0

0

1n

n

n

n

n

n{s }1

n{s }2

A

B

C

s 0

s 3
s 4

(a) Original Circuit

(b) Dependency Graph

Dn

n

A F
Trans.

Trans.

C
D

s 0
s 1 ,s 2

B

Const
0 ¬s 3∧ s 4

B

Figure 4.4: (a) Circuit with transparent blocks and gated FFs. (b) Corresponding DG.

into a single enable signal for this clock-gating vertex.
Example: In Figure 4.4(a), the MUXes (controlled by s4) directly feeding FFs (F ) are

examined first. The process examines the other input side (not driven by F ) and collects
the MUXes controlled by s3. Continuing, when it reaches transparent word D, it terminates
because D is not directly in the support of F . Finally s3 and s4 are combined to form the
enable signal of a gated FF vertex, with data input D. Note that although the MUXes
controlled by s0 are in the support of F directly, they are excluded from the gated FF vertex
because there exists another transparent block (outside the clock-gating part) between its
output C and F .

Complete transparent block vertices: After creating all gated FF vertices, the re-
maining transparent blocks are analyzed to create corresponding vertices. For an incom-
pletely specified transparent block, some assignments of controls do not result in trans-
parency, but dependencies between inputs and outputs still exist. Sometimes the trans-
parent logic may be used to reset some FFs to constants and then make the output value
different from the previous time frame. Hence, it is necessary to analyze all possible control
assignments and create extra constant vertices to represent the entire functionality of the
block.

Example: In Figure 4.5 B is transparent from A when s0 = 1, s1 = 0. It evaluates to
zero when s0 = 0, s1 = 0. Also B = 2n − 1 if s1 = 1. Thus two constant vertices are added
to complete the description of this block.



CHAPTER 4. DEPENDENCY GRAPHS 44

(a) Original Circuit (b) Dependency Graph

n

n

n
n{s }0

A
Bn

n{s }1

Trans.
B

s 1 ,s 2
Const

0

A

Const
2 - 1n

Figure 4.5: (a) Transparent block with two possible constant outputs. (b) Corresponding depen-
dency graph.

Create other vertices: After creating all gated FF and transparent block vertices,
all transparent words are collected and covered by vertices. If some input words are sets
of FFs or PIs, then primary input or standard flip-flip vertices are created to cover these.
Other words, consisting of internal signals (outputs of some combinational clouds), like A in
Figure 4.1, are labeled temporarily as words. Then vertices for the remaining FFs, PIs and
POs are created one by one, where each vertex only covers one signal. Note that if a FF or
PI only controls transparent blocks, like F1 in Figure 4.1, a vertex not needed for it because
it is not part of the data flow.

The next task is to create combinational cloud vertices. First, each word or vertex
accumulates a list of support vertices (words) by following the target fanin cone until reaching
another vertex (word). One combinational cloud is created for each set of vertices that have
identical support lists.

Example: In Figure 4.6, words A to F have been found and labeled. The lists of
supports of words D, E, F are determined as {A,B}, {A,B} and {B,C}, respectively.
Hence one combinational cloud is created for D and E, and another is created for F . Before
building edges from A, B, C to the two clouds, a signal branch for B is needed, no matter
if it terminates as a vertex or a word.

The algorithm for constructing the dependency graph G = (V, E) for a sequential circuit,
Cir, with its set of identified transparent blocks, is shown in Algorithm 4.1.

In Lines 2 to 5, gated FF vertices are constructed, where collectGating(...) performs
backtracking to find clock-gating conditions for each set of gated FFs. Then the remaining
transparent blocks are processed by Lines 6 to 8. During the two phases above, the vertices
for some input data words are created if one word is a set of PIs or FFs.

Other vertices, except signal branches and combinational clouds, are created by
createV ertex(...). Then createClouds(...) explores the fanin cone of each word and collects
the vertices or words supporting it. Finally this function creates one combinational cloud
vertex for each set of words with the same support list.



CHAPTER 4. DEPENDENCY GRAPHS 45

(a) Original Circuit (b) Dependency Graph

n

n

n

A
B D

C

2n

E

F

×

n-1+

n÷

Comb.

Comb.

A
B

D

C

E

F
B

Figure 4.6: (a) Three arithmetic operators with shared input words. (b) Corresponding DG.

After topologically sorting all existing vertices, Lines 14 to 18 check each vertex and
creates a signal branch if the vertex drives multiple vertices. For combination clouds, sig-
nal branches are created for all output words with multiple fanouts. Then each vertex is
connected to all vertices supporting it. This cannot be done without the topological sort,
because a branch vertex should be created before a signal is connected to its fanouts.

Once the DG is constructed, it can be used to formulate properties of legal clock-gating
conditions, which will be discussed in the next chapter.

4.3 Summary

In this chapter, we introduced a second abstraction model, a dependency graph, to model
a sequential circuit. Although both CGs and DGs aim at modelling control logic and data
dependencies, they have significant differences as stated below:

1. Instead of different types of edges, DGs utilize different types of vertices to represent
distinct functionalities of sub-circuits; DG edges are only used to describe data de-
pendencies. The modelling is more compatible with an object-oriented programming
paradigm. Also, if other types of logic blocks are identified and recognized in the
future, the current architecture can be extended easily by adding new vertex types .

2. DGs can identify a series of MUXes for clock-gating and merge them into one gated-FF
vertex, while CGs only accept the case where at most one MUX is in front of each FF.
The feature of DGs is essential to handle FFs that have been gated multiple times.

3. DGs address more detailed data dependencies than CGs do. Recognizing transparent
logic blocks can decompose big combinational blocks into smaller sub-circuits and can
provide more detailed data flow, leading to stronger conditions for clock-gating.



CHAPTER 4. DEPENDENCY GRAPHS 46

Algorithm 4.1 Dependency Graph Construction

Require: Cir: a gate-level sequential circuit with the sets of primary inputs PI, primary
outputs PO and flip-flops FF; TransparentBlocks = (Outputs, Supports, Words)

Ensure: G = (V,E): dependency graph for Cir, with the set of vertices, V and edges, E.
1: V = ∅ and E = ∅
2: for all block in TransparentBlocks do
3: if block forms clock-gating structure then
4: en = collectGating(block)
5: V = V ∪ createGatedFF (block, en)

6: for all block in {TransparentBlocks−V} do
7: (sel,ConstVs) = analyzeTransparency(block)
8: V = V ∪ {ConstVs, createTrans(block, sel,ConstVs)}
9: for all signal in PO or FF or PI do

10: if signal is not covered by any v in V then
11: V = V ∪ createV ertex(signal)

12: V = V ∪ createClouds(Cir,V)
13: topologicalSort(V)
14: for all v in V do
15: if v drives multiple fanouts then
16: V = V ∪ createBranch(v)

17: for all input vertex supporting v do
18: E = E ∪ buildDependency(v, input)

Due to the extra information DGs provide, it takes more time to analyze circuits and
build DGs. However, DGs are able to provide more precise properties for legal clock-gating
conditions and benefit clock-gating synthesis and verification.



47

Chapter 5

Legal Clock-Gating Conditions

Clock-gating synthesis strives to add extra control logic to reduce the frequency of updates
FFs. To verify that the added clock-gating condition is legal, i.e. the revised circuit is
sequentially equivalent to the original, properties of the circuit are formulated that are
sufficient for the extra control to be legal.

In this chapter, we derive and prove sufficient conditions for legal satisfiability and observ-
ability clock-gating on sequential circuits and formulate properties for FFs that are targeted
for clock-gating. DGs are used to formulate problems and derive properties, and then these
properties are proved on the original sequential circuit. It is important to note that the
properties are relatively easy to prove because they are formulated using the DG and are
independent of complicated combinational logic in the circuit.

This chapter is organized as follows. Identification of gated FFs is described in Section
5.1. Section 5.2 reviews basic LTL and PLTL operators used in this chapter to describe
legal clock-gating properties. Sections 5.3 and 5.4 explain legal conditions for observability
clock-gating and satisfiability clock-gating, respectively. Section 5.5 uses more examples to
demonstrate how clock-gating conditions can be associated with DGs. The circuit-based
approaches to justify formulated properties are stated in Section 5.6. Finally, Section 5.7
summarizes this chapter.

5.1 Problem Formulation using DGs

For a sequential circuit, clock-gating synthesis on a set of FFs can be represented by adding
MUXes with feedback loops. The same idea has several representations in a DG. Given a
set of target FFs, which are covered by a single DG vertex (a standard FF or a gated FF
vertex), two possible differences between a golden DG and its revised DG can indicate that
clock-gating synthesis has been performed:

• Change from a standard to a gated FF vertex. This is done when a standard FF,
updated to the input data at each time frame, now has a proposed control condition
en; when en = 0, those FFs are kept at the same values as saved.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 48

• Change the en signal of an existing gated FF vertex. The FFs were already gated
by enold, but clock-gating synthesis proposed enextra, which is combined with enold to
build ennew = enold ∧ enextra; thus, (ennew = 1)⇒ (enold = 1). Note that it is assumed
that enold is legal because it is given as part of the golden model and in general we
may not have enough information to test this for legality.

Both of the above cases can be viewed as changing an enable signal from enold to ennew,
where in the first case, enold = constant-1. To verify if the synthesis is legal, the following
algorithms only need to check the legality of enold ∧ (¬ennew), because that is where the
enabling signal has changed from 1 to 0.

In the following sections, a set of gated FFs is called out-of-date when the input can be
different from the previous time frame (updating), but their values keep the same due to
en = 0. If no such situation happens, the FFs are called up-to-date.

5.2 LTL and Past LTL

The following LTL operators are used in expressing observability conditions:

1. X a – ”next”: a holds in the next cycle.

2. [a U b] – ”until”: a remains True at least until b becomes True, which can happen at
the current or a future time frame.

Temporal formulas for satisfiability clock-gating conditions are expressed in LTL extended
with past operators (PLTL). Only those used for constructing clock-gating properties in this
thesis are explained. Detailed formal semantics of PLTL can be found in [4].

The following PLTL operators are used:

1. Y a – ”yesterday”: a was True in the previous time frame and False in the first time
frame.

2. Z a – ”invariant yesterday”: a was True in the previous time frame and True in the
current time frame.

3. [a S b] – ”since”: (1) b was True at least once in a past (or the current) time frame,
and (2) a was True since the cycle after b was last True.

Note that Y and Z are past-duals of X (next), while S is the past-dual of U (until) in
common LTL.

5.3 Observability Clock-Gating Conditions

Observability clock-gating disables updating FFs when their inputs are never observable. It
depends on control conditions and data dependencies of their fanout signals from now and
in the future. Hence the properties can be expressed by common LTL operators.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 49

5.3.1 Observable Condition

A set of signals at a time frame is called observable when their current values can influence
primary output values at the current or later time frames. Given a target FF vertex, in which
the enable signal is modified from enold to ennew, for observability clock-gating, we need to
check if the inputs of the target FFs are not observable when enold ∧ (¬ennew) happens.
Because the target FF can become out-of-date and observable in future time frames, we
cannot just check the observable condition of the FF outputs in the next time frame.

For each type of DG vertex, the observable condition of each input depends on those of
the vertex outputs and the control signals. We define O(s) as the observable condition for
a signal s at a certain time frame. See the second column of Table 5.1 for the observable
condition of each vertex type.

Vertex Type Observable Condition for in: O(in)

Primary Input N/A
Constant N/A

Primary Output True
Standard FF X(O(out))

Transparent Block for ini: O(out) ∧ (sel = assigni)
Combinational Cloud

∨
iO(outi)

Signal Branch
∨
iO(outi)

Gated FF [enold] ∧ {X(O(out)) ∨X[(¬ennew)U(O(out))]}

Table 5.1: Observable condition for the input of each type of vertex.

• Each PO is observable all the time, so the observable condition is True.

• The observable condition is not applicable for PIs or constants.

• The input of a standard FF is observable only when its output is observable in the
next time frame.

• For each possible input of a transparent block, it is observable only when the output
currently depends on this input and the output is observable.

• Any input of a combinational cloud or branch vertex is observable when any output is
observable. Hence we take the union of the observable conditions of all output signals.
As mentioned, this is, by definition, independent of the actual logic in the cloud on
purpose.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 50

• The observable condition for the input of a gated FF vertex depends on the control
condition (en) and the observable condition of the output from now on. To make sure
that the input data is taken and saved in the FF, en must be 1 now, and in the next
time frame either (1) the output is observable (X(O(out))), or (2) the output becomes
observable before the FF updates to another value, i.e. X[(¬en)U(O(out))]. Note that
[(¬en)U(O(out))] can be False only when (en = 1) happens before O(out) = True.
The X outside the U formula avoids considering the first time frame where en = 1.

FFin out

en

0

1 D Q

FF

outin

t = n t = n+1 t = n+k

0

1 D  Q

D  Q

FF(n)

in(n)

FF(n+1)

en(n)=1

in(n+1)

0

1 D  Q

en(n+1)=0

out(n+1)

en=0

D  Q
in(n+k)

0

1 D  Q

en(n+k)=1

…

FF(n+k)

out(n+k)

in(n) in(n) in(n) in(n+k)

en
Observable?

Observable?

Figure 5.1: An example to demonstrate the observable condition of the input for a set of gated
FFs at the nth time frame, labelled as in(n). The bottom diagram represents the top diagram
unrolled k time frames when en again becomes 1.

Example: (Refer to Figure 5.1) Consider a gated FF where en = 1 at the nth time
frame, such that the FF receives and saves the input value, in(n), at the end of this cycle.
If the FF output is observable at the (n+ 1)th time frame, the input data from the previous
time frame in(n) is observable. If en is 0 at at the (n+ 1)th time frame and remains 0 before
the (n + k)th time frame, the FF keeps the same value, i.e. in(n), before the end of the
(n+ k)th time frame. If O(out) is True at a certain (n+ l)th time frame (n < n+ l ≤ n+ k),
the saved value (in(n)) is observable. One extreme case is when en = 1 and O(out) both
happen together only at the (n+ k)th time frame, which means en = 0 holds until the point
where O(out) holds. Then the input at the nth time frame is observable at the (n+k)th time
frame because it has been kept by the FF until this point.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 51

When verifying the clock-gating condition on a target gated FF vertex, in which the
enable signal has been changed from enold to ennew, the observable condition of the input of
the target gated FF is

O(in) = [enold] ∧ {X(O(out)) ∨X[(¬ennew)U(O(out))]}.

This depends on both enold and ennew. This LTL formula has two parts: the term [enold]
before the conjunction ensures that the current input value is received, while the term
{X(O(out))∨X[(¬ennew)U(O(out))]} guarantees the value saved in the FF can be observed
at POs before being replaced by newer values. For the first part, although ennew might
reduce the frequency of receiving new input, it can also significantly modify the sequential
behavior, so using enold here is safely conservation when a FF input is observable. Because
there is no extra information for precise conditions of essential updates, we need to use enold
here to make sure we capture all essential updates on the target FF. Also, we must use ennew
in the second part of this formula to verify the circuit after clock-gating. Because ennew can
keep the saved value longer than enold does, we need to examine if the out-of-date situation
resulted by ennew can be observable. That is, O(in) cannot be constructed based only on
ennew or only on enold.

The example in Figure 5.2 demonstrates how a false positive can occur unless both enold
and ennew are used.

2 3A F

en    to en     ?

F

ennew

1 2

old

PO

Figure 5.2: Example DG demonstrating an observable condition for the target gated FF.

For the target FF, F1, with input in, where the enable signal is modified from enold to
ennew, the proposed synthesis is valid only if the ”observable” property

G((enold ∧ ¬ennew)⇒ ¬O(in)) (5.1)

holds.
Example: In Figure 5.2, the enable signal for gated F1 has been changed from enold to

ennew. To check legality, we need to prove the observable property,

G{(enold ∧ ¬ennew)⇒ ¬O(A)}

on the circuit.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 52

Let enold = constant-1 and ennew = constant-0. If we formulate O(A) with ennew only,
then O(A) = (ennew)∧... = False. Therefore, the target property 5.1 always holds. However,
this clock-gating is illegal because the I/O behavior has been changed; F1 would hold its
value forever. Hence for the target FF F1, the observable condition for the input A needs to
include enold.

On the other hand, if O(A) is formulated only with enold, then

O(A) = [enold] ∧ {X(O(F1)) ∨X[(¬enold)U(O(F1))]} = X(O(F1))

= X{[en] ∧ [X(O(F2)) ∨ ...]}
= X(en),

because enold = constant-1, [(¬enold)U(O(F1))] is always False. Also O(F2) = True. Thus
the observable property 5.1 becomes

G{(enold ∧ ¬ennew)⇒ ¬X(en)},

which fails to catch the case where the saved out-of-date data (caused by X(en)) can be
observable after the next time frame.

Therefore, O(A) needs to include both enold and ennew and should be formulated as

[enold] ∧ {X(O(F1)) ∨X[((¬ennew))U(O(F1))]}.

When enold = constant-1 and ennew = constant-0, this evaluates to True. Thus, the ob-
servable property 5.1 becomes G(True ⇒ False), which is always violated. Therefore, for
the example in Figure 5.2, the proposed clock-gating (from enold = constant-1 to ennew =
constant-0) can never satisfy observable clock-gating conditions.

5.3.2 Property Formulation

The algorithm in Algorithm 5.1, given a target set of FFs, formulates an observable condition
for its input O(in). Its negation is a sufficient non-observable condition. It is expected to
cover enold ∧ ¬ennew, i.e. (enold ∧ ¬ennew)⇒ ¬O(in). This can be used to verify that ennew
only turns off the clock when the input for the target FF is not observable.

The function collectObserve(...) in Algorithm 5.1 recursively constructs an observable
condition for a target signal at a certain time frame by exploring the extended fanout cone
until reaching either the depth limit (depth), POs, or some visited vertices.

The term depth indicates how deeply the recursive algorithm can go. When depth = 0,
the algorithm just goes across one time frame from a FF vertex input to its output. By
returning True immediately, the FF is interpreted as a primary output. When depth < 0,
this algorithm keeps exploring fanout cones until reaching primary outputs. Some paths
might not go to primary outputs, resulting in an infinite recursion and some visited vertices
are examined again. Hence the function analyzeLoop(...) is used to determine how to handle
FFs in loops. Additional discussion about infinite recursion is in Section 5.3.3.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 53

Algorithm 5.1 Observable Condition Construction: collectObserve(DG, target,depth)

Require: DG: a dependency graph, target: a signal, depth: the number of explored time
frames.

Ensure: P: an LTL property
1: if visited(target) then
2: return analyzeLoop(target)

3: if depth = 0 then
4: return True
5: switch type(outputV (target)) do
6: case Primary Output:
7: return True
8: case Standard FF:
9: Oout = collectObserve(DG, output(target),depth-1)

10: return X(Oout)

11: case Transparent Block: . as ini
12: Oout = collectObserve(DG, output(target),depth)
13: return Oout ∧ (sel = assigni)

14: case Combinational Cloud or Signal Branch:
15: for all outputi of target do
16: O = O ∪ collectObserve(DG, outputi,depth)

17: return
∨

(O)

18: case Gated FF:
19: Oout = collectObserve(DG, output(target),depth-1)
20: return (enold) ∧ (X(Oout) ∨X[(¬ennew)U(Oout)])

The observable condition formulated here is tight in the sense that it captures all possible
data dependencies based on analyzing control logic only. It is insufficient for true observablity
because data flow could be blocked also by some combinational logic.

Example. In the DG in Figure 4.3, assume enold for F2 is constant-1 and ennew = s0. We
need to check if G(¬s0 ⇒ ¬O(A0)) i.e. G(O(A0)⇒ s0), where O(A0) = enold∧{X(O(F2))∨
X[¬s0U(O(F2))]}, enold = True and O(F2) = O(A) = O(I) ∧ s1. Because O(I) = True,
O(F2) = s1. Because, s1 = Y(s0) or s1 = Z(s0), [¬s0U(O(F2))] = [¬s0U(s1)] is False.
Hence O(A0) = X(O(F2)) = X(s1) . Thus the property G(Xs1 ⇒ s0) holds (regardless of
the initial condition of s1.) Hence s0 is a legal clock-gating condition for F2.

5.3.3 Infinite Recursion

When formulating the observable condition without a depth limit, a loop of FFs can cause an
infinite recursion. To ensure termination, all side paths along the loop need to be examined.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 54

(a) (b) (c)

FFin A B FF POin A B

C

FF
Trans.

sel 

PO
in A B

C

D

Figure 5.3: Three cases when deriving observable conditions for FFs in loops.

Consider the three examples in Figure 5.3. Each has a sequential loop. In the examples,
different side paths are connected with branch vertices, resulting different properties.

For Example (a),

O(in) = O(A) = X(O(B)) = X(O(A)) = X(X(O(B))),

and so on. This recursion cannot terminate by itself, because no primary output can be
reached along this loop. Hence, it is correct to return constant False when the algorithm
reaches a visited vertex that is in a loop without a path to a primary outputs. However, if
there is a sequence of FFs on this loop, where a visited vertex is not reached before depth
is reached, the algorithm will return True when reaching depth. That is, without analyzing
the loop, the formulated observable condition is larger than the real situation.

For Example (b), the observable condition of in is formulated as follows:

O(in) = O(A) = X(O(B)) = X(True ∨O(C)) = True.

That is, the infinite loop has a side path to the primary output. Thus, when any of the
side paths can reach primary outputs without any assignment requirements (for controls of
transparent blocks or gated FFs), the infinite recursion can be resolved naturally.

Example (c) includes a transparent block on a side path of the loop. For this case,

O(in) = O(A) = X(O(B)) = X(O(D) ∨O(C)),

where O(D) = (sel = assignD) ∧ True and O(C) = O(A). If the recursion keeps going, the
property is

O(in) = X(sel = assignD) ∨ ... ∨Xn(O(A)),

which might never converge. If we formulate the property with a depth limit, it will reach
a point where O(A) is assigned as True, so the whole property is True. Hence for infinite
recursion cases, the observable condition for the visited vertex should be regarded as True.

In summary, when formulating the observable condition for a vertex involved in a loop,
it can be False only when there is no side path to the primary outputs; otherwise it should
be constant True.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 55

5.4 Satisfiability Clock-Gating Condition

Satisfiability clock-gating aims at turning off clocks for FFs when their input data is the same
as that saved already in the FFs. This is related to control conditions and data dependencies
of fanin cones from the past up to now. Common Linear Temporal Logic (LTL) operators
are insufficient to describe this because some past operators must be included.

5.4.1 Update Condition

For a target FF vertex, where the enable signal is modified from enold to ennew, satisfiability
clock-gating requires that two properties need to be checked, up-to-date and satisfiability.
Both of these properties use the notion of an update condition.

A set of signals is said to update when the signal values are different from those in the
previous time frame. This is denoted by U(signal).

For each vertex of a DG, the update condition of each output depends on the update
conditions of the vertex inputs, as well as related control signals. For each type of vertex,
Table 5.2 lists the update condition for outputs in the current time frame, U(out). Note that
this formulation leaves out the cases where signals may be ”updated” but to the same values
due to combinational logic, i.e. only control logic is used to determine the update condition.

Vertex Type Update Condition for out: U(out)

Primary Input True
Constant Z(False)

Primary Output N/A
Standard FF Z(U(in))

Transparent Block
∨
i [(sel = assigni) ∧ U(ini)]

∨
[sel 6= Y(sel)]

Combinational Cloud
∨
iU(ini)

Signal Branch U(in)
Gated FF Z{[en] ∧ [U(in) ∨Y([¬en]S[U(in) ∧ ¬en])]}

Table 5.2: Update condition for the output of each type of vertex.

As shown in Table 5.2,

• PIs update in each cycle, independent of the actual input patterns.

• A constant is always identical to its previous cycle (not update), but for the first time
frame, it updates from unknown to a certain value. Hence we use ”invariant yesterday”
Z to make sure it is True in the first time frame.

• There is no output signal for PO vertices, so U(out) is not applicable.

• A standard FF updates in the current time frame depending on the update condition
of its data input in the previous time frame. If the input data updates at cycle n



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 56

(U(in) = True at cycle = n), then the output of the FF will update at cycle n+1,
independent of the actual values. Z is used here because the initial conditions of FFs
are not constrained in this formulation (the same idea will be applied to gated FFs.)

• The output of a transparent block updates when either (1) at least one of the support
data inputs updates (the output can depend on more than one input data), or (2) the
selection of input sources is different from that in the previous cycle. Here ”yesterday”
Y is used because the update conditions for other vertices (PIs, constants and FFs)
guarantee U(ini) must be True in the first time frame; this also holds for the output
of each transparent block.

• The update condition for each output of a combinational cloud is the union of the
update conditions for each input to the combinational cloud, U(ini); when any of these
inputs update, the output must update, independent of the combinational logic. A
signal branch vertex behaves like a combinational vertex.

• A gated FF can receive and update to a new value only when en = 1 in the previous
time frame. Thus, either (1) the input data must update (U(in) = True), or (2) the
FF has not updated since its input was last updated, i.e. Y([¬en]S[U(in) ∧ ¬en]) is
valid in the previous time frame.

When enold 6= constant-1, it is possible that the target FF can be out-of-date in the
golden model. Therefore the target FF needs to be examined for being up-to-date. The
following ”up-to-date” property,

G(U(in)⇒ enold), (5.2)

means anytime in updates, this FF receives and updates to the new value. Otherwise, this
FF can be out-of-date.

If Formula 5.2 holds, ennew can be checked that it only additionally turns off the clock
when the input data remains the same, i.e. the ”satisfiability” property

G((enold ∧ ¬ennew)⇒ ¬U(in)), (5.3)

holds. Then the change from enold to ennew is legal for satisfiability clock-gating.
To illustrate this, consider the gated FF shown in Figure 5.4: The output of the gated

FF is updated at the nth time frame only when en = 1 at the (n − 1)th time frame. Then
there are two cases allowing the FF to receive new values: (1) at the (n − 1)th time frame,
the input data updates and is different from its previous value, or (2) the input data updates
at a previous (n − k)th time frame while en = 0 at that time. At this point, the FF is
out-of-date. en keeps being 0 before the (n− 1)th time frame, so the ”since” property holds.
Then the FF receives the input value due to en = 1 at the (n− 1)th time frame, which can
be different from the value kept in the FF since the (n− k)th time frame. Hence the output
of this FF updates at the nth time frame.

As mentioned, before verifying a clock-gating synthesis (from enold to ennew) on a target
FF, enold needs to be examined. There are two cases:



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 57

t = n-1 t = n

0

1 D  Q

D  Q

FF(n-1)

in(n-1)

FF(n)

en(n-1)=1

out(n)

in(n-1)

Update

Update

t = n-k t = n-k+1 t = n-1

0

1 D  Q

D  Q

FF(n-k)

in(n-k)

FF(n-k+1)

en(n-k)=0

in(n-k+1)

0

1 D  Q

en(n-k+1)=0

en=0

D  Q
in(n)

0

1 D  Q

en(n-1)=1

…

FF(n-1)

out(n)

FF(n-k) FF(n-k) FF(n-k) in(n-k)

Update

Update

Case 1:

≡in(n-k) ≡in(n-k)

t = n

Not Update

Case 2:

Figure 5.4: An example to demonstrate how the ouput of a gated FF can be updated.

1. G(U(in)⇒ enold) holds. Then (enold∧¬ennew)⇒ ¬U(in), i.e. ennew only additionally
turns off the clock when G{(enold ∧ ¬ennew) ⇒ ¬U(in)} holds and the change from
enold to ennew is legal for satisfiability clock-gating. Also, the target FF is always
up-to-date.

2. G(U(in) ⇒ enold) fails. Even when ennew is proposed by a satisfiability clock-gating
condition, it is necessary to verify if ennew results in extra observable out-of-date con-
ditions (i.e. when ennew = 0, the FF can be out-of-date.) Hence, for a target FF which
fails the up-to-date property, it needs to be verified that the proposed ennew satisfies
Formula 5.1, the observable property. This will be illustrated in the examples discussed
in Section 5.5.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 58

5.4.2 Property Formulation

Algorithm 5.2 Update Condition Construction: collectUpdate(DG, target,depth)

Require: DG: a dependency graph, target: a vertex output, depth: the number of
backtracking time frames.

Ensure: P: a PLTL property
1: if visited(target) or (depth = 1 and target belongs to FF types) then
2: return True
3: switch type(target) do
4: case Primary Input:
5: return True
6: case Constant:
7: return Z(False)

8: case Standard FF:
9: Uin = collectUpdate(DG, inputV (target),depth-1)

10: return Z(Uin)

11: case Transparent Block:
12: for all inputVi of target do
13: U i

in = collectUpdate(DG, inputVi,depth)

14: return
∨
i [(sel = assigni) ∧ U i

in]
∨

[sel 6= Y(sel)]

15: case Combinational Cloud or Signal Branch:
16: for all inputVi of target do
17: U = U ∪ collectUpdate(DG, inputVi,depth)

18: return
∨

(U)

19: case Gated FF:
20: Uin = collectUpdate(DG, inputV (target),depth-1)
21: return Z{[en] ∧ [Uin ∨Y([¬en]S[Uin ∧ (¬en)])]}

The proposed algorithm of formulating the update condition for a target vertex (output)
is shown in Algorithm 5.2. The function collectUpdate(...) constructs the update condition
for a vertex output by recursively exploring the update conditions of all support vertices.
Each type of vertex has a specialized process handled by one of the case values.

We also use the term depth to control how deep the recursive algorithm can go. When
depth < 0, this algorithm terminates only when reaching primary inputs, constants, or
already visited vertices (loops). When working on a loop, which can result in infinite recur-
sion, this algorithm returns True immediately. More explanation and examples for infinite
recursion are discussed in Section 5.4.3.

Calling collectUpdate(...) for a vertex FF means that the exploration goes across one
time frame, so the input depth should be reduced by one. When depth = 1, it explores
combinational logic only and returns True when reaching FFs, meaning those FFs are in-



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 59

terpreted as free primary inputs. Generally, a larger depth can result in more restricted
(better) update conditions, which saves more power. However, a larger depth also implies
possibly more effort is spent in formulating and proving the property. The parameter depth
can be used to tradeoff power consumption and overall verification effort.

Example: Suppose for the circuit in Figure 5.5 that a clock-gating synthesis method
proposes a control signal ennew for F3. Since enold is constant-1, Formula 5.2 obvously holds,
so only Formula 5.3 needs to hold. This become G(¬ennew ⇒ ¬U(C)) and if it holds,
introducing ennew is legal.

0

1
D  Q

F3

C
2n

0

1
D  Q

F1

A n

0

1
D  Q

F2

B n

A’

B’

out
en 

en 

1

2 en new ?

FF

FFB

A

FF
Comb.

en 1

en 2

en new ?

C

A’

B’

out

(a) Original Circuit

(b) Dependency Graph

Figure 5.5: An example to demonstrate how a satisfiability clock-gating condition can be verified.

To formulate U(C), the algorithm needs to collect U(A′) and U(B′). The update condition
U(A′) depends on U(A), which is True all the time, so

U(A′) = Z{en1 ∧ [True ∨Y(¬en1)S[True ∧ ¬en1]} = Z(en1).

Similarly, U(B′) = Z(en2). Therefore,

U(C) = Z(en1) ∨ Z(en2) = Z[(en1) ∨ (en2)].

Based on the formula, we can verify if (U(C)⇒ ennew) is True for all time frames.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 60

5.4.3 Infinite Recursion

Considering possible initial conditions and combinational logic, the update condition for a
vertex in a loop should be assigned as True to make sure it is sufficient.

D  Q D  Q

F = Y(F )0 1 F = Z(F )1 0

(a) (b)

D  Q

F = ¬Y(F )0 0

out out

Figure 5.6: Two examples with FFs on sequential loops. The initial states and combinational logic
are included.

Example: In Figure 5.6(a) there are two FFs with opposite initial values in a loop.
Without information about the initial states, the update condition of out is formulated
U(out) = U(F1) = Z(U(F0)) = Z(Z(U(F1))), and so on. Because of the invariant yesterday
Z, the infinite formulation results U(out) as constant True. Also, looking into the original
circuit, it shows that the values of F0 and F1 keep oscillating. That is, the values of F1

and F2 are always different from the previous time frame. Hence U(out) must be True.
Figure 5.6(b) has a feedback loop with an invertor. The value of F0 keeps updating in each
time frame, regardless of its initial condition. Thus U(out) is True.

As mentioned before in this paper, initial conditions and combinational logic are not
analyzed for formulating properties. To avoid false positives, we need to take the most con-
servative assumption, meaning FFs in sequential loops always update. Hence when reaching
a revisited vertex in a loop, the algorithm in Figure 5.2 returns True immediately.

5.5 Illustrative Examples

More examples are discussed to demonstrate how the proposed algorithms work in practice.

5.5.1 Update Condition for Redundant Controls

Generally, the proposed properties for disabling the clock are sufficient, but could be stronger.
This is because the actual values of data are ignored. In some cases with redundant control
paths, the proposed derivation can over-approximate the update condition even when input
data values are not changed. Moreover, when there exists redundancy in control logic,
the proposed algorithm will formulate weaker properties, where some non-updates or non-
observable conditions are not considered.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 61

Comb.

Comb.

Trans.

sel 1

Trans.

sel2

A

B

C

D

E

F

E1

E2 G

H

Figure 5.7: The formulated property includes more cases for updates than necessary.

Example: In Figure 5.7 sel2 = asE is used to mean H is transparent from E1 under
the assignment sel2 = asE, while sel2 = asG means H is transparent from G. The update
condition of H is constructed as :

U(H) = [(sel2 = asE) ∧ U(E1)] ∨ [(sel2 = asG) ∧ U(G)] ∨ [sel2 6= Y(sel2)],

where U(E1) = U(E), and

U(G) = [(sel1 = asE) ∧ U(E2)] ∨ [(sel1 = asF ) ∧ U(F )] ∨ [sel1 6= Y(sel1)].

Assume U(E) and U(F ) are False; then U(G) = sel1 6= Y(sel1) and U(E1) = False. The
update condition for H becomes

[(sel2 = asG) ∧ (sel1 6= Y(sel1))] ∨ (sel2 6= Y(sel2)).

This formula implies that anytime when sel2 changes, H updates. However, it is possible
that sel1 keeps selecting E2 (sel1 = asE ), G ≡ E2 all the time, while sel2 changes (H
switches between E1 and G). Hence H is identical to E and never updates (U(E) = False).
In this case, the update condition for H,

[(sel2 = asG) ∧ (sel1 6= Y(sel1))] ∨ (sel2 6= Y(sel2)),

covers some cases where H does not update. Hence the resulting clock-gating condition is
weaker.

In this example, the two transparent blocks (two groups of MUXes controlled by s1 and
s2) can be merged into one transparent block, which is controlled by sel1 and sel2 together,
and the output H switches between E and F based on the assignments of s1 and s2. Based on
the simplified circuit, when formulating the update condition for H, the proposed algorithm
can capture the exact condition based on the control logic.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 62

Hence when the control logic can be simplified (with some redundant structure), the
proposed algorithm might formulate an over-approximation of the update condition, i.e.
there exists a case where U(signal) evaluates to True but signal keeps the same regardless
of the actual value, which results in a weaker clock-disabling condition.

5.5.2 Dominating Gated FFs

When a data path crosses multiple gated FFs, the notion of dominance arises in the update
condition of the target signal.

A F

en

F

en

F

en      ?1 2

1 2 3

new

B C

Figure 5.8: An example with a sequence of gated FFs before the target FF.

Example: In Figure 5.8, F1 and F2 have been clock-gated by en1 and en2, respectively.
To formulate an update condition for F3, the algorithm gives

U(C) = U(F2) = Z{en2 ∧ [U(F1) ∨Y(¬en2S[U(F1) ∧ ¬en2])]},

where U(F1) = Z{[en1 = 1] ∧ [U(A) ∨ ...]} = Z(en1 = 1) (because U(A) = True.) Hence

U(F2) = Z{[en2] ∧ [Z(en1) ∨Y([¬en2]S[Z(en1) ∧ ¬en2)])]}.

Suppose G(Z(en1) ⇒ en2). Then ([¬en2]S[Z[(en1) ∧ ¬en2]) is False because [Z(en1) ∧
¬en2] = 0. Therefore, U(F2) = Z[(en2) ∧ Z(en1)] = Z[Z(en1)] (due to Z(en1) ⇒ en2.) For
this case, the update condition for F2 only depends on en1 and thus, F2 must be up-to-date
when F1 updates. Hence, en1 dominates this data path.

On the other hand, suppose G(Z(en1)⇒ en2) fails. Then it is possible that F1 updates
(Z(en1)) but F2 is out-of-date (¬en2). Thus, en2 is more critical for update F2. We could
over-approximate the update condition as U(F2) = Z(en2), because en2 = 1 is required for
updating F2 in the next time frame, independent en1. For this case, en2 dominates the
control of the data path from A to C.

The proposed algorithm inherently covers the concept of dominance, so analyzing adja-
cent gated FFs is unnecessary. However, this concept is useful in understanding the behavior
of a data path.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 63

5.5.3 Combining Satisfiability and Observability

As mentioned in Section 5.4.1, it is essential to verify the observable conditions when the
target FF can be out-of-date with enold. The next example illustrates this.

A F

en1

1 2 3F

en    to en     ?

F

F5new

2 3

old

PO

Figure 5.9: DG for all circuits in Figure 5.10.

Example: Figure 5.10(a) shows the original design. In 5.10(b), F2 is clock-gated using
satisfiability by ennew = Z(en1) (the initial condition of F4 should be True). Because enold =
True, this clock-gating condition can be verified with the property G(¬ennew ⇒ ¬U(F1))
where U(F1) = Z(en1).

Figure 5.10(a) can be clock-gated also by an observability condition ennew = X(F5) = en2

as in 5.10(c). Proving G(¬ennew ⇒ ¬O(F1)) justifies this. Here O(F2) = F5 and
O(F1) = [enold] ∧ {X(O(F2)) ∨X[(¬en2)U(O(F2))]}.
Because en2 = X(F5), then X[(¬en2)U(O(F2))] is False. Hence O(F1) = X(F5) and the
required property holds.

The two clock-gating conditions are valid when applied alone, but combining them can
be problematic. Consider Figure 5.10(b), and let enold = Z(en1) and ennew = Z(en1) ∧ en2.
This can be justified by proving G([Z(en1) ∧ ¬en2] ⇒ ¬O(F1)). Here O(F1) = [Z(en1)] ∧
{X(F5)∨X[(¬(Z(en1)∧en2))U(F5)]} = [Z(en1)]∧{(en2)∨X[(¬(Z(en1)∧en2))U(F5)]}, where
X[(¬(Z(en1) ∧ en2))U(F5)] can be True. Therefore the property G([(Z(en1)) ∧ (¬en2)] ⇒
¬O(F1)) can fail, and the synthesis (from Z(en1) to Z(en1) ∧ en2) is illegal.

Now consider Figure 5.10(c) with enold = en2 and ennew = Z(en1) ∧ en2. Verifying with
just G([(en2) ∧ (¬Z(en1))] ⇒ ¬U(F1)), where U(F1) = Z(en1), leads to a false positive.
Although this property holds, the proposed ennew is still illegal. The issue is, enold has made
F2 out-of-date, so the extra constraint Z(en1) can result in more out-of-date conditions;
we also need to check G([(¬Z(en1)) ∧ (en2)] ⇒ ¬O(F1)). This observable property can
fail, because O(F1) = en2 ∧ {X(F5) ∨ X[(¬(Z(en1) ∧ en2))U(F5)]} = [Z(en1)] ∧ {(en2) ∨
X[(¬(Z(en1) ∧ en2))U(F5)]}, where X[(¬(Z(en1) ∧ en2))U(F5)] can be True. because en1

and en2 are independent. Hence [¬Z(en1) ∧ en2]⇒ ¬O(F1) can be False, the clock-gating
synthesis (from en2 to Z(en1) ∧ en2) is therefore invalid.

Therefore, if the target FF can be out-of-date under enold, it is necessary to use observable
conditions to verify.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 64

1

0
D  Q

D  Q

D  Q
D  Q

1

0

en1

A

F 2F1
F 3

D  Qen2

F4 F5

1

0
D  Q

D  Q

D  Q
D  Q

1

0

en1

A

F 2F1
F 3

D  Qen2

F4 F5

1

0

1

0
D  Q

D  Q

D  Q
D  Q

1

0

en1

A

F 2F1
F 3

D  Qen2

F4 F5

1

0

(a)

(b)

(c)

Figure 5.10: Circuit that can be clock-gated by satisfiability or by observable conditions separately.

5.5.4 Verification flow for Clock-Gating

A valid flow for verifying an arbitrary clock-gating synthesis following the discussion in the
previous section is given in Figure 5.11.

For a gated FF vertex with input in and original enable signal enold, to verify changing
enold to ennew, the first step is to check if the set of FFs are always up-to-date (Formula 5.2).
If this passes, there is a chance that the proposed clock-gating is only based on the update
condition of in (satisfiability clock-gating.) Hence it can be verified with Formula 5.3. If the
target FF with ennew satisfies the satisfiability property, it is a legal clock-gating synthesis.

If the target FF vertex can be out-of-date with enold, or it violates the satisfiability
property, verification with the observability condition (Formula 5.1) is required. If this



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 65

Legal Clock-Gating Synthesis Unknown 

Yes

No

Yes

No

Is the set of FFs 
always up-to-date?

Does the satisfiability 
clock-gating property hold?

Does the observability 
clock-gating property hold?

Yes No

Target set of FFs, 
en    and en    old new

Figure 5.11: Verification flow for a target set of FFs.

holds, the clock-gating synthesis is valid; if it fails, the proposed synthesis still can be valid,
but cannot be justified with only control signals and data dependencies; information about
combinational logic is required.

Note that the update and observable conditions cannot be combined to make a single
property as in

G(enold ∧ ¬ennew ⇒ ¬U(in) ∨ ¬O(in)). (5.4)

This cannot verify a case where the current input is not updating, but the target FF has
been out-of-date before enold ∧¬ennew happens. Then the old out-of-date value can be kept
for longer and become observable without checking.

Example: In Figure 5.10(c), enold = en2 and ennew = Z(en1) ∧ en2. Based on the
incorrect Formula 5.4, we could formulate G([¬Z(en1) ∧ en2] ⇒ ¬U(F1) ∨ ¬O(F1)), where
U(F1) = Z(en1). This property always holds, but the proposed clock-gating is illegal; using
Formula 5.4 can lead to a false positive.

5.6 Proving on Circuits

The formulated sufficient properties for legal clock-gating, which fully consider the function-
alities of control signals, must be proved for a sequential circuit. The LTL properties can be
recast as new hardware property outputs to be proved using hardware model checkers.

Claessen et al. [10] provided methods for expressing LTL/PLTL formulae as circuits.
including G(z ⇒ {op}(a) and G(z ⇒ [a{op}b]), where {op} is an arbitrary LTL or PLTL



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 66

operator. They constructed a hardware monitor circuit to represent each target property to
be proved.

In this section, methods for deriving monitor circuits are reviewed only for those operators
used in clock-gating properties: X, Y, Z, S, and U.

5.6.1 Formulating Past Properties on Circuits

For update conditions relating to the circuit’s behavior from the past to now, monitor circuits
for PLTL properties are constructed by adding FFs for some existing signals:

• Ya: add a FF in front of a to delay it for one cycle, and initialize it to False.

• Za: add a FF in front of a to delay it for one cycle, and initialize it to True.

• [a S b]: build a signal s which is delayed and supported by an extra FF with a feedback
loop, such that s = (Y(s)∧ a)∨ b. The FF is initialized to False because b must hold
at least once. When b occurs, s becomes True and starts to expect a. If the current b
is False and ¬a happens before or now, this property fails. That is, only b can resolve
the pending status.

D  Q

U in

en D  Q
s

Init = False Init = True

U out

Y(s) Z(...)

Figure 5.12: Circuit for Z{[en] ∧ [U(in) ∨Y([¬en]S[U(in) ∧ ¬en])]} based on old enable en and
the update condition of the input.

Example: Figure 5.12 shows the hardware for the update condition of a FF gated by
en. The condition in PLTL is Z{en ∧ [U(in) ∨Y([¬en]S[U(in) ∧ ¬en])]}. This depends on
Uin, the update condition of the data input of the gated FF, and en, the enable signal of
the gated FF. Before combined with other parts, the ”since” part, ([¬en]S[U(in)∧¬en]), is
constructed as follows: let a = ¬en and b = Uin ∧ ¬en, then

[¬en]S[U(in) ∧ ¬en] = a S b = (Y(s) ∧ a) ∨ b
= (Y(s) ∧ ¬en) ∨ (Uin ∧ ¬en)

= ¬en ∧ (Y(s) ∨ Uin),

based on the distributivity of conjunction over disjunction. Hence the ”since” term is built
with a FF whose output represents Y(s) which is fed back to s, combined with ¬en and Uin.
After Y(s) is ORed with Uin, this is ANDed with en, and the whole formula is delayed by
the other FF, which is initialized to True to represent the Z in the front of the formula.



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 67

5.6.2 Formulating Future Properties as Circuits

Representing an observable condition is challenging because it relates to future circuit be-
haviors; thus extra FFs are added to be used to verify future properties.

In the following, we just describe the hardware constructions for the future properties, but
refer to [10] for the more complicated constructions and their justifications. Free variables
zX and zU are added to transform an LTL formula into an equi-satisfiable one. These need to
satisfy conditions G(zX ⇒ X(a)) or G(zR ⇒ [aUb]) to represent something is pending in the
future. Signals pendingX or pendingU , are created, to indicate an event is expected (waited).
To help in finding counterexamples, signals failedX or failedU are added as well. Signal
acceptU is created to present acceptance condition for the liveness concept of ”until”.Their
functionalities are listed below:

• G(zX ⇒ Xa): pendingX = zX , while failedX = ¬Z(False) ∧ Y(pendingX) ∧ ¬a.
Thus, the ”next” property fails when (1) it is not the first time frame, (2) pendingX
is True in the previous time frame, and (3) a is False in the current time frame.

• G(zU ⇒ [aUb]): pendingU comes with an extra FF as [(zU ∨ Y(pendingR)) ∧ ¬b],
meaning when zU is True in the current time frame, or pendingU was True in the
previous time frame, only b can relax the waiting condition. failedU can be expressed
as failedU = pendingU ∧ ¬a, referring to where ¬a occurs when pendingU is True.
acceptU = ¬pendingU , meaning this property has never been activated or b has oc-
curred.

For a gated FF,

O(in) = [enold] ∧ {X(O(out)) ∨X[(¬ennew)U(O(out))]}.

An equi-satisfiable formula can be constructed by introducing a variable for each subformula
as follows:

O(in) = enold ∧ (z0 ∨ z1)
∧G(z0 ⇒ X(O(out)))

∧G(z1 ⇒ X(z2))

∧G(z2 ⇒ (¬ennew)U(O(out))).

To build Oin, the observable condition Oout, for the gated FF output, can be used with
extra signals (zi, pendingi, failedi and accepti), enold and ennew as shown in Figure 5.13.
Using the formulation for each pending, failed or pending signal as described above, with



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 68

en

D  Q

z 0

z 2

z 1

False 

Init = True

Init = False

Init = False

D  Q

D  Q

D  Q

Init = False

failed 2

Y (z  )1

Z(False)

Y (z  )0

pending  =  ¬accept 2

failed 1

failed 0

O in

z 1
z 0

en

new

old

Y(pending  )2

O out

2

Figure 5.13: Circuits for the observable condition of a gated FF input based on its old and new
enable signals and the observable condition of its output.

Z and Y representing FFs with initial values, the monitor hardware is built as:

pending0 = z0; failed0 = ¬Z(False) ∧Y(z0) ∧ ¬Oout

pending1 = z1; failed1 = ¬Z(False) ∧Y(z1) ∧ ¬z2
pending2 = [(z2 ∨Y(pending2)) ∧ ¬Oout]; failed2 = pending2 ∧ ennew;

accept2 = ¬pending2
Oin = enold ∧ (z0 ∨ z1).

After constructing all signals required by Formula 5.1, the algorithm proposed in [10] is
used to verify the observability clock-gating condition. For further details, please refer to
the reference cited.

5.7 Summary

In this chapter the clock-gating conditions on DGs are described in detail. For a target signal,
both update and observability conditions are defined and formulated on DGs. Based on legal
observability and satisfiability clock-gating conditions, a verification flow was proposed for
checking a clock-gating conditions on a set of target FFs. A circuit-based approach to verify
formulated LTL or PLTL properties was provided.

Compared to the properties formulated for the previous CG method outlined in Chapter
2, DGs utilize ennew and enold to precisely describe the clock-gating synthesis applied on



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 69

circuits, while enold is always assumed to be True on CGs. Also, the legal clock-gating
properties formulated on DGs are stronger than those on CGs, i.e. can turn off clocks more
often. The circuit in Figure 5.14 demonstrates the differences.

(a) Original Circuit

(b) Characteristic Graph

D  Q

D  Q

1

0

A

en

F

F

1

2

1

1

0

3

en2

F

D  Q

A

en F /en 

F 

True

True

True

1

2 F 3

2

PO

A F

en

F

en1 2

2 3 PO

1

(c) Dependency Graph

Figure 5.14: (a) A sequential circuit clock-gated using with both satisfiability and observability.
(b) the corresponding characteristic graph, (c) the corresponding dependency graph

Consider the set of FFs F2 in Figure 5.14, which is gated by en1. To verify if en1 on
F2 is a legal clock-gating condition (sequential redundancy), observability clock-gating is
examined. The CG method proposes the sufficient condition as

CG : G(Xen2 ⇒ en1).



CHAPTER 5. LEGAL CLOCK-GATING CONDITIONS 70

The DG, assuming enold = True, proposes a sufficient condition

DG : G(¬en1 ⇒ ¬O(A)) = G(¬en1 ⇒ ¬(X(O(F2)) ∨X[(¬en1)U(O(F2))]).

Because O(F2) = en2, the CG condition implies that [(¬en1)U(en2)] is False. Hence the
CG condition CG limits the DG to G(¬en1 ⇒ ¬X(en2)), which is identical to the CG
condition. Thus a legal CG clock-gating condition is also valid according to the DG method.
However, the ”until” part of the DG condition provides additional legal conditions that are
not accepted by the CG method.

Also, it is possible that F3 is gated by a satisfiability clock-gating condition. To verify if
en2 on F3 is legal, CG gives

CG : G(en1 ⇒ X(en2)),

which requires that the initial state of en2 must be 1. DG gives

DG : G(¬en2 ⇒ ¬U(F2)) = G(¬en2 ⇒ ¬U(Z{en1 ∧ [U(A) ∨Y(¬en1S[U(A) ∧ ¬en1])]})).

Because U(A) = True, then U(F2) = Z(en1). Hence the whole property becomes

G(¬en2 ⇒ ¬Z(en1)).

The property with the ”Z” operator considers both (1) the property with ”X” proposed by
the CG method and (2) the initial state of en2. Hence the property proposed by the DG
method is more comprehensive.

Therefore, in comparison with the CG method in Chapter 2, the DG method can verify
cases synthesized by more sophisticated clock-gating techniques.



71

Chapter 6

Sequential Equivalence Checking of
Clock-Gated Circuits

For two sequential circuits, golden and revised (G and R), with mapped PIs and POs, SEC
can be done similarly to the previous CG method in Chapter 2: (1) identify the additional
clock-gating conditions on R, (2) verify if they are legal and (3) if so reduce them on R
(because they are redundant). After removing the extra clock-gating signals, the revised
design R’ will be more similar to G, and hence SEC between G and R’ is generally easier.

Note that G may be already clock-gated using possibly external satisfiability or observ-
ability conditions which we cannot know. Those added clock-gating structures may modify
the sequential behavior of a version of G with no clock-gating, but they are assumed legal
when considering external logic. Hence there is no need to verify all clock-gating structures
in these designs. Here we assume the clock-gating synthesis from G to R only adds struc-
tures, so in the proposed SEC flow, G remains unchanged, while R can be simplified to
R’.

This chapter is organized as follows: in Section 6.1, we explain how to identify clock-
gating conditions for the revised circuit. The overall algorithm flow is given in Section 6.2.
In Section 6.3, we discuss the issues of depths of recursion of property formulation, as well
as the order of processing the candidates. Experimental results are given and discussed in
Section 6.4, while Section 6.5 concludes this chapter.

6.1 Identifying Clock-Gating Conditions

To identify candidate FFs that have additional clock-gating signals in R, the dependency
graphs for G and R are constructed as DG and DR. Because the correspondences of FFs
between G and R are given, each standard or gated FF vertex in DG has a corresponding
vertex in DR. According to Section 5.1, there are two types of changes in DGs that indicate
clock-gating synthesis was done. These are used for comparison between each FF vertex pair
to detect new clock-gating conditions on DR.



CHAPTER 6. SEQUENTIAL EQUIVALENCE CHECKING OF CLOCK-GATED
CIRCUITS 72

Given a candidate gated FF vertex on DR, the enable signal is denoted as ennew. If the
corresponding vertex in DG is a standard FF, enold = constant-1; if gated and controlled
by enG, we need to detect the difference between ennew and enG = enold. Since clock-
gating synthesis only added extra logic, i.e. MUXes with feedback loops, the signal enextra
in R can be found by checking all controls covered by the collapsed clock-gating condition
ennew = enold ∧ enextra. Proving enextra redundant, allows it to be removed, creating R’.

(a) Original Circuit

(b) Dependency Graph

Dn

n

A F
Trans.

Trans.

C
D

s 0
s 1 ,s 2

B

Const
0 ¬s 3

B

D  Q

F

1

0

0

1n

n

n

n

n

n{s }1

n{s }2

A

B

C

s 0

s 3

Figure 6.1: (a) Golden circuit for the one in Figure 4.4. (b) Corresponding dependency graph for
the above circuit.

Example: The circuit in Figure 4.4 is revised from the one in Figure 6.1. The control
conditions for the gated FF F in DG and DR are different, so the enable signal of F in DR

is analyzed. Since the clock-gating synthesis only inserted extra MUXes between F and the
MUXes controlled by s3, s3 in the two circuits can be mapped. Therefore, ¬s3 is used as
enold, while ennew = ¬s3∧s4 (i.e. enextra = s4). Then the flow described in Section 5.5.4 can
be followed to verify if the new gating condition ennew is legal. If legal, enextra is sequentially
redundant and can be replaced with a constant in R creating R’. When working on the next
candidate FF, DR′ and R’ are used.



CHAPTER 6. SEQUENTIAL EQUIVALENCE CHECKING OF CLOCK-GATED
CIRCUITS 73

6.2 Algorithm Flow

Algorithm 6.1 outlines the proposed SEC flow based on DGs and reports if the input circuits
are sequentially equivalent. The inputs are golden and revised circuits, G and R, and depth,
which is used to limit the number of explored time frames when formulating update and
observable conditions.

Algorithm 6.1 SEC Flow based on DGs

Require: G and R: two circuits with mapped PIs, POs and FFs.
Ensure: EQ or NON-EQ

1: R’ = R
2: DG = dependGraph(G)
3: DR′ = dependGraph(R’)
4: controlPairs = findMappedControls(G,R, DG, DR′)
5: while ((targetFF,mapFF ) = compare(DG, DR′)) do
6: ennew = getEnable(targetFF )
7: enold = analyzeControl(ennew,mapFF, controlPairs)
8: P = defineProperty(targetFF,DR′ , enold, ennew, depth)
9: testCir = buildCircuit(P,R’)

10: proof = multiProve(testCir)
11: if isLegal(proof) then
12: revise(targetFF, enold, DR′)
13: R’ = simplify(targetFF,R’, enold, ennew) . DR′ ≡ dependGraph(R’)

14: return SEC(G,R’)

Function dependGraph(...) executes the algorithm of Algorithm 4.1 to construct the
dependency graph for each input circuit. Line 4 findMappedControls(...) builds a com-
binational miter between G and R and performs SAT-sweeping on this to identify related
signals. For each enable signal of a gated FFs in G, there is a corresponding control signal
in R. The matchings between these controls are returned as controlPairs.

The loop between Line 5 and Line 13 verifies each candidate and revises DR′ and R’ based
on the proved candidates one by one. At Line 5, compare(...) finds each pair of mapped
FF vertices in DG and DR′ and checks if clock-gating has been applied. If the vertices,
(targetFF,mappFF ), as described in Section 5.1, indicate clock gating has been done, then
targetFF is a candidate. To find enold in R’, analyzeControl(...) explores the components
of ennew and finds the control which is associated with the enable signal of mapFF .

Based on ennew, enold and depth, defineProperty(...) formulates the update and observ-
able conditions for the input of targetFF separately, and builds properties as in Section 5.5.4.
Then, based on R′, buildCircuit(...) constructs a corresponding circuit with multiple outputs
(sub-properties) for checking up-to-date condition, along with satisfiability and observabil-
ity clock-gating conditions. Hence the model-checker multiProve(...) at Line 10 verifies all
properties simultaneously.



CHAPTER 6. SEQUENTIAL EQUIVALENCE CHECKING OF CLOCK-GATED
CIRCUITS 74

The clock-gating synthesis on targetFF is legal if it reaches the ”Legal Clock-Gating
Synthesis” terminal in Figure 5.11. If it is legal, then revise(...) modifies the enable signal
of targetFF to enold, and simplify(...) replaces other extra controls with constants and
simplifies R’.

Finally, SEC(G,R’) is invoked to check if G and the completely revised R’ are sequen-
tially equivalent. If it fails, a counter-example trace is available.

Example: Let the circuit in Figure 6.1 be G and the one in Figure 4.4 be R, and let
depth = 1 in the proposed SEC flow. findMappedControls(...) can associate s0 to s3 from
the two circuits. compare(...) identifies gated FF F as a candidate. Taking ¬s3∧s4 as ennew
and ¬s3 as enold, defineProperty(...) formulates the update condition and the observable
condition for the input of F (D).

According to DR in Figure 4.4, since depth = 1, U(D) = [U(C)∧ s1]∨ [U(B)∧ s2]∨ [s1 6=
Y(s1) ∨ s2 6= Y(s2)]. Also, U(C) = [s0 ∧ U(A)] ∨ [¬s0 ∧ U(F )] ∨ ... = True = U(B) due
to U(A) = True and U(F ) = True, because the proposed algorithm returns True for each
FF vertex when depth = 1. Hence U(D) = [s1] ∨ [s2] ∨ [s1 6= Y(s1) ∨ s2 6= Y(s2)], while
O(D) = ¬s3.

Following the flow in Figure 5.11, to check if F is always up-to-date, G(U(D) ⇒ s3) is
checked, which is invalid if s3 is independent of s1 and s2. Then the observable constraint
must be checked, G{[¬s3 ∧ ¬s4] ⇒ s3}, which is not satisfied. This property holds only
when [¬s3 ∧ ¬s4] = False.

If s3 and s4 have some correlation (not shown on the circuits), it is possible that G{[¬s3∧
¬s4]⇒ s3)} holds. Then s4 in R’ is sequentially redundant and can be replaced with constant
1. Therefore G and R’ are identical, and the final SEC is trivial.

6.3 Depths and Orders

The parameter depth affects not only the range of legal clock-gating conditions, but could
affect the overall verification time. For a set of target FFs, if the optimal clock-gating
condition (updating the FFs least frequently) must consider up to n time frames, any settings
with depth < n might block out some cases where the FFs can be gated.

Example: In Figure 4.4, the update condition for D when depth = 1 is formulated
recursively as follows: the algorithm goes from D to C, which requires the update condition of
F . Due to Line 1 of Algorithm 5.2, U(F ) = True, so U(C) = [s0∧U(A)]∨[¬s0∧U(F )]∨[s0 6=
Y(s0)] = [s0∧True]∨ [¬s0∧True]∨ [s0 6= Y(s0)] = True and hence U(D) = [s1]∨ [s2]∨ [s1 6=
Y(s1)∨ s2 6= Y(s2)] . However, if depth > 1, the proposed algorithm can go across one time
frame through F and formulate U(F ) as Z{[s3]∧ [U(D)∨Y([¬s3]S[U(D)∧¬s3])]}. Because
F can potentially remain the same (U(F ) 6= True), and U(C) and U(D) can be more limited,
such that the legal clock-gating condition is strengthened.

When the explored depth is limited, the orders of removing proved redundancies can
influence the overall performance.



CHAPTER 6. SEQUENTIAL EQUIVALENCE CHECKING OF CLOCK-GATED
CIRCUITS 75

Example: In Figure 5.8, assume en1 has been created before clock-gating synthesis
was done. The synthesis might add clock-gating conditions to both F2 and F3 as Z(en1)
and Z(Z(en1)), respectively. If the proposed SEC flow is used with depth = 2, and F2 is
considered first for synthesis with F3 second, the algorithm can prove and replace the clock-
gating condition en2 on F2 with en1. However, when working on F3, after removing en2,
the algorithm stops exploring and returns True when reaching F1, so the legal clock-gating
condition of F3 cannot be justified and hence not removed. Therefore, the final SEC can
still be challenging.

This issue can be resolved by increasing the depth, but this can degrade the overall per-
formance because it requires exploring DGs across more time frames, making the properties
more complicated. Also, the example above can be sorted out if we keep all proved control
signals in both the circuit and the DG until all candidates are checked. However, when
those proved signals are kept, properties may be formulated that are more complicated than
needed, taking more time to prove the remaining candidates.

If the clock-gating synthesis is known to consider only update conditions and all FFs are
up-to-date, candidates can be processed in a reverse topological order with a more limited
depth.

Example: In Figure 5.8, if the algorithm works with depth = 2 on F3 first, the satis-
fiability clock-gating condition on F3 can be justified by the control condition of F2. Then
both clock-gating conditions on F2 and F3 can be removed.

If the clock-gating synthesis only relies on observable conditions, candidates should be
processed in a topological order. For the cases synthesized with both conditions, there seems
to be no best order.

In general, with a limited depth, the proposed algorithm cannot guarantee the removal
of all extra clock-gating signals. One possibility is to start with a small depth, and increase
it gradually until the final SEC is easy enough, i.e. repeat the algorithm in Figure 6.1 with
increasing depth until the SEC problem is proved or disproved.

6.4 Experimental Results

We compare the DG method against the CG method introduced in Chapter 2. The DG
method, including transparent logic recognition, DG construction, property formulation and
proving, and simplifying R, is implemented in ABC. In the following experiments, the live-
ness properties for observability clock-gating are simplified into weaker safety properties,
which will be explained in the next Chapter. The function multiProve(...) used here is the
pdr command in ABC. We also apply super prove to the sequential miter between G and
R’ for the final SEC step in Algorithm 6.1.



CHAPTER 6. SEQUENTIAL EQUIVALENCE CHECKING OF CLOCK-GATED
CIRCUITS 76

6.4.1 Performance for General Clock-Gated Cases

Along with the five cases used in Chapter 2, we add three industrial cases to demonstrate
that the DG method is more effective than the CG method. The statistics of those cases
and the runtimes for both the methods are listed in Table 6.1.

Table 6.1: Comparisons with the CG method on three OpenCores [33] cases, two synthetic cases
and three industrial cases.

Clock-Gating AND FF CG method(s) DG method(s)
Circuit Techniques # # Simplify SEC Simplify SEC Reduced #

aes.Round Observability 125k 645 0.67 2.95 24.344 3.606 128
Md5Core Satisfiability 95k 40k 0.92 7.92 4.323 9.448 512
CLA fixed Observability 3k 97 0.66 1.97 0.228 0.553 32
Synthetic 1 Observability 4k 73 0.56 0.23 0.568 0.980 24
Synthetic 2 Both 877 74 0.65 0.43 0.216 0.430 36
Industry 1 Observability 2k 92 N/A 3.046 0.234 2.339 38
Industry 2 Observability 6k 187 N/A 28.449 1.698 6.257 64
Industry 3 Observability 20k 379 N/A 96.327 3.421 34.431 128

The last column in Table 6.1 indicates the total number of reduced FFs after the simpli-
fying step. For the cases which have been used in Chapter 2, the reduced numbers are the
same for both the DG and CG methods. For the three industrial cases, the CG method is
incapable of proving and removing any clock-gating conditions. Hence the runtimes under
the CG−SEC label refer to the time super prove spends on miters between the original G
and R.

As shown in Table 6.1, for some cases, the proposed DG method needs more time for
the steps before the final SEC, due to its more sophisticated pre-processing steps. After the
simplification based on DGs, the final SEC problem is easier than the original SEC problem
and can be solved efficiently.

Constructing DGs also provides more insights about the input circuits. For example,
the second case in Table 6.1, Md5Core, is a pipeline circuit with 64 stages, where each
stage has four 32-bit data words and one 512-bit word for control saved as FFs. Hence the
total number of FFs is about (32 × 4 + 512) × 64 ≈ 40k. In this case, only control words
can be gated due to the data dependencies in G. Also, the revised circuit (R) used in the
experiment was gated for only one stage, so the number of re-synthesized FFs (the enable
conditions are reduced by the DG method) is 512. However, it is possible that control words
in other stages can be gated as well.

6.4.2 Comparisons of Scalability

Here we use the same set of cases from Chapter 2 to demonstrate the scalability of the DG
method.



CHAPTER 6. SEQUENTIAL EQUIVALENCE CHECKING OF CLOCK-GATED
CIRCUITS 77

Table 6.2: Comparisons with the CG method on qmult, a design from OpenCores [33], with varying
bit-widths.

AND FF CG method(s) DG method(s)
Circuit # # Simplify SEC Simplify SEC Reduced #

qmult 8 487 25 0.58 0.33 0.14 0.39 16
qmult 9 632 28 0.64 0.34 0.16 0.62 18
qmult 10 791 31 0.65 0.34 0.13 0.39 20
qmult 11 964 34 0.65 0.35 0.17 0.63 22
qmult 12 1151 37 0.65 0.35 0.13 0.35 24
qmult 13 1352 40 0.66 0.36 0.19 0.34 26
qmult 14 1567 43 0.65 0.37 0.15 0.36 28
qmult 15 1796 46 0.54 0.36 0.18 0.32 30
qmult 16 2039 49 0.65 0.37 0.15 0.35 32

Table 6.2 shows that the increase of the circuit complexity has no obvious influence on
the proposed DG method, because the irrelevant combinational logic is excluded.

For this set of circuits, the proposed DG flow is slightly more efficient than the CG
method. It is probably because for each case, the DG flow creates the same properties as the
CG method does, and instead of running super prove externally, it performs pdr directly
inside ABC. Because the properties formulated here are easy to prove, the benefit of running
super prove is not clear for these cases, but running super prove externally might result in
some overhead.

6.5 Summary

In this chapter, the concepts of DGs were used to resolve SEC problems between circuits
before and after clock-gating synthesis. The general SEC flow is similar to the one proposed
in Chapter 2, but with following refinements:

1. More control logic and detailed signal dependencies are considered. Hence the DG
method can handle more cases.

2. The properties formulated on DGs are more sophisticated and comprehensive.

3. The SEC flow in this chapter assumes all clock-gating conditions on the golden design
are legal and only reduces clock-gating conditions on the revised circuit.



78

Chapter 7

Clock-Gating Synthesis

The proposed DG concepts, including update and observable conditions, also can be used for
clock-gating synthesis. In Section 7.1, synthesis techniques for satisfiablity clock-gating are
described, while Section 7.2 states the approaches and challenges of synthesizing observability
clock-gating conditions. The proposed synthesis flow is shown in Section 7.3. Section 7.4
demonstrates the experimental results. Finally, Section 7.5 concludes this chapter.

7.1 Synthesis with Update Conditions

Given a set of up-to-date target FFs with input in, satisfiability clock-gating aims at building
an enable signal ennew = enold ∧ enextra, which satisfies

G(enold ∧ ¬ennew ⇒ ¬U(in)).

This can be rewritten as:

G(enold ∧ ¬(enold ∧ enextra)⇒ ¬U(in))

G(enold ∧ ¬enextra ⇒ ¬U(in))

G(U(in)⇒ ¬enold ∨ enextra).

Because the FFs are up-to-date at this point in the flow, U(in)⇒ enold.
Since ennew = enextra ∧ enold, the strongest enabling signal is enextra ≡ U(in). As in

Section 5.6, U(in) can be constructed recursively as one signal in the original circuit. Note
also that it can be constructed prior to the first step of checking the up-to-date condition.
Hence satisfiability clock-gating can be done easily.

As with verification, synthesis with a larger depth can result in better (stricter) clock-
gating conditions. However, for synthesis with a limited depth, it is better to process targets
in a topological order, so that constructed update conditions for other targets may be reused.

Example: in Figure 5.8, assume only en1 has been created before synthesis, while F2 and
F3 are standard FFs and considered as targets. Following a topological order, satisfiability



CHAPTER 7. CLOCK-GATING SYNTHESIS 79

synthesis should be applied to F2 before F3. Since F2 is always up-to-date, it can be gated
by U(F1) = Z(en1) = en2. Hence en2 is synthesized in the original circuit. Then F3 can be
gated by U(F2) = Z{(en2) ∧ [U(F1) ∨ ...]}. Because the satisfiability clock-gating synthesis
guarantees the strongest clock-gating condition (en2 ≡ U(F1)) and F2 must be up-to-date,
U(F2) can be simplified as Z(en2). In other words, F3 can be analyzed and gated without
exploring the fanin cone of F2, while en2 can be reused to create en3 = Z(en2).

7.2 Synthesis with Observable Condition

For a set of target FFs (out) with input in and enold, observability clock-gating synthesis
requires the construction of an enable signal ennew that satisfies

G((enold ∧ ¬ennew)⇒ ¬O(in)),

where O(in) = [enold] ∧ {X(O(out)) ∨X[(¬ennew)U(O(out))]}. However, there is no naive
way to construct such ennew with a liveness concept.

In the proposed flow, observable clock-gating synthesis is only applied to standard FFs,
i.e. without clock-gating (enold = constant-1). Also, to simplify the target property, O(in)
is over-approximated with X(O(out)). Therefore the synthesis flow aims at constructing a
signal ennew to satisfy

G(X(O(out))⇒ ennew).

The strongest synthesis is therefore to take ennew = X(O(out)). Notice that a signal
ennew satisfied with the simplified property satisfies the original property for sure, because
G(X(O(out))⇒ ennew) implies (¬ennew)U(O(out)) must be constant-0.

It is possible that the desired observable clock-gating condition cannot be synthesized
because it is related to events in the future, which might not be predictable in the current
time frame.

7.2.1 Synthesis with ”Next” Property

To synthesize a signal ennew as X(O(out)), this needs to be constructed as a signal Oout on
the original circuit. Then the target signal X(Oout), depends on the fanin cone of Oout back
one time frame.

If Oout is fully supported by FFs, X(Oout) can be constructed by adding a one-time frame
fanin cone of Oout to the previous time frame, i.e. skipping all FFs between the two time
frames. There is an example shown in Figure 7.1(a).

In Figure 7.1, Oout is evaluated by a combinational block A, which is fully supported by
FFs. Those FFs are the next state function of certain outputs from another block B. The
value of Oout in the next time frame is determined by feeding the current outputs of B to A.
Hence X(Oout) can be built by duplicating A and adding it to B, which supports A across
one time frame.



CHAPTER 7. CLOCK-GATING SYNTHESIS 80

OoutComb. 
A

Comb. 
B

FFs

PIs

(a)

Comb. 
A

OoutComb. 
A

Comb. 
B

FFs

PIs
X(O    )out

(b)

Figure 7.1: Example for synthesizing ennew = X(O(out)). In (a), Oout has been built as a new
signal in the circuit. Then in (b), the combinational circuit A supporting Oout is duplicated and
added to the other combinational block B which supports A across one time frame.

If the fanin cone of Oout (A) is supported by any primary inputs, it cannot be built
because primary inputs are free and impossible to predict. Hence clock-gating synthesis
fails.

Moreover, when constructing X(O(out)) recursively with a depth limit, it is possible to
reach gated FFs, which can introduce until U properties to the formulation.



CHAPTER 7. CLOCK-GATING SYNTHESIS 81

7.2.2 Synthesis with ”Until” Property

To synthesize the observable condition, O(in), for the input of a set of gated FFs, because
it is not the target FF, enold = ennew = en. Then

O(in) = en ∧X(O(out)) ∨X[(¬en)U(O(out))]),

where O(out) is the observable condition of the output.
To build O(in), O(out) is constructed in the original circuit first and then the idea in the

previous section is applied to create X(O(out)). If O(out) = True, or if X(O(out)) cannot
be built because O(in) depends on some primary inputs, X(O(out)) is set to True directly.
Therefore, O(in) can be simplified to en.

After XO(out) 6= True has been constructed, the relationship between en and XO(out) 6=
True needs to be analyzed to resolve the ”until” U part of the target property. If the property

G(X(O(out))⇒ (en)) (7.1)

holds, [(¬en)U(O(out))] must be False. That is, there is no out-of-date data that can
be observable before the FFs updates to newer data. Then O(in) is built as O(in) =
[en ∧X(O(out))] = X(O(out)).

If the property in Formula 7.1 fails, [(¬en)U(O(out))] can be True during execution.
This sub-formula can be decomposed into the union of an infinite number of formulas as
follows:

[¬en ∧X(O(out))]

∨[¬en ∧ ¬X(O(out)) ∧ ¬X(en) ∧X2(O(out))]

∨[¬en ∧ (¬X(O(out) ∧ ... ∧ ¬X2(en) ∧X3(O(out))]

∨...,

which describes all traces where [(¬en)U(O(out))] becomes True. It is impractical to create
all sub-formulas so [(¬en)U(O(out))] is approximated as True and thus O(in) = en. That
is, the observable condition is formulated with the enable signal of the gated FFs only, while
the observable condition of the outputs are excluded. Hence, the recursion of formulating
O(out) is not performed.

Example: Figure 7.2 shows a circuit and its corresponding DG. Only FFs F3 have been
gated by en, which is computed by combinational block A based on FFs F5. All signals
in F5 are determined by combinational block B based on FFs F4, while F4 is supported by
block C. In other words, en ≡ A(F5), X(F5) ≡ B(F4), and X(F4) ≡ C(PIs)

F1 and F2 are candidates for observability clock-gating. If the process starts with F1, the
observable condition of its inputs is :

O(in) = X(O(F1)) =X(X(O(F2)))

= X(X(en) ∧ [O(F3) ∨ ...]).



CHAPTER 7. CLOCK-GATING SYNTHESIS 82

PI F1 2 3F

const-1 to en     

F

ennew2

2 3 PO

const-1 to en     new1

(b)

(a)

D  Q

D  Q

D  Q
D  Q

1

0

PIs

F 2F1
F 3

D  Q

F54F

POs

Comb. 
A

en

Comb. 
B

Comb. 
C

PIs

Figure 7.2: An example for observability clock-gating synthesis. (a) A sequential circuit with two
sets of target FFs, F1 and F2. (b) The corresponding DG.

where O(F3) = True. Hence the target enable signal for F1 is ennew1 = X(X(en)). Ac-
cording to Section 7.2.1, X(en) can be built as A(B(F4)), and X(X(en)) is identical to
A(B(C(PIs))). Thus, the three combinational blocks are concatenated together to build
ennew1. Similarly, the observability clock-gating synthesis for F2 and proposes the enable
signal ennew2 as X(en), which can be built as A(B(F4)). Note that ennew1 and ennew2 can
be simplified by combinational synthesis.

However, if F2 is processed first, ennew2 is constructed and simplified as simp[A(B(F4))]
with the same steps. Then when working on F1, the observable condition is

O(in) = X(O(F1)) = X(ennew2) ∧ [X(O(F2)) ∨ ...]),

where X(O(F2)) = X(en), which has been analyzed and constructed for F2. The property in
Formula 7.1 must hold because ennew2 = X(en). Hence O(in) is simplified as X(X(O(F2))),
where X(O(F2)) ≡ X(en) ≡ A(B(F4)) = ennew2. The simplified simp[A(B(F4))] can be
copied and built ennew1 = simp[A(B(C(PIs)))]. Therefore, when formulating the observ-
ability condition for a set of gated FFs, where observability clock-gating synthesis has been
applied, the property in Formula 7.1 must hold, and the constructed enable condition can
be used directly. That is, there is no need to explore the fanout cone of the gated FFs again.

Therefore, when performing observability clock-gating synthesis for multiple targets, it
is more efficient to follow a reverse topological order.



CHAPTER 7. CLOCK-GATING SYNTHESIS 83

7.3 Synthesis Flow

Given a sequential circuit and a set of target FFs, which has been gated by enold (enold =
constant-1 refers to standard FFs), the flow in Figure 7.3 is proposed for clock-gating syn-
thesis, in which a new enable condition enextra is synthesized and the target FFs are gated
by ennew = enextra ∧ enold.

Clock-Gating Synthesis No Synthesis 

Yes

No

en     ≠ 
const-1

Is the set of FFs 
always up-to-date?

Perform satisfiability 
clock-gating synthesis

Perform observability 
clock-gating synthesis

Target set of FFs 
and en        old

extra

en    = const-1old

en     ≠ 
const-1

new en     =
const-1

new

Else

Figure 7.3: Synthesis flow for a target set of FFs.

In Figure 7.3, the first step checks if the target FFs are up-to-date under enold. This
can be done by formulating the update condition for the FFs input and proving Formula 5.2
with a hardware model checker. If the property holds, the target FFs can be clock-gated
by using update conditions (satisfiability clock-gating synthesis) to create a legal enabling
signal enextra without considering the observable conditions. If enextra 6= constant-1, then
clock-gating synthesis is achieved.

If (1) the target FFs can be out-of-date, or (2) enold 6= constant-1 and there is no enextra 6=
constant-1 for satisfiability clock-gating, the proposed flow terminates (indicated by the
arrow labeled with Else from the satisfiability clock-gating block in Figure 7.3.) That is,
only when enold = constant-1 and no enextra can be added by considering update conditions,
the observable conditions are used to derive enextra = ennew 6= constant-1 as observability
clock-gating synthesis. The proposed ennew must satisfy the property in Formula 5.1. If no
such ennew exists, the flow stops without modifying the circuit.

Finally, if an additional enable condition enextra is proposed, on the corresponding DG,
the enable signal of the target FFs is modified to enold ∧ enextra. On the original circuit,
it can be represented as inserting a set of MUXes controlled by enextra between the target
FFs and their corresponding input signals, where there are feedback loops from the FFs to



CHAPTER 7. CLOCK-GATING SYNTHESIS 84

MUX inputs. In practice, as in Figure 1.2, it can be achieved by ANDing the clock with
enold ∧ enextra.

Based on the flow for each target FF shown in Figure 7.3, for input circuit, Cir, and
input parameter depth, a proposed synthesis algorithm is outlined in Figure 7.1. Functions
synthesisUpdate(...) and synthesisObservable(...) are used to (1) formulate update or ob-
servable conditions on the DG based on the algorithms in Algorithm 5.1 and 5.2, and (2)
construct corresponding signals on revCir as described in the previous sections. Note that
the property formulation part can be terminated earlier when reaching already analyzed
FFs, and enable signals constructed by clock-gating synthesis can be used to build other
clock-gating conditions.

Algorithm 7.1 Clock-Gating Synthesis

Require: Cir: a sequential circuit; depth: parameter for the functions synthesisUpdate(...)
and synthesisObservable(...).

Ensure: revCir: the circuit after clock-gating synthesis.
1: DG = dependGraph(Cir)
2: revCir = Cir
3: candidates = topologicalSort(FFV ertices(DG))
4: for all target in candidates do
5: Uin = synthesisUpdate(input(target), depth, revCir, DG)
6: if isUpToDate(target, Uin) then
7: updateEnable(revCir, DG, target, Uin)

8: candidates2 = reverseTopologicalSort(FreeFFs(DG))
9: for all target in candidates2 do

10: Oin = synthesisObservable(input(target), depth, revCir, DG)
11: updateEnable(revCir, DG, target, Oin)

12: return revCir

After constructing the DG for Cir, all standard and gated FF vertices are sorted in a
topological order. From Line 4 to 7, each FF vertex is examined and satisfiability clock-
gating is performed one by one. At Line 5, the update condition for the vertex input is
formulated on the DG, and then the corresponding signal Uin is constructed on the circuit.
Based on Uin and the old enable signal, isUpToDate(...) uses a hardware model checker to
verify if the target is always up-to-date. If so, the clock-gating condition of target is revised
with Uin, both on the DG and the circuit.

Then only standard FFs (free FFs) are considered for observability clock-gating. As dis-
cussed, observability clock-gating synthesis should be done in a reverse topological order. For
each FF vertex, the observable condition for its input is formulated, and the algorithm also
builds the corresponding signal Oin on the circuit. Note that when recursively constructing
Oin, to resolve ”until” U formulas, synthesisObservable(...) may formulate some properties
as Formula 7.1 and prove them by a hardware model checker. If the observable condition



CHAPTER 7. CLOCK-GATING SYNTHESIS 85

cannot be constructed as a signal, Oin is set to True, while updateEnable(...) returns without
doing anything. If Oin can be constructed, both the DG and revCir are revised.

Finally, revCir is returned as a circuit after clock-gating synthesis, which is sequentially
equivalent to Cir.

7.4 Experimental Results

The proposed synthesis flow was implemented in ABC and was applied to the golden circuits
in the benchmark pairs we used for verification. We do not include the industrial cases here
because the number of gated FFs are unknown. In Table 7.1, the fourth column indicates
the number of gated FFs proposed by a reference manual analysis (which models what a
designer might do), while the fifth column shows the number of gated FFs proposed by the
DG method.

Table 7.1: Experimental results of the proposed clock-gating synthesis flow.

Target AND FF Reference Synthesis with DG
Circuit # # Gated FF # Gated # Runtime(s)

aes.Round 125k 645 128 128 1.479
Md5Core 95k 40k 512 32256 23.313
CLA fixed 3k 97 32 32 0.192
Synthetic 1 4k 73 24 24 0.241
Synthetic 2 877 74 36 50 0.201

As shown in Table 7.1, the proposed method can synthesize clock-gating conditions ef-
ficiently. For some cases, like the pipeline circuit Md5Core, the DG method can propose
more clock-gating conditions than the reference synthesis does. Hence the proposed method
provides improved possibilities for low-power circuit designs. The additional advantage is
that this can be done automatically by our proposed synthesis algorithm.

7.5 Summary

In this chapter, we use DGs and legal clock-gating conditions on DGs to perform clock-gating
synthesis for sequential circuits. Experimental results show that the proposed method is
effective and efficient.

In the modern VLSI design flow, once a legal clock-gating condition is proposed, it is a
must to analyze the overall improvements in power consumption to determine whether this
clock-gating condition should be inserted to the circuit. Proposing clock-gating conditions
and examining real power consumption should be done iteratively to achieve the best perfor-
mance. The automatic synthesis framework proposed in this chapter makes the whole flow
more independent of manual efforts.



86

Chapter 8

Circuit Recognition with
Convolutional Neural Networks

In addition to transparent logic, recognizing arithmetic operators, including adders, multipli-
ers, dividers, etc., has been a focus of reverse engineering. For hardware security inspection,
reverse engineering, which extracts high-level components from bit-level designs, is desired.

Reverse engineering methodologies [28, 45, 44] typically consist of two parts: (1) decom-
posing a gate-level circuit into suspected blocks and (2) mapping sub-circuits of a block to
high-level components from a library. Thus, reverse engineering is mainly about detecting
and locating functional components from gate-level circuits. This process can then isolate
any unknown components for further inspection. Generally, existing frameworks for this pro-
cess start with finding a set of candidate words and operators using structural and functional
approaches, and then applying formal methods to justify each candidate. Because proving
with formal methods is time-consuming, an efficient method of finding small candidate sub-
sets is desired. Once found, they can be used to further decompose the circuit into smaller
parts.

To check if a target component in a library can be a candidate for a match, certain
features or properties are derived to detect the target component. For example, based on
behavioral pattern mining on simulation traces, Li et. al. [28] constructed pattern graphs for
library components and target gate-level netlists. Also, Soeken et. al. [44] used simulation
graphs of a functional block to detect arithmetic operators. The characteristics and varieties
of selected features dramatically influence the accuracy of candidate search, and thus the
performance of the overall algorithm.

In this chapter, convolutional neural networks are proposed to find suitable features for
identifying candidates effectively. This is possibly the first time CNNs have been applied to
circuit recognition. The relative success of the proposed methodologies offers the possibility
of application to other computer-aided design problems.

The remainder of this chapter is organized as follows: relevant background knowledge
about modern machine learning techniques is introduced in Section 8.1. In Section 8.2,
essential requirements for representing circuits for CNN processing are discussed. Section 8.3



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 87

describes the proposed convolution operation for circuits, and a proposed dynamic pooling
is given in Section 8.4. The framework for recognizing circuits is shown in Section 8.5.
Section 8.6 compares the performance of different methods on operator classification and
detection. Section 8.7 summarizes the results and some future directions.

8.1 Preliminary: Modern Machine Learning

Algorithms

Machine learning is a type of artificial intelligence which enables computers to identify spe-
cial patterns from input data and construct models without being explicitly programmed.
The ability of adapting to new data is the main focus when developing machine learning
algorithms. Such algorithms are often categorized as supervised or unsupervised. In this
chapter, only supervised learning is considered.

Supervised learning relies on a known dataset (training set), which includes pairs of input
observations and expected outputs. A supervised learning algorithm uses the training set to
build a model that can predict the outputs for other sets of observations (testing set). Many
such algorithms have been developed for classifying collections of observations into specific
classes, e.g. decision tree learning [36], support vector machines (SVM) [11] and artificial
neural networks [13].

8.1.1 Support Vector Machines

Support vector machines (SVM) [11] are a set of supervised learning methods used for
classification and regression. Roughly speaking, given a set of labeled training data, a
support vector machine constructs a hyperplane or set of hyperplanes in a high-dimensional
space as a model to classify new data points into different regions (classes).

Consider a training data set for SVM: each data point is represented as a p-dimensional
vector, and the training procedure of SVM aims at finding a (p− 1)-dimensional hyperplane
to separate those points based on their labels. The p-dimensional vector for each point refers
the collection of p features. For example, for a digital image, the value that represents the
brightness of one color for each pixel is one feature.

A critical drawback of SVM methods is that the selection of features significantly in-
fluences the accuracy rate of SVM. Hence manually selecting or extracting features might
be required. Consider the problem of handwritten digit recognition as an example: when
applying SVM, using orientation histograms as features can achieve a much better accuracy
rate than using raw pixels [30]. In contrast, due to the ability of extracting proper fea-
tures automatically, convolutional neural networks can achieve better performance with raw
pixels [25].



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 88

8.1.2 CNN for Images

A convolutional neural network (CNN) [26] is a type of artificial neural network inspired by
the mechanism of the animal visual cortex [19]. It can make use of the internal structure of
data through convolution layers containing computation units, each of which processes only
a small region of input data. CNNs have been used widely in computer vision and image
processing applications. Recent research also apply CNNs to text categorization [22] and
graph classification [32].

A major advantage of CNNs is their lack of dependence on manual efforts in designing
and selecting features. Most machine learning techniques rely on manual feature selection to
achieve high performance, while CNNs require relatively little pre-processing of data. That
is, a CNN is responsible for learning essential filters while these need to be manually defined
in other algorithms.

F1 F2 F3 F4

F5 F6 F7 F8

Output Prediction: [0.01, 0.02, 0.95, 0.00, 0.02]

Input

Convolution 
layer

Pooling layer

Convolution 
layer

Pooling layer

Fully connected 
layer

...

3

Figure 8.1: A typical convolution network for image processing. There are five expected outputs
(classes), and the input object is most likely to belong to the third class in this case.

A typical CNN is a feed-forward network mainly composed of convolution layers, pooling



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 89

layers and fully connected layers. There are some types of layers, like activation or dropout
layers, that provide non-linear properties or avoid overfitting. Moreover, convolution and
pooling layers are critical parts of CNNs. Figure 8.1 illustrates a CNN with convolution layers
interleaved with pooling layers, and a final fully connected layer which performs predictions
based on the features generated by the preceeding layers. The network in Figure 8.1 has five
expected outputs. For the input object, the model predicts the probability (bottom line) of
belonging to each class. The final classification is that the input belongs to the third class
because it has the highest probability (.95).

The various types of CNN layers used in this chapter are explained as follows:

1. A convolution layer consists of a set of trainable filters. Each filter is a small computa-
tion unit extracting one local feature across the whole input data. During the forward
pass, dot products are performed between the entries of each filter and each input
image centered at any position to produce one feature map. Consider Figure 8.2 as an
example: Filter 1 detects vertical edges by computing horizontal gradients, while Filter
2 reveals horizontal edges by calculating vertical gradients. These filters are applied in
sliding 2 × 2 windows to the array of input data. Those local features are combined
to derive higher order features in the succeeding layers. An activation layer might be
appended to a convolution layer to result in non-linear combinations of the weighted
inputs.

5 5

5 5

0 0

0

0

0

0 0 0

0

0

0

0
Input Data

Filter 1

Filter 2

Output 1

Output 2

1

-1-1

1

1 -1

-11

10 0

5 0

0

0

0 0 0

0 0

5 0

0

10

0 0 0

Figure 8.2: A convolution layer with two 2× 2 filters for image processing.

2. To reduce the amount of parameters and computation in CNNs, usually a pooling layer
is inserted after a convolution layer. In a pooling layer, an input feature map is par-
titioned into small regions and shrunk by a certain operator. Figure 8.3 demonstrates



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 90

max -pooling, in which the MAX operation is performed in each small region. Pooling
layers also lessen the over-fitting issue of CNNs by ignoring small disturbances. Notice
that the pooling operator is pre-defined and cannot be modified during training.

1 2

3 5

0 2

1

7

0

6 4 3

2

4

2

5

5 7

6 5

Input Data

Output

Figure 8.3: Max-pooling layer for image processing.

3. A fully connected layer takes all output features computed by the previous layer to
determine each of its output values. For each output, it performs the dot products
between all input features and a set of trainable parameters. In most CNNs, there is
more than one fully connected layer, where the number of outputs of the last layer is
the number of expected classes.

4. An activation layer processes values from its previous layer with an activation function
f , and outputs to the next layer. Typically the activation functions used in neural
networks are non-linear. There are two types of activation functions used in this
chapter: rectified linear unit (ReLU) and Softmax function. An ReLU activation layer
is applied after each convolution layer, where each input value x is transferred to f(x) =
max(0, x) individually. A Softmax activation layer usually works as the final layer of a
CNN to present the classification results, because the output of the softmax function
can demonstrate a categorical distribution, i.e. showing the probability distribution
over n different possible classes [6]. The softmax function takes all values from the
previous layer to compute an n-dimensional vector of real values in the range [0, 1]
that add up to 1.

5. A dropout layer is added into a CNN to avoid overfitting. Each dropout layer comes
with a parameter, dropout fraction p (0 ≤ p ≤ 1), which means each value from the
previous later is either ”dropped out” with probability p or kept with probability 1−p
at each training stage. Hence given the same training set, the actual data processed
after a dropout layer can be different.



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 91

8.2 CNN-Adaptive Circuit Representation

The most critical issue in using CNNs for circuits is how to convert a circuit into a readable
format for CNNs, which expect matrices filled with real numbers. For each CNN, the sizes of
all input matrices representing all circuits must be the same for a given problem. Images with
different sizes can be easily re-scaled to fit the input requirement, but there is no obviously
one best way to re-size circuits.

A naive approach is to use an adjacency matrix to describe connections among gates.
For instance, an And-Inverter Graph (AIG) with N signals (primary inputs or AND gates)
can be described as an N × N matrix A. The element Aij is 1 when there exists an edge
from signal i to signal j, -1 when this edge comes with negation (in the AIG), and 0 when
there is no edge.

However, this format has a scalability issue. All circuits for training or testing are ex-
pected to be in the same format, which is the adjacency matrix of the largest circuit. Then
other smaller circuits would require a proper scaling or zero-padding to fit into this format.

Another approach is to express a circuit in a format similar to AIGER [3]: an AIG with
N signals is described as an N × 3 matrix. Each signal in the AIG is associated with a
variable indexed by a natural number. Each row of the N × 3 matrix represents one AND
gate with its input and output variable indexes. To represent negated edges on the AIG,
each variable index is multiplied by two for its positive phase, while its negation is expressed
by adding one to the multiplied number. For example, a variable indexed with 5 is expressed
as 10 and 11 for its positive and negative phases, respectively. Therefore, for each AND gate,
it is represented by a row with three elements: (1) positive phase of the gate output, (2) one
input with its phase (negation or not) on the AIG, and (3) the other input with the phase.

However, this format contradicts fundamental principles of CNNs because the range of
natural numbers (indexes) used in the input varies among different circuits. Also, normaliza-
tion or standardization of entries is prohibited, because it can destroy a circuit’s properties
completely.

Moreover, the convolution operation on the above format cannot catch properties pre-
cisely, because a linear combination of literals does not act as a guide for finding features.
For example, the inner product between a filter (0, 1, -1) and (8, 3, 5) is identical to the prod-
uct between the filter and (110, 103, 105), but their interpretations are distinct in circuits.
Hence expressing circuits with variable indexes is not suitable for CNNs.

With the above examples in mind, some desirable properties proposed for describing
circuits for CNN processing are:

1. The input data has a fixed size, regardless of the original circuit size.

2. The input data describes both functional and structural information.

3. Two circuits with distinct properties should have different descriptions.

4. Numerical entries are within a fixed range, and no normalization or standardization is
needed.



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 92

To address the above properties, a convolution preprocessing operation for circuits and
a corresponding pooling operation to represent circuits for CNNs are proposed.

8.3 Convolution on Circuits

For circuit synthesis, technology mapping is a process of implementing a target circuit by
choosing gates from a technology library. It has some features of a convolution layer used
for images: both extract local properties from the original subjects and both maintain the
globally relative positions of the extracted components, e.g. topological orders.

8.3.1 Technology Mapping

As a running example, Figure 8.4 includes a subject circuit and a library of gates. A cover
(labeled with dashed rounded rectangles) is a mapping from library cells to the subject
circuit, where every node is contained by at least one cell. The cost of a cover is determined
by a set of costs of objective functions. The problem is to find a cover with minimum cost
for the subject circuit. For our example, the cost of a cover might be the total number of
cells used in the cover.

Library

(1) (2) (3) (4)

Subject Circuit

(2)

(1)

(4)

(3)

(3)

Figure 8.4: A running example of circuit convolution.

Many technology mapping methods have been developed to efficiently minimize costs of
mapped circuits [31, 38]. As shown in Figure 8.4, the subject circuit is converted to another
directed acyclic graph (DAG), where vertices are indexed with cells in the library.

The concept of technology mapping can be extended by allowing one cell in the library
to represent more than one type of sub-circuits. Thus, two different sub-circuits can be



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 93

(A)

(B)
(E)

(C)

(D)

Cell index: 2
sEV = 1101
dEV = 1100 0101 

Cell index: 1
sEV = 1100
dEV = 1000 1100

Cell index: 4
sEV = 0111
dEV = 0101 0011

Cell index: 3
sEV = 0011
dEV = 0011 0010

Cell index: 3
sEV = 0011
dEV = 0011 0010

Figure 8.5: The subject circuit after technology mapping. The cell index for each node refers to
the corresponding library cell in Figure 8.4.

identified as the same cell if they share some properties. For example, XOR and XNOR
gates can be classified as the same cell, because both are heavily used in certain operations.
This extension can decrease the size of the library and produce smaller data files that reduce
the computation efforts of CNNs.

To process circuits written in a high-level language, like word-level Verilog, a cell library
can be a set of arithmetic and other operators for bit-vectors. Then an input circuit is a
DAG with indexed vertices. This representation of high-level information can be used for
recognizing more high-level properties, such as ”this circuit contains a linear sum or a filter
of some kind”.

The library used in this paper is the set of all npn isomorphism classes of 4-input lookup-
tables (4-LUTs). A 4-LUT can implement any Boolean function with 4 inputs and one
output. The library size (total number of npn isomorphism classes) is 222. For experiments
in Section 2.4, all circuits are mapped into 4-LUTs, and then converted into DAGs, where
vertices are indexed by their npn isomorphism classes of 4-LUTs. This brings in an element
of local functionality rather that relying on the structure of the underlying circuit.

8.3.2 Existence Vector

Technology mapping converts a circuit into a DAG with indexed vertices, which illustrate
local functionalities. However, CNNs require vector representation of data that preserve
neighborhood information (directed edges in this case) as input.

Existence vectors (EVs) are used to represent not only functionality but connectivity for
each vertex in a DAG. For each vertex, the corresponding EV indicates the existence of each
cell type in its neighborhood using a binary encoding: 1 means presence a cell type while 0
stands for absence. Each element of an EV refers to a cell type in the library. For example,
if the 135th entry has a 1 in it, it means that there is a cell of type 135 in the immediate
neighborhood of the vertex associated with the EV.



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 94

For a DAG synthesized with a library of L cells, a vertex can be associated with a
double existence vector (dEV) with length 2L. The first L entries of the dEV refer to the
neighborhood including the corresponding vertex and its distance-1 fanins, while the other
L entries stand for the neighborhood of the vertex and its distance-1 fanouts.

A node can be expressed as a single existence vector (sEV) with length L. To express a
vertex as an sEV, the neighborhood of the target vertex includes its distance-1 fanins and
fanouts and itself. For the same vertex, the sEV is identical to the bitwise OR between the
first and the second half of its dEV.

Example: Figure 8.5 has 4 cells in the library, so each sEV contains 4 entries and each
dEV has 8. Vertex C (indexed 4) is driven by vertex A (indexed 2) and fanouts to vertices
D (indexed 3) and E (indexed 3). The first half of its dEV is 0101 because cell types 2 and
4 are present, while the other half is 0011 based on the indexes of C, D and E. The sEV for
vertex C is 0111 because the neighborhood includes cell types 2, 3 and 4.

Generally dEVs can express the connectivity of vertices more precisely, but using sEVs
can reduce the network size and lessen the training effort. Comparisons between using dEV
and sEV are given in Section 2.4.

8.4 Pooling for Circuits

After this circuit-based pre-processing, all vertices in a mapped circuit are represented by a
set of EVs. The total number of EVs are different for different circuits. There is one EV
for each cell that is in the cover of library cells created by technology mapping. Each sEV
has a length equal to the number of cells in the library. Cell types are classified by the npn
isormorphism type of the Boolean function it implements.

8.4.1 Dynamic Grouping

For a circuit mapped into a DAG with m vertices, there are m EVs to represent the whole
circuit. To produce a fixed-sized result, all vertices are partitioned into p pooling groups and
an output is generated for each group in a standard format according to the set of EVs inside
that group. Then the overall representation is a collection of data entries in the order of a
chosen group ordering. Thus for a fixed number of groups p, all input circuits have identical
data formats.

A naive approach for group ordering is to sort the vertices of a circuit in a topological
order, and then uniformly partition the vertices into p groups, where each of the first (m
mod p) groups contains bm

p
c+ 1 vertices, while others contain bm

p
c vertices. Thus, the first

bm
p
c + 1 vertices in the topological order are in the first group, the second bm

p
c + 1 vertices

are in the second group, etc.
However, there are many topological orders for the same DAG, and uniform distribution

of vertices based on a topological order does not guarantee vertices in the same group are



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 95

connected or close. In Section 2.4, experiments with different topological orders are compared
and discussed.

8.4.2 Most Representative Pooling

After partitioning vertices into groups, we need to determine certain representative features
over groups for feeding successive layers.

A k−most representative pooling is proposed, which takes k ”most representative” EVs
for each group. The final matrix for each circuit has kp rows and |EV| (length of an EV)
columns. To determine the most representative EVs for each group, its EVs are sorted first
by occurrence counts, and then by the number of 1’s in each EV in descending order. The
first k EVs for each group are selected as rows of the matrix.

Example: In Figure 8.5 the four sEVs are sorted as 0011(2) ⇒ 0111(1), 1101(1) ⇒
1100(1), where numbers in parentheses stand for occurrence counts. if k = 2, 0011 and one
of 0111 and 1101 are chosen to represent this group.

8.5 Classification Framework

Figure 8.6 shows a framework devised for circuit classification based on the operations de-
scribed in Section 8.3 and 8.4.

Given a set of circuits and a cell library, all circuits are mapped into DAGs, where vertices
are indexed by library cells. Each vertex is assigned an EV by exploring its neighborhood.
The output of the circuit-based convolution is a set of EVs. Then the circuit pooling layer
divides vertices into a fixed number of groups and selects the most representative EVs for
each group. After that, all circuits are represented as Boolean matrices with the same size.

Finally, a standard CNN (demonstrated in Figure 8.1) takes those matrices as input
data and processes them with layers of operations, where parameters are trained to classify
circuits.

8.6 Experimental Results

The proposed framework for circuit classification was implemented with Keras [9] and
ABC [8] . All circuits were generated randomly in word-level Verilog and synthesized into
gate-level circuits by Yosys [46]. Then ABC synthesized these into AIGs, performed technol-
ogy mapping with the command &if -K 4, and executed operations described in Section 8.3
and 8.4 to write out Boolean matrices. Finally, CNNs are built and the models were trained
with Keras packages. All procedures were run on a 16-core 2.60GHz Intel(R) Xeon(R) CPU.



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 96

Gate-level 
Circuits

Gate-level 
Circuits

Gate-level 
Circuit

Cell 
Library

Technology Mapping

Existence Vector Generation

Dynamic Grouping

Most Representative Pooling

Standard 
CNN 

Prediction of Circuits

Ordered EVs

Matrix filled 
with 0 and 1

Matrix filled 
with 0 and 1

Matrix filled 
with 0 and 1

Ordered EVsOrdered 
EVs

Circuit Pooling Layer

Circuit Convolution Layer

Figure 8.6: The proposed framework for circuit classification.

8.6.1 Experiment Setup and Runtimes

Data preparation. The library used was the set of npn isomorphism classes for all 4-LUTs
(library size = 222). The number of pooling groups p was 40. For each group, the top three
most representative EVs (k = 3) were taken. Thus for sEVs, the dimension of each input
matrix is 120× 222 and for dEVs, 120× 444. The runtime of converting AIGs into Boolean
matrices is sampled and shown in Table 8.1. The pre-processing time is relatively small and



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 97

grows linearly with the circuit size.
In addition to comparing dEVs and sEVs, we compared different topological orders: (1)

the input order provided by synthesis (Orig), (2) ordering LUTs by depth-first search (DFS )
and (3) breadth-first search (BFS ).

Table 8.1: Sample runtime of converting AIGs into Boolean matrices.

AND # 168 1063 5505 10645 21485 28930
LUT # 43 246 1182 2299 4716 6118

Runtime (s) 0.102 0.102 0.135 0.173 0.285 0.335

Two reference methods. For a comparison against the CNN approach, SVM methods
were used. As an input to such, we make a single vector of features out of all entries in an
input matrix (generated with sEVs and the input topological orders.) The SVM methods
implemented in scikit-learn [35] were used to classify the circuits.

To experiment with a faster method, a set of naive features were created to use with the
SVM methods: circuits are mapped into 3-LUTs with the command &if -K 3 in ABC, where
the number of npn isomorphism classes is 14. Hence there are 14× 14 = 196 types of LUT
pairs connected by directed edges (fanin→LUT). The percentage of each connection type
over the whole circuit is one feature having a range from 0 to 1. Each circuit is represented
as a vector of 196 floating point numbers and then classified by the SVM method.

Using CNNs. In the following experiments, CNNs were built to distinguish two classes
(to detect if a multiplier is present or not) or three classes (to classify the type of operator
a circuit is - multiplier, divider or modulo operator.) All circuits in each class are distinct in
operator types (for detection), or how they are synthesized (for classification), or their size
of words (for both classification and detection). Circuits in each class are partitioned into a
training set, a validation set and a testing set, where the size of each validation or testing
set is fixed at 50 cases, while the size of the training set varies.

For all experiments, CNNs with the following layers in series were built:

1. a convolution layer with sixty-four 8× 8 filters,

2. an ReLU activation layer,

3. a max-pooling layer with filters of size 2× 2, like the example in Figure 8.3,

4. a dropout layer with dropout fraction 0.25,

5. a fully connected layer with 32 outputs,

6. an ReLU activation layer,

7. a dropout layer with dropout fraction 0.5,

8. a fully connected layer whose number of outputs is equal to the number of expected
classes, and



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 98

Table 8.2: Statistics of running CNNs for different data formats.

Data Type Parameter # Training Time(s) Testing Time(s)
sEV 13643938 254.241 7.465
dEV 27283618 501.476 13.497

9. a softmax activation layer for predictions (outputs).

The optimizer used for training was Adadelta [48], while the loss function was
categorical crossentropy.

In each individual experiment, a CNN was trained and optimized with the same training
set for 30 epochs. One epoch means one full training cycle for the given training set. At
the end of each epoch, the resulting CNN model is applied to the validation set. After each
epoch, the best model and its validation result are saved. Training a CNN applies gradient
descent methods and due to the existence of dropout layers, the actual training data after
dropout layers differs in each epoch. After each epoch, if the accuracy rate is better than the
best validation seen so far, the model and result are stored as ”best”. The final prediction
accuracy is determined by applying the final reference model to the test set. The accuracy
rates shown in Table 8.3 and Table 8.4 show the average and standard deviation of 10
separate runs, where each run had its data sets re-partitioned and re-shuffled.

Because the sizes of the matrices using dEVs and sEVs differ, the numbers of parameters
in the corresponding CNNs differ. The sizes of the CNNs influence the training and prediction
times. For both cases, Table 8.2 lists (1) the number of parameters, (2) the total runtime
for 20 training rounds, where the sizes of training and validation sets are 100, and (3) the
total runtime of testing on 100 circuits. These runtimes include reading data and model
construction.

8.6.2 Operator classification.

Three classes of operators are considered for identification, multipliers, dividers and modulo
operators with varying bit-widths. Training is done for CNNs with different training set sizes
(the number of cases in each class). The resulting CNNs are used to predict the accuracy. The
average accuracy and standard deviation for each experimental setting is listed in Table 8.3.

Comparing CNN with SVM. For CNNs and for all settings, the accuracy of pre-
diction increases notably at the beginning and then becomes stable as the training sets get
larger. The saturated accuracy of CNNs is above 97%. In comparison, when applying SVM
to the data generated for CNNs, the accuracy rate can achieve 86% only. Thus, for the pro-
posed data format, CNNs outperform SVM methods, seemingly by extracting more essential
properties to recognize circuits.

The accuracy rate of the naive method is fixed at 66%, no matter the size of the train-
ing set, because it cannot distinguish dividers from modulo operators, while the proposed
representation can do this.



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 99

T
ab

le
8.

3:
T

h
e

av
er

ag
e

an
d

st
an

d
a
rd

d
ev

ia
ti

on
of

ac
cu

ra
cy

ra
te

s
fo

r
ea

ch
se

tt
in

g
of

op
er

at
or

cl
a
ss

ifi
ca

ti
on

.
T

h
e

n
u

m
b

er
s

u
n

d
er

T
ra

in
in

g
N

u
m

be
r

in
d

ic
at

e
th

e
n
u

m
b

er
of

tr
ai

n
in

g
ca

se
s

in
ea

ch
cl

as
s;

th
e

to
ta

l
tr

ai
n

in
g

si
ze

is
tr

ip
le

o
f

th
e

n
u

m
b

er
.

M
et
h
o
d

T
ra
in
in
g
N
u
m
b
er

C
o
m
b
in
a
ti
o
n

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

C
N
N

sE
V
+
O
ri
g
(%

)
7
6
.3

±
4
.7

8
3
.5
±
4
.0

8
9
.7
±
3
.9

9
5
.1
±
1
.9

9
6
.3
±
1
.4

9
8
.2
±
1
.1

9
8
.8
±
1
.1

9
8
.7
±
0
.9

9
9
.1
±
0
.6

C
N
N

d
E
V
+
O
ri
g
(%

)
7
9
.9
±
3
.3

8
4
.7
±
4
.8

9
2
.8
±
3
.5

9
5
.4
±
1
.8

9
6
.3
±
2
.4

9
6
.9
±
1
.1

9
8
.2
±
1
.2

9
8
.1
±
1
.1

9
8
.0
±
1
.2

C
N
N

sE
V
+
D
F
S
(%

)
7
8
.7
±
5
.3

8
8
.9
±
3
.2

9
3
.4
±
3
.0

9
6
.9
±
2
.0

9
8
.6
±
1
.3

9
8
.7
±
0
.9

9
9
.0
±
1
.4

9
8
.9
±
0
.5

9
8
.9
±
1
.1

C
N
N

d
E
V
+
D
F
S
(%

)
7
9
.3
±
5
.2

8
2
.5
±
4
.7

8
9
.2
±
3
.0

9
4
.0
±
2
.4

9
5
.4
±
4
.3

9
6
.5
±
1
.5

9
7
.5
±
1
.7

9
7
.9
±
0
.9

9
8
.4
±
0
.8

C
N
N

sE
V
+
B
F
S
(%

)
7
7
.3
±
4
.0

8
4
.1
±
4
.1

8
8
.1
±
5
.7

9
3
.1
±
1
.5

9
4
.3
±
2
.7

9
5
.8
±
1
.8

9
6
.5
±
2
.2

9
6
.9
±
1
.8

9
7
.0
±
0
.8

C
N
N

d
E
V
+
B
F
S
(%

)
8
0
.8
±
3
.6

9
0
.1
±
3
.7

9
5
.0
±
1
.6

9
6
.6
±
0
.7

9
6
.7
±
0
.9

9
7
.4
±
1
.2

9
8
.1
±
1
.4

9
7
.7
±
1
.7

9
8
.2
±
0
.9

S
V
M

sE
V
+
O
ri
g
(%

)
7
4
.7
±
3
.9

7
5
.9
±
4
.1

7
5
.7
±
4
.2

7
7
.6
±
3
.2

8
1
.3
±
5
.1

8
2
.5
±
3
.5

8
4
.1
±
5
.3

8
6
.3
±
5
.1

8
6
.2
±
3
.6

S
V
M

N
a
iv
e
(%

)
6
5
.3
±
4
.8

6
6
.3
±
4
.7

6
4
.9
±
3
.9

6
5
.8
±
4
.7

6
5
.1
±
3
.7

6
5
.7
±
4
.7

6
6
.0
±
4
.6

6
6
.5
±
4
.5

6
6
.1
±
5
.3

T
ab

le
8.

4:
T

h
e

av
er

ag
e

an
d

st
a
n

d
a
rd

d
ev

ia
ti

on
of

ac
cu

ra
cy

ra
te

s
fo

r
ea

ch
se

tt
in

g
of

op
er

at
or

d
et

ec
ti

o
n

.
T

h
e

va
lu

e
o
f
n

in
d

ic
a
te

s
th

e
to

ta
l

n
u

m
b

er
of

a
ri

th
m

et
ic

o
p

er
at

o
rs

fo
r

ea
ch

ca
se

,
w

h
er

e
at

m
os

t
on

e
is

a
m

u
lt

ip
li

er
.

M
et
h
o
d

T
o
ta
l
N
u
m
b
er

o
f
o
p
er
a
to
rs

(n
)

C
o
m
b
in
a
ti
o
n

2
3

4
5

6
7

8
9

C
N
N

sE
V
+
O
ri
g
(%

)
9
9
.1
±
0
.7

9
5
.7
±
1
.9

9
1
.4
±
2
.1

8
9
.7
±
2
.1

8
7
.5
±
2
.6

8
2
.4
±
3
.2

8
2
.9
±
5
.0

7
5
.8
±
5
.7

C
N
N

d
E
V
+
O
ri
g
(%

)
9
9
.3
±
0
.5

9
5
.2
±
2
.4

9
2
.4
±
3
.7

8
9
.5
±
3
.3

8
8
.6
±
3
.0

8
6
.0
±
4
.3

8
4
.8
±
4
.1

7
5
.3
±
5
.0

C
N
N

sE
V
+
D
F
S
(%

)
9
8
.9
±
1
.0

9
6
.0
±
2
.1

9
2
.3
±
3
.1

8
9
.7
±
2
.2

8
7
.5
±
1
.8

8
4
.4
±
3
.3

8
0
.8
±
5
.8

7
6
.5
±
3
.7

C
N
N

d
E
V
+
D
F
S
(%

)
9
9
.0
±
1
.9

9
6
.6
±
1
.1

9
3
.0
±
2
.4

8
9
.3
±
3
.0

8
7
.4
±
4
.7

8
4
.7
±
2
.7

7
8
.3
±
9
.0

7
3
.6
±
1
4
.8

C
N
N

sE
V
+
B
F
S
(%

)
9
9
.1
±
1
.0

9
6
.4
±
2
.2

9
3
.0
±
2
.3

9
1
.6
±
2
.2

9
2
.9
±
2
.9

8
9
.8
±
2
.7

8
3
.9
±
5
.9

8
3
.4
±
4
.1

C
N
N

d
E
V
+
B
F
S
(%

)
9
9
.6
±
0
.5

9
7
.5
±
1
.5

9
1
.8
±
1
.5

9
2
.2
±
3
.1

9
1
.0
±
4
.4

8
7
.8
±

1
.7

8
7
.4
±
4
.2

8
4
.8
±
2
.8

S
V
M

sE
V
+
O
ri
g
(%

)
7
9
.5
±
3
.2

7
4
.0
±
3
.1

7
1
.9
±
4
.5

7
1
.5
±
6
.9

7
4
.8
±
5
.3

7
5
.7
±
3
.8

7
4
.1
±
3
.4

6
8
.2
±
4
.6

S
V
M

N
a
iv
e
(%

)
7
3
.8
±
1
4
.4

6
8
.1
±
1
4
.1

5
9
.3
±
4
.0

5
8
.8
±
6
.4

5
1
.3
±
1
.1

5
1
.0
±
0
.1

5
0
.9
±
1
.1

5
1
.8
±
2
.6



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 100

Additionally, for classifying just between multipliers and dividers, all methods can reach
100% accuracy even with the smallest training set. The experimental results show that the
proposed method can distinguish not only distinct operators (divider and multiplier) but
also when applied to quite similar operators (divider and modulo operator) at once.

Comparing different settings. dEVs can describe the connectivity of cells more pre-
cisely than sEVs, but CNNs using dEVs require double the runtime to train and test models
(shown in Table 8.2). When using DFS orders, CNNs using dEVs require larger training
sets than with sEVs to reach the same performance, because it takes extra efforts to train a
model with more parameters. In contrast, when using BFS orders or the orders provided by
synthesis (Original) with dEVs, the performance stabilizes with smaller training sets, versus
sEVs which take more training data to stabilize.

The saturated accuracy rates of all settings for sEVs and dEVs are quite close. Hence
for operator classification, it is better to use sEVs.

8.6.3 Operator detection

This experiment detects the existence of a multiplier embedded in a larger circuit. All cases
tested were randomly generated with n arithmetic operators of varying bit-widths, where at
most one is a multiplier (of varying size). These circuits are classified as to the absence or
presence of a multiplier. We examine how the total number of operators (n) influences the
accuracy of the prediction, considering different settings. The number of training cases for
each class (with and without a multiplier) is fixed at 350, so the training set contains 700
cases.

Comparing CNN with SVM. Independent of the relative sizes of the embedded mul-
tipliers, Table 8.4 shows that the proposed CNN method for any of the settings outperforms
the reference SVM methods. For circuits with only two operators, CNNs with all settings
can reach 99% accuracy, while the SVM method on the same data can only achieve 79%.

The SVM approach with the naive features described in Section 8.6.1 fails to detect
multipliers because its feature set omits local properties. As the relative sizes of the multiplier
decrease, the accuracy rate goes down to 50%, which means basically no classification.

Comparing different settings. According to Table 8.4, CNNs for any setting can de-
tect multipliers successfully when the total number of operators (n) is small. As n increases,
data matrices generated with the BFS order are more suitable for operator detection than
with both the DFS or input orders. When ordered in BFS, LUTs of the same operator tend
to be grouped together. Hence the dynamic pooling can catch more representative features
for each operator. There is no obvious benefit of using dEVs, so sEVs are better.

As the size of the multiplier decreases relative to the total circuit size, prediction accuracy
decreases. For all the above experiments, the number of pooling groups p was fixed at 40.
When n increases, each group covers a larger region, so some representative features of the
target operator can be over-shadowed by sub-circuits in the same group. Increasing p can
resolve this issue somewhat, but then the corresponding data matrices and the sizes of the



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 101

CNNs increase, which consumes more resources and runtime. To address this issue, we
experimented with the use of sliding windows to sub-divide the circuit.

8.6.4 Operator Detection on Sub-circuits

Here a set of sub-circuits was extracted from a circuit using a sliding window, and then
an already trained model was used to detect the existence of a multiplier for each window
position.

Given a target circuit, the circuit convolution layer in Figure 8.6 was used to map the
circuit into LUTs and associated with EVs. A set of sub-circuits is obtained by exploring the
neighborhood (fanin LUTs, fanout LUTs and extended neighbors) of each LUT to a certain
depth. Thus, each sub-circuit is a set of connected LUTs and each sub-circuit goes through
the circuit pooling layer to generate a matrix for prediction. The set of LUTs used as the
centers of windows for generating sub-circuits can be all LUTs or a set of LUTs randomly
chosen across the whole circuit, because for many cases, using nearby LUTs as centers can
result the same sub-circuit.

For detection, the presence of a multiplier can be determined by the existence of a sub-
circuit with a high probability for containing a multiplier or a part of it. The overall accuracy
rate is influenced by the following factors:

1. The already trained model was trained for detecting targets with a whole multiplier,
not parts of it. Thus, a good model for detecting a whole multiplier may not be very
good for finding parts of it.

2. The size of the window relative to the multiplier is crucial for the whole task. If the
window is too small, each sub-circuit can only capture small parts of the multiplier; if
the window is too large, the target multiplier may not be easy to detect.

3. The center LUTs influence the positions of the sub-circuits, which determine how much
of the multiplier can be covered by each sub-circuit.

The above issues can be mitigated by increasing the number of sub-circuits that are generated
with varying window sizes and centers. However, then a large number of sub-circuits may
cause performance issues.

When the number of sub-circuits is large enough, this flow can be used also to locate the
target operator, i.e., to find a set of LUTs (a sub-circuit), which comprises a multiplier. Hence
we use the following process to find the likelihood of each LUT belonging to a multiplier.

Given a target circuit, numerous sub-circuits can be found with a moving window. For
each sub-circuit, a trained multiplier detector predicts the probability (a score) of containing
a multiplier. If a nLUT is in a window then it is given a score equal to the window probability.
Thus an LUT is given a set of scores. After predicting all sub-circuits, each LUT keeps a
set of scores coming from all sub-circuits containing it. Finally, for each LUT, the average
of its set of scores is computed as its likelihood of being part of a multiplier.



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 102

Example of locating a multiplier. To show how the proposed flow works, consider
a circuit with one multiplier surrounded by six other word-level operators (operators are
connected together.) This circuit is mapped into 3151 LUTs, including 1 constant and 71
primary inputs. For each LUT, a neighborhood containing between 320 to 640 LUTs is
saved as one sub-circuit. Based on the settings in Section 8.6.3, a multiplier detector, which
is trained with n = 2 and sEVs using the input order, is applied for prediction on each
sub-circuit. Figure 8.7 demonstrates the average score versus each LUT indexed using the
topological order provided by a synthesis tool. All LUTs of one word-level operator are
indexed continuously.

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LUT Index

A
ve

ra
ge

 P
ro

ba
bi

lit
y

Figure 8.7: The average probability (likelihood) versus each LUT for an example circuit, which
contains one multiplier.

There are two peak ranges in Figure 8.7: one is located at the primary inputs, the other
covers LUTs 700 to 1400. The multiplier has one primary word and one internal word as
inputs. Hence when considering neighborhoods of these primary inputs, the sub-circuits
cover part of the multiplier and receive higher scores.

In the example, the multiplier feeds into another word-level operator. When mapped
to LUTs, the boundaries between operators are unclear. Also, the neighborhoods of LUTs
supported by multiplier outputs cover only parts of the multiplier. Therefore, for LUTs close
to multiplier outputs, the average probabilities are quite variable.

The average scores contributed by sub-circuits can be used to locate the multiplier. Once
an approximate location is found, more complex algorithms can be applied to the smaller
region to identify the multiplier.

8.7 Summary

This chapter used one of the better-known deep learning methods, convolutional neural
networks, for recognizing circuits that might be part of addressing computer-aided design
and security problems.



CHAPTER 8. CIRCUIT RECOGNITION WITH CONVOLUTIONAL NEURAL
NETWORKS 103

Contributions are summarized below:

1. We enumerate essential requirements for representing circuits to work with CNNs.
Most of these apply more generally to situations where an object is converted to an
array of vectors of real numbers.

2. We propose a convolution operation which can represent both functional and structural
properties of a circuit.

3. We propose dynamic grouping to partition a circuit into a fixed number of groups.

4. We devise most representative pooling to select features for each group.

5. We build a framework to a) classify or b) detect arithmetic operators from gate-level
circuits.

6. We compared using CNNs against a supervised learning algorithm (SVM) where two
different feature sets were tried. Experiments show that for the same training size,
CNNs outperform SVMs .

Based on the spirit of using CNNs-complicated data preprocessing or feature extraction
is not highly required, the proposed representation extracts essential local properties by
the convolution operation for circuits, while global characteristics are caught by the circuit-
based pooling. The representation works relatively well for the reverse engineering problems
addressed in this chapter, but it can be enhanced by including more features. For example,
based on adder tree structures found in a circuit, more columns can be added to indicate
which types of adder trees exist in each group. This is a higher level feature which could
be destroyed in the current representation. Extra features can assist on recognizing more
sophisticated circuit properties, but it takes more manual efforts to extract and present them
properly.

Future work might include: (1) revise the windowing techniques to improve operator
detection, (2) apply the trained models to real industrial circuits to assist in reverse engi-
neering, (3) use the proposed framework to recognize other combinational circuit properties,
and (4) generalize the proposed framework to recognize designs implemented in different
abstraction levels or libraries, including sequential circuits, word-level Verilog designs and
SMT problems. With proper training data, the proposed framework could be used to train
a model to help detect and locate malware in hardware designs.



104

Chapter 9

Conclusions and Future Directions

In this thesis, to address both verification and synthesis of clock-gated circuits, an SEC flow
and a synthesis flow were proposed for work on sequential circuits, based on the fact that
sequential clock-gating synthesis only inserts sequential redundancies to target circuits. In
the spirit of reverse engineering, transparent logic blocks are recognized and used to construct
dependency graphs to capture essential properties for clock-gating analysis. Legal clock-
gating conditions are formulated with LTL and PLTL operators on DGs. Those properties
can be proved on circuits with both safety and liveness model checkers. Experimental results
showed that the proposed methodologies can effectively and efficiently verify proposed clock-
gating conditions or to synthesize legal clock-gating conditions to reduce the frequencies of
updating FFs.

The thesis is a prime example of the synergy between synthesis and verification. For
verification Dependency Graphs (DG) were used to derive maximal properties that must be
satisfied to be a legal clock-gating. These properties can be used to verify that a given circuit
has been legally clock-gated. Even if the condition used in the given circuit is sub-optimal for
clock-gating, the derived property can still be used to verify legality. This illustrates how the
effort to derive a maximal condition is worthwhile because a maximal condition covers most
cases done in practice. The conditions derived are described using LTL and PLTL temporal
languages. Recent work on this described how to directly synthesize hardware monitors
on the original sequential circuit. These provide additional outputs, which are targets of
hardware model checkers and represent properties to be proved on the circuit. If proved,
then the circuit was legally clock-gated. Dually, this same construction from the PLTL/LTL
properties can be used to synthesize enabling signals which control new legal clock-gating
for when a set of FFs needs to be updated. The maximality of the properties provide the
conditions under which the most power is saved by not updating FFs.

To explore more possibilities for reverse engineering, we used convolutional neural net-
works to classify circuits and to detect special functions. We invented a representation of
circuits to be used with modern machine learning techniques and built a circuit recognition
framework based on CNNs. Experimental results showed that the proposed framework could
achieve high rates of accuracy with proper training sets.



CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 105

The major contributions of this thesis are listed below, with some discussion of how they
might be extended to further applications:

• Transparent logic identification: we proposed functional approaches to identify trans-
parent logic, which can be used to identify control and data flow and isolate arithmetic
functional blocks. This method can be applied to general reverse engineering or assist
in verification or synthesis.

• Dependency graphs: we defined a dependency graph, which is an abstraction model
for a sequential circuit, in which the control and data dependencies are represented
explicitly. By constructing the DG for an unknown circuit, more insights about its
characteristics can be obtained allowing more suitable methods to be applied to it.

• Legal clock-gating conditions on abstraction models: LTL and PLTL properties are
used to represent legal clock-gating conditions derived from abstraction models, which
are the core techniques of the proposed verification and synthesis flow. The proposed
method can be extended by recognizing other special functional blocks to provide new
node types for DGs, such that the legal clock-gating conditions can be stronger.

• Circuit recognition with machine learning techniques: the proposed representation of
circuits can be extended to include more features, such as the existence of adder trees.
The proposed framework can be used to recognize different properties of circuit and
to help in solving other computer-aided design problems, e.g. (1) prioritizing multiple
properties for model checking, (2) choosing lazy or eager approaches for satisfiability
modulo theories (SMT) problems, and (3) choosing the best synthesis techniques for
circuits with special features.



106

Bibliography

[1] Steve Awodey. Category theory. Oxford Oxford New York: Clarendon Press Oxford
University Press, 2006, pp. 11–12. isbn: 9780198568612.

[2] Jason Baumgartner et al. “Scalable Sequential Equivalence Checking across Arbitrary
Design Transformations”. In: International Conference on Computer Design. IEEE.
2006, pp. 259–266.

[3] Armin Biere. AIGER. http://fmv.jku.at/aiger/.

[4] Armin Biere et al. “Linear encodings of bounded LTL model checking”. In: arXiv
preprint cs/0611029 (2006).

[5] Armin Biere et al. “Symbolic model checking without BDDs”. In: Tools and Algorithms
for the Construction and Analysis of Systems (1999), pp. 193–207.

[6] Christopher M Bishop. “Pattern recognition”. In: Machine Learning 128 (2006), pp. 1–
58.

[7] Robert K. Brayton, Niklas Een, and Alan Mishchenko. “Using Speculation for Sequen-
tial Equivalence Checking”. In: International Workshop on Logic and Synthesis. 2012,
pp. 139–145.

[8] Robert Brayton and Alan Mishchenko. “ABC: An Academic Industrial-Strength Ver-
ification Tool”. In: Computer Aided Verification. Springer. 2010, pp. 24–40.

[9] Francois Chollet. Keras. 2015. url: https://github.com/fchollet/keras.

[10] Koen Claessen, Niklas Een, and Baruch Sterin. “A circuit approach to LTL model
checking”. In: Formal Methods in Computer-Aided Design (FMCAD), 2013. IEEE.
2013, pp. 53–60.

[11] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine Learn-
ing 20.3 (1995), pp. 273–297. issn: 1573-0565. doi: 10.1007/BF00994018. url: http:
//dx.doi.org/10.1007/BF00994018.

[12] Yu-Yun Dai, Kei-Yong Khoo, and Robert Brayton. “Sequential Equivalence Checking
of Clock-Gated Circuits”. In: Design Automation Conference. San Francisco, Califor-
nia: ACM, 2015.

[13] Howard B. Demuth et al. Neural Network Design. 2nd. USA: Martin Hagan, 2014.
isbn: 9780971732117.



BIBLIOGRAPHY 107

[14] Niklas Een, Alan Mishchenko, and Robert K. Brayton. “Efficient Implementation of
Property Directed Reachability”. In: Formal Methods in Computer-Aided Design. 2011,
pp. 125–134.

[15] Mark C Hansen, Hakan Yalcin, and John P Hayes. “Unveiling the ISCAS-85 bench-
marks: A case study in reverse engineering”. In: IEEE Design & Test of Computers 3
(1999), pp. 72–80.

[16] Hardware Model Checking Competition 2013. http://fmv.jku.at/hwmcc13/.

[17] Hardware Model Checking Competition 2014. http://fmv.jku.at/hwmcc14cav/.

[18] Yen-Sheng Ho, Alan Mishchenko, and Robert Brayton. “Uninterpreted Function Ab-
straction and Refinement for Word-level Model Checking”. In: International Workshop
on Logic and Synthesis (IWLS). 2016.

[19] David H Hubel and Torsten N Wiesel. “Receptive fields and functional architecture of
monkey striate cortex”. In: The Journal of physiology 195.1 (1968), pp. 215–243.

[20] Aaron P. Hurst. “Automatic Synthesis of Clock Gating Logic with Controlled Netlist
Perturbation”. In: Design Automation Conference. Anaheim, California: ACM, 2008,
pp. 654–657. isbn: 978-1-60558-115-6. doi: 10.1145/1391469.1391637. url: http:
//doi.acm.org/10.1145/1391469.1391637.

[21] Jie-Hong R Jiang and Wei-Lun Hung. “Inductive equivalence checking under retiming
and resynthesis”. In: Proceedings of the 2007 IEEE/ACM international conference on
Computer-aided design. IEEE Press. 2007, pp. 326–333.

[22] Rie Johnson and Tong Zhang. “Effective use of word order for text categorization with
convolutional neural networks”. In: arXiv preprint arXiv:1412.1058 (2014).

[23] Victor Kravets et al. Advanced Techniques in Logic Synthesis, Optimizations and Appli-
cations. 1st. Springer Publishing Company, Incorporated, 2010. isbn: 9781441975171.

[24] Andreas Kuehlmann and Cornelis AJ Kuehlmann. “Combinational and sequential
equivalence checking”. In: Logic synthesis and Verification (2002), pp. 343–372.

[25] Yann LeCun et al. LeNet-5, convolutional neural networks. 2015. url: http://yann.
lecun.com/exdb/lenet.

[26] Y. LeCun et al. “Gradient-Based Learning Applied to Document Recognition”. In:
Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.

[27] Wenchao Li. “Formal Methods for Reverse Engineering Gate-Level Netlists”. MA the-
sis. EECS Department, University of California, Berkeley, Dec. 2013.

[28] Wenchao Li, Zach Wasson, and Sanjit A Seshia. “Reverse engineering circuits using
behavioral pattern mining”. In: Hardware-Oriented Security and Trust (HOST), 2012
IEEE International Symposium on. IEEE. 2012, pp. 83–88.

[29] Wenchao Li et al. “WordRev: Finding Word-Level Structures in a Sea of Bit-Level
Gates”. In: Proceedings of the IEEE Conference on Hardware-Oriented Security and
Trust (HOST). June 2013.



BIBLIOGRAPHY 108

[30] Subhransu Maji and Jitendra Malik. Fast and accurate digit classification. EECS De-
partment, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-159., 2009.

[31] Alan Mishchenko et al. “Technology mapping into general programmable cells”. In:
Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM. 2015, pp. 70–73.

[32] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning Convolu-
tional Neural Networks for Graphs”. In: Proceedings of the International Conference
on Machine Learning (ICML). 2016.

[33] OpenCores. http://opencores.org/.

[34] Samir Palnitkar. Verilog HDL: a guide to digital design and synthesis. Vol. 1. Prentice
Hall Professional, 2003.

[35] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[36] J. R. Quinlan. “Induction of Decision Trees”. In: Mach. Learn. 1.1 (Mar. 1986), pp. 81–
106. issn: 0885-6125. doi: 10.1023/A:1022643204877. url: http://dx.doi.org/
10.1023/A:1022643204877.

[37] R. Ranjan, V. M. Purri, and F. Braga. “Hardware verification of security aspects: scal-
able approaches in formal system-level security verifications”. In: Design Automation
Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE. 2016.

[38] Sayak Ray et al. “Mapping into LUT structures”. In: Proceedings of the Conference
on Design, Automation and Test in Europe. EDA Consortium. 2012, pp. 1579–1584.

[39] A. Saldanha et al. “Multi-level Logic Simplification Using Don’T Cares and Filters”.
In: Design Automation Conference. Las Vegas, Nevada, USA: ACM, 1989, pp. 277–282.
url: http://doi.acm.org/10.1145/74382.74429.

[40] Hamid Savoj, Alan Mishchenko, and Robert Brayton. “Sequential Equivalence Check-
ing for Clock-Gated Circuits”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 33.2 (2014), pp. 305–317.

[41] Hamid Savoj et al. “Combinational Techniques for Sequential Equivalence Checking”.
In: Formal Methods in Computer-Aided Design. FMCAD Inc. 2010, pp. 145–150.

[42] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. “Checking Safety Properties
Using Induction and a SAT-Solver”. In: Formal Methods in Computer-Aided Design.
London, UK, UK: Springer-Verlag, 2000, pp. 108–125. isbn: 3-540-41219-0. url: http:
//dl.acm.org/citation.cfm?id=646186.683237.

[43] Mathias Soeken et al. “Heuristic NPN classification for large functions using AIGs and
LEXSAT”. In: International Conference on Theory and Applications of Satisfiability
Testing (SAT). 2016.

[44] Mathias Soeken et al. “Reverse Engineering with Simulation Graphs”. In: Formal Meth-
ods in Computer-Aided Design. 2015.



BIBLIOGRAPHY 109

[45] Pramod Subramanyan et al. “Reverse Engineering Digital Circuits Using Structural
and Functional Analyses”. In: Emerging Topics in Computing, IEEE Transactions on
2.1 (2014), pp. 63–80.

[46] Clifford Wolf. Yosys Open SYnthesis Suite. url: http://www.clifford.at/yosys/.

[47] Cunxi Yu et al. “DAG-aware logic synthesis of datapaths”. In: Design Automation
Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE. 2016, pp. 1–6.

[48] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: CoRR
abs/1212.5701 (2012). url: http://arxiv.org/abs/1212.5701.


