
Random Matrices and the Sum-of-Squares Hierarchy

Tselil Schramm

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-129
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-129.html

July 18, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Random Matrices and the Sum-of-Squares Hierarchy

by

Tselil Schramm

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Prasad Raghavendra, Chair
Professor Satish Rao

Assistant Professor Nikhil Srivastava

Summer 2017

Random Matrices and the Sum-of-Squares Hierarchy

Copyright 2017
by

Tselil Schramm

1

Abstract

Random Matrices and the Sum-of-Squares Hierarchy

by

Tselil Schramm

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Prasad Raghavendra, Chair

We study the Sum-of-Squares semidefinite programming hierarchy via the lens of average-
case problems.

The Sum-of-Squares Hierarchy is a formulaic family of convex relaxations to polynomial
optimization problems, which allows one to trade runtime for accuracy in a smooth man-
ner. The Hierarchy has been studied since the early 2000’s, both from the perspective of
optimization and control and as a proof system. In the past five years, the Hierarchy has
become a focus of intensive study in the theory of computation community. This is because
recent results give us reason to hope that Sum-of-Squares algorithms may refute important
conjectures on hardness of approximation. However, our understanding of the guarantees of
the Hierarchy remains relatively incomplete.

In this dissertation, we present three results which make modest progress towards un-
derstanding the power and limitations of the Sum-of-Squares Hierarchy; all three works use
average-case problems as a lens for the Sum-of-Squares algorithms, by enabling us to use
random matrix theory as a tool in the analysis.

First, we analyze the performance of the Hierarchy for strongly refuting random con-
straint satisfaction problems (CSPs). We obtain a full characterization of the Sum-of-Squares
Hierarchy for strong refutation of random CSPs, and give new subexponential-time strong
refutation algorithms for CSPs with super-linear density.

Next, we give impossibility results for solving the planted clique problem via a Sum-
of-Squares algorithm, demonstrating that the degree-4 Sum-of-Squares algorithm cannot
distinguish graphs which contain a planted clique from uniformly random graphs.

Finally, even in the asymptotically polynomial-time regime, the Sum-of-Squares algo-
rithm is often prohibitively slow. We show that for average-case problems, polynomial-time
Sum-of-Squares algorithms can often be replaced with fast spectral algorithms, which run in
linear or near-linear time in the input size.

i

To Mom and Dad: from life’s first moments you welcomed my aspirations; you gave me
courage to try and a soft place to fall.

And to my brother Pele: it’s wonderful to laugh with someone who gets it.

ii

Contents

Contents ii

1 Introduction 1
1.1 Sum-of-Squares Algorithms . 1
1.2 Why Study SoS Algorithms? . 4
1.3 Average-Case Problems and Random Matrix Theory as a Lens 6
1.4 Results . 9
1.5 Organization . 14

2 Preliminaries 15
2.1 Notation and Conventions . 15
2.2 Optimization and Semidefinite Programming 16
2.3 The Sum-of-Squares SDP Hierarchy: Polynomial Optimization 19
2.4 The Sum-of-Squares SDP Hierarchy: Sum-of-Squares Proofs 21
2.5 Common Sum-of-Squares Proofs and Feasible Dual Points 23

3 Strong Refutation of CSPs 25
3.1 Introduction . 25
3.2 Main Ideas: Proof for Random 4-Tensors . 30
3.3 Injective Tensor Norm for Subgaussian Random Tensors 38
3.4 Refuting Random k-XOR Instances . 56
3.5 Strong Refutation for All CSPs . 85
3.6 Sum-of-Squares Algorithms . 91

4 Degree-4 SoS Lower Bounds for Planted Clique 96
4.1 Introduction . 96
4.2 Sum of Squares, Simple Moments, and Why They Don’t Work 99
4.3 Overview of our Analysis . 103
4.4 Degree 4 Lower Bound: Proof . 110
4.5 Concentration for Locally Random Matrices over G(n, 1

2
) 115

5 Fast Spectral Algorithms from SoS Analyses 127

iii

5.1 Introduction . 127
5.2 Techniques . 132
5.3 Planted Sparse Vector in Random Linear Subspace 140
5.4 Overcomplete Tensor Decomposition . 147
5.5 Tensor Principal Component Analysis . 167
5.6 Concentration Bounds for Planted Sparse Vector in Random Linear Subspace 169
5.7 Concentration Bounds for Overcomplete Tensor Decomposition 172
5.8 Concentration Bounds for Tensor Principal Component Analysis 180

A Additional Technical Underpinnings 183
A.1 Linear Algebra . 183
A.2 Concentration of Scalar Random Variables 186
A.3 Concentration of Matrix-Valued Random Variables 188

Bibliography 194

iv

Acknowledgments

Throughout my graduate studies, it has been my singular fortune to be surrounded and
supported by mentors, collaborators, friends and family, and I offer my warmest thanks:

To my advisors, Prasad Raghavendra and Satish Rao. I remain in awe of their brilliant
minds, their uncompromising aesthetic, and their loyalty to their personal identities outside
of their work. I thank them both for their incredible generosity and kindness, and for their
support, advice, and patience along my journey from novice to researcher.

To Elchanan Mossel, for advising me in my first year. I arrived at Berkeley green and
confused—I thank Elchanan for guiding me through that that raw initial phase, and for his
continuing friendship and genuine advice.

To my thesis and quals committee members, Nikhil Srivastava and Luca Trevisan. I thank
them for serving on my committee. I thank them even more for serving as an inspiration to
me throughout my studies, and I am greatful for all I have learned from them.

To Konstantin Makarychev, for hosting me as an intern at MSR Redmond during the
summer of 2014. The internship was formative for me as a researcher, and I thank Kostya
for that opportunity, and for our enjoyable collaboration that summer and in the years since.

To David Steurer, for his mentorship and for innumerable coffees.

To my collaborators and co-authors, Shuchi Chawla, Ronen Eldan, Sam Hopkins, Varun
Kanade, Pravesh Kothari, Konstantin Makarychev, Elchanan Mossel, Aaron Potechin, Miki
Rácz, Prasad Raghavendra, Satish Rao, Aviad Rubinstein, Jonathan Shi, David Steurer,
Matt Weinberg, Benjamin Weitz, and Grigory Yaroslavtsev. I am extremely fortunate to
have worked alongside such a creative and talented group of researchers, and I thank them
all for their insight and their companionship in the pursuit of answers.

To the people that comprise the Berkeley theory group, who bring the discipline of
Theory to life. I thank the theory group faculty for manning the helm with wisdom and
style. In addition to those thanked above, I want to extend a special thanks to Umesh
Vazirani for getting to the heart of the matter and for offering unabashed advice. My days
were considerably sweetened by the Berkeley theory students (and by many of the Simons
student visitors). I especially thank Ma’ayan Bresler, Anindya De, Kira Goldner, Fotis
Iliopolus, Pasin Manurangsi, Alex Psomas, Miki Rácz, Aviad Rubinstein, Jarett Schwartz,
Ning Tan, and Ben Weitz for their friendship and for making me laugh. I also thank Rishi
Gupta, for changing my perspective; Jonah Brown-Cohen, for the contagious optimism and
enthusiasm; and Sam Hopkins, for our moments spent together in the trenches.

To all my friends. Especially to Daniel, Olga, and Dabney for helping me look back; to
Kiley, for the radiant warmth; to Alice, for the clarity and stability; to Evan, David, Coline,
and Andrea, for creating the home that I lived in.

To Tynan, my partner, friend, and comrade—thank you for sharing in my highs and my
lows, and for letting me share in yours.

And to my mother Avivit, my father Oded, and my brother and friend Pele; being born
into our family has been the biggest privilege of all.

1

Chapter 1

Introduction

Often, the design of algorithms is an ad hoc endeavor: first a specific computational problem
is formulated, and then an algorithm is tailor-made to solve the problem. This customized ap-
proach is natural because it allows for the exploitation of problem-specific structure. Driven
by the goal of solving a particular algorithmic problem, one studies the problem at length,
and then produces an algorithm based on this study.

Yet from a theoretical computer scientist’s perspective, a menagerie of algorithms is not
enough. As theorists, we wish not only to produce algorithms, but a theory of algorithms.
We want to understand why our algorithms work. We want algorithm design to be based on
broad principles, rather than guesswork and intuition. We want to classify problems based
on the sorts of algorithms that can solve them, instead of thinking of algorithms as mere
problem-solving tools.

From this desire arises an alternative approach to algorithms research: start by proposing
an algorithm, and then discover which problems it can solve.

1.1 Sum-of-Squares Algorithms

This dissertation is concerned with understanding the power and limitations of a particular
family of algorithms: the Sum-of-Squares (SoS) Hierarchy. Given any polynomial opti-
mization problem, the SoS Hierarchy automatically generates a family of algorithms with
increasing power (and computational demands), completely mechanizing the algorithms de-
sign process. In order to set the stage for the description of SoS algorithms, we’ll begin by
introducing the concepts of polynomial optimization and convex relaxations.

Polynomial Optimization

In polynomial optimization, we have some polynomial f that we would like to optimize over
some region C ⊂ Rn, where C is defined by polynomial constraints such as g(x) = 0 for
some set of polynomials {g} and h(x) ≥ 0 for some set of polynomials {h}.

Polynomial optimization problems can be used to capture many combinatorial optimiza-
tion problems. Consider for example max cut:

CHAPTER 1. INTRODUCTION 2

Problem 1.1.1 (max cut). Suppose we are given a graph G = (V,E). Find a bipartition
of the vertices V that maximizes the number of edges whose endpoints are in different
partitions.

In other words, we want to find a cut in the graph that maximizes the number of cut
edges. We can express max cut as a polynomial optimization problem:

Program 1.1.2 (Polynomial optimization formulation for max cut). Index the vertices

of G by [n] for n = |V |, and the edges e ∈ E by pairs (i, j) ∈
(

[n]
2

)
corresponding to the

endpoints of e.

max
x∈Rn

∑
(i,j)∈E

1

2
(1− xixj) (1.1.1)

s.t. x2
i = 1 ∀i ∈ [n]. (1.1.2)

The intent is to assign every vertex i ∈ [n] to either the +1 partition or the −1 partition.
The constraints (1.1.2) ensure that the feasible x ∈ Rn for the program are assignments
x ∈ {±1}n, since for xi ∈ R, the only solutions to x2

i = 1 are xi = ±1. Since xixj ∈ {±1}
for feasible x, each term in the objective function (1.1.1) contributes 1 if the edge (i, j) is
cut, and 0 otherwise.

For any combinatorial optimization problem, one can apply a similar transformation to
obtain a corresponding polynomial optimization problem. However, the combinatorial opti-
mization problems we are interested in are often NP-hard (max cut is NP-hard [Kar10]),
and so solving the polynomial optimization problem exactly is also NP-hard.

Convex relaxations

Suppose we have some polynomial optimization problem P = minx∈C f(x). Instead of solving
P exactly, we can relax the problem to a convex optimization problem Q. Given a convex
body K ⊂ RN with poly(N) constraints, there are efficient algorithms for minimizing a
convex function f over K.1 The idea of convex relaxation is that, rather than solving an
NP-hard polynomial optimization problem P , we identify some convex set K ⊂ RN that
contains representatives R(x) all of the points x ∈ C (the feasible region of P), and a convex

objective function f̃ that matches the value of the polynomial f on the representatives of c,
so that f̃(R(x)) = f(x) for x ∈ C.

In this way, the convex optimization problem miny∈K f̃(y) is a relaxation of the polyno-
mial optimization problem minx∈C f(x), as its value can only be smaller than the value of
P ,

val(Q) = min
y∈K

f̃(y) ≤ min
x∈C

f(x) = val(P).

By solving the convex Q, we can efficiently obtain a lower bound on the minimum of P . A
good relaxation Q has value as close to val(P) as possible.

1This assumes that K and f have reasonable bit complexity so that they can be expressed with a
polynomial number of bits, and that K has an efficient separation oracle, but we will state these assumptions
precisely in Chapter 2.

CHAPTER 1. INTRODUCTION 3

Sum-of-Squares Relaxations

The SoS Hierarchy is a family of convex relaxations for polynomial optimization problems,
independently first proposed by [Par00, Las01, Sho87]. For each even d ∈ N, the degree-
d, n-variate SoS relaxation is a convex relaxation of size nO(d). The formulation of these
relaxations is simple—the degree-d SoS relaxation introduces a variable for each monomial
of degree at most d, and then introduces affine constraints in these variables to mimic the
polynomial constraints, as well as an eigenvalue constraint.2

For example, consider the degree-2 SoS relaxation for max cut:

Example 1.1.3 (Degree-2 SoS relaxation for max cut). In the degree-2 SoS relaxation for
max cut, we introduce variables X∅, {X{i}}i∈[n], {X{i,j}}i,j∈[n], where XS is a stand-in for
the monomial

∏
i∈S xi. We then write the program

max
∑

(i,j)∈E

1

2
(1−Xij) (1.1.3)

s.t. Xii = 1 ∀i ∈ [m], (1.1.4)

X∅ = 1, (1.1.5)

X � 0 . (1.1.6)

The constraints (1.1.3) and (1.1.4) are affine analogs of the polynomial objective function∑
(i,j)∈E

1
2
(1−xixj) and the polynomial constraints {x2

i = 1}i∈[n]. The constraint (1.1.5) is a

normalization. In the final constraint (1.1.6), we define the matrix X to be the matrix with
rows and columns indexed by ∅ ∪ [n], so that for S, T ∈ ∅ ∪ [n] the entry X(S, T) is given
by XS∪T . The constraint X � 0 requires that X is positive-semidefinite; that is, that all
eigenvalues of X are non-negative.

One can see that this is a relaxation, since for any solution x ∈ Rn, the pointXS =
∏

i∈S xi
is feasible (the matrix [1 x]>[1 x] is also positive-semidefinite) and attains the same value as
the polynomial program Program 1.1.2.

At degree-2, the SoS program for max cut is identical to the Goemans-Williamson
[GW94] relaxation. For SoS relaxations of degree d > 2, we simply add monomials for
the variables of higher degrees, and then enforce the implied higher-degree constraints (for
example, at SoS degree 4 we enforce the affine analogue of the constraint (x2

i−1)(x2
j−1) = 0).

As the degree d of the SoS relaxation grows, more constraints are added, and so increasing
the SoS degree clearly only strengthens the convex relaxation. One of our primary lines of
inquiry will be: how much does increasing the SoS degree d strengthen the relaxation?

For now, we will content ourselves with the example of max cut, leaving more formal,
general definitions for Chapter 2.

2The eigenvalue constraint ensures that the relaxation treats squares of degree-d/2 polynomials as non-
negative functions. We will treat this more thoroughly in Chapter 2.

CHAPTER 1. INTRODUCTION 4

Duality and SoS Proofs

Above, we have introduced the degree-d SoS relaxation in the primal view, in which we
view SoS variables as relaxations of degree-d monomials. The degree-d SoS relaxation is
a semidefinite program (SDP). If we instead consider the dual of the SoS SDP, we obtain
another natural optimization problem, from which the Sum-of-Squares hierarchy derives its
name.

Suppose that we would like to certify that a degree-k polynomial f(x) in variables x ∈ Rn

has value at least c over the domain defined by the constraints C = {gi(x) = 0}i∈[m] for
degree-k polynomials g1, . . . , gm. One form that such a proof could take is a polynomial
identity of the form

f(x)− c =
∑̀
j=1

sj(x)2 +
m∑
i=1

hi(x) · gi(x),

where s1, . . . , s` are real polynomials of degree at most d/2, and h1, . . . , hm are arbitrary
real polynomials with the property that deg(hi) + deg(gi) ≤ d. Since a sum of squares of
polynomials cannot be negative over the reals, and since for any x ∈ C, the latter term on
the right-hand-side is zero, this identity certifies that for any x ∈ C, f(x)− c ≥ 0.

Given the formulation of the SoS hierarchy and standard duality arguments, it is not
difficult to see that the dual of the degree-d SoS relaxation finds the best such polynomial
identity of degree d.3 That is, it finds such an identity with polynomials s1, . . . , s` and
g1 · h1, . . . , gm · hm of degree at most d such that the lower bound c is as large as possible.
This is a degree-d Sum-of-Squares proof that f(x) ≥ c on C. Here, it is even easier to see
that as the degree d is allowed to grow, the tightness of the certifiable lower bound improves.

1.2 Why Study SoS Algorithms?

The SoS Hierarchy was first formulated independently by Parrilo, Lasserre, and Shor [Par00,
Las01, Sho87] as a means for studying polynomial optimization. One reason that this study
was initiated was purely mathematical inquiry: given a polynomial optimization problem P ,
can it be captured by a convex relaxation of finite size? In his paper introducing the SoS
hierarchy, Lasserre [Las01] showed that as the degree d of the relaxation is taken to infinity,
P can be approximated arbitrarily well, and that in many cases (for example, if the domain
of P is the hypercube), a finite d suffices.

Another reason was more practical, out of a desire to solve actual polynomial optimiza-
tion problems. In control theory, one often wishes to solve multivariate partial differential
inequalities; for example, the Lyapunov function for a nonlinear system. Applying the SoS
relaxation to these polynomial optimization problems can sometimes give good solutions.
For this reason, SoS algorithms have been widely studied in the control theory community
since the effort was initiated by Parrilo in his PhD thesis [Par00, PP02, BMH12].

The degree-d SoS relaxation for an optimization problem with n variables has size nO(d),
and for problems of interest can usually be optimized in time nO(d) (see [RW17, Wei17]).
For applications in control, the optimization problem is often continuous, and the number

3We will argue this in Chapter 2.

CHAPTER 1. INTRODUCTION 5

of variables is often small, n ≤ 5. In this setting, taking d = Ω(n) produces a large convex
program, but one that is nevertheless possible to optimize with fast machines.

As theoretical computer scientists, we are interested in a different setting. Often, we have
a combinatorial optimization problem P over variables x ∈ {0, 1}n, and we would like to
design an algorithm to solve P that is as efficient as possible as a function of n, as n→∞.
Having a convex relaxation of size 2Ω(n) which faithfully captures P is not useful for us,
since optimizing such a relaxation requires essentially as much time as checking each point
in {0, 1}n by force.

Approximation Algorithms and the Unique Games Conjecture

In fact, the SoS Hierarchy has been studied extensively by theoretical computer scientists, for
the special case when the degree d = 2. When d = 2, the SoS relaxation is a simple Semidefi-
nite Program (SDP). In the early 90’s, the seminal work of Goemans and Williamson showed
that semidefinite programming could be used to obtain a better-than-random approximation
to max cut [GW94].

In the decades since, semidefinite programming has become the scaffolding for the theory
of approximation algorithms, and researchers have developed an arsenal of tools for analyzing
the performance of semidefinite programs for problems of varied structures. Semidefinite
programs give the best known algorithms for constraint satisfaction problems [Rag08, RS09a],
and for geometric problems such as sparsest cut [ARV09]. SDPs have also been crucial in
the discovery of new algorithms for domains in which only existential results were known from
pure mathematical fields, such as discrepancy theory [Ban10]. And vice-versa, SDPs have
been used to establish novel mathematical results, such as improving the upper bound on
the Grothendieck constant [BMMN11]. At the same time, the limitations of a family of basic
semidefinite programs have been used to build a beautiful (though still incomplete) theory
of hardness of approximation around Khot’s Unique Games Conjecture [Kho02, MOO05,
KKMO04, Rag08].

While higher levels of the hierarchy, with d ≥ 4, have been studied from the perspec-
tive of polynomial optimization [Par00] and proof complexity [Gri01b] for many years, the
computational resources required by the Sum-of-Squares programs make them completely
intractable in practice, and so historically the Sum-of-Squares Hierarchy has received lit-
tle attention from the algorithms community. Five years ago, in a surprising work Barak
et al. [BBH+12] showed that the degree-8 Sum-of-Squares Hierarchy can efficiently solve
integrality gap instances of the Unique Games problem that have eluded other linear and
semidefinite programs, establishing it as our most promising avenue for refuting the Unique
Games Conjecture.

This discovery spurred a flurry of activity around the Sum-of-Squares Hierarchy, with
progress made in both lower and upper bounds for a variety of problems, especially for
average-case problems (e.g. [BBH+12, BKS15, BHK+16]).

A New Perspective on Spectral Algorithms

While studying SoS algorithms in pursuit of disproving the Unique Games Conjecture, re-
searchers have uncovered new algorithms for a number of problems. One particularly fruitful

CHAPTER 1. INTRODUCTION 6

insight has been the discovery of a new family of spectral algorithms that are naturally implied
by the analysis of the SoS relaxations.

A spectral algorithm is any algorithm in which a matrix is assembled from the input,
after which the spectrum (or eigenvalues and eigenvectors) of the matrix are used to deduce
information about the input. Spectral algorithms are an old and important algorithmic prim-
itive, with applications to clustering [NJW01], computer vision [SM00], and learning latent
variable models [HKZ12], to name just a few. This family of methods contains algorithms
simple enough to be taught in undergraduate algorithms, such as Principle Components
Analysis, as well as much more sophisticated graph partitioning methods on the bleeding
edge of algorithmic research [ABS15].

One common tool in the study of SoS algorithms is primal-dual analysis; in order to bound
the value of the polynomial optimization problem, one considers the dual formulation of the
SoS program. Since the SoS primal and dual are both semidefinite programs, the primal and
dual both optimize over the space of matrices. Because of the connection between the value
of the SoS relaxation and the top eigenvalues of feasible dual matrices, often, the analysis of
SoS algorithms boils down to characterizing the spectral information of a well-chosen dual
matrix.

This in turn means that the analysis used to bound the SoS relaxation value can often
be translated into a stand-alone efficient spectral algorithm! For algorithms design, this
connection is one of the more salient contributions to come out of the study of SoS relaxations
thus far. We will return to this theme throughout this document.

1.3 Average-Case Problems and Random Matrix
Theory as a Lens

Though the Sum-of-Squares semidefinite programs are easy to formulate, as a community
we are still far from understanding their guarantees. Our best insights into the Hierarchy
have come from examining the performance of the SoS algorithms for average-case problems
and planted problems.

Average-Case Problems

In an average-case problem, problem instances come from some previously specified distri-
bution, and the goal is to design an algorithm that performs well for a typical instance from
this distribution, rather than for every instance.

To illustrate these concepts, let us take for example the problem of finding a clique in a
graph. The max clique problem is one of the most classical algorithmic problems in graph
theory: given a graph G, the goal is to find the largest subset of vertices in which every pair
of vertices share an edge. max clique is NP-hard to approximate within any polynomial
factor [H̊as96]. For this reason, it is natural to consider average-case versions of the problem,
and ask whether they are still computationally intractable.

The following natural average-case variant was proposed by Karp in the 1970’s [Kar76].

CHAPTER 1. INTRODUCTION 7

Problem 1.3.1 (Average-Case max clique). Given a uniformly random graph, or equiv-
alently, a graph from the Erdős-Rényi distribution G(n, 1

2
) in which every edge is included

independently with probability 1
2
, can one find the largest clique?

A heuristic argument shows that with high probability over the choice of graph G ∼
G(n, 1

2
), a greedy algorithm can find a clique of size ≈ log n in polynomial time. On the other

hand, a careful application of the second moment method can show that the largest clique in
a graph from G(n, 1

2
), has size 2(1±o(1)) log n with high probability [GM75, Mat76, BE76].4

Thus, while max clique is hard to approximate within any polynomial factor, the average-
case version yields an easy 2-approximation. But no polynomial time algorithm is known for
identifying cliques of size (1 + ε) log n for any constant ε > 0 in this average-case setting.

Planted Problems

In a planted (maximization) problem, we are given a quasi-random instance, in which a
solution with large objective value has been artificially planted within a random instance.

Perhaps the most famous planted problem is the planted version of max clique.

Definition 1.3.2 ((n, ω)-planted clique distribution). The (n, ω)-planted clique dis-
tribution is a distribution over n-vertex graphs. A uniform sample is generated by first
sampling an Erdős-Rényi graph G ∼ G(n, 1

2
), then a subset S of ω of the n vertices are

chosen uniformly at random, and a clique is “planted” on S by including every edge (i, j)
with both endpoints in S.

Algorithmic Tasks for Average-Case Problems

For average case and planted problems, there are several different algorithmic questions.
There are search problems, distinguishing problems, and refutation problems.

Definition 1.3.3 (Search problem). Given an instance sampled from a planted distribution,
find the planted solution.

For example, in the search version of (n, ω)-planted clique, we wish to find the subset
of ω vertices on which the clique has been planted.

Definition 1.3.4 (Distinguishing problem). In a distinguishing problem, there are two dis-
tributions over instances: a random distribution ν and a planted distribution µ. Given a
sample I, we are asked to determine whether it was sampled from ν or µ with probability
better than a random guess.

For example, in the distinguishing version of the (n, ω)-planted clique problem, the
random distribution is the Erdős-Rényi distribution G(n, 1

2
), the planted distribution is the

(n, ω)-planted clique distribution, and given a sample graph G, we want to decide which
of the distributions it was sampled from.

4 This gives an easy quasi-polynomial time algorithm for finding the largest clique—simply check every
one of the

(
n

2 logn

)
subsets of vertices to determine whether it is a clique.

CHAPTER 1. INTRODUCTION 8

Because the maximum clique in G ∼ G(n, 1
2
) has size 2 log n with high probability, when

ω ≥ (2 + ε) log n, the task becomes information-theoretically possible.
Finally, there is the refutation problem:

Definition 1.3.5 (Refutation problem). Given an optimization problem P and an average-
case instance I sampled from a distribution D, provide a certificate that I does not have a
solution of value larger than ω, where ω is at least the expected value of P over D.

For example, for the G(n, 1
2
) distribution, one can ask for a refutation that instances

sampled from G(n, 1
2
) have no clique of size larger than ω � 2 log n.

Observation 1.3.6. We notice that the hardest algorithmic question is the search question,
as a search algorithm can be used to solve both the distinguishing and refutation problems.
Refutation algorithms can be used to solve the distinguishing problem, and so distinguish-
ing is the easiest task. Nonetheless, when we are asking for convex-programming based
algorithms the three notions are often roughly equivalent, and so we will often conflate the
three.

We will return to a discussion of planted clique later, in Chapter 4.

Average-Case Problems, Random Matrices, and the SoS Hierarchy

Average-case and planted problems are interesting in their own right, as an alternative to
the more pessimistic worst-case analysis. But in studying a fixed, structured algorithm
such as the SoS Hierarchy, they can be an invaluable tool for understanding the power and
limitations of the algorithm.

The SoS SDP optimizes over matrices. In the case of SoS algorithms, average-case prob-
lems are particularly helpful, because they allow us to use tools from random matrix theory
to analyze the performance of the algorithms.

To understand the limitations of the SoS SDP, we want to establish lower bounds—that
is, we want to find problems, and instances of those problems, for which the SDP gives a
poor approximation to the value of the instance. This usually amounts to demonstrating
that for an instance I of the problem, there is matrix which is feasible for the SoS relaxation
but not for the original polynomial optimization problem, and which gives a large objective
value. For an average-case problem, if we create a mapping from problem instances to
feasible SoS matrices with large objective values, we can use random matrix theory to argue
that the matrices satisfy the SoS constraints, and in particular the positive-semidefiniteness
constraint, with high probability.

On the other hand, in order to prove algorithmic results using SoS, one can again take
advantage of average-case problems using primal-dual analysis. In order to analyze the
degree-d SoS relaxation Q for an instance of a planted problem P , our primal-dual analysis
goes as follows: we carefully choose a feasible point X for the dual of Q. Because Q and
its dual are programs over symmetric nO(d)×nO(d) matrices, X itself is a symmetric matrix,
and standard facts from the theory of convex duality imply that the maximum eigenvalue
of X yields an upper bound on opt(P). Furthermore, by definition of the dual, X is a sum
of the objective function and constraint matrices for P . That is to say, the entries of X are
functions of the input problem.

CHAPTER 1. INTRODUCTION 9

Now, we would show the following: if P is an instance drawn from the random distribu-
tion, then with high probability λmax(X) is less than some value θ, and so obj(Q) ≤ θ. Other-
wise, if P comes from the planted distribution, then obj(P)� θ, and therefore λmax(X) ≥ θ
because Q is a relaxation for P . This form of primal-dual analysis shows that the SoS relax-
ation Q distinguishes between planted and random instances. The fact that X is a random
matrix in the random case often makes analyzing its eigenvalues tractable, in contrast to the
dual matrices in worst-case problems.

1.4 Results

In this thesis, we will explore three instances in which average-case problems shed light on
the power and limitations of the Sum-of-Squares Hierarchy. In each of these instances, we
will see how average-case problems, by enabling us to use tools from random matrix theory,
allow us to exploit the structured nature of SoS algorithms to make precise and general
statements about their guarantees.

Strongly Refuting Random Constraint Satisfaction Problems

Random constraint satisfaction problems (CSPs) are perhaps the most canonical example of
an average-case problem. Random CSPs have been studied deeply across several mathemat-
ical communities, including theoretical computer science, probability and statistical physics.

At the same time, the polynomial optimization formulation for maximizing CSPs is in-
credibly simple—for a Boolean CSP over n variables with predicates on k variables, the
objective function is a degree-k polynomial, and the only constraints are constraints of the
form {x2

i = 1}i∈[n]. The simplicity of this polynomial formulation, as well as the wealth
of literature concerned with random CSPs, make random CSPs an ideal starting point for
studying SoS algorithms.

Our first result pertains to the refutation of random CSPs. To precisely explain the
problem of refutation, we first introduce the problem of random 3-XOR.

Definition 1.4.1 (Random 3-xor with density α). A random 3-XOR instance Φ on n
variables with density α is generated as follows: sample m = αn uniformly random triples
(i1, i2, i3) ∈ [n]3 and add the constraint that xi1xi2xi3 = bi for a uniformly random sign bi.

It is known5 that random CSPs, such as 3-xor, exhibit threshold phenomena: there
exists some constant αs such that random 3-xor instances Φ sampled at density α < αs are
satisfiable with high probability, and Φ sampled at density α > αs are unsatisfiable with high
probability. Below the satisfiability threshold, when α < αs, the natural algorithmic question
is finding a satisfying assignment. However, when α > αs, instances are unsatisfiable with
high probability, and the natural algorithmic problem is refutation—the task of proving that
there are no satisfying assignments.

5This has been empirically verified for many CSPs, but has been rigorously established only in a few
cases—we will give more details in Chapter 3.

CHAPTER 1. INTRODUCTION 10

Definition 1.4.2 (Refutation). An algorithm A is a refutation algorithm for random 3-xor
if given a random instance Φ with density α > αs, the algorithm A:

• Outputs SAT if Φ is satisfiable.

• Outputs UNSAT with probability at least 0.9 over the choice of Φ.

Note that if the algorithm A outputs UNSAT on an instance Φ, it certifies or proves that
the instance Φ is unsatisfiable.

Refutation is a well-studied problem with connections to myriad areas of theoretical
computer science including proof complexity [BB02], inapproximability [Fei02], SAT solvers,
cryptography [ABW10a], learning theory [DLS14b], statistical physics [CLP02] and com-
plexity theory [BKS13]. We survey the prior work on refuting CSPs in Chapter 3.

At densities far above the satisfiability threshold α� αs, a simple union bound argument
can be used to show that a random 3-xor instance Φ has no assignment satisfying more than
a 1

2
+ o(1) fraction of constraints. In this regime, it is natural to ask for a strong refutation:

Definition 1.4.3 (Strong Refutation). An algorithm A is a strong refutation algorithm for
random 3-xor if for a fixed constant δ > 0, given a random instance Φ with density α� αs,
the algorithm A:

• Outputs SAT if Φ has an assignment satisfying at least a (1− δ)-fraction of clauses.

• Outputs UNSAT with probability at least 0.9 over the choice of Φ.

For the 3-XOR predicate, there is an efficient algorithm for refutation: since a 3-XOR
instance is a system of linear equations over F2, one can simply perform Gaussian elimination
to find a satisfying assignment, if one exists. Strong refutation, on the other hand, is a differ-
ent matter. A natural spectral algorithm can efficiently strongly refute k-XOR at densities
m/n ≥ nk/2−1 [CGL07, CGL07, AOW15, BM16]. However, strong refutation at any lower
density is widely believed to be an intractable problem [ABW10a, BM16, DLS14a, Dan16].
We refer the reader to [Dan16] for a survey of the evidence pointing to the intractability of
the problem.

The Sum-of-Squares proof system is a natural proof system for algorithmic refutations
and strong refutations of CSPs. As alluded to above, given an instance Φ of a Boolean k-CSP,
the fraction of constraints satisfied by an assignment x can be written as a polynomial PΦ(x)
of degree at most k in x, and the Booleanness constraints can be written as {x2

i = 1}i∈[n].
Let opt(Φ) denote the largest fraction of constraints satisfied by any assignment to the
variables. The SoS-hierarchy offers a natural family of algorithms for producing algorithmic
strong refutations: the primal degree-d SoS relaxation Qd has value opt(Qd) ≥ opt(Φ), and
the degree-d SoS dual provides a Sum-of-Squares proof of size at most nO(d) that opt(Φ) ≤
opt(Qd).

At the same time, as a lens for understanding SoS relaxations, random CSPs offer all
the benefits of an average-case problem, coupled with the simplicity of the CSP SDP con-
straints. By examining this problem with simple structure and a rich supporting literature,
we can hope to learn how increasing the degree of the SoS relaxation can help to obtain
upper bounds. In this exploration we obtain the following theorem, which gives new strong
refutation algorithms in the subexponential regime for any Boolean CSP.

CHAPTER 1. INTRODUCTION 11

Theorem 1.4.4. Let P : {±1}k → {0, 1} be a predicate with expected value E[P] over a
random assignment in {±1}k. For all δ ∈ (0, 1], given an instance Φ of a random k-CSP
with predicate P on n variables, the degree O(nδ) SoS hierarchy strongly refutes Φ with high
probability, certifying that

opt(Φ) ≤ E[P] + ε ,

for any constant ε > 0 so long as Φ has density at least m/n ≥ Õ(n(k/2−1)(1−δ)), where the Õ
hides a dependence on a polylog factor, k and ε. Furthermore, there is a spectral algorithm
achieving the same guarantees.

Notice that the result establishes a smooth trade-off between the clause density of Φ and
the running time of the refutation algorithm. Specifically for all δ ∈ [0, 1), the algorithm

strongly refutes at density m/n = Õ(n(k/2−1)(1−δ)) in time exp(Õ(nδ)), so that when δ = 0
the result matches the performance of the best known polynomial-time algorithms, and at
δ = 1, the algorithm refutes instances just above the threshold of satisfiability in exponential
time.

Further, this result is tight within the SoS framework—the lower bounds of Grigoriev
[Gri01b], Schoenebeck [Sch08], and Kothari-Mori-O’Donnell-Witmer6 [KMOW17] rule out
strong SoS refutations with a better SoS-degree/density tradeoff.

Implications for Sum-of-Squares Algorithms

Theorem 1.4.4 was among the first results to give a tight characterization of the performance
of the SoS algorithms for any degree d; previous works had focused on the regime where
d = O(1), or d = Θ(n). The primary technical contribution of this work was to understand
how the basic SoS constraints, in combination with only the bare-bones constraints {x2

i = 1},
can be used to obtain better SoS and spectral algorithms when d grows as a function of n.

Lower Bounds for Planted Clique

We recall the (n, ω)-planted clique distinguishing problem defined above (Section 1.3)—
this is the problem of distinguishing graphs drawn from G(n, 1

2
) and graphs drawn from

G(n, 1
2
) in which a clique of size ω has been planted. As ω increases, the distance between the

two distribution grows, and the problem becomes easier. For ω ≥
√
n, there is a polynomial-

time spectral algorithm which solves planted clique [AKS98]. But for ω <
√
n, no

algorithm which improves on the performance of this brute-force is known.
In lieu of algorithmic progress, planted clique has become a benchmark for new

algorithmic techniques, and there has been a lot of success in proving impossibility results
for breaking the ω =

√
n barrier in polynomial time. Today, we have impossibility results

(lower bounds) in several algorithmic frameworks: Markov Chain Monte Carlo [Jer92], the
Lovász-Schrijver SDP hierarchy, [FK00, FK03], and “statistical algorithms” [FGR+12], to
name a few.

6We can extend Theorem 1.4.4 so that the density/runtime trade-off depends on the independence param-
eter of the predicate P as defined by Allen, O’Donnell, and Witmer [AOW15], giving a better runtime/density
tradeoff for some CSPs. These tradeoffs are tight with respect to the lower bounds of Kothari-Mori-O’Donnell
and Witmer. We defer the details to Section 3.5.

CHAPTER 1. INTRODUCTION 12

Some of the initial successes of the algorithms community in studying the SoS hierarchy
were new algorithms for average-case problems (e.g. [BBH+12, BKS15, HSS15]). For this
reason, there was a focus in the community on understanding the performance of SoS on
planted clique. At degree-2, impossibility results for the SoS algorithm are already
implied by [FK00, FK03]; however, the same results do not apply to degree larger than 2,
and researchers hoped to break the ω =

√
n barrier with some constant degree d.

However, lower bounds came more readily than new upper bounds. First, the work of
[MPW15] showed a ω = Ω̃(n1/d)-lower bound for the degree-d SoS SDP, by demonstrating
a mapping from G ∼ G(n, 1

2
) which with high probability yields a feasible SDP solution of

large value. Then, the work of [DM15b] gave a tighter analysis of this same mapping to show
a ω = Ω̃(n1/3) lower bound, but only for d = 4; a counterexample of Kelner (which may be
found in [Bar14]) demonstrates that the analysis of [DM15b] is tight for their construction
within logarithmic factors. At this juncture, it was still unclear whether the degree-4 SoS
relaxation could solve the (n, ω)-planted clique problem for ω �

√
n. We proved that

this is in fact not the case:

Theorem 1.4.5. Suppose that G ∼ G(n, 1
2
). Then with probability 1− O(n−4), there exists

a feasible solution to the SoS-SDP of degree d = 4 with objective value
√
n

polylogn
.

Implications for Sum-of-Squares Algorithms

When our result was proven, it was unclear whether the degree-4 SoS relaxation could give
improved results for planted clique, and the opinions of experts were divided on this
subject. Our result resolved this question. Since then, the work of [BHK+16] proved that
the (n, n1/2−δ)-planted clique problem requires at least a degree-d = O(δ) log n relaxation
to distinguish planted and random instances.

Fast Spectral Algorithms from Sum-of-Squares Analyses

As mentioned above, many of the cases in which we currently know that SoS algorithms
give good guarantees are average-case and planted problems. For instance, SoS has lead
to advances in algorithms for planted sparse vector [BKS14], tensor completion [BM16],
tensor principal components analysis [HSS15], tensor decomposition [BKS15, GM15], and
dictionary learning [BKS15]. For a wide range of parameters of these problems, degree-d SoS
achieves significantly stronger guarantees than other methods, for constant or logarithmic
degree d.

Unfortunately, the computational cost grows rather steeply in terms of the parameter
d: the running time is nO(d) where n is the number of variables (usually comparable to the
instance size). Further, even when the SDP has size polynomial in the input (when d = O(1)),
solving the underlying semidefinite programs is prohibitively slow for large instances.

As discussed above, for a planted problem P the analysis of these SoS algorithms usually
proceeds through a spectral analysis of a well-chosen dual matrix X. We show that λmax(X)
is large in the planted case and small with high probability in the random case. This naturally
yields a spectral algorithm—if one can write the dual point X in time nd given the input

CHAPTER 1. INTRODUCTION 13

problem, then evaluating λmax(X) gives an nd-time spectral algorithm for solving the planted
problem P .

However, when nd is significantly larger than the input size, this is still computationally
intractable. In the following result, we introduce spectral algorithms for planted sparse vector
and tensor decomposition that exploit the same high-degree information as the corresponding
Sum-of-Squares algorithms without relying on semidefinite programming, and achieve the
same (or close to the same) guarantees. That is, we show how to take the matrices used in
the SoS primal-dual analysis for these problems and compress them into smaller matrices
that have compact factorizations, which allows us to implement the spectral algorithms in
near-linear time. The resulting algorithms are quite simple (a couple of lines of matlab
code) and have considerably faster running times—quasi-linear or close to linear in the input
size.

We first present our result for the planted sparse vector problem, which arose as a prim-
itive in the dictionary learning problem [SWW12] and has since become a problem of mild
interest in its own right (we give more background in Chapter 5).

Theorem 1.4.6 (Near-linear time algorithm for planted sparse vector). Suppose we are
given an arbitrary orthogonal basis of a subspace V spanned by v0, . . . , vd−1 ∈ Rn, where
v1, . . . , vd−1 are sampled independently from N (0, Id) and v0 is a vector with at most εn
nonzero entries for some 1/100 > ε > 0.

Then if d ≤
√
n/ polylog n, there is a spectral algorithm running in time Õ(nd) which

recovers a unit vector u correlated with the sparse vector v0, such that 〈u, v0

‖v0‖〉
2 ≥ 1 −

O(ε1/4)− on(1).

We remark that the parameter requirement we obtain here, that d ≤ Õ(
√
n), is within

logarithmic factors of that obtained by the corresponding Sum-of-Squares algorithm [BKS14].
The best SoS algorithm solves an SDP over matrices of size n2 × n2, while our runtime is
linear in the input.

Tensor decomposition is an important algorithmic primitive in many unsupervised learn-
ing tasks [AGH+15]. Although the problem is NP-hard in general, under some assumptions
it is known to be tractable. We consider the average-case variant for order-3 tensors in
(Rd)⊗3, in which the tensor has rank d1+δ for a constant δ ≤ 1

3
, and the components of the

tensor are i.i.d. samples from N (0, Id). In this setting, we obtain subquadratic algorithms
for tensor decomposition.

Theorem 1.4.7 (Fast random tensor decomposition). Suppose we are given an order-3
tensor T with n random components a1, . . . , an ∼ N (0, 1

d
Idd) in Rd, so that T =

∑
i a
⊗3
i .

Then so long as d ≤ n ≤ n4/3/ logO(1) n, there exists a randomized algorithm that finds
a vector b which is close to a component of T, so that for some i ∈ [n] 〈b, ai〉 ≥ 1 − η for

η ≤ Õ(n3/d4)1/2 in time Õ(d1+ω) (where ω is the matrix multiplication constant). Moreover,

Õ(n) iterations will recover all of the ai with high probability.

Our algorithms come close to the best parameter tradeoffs achieved by the SoS algorithms
of [GM15] and [MSS16], with significantly faster runtimes.

CHAPTER 1. INTRODUCTION 14

Implications for Sum-of-Squares Algorithms

Our work demonstrates that polynomial-time Sum-of-Squares algorithms, even with degree
parameter d ≥ 4, can still yield valuable insights into devising truly efficient algorithms in the
average case. This motivates the further study of SoS algorithms; while the SoS algorithm
itself is inherently inefficient (even when it runs in polynomial time asymptotically), we show
that it is sometimes possible to use insights from the SoS algorithm’s analysis to obtain fast
algorithms.

This approach has already been extended and applied to the SoS tensor completion
algorithm of [BM16] in [MS16], and for the tensor decomposition results of [MSS16] in a
different parameter regime [SS17].

1.5 Organization

In Chapter 2, we provide notation and technical preliminaries. Chapter 3 contains our results
refuting random constraint satisfaction problems. In Chapter 4 we give our degree-4 lower
bound for the planted clique problem. Finally, Chapter 5 describes our methodology for ob-
taining fast spectral algorithms from SoS analyses. Some additional technical underpinnings
are contained in Appendix A.

15

Chapter 2

Preliminaries

2.1 Notation and Conventions

Indexing. We will use the shorthand [n] = {1, . . . , n}. We will also use the notation [n]k

to denote the set of all multisets of k elements of [n], and the notation [n]≤k to denote the

set of all multisets of at most k elements of [n]. By
(

[n]
k

)
(or

(
[n]
≤k

)
), we denote the set of all

sets of (up to) k elements of [n], without repetitions.

Polynomials. We will often be concerned with maximizing or minimizing real multivariate
polynomials; in these cases, we will most often denote with x the vector of n variables. We
will sometime represent monomials with the notation xS =

∏
i∈S xi.

Norms and Inner Products. For two vectors u, v ∈ Rn, we let 〈u, v〉 =
∑

i∈[n] uivi.

Similarly for two matrices A,B ∈ Rn×m, we let 〈A,B〉 = Tr(AB>). The `p-norm of a vector
v ∈ Rn is denoted by ‖v‖p. For matrices, the default norm will be the operator norm,
‖A‖ := ‖A‖op. We will also use the Frobenius norm, ‖A‖F := Tr(AA>)1/2.

Linear Algebra. We use � (�) to denote positive (semi)definiteness, so that for an n×n
symmetric real matrix A and for a vector x ∈ Rn, A � 0 (A � 0) if and only if x>Ax > 0
(x>Ax ≥ 0) for all x ∈ Rn. We also use � to denote the PSD or Loewner ordering on
matrices, so that A � B if and only if A−B � 0.

A vector of indeterminates may be denoted x = (x1, . . . , xn), although we may sometimes
switch to parenthetical notation for indexing, i.e. x = (x(1), . . . , x(n)) when subscripts are
already in use. We denote by [n] the set of all valid indices for a vector in Rn. Let ei be the
ith canonical basis vector so that ei(i) = 1 and ei(j) = 0 for j 6= i.

For a vectors space V , we may denote by L(V) the space of linear operators from V to
V . The space orthogonal to a vector v is denoted v⊥.

For a matrix M , we use M−1 to denote its inverse or its Moore-Penrose pseudoinverse;
which one it is will be clear from context. For M PSD, we write M−1/2 for the unique PSD
matrix with (M−1/2)2 = M−1.

CHAPTER 2. PRELIMINARIES 16

Tensors. We represent tensors by boldface letters such as T. We refer to the map from a
tensor T with entries indexed by [n]⊗2k to a matrix T indexed by [n]k × [n]k as the “natural
flattening” of T. For a matrix or vector M ∈ Rn×m, the notation M⊗d refers both to the
nd×md d-wise Kronecker power of M , or to the n×· · ·×m tensor given by the d-wise tensor
product of M with itself.

For an order-3 tensor in (Rn)⊗3, we denote by T(x, y, z) the multilinear function in
x, y, z ∈ Rn such that T(x, y, z) =

∑
i,j,k∈[n] Ti,j,kxiyjzk, applying x, y, and z to the first,

second, and third modes of the tensor T respectively. If the arguments are matrices P , Q,
and R instead, this lifts T(P,Q,R) to the unique multilinear tensor-valued function such
that [T(P,Q,R)](x, y, z) = T(Px,Qy,Rz) for all vectors x, y, z.

Probability. We will often refer to collections of independent and identically distributed
(or iid) random variables. The Gaussian distribution with mean µ and variance σ2 is de-
noted N (µ, σ2). We will also use N (M,Σ) to denote the multivariate Gaussian distribution
with mean M and covariance matrix Σ. Sometimes we state that an event happens with
overwhelming probability. This means that its probability is at least 1− n−ω(1).

Asymptotic Bounds. We will use standard O-notation; we will use Õ(·) to suppress

polylogarithmic factors. We will sometimes abuse notation by taking Õ(1) to denote
O(polylog n), and we hope this will be clear from context.

2.2 Optimization and Semidefinite Programming

Suppose we have some set of points S, and we wish to optimize some objective function f obj

over S. Optimization problems of this form will be our primary subject of study.

Definition 2.2.1. An optimization problem consists of an objective function f obj : Rn → R
and a closed feasible set S ⊆ Rn. In the decision version, we are given some target c ∈ R,
and we are asked to determine whether

min
x∈S

f obj(x) ≤ c.

In the search version, we are asked to find the element of S minimizing f obj,

argmin
x∈S

f obj(x).

Remark 2.2.2. If one can solve the decision version, then one can also determine the value
minx∈S f

obj(x) by applying binary search to the target c.

Examples of optimization problems that we will consider in this manuscript include
maximizing constraint satisfaction problems such as 3-xor and finding maximum cliques.

CHAPTER 2. PRELIMINARIES 17

Example 2.2.3 (max 3-xor). Given a 3-xor instance on n variables with equations
{xi1xi2xi3 = bi}i∈[m] for index tuples (i1, i2, i3) ∈ [n]3 and signs bi ∈ {±1}, the max 3-
xor optimization problem asks us to find the assignment x ∈ {±1}n that maximizes the
number of satisfied equations,

max
x∈{±}n

∑
i∈[m]

1

2
(1 + bi · xi1xi2xi3) .

Here we are minimizing f obj = −
∑

i∈[m]
1
2

(1 + bi · xi1xi2xi3), over the set S = {±1}n ⊂ Rn.

It is not difficult to verify that for x ∈ {±1}n and b ∈ {±1}m, each term in the summation
is 1 if xi1xi2xi3 = bi, and 0 otherwise.

Example 2.2.4 (max clique). Given a graph G = (V,E) on n vertices indexed by [n],
the max clique optimization problem asks us to find the largest subset of vertices K ⊆ V
such that K is a clique in G. Letting xK ∈ Rn be the 0/1 indicator of K ⊆ [n], here
f obj(x) = −‖xK‖1, and S ⊂ Rn is the set of all 0/1 indicators of the cliques of G.

Convex Relaxations

In the case where f obj is a convex function and S ⊆ Rn is also convex, the Ellipsoid Algorithm
can solve the search version of an optimization problem efficiently.

Theorem 2.2.5 (Efficient Optimization over Convex Domains (see e.g. [PS82]).). Suppose
S ⊂ Rn is a closed convex set and f obj is a convex function, and suppose we have an upper

bound of M on minx∈S f
obj(x) ≤ M . Let V be the volume of the convex set K

def
= S ∪ {x ∈

Rn | f obj(x) ≤M}, and suppose that K is either empty or contains the ball B(c, r) for some
r > 0 and some c ∈ Rn. Let T be the runtime of a separation oracle for K.

Then given an error parameter ε and access to a separation oracle for K, if K is non-
empty then the Ellipsoid Algorithm finds x∗ ∈ S such that∣∣∣∣f obj(x∗)−min

x∈S
f obj(x)

∣∣∣∣ ≤ ε

in time poly
(
log
(

1
ε

)
, log(V),M, T

)
.

This is a classical theorem in convex optimization, and its proof may be found in many
optimization textbooks (for example [PS82]). The subtler requirements of the theorem (such
as K containing a ball of radius r) can often be made to hold for problems of interest (with
some gentle massaging).

However, often we are interested in solving optimization problems over non-convex do-
mains S, as we have seen above in the examples max 3-xor (S = {±1}n) and max clique
(S = {0, 1}n). Many of these problems are NP-Hard, and so we cannot hope for efficient
algorithms which solve them exactly. This motivates the concept of convex relaxations.

CHAPTER 2. PRELIMINARIES 18

Definition 2.2.6 (Convex Relaxation). Suppose we have the optimization problem P =
(f obj, S), in which we wish to minimize the function f obj(x) over the domain S ⊆ Rn. A
convex relaxation for P is an optimization problem Q = (f rel, Srel) with objective function
f rel over domain Srel ⊆ RN , so that there exists a map R : Rn → RN such that

• The set Srel contains the image of S under R. That is,

∀x ∈ S, R(x) ∈ Srel.

• The function f rel is identical to the function f obj over R(S). That is,

∀x ∈ S, f rel(R(x)) = f obj(x).

Fact 2.2.7. For a minimization problem P = (f obj, S) and its convex relaxation Q =
(f rel, Srel), we have that

opt(Q) ≤ opt(P).

Proof. This is because, if x∗ ∈ S is the minimizer of f obj, then by definition of a relaxation,

opt(P) = f obj(x∗) = f rel(R(x∗)) ≥ min
y∈Srel

f rel(y) = opt(Q).

If we are interested in knowing opt(P) for a non-convex NP-hard optimization problem
P , we have a compelling algorithmic alternative: we can instead design a convex, easy-to-
optimize relaxation Q, and solve Q to obtain a lower bound on opt(P). Of course, we may
have opt(Q) � opt(P), in which case solving Q does not give us very much information.
We measure the quality of a convex relaxation by the distance between opt(P) and opt(Q).
This distance is called the integrality gap.

Definition 2.2.8 (Integrality gap). Suppose we have a minimization problem P and a
convex relaxation Q of P . The integrality gap of Q is defined to be the smallest real number
that bounds the ratio of the optima of Q and P :

inf{α ≥ 1 | opt(P) ≤ α · opt(Q)}.

For a family of optimization problems {PI} and their convex relaxations {QI}, sometimes
we also refer to an α-integrality gap instance or a gap instance—this is a particular instance
PI of the optimization problem for which the optimum of the corresponding relaxation QI
is smaller by a factor of 1/α.

Semidefinite Programs

Of particular interest to us is a category of convex programs known as semidefinite programs,
or SDPs. Semidefinite programs allow us to optimize a linear objective over a domain defined
by linear constraints, as well as matrix eigenvalue constraints. Defined more precisely:

CHAPTER 2. PRELIMINARIES 19

Definition 2.2.9 (Semidefinite Program (primal)). A semidefinite program is a convex op-
timization program over symmetric matrices X ∈ Rn×n, of the form

max
X∈Rn×n

〈C,X〉

s.t. 〈Ai, X〉 = bi ∀i ∈ [m]

X � 0,

where C and {Ai}i∈[m] are n× n real matrices, and b ∈ Rm.

One can also incorporate linear inequality constraints; see [BV04] for a reference. The
Lagrangian dual of a SDP is also an SDP:

Proposition 2.2.10 (Semidefinite Program (dual)). The dual of the SDP in Definition 2.2.9
is a convex optimization program over scalars y ∈ Rm, of the form

min
y∈Rm

〈b, y〉

s.t. C �
m∑
i=1

yiAi.

See [BV04] for a proof.

2.3 The Sum-of-Squares SDP Hierarchy: Polynomial
Optimization

Suppose we wish to maximize an n-variate polynomial f obj(x) over x ∈ S ⊂ Rn, where S is
some subset of Rn defined by polynomial constraints. This problem is clearly NP-hard in
general, as it captures NP-hard problems such as max clique and 3-sat.

The Sum-of-Squares (SoS) hierarchy is a sequence of increasingly powerful (and compu-
tationally intensive) SDP relaxations for polynomial optimization problems. The idea is as
follows: for each even positive number d, define the degree-d SoS relaxation for a polynomial
optimization problem P by introducing a variable for each monomial of degree at most d.
Then, replace every polynomial constraint in P with a linear constraint in the variables, and
include a positive-semidefiniteness constraint (which mimics the positive-semidefiniteness of
true evaluations of the monomials). Formally,

Definition 2.3.1 (Degree-d SoS relaxation). Suppose we are given a polynomial minimiza-
tion problem P = (f obj, S) over x ∈ Rn, with a feasible region S defined by the constraints
{gi(x) = 0}i∈[m], and let k be an upper bound on the degrees of f obj and gi for all i ∈ [m].

For any even d ≥ k, we define the degree-d SoS relaxation to be the following SDP over
matrices X ∈ RN×N , where N = (n+1)d/2. We think of the rows and columns of X as being
indexed by multisets S ∈ [n]≤d/2, and we identify the matrix entry XS,T with the monomial
xS · xT (recalling that we have defined xS =

∏
i∈S xi). Our constraints are as follows:

CHAPTER 2. PRELIMINARIES 20

• Scaling/Normalization: we think of our SDP variable X∅ as the monomial 1, because
in general we want XS∪T to represent xS · xT , which implies that we want X∅∪S to
represent x∅ · xS. Thus we fix the scale appropriately.

X∅ = 1 (2.3.1)

• Commutativity/Symmetry: for any list of indices S and any permutation π(S), we
have that xS = xπ(S). We add a corresponding constraint to our variables,

XA,B = XC,D ∀A,B,C,D ∈ [n]≤d/2 s.t. (A,B) = (C,D) as multisets .
(2.3.2)

• Positive-semidefiniteness: the matrix X is a relaxation of the rank-1 positive-

semidefinite matrix
(
[1 x]⊗d/2

)>
([1 x]⊗d/2) � 0. We thus enforce the constraint that

X � 0. (2.3.3)

• Constraints from P : in P , we have the polynomial constraints that gi(x) = 0, which
in turn imply the polynomial constraint that xS · gi(x) = 0 for any monomial xS. The
polynomial xS ·gi is a linear function of the monomials, and so we enforce the constraint
that

xS · gi(X) = 0 ∀S ⊆ [n] s.t. deg(xS · gi) ≤ d, (2.3.4)

where we have abused notation and used xS · gi(X) to denote the linear function∑
T⊆[n]≤d g

T
i ·XS∪T , where gTi is the coefficient of xT in gi.

• Objective function: We take the linear objective function

min f obj(X), (2.3.5)

where again we define f obj(X) =
∑

T⊆[n]≤d(f
obj)T ·XT .

Remark 2.3.2. As a consequence of the Ellipsoid Algorithm, we may conclude that (ignor-
ing issues of bit complexity, which sometimes do arise [O’D16] but are irrelevant for most
problems of interest [RW17]) the degree-d SoS relaxation can be solved in nO(d) time.

In the above definition, we have pointed out that the degree-d SoS program is indeed a
relaxation, as when we apply the map R(x) = [1 x]>[1 x] to any x ∈ Rn, R(x) is a feasible
point for the relaxation with the same objective value as f obj(x).

Fact 2.3.3. A useful alternate characterization of (2.3.3) is that for any polynomial p of
degree at most d/2, we have that p2(X) ≥ 0, where p2(X) is the function given by evaluating
the coefficients of p2 at the stand-in monomials given by the variables of the program.

Proof. This can be seen by taking the vector p̂ whose Sth entry is given by the coefficient
of xS in p, and noticing that 0 ≤ p̂>Xp̂ = p2(X).

CHAPTER 2. PRELIMINARIES 21

Definition 2.3.4 (Pseudoexpectation operator). Given a particular degree-d SoS pro-
gram, we define the corresponding pseudoexpectation operator to be the linear operator
Ẽ : R[x]≤2d → R, which maps any monomial of degree at most 2d to the SoS variable
identified with it.

It is sometimes instructive to think of the variable XS as a pseudoexpectation or a pseu-
domoment of the monomial

∏
i∈S xi over feasible solutions which minimize the objective

function:

XS = Ẽ
x minimizing fobj

[∏
i∈S

xi

]
.

In some sense, the constraints of the SDP force the solution to behave like the moments of a
probability distribution over feasible maximizing solutions, although they needn’t correspond
to the moments of a true distribution, hence the term pseudomoment. See e.g. [Bar14] for
more discussion.

2.4 The Sum-of-Squares SDP Hierarchy:
Sum-of-Squares Proofs

Given a polynomial minimization problem P = (f obj, S), if we solve the degree-d SoS relax-
ation for P , we have a lower bound c on the value of f obj over S. If we take the dual of the
degree-d SoS program, we get an interesting object: a Sum-of-Squares proof that f obj ≥ c
over S.

Definition 2.4.1 (Sum-of-Squares proof). Given a polynomial f(x) in x ∈ Rn, a set S
defined by polynomial equalities {gi(x) = 0}i∈[m], and a c ∈ R such that f(x) ≥ c for all
x ∈ Rn, a Sum-of-Squares proof is a polynomial identity of the form

f(x)− c =
∑
j∈[N]

p2
j(x) +

∑
i∈[m]

qi(x) · gi(x),

where {pj}j∈[N] and {qi}i∈[m] are polynomials in x ∈ Rn.
A degree-d Sum-of-Squares proof is one in which all of the polynomials qi · gi and p2

j have
degree at most d.

Proposition 2.4.2. For a polynomial optimization problem P, the dual of the degree-d SoS
SDP, dual(Q), gives a degree-d SoS proof that opt(P) ≥ opt(dual(Q)).

Proof. The degree-d SoS SDP is an SDP of the form

max 〈−F,X〉 (≡ min 〈F,X〉)
s.t. 〈I∅,∅, X〉 = 1

〈IS,T − IU,V , X〉 = 0 ∀S, T, U, V ∈ [n]≤d/2 s.t. (S, T) = (U, V) as multisets

〈GT
i , X〉 = 0 ∀i ∈ [m], T ∈ [n]≤d−deg(gi)

CHAPTER 2. PRELIMINARIES 22

X � 0

where F is a matrix representation of f obj and GT
i is a matrix representation of xTgi and

IS,T is the N ×N matrix with a single entry in the S, T th coordinate.
By Proposition 2.2.10, the dual SDP of Definition 2.3.1 has the form

min
c,q,y

− c (≡ max c)

s.t. − F � −c · I∅,∅+
∑
i

∑
T∈[n]≤d−deg(gi)

qi,T ·GT
i +

∑
S,T,U,V ∈[n]≤d/2

(S,T)=(U,V)

yS,T,U,V · (IS,T − IU,V).

We can re-express the above inequality as an equality by introducing a PSD slack matrix
S � 0.

S − F = −c · I∅,∅+
∑
i

∑
T∈[n]≤d−deg(gi)

qi,T ·GT
i +

∑
S,T,U,V ∈[n]≤d/2

(S,T)=(U,V)

yS,T,U,V · (IS,T − IU,V)

Now, we transform the matrix identity into a polynomial identity by taking the inner product
of the left and right and sides with the variable matrix x̂⊗d (where x̂ = [1 x]>):

〈S, x̂⊗d〉 − 〈F, x̂⊗d〉

= −c · 〈I∅,∅, x̂⊗d〉+
∑
i,T
i∈[m]

T∈[n]≤d−deg(gi)

〈qi,T ·GT
i , x̂

⊗d〉+
∑

S,T,U,V ∈[n]≤d/2

(S,T)=(U,V)

yS,T,U,V · 〈IS,T − IU,V , x̂⊗d〉

By definition of the SoS relaxation, we have that 〈F, x̂⊗d〉 = f obj(x), and that the same
holds for the GT

i . We also use that 〈x̂⊗d, I∅,∅〉 = 1 and that 〈x̂⊗d, IS,T − IU,V 〉 = 0 when
(S, T) = (U, V) as multisets. Simplifying, we have

〈S, x̂⊗d〉 − f obj(x) = −c+
∑
i,T
i∈[m]

T∈[n]≤d−deg(gi)

qi,T · xT · gi(x)

Now, for each i ∈ [m] we can define the degree-(d − deg(gi)) polynomial qi(x) =∑
T∈[n]d−deg(gi) q

T
i x

T , so that we can further simplify,

〈S, x̂⊗d〉 − f obj(x) = −c+
∑
i∈[m]

qi(x) · gi(x)

Finally, we use that for S � 0, we can always write S = PP> for some matrix P . If we take
the polynomial pj(x) to be the degree-d/2 polynomial defined by the form 〈pj, x̂d/2〉 for pj
the jth column of S, we have that∑

j

pj(x)2 − f obj(x) = −c+
∑
i∈[m]

qi(x) · gi(x) .

CHAPTER 2. PRELIMINARIES 23

Rearranging,

f obj(x)− c =
∑
j

pj(x)2 −
∑
i∈[m]

qi(x) · gi(x) .

which is a SoS proof that f obj(x) ≥ c for x in the feasible region of P .

Often, when we formulate an SoS relaxation for a polynomial optimization problem, we
will use the dual formulation to bound its integrality gap. That is, if we wish to minimize
the polynomial f obj(x), to lower bound the value of the degree-d SoS relaxation for f obj, we
can use any degree-d SoS proof as a dual certificate.

Corollary 2.4.3. If we have a degree-d Sum-of-Squares proof that polynomial minimization
problem P has opt(P) ≥ c, then the degree-d SoS relaxation Q for P also has opt(Q) ≥ c.

Proof. Since any degree-d SoS proof is a feasible dual solution for the dual of Q, we must
have opt(Q) ≥ opt(dual(Q)) = c∗ ≥ c.

In the next section, we will introduce some useful low-degree some-of-squares proofs that
will be valuable to us in bounding SoS relaxations.

2.5 Common Sum-of-Squares Proofs and Feasible
Dual Points

In this section, we list some useful low-degree Sum-of-Squares identities and provide their
proofs. Statements of additional useful lemmas, and their proofs, can be found in the
appendix of [BKS14].

The following lemma is the basis of the connection between Sum-of-Squares relaxations
and spectral algorithms.

Lemma 2.5.1 (SoS matrix inner product). Let M be an [n]d× [n]d matrix. Then there is a
degree-2d Sum-of-Squares proof of the fact that

〈x⊗2d,M〉 ≤ ‖x‖2d · λmax(M).

Proof. For convenience let λ
def
= λmax(M). By definition λ · I −M � 0, and therefore the

expression I −M can be written as a Sum-of-Squares proof of degree at most 2d. We thus
have a degree-2d Sum-of-Squares proof that

〈x⊗2d,M〉 ≤ 〈x⊗2d, λ · I −M〉+ 〈x⊗2d,M〉 = λ · ‖x‖2d,

as desired.

Many standard inequalities, such as the Cauchy-Schwarz inequality and Hölder’s inequal-
ity, have low-degree Sum-of-Squares proofs, or are true for low-degree pseudodistributions.

CHAPTER 2. PRELIMINARIES 24

Lemma 2.5.2 (SoS Cauchy-Schwarz inequality). Let p, q be polynomials of degree at most

d in x, and let Ẽ be a degree-2d pseudodistibution over x ∈ Rn. Then

Ẽ[p(x)q(x)] ≤
√
Ẽ[p2(x)] Ẽ[q2(x)]

Proof. If Ẽ[p(x)2] = 0 or Ẽ[q(x)2] = 0, the left-hand side is also zero—to see this, we think

of the PSD matrix of pseudomoments of Ẽ, and realize that this implies that the vector of
coefficients of p (respectively q) is in its null space.

Assuming that both numbers are strictly positive, we take p̂(x) = p(x)√
Ẽ[p(x)2]

, and q̂(x) =

q(x)√
Ẽ[q(x)2]

—this does not increase the degree of the proof, as the quantities Ẽ[p(x)2] and

Ẽ[q(x)2] are fixed positive scalars. Since (p̂(x)− q̂(x))2 is a square of a degree-d polynomial,
we have a degree-2d SoS proof that

p̂(x)q̂(x) ≤ 1

2

(
p̂2(x) + q̂2(x)

)
,

which implies that

1√
Ẽ[p2(x)] Ẽ[q2(x)]

· Ẽ[p(x)q(x)] = Ẽ[p̂(x)q̂(x)] ≤ 1

2

(
Ẽ[p̂2(x)] + Ẽ[q̂2(x)]

)
= 1,

since Ẽ is a linear operator which is non-negative for squares of polynomials of degree at most

2d. Multiplying both sides by the scalar
√
Ẽ[p2(x)] Ẽ[q2(x)] gives the desired conclusion.

The following fact will be useful in relating the objective value of SoS programs to the
higher-degree pseudomoments.

Fact 2.5.3 (SoS-Convexity). For any k which is an integer power of 2, if p(x) is a polynomial

of degree at most d, and Ẽ is a degree-2kd pseudoexpectation operator over x ∈ Rn, then

Ẽ[p(x)]2k ≤ Ẽ[p(x)2k].

Proof. We prove this by induction on k. When k = 1, this is equivalent to the SoS Cauchy-
Schwarz (Lemma 2.5.2). Now, assuming this is true for k, we prove it for 2k. Since Ẽ is a
degree-4dk pseudoexpectation by assumption, we have that

0 ≤ Ẽ
[(
p(x)2k − Ẽ[p(x)2k]

)2
]

Ẽ
m
u
[
p(x)2k

]2 ≤ Ẽ
[
p(x)4k

]
.

Applying the induction hypothesis, the conclusion follows.

25

Chapter 3

Strong Refutation of Constraint
Satisfaction Problems

3.1 Introduction

Random instances of constraint satisfaction problems (CSPs) have been a subject of intense
study in computer science, mathematics and statistical physics. Even if we restrict our
attention to random k-SAT, there is already a vast body of work across various communities–
see [Ach09] for a survey. In this chapter, our focus is on refuting random CSPs: the task of
algorithmically proving that a random instance of a CSP is unsatisfiable. Refutation is a well-
studied problem with connections to myriad areas of theoretical computer science including
proof complexity [BB02], inapproximability [Fei02], SAT solvers, cryptography [ABW10a],
learning theory [DLS14a], statistical physics [CLP02] and complexity theory [BKS13].

For the sake of concreteness, we will for a moment restrict our attention to k-SAT, the
most well-studied random CSP. In the random k-SAT model, we choose a k-uniform CNF
formula Φ over n variables by drawing m clauses independently and uniformly at random.
The density of Φ is given by the ratio α = m/n. It is conjectured that for each k, there is a
critical value αk such that Φ is satisfiable with high probability if α < αk, and unsatisfiable
with high probability for α > αk. Such phase transition phenomena are conjectured to occur
for all nontrivial random CSPs; for the specific case case of k-SAT, it was only recently
rigorously established for all sufficiently large k [DSS15].

In the unsatisfiable regime, when α > αk, the natural algorithmic problem we asso-
ciate with random k-SAT formulas is the problem of refutation. We define the notion of a
refutation algorithm formally:

Definition 3.1.1. (Refutation Algorithm) An algorithm A is a refutation algorithm for
random k-SAT at density α, if given a random instance Φ of k-SAT with density α, the
algorithm A:

• Outputs UNSAT with probability at least 1
2

over the choice of Φ.1

• Outputs SAT if Φ is satisfiable.

1The choice of the fraction 1
2 here is arbitrary, and one could potentially consider any fixed constant.

CHAPTER 3. STRONG REFUTATION OF CSPS 26

Note that if the algorithm A outputs UNSAT on an instance Φ, it certifies that the instance
Φ is unsatisfiable.

Refuting random k-SAT is a seemingly intractable problem in that the best polynomial-

time algorithms require density α > Õ(nk/2−1)� Õ(1). We survey the prior work on refuting
CSPs in Section 3.1.

At densities far exceeding the unsatisfiability threshold, i.e., α � αk, a simple union
bound argument can be used to show that a random instance Φ has no assignment satisfying
more than a 1− 1

2k
+ δ(α) fraction of constraints, where δ(α)→ 0 as α→∞. In this regime,

a natural algorithmic task is strong refutation:

Definition 3.1.2. (Strong Refutation) An algorithm A is a strong refutation algorithm for
random k-SAT at density α, if for a fixed constant δ > 0, given a random instance Φ of
k-SAT with density α, the algorithm A:

• Outputs UNSAT with probability at least 1
2

over the choice of Φ.

• Outputs SAT if Φ has an assignment satisfying at least a (1− δ)-fraction of clauses.

An important conjecture in complexity theory is Feige’s “R3SAT hypothesis,” which
states that for any δ > 0, there exists some constant c such that there is no polynomial-time
algorithm that can certify that a random 3-SAT instance has value at most 1 − δ (that is,
strongly refute 3-SAT) at clause density m/n = c. Feige exhibited hardness of approximation
results based on the hypothesis for a class of otherwise elusive problems such as densest-k
subgraph and min-bisection [Fei02]. This hypothesis has subsequently been used as the
starting point in a variety of reductions (see e.g. [AAM+11, BKS13, DLS13]).

The problem of strong refutation is non-trivial even for polynomial-time solvable CSPs
such as k-XOR.2 A random k-XOR instance Φ on n variables x1, . . . , xn ∈ {±1} consists of
m equations of the form xi1 · xi2 · · ·xik = ±1 By a simple union bound, one can show that
at all super-linear densities m/n = ω(1), with high probability, no assignment satisfies more
than 1

2
+o(1)-fraction of the equations.3 The problem of strong refutation for random k-XOR

amounts to certifying that no assignment satisfies more than 1− δ fraction of equations for
some constant δ > 0. A natural spectral algorithm can efficiently strongly refute k-XOR at
densities m/n ≥ nk/2−1 [CGL07, AOW15, BM16]. However, strong refutation at any lower
density is widely believed to be an intractable problem [ABW10a, BM16, DLS14a, Dan16].
We refer the reader to [Dan16] for a survey of the evidence pointing to the intractability of
the problem.

To expose the stark difficulty of strongly refuting random k-XOR, consider the easier
task of distinguishing random k-XOR instances from those generated from the following
distribution: first, sample a satisfiable instance of k-XOR uniformly at random, by sampling a
planted solution z ∈ {±1}n and randomly choosingm equations, each on k variables, satisfied
by z. Then, corrupt each of the m equations (so that z does not satisfy it) with probability δ.
Equivalently, this problem can be described as learning parity with noise, wherein z ∈ {±1}n
defines the unknown parity and each equation Ci is an example to the learning algorithm.
An algorithm to learn parity from noisy examples can be used to distinguish the planted

2The weak refutation problem for k-XOR can be easily solved using Gaussian elimination.
3Random k-XOR can also be equivalently defined in terms of equations of the form xi1 ⊕ · · ·xik = 0/1.

The equivalence follows by mapping 0→ 1, 1→ −1, and ⊕ → ·.

CHAPTER 3. STRONG REFUTATION OF CSPS 27

instances sampled as described above from uniformly random instances of k-XOR. There
is no known distinguishing algorithm at any density m/n < nk/2−1, and the computational
intractability of this problem has recently been used to obtain lower bounds for improper
learning [Dan16].

Sum-of-Squares Refutations. A natural proof system for strong refutation is the sum-
of-squares (SoS) proof system. Unfortunately, the lower bounds of Grigoriev [Gri01b] and
Schoenebeck [Sch08] rule out efficient strong SoS refutations for random k-XOR and random
k-SAT at densities significantly smaller than m/n < nk/2−1. Specifically, Schoenebeck’s
result implies that with high probability over k-XOR instances Φ with clause density m/n <
O(n(k/2−1)(1−δ)), the SoS hierarchy cannot refute Φ at degree O(nδ).

Note that this leaves open the possibility that random k-XOR and random k-SAT admit
subexponential-sized strong refutations well-below the nk/2−1 threshold. This sets the stage
for our main result.

Theorem 3.1.3. For all δ ∈ [0, 1) given a random k-XOR instance Φ on n variables, with
high probability over Φ, the degree O(nδ) sum-of-squares hierarchy can strongly refute Φ,
certifying that

opt(Φ) ≤ 1

2
+ ε ,

for any constant ε > 0 as long as Φ has clause density m/n ≥ Õ(n(k/2−1)(1−δ)), where the Õ
notation hides logarithmic factors and a dependence on ε and k. Further, there is a spectral

algorithm achieving the same guarantees by computing the eigenvalue of an 2Õ(nδ) × 2Õ(nδ)

matrix.

Remark 3.1.4. The algorithm from Theorem 3.1.3 yields tight refutations–certifying a tight
upper bound of opt(Φ) + ε for any constant ε > 0.

Notice that the result establishes a smooth trade-off between the clause density of Φ and
the running time of the refutation algorithm. Specifically for all δ ∈ [0, 1), the algorithm

strongly refutes at density m/n = Õ(n(k/2−1)(1−δ)) in time exp(Õ(nδ)), so that when δ = 0 the
result matches the performance of the best known polynomial-time algorithms, and at δ = 1,
the algorithm refutes instances just above the threshold of satisfiability in exponential time.
Moreover, the degree of the sum-of-squares refutations matches the degree lower bounds of
[Gri01b, Sch08] up to polylogarithmic factors.

Feige [Fei02] introduced a connection between the refutation of random XOR instances
and the refutation of other CSPs, and this connection was later used in several other works
(e.g. [FKO06, AOW15, BM16]). Using the machinery developed by Allen et al. [AOW15],
we apply our algorithm for k-XOR to refute other random CSPs involving arbitrary Boolean
predicates P ; for example to k-SAT.

Theorem 3.1.5. Let P : {±1}k → {0, 1} be a predicate with expected value E[P] over a
random assignment in {±1}k. For all δ ∈ (0, 1], given an instance Φ of a random k-CSP
with predicate P on n variables, the degree O(nδ) SoS hierarchy strongly refutes Φ with high
probability, certifying that

opt(Φ) ≤ E[P] + ε ,

CHAPTER 3. STRONG REFUTATION OF CSPS 28

for any constant ε > 0 so long as Φ has density at least m/n ≥ Õ(n(k/2−1)(1−δ)), where the

Õ hides a dependence on a polylog factor, k and ε. Further, there is a spectral algorithm
achieving the same guarantees.

We can extend Theorem 3.1.5 so that the density/runtime trade-off depends on the
independence parameter of the predicate P as defined by [AOW15], giving a better run-
time/density tradeoff for some CSPs. We defer the details to Section 3.5.

Injective Tensor Norm

The proof techniques we develop are applicable beyond strongly refuting random k-XOR, to
the problem of certifying upper bounds on the injective tensor norm of random tensors.

The injective tensor norm generalizes the matrix operator norm, in the following sense.
For an order-k symmetric tensor with all dimensions equal to n, the injective tensor norm is
defined as

‖T‖inj
def
= max

x∈Rn
‖x‖=1

∣∣〈T, x⊗k〉∣∣ ,
where by x⊗k we mean the symmetric rank-1 tensor of order k given by tensoring x with
itself, and by the inner product we mean the entry-wise sum of the products of the entries
of T and x⊗k, as is standard.

When k = 2, computing ‖T‖inj is equivalent to computing the matrix operator norm. Yet
when k ≥ 3, the injective tensor norm is hard to compute. The hardness of approximating the
injective tensor norm is not fully understood, but we do know that, assuming the exponential-
time hypothesis, the injective tensor norm requires quasipolynomial time to approximate,
even within super-constant factors [BBH+12]. There are also reductions to the problem from
a variety of problems such as Planted Clique [BV09] and Small-Set Expansion [BBH+12].

The problem is nontrivial even when the tensor has i.i.d. random entries. It is well-known
that the norm of a tensor with i.i.d. symmetric subgaussian entries is of the same order as
the norm of a random matrix:

Theorem 3.1.6 ([TS14]). If k ∈ N is constant and T is a symmetric order-k tensor of
dimension n with i.i.d. symmetrically distributed subgaussian entries, then with probability

at least 1− o(1), ‖T‖inj ≤ Õ(
√
n).

So the question arises naturally: is it easy to certify tensor norm bounds under distributional
assumptions on the entries? The current known polynomial-time algorithms fall short of the

bound Õ(
√
n), and can only certify bounds of ‖T‖inj ≤ Õ(nk/4) for tensors of order k

[RM14, HSS15, HSSS16]. The algorithm of Hopkins et al. [HSS15] is based on the degree-
k SoS relaxation for the tensor norm problem. They also give a lower bound for the SoS

relaxation for the order-3 tensor at degree 4, proving that the relaxation has value Ω̃(n3/4),
which implies that their analysis is tight for the SoS hierarchy at degree 4.

By applying our techniques for random k-XOR refutations to the problem of certifying
bounds on tensor norms, we have the following result:

CHAPTER 3. STRONG REFUTATION OF CSPS 29

Theorem 3.1.7. For any δ ∈ [0, 1/120), given a symmetric order-k tensor T with i.i.d.
standard Gaussian entries, with high probability over the choice of T, the degree O(nδ) SoS
hierarchy relaxation certifies that

‖T‖inj ≤ Õ(n1/2+(k−2)(1−δ)/4+3k2δ2

) ,

where the Õ notation hides a polylogarithmic factor and a dependence on k. Furthermore,

there is a spectral algorithm that computes the eigenvalues of a 2Õ(nδ) × 2Õ(nδ) matrix that
certifies the same bound.

We remark that the above theorem also holds, up to constants, for symmetric tensors
with i.i.d. entries from any symmetric distribution D over R with subgaussian tails. Strong
refutation for k-XOR instances can be thought of as a special case of the problem of bounding
the norm of a random tensor–we elaborate on the connection at the start of Section 3.2.
However, the underlying distribution for random k-XOR yields tensors which are extremely
sparse, which poses several additional technical challenges.

In an independent work, Bhattiprolu et al. [BGL16] have obtained a result similar to
Theorem 3.1.7 with bounds that are tighter as a function of δ. They also obtain a tight
lower bound on the integrality gap of degree-k SoS relaxations for k-tensor norms.

Related work

We briefly survey the prior work on refuting random CSPs–we refer the reader to [AOW15]
for a thorough survey on the topic. Work on refuting random CSPs began with Chvátal
and Szemerédi [CS88], who showed that a random k-SAT instance with clause density α > c
(for c constant) with high probability requires Resolution refutations of exponential size.
This lower bound was later complemented by the works of [Fu98, BKPS98], which show that
at clause density α ≥ O(nk−1), polynomial-sized resolution proofs exist and can be found
efficiently. At the turn of the century, Goerdt and Krivelevich [GK01] pioneered the spectral
approach to refuting CSPs, showing that a natural spectral algorithm gives refutations for
k-SAT in polynomial time when α = m/n ≥ ndk/2e−1. A series of improvements followed,

first achieving bounds for α ≥ Õ(n1/2) for the special case of 3-SAT [FG01, FGK05, CGL07],

then achieving strong refutation at densities α ≥ Õ(ndk/2e−1) [CCF10]. Finally, the works of
Allen et al. and Barak and Moitra gave spectral algorithms for strongly refuting k-XOR and

k-SAT for any α ≥ Õ(nk/2−1) [AOW15, BM16], and Allen et al. also give a reduction from
any CSP which is far from supporting a t-wise independent distribution to t-XOR. These
spectral algorithms are the algorithmic frontier for efficient refutations of random CSPs.

Though not algorithmic, the work of [FKO06] is worth mentioning as well. Feige et al.

show that, at clause density α = m/n ≥ Õ(n0.4), there exists a polynomial-sized (weak) refu-
tation for random 3-SAT given by a subset of O(n0.2) unsatisfiable clauses. Understanding
whether polynomial-sized weak refutations exist for smaller α is an intriguing open problem.

Organization

In Section 3.2, we illustrate the technical core of our ideas via a detailed exposition of our
proof for certifying bounds on the norm of order-4 tensors, and explain how these techniques

CHAPTER 3. STRONG REFUTATION OF CSPS 30

can be built upon to strongly refute CSPs. Section 3.3 contains the full proof our tensor norm
results. In Section 3.4, we give our results for refuting k-XOR instances. In Section 3.5, we
combine our k-XOR refutation algorithms with the framework of [AOW15] to refute other
CSPs. Finally, in Section 3.6 we argue that our spectral algorithms give SoS proofs.

3.2 Main Ideas: Proof for Random 4-Tensors

In this section, we will explain the technical core of our result by proving Theorem 3.1.7
(our tensor norm certification algorithm) for the case of random 4-tensors. This specific
case yields the simplest proof, while encapsulating the core ideas of our techniques for both
injective tensor norm and k-XOR. We formally state the injective tensor norm problem here.

Problem 3.2.1 (Certifying injective tensor norm). Given an order-k tensor T with dimen-
sion n, certify that for all x ∈ Rn with ‖x‖ = 1, |〈T, x⊗k〉| ≤ ‖T‖inj ≤ τ for some upper
bound τ .

From k-XOR to Tensor Norms. First, we briefly outline the connection between k-
XOR refutation and certifying bounds on tensor norms. Let Φ be a random k-XOR formula
on x ∈ {±1}n with m ≈ pnk clauses, sampled as follows: for each S ⊂ [n]k independently
with probability p, add the constraint that

∏
i∈S xi = ηS where ηS is a uniform bit ±1, and

with probability 1− p, add no constraint. We can form an order-k tensor T so that for each
S ∈ [n]k, TS = 0 if there is no constraint, and otherwise TS = ηS.

For any assignment x ∈ {±1}n, the inner product 〈T, x⊗k〉 is equal to the difference in
the number of Φ’s constraints that x does and does not satisfy. Since Φ has m constraints
in all, certifying that maxx∈{±1}n |〈T, x⊗k〉| ≤ o(m) is equivalent to certifying that opt(Φ) ≤
1
2

+ o(1). On the other hand, certifying the injective tensor norm amounts to exhibiting an

upper bound on max‖y‖≤1 |〈T, y⊗k〉| where the maximization is over all unit vectors y. Every
Boolean vector x ∈ {±1}n is of length ‖x‖ =

√
n, which implies that maxx∈{±1}n |〈T, x⊗k〉| ≤

nk/2 · ‖T‖inj.
While the above reduction from certifying that opt(Φ) ≤ 1

2
+ o(1) to certifying a bound

on ‖T‖inj exposes the connection between the two problems, it is too lossy to be useful.
In fact, for p < 1/nk/2, the sparsity of the tensor T implies that the form 〈y⊗k,T〉 is
maximized by sparse real-valued vectors y that are completely unlike Boolean vectors. In
other words, almost surely there exists a sparse y ∈ Rn, ‖y‖ =

√
n with |〈T, y⊗k〉| �

maxx∈{±1}n |〈T, x⊗k〉|. As a result, our refutation algorithm for k-XOR is more involved
than the certification algorithm for injective tensor norm in two ways. First, it crucially
uses the non-sparseness of Boolean vectors and second, the sparsity of the tensor T calls
for more nuanced concentration arguments. We give a short overview of these differences in
Section 3.2 after presenting the broad strokes of the proof, via our algorithm for certifying
tensor norms, and full details in Section 3.4.

Certifying injective tensor norm. In what follows, we will give a spectral algorithm for
Problem 3.2.1 for random 4-tensors with i.i.d. subgaussian entries. We will show that this

CHAPTER 3. STRONG REFUTATION OF CSPS 31

spectral algorithm is subsumed by a SoS relaxation of appropriate degree in Section 3.6. The
rest of this section is organized as follows.

1. We first describe the matrix whose maximum eigenvalue provides the upper bound on
the injective tensor norm. Rather than writing down the matrix immediately, we will
build up our intuition by first considering a simple spectral approach, and then seeing
how we can improve.

2. We then obtain bounds on the eigenvalues of the matrix, which will hold with high
probability for tensors with i.i.d. subgaussian entries–this is the step in which we an-
alyze the performance of our algorithm. Because our matrix is somewhat complicated
and not amenable to the application of black-box matrix concentration inequalities,
we will apply the trace power method. This amounts to bounding the expected trace
of a large power of our matrix, a goal which we split in to two steps.

a) First, we reduce computing the expected trace to a hypergraph counting problem.

b) Then, we simplify the counting by analyzing a particular hypergraph sampling
process.

Improving on the Natural Spectral Algorithm with Higher-Order
Symmetries

A natural spectral algorithm for Problem 3.2.1 is to flatten the tensor to a matrix, and
then compute the operator norm of the matrix. This is a valid relaxation because, given
an order-4 tensor A with symmetric i.i.d. standard normal entries, if we take A to be the
natural n2 × n2 matrix flattening of A,

‖A‖inj = max
x∈Rn:‖x‖=1

∣∣(x⊗ x)>A(x⊗ x)
∣∣ ≤ max

y∈Rn2
:‖y‖=1

∣∣y>Ay∣∣ = ‖A‖op . (3.2.1)

So ‖A‖op gives a valid upper bound for ‖A‖inj. This is great–on the left, we have a program
that we cannot efficiently optimize, and on the right we have a relaxation which we can
compute in polynomial time.

On the other hand this bound is quite loose–classical results from random matrix theory

assert that with high probability, ‖A‖op = Θ̃(n) whereas with high probability ‖A‖inj ≤
O(
√
n). The issue is that the relaxation in (3.2.1) is too lenient–the large eigenvalues of A

correspond to eigenvectors y ∈ Rn2
, that are far from vectors of the form x⊗x : x ∈ Rn. We

want to decrease the spectrum of A along these asymmetric non-tensor product directions.
A tensored vector of the form x⊗x satisfies the symmetry that (x⊗x)ij = (x⊗x)ji = xixj.

Therefore, a natural approach to decrease the spectrum of A along the non-tensor product
directions is to average the matrix A, along these symmetries. Specifically, for each (i, j),
we would average the ijth and jith rows, and then repeat the same operation on columns.
Formally, the averaged matrix A′ is given by,

A′ = E
Σ,Π∈Ŝ2

[ΣAΠ]

where Ŝ2 is the set of matrices which perform the permutations corresponding to the symmet-
ric group on 2 elements on the rows and columns of matrices indexed by [n]2. Unfortunately,

CHAPTER 3. STRONG REFUTATION OF CSPS 32

for a symmetric 4-tensor A, the matrix A is also symmetric with respect to these operations,
so that A′ = A.

To better exploit the symmetries of tensored vectors x ⊗ x, we will work with higher
powers of the injective tensor norm. For any d ∈ N, we can write the dth-power of ‖A‖inj as

‖A‖dinj = max
x∈Rn,‖x‖=1

∣∣〈x⊗4,A〉d
∣∣ = max

x∈Rn,‖x‖=1

∣∣(x⊗2d)>A⊗dx⊗2d
∣∣ ,

where A⊗d is the natural n2d × n2d matrix flattening of A⊗d. The symmetric vector x⊗2d is
fixed by averaging over any permutation of the indices, so averaging over such permutations
does not change the maximum:

= max
x∈Rn,‖x‖=1

∣∣∣∣ E
Π,Σ∈Ŝ2d

[
(Πx⊗2d)>A⊗d(Σx⊗2d)

]∣∣∣∣ ,
and by linearity of expectation,

= max
x∈Rn,‖x‖=1

∣∣∣∣(x⊗2d)>
(

E
Π,Σ∈Ŝ2d

[
Π>A⊗dΣ

])
x⊗2d

∣∣∣∣ ≤
∥∥∥∥ E

Π,Σ∈Ŝ2d

[
Π>A⊗dΣ

]∥∥∥∥
op

.

(3.2.2)

The operator norm of the above described matrix will certify our upper bounds:

Proposition 3.2.2. Let k ∈ N be even. Let Ŝkd/2 be the set of matrices performing the

permutations of Skd/2 on matrices with rows and columns indexed by [n]kd/2. For any order-
k tensor A with matrix flattening A,

‖A‖inj ≤

∥∥∥∥∥ E
Π,Σ∈Ŝkd/2

[
ΠA⊗dΣ

]∥∥∥∥∥
op

1/d

.

Proof. The sequence of calculations culminating in (3.2.2) gives the proof.

Now, how can this give an improved upper bound over ‖A⊗d‖op = ‖A‖dop? The reason is

that although A had 4-wise symmetry, the tensor A⊗d does not have 4d-wise symmetry. For
I, J ∈ [n]2d, I = (i1, i

′
1), . . . , (id, i

′
d) and J = (j1, j

′
1), . . . , (jd, j

′
d) and for permutations π, σ on

2d elements,

(A⊗d)I,J =
d∏
`=1

(i`,i
′
`)∈I

(j`,j
′
`)∈J

Ai`,i′`,j`,j′` 6=
d∏
`=1

(a`,a
′
`)∈π(I)

(b`,b
′
`)∈σ(J)

Aa`,a′`,b`,b′` = (A⊗d)π(I),σ(J) ,

because the identity of the base variables in the expression may change under the permu-
tation of the indices I and J . Thus, the typical entry of EΠ,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]
is an average

of (d/2!)2 random variables, which are not independent, but also not identical. Since the

CHAPTER 3. STRONG REFUTATION OF CSPS 33

entries of A are distributed symmetrically about zero, we expect the magnitude of the typical
entry to drop after this averaging. If we indulge the heuristic assumption that the entries
of EΠ,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]
are averages of dΩ(d) independent random symmetric variables of con-

stant variance, then the magnitude of the typical entry should be ≈ 1
dΩ(d) . So heuristically,

we have that ∥∥∥∥ E
Π,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]∥∥∥∥
F

≤ 1

dΩ(d)
· ‖A⊗d‖F .

By Wigner’s semicircle law, matrices with independent entries have eigenvalues that are all
roughly of the same magnitude. Because our matrix has roughly independent entries, we
may hope that the semicircle law holds for us, so that from the above heuristic calculations
and from (3.2.2),

‖A‖inj ≤

(∥∥∥∥ E
Π,Σ∈Ŝ2d

[
Π(A⊗d)Σ

]∥∥∥∥
op

)1/d

≤
(

1

dΩ(d)
· ‖A⊗d‖op

)1/d

≤ n

dΩ(1)
.

Thus, we expect that as we increase d, and therefore increase the symmetry of the tensored
vectors x⊗ x relative to the “noisy” non-tensor product eigenvectors of A, we can certify a
tighter upper bound on ‖A‖inj. Of course, since our certificate is the eigenvalue of a n2d×n2d

matrix, the running time the refutation algorithm grows exponentially in the choice of d.

Matrix concentration for the certificate

Our algorithm is now clear: we form our matrix certificate by averaging over rows and
columns corresponding to permutations of row and column indices in A⊗d, then use the
certificate matrix’s eigenvalues to upper bound ‖A‖dinj (by Proposition 3.2.2).

Theorem 3.2.3. Let n, d ∈ N. Let A be an order-4 tensor with independent entries, dis-
tributed according to subgaussian distribution symmetric about 0. Then if d log n� n, with
high probability over A, ∥∥∥∥ E

Π,Σ

[
ΠA⊗dΣ

]∥∥∥∥1/d

≤ Õ
(n

d1/2
d12 log d

logn

)
.

As a corollary of Theorem 3.2.3 and Proposition 3.2.2, we get Theorem 3.1.7 for the case of
order-4 tensors.

At the end of the previous subsection we gave a heuristic argument that a statement
along the lines of Theorem 3.2.3 should be true. While the heuristic argument is plausible,
it is very far from a formal proof; we need to prove that the eigenvalues of E[ΠA⊗dΣ] are

bounded by ≈ Õ(n/
√
d)d with high probability. But the matrix E[ΠA⊗dΣ] is not a sum of

independent random matrices, and it does not have independent entries, so sophisticated
matrix concentration tools (like the semicircle law or matrix Chernoff bounds) do not apply.
For tasks of this sort, the trace power method, or the method of moments, is the tool of
choice:

CHAPTER 3. STRONG REFUTATION OF CSPS 34

Proposition 3.2.4 (Trace power method). Let n, ` ∈ N, let c ∈ R, and let M be an n× n
random matrix. Then

E
M

[Tr((MM>)`)] ≤ β =⇒ P
(
‖M‖ ≥ c · β1/2`

)
≥ 1− c−2` .

The proof is essentially an application of Markov’s inequality; we give it in Appendix A.3.

From bounding the expected trace to a hypergraph counting problem

A classic way to apply the trace power method is to reduce to a graph counting problem.
For example, let M be a symmetric n × n random matrix with independent Rademacher
entries. We can view the row/column index set [n] as a set of “vertices,” and the entry
Mi,j as an “edge” variable between vertices i and j. The trace Tr(M `) is the sum over
products of edge variables along closed walks of length ` in the graph defined by M . When
we take EM [Tr(M `)], any closed walk in which an edge appears with odd multiplicity does
not contribute to the sum, since E[Mm

i,j] = 0 for odd m. Therefore, E[Tr(M `)] is equal to
the number of closed walks of length ` in which every edge appears with even multiplicity,
within the complete graph Kn, and bounding E[Tr(M `)] becomes a counting problem.

We make a similar reduction for our matrix C
def
= EΣ,Π[ΠA⊗dΣ]. The rows and columns of

A are indexed by pairs [n]2, we interpret each variable Aij,k` as a (multi)hyperedge between
the vertices (i, j) and (k, `) corresponding to the row and column indices respectively. In the
Kronecker power A⊗d, the rows and columns are indexed by vertex multisets I, J ∈ [n]2d,
I = (i1, i

′
1, . . . , id, i

′
d), J = (j1, j

′
1, . . . , jd, j

′
d), and the entry (A⊗d)I,J is the product of the

hyperedges
∏d

k=1Aiki′k,jkj′k . We view this as a hyperedge matching between I, J , in which
the vertices (ik, i

′
k) are matched with the vertices (jk, j

′
k) for each k ∈ [d] (see Figure 3.1).

Now to obtain our matrix C, we average over row and column symmetries, so that
CI,J = Eπ,σ∈S2d

[(A⊗d)π(I),σ(J)]. In each entry of C, we average over the permutations of
the left and right vertex sets, which is the same as averaging over all perfect hypergraph
matchings from I to J (again see Figure 3.1).

Just as in the case of the simple random matrix M , we can interpret Tr((CC>)`) as the
sum over all closed walks of length 2` on the complete graph (with self-loops) on the vertex
set [n]2d, where the edge variable between I, J is the average over all possible hyperedge
matchings between I and J . When we take the expectation over A, EA[Tr((CC>)`)], any
hyperedge appearing with odd multiplicity will cause the contribution of the closed walk to
be 0, since the entries of A are distributed symmetrically about 0.

Our reduction is now complete. Because we will be dealing with subgaussian random
variables, the entries of A will concentrate well enough for us to reduce to the Rademacher
case.

Lemma 3.2.5. Let A be an order-4 tensor with i.i.d. Rademacher entries, and let A be its

matrix flattening. Let Cd
def
= EΣ,Π∈Ŝ2d

[ΠA⊗dΣ]. For the 2` multisets of vertices I1, . . . , I2` ∈
[n]2d, let H be the set of all sequences of perfect hyperedge matchings between each Ij and
Ij+1 mod 2`, so that each hyperedge has 2 vertices from Ij and 2 vertices from Ij+1. For a
fixed sequence of hyperedge matchings H ∈ H, let EI1,...,I2`(H even) be the event that every

CHAPTER 3. STRONG REFUTATION OF CSPS 35

hyperedge appears with even multiplicity. Then

E
A

[
Tr
(
(CdC

>
d)`
)]

=
∑

I1,...,I2`∈[n]2d

P
H∼H

[EI1,...,I2`(H even)]

Proof. Any product of Rademacher random variables has expectation 0 if some variable
appears with odd multiplicity, and 1 otherwise. This, along with the observations preceding
the lemma statement, implies that each I1, . . . , I2` contributes exactly the probability that
hyperedges chosen for it all have even multiplicity (where we get a probability since each
entry CI,J is the average over hyperedge matchings from I to J).

Bounding the probability of an even hypergraph

From Lemma 3.2.5 and Proposition 3.2.4, in order to prove Theorem 3.2.3 it suffices for us
to bound ∑

I1,...,I2`∈[n]2d

P
H∼H

[EI1,...,I2`(H even)] ≤ Õ(n/d1/2)2d`, (3.2.3)

for ` = Ω(log n). Since each probability is bounded by 1 and there are n4d` terms in the
sum, (3.2.3) easily gives us an upper bound of n4d`. We need to improve upon this naive
bound twofold: first, we need the dependence on n to be n2d`. This would give a bound

of ‖E[ΣA⊗dΠ]‖ ≤ Õ(nd) w.h.p., but we can get this bound trivially by ignoring the sym-

metrization, as ‖A⊗d‖ ≤ Õ(nd) w.h.p. To fully reap the rewards of symmetrization, we must

improve by a factor of ≈ (
√
d)−2d`.

At first, bounding (3.2.3) seems daunting–it is unclear how to count the number of such
hypergraphs with even multiplicity, while simultaneously getting the correct dependence on
n and d. It will be helpful to use the following two-step process for sampling hypergraphs:
for a fixed vertex configuration I1, . . . , I2` ∈ [n]2d,

1. First, sample perfect simple edge matchings between Ij, Ij+1 for each j ∈ [2`].

2. Next, pair up the edges between Ij, Ij+1 and merge each pair to form a hyperedge.

We will use step 1 to bound the dependence on n, and step 2 to bound the dependence
on d. In particular, our arguments from Lemma 3.2.5 give us the following lemma almost
immediately:

Lemma 3.2.6. Let M be the set of all possible choices of edge sets sampled in step 1. Let
EI1,...,I2`(E even) be the event that the graph given by the edges E ∈ M on I1, . . . , I2` has
every edge appearing with even multiplicity. Then∑

I1,...,I2`∈[n]2d

P
E∼M

[EI1,...,I2`(E even)] = E
M

[
Tr
(
(BB>)`

)]
, (3.2.4)

where M is an n× n matrix with i.i.d. Rademacher entries, and B
def
= EΠ,Σ∈Ŝ2d

[ΠM⊗2dΣ].

Lemma 3.2.6 lets us relate the probability that we sample a perfect matching in which
every edge appears with even multiplicity in step 1 to the norm of a matrix M with i.i.d.

CHAPTER 3. STRONG REFUTATION OF CSPS 36

Rademacher entries, which is an object we understand well: with very high probability,
‖M‖ ≤ O(

√
n), and because of the connection between the expected trace and the norm of

a matrix, we can then bound (3.2.4) by the desired Õ(n1/2)4d`.
To use (3.2.4), we need to relate the probability that the edges sampled in step 1 have even

multiplicity to the probability that the hyperedges sampled in step 2 have even multiplicity.

Lemma 3.2.7 (somewhat informal statement). Let I1, . . . , I2` ∈ [n]2d, and suppose we have
sampled hyperedges H ∈ H by first sampling simple edges E ∈ M as in step 1 and then
grouping them as in step 2. Then

P(EI1,...,I2`(E even) | EI1,...,I2`(H even)) ≥
(

1

2

)2d`

.

Proof (sketch). For any given hyperedge (i, j, k, `) ∈ H, with i, j ∈ Ia and k, ` ∈ Ia+1,
there are only two ways it could have been sampled as pairs of edges, either as a merge of
(i, k), (j, `) ∈ E or of (i, `), (j, k) ∈ E. If all copies of a hyperedge of even multiplicity m
are sampled the same way, then the corresponding edges also have even multiplicity.4 For a
hyperedge of multiplicity m, every copy of the hyperedge is sampled in the same way with
probability at least (1/2)m, which becomes (1/2)2d` for the 2d` hyperedges in the graph.

Now, using the shorthand E(·) def
= EI1,...,I2`(· even), we already have that

P
H∼H

[E(H)] =
P [E(H), E(E)]

P[E(E) | E(H))
≤ 22d` · P [E(H) | E(E)] · P [E(E)] .

Further, we have our bound from Lemma 3.2.6, so if we could bound
maxI1,...,I2` P[E(H even) | E(E even)] ≤ d−2k`, we would be done. But this condi-
tional probability is not always small–for example, there is the case when I1 = · · · = I2`

are all multisets containing the same vertex i ∈ [n] with multiplicity 2d. In this case, the
probability that we sample an even hypergraph is 1.

Still, so long as there are sufficiently many different vertices in I1, . . . , I2`, we can prove
that this conditional probability is small enough:

Lemma 3.2.8. Let E1, . . . , E2` ∈ [n × n]2d be multisets of edges such that every edge is
present in the union at least twice, and the number of distinct edges in the union is at least
(1− β)2d`, i.e., | ∪2`

i=1 Ei| ≥ (1− β)2d`.
Let Pi denote a uniformly random pairing of elements within Ei sampled independently

for each i ∈ [2`]. Then there exists a constant cβ depending only on β such that

P[∪iPi has every pair with even multiplicity] ≤
(cβ
d

)(1−10β)d`

.

4In the formal proof, we’ll have to take care to start with an asymmetric tensor, with Aijk` 6= Aπ(ijk`)

for permutations π, so that no hyperedge can appear with even multiplicity by being grouped from the edges
(i, k), (j, `) and also (i, j), (k, `).

CHAPTER 3. STRONG REFUTATION OF CSPS 37

Proof (sketch, details in proof of Lemma 3.3.8). Suppose we make our pairing decisions one
multiset at a time. We must pair the last copy of each edge correctly, so that all its pairs
have even multiplicity. There are 2d edges per matching, so the probability that we make
this last decision correctly is ≈ Ω(d)−1. We make d pairing decisions per matching, and we
make the “last” decision about half of the time since every edge appears close to twice on
average–this gives the probability to be roughly Ω(d)−d`.

Now, as there are only ≈ n(1−α)·2d` choices of sets I1, . . . , I2` which could have at most
(1− α) · 2d` different edges, these sets contribute negligibly to the sum, and we have that

∑
I1,...,I2`

P
H∼H

[EI1,...,I2`(H)] ≤ 22d` ·

(
n(1−α)·2d` + P[E(H) | E(E)]

∑
I1,...,I2`

P [EI1,...,I2`(E)]

)

≤ 22d` ·

(
n(1−α)·2d` +

(
cα√
d

)(1−10α)2d`

· n2d`

)
Balancing the terms concludes the proof; we will fill in the few remaining details in Sec-
tion 3.3.

From Tensor Norms to Odd-Order Tensors and k-XOR

The proof of Theorem 3.2.3 generalizes to tensors of all even orders k almost immediately.
For odd k we need an extra idea or two, since all natural flattenings of the tensor to a matrix
result in a non-square matrix. We give the details for even and odd k in Section 3.3 and
Section 3.3 respectively.

As hinted earlier, to apply these ideas to strongly refute k-XOR we need to overcome two
main hurdles. First, as the number of clauses is small, m ≈ p · nk < nk/2, the tensor corre-
sponding to the instance is sparse enough that the injective tensor norm maxy∈Rn |〈T, y⊗k〉|
is maximized by sparse vectors y. Sparse vectors y ∈ Rn are too far from the solutions of
interest, namely Boolean vectors x ∈ {±1}n, which are in a sense maximally dense.

To address this issue, we will consider a sub-matrix of the tensored matrix A⊗d. Again, let
us consider the case of k = 4. Recall that, maxx∈{±1}n〈A, x⊗4〉d = maxx∈{±1}n

∣∣x⊗2dA⊗dx⊗2d
∣∣.

The rows and columns of A⊗d are indexed by I, J ∈ [n]2d. We refer to a tuple I ∈ [n]2d as high
multiplicity if there is some i ∈ [n] which has multiplicity greater than 100 log n in I (since we
are interested in the case when d = nδ � log n). The rows and columns of A⊗d corresponding
to such tuples will be referred to as high-multiplicity rows and columns. Let Γ denote the
projection on to the low-multiplicity indices, (Γx)I = xI · I[I not high-multiplicity].

The key idea is that for a Boolean vector x ∈ {±1}n, almost all of the `2-norm of x⊗2d

is concentrated within the low-multiplicity indices, i.e., ‖Γx⊗2d‖ ≈ ‖x⊗2d‖. However, for a
sparse vector y ∈ Rn, ‖Γy⊗2d‖ � ‖y⊗2d‖. Therefore, we eliminate the sparse maxima of the
polynomial, by restricting the matrix to the low-multiplicity rows and columns, and then
apply the averaging over row and column permutations. Specifically, the spectral upper
bound used by the refutation algorithm is,

max
x∈{±1}n

∣∣〈A, x⊗4〉
∣∣d = max

x∈{±1}n

∣∣(x⊗2d)>A⊗dx⊗2d
∣∣ ≈ max

x∈{±1}n

∣∣(x⊗2d)>
(
ΓA⊗dΓT

)
x⊗2d

∣∣

CHAPTER 3. STRONG REFUTATION OF CSPS 38

≤ n2d ·
∥∥∥∥ E

Π,Σ∈Ŝ2d

[
Π
(
ΓA⊗dΓT

)
Σ
]∥∥∥∥ .

The second challenge is that, in the sparse regime where p ≤ 1/nk/2, the entries of the
random matrix A are ill-behaved. Specifically, the entries of A have distributions with un-
usually large higher moments, completely unlike Gaussian or Rademacher random variables.
For example, the 2rth moment of an entry E[A2r

ijk`] = p � (E[A2
ijk`])

r = pr. In the trace
calculation we outlined earlier, each term of the sum was either 0 if any variable had odd
multiplicity, and otherwise 1. In the sparse regime, different terms in the trace contribute
vastly different amounts, depending on the multiplicities involved. So we must count our hy-
pergraphs precisely, taking into account the multiplicity of each hyperedge, rather than the
just the parity. We use the encoding technique to count the number of hypergraph structures
accurately, in a way reminiscent of similar arguments in random matrix theory (e.g. [FK81]).
Although the counting argument involved is more subtle than the case of random 4-tensors
(see Section 3.4), we are still able to use the same 2-step hyperedge sampling process to
simplify the counting.

Figure 3.1: Hypergraph interpretations of the entries of A⊗d, Cd, and Tr((CC>)`).

3.3 Injective Tensor Norm for Subgaussian Random
Tensors

In this section, we show how to certify bounds on the norm of a random tensor, building on
our proof of the order-4 case in Section 3.2. We handle the even-order and odd-order cases
separately, as the odd-order case contains some additional intricacies.

Section 3.3 contains the proof for even tensors. Section 3.3 contains the proof for odd
tensors. In Section 3.3, we prove a combinatorial lemma that we rely upon in both proofs.

Even-Order Tensors

The case of order-k tensors when k is even is almost completely outlined in Section 3.2, in the
proof overview of Theorem 3.2.3. Some of the statements from the overview need additional
proof, and some need generalization for k > 4. We briefly fill in the gaps.

Recall that in our setting, we are given a symmetric order-k tensor A with i.i.d. standard
Gaussian entries, where k is even. Our algorithm consists of computing the operator norm
of a certificate matrix; though we described this certificate ion Section 3.2, we will require
one small twist to make our proofs easier:

CHAPTER 3. STRONG REFUTATION OF CSPS 39

Algorithm 3.3.1 (Certifying even k-tensor norms).
Input: An order-k dimension-n tensor A, for even k.

1. Form the asymmetric tensor A′ from A as follows. For each S ∈ [n]k,

a) if S is lexicographically first among all permutations of S, set A′S =
∑

π∈Sk Aπ(S).

b) otherwise, set A′S = 0.

2. Take the natural nk/2 × nk/2 matrix flattening A of A′, and form A⊗d.

3. Letting Ŝdk/2 be the set of all permutation matrices that perform the index permuta-
tions corresponding to Sdk/2 on the rows and columns of A⊗d, form

Cd
def
= E

Π,Σ∈Ŝdk/2

[
ΠA⊗dΣ

]
.

Output: ‖Cd‖1/d as a bound on the objective value.

First, we verify the completeness of the certificate:

Lemma 3.3.2. Let A be a symmetric order-k tensor for even k, and let A be the natural
matrix flattening of A′ the asymmetrization of A described in Algorithm 3.3.1. Let Sdk/2
be the symmetric group on dk/2 elements, and further let Ŝdk/2 be the set of ndk/2 × ndk/2
matrices that apply the permutations of Sdk to matrices whose rows and columns are identified
with multisets in [n]dk. Then∥∥∥∥ E

Π,Σ∈Ŝdk

[
Π(A⊗d)Σ

]∥∥∥∥1/d

≥ ‖A‖inj .

Proof. The proof is identical to that of Proposition 3.2.2, up to noticing that 〈A, x⊗k〉 =
〈A′, x⊗k〉.

Now, we will prove that in the case that A is a random tensor with i.i.d. subgaussian
entries, our certification algorithm improves smoothly upon the simple spectral algorithm as
we invest more computational resources.

Theorem 3.3.3. Let n, k, d ∈ N, with even k. Let A be a symmetric order-k tensor with
independent entries distributed symmetrically about 0. Let A be the matrix flattening of A′,
the asymmetrization of A described in Algorithm 3.3.1. Then if d � n1/3k2

, there exists a
constant c such that with high probability over A,∥∥∥∥ E

Π,Σ

[
ΠA⊗dΣ

]∥∥∥∥1/d

≤ (c log2 n)k · d
k2 log d
4 logn · nk/4

d(k−2)/4
.

The proof is nearly identical to the k = 4 case from Section 3.2, so we will be brief.

Proof. We will assume that each entry of A′ is bounded in absolute value by γ =
O(
√
d log n)), as by the subgaussian assumption this is true with high probability, even

after symmetrization. This assumption preserves the symmetry of the distribution.

CHAPTER 3. STRONG REFUTATION OF CSPS 40

As in the proof of the k = 4 case from Section 3.2, we will use the trace power method.

For shorthand, let C
def
= EΠ,Σ∈Sdk

[
ΠA⊗kΣ

]
. Let H be the set of all hyperedge configurations

possible (the set of all possible length-2` sequences of hypergraph matchings on two sets of
dk/2 vertices). Let V be the set of all vertex configurations possible (the set of all possible
length-2` sequences of vertex multisets I1, . . . , I2` ∈ [n]dk/2). We note now that there are not
many vertex configurations which use few vertices in [n]:

Fact 3.3.4. Let Vα be the set of vertex configurations on dk` vertices containing fewer than
αdk`/2 distinct vertices from [n]. Then

|Vα| ≤ (αdk`/2)(1−α/2)dk` · nαdk`/2.

Proof. There are only nαdk`/2 choices for vertex labels, and then (αdk`/2)(1−α/2)dk` choices
for the rest.

For H ∈ H and V ∈ V , we let wA(V,H) denote the product of all hyperedge weights in
the hyperedge cycle (V,H) when the weights are given by entries of the tensor A. Because
the entries are distributed symmetrically about 0, we have that

E
A

[
Tr((CC>)`)

]
=
∑
V ∈V

E
H∈H

[
E
A

[wA(V,H)]
]

≤
∑
V ∈V

E
H∈H

[
γ2d` · I[(V,H) even, 6= 0]

]
= γ2d` ·

∑
V ∈V

P
H∈H

[(V,H) even, 6= 0] ,

where I[·] is the 0 − 1 indicator for an event. Notice that now, evenness is not enough to
ensure that we have nonzero contribution–because we asymmetrized A, every hyperedge also
has to be lexicographically first, meaning it appears either as A′S,T or A′T,S depending on

whether it comes from a C or C> term. Using Fact 3.3.4 to argue that the number of vertex
configurations with fewer than (1 − β)dk`/2 distinct vertices (the number of V ∈ V(1−β))
cannot be too large,

≤ γ2d`

((
1 + β

2
dk`)(1+β)n(1−β)

)dk`/2
+

∑
V 6∈V(1−β)

P
H∈H

[(V,H) even, 6= 0]

 .

(3.3.1)

So for a fixed V ∈ V , we will bound PH [(V,H) even, 6= 0].
To do this, we repeat our argument from Section 3.2. Fixing a vertex configuration

V = I1, . . . , I2`, we sample H ∼ H uniformly in two steps:

1. Sample a random perfect matching (of edges, not hyperedges) between every two con-
secutive vertex sets Ii, Ii+1, letting the configuration of edges we chose be E from the
set of all such possible configurations M.

2. Group the edges between Ii and Ii+1 into groups of size k/2, and merge every group
into a hyperedge (of order k).

CHAPTER 3. STRONG REFUTATION OF CSPS 41

Let (V,E) be the intermediate graph in this process that produces the hypergraph (V,H).
Notice that now, We restate, then prove, a more precise version of Lemma 3.2.7

Lemma 3.3.5 (formal version of Lemma 3.2.7). Let V = I1, . . . , I2` ∈ [n]dk/2, and suppose
we have sampled hyperedges H ∈ H by first sampling simple edges E ∈ M as in step 1 and
then grouping them into groups of k/2 as in step 2. Then

P((V,E) even | (V,H) even, 6= 0) ≥

(
1
k
2
!

)2d`

.

Proof. Suppose every hyperedge in H is lexicographically first and has even multiplicity.
Each hyperedge h in H, h was sampled from one of the (k/2)! matchings of its left-hand
vertices to its right-hand vertices with equal probability. Let h1, . . . , hm be the distinct
labeled hyperedges of our hypergraph. Since all our hyperedges are lexicographically first,
the same bipartition of vertices is common to every appearance of hi for all i ∈ [m]. Thus,
if we choose a uniformly random perfect matching of simple edges in each hyperedge of the
hypergraph, we choose the same simple matching for all copies of hi with probability at least
(k

2
!)−#hi . It follows that if all hyperedges appear in (V,H) with even multiplicity, then with

probability at least (k
2
!)−2d` all simple edges in (V,E) appear with even multiplicities.

Applying Lemma 3.3.5,

P((V,H) even, 6= 0) =
P((V,H) even, 6= 0 & (V,E) even)

P((V,E) even | (V,H) even, 6= 0)

≤
(
k

2
!

)2d`

· P((V,E) even) · P((V,H) even | (V,E) even) . (3.3.2)

We now relate the quantity
∑

V ∈V PE[(V,E) even] to a matrix quantity we can control
well. Letting B be an n × n matrix with symmetric i.i.d. entries uniform from {±1}, and
letting C ′ = E[ΠB⊗dk/2Σ],

E
[
Tr((C ′C ′>)`)

]
=
∑
V ∈V

P
E

[(V,E) even] .

We now prove and apply the following proposition, which is a restatement of Lemma 3.2.6
for arbitrary k:

Proposition 3.3.6. Let n, d, k, ` ∈ N so that dk` log n � n. Let C ′ =
EΠ,Σ∈Sdk/2

[
ΠB⊗dk/2Σ

]
, for an n× n matrix B with i.i.d. Rademacher entries. Then

E
[
Tr((C ′C ′>)`)

]
≤ 24dk`+1ndk`/2+dk/2 .

Proof. Let B be an n× n matrix with i.i.d. Rademacher entries, and let d, ` ∈ N. We have
that for any N ×N PSD matrix P , Tr

(
P `
)
≤ N ·

∥∥P `
∥∥, and because C ′C ′> is PSD it follows

that

Tr
(
(C ′C ′>)`

)
≤ ndk/2 ·

∥∥(C ′C ′>)`
∥∥ . (3.3.3)

CHAPTER 3. STRONG REFUTATION OF CSPS 42

We will get a bound on E ‖(C ′C ′>)`‖. Because C ′ is symmetric, C ′C ′> = (C ′)2. Thus, a
bound on E ‖C ′2`‖ will suffice. We apply the triangle inequality and the submultiplicativity
of the norm to deduce that for any B,

‖C ′2`‖ =

∥∥∥∥∥
(

E
Π,Σ∈Ŝ2d

[
Π(B⊗dk/2)Σ

])2`
∥∥∥∥∥ ≤

(
E

Π,Σ∈Ŝ2d

[
‖Π‖ · ‖(B⊗dk/2)‖ · ‖Σ‖

])2`

≤ ‖B‖dk` ,

and now, we can use standard arguments from random matrix theory to get tail bounds on
‖B‖. From Theorem A.3.2, we have that P[‖B‖ − 12n1/2 ≥ s] ≤ exp(−s2/16), and we also
have that ‖B‖ ≤ ‖B‖F ≤ n, and thus it follows that

E
[
‖C ′2`‖

]
≤ E

[
‖B‖dk`

]
≤ P[‖B‖ ≤ 16

√
n] · (16

√
n)dk` + P[‖B‖ > 16

√
n] · ndk`

≤ (1− exp(−n)) · (16
√
n)dk` + exp(dk` log n− n) ≤ 2(16

√
n)dk` ,

and the conclusion follows from combining the above with (3.3.3).

We thus have∑
V ∈V(1−β)

P
E

[(V,E) even] ≤
∑
V ∈V

P
E

[(V,E) even] ≤ E
[
Tr((C ′C ′>)`)

]
≤ 24dk`+1ndk`/2+dk/2 .

(3.3.4)

Now, from (3.3.2) we are left to bound P[(V,H) even | (V,E) even, V ∈ V(1−β)]. We
apply the following lemma:

Lemma 3.3.7. Let m,n, c ∈ N, and let G be a graph which is a union of at most c disjoint
cycles. Suppose furthermore that each vertex receives labels from the set [n], that every labeled
edge appears with even multiplicity, and that there are exactly m distinct labeled edges. Then
letting L be the number of distinct vertex labels, we have

L ≤ m+ c.

The proof of Lemma 3.3.7 proceeds by a cute inductive argument, which we will reserve for
Section 3.3.

Lemma 3.3.7 implies that if (V,E) has at least (1 − β)dk`/2 distinct vertices, then it
must have at least (1 − β)dk`/2 − dk/2 distinct edges. Let E1, . . . , E2` be the matchings
in E so that Ei gives the edges between Ii, Ii+1. We invoke and prove a generalization of
Lemma 3.2.8:

Lemma 3.3.8. Fix M, r, `,N ∈ N and β ∈ (0, 1). Let E1, . . . , EM ∈ [N]r·c be multisets of
elements such that the number of distinct elements in the union ∪i∈[M]Ei is at least (1 −
β)M · r · c/2. Let Gi denote a uniformly random r-grouping of elements within Ei, sampled
independently for each i ∈ [M]. Let

⊕
iGi denote the set of r-groups (a1, . . . , ar) ∈ [N]r that

appear an odd number of times within ∪iGi. Then for any 0 < δ < 3.5β,

P[| ⊕i Gi| ≤ δMc] ≤
(

112

βc

)(1−(4r+1)β−2δ)(r−1)Mc/2

CHAPTER 3. STRONG REFUTATION OF CSPS 43

We will prove Lemma 3.3.8 in Section 3.3.
We apply Lemma 3.3.8 to the multisets Ei with parameters M ← 2`, c ← d, r ← k/2,

to conclude that if the Si are each grouped into matchings of hyperedges with d edges each,
then

P [(V,H) even | (V,E) has ≥ (1− β)dk`/2 edges] ≤
(

112

βd

)(1−(2k+1)β)(k/2−1)d`

≤ c
dk`/2
β

(
1

d

)(1−3kβ)(k/2−1)d`

.

for some constant cβ depending only on β. Putting this together with (4.4.2),(3.3.2), and
(3.3.4),

E
A

[
Tr((CC>)`)

]
≤ γ2d`

((
((1 + β)dk`/2)(1+β) · n(1−β)

) dk`
2 +

(
k

2
!

)2d`

(28n)
dk`+dk

2 c
dk`
2
β

(
1

d

)(1−3kβ)(k/2−1)d`
)

≤ (c′β · kkγ2`k)d`ndk/2

(
(d1+βn1−β)dk`/2 +

(
1

d

)(1−3kβ)(k/2−1)d`

ndk`/2

)

for some constant c′β. Choosing β = 2(k−1) log d
k(3k−7) log d+logn

balances the terms, so for smaller β we

have

E
A

[
Tr((CC>)`)

]
≤ 2(c′β · kkγ2`k)d`ndk/2 ·

(
nk/2

dk/2−1

)d`
· dβ(k/2−1)d` .

Now, requiring that d ≤ n1/3k2
and choosing β ← (k − 1) log d

logn
, we have that

E
[
Tr((CC>)`)

]1/2` ≤ 2(c′β · kkγ2`k)d/2ndk/4` ·
(
nk/2

dk/2−1

)d/2
· d

k2 log d
2 logn

·d/2

Taking ` = O(log n) and applying Proposition 3.2.4, the conclusion of Theorem 3.3.3 follows.

Odd-Order Tensors

In this section, we give our algorithm for certifying bounds on the injective tensor norm of
random odd-order tensors. Because there is no canonical way to flatten an odd-order tensor
to a square matrix, the algorithm includes an additional step, similar to the one we employ
for k-XOR instances when k is odd (Section 3.4). We remark that this additional step is
not new, and has appeared before (as early as e.g. [FG01])—however it does introduce some
new challenges in our analysis.

We begin with a brief high-level overview of our algorithm. To begin with, let A ∈ R[n]k

be an order-k symmetric tensor of dimension n. For convenience, we define an integer κ such

CHAPTER 3. STRONG REFUTATION OF CSPS 44

that k = 2κ+ 1. For the rest of this section, we will use Ai to denote the [n]κ × [n]κ matrix
obtained by flattening the ith slice of A, i.e.,

Ai(I, J)
def
= A(i,I,J) ∀I, J ∈ [n]κ .

Using the Cauchy-Schwarz inequality, we can bound the injective norm in terms of the
matrices Ai,

〈x⊗2κ+1,A〉 =
∑
i

xi · 〈x⊗κ, Aix⊗κ〉

≤

(∑
i

x2
i

)1/2

·

(∑
i

〈x⊗κ, Aix⊗κ〉2
)1/2

=

(
〈x⊗2κ,

(∑
i

Ai ⊗ Ai

)
x⊗2κ〉

)1/2

.

(3.3.5)

Therefore, in order to bound ‖A‖inj, it is sufficient to bound the following quantity.

max
‖x‖≤1

〈
x⊗2κ,

(∑
i

Ai ⊗ Ai

)
x⊗2κ

〉
(3.3.6)

For a tensor A whose entries are i.i.d. subgaussian variables, we bound the value of the
maximization problem (3.3.6).

The matrix
∑

iAi ⊗ Ai has large diagonal entries. However, our tensoring and sym-
metrizing algorithm requires a matrix with eigenvalues roughly symmetric about 0 (see the
heuristic explanation in Section 3.2). Thus, we will work with a diagonal-free version of the

matrix. Define the matrix N ∈ R[n]2κ×[n]2κ as follows:

Ni((a, b), (c, d)) = Ai(a, c) · Ai(b, d) · I[(a, c) 6= (b, d)] ∀a, b, c, d ∈ [n]κ

We can rewrite the polynomial in (3.3.6) as,〈
x⊗2κ,

(∑
i

Ai ⊗ Ai

)
x⊗2κ

〉
=

〈
x⊗2κ,

(∑
i

Ni

)
x⊗2κ

〉
+

∑
i∈[n],a,b∈[n]κ

x2
ax

2
bA

2
i (a, b)

And we can upper bound the latter term by

∑
i∈[n],a,b∈[n]κ

x2
ax

2
bA

2
i (a, b) ≤

∑
a,b∈[n]κ

x2
ax

2
b

(∑
i

A2
i (a, b)

)
≤ max

a,b

(∑
i

A2
i (a, b)

)
(3.3.7)

where we have used the fact that ‖x‖2 = 1. Bounding the norm of tensor A thus reduces
to upper bounding 〈x⊗2κ, (

∑
iNi)x

⊗2κ〉. Now our strategy is as before–we take a dth tensor
power of our matrix, then average over the symmetries of x⊗2κd.

Having discussed the differences between the even and odd cases, we are ready to give
our algorithm.

CHAPTER 3. STRONG REFUTATION OF CSPS 45

Algorithm 3.3.9 (Odd-order Injective tensor norm).
Input: A random tensor A of dimension n and odd order k = 2κ+ 1, and a parameter d.

1. Form the asymmetric tensor A′ as described in Algorithm 3.3.1, so that 〈x⊗k,A〉 =
〈x⊗k,A′〉 but only lexicographically first entries are nonzero.

2. Let Ai be the nκ × nκ matrix flattening of the ith slice of A′, and form the matrix

M :=
∑
i∈[n]

Ai ⊗ Ai

3. Zero out all entries of the matrix corresponding to (I1, I2), (J1, J2) ∈ [n]2κ such that
(I1, J1) = (I2, J2), forming a new matrix N :

N(I1,I2),(J1,J2) := M(I1,I2),(J1,J2) · I((I1, J1) 6= (I2, J2)) .

4. Take the dth tensor power of N ,
N → N⊗d .

5. Symmetrize the rows and columns of N⊗d according to the symmetries of S2dκ to obtain
the matrix C,

Cd
def
= E

Π,Σ∈Ŝ2dκ

[
Π(N⊗d)Σ

]
.

Output: The quantity
(
‖Cd‖1/d + maxa,b∈[n]κ

∑
i∈[n] Ai(a, b)

2
)1/2

as an upper bound on

‖A‖inj.

Proposition 3.3.10. For any symmetric tensor A, Algorithm 3.3.9 outputs a valid upper
bound on ‖A‖inj.

Proof. Our asymmetrization in step 1 ensures that 〈x⊗k,A〉 = 〈x⊗k,A′〉. The proof then
follows from the calculations above, beginning at (3.3.5) and ending at (3.3.7), and then
using that the symmetrization step fixes vectors of the form x⊗2dκ.

We prove that when A has subgaussian, centered, independent entries, Algorithm 3.3.9
improves over the basic spectral algorithm.

Theorem 3.3.11. For any symmetric tensor A with independent subgaussian centered en-
tries, with high probability over the choice of A, Algorithm 3.3.9 certifies that

‖A‖inj ≤ Õ

(
nk/4

k(k−2)/4
· d

k2 log d
2 logn

)
.

so long as d log n� n1/120.

First, the very straightforward observation that subtracting the maximum element cannot
have too strong of a negative effect:

CHAPTER 3. STRONG REFUTATION OF CSPS 46

Figure 3.2: Hypergraphs corresponding to odd certificate entries.

Lemma 3.3.12. If A is an order-D tensor with i.i.d. symmetric subgaussian entries, then

max
a,b∈[n]d

∑
i∈[n]

A(i, a, b)2 ≤ O(n log n),

with high probability.

Proof. The lemma follows from the fact that the variables are subgaussian, and by applying
first a Chernoff bound and then a union bound over the indices.

Now, we bound the norm of the matrix ‖Cd‖.

Theorem 3.3.13. So long as kd` < 4nβ/4, there exists some absolute constant cβ depending
on β such that with high probability over the choice of A,

‖Cd‖ ≤
(
cdβ log n · nk/4

d(k−2)/4−6kβ
· n1/2`

)d
.

Proof. Because the entries of A are subgaussian, with high probability all entries of the
tensor are bounded in magnitude by γ = O(

√
κ log n). We will assume this to be the case

in the remainder of the proof.
We bound the expected trace E[Tr

(
(CC>)`

)
] over the choice of A, in order to apply

the tensor power method. Let M := (
∑

iAi ⊗ Ai)⊗d for convenience. The (A,B), (C,D)th
entry of M (for A,B,C,D ∈ [n]dκ with A = a1, . . . , ad with ai ∈ [n]κ, and with similar
decompositions defined for B,C,D) has value

M(A,B),(C,D) =
∏
i∈[d]

∑
u∈[n]

Aai,ci,u ·Abi,di,u

 =
∑
U∈[n]d

∏
i∈[d]

(Aai,ci,ui ·Abi,di,ui) .

Interpreting the variables Aai,ci,ui as k = (2κ + 1)-uniform hyperedges, we have that each
entry is a sum over hypergraphs indexed by U ∈ [n]d. For each U ∈ [n]d, we have a
hypergraph on the following vertex configuration: on the left, we have the vertices from the
multiset A,B. On the right, we have the vertices from the multiset C,D. In the center, we
have the vertices from U . On this vertex set, we have 2d hyperedges. Of these hyperedges, d
form a tripartite matching on the vertices in A,C, U , with κ vertices from each of A,C and
one vertex in U . The other d form a similar tripartite matching on the vertices in B,D,U .
Every hyperedge on A,C, U shares exactly one vertex in U with exactly one hyperedge from
B,D,U . See Figure 3.2 for an illustration.

CHAPTER 3. STRONG REFUTATION OF CSPS 47

The subtraction of the square terms squares(Au⊗Au) forces us to never have two hyper-
edges sharing a vertex in U if they contain vertices of the same type in [n]: that is, we can
never have (ai, ci) = (bi, di) as ordered multisets. Then, the averaging operation EΠ,Σ∈Ŝ2dκ

takes each such entry to an average over all allowed hyperedge configurations on the vertex
set (A,B), (C,D), U .

When we take Tr(C(d)C
>
(d))

`, we are taking a sum over all “cycles” of length 2` in such

hypergraphs, where the vertices in the cycle are given by the (A,B) multisets, and the edges
are given by the average hyperedge configuration between (A,B) and the next (C,D), with
the U vertices in between.

To this end, we describe an equivalent definition of the matrix C(d). Specifically, given
a, b ∈ [n]2κd the entry C(d)(a, b) can be evaluated as follows:

1. Sample a random matching E = {e1, . . . , e2κd} between the multisets a and b.

2. Group the edges of E in to 2d groups of size κ, to obtain 2d blocks F = {f1, . . . , f2d}.
3. Pick a random matching M between the blocks in F . Let M be given by d pairs
{(hi, h′i)}i∈[d].

4. For each choice of “pivot vertices” σ ∈ [n]d, we get a (2κ+ 1)-uniform hypergraph Hσ

with 2d hyperedges given by

{(σi, hi), (σi, h′i)|i ∈ [d]} .

5. Output the value
∑

σ∈[n]d

∏
i∈[d] A(σi,hi) · A(σi,h′i)

· I[hi 6= h′i].

The entries of the matrix C are given by,

C(a, b) = E
E
E
F
E
M

∑
σ∈[n]d

∏
i∈[d]

T(σi,fi) · T(σi,gi) · I[hi 6= h′i]


Returning to the quantity Tr((CC>)`), we can understand this as a sum over cycles in

the entries of C, which gives us a sum over products of random variables corresponding to
the edges in cyclic hypergraphs. Since we have assumed the entries of A are distributed sym-
metrically about 0, each term in the sum ETr((CC>)`) is non-zero only if every hyperedge
appears with even multiplicity.

We can organize the terms in Tr
(
(CC>)`

)
as follows:

• For each vertex configuration V = {a1, b1, a2, . . . , b`, a1} ∈ V ⊂ [n]2κd

1. Sample matchings E = {E1, . . . , E2`}
2. Group the edges in to blocks F = {F1, . . . ,F2`}
3. Pick random matchings M = {M1, . . . ,M2`} between the blocks.

4. For each choice of “pivots” σ = {σ1, . . . , σ2`} ⊂ [n]d we get a (2κ + 1)-uniform
hypergraph Hσ with 2d` hyperedges.

We will call the hypergraph Hσ diagonal-free (or d-free) if there are no pairs of identical
blocks matched with each other inM. We will use the notation ‖ · ‖⊕ to denote the number
of elements of odd multiplicity in a multiset, and similarly the notation ‖ · ‖0 to denote
the number of distinct elements in a multiset. We will say Hσ is even if the number of

CHAPTER 3. STRONG REFUTATION OF CSPS 48

occurrences of each hyperedge is even. Now, dividing by our upper bound on the absolute
value of the maximum entry,

γ−2κd` E
T

[
Tr
(
(CC>)`

)]
≤
∑
V ∈V

E
E
E
F
E
M

[∑
σ

I[Hσ even & d-free]

]

≤ (κ!)4d` ·
∑
V ∈V

E
E
E
F
E
M

[∑
σ

I[Hσ even & d-free] · I[‖E‖⊕ = 0]

]
(by Lemma 3.2.7)

= (κ!)4d` ·
∑
V ∈V

E
E
I [‖E‖⊕ = 0]E

F
E
M

[∑
σ

I [Hσ even & d-free]

]

≤ (κ!)4d` ·
∑
V ∈V

E
E
I
[
‖E‖⊕ = 0 ∧ ‖E‖0 ≥ 2dκ`(1− β)

]
E
F
E
M

[∑
σ

I[Hσ even & d-free]

]
(3.3.8)

+ (κ!)4d` ·
∑
V ∈V

E
E
I
[
‖E‖⊕ = 0 ∧ ‖E‖0 ≤ 2dκ`(1− β)

]
E
F
E
M

[∑
σ

I[Hσ even & d-free]

]
(3.3.9)

First we will bound the value of term in (3.3.9). Recall that by Lemma 3.3.7, if E is even
then the number of distinct labels in V ∈ V is less than ‖E‖0. Therefore,

|{E | ‖E‖⊕ = 0 ∧ ‖E‖0 ≤ 2dκ`(1− β)}| < n2dκ`(1−β)(4dκ`)!

Now, we will use the following claim:

Claim 3.3.14. For every choice of V ∈ V , E ,F ,M,∑
σ

I[‖Hσ‖⊕ = 0 ∧Hσ is diagonal-free] ≤ (2d`)! · nd`

Proof. If Hσ is diagonal-free and even, then we claim that each pivot value appears twice.
Suppose not, if σi is such that σi 6= σj for all j 6= i. Since Hσ is diagonal free, the two hyper-
edges involving σi are distinct. Since this is the unique occurrence of these two hyperedges
in Hσ, Hσ cannot be even–a contradiction. With each pivot appearing at least twice, the
number of distinct choices of σ is at most (2d`)!nd`.

By Claim 3.3.14, for each E the corresponding term is at most (2d`)!nd`. In all, this
shows that (3.3.9) can be bounded as

(3.3.9) ≤ (κ!)4d` · n2dκ`(1−β)(4dκ`)! ·
(
(2d`)! · nd`

)
≤
(

(d`κ)5κ · n2κ+1

n2κβ

)d`
≤
(
n2κ+1

d2κ−1

)d`
(3.3.10)

CHAPTER 3. STRONG REFUTATION OF CSPS 49

where the final simplification uses dκ` < nβ4.
Now we bound (3.3.8). Using Proposition 3.3.6 and reasoning similar to that in the proof

of Theorem 3.3.3, by making an analogy between the set of configurations with even E and
the norm of a random matrix under our tensoring and averaging operations, we know that∑

V ∈V

E
E
I[‖E‖⊕ = 0] ≤ c2κd`n2κd`+κd

for an absolute constant c > 0. Moreover, conditioned on ‖E‖0 ≥ 2dκ`(1− β), we will show
the following bound

E
F
E
M

∑
σ∈[n]d`

I[‖Hσ‖⊕ = 0] ≤
(
`cκβ ·

n

d(2κ−1)−8κ2β

)d`
for a constant cκβ depending only on κ, β in Lemma 3.3.15. By the preceding pair of in-
equalities, we get that

(3.3.8) ≤
(
`c′κβ ·

n2κ+1

d2κ−1−8κ2β
· nκ/`

)d`
(3.3.11)

From (3.3.10) & (3.3.11), we conclude that(
E
T

[
Tr
(
(CCT)`

)])1/2`

≤
(
`cκβ ·

nκ+1/2

dκ−1/2−4κ2β
· nκ/2`

)d
By Proposition 3.2.4, taking ` = O(log n), we conclude that

P

[
‖C‖ ≤

(
c′κβ log n · nκ+1/2

dκ−1/2−4κ2β

)d]
≥ 1− n−100 ,

We can now put together the easy bound on the maximum diagonal entry with the bound
on ‖C‖ to prove Theorem 3.3.11.

Proof of Theorem 3.3.11. Algorithm 3.3.9 returns the upper bound(
‖C‖1/d + max

I,J

(∑
i

A2
i,I,J

))1/2

.

We combine Lemma 3.3.12 with Theorem 3.3.13, and we have that with high probability,
for constants cβ and c2,(

‖C‖1/d + max
I,J

(∑
i

A2
i,I,J

))1/2

≤
(

log n · cκβ ·
nκ+1/2

dκ−1/2−4κ2β
+ c2n log n

)1/2

(3.3.12)

CHAPTER 3. STRONG REFUTATION OF CSPS 50

By picking the best possible β under the constraint β < 1/30 and dκ` < nβ/4, we have that
the former term always dominates, and we get the bound:

‖A‖inj ≤ Õ

(
n(2κ+1)/4

d(2κ−1)/4
· d2κ2 log d

logn

)
.

This concludes the proof.

Now, we prove some of the lemmas we have relied upon in the proof of Theorem 3.3.13.
We begin with a lemma bounding the probability that the hyperedges we sample all have
even multiplicity.

Lemma 3.3.15. Suppose k < nβ/4 and β < 1/30. Then conditioned on an E such that
‖E‖0 ≥ 2kd`(1− β),

E
F
E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤
(
`cdβ ·

n

k(2d−1)−8d2β

)k`
where cdβ is a constant depending on β and d.

Proof. Note that ‖Hσ‖⊕ = 0 implies that ‖F‖⊕ = 0. By applying Lemma 3.3.8 with r ← d,
c← 2k, M ← 2`, and Ei ← Ei, we obtain the following bound over the choice of F .

P
F

[‖F‖⊕ = 0|‖E‖0 ≥ 2kd`(1− β)] ≤
(

112

2βk

)2(d−1)k`(1−(4d+1)β)

(3.3.13)

Furthermore, if ‖E‖0 ≥ 2kd`(1− β) then clearly ‖F‖0 ≥ 2k`(1− β). By Lemma 3.3.16, for
every F with ‖F‖0 ≥ 2k`(1− β) we have,

E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤ (4βk`)! · nk` ·

((
112

βk

)k`(1−10β)

+ n−βk`/3

)

≤

(
k4β`4β · n ·

((
112

βk

)(1−10β)

+ n−β/3

))k`

(3.3.14)

Using (3.3.13) and (3.3.14) we conclude that,

E
F
E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤

((
112

2βk

)2(d−1)(1−(4d+1)β)

· k4β`4β · n ·

((
112

βk

)(1−10β)

+ n−β/3

))k`

Since k < nβ/4 and β < 1/30, we have that k1−14β << nβ/3, and so the first term in the
latter parenthesis dominates. This implies that,

E
F
E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤
(
cdβ` ·

n

k(2d−1)−8d2β

)k`

CHAPTER 3. STRONG REFUTATION OF CSPS 51

where cdβ is a constant depending on d and β, and where we have used the fact that 8d2 ≥
8d2 − 6d+ 4 for all d ≥ 1.

The following lemma we employ in bounding the probability that our blocks from F are
matched in a way that gives hyperedges with even multiplicity. We do this via reducing the
problem to counting the number of multigraphs with labeled edges in which every subgraph
induced by a given label is Eulerian.

Lemma 3.3.16. For every F with ‖F‖0 ≥ 2k`(1− β),

E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤ (4βk`)! · nk` ·

((
112

βk

)k`(1−10β)

+ n−βk`/3

)

Proof. Define a multigraph G as follows. In the multigraph G, there is a vertex vf for each
distinct block f ∈ F . There is an edge in G for each edge in the matchings M between
the blocks. Every choice of pivot vertices σ ∈ [n]k corresponds to a labeling of the edges
σ : E(G)→ [n]. For each edge e ∈ E(G) incident at a vertex vf ∈ V (G), there is a hyperedge
in Hσ corresponding to (σ(e), vf). The hypergraph Hσ is even if and only if for each pivot
vertex i ∈ [n], and each vertex vf ∈ V (G), the number of edges labeled i incident at vf is
even. This implies that σ−1(i) form an Eulerian subgraph for each i ∈ [n]. By Lemma 3.3.17,
the number of such labelings σ : E(G)→ [n] is at most (2|E(G)| − 2|V (G)|)! · nE(G)/2−E⊕(G)/6.

By definition of the graph G, |V (G)| = ‖F‖0 ≥ 2k`(1−β) and E(G) = 2k`. Moreover, by
applying Lemma 3.3.8 with r ← 2, c← k, M ← 2`, δ ← 1, and Ei ← Fi, we conclude that
the graph G has many odd multiedges with high probability over the choice ofM. Formally,

P[|E⊕(G)| ≤ 2βk`] ≤
(

112

βc

)k`(1−10β)

Now we are ready to wrap up the proof of the lemma.

E
M

∑
σ∈[n]k`

I[‖Hσ‖⊕ = 0] ≤ E
M

(2E(G)− 2V (G))! · nE(G)/2−E⊕(G)/6

≤ E
M

(4βk`)! · nk` · n−|E⊕(G)|/6

= (4βk`)! · nk` · E
M
n−|E⊕(G)|/6

≤ (4βk`)! · nk` ·
(
P[|E⊕(G)| ≤ 2βk`] + n−2βk`/6

)
≤ (4βk`)! · nk` ·

((
112

βk

)k`(1−10β)

+ n−2βk`/6

)

≤

(
k4β`4β · n ·

((
112

βk

)(1−10β)

+ n−β/3

))k`

CHAPTER 3. STRONG REFUTATION OF CSPS 52

Our final lemma of this section is a bound on the number of labelings of a multigraph such
that the subgraphs induced by all edge labels are Eulerian, given a bound on the number of
multi-edges appearing with odd multiplicity.

Lemma 3.3.17. Given a multigraph G, a labeling of its edges σ : E(G) → [n] is said to be
even, if the preimage of every label i forms an Eulerian subgraph (not necessarily connected)
of G. Specifically, the set of edges σ−1(i) ⊆ E(G) induce a subgraph where the degree of every
vertex is even.

|{σ : E(G)→ [n]|σ is even }| ≤ (2|E(G)| − 2|V (G|))! · n|E(G)|/2−|E⊕(G)|/6

where |E⊕(G)| is the number of multi-edges with odd multiplicity within G.

Proof. We will count the number of even labelings σ as follows:

• Pick a unordered partition of the edges of the graph in to Eulerian subgraphs. By
Claim 3.3.18, there are at most (2|E(G)| − 2|V (G)|)! of them.

• Assign a label from [n] to each Eulerian subgraph in the partition. The number of
labelings is clearly at most nt where t is the number of subgraphs in the partition. By

Claim 3.3.19, there are at most |E(G)|
2
− |E⊕(G)|

6
subgraphs in any partition. Hence, there

are at most n
|E(G)|

2
− |E⊕(G)|

6 labelings for each partition of G in to Eulerian subgraphs.

The lemma follows immediately from the Claim 3.3.18 and Claim 3.3.19 which we will show
now.

Claim 3.3.18. The number of unordered partitions of the edges of the graph in to Eulerian
subgraphs is at most (2|E(G)| − 2|V (G)|)!.

Proof. Let dv denote the degree of vertex v ∈ V (G). We can specify a partition of the edges
of G in to Eulerian subgraphs, by specifying a sequence of Eulerian traversals whose union
covers all the edges in the graph exactly once.

Consider a vertex v. Any sequence of traversals induces a matching Mv between the
edges incident at v – where e, e′ are matched if one of the traversals goes along e → v →
e′. Furthermore, given a set of matchings {Mv|v ∈ V (G)}, it uniquely identifies a set of
traversals.

Therefore the number of partitions of E(G) in to Eulerian subgraphs is at most

∏
v∈V (G)

|# matchings of edges incident atv| ≤
∏

v∈V (G)

(
dv!

(dv/2)!
· 1

2dv

)
≤

∏
v∈V (G)

(dv − 2)!

≤ (
∑

v∈V (G)

(dv − 2))! ≤ (2E(G)− 2V (G))!

CHAPTER 3. STRONG REFUTATION OF CSPS 53

Claim 3.3.19. In any partition of G in to Eulerian subgraphs, the number of partitions is at

most |E(G)|
2
− |E⊕(G)|

6

Proof. Suppose E(G) = ∪ti=1Ei(G) denote a partition of E(G) into Eulerian subgraphs. For
each edge e ∈ Ei(G) assign a weight we = 1

|Ei(G)| . By definition of the weights, we have∑
e∈E(G)

we = t .

Note that we ≤ 1
2

for all e ∈ E(G), since each subset Ei(G) contain at least two edges by

virtue of being Eulerian. Moreover, we = 1
2

if the edge e belongs to an Eulerian subgraph
Ei(G) with exactly two edges. In particular, Ei(G) = {e, e′} where e and e′ form a 2-cycle.
For every multiedge (a, b) with odd multiplicity, at least one of its edges has we ≤ 1

3
= 1

2
− 1

6
.

Therefore we conclude that

t =
∑
e∈E(G)

we ≤
∑
e∈E(G)

1

2
−

∑
(a,b)∈E⊕(G)

1

6
=
|E(G)|

2
− |E⊕(G)|

6
.

These claims together finish the proof.

Useful Combinatorial Lemmas

Define an r-grouping to be a partition of a set of size c · r into c subsets of size r. The
following lemma bounds the probability that, given a multiset with many distinct elements,
an r-grouping of the elements results in few r-sets with odd multiplicity. We rely on this
lemma in our injective tensor norm upper bounds, to bound the probability that a hypergraph
sampled from a simple graph has the evenness property.

Lemma (Restatement of Lemma 3.3.8). Fix M, r, `,N ∈ N and β ∈ (0, 1). Let E1, . . . , EM ∈
[N]r·c be multisets of elements such that the number of distinct elements in the union ∪i∈[M]Ei
is at least (1 − β)M · r · c/2. Let Gi denote a uniformly random r-grouping of elements
within Ei, sampled independently for each i ∈ [M]. Let

⊕
iGi denote the set of r-groups

(a1, . . . , ar) ∈ [N]r that appear an odd number of times within ∪iGi. Then for any 0 < δ <
3.5β,

P[| ⊕i Gi| ≤ δMc] ≤
(

112

βc

)(1−(4r+1)β−2δ)(r−1)Mc/2

Proof. We will refer to each s ∈ [N] as a “type”. Call a type s ∈ [N] infrequent if the
number of occurrences of s within ∪iEi is nonzero but at most 8.

Suppose a type s ∈ [N] appears exactly once in the sets E1, . . . , EM ,then irrespective of
the choice of the grouping, the group involving s appears exactly once. If there are more
than rδMc types that appear exactly once then,

P[| ⊕i Gi| ≤ δMc] = 0,

CHAPTER 3. STRONG REFUTATION OF CSPS 54

and the lemma holds. Henceforth, we assume that all but rδMc types appear at least twice.
Call a type to be frequent if it occurs more than 8 times within ∪iEi. Out of the rMc

elements, at most an 8β fraction are occurrences of frequent types. Otherwise, the number
of distinct types would be less than rMc ((1− 8β)/2 + 8β/8 + δ) < rMc

2
(1− β).

Moreover, this implies that the number of distinct frequent types is at most 8βrMc/8 ≤
βrMc. Finally, the number of distinct infrequent types is at least rcM

2
(1 − β) − βrMc ≥

rMc
2
· (1− 3β).

Let us sample uniform random r-groupings {Gi}i∈[M] one group at a time. Specifically,
we will sample groups g1, . . . , gcM where Gi = {g(i−1)c+1, . . . , gic}, one group at a time. We
sample the ith grouping Gi as follows:

• For j = 1 to c

• Pick the element s with the smallest number of ungrouped occurrences left within
∪Mj=iEj (breaking ties lexicographically).

• Sample the group g(i−1)c+j by picking the remaining r−1 elements uniformly at random
from ungrouped elements in Ei

It is clear that the above sampling procedure picks a uniformly random grouping {Gi}i∈[M].
We will refer to the groups picked at any stage to be configuration. So, the configuration

at the end of ith stage is Ei
def
= {g1, . . . , gi}. Given a current configuration Ei, there is a unique

element s(Ei) that will be grouped in the next step. A configuration Ei is said to be critical
if

1. s(Ei) is its final ungrouped occurrence of an infrequent type.

2. All previous occurrences of s(Ei) has been grouped with infrequent types.

3. There are at least βrc ungrouped elements within the current multiset Ej that is being
grouped.

Claim 3.3.20. For every sequence of random choices, the sampling procedure encounters at
least cM

2
· (1− (4r + 1)β) critical configurations.

Proof. There are at most 8βrcM occurrences of frequent types. This implies that among
the rMc

2
(1−3β) infrequent labels, at least rMc

2
(1−3β)−(8βrMc)(r−1) ≥ rMc

2
(1−(4r−1)β)

are grouped only with infrequent types.
For each of these rMc

2
(1− (4r− 1)β) types there is one final ungrouped occurrence. Even

assuming we match all these final occurrences among themselves, both conditions (1) & (2)
are met at least Mc

2
(1− (4r − 1)β) times during the sampling procedure.

Finally, there are at most βc groups that are picked among the final βrc elements within
the sets Ei. Therefore, for at least Mc

2
(1− (4r − 1)β)− βMc ≥ Mc

2
(1− (4r + 1)β) steps, Ei

is a critical configuration.

Define random variables {Zi}i∈[m] as follows:

Zi
def
= I[gi is final occurrence of an odd group in ∪j Gj] .

By definition, we have

|⊕jGj| =
∑
i∈[cM]

Zi

CHAPTER 3. STRONG REFUTATION OF CSPS 55

Set α =
(

56
βc

)r−1

. In order to obtain concentration bounds on
∑

i∈[cM] Zi we will bound

E[α
∑
i Zi].

Claim 3.3.21. For all α ≤
(

56
βc

)c−1

, for all t ∈ [cM] and all critical configurations Et,

E[α
∑cM
i=t Zi+1|Et] ≤ 2α · max

Et+1|Et
E[α

∑cM
i=t+1 Zi+1 |Et+1]

where the maximum is taken over all feasible configurations Et+1 from Et.

Proof. At a critical configuration Et, the next group is the last occurrence of s(Et). Recall
that s(Et) is infrequent in that it has at most 7 previous occurrences. Moreover, each of its
previous occurrences is grouped to an infrequent type (appearing less than 8 times).

There are at least βrc ungrouped elements from which the remaining r − 1 elements of
the group are chosen. For all but at most (56)r−1 group choices, the group contains a type
s′ such that this is the first occurrence of s with s′ in a group.

Therefore, for all but at most (56)r−1 choices, the group sampled is its first and only
occurrence. In particular, this implies that for a critical configuration Et,

P[Zt+1 = 0|Et] ≤
(56)r−1(

βrc
r−1

) ≤ (56

βc

)r−1

Finally, we have

E[α
∑cM
i=t+1] = P[Zt+1 = 1|Et] · α · E[α

∑cM
i=t+2 Zi |Et, Zt+1 = 1]

+ P[Zt+1 = 0|Et] · E[α
∑cM
i=t+2 Zi |Et, Zt+1 = 0]

≤ α · E[α
∑cM
i=t+2 Zi |Et, Zt+1 = 1] + α · E[α

∑cM
i=t+2 Zi |Et, Zt+1 = 0]

≤ 2α · max
Et+1|Et

E[α
∑cM
i=t+1 Zi+1 |Et+1]

Combining Claim 3.3.21 and Claim 3.3.20, we have that

E[α
∑
i∈[cM] zi] ≤ (2α)Mc(1−(4r+1)β)/2 ,

which yields the following concentration bound for all δ > 0,

P[|⊕iGi| ≤ δcM] < (2α)(1−(4r+1)β−2δ)cM/2 ≤
(

112

βk

)(1−(4r+1)β−2δ)(r−1)Mc/2

The lemma below shows that in a simple graph formed by matchings with the evenness
property, there cannot be too many more distinct vertices than distinct edges.

CHAPTER 3. STRONG REFUTATION OF CSPS 56

Lemma (Restatement of Lemma 3.3.7). Let m,n, c ∈ N, and let G be a graph which is a
union of at most c disjoint cycles. Suppose furthermore that each vertex receives labels from
the set [n], that every labeled edge appears with even multiplicity, and that there are exactly
m distinct labeled edges. Then letting L be the number of distinct vertex labels, we have

L ≤ m+ c.

Proof. We first prove the following claim:

Claim. If each labeled edge appears with multiplicity exactly 2, then L ≤ m+ c.

Proof. In this case, there are exactly 2m edges and exactly 2m vertices. We proceed by
induction on c and m. In the base case, we have c = 1 component with 2 vertices, in which
case we have at most 2 distinct labels on the vertices, confirming the claim.

Assuming the claim for c ≥ 1 components and 2m ≥ 2 vertices, consider an instance on
2m+ 2 vertices. If all labels appear ≥ 2 times, we are done, since there are 2m+ 2 vertices
and thus at most L ≤ m+1 labels. Otherwise, locate a vertex v whose label has multiplicity
1.

If v is in a cycle of length 2, remove v and its neighbor from the graph, obtaining a
smaller instance with L′ labels, c′ components, and m′ distinct edge types, with L′ + 2 ≥ L,
c′ = c−1, and m′ = m. By the induction hypothesis, L′ ≤ m′+ c′ = m+ c−1, and therefore
L ≤ m+ 1 + c, as desired.

If v’s cycle has length > 2, both v’s vertex neighbors must have the same label in order for
the edges incident on v to appear twice. We remove v and identify its neighbors, obtaining
an instance with L′ + 1 = L, m′ = m, c′ = c. Appealing to the induction hypothesis, we
have L′ ≤ m′ + c, from which we conclude that L ≤ m+ 1 + c, as desired.

Now, we reduce our lemma to the above case. Say an edge appears with even multiplicity
µ > 2, and that the labels of the edge are (a, b) ∈ [n]2. We will remove the occurrences of
this edge, and put the graph segments back together. When we remove all occurrences of
the edge (a, b), we get 3 kinds of graph segments: paths from a–b, paths from a–a, and paths
from b–b. Since a, b each have to appear µ times, we can form a matching between segments
of type a–b, gluing them together at the a endpoint to get a b–b segment. Now, we make one
cycle by gluing together a–a segments, and a separate cycle by gluing together b–b segments.
Our number of distinct edges has decreased by 1, and our number of cycles has increased
by at most 1, since we broke up at least one cycle to remove the edge (a, b). We recursively
apply this process to our instance, until we reach an instance in which there are only edges
of multiplicity 2, never increasing the quantity m+ c. In conjunction with our above claim,
the conclusion follows.

3.4 Refuting Random k-XOR Instances

In this section, we give our algorithm for refuting random k-XOR instances. In Section 3.4,
we describe the algorithm for even k; in Section 3.4, we describe the algorithm for odd k.
We first recall the problem:

CHAPTER 3. STRONG REFUTATION OF CSPS 57

Definition 3.4.1 (Random k-XOR with density α = pn(k−1)/2). A random instance of k-
XOR with density α = pn(k−1)/2 is a formula Φ on n variables x ∈ {±1}n, sampled so that
for each S ∈ [n]k:

• Independently with probability p, add constraint CS :
∏

i∈S xi = ηS, for ηS a uniformly
random Rademacher variable.

• Otherwise, with probability 1− p, add no constraint.

We let m ≈ pnk be the number of constraints, and for any assignment x ∈ {±1}n, PΦ(x) is
the fraction of constraints satisfied by x.

Problem 3.4.2 (Strongly refuting random k-XOR). Given a random k-XOR instance Φ,
certify with high probability over the choice of Φ that for all assignments x ∈ {±1}n,

PΦ(x) ≤ 1

2
+ δ + o(1),

for some constant δ ∈ [0, 1/2), where PΦ(x) is the fraction of Φ’s constraints satisfied by x.

As described in Section 3.2, there is a natural random order-k tensor that we can identify
with any k-XOR instance Φ. Given a k-XOR instance Φ with constraints C1, . . . , Cm, form
the tensor TΦ as follows: for each constraint Ci :

∏
j∈Si xi = ηSi , set the entry TSi = ηSi ; in

all other entries place a 0. We then have that for any assignment x ∈ {±1}n,

〈TΦ, x
⊗k〉 =

∑
i∈[m]

ηSi ·
∏
j∈Si

xj = m ·
(
PΦ(x)− 1

2

)

That is, the inner product 〈TΦ, x
⊗k〉 gives the difference between the number of constraints

x satisfies and the number of constraints x violates. Our strong refutation algorithm will be
based on showing that ∣∣〈TΦ, x

⊗k〉∣∣ ≤ (δ + o(1)) ·m ∀x ∈ {±1}n, (3.4.1)

for a constant δ arbitrarily close to 0.
From (3.4.1), it is clear that a good bound on ‖TΦ‖inj would give a refutation algorithm,

and so we could hope that our algorithms for bounding tensor norms would suffice. However,
when the probability of sampling a constraint p ≤ n−k/2, the tensor TΦ becomes sparse
enough that its norm is maximized by sparse vectors, so that ‖TΦ‖inj ≈ 1. We are only
interested in balanced vector x ∈ {±1}n, and so this is a poor upper bound–it will only let

us certify that PΦ(x) ≤ 1
2

+ nk/2

m
≥ 1.

So our algorithm for the case of k-XOR is almost identical to our algorithm for bounding
tensor norms, but with an additional twist to get rid of the sparse vectors. We form our
certificate as we did in the tensor norm algorithm: we flatten TΦ to a matrix T , then take
the dth Kronecker power of T , and we average over rows and columns corresponding to
permutations of the same index set. But now, there is one additional step: we delete any
row or column indexed by a multiset S ∈ [n]kd/2 which contains an element i with multiplicity
greater than O(log n).

CHAPTER 3. STRONG REFUTATION OF CSPS 58

It is not difficult to see why this should help: supposing we started with a sparse vector,

say the standard basis vector e1 ∈ Rn, this will ensure that e
⊗kd/2
1 has 0 projection onto our

matrix. On the other hand, the choice of O(log n) as our upper bound on the multiplicity
makes sense, since we are eliminating an o(1)-fraction of the Frobenius norm of the certificate
in this way, even when d ≥ n1/2–if we were to delete all rows and columns in which an element
appears with multiplicity ≥ 2, then once d = n1/2 we would be deleting a constant fraction
of the rows and columns, by the birthday paradox.

This introduces some technicalities in the analysis–in particular, once we delete these
rows and columns, it is no longer obvious that we are working with a valid relaxation of
〈TΦ, x

⊗k〉 over x ∈ {±1}n. But as before, the main theorems of this section will have to do
with bounding the norm of our matrix certificate–arguing that the matrix certificate is valid
will be straightforward.

We begin by detailing our algorithm for even k, then give the somewhat more involved
analysis for odd k (the additional complication introduced by the lack of a natural matrix
flattening for odd-order tensors).

Even k-XOR

We begin by describing our matrix certificate for this case, and establishing an upper bound
on its norm–as mentioned above, this is the main result of this section. Later, in Section 3.4,
we will show how to use the matrix to get a valid certificate.

Algorithm 3.4.3 (Even k-XOR Certificate at level d).
Input: A k-XOR instance Φ for even k on n variables and m clauses. Parameters d ∈ N.

1. Form the tensor TΦ from Φ as described above (see (3.4.1)).

2. Take the natural nk/2×nk/2 matrix flattening T of Tinj, and take the Kronecker power
T⊗d

3. Letting Ŝdk/2 be the set of all permutation matrices that perform the permutations
corresponding to Sdk/2 on the rows and columns of T , form

C(d)
def
= E

Π,Σ∈Ŝdk/2

[
ΠT⊗dΣ

]
.

4. Zero out any row or column of C(d) indexed by a multiset in [n]kd/2 containing more
than 10 log n copies of any i ∈ [n].

Output: The value ‖C(d)‖.
The following theorem gives a bound on the value output by Algorithm 3.4.3.

Theorem 3.4.4. Let k, n, d, k ∈ N, so that d log n � n, k is even. Let Φ be a random in-
stance of k-XOR on n variables with Θ(pnk) clauses (so each constraint is sampled uniformly
and independently with probability p). Let C(d) be the matrix formed from the instance Φ as

described in Algorithm 3.4.3. Then if p · d(k/2−1)nk/2 > 1, there is a constant ck depending
on k such that with high probability,

‖C(d)‖1/d ≤
(
ck log2k n · p

1/2nk/4

d(k−2)/4

)
.

CHAPTER 3. STRONG REFUTATION OF CSPS 59

We will prove the theorem below, in Section 3.4. First, we will see how to use this
certificate, with the deleted high-multiplicity rows and columns, to strongly refute k-XOR
instances.

Validity of certificate with deleted rows and columns

When we zero out the high-multiplicity rows and columns in Algorithm 3.4.3,〈
TΦ, x

⊗k〉d = (x⊗dk/2)>
(
C(d) + C≥

)
x⊗dk/2,

where C≥ is a matrix containing only the zeroed out rows and columns. So our upper bound
on ‖C(d)‖ from Theorem 3.4.4 is not enough. It is not hard to bound the `1-norm of C≥.
However, because for our values of p, ‖C(d)‖ is close to 0, the `1-norm bound is too costly
when we try to bound 〈TΦ, x

⊗k〉. For this reason, we will work with PΦ(x), the fraction of
satisfied constraints, which is bounded away from 0. We will relate (PΦ(x))d to the matrix
norms of C1, . . . Cd.

Let us write

PΦ(x) = E
i∼[m]

[Pi(x)] = E
i∼[m]

[
1

2
(1 + Ci(x))

]
,

where P1(x), . . . , Pm(x) are the 0 − 1 valued predicates of the instance Φ, and
C1(x), . . . , Cm(x) are the ±1-valued predicates of the instance Φ. We have that

(PΦ(x))d = E
i1,...,id∼[m]d

[
d∏
`=1

Pi`(x)

]
.

We will prove that the quantity above is not changed very much if we remove sets i1, . . . , id
corresponding to high-multiplicity rows and columns.

Proposition 3.4.5. Let Φ be a random k-XOR formula in which each clause is sampled
independently with probability p.

Let Cdlow ⊂ [m]d be the set of all ordered multisets of clauses Ci1 , . . . , Cid from Φ with
the property that if we form two multisets of variables I, J ∈ [n]dk/2 with I containing the
first k/2 variables of each Ci` and J containing the last k/2 variables of each Ci`, then
I, J are both low-multiplicity multisets, in that both have no element of [n] with multiplicity
≥ 100 log n.

Suppose that no variable appears in more than mmax clauses. Then if d � n and
dkmmax < 200εm log n,

PΦ(x) ≤

(
E

i1,...,id∼Cdlow

[
d∏
`=1

Pi`(x)

])1/d

+ ε

for all x ∈ {±1}n with high probability. Furthermore when p ≥ 200 logn
nk−1 , we have that

ε = o(1) with high probability.

CHAPTER 3. STRONG REFUTATION OF CSPS 60

Proof. Let mmax be an upper bound on the number of clauses any variable xi appears in the
instance Φ. We sample a uniform element C ∼ Cdlow, C = C1, . . . , Cd in the following way:

• For t = 1, . . . , d: Let At ⊂ Φ be the set of clauses such that for any C ′ ∈ A, the multiset
C1, . . . , Ct−1, C

′ is not excluded from Ctlow. Choose a uniformly random C ∼ At and
set Ct := C, adding C to C.

This sampling process clearly gives a uniformly random element of Cdlow.

Claim 3.4.6. At step t+ 1 there are at least m− t k·mmax

200 logn
clauses that can be added.

Proof. In order to exclude any variable i ∈ [n], we must add at least 200 log n copies of
i. Further, to exclude ` distinct variables in [n], at least 200 log n copies of each variable,
for a total of 200` log n variables, which requires adding at least 200` log n/k clauses. If `
distinct variables are excluded, then at most ` ·mmax clauses are excluded. The claim now
follows.

Now, define the random variable Xt =
∏t

j=1 Pj(x) to be the value of x on Ct. We apply
Claim 3.4.6, along with the observation that the total number of satisfied clauses can only
drop by 1 for each clause removed regardless of the assignment x, to conclude that

E[Xt+1|C1, . . . , Ct] ≥
(
PΦ(x)− t k ·mmax

m · 200 log n

)
·Xt

From this we have that E[Xt] ≥
(
PΦ(x)− t kmmax

200m logn

)
· E[Xt−1] from which we have that as

long as dkmmax ≤ ε200m log n,

E[Xd] ≥
d∏
t=1

(
PΦ(x)− t kmmax

200m log n

)
≥ (PΦ(x)− ε)d .

Which by definition of Xd gives us our first result.
Now, we can establish that dkmmax ≤ ε · 200m log n with high probability. A Chernoff

bound implies that when p ≥ 200 log n/nk−1, 2pnk ≥ m ≥ pnk/2 with probability at least
1 − 2 exp(−pnk/8), and that mmax ≤ 2pnk−1 with probability at least 1 − exp(−pnk−1/2),
and so by a union bound and using the assumption that pnk−1 ≥ 200 log n, we have our
result by taking ε = Θ(1/ log n).

Now, we will relate the right-hand-side of Proposition 3.4.5 to the matrices from Algo-
rithm 3.4.3. We recall that given a k-XOR instance Φ, Cdlow ⊂ [m]d is the set of all ordered
multisets of clauses Ci1 , . . . , Cid from Φ with the property that if we form two multisets of
variables I, J ∈ [n]dk/2 with I containing the first k/2 variables of each Ci` and J containing
the last k/2 variables of each Ci` , then I, J are both low-multiplicity multisets, in that both
have no element of [n] with multiplicity ≥ 100 log n. By Proposition 3.4.5,

(PΦ(x)− o(1))d ≤ E
i1,...,id∼Cdlow

[
d∏
`=1

Pi`(x)

]
= E

i1,...,id∼Cdlow

[
d∏
`=1

1

2
(1 + Ci`(x))

]

CHAPTER 3. STRONG REFUTATION OF CSPS 61

and expanding the product on the right and applying the symmetry of the uniform distri-
bution on Cdlow,

=

(
1

2

)d d∑
j=0

(
d

j

)
E

i1,...,ij∼Cjlow

[
d∏
`=1

Ci`(x)

]

and by definition, for any assignment x ∈ {±1}n,

=

(
1

2

)d d∑
j=0

(
d

j

)
1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2),

where C(j) is the matrix output by Algorithm 3.4.3 when d ← j. We won’t get a good
bound on ‖C(j)‖ when j is too small, but we can take

=

(
1

2

)d t∑
j=0

(
d

j

)
+

(
1

2

)d d∑
j=t+1

(
d

j

)
1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2) .

(3.4.2)

We’ll take t = α · d for some small constant α, so that the sum on the left is small, and
the sum on the right we will bound by applying Theorem 3.4.4, our upper bound on ‖C(j)‖.
We will also need a bound on |Cjlow|, which we can easily get by modifying our proof of
Proposition 3.4.5:

Lemma 3.4.7. If Φ is a random k-XOR instance on n variables with m clauses such that
no variable participates in more than mmax clauses, then so long as d � n and dkmmax ≤
200εm log n,

|Cdlow| ≥ (1− ε)dmd .

Furthermore, when p ≥ 200 logn
nk−1 , we can take ε = o(1) with high probability.

The proof proceeds exactly as the proof of Proposition 3.4.5, but instead of bounding
the decrease in the value as each clause is added, one bounds the probability that a clause
is chosen which will make the multiplicity of some index too high.

We are now ready to prove that computing the norm of O(d) matrices C(αd), . . . , C(d) will
give us a strong refutation algorithm for random k-XOR. This concludes the proof of the
refutation theorem, modulo the proof of the C(d) matrix norm bound from Theorem 3.4.4,
which we give in the next subsection.

Theorem 3.4.8. Let k be even, and let d � n. Then there is an algorithm that certifies
with high probability that a random k-XOR instance has value at most 1

2
+ γ + o(1) for any

constant γ > 0 at clause density m/n = Õ
(
nk/2−1

d(k/2−1)

)
(where the Õ hides a dependence on γ

and k) in time nO(d).

CHAPTER 3. STRONG REFUTATION OF CSPS 62

Proof. Define β := dkmmax

200m logn
, where mmax is the maximum number of clauses any variable

participates in. By Proposition 3.4.5 and the proceeding calculations culminating in (3.4.2),
with high probability over the choice of the instance Φ, for any x ∈ {±1}n,

(PΦ(x)− β)d ≤ 1

2d

t∑
j=0

(
d

j

)
+

1

2d

d∑
j=t+1

(
d

j

)
1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2) .

Setting t = δd for some δ < 1,

≤ 1

2d
·

(
δd∑
j=1

(
d

j

))
+

d∑
j=δd+1

(
d
j

)
2d
· 1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2)

For the terms in the right-hand sum, we can apply our bound on |Cjlow| from Lemma 3.4.7
and the fact that ‖x‖ = n1/2, to conclude that

1

|Cjlow|
· (x⊗jk/2)>C(j)(x

⊗jk/2) ≤ ‖x‖
jk

|Cjlow|
· ‖C(j)‖ =

njk/2

|Cjlow|
· ‖C(j)‖

By Lemma 3.4.7 and Theorem 3.4.4,

≤ njk/2

(1− β)jmj
·
(
nk/2p · ck log2k n

j(k/2−1)

)j/2
And since m = Θ(pnk) w.h.p.,

≤ njk/2

(1− β)j(0.1pnk)j
·
(
nk/2p · ck log2k n

j(k/2−1)

)j/2
≤
(

c′k log2k n

(1− β)2pnk/2 · jk/2−1

)j/2
.

for some constant c′d, where the second inequality holds with high probability from the
conditions of Theorem 3.4.4, and so also holds with high probability simultaneously for all
j ∈ [δd, d] by a union bound.

The term comprised of the sum of binomial coefficients is at most

1

2d

δd∑
j=0

(
d

j

)
≤ 2(H(δ)−1)d,

where H(·) is the binary entropy function, H(δ) = −δ log2 δ − (1− δ) log2(1− δ).
Since the coefficients of the C(j) terms sum to < 1, we have that for some α ∈ [δ, 1],

PΦ(x)− β ≤

(
2(H(δ)−1)d +

(
c′k

log2k n

(1− β)2pnk/2(αd)k/2−1

)αd/2)1/d

CHAPTER 3. STRONG REFUTATION OF CSPS 63

Now, for p� Õ(n−k/2d−(k/2−1)), where the Õ hides a dependence on k and α > δ, β = o(1)
and the latter quantity is o(1). Thus, for sufficiently large n the term in the parenthesis
is at most (1 + o(1))2H(δ)−1, which we can take to be a constant arbitrarily close to 1

2
by

choosing sufficiently small constant δ. We can certify this bound in time nO(d) ·d, by running
Algorithm 3.4.3 to compute ‖C(j)‖ for each j ∈ [δd, d].

Bounding the Even Certificate Spectral Norm

Here, we prove the norm bound on the matrix ‖C(d)‖ given in Theorem 3.4.4, the main
theorem of this section.

Theorem (Restatement of Theorem 3.4.4). Let k, n, d, k ∈ N, so that d log n� n, k is even.
Let Φ be a random instance of k-XOR on n variables with Θ(pnk) clauses (so each constraint
is sampled uniformly and independently with probability p). Let C(d) be the matrix formed

from the instance Φ as described in Algorithm 3.4.3. Then if p · d(k/2−1)nk/2 > 1, there is a
constant ck depending on k such that with high probability,

‖C(d)‖1/d ≤
(
ck log2k n · p

1/2nk/4

d(k−2)/4

)
.

The proof is similar to that of Theorem 3.3.3, except that, because the moments of the
entries of TΦ depend on p, and because we rely on getting an accurate bound in terms of
p, our counting arguments have to be much more precise. So we require stricter, specialized
analogues of our even simple graphs count (Proposition 3.3.6) and our even hypergraph
sampling probability (Lemma 3.2.8).

Proof. We will apply the trace power method (Proposition 3.2.4) to C(d), for which it suffices
to obtain an upper bound on E[Tr((C(d)C

>
(d))

`)]. We recall from Section 3.2 our interpretation

of the (S, T)th entry of C(d) as the average over all k-hypergraph matchings between two

multisets S, T ∈ [n]dk/2; additionally, now by construction we can restrict our attention to

S, T which do not have more than R
def
= 100 log n copies of any one vertex (since those

rows/columns are zeroed out). For convenience, we say such sets are R-multilinear.
We also recall that the trace gives us a sum over all R-multilinear vertex configurations

consisting of sets S1, . . . , S2` ∈ [n]dk/2, and for each vertex configuration an average over all
choices of sequences of hypergraph matchings. Let the set of all valid R-multilinear vertex
configurations be denoted VR, and let the set of all hyperedge matching sequences be denoted
H. For H ∈ H and V ∈ VR, denote by (V,H) the hypergraph given by the hyperedges H
on the vertex configuration V . Applying the above observations, and recalling that we have
assembled C(d) from the random tensor T := TΦ, we have that

E[Tr(C(d)C
>
(d))

`] =
∑
V ∈VR

E
H∈H

 ∏
(i1,...,id)∈(V,H)

Ti1,...,id

 ,

CHAPTER 3. STRONG REFUTATION OF CSPS 64

The expectation of each product is 0 if any hyperedge in (V,H) appears with odd multiplicity,
and is pM if exactly M distinct hyperedges appear in (V,H). Thus,

E[Tr(C(d)C
>
(d))

`] ≤
∑
V ∈VR

d∑̀
M=1

pM · E
H∈H

[I((V,H) even) · I((V,H) has M hyperedges)]

=
∑
V ∈VR

d∑̀
M=1

pM · P
H∈H

[(V,H) even with M hyperedges)] . (3.4.3)

To bound this probability, we will again sample uniformly H ∼ H in a two step process.

1. Sample a uniformly random perfect matching (with 2-edges rather than hyperedges)
between each set Si, Si+1 ∈ VR–call the edge set sampled in this manner E, so that we
now have the graph (V,E).

2. Sample hyperedge matching configuration from E by choosing a uniform random group-
ing of the edges between Si, Si+1 into groups of k/2 = κ edges.

We invoke the following lemma, which is a very slight embellishment upon Lemma 3.2.7:

Lemma 3.4.9. Let h,w, κ, t, τ ∈ N. Let V ∈ VR be a vertex configuration with R-multilinear
vertex sets S1, . . . , Sw ∈ [n]κh. Let H ∈ H be a hypergraph configuration with w 2κ-uniform
hypergraph matchings between the sets Si, Si+1∀i ∈ [w], with κ vertices from Si and κ vertices
from Si+1 in each hypergraph matching.

Suppose that (V,H) has τ distinct labeled hyperedges and the evenness property, where
hyperedges on the same vertex set but with a different partition into Si, Si+1 count as distinct.
Suppose that we sampled H by first choosing a set of simple-edge perfect matchings E on V ,
then grouping them into hyperedges. Then

P((V,E) even with t ≤ κτ edges | (V,H) even with τ edges) ≥
(

1

κ!

)wh
.

Proof. The proof is almost identical to that of Lemma 3.2.7–choosing a random matching
within each hyperedge gives a uniformly random E from which H is sampled, and that with
probability at least (κ!)−wh we choose the same matching in every copy of every hyperedge.
We need only add that if a hyperedge hi ∈ (V,H) has multiplicity a, then if we chose the same
matching in every copy of hi, all κ of the simple edges making up hi will have multiplicity
at least a, so if t is the total number of distinct edges in (V,E), we have t ≤ κτ and also the
evenness property.

Letting EMH be the event that (V,H) is even with M distinct hyperedges and letting EkM/2
E

be the event that (V,E) is even with at most kM/2 distinct hyperedges, Lemma 3.4.9 (and
the asymmetry of TΦ) with w ← 2`, h← d, τ ←M , κ← k/2 implies that

P
H∈H

((V,H) even with M edges) =
P(EMH , E

kM/2
E)

P(EkM/2
E | EMH)

≤
(
k

2
!

)2d`

P(EMH , E
kM/2
E) (by Lemma 3.4.9)

CHAPTER 3. STRONG REFUTATION OF CSPS 65

≤
(
k

2

)dk`
P(EME) · P(EMH | E

kM/2
E) .

Therefore, from (3.4.3) we have

E[Tr(C(d)C
>
(d))

`] ≤
(
k

2

)dk` ∑
V ∈VR

d∑̀
M=1

P(EkM/2
E) · P(EMH |E

kM/2
E) · pM ,

Now, we use a lemma to bound the conditional probability of sampling an even hyperedge
matching with M hyperedges, given that we sampled an even matching with at most kM/2
edges:

Lemma 3.4.10. Suppose h,w, κ, n, τ ∈ N. Let G = (V,E) be a graph consisting of w sets of
κh vertices each with R-multilinear labels from [n], where E is a set of w perfect matchings
M1, . . . ,Mw, so that Mi is a perfect matching between Si and Si+1, and α = a1, . . . , at is a
list of even edge multiplicities of E on the labeled vertex set V , so that

∑
ai = κwh.

Suppose we sample a hyperedge matching configuration H from E by uniformly grouping
the edges in each matching from Si to Si+1 into hyperedges of order 2κ, and let τ be a number
of distinct hyperedges that is possible to sample from (V,E) in this way. Then,

P((V,H) even with τ edges | (V,E) even) ≤ (2eκκκRκ+1w)wh

(κh)(κ−1)(wh−τ)
.

We’ll prove Lemma 3.4.10 below in Section 3.4. For now, we apply Lemma 3.4.10 with
w ← 2`, h← d, κ← k/2 and τ ←M , which for R-multilinear V ∈ VR implies that

P(EMH |E
kM/2
E) ≤ (4ek/2Rk/2+1(k/2)k/2`)2d`

(dk/2)(k/2−1)(2d`−M)
.

Combining this with the above and letting c1 := 4ek/2(k/2)k/2 for convenience,

E[Tr(CC>)`] ≤
(
k

2

)dk` ∑
V ∈VR

d∑̀
M=1

P(EkM/2
E) · (c1R

k/2+1`)2d`

(dk/2)(k/2−1)(2d`−M)
· pM . (3.4.4)

It remains for us to bound P((V,E) even with ≤ kM/2 edges). We now interchange the
order of the summation, and bound the sum over V for a fixed value of M . Letting M be
the set of all possible edge configurations E, we have∑

V ∈VR

P
E

(EkM/2
E) =

∑
V ∈VR

|{E | (V,E) even with ≤ kM/2 edges}|
|M|

=
|{E, V | (V,E) even with ≤ kM/2 edges }|

|M|
. (3.4.5)

We will bound this quantity with the following proposition, which counts the number of
V ∈ VR that yield and even graph with at most t edges on a fixed E ∈M.

CHAPTER 3. STRONG REFUTATION OF CSPS 66

Proposition 3.4.11. Let w, h, n ∈ N. Let α = α1, . . . , αt be a sequence of t even numbers
so that

∑t
i=1 αi = w · h. Let E = M1, . . . ,Mw be a sequence of perfect matchings between

two sets of size h.
Let Gα,Ew×h be the set of all graphs which have a vertex set comprised of w R-multilinear

multisets S1, . . . , Sw ∈ [n]h, and have edges forming the perfect matching Mi between Si, Si+1

(where the indexing is modulo w), so that the labels in [n] assigned to the vertices induce
exactly t distinct labelings for the edges, and the labeled edges have multiplicities α1, . . . , αt.
In words, Gα,Ew×h is the set of w × h matching cycles with matchings specified by E that have
edge multiplicities α when labeled with R-multilinear labels from [n].

If w · h ≤ n,
|Gα,Ew,h | ≤ (5Rw)wh(wh)3 · nt+h .

We will prove this proposition below, in Section 3.4. Applying Proposition 3.4.11 with
h← kd/2, w ← 2`, and t← m, we have that for a fixed E ∈ M and for a fixed list of edge
multiplicities a1, . . . , am,

|{V | (V,E) has m edges with multiplicities a1, . . . , am}| ≤ (10R`)dk` · (dk`)2 · nm+dk/2.

where we have used the assumption that dk` � n to meet the requirements of Proposi-
tion 3.4.11. The number of possible edge multiplicity lists a1, . . . , am for a given value of m
is at most

(
m+dk`−1
m−1

)
≤ 22dk`. Thus, applying (3.4.15) and noting that there are |M| choices

for E for each V ,

∑
V ∈VR

P
E

(EkM/2
E) ≤ 1

|M|
·
kM/2∑
m=1

|M| ·
∑

a1,...,am

|{V |(V,E) has m edges w/even mults a1, . . . , am}|

≤
kM/2∑
m=1

22dk` · (10R`)dk` · (dk`)2 · nm+dk/2 ≤ (40R`)dk` · (dk`)2 · nkM/2+dk/2+1 .

Combining (3.4.4) and the above, there is a constant c2 depending on k so that

E[Tr(C(d)C
>
(d))

`] ≤
(
k

2

)dk` d∑̀
M=1

pM · (c1R
k/2+1`)2d`

(dk/2)(k/2−1)(2d`−M)

∑
V ∈VR

P(EkM/2
E)

≤
(
c2R

2k+2`k+2

d2(k/2−1)

)d`
· (dk`)2ndk/2+1 ·

d∑̀
M=1

(
pd(k/2−1)nk/2

)M
By assumption, p · (dk/2−1nk/2) ≥ 1, so the term M = d` dominates:

≤
(
c2R

2k+2`k+2

d2(k/2−1)

)d`
· (d`)2ndk/2+1 · d`

(
d(k/2−1)pnk/2

)d`
=

(
c2R

2k+2`k+2 · pnk/2

dk/2−1

)d`
· (d`)3ndk/2+1 .

CHAPTER 3. STRONG REFUTATION OF CSPS 67

Choosing ` = O(d log n), recalling that R = 100 log n, and invoking Proposition 3.2.4, we
have that with probability 1− n−100, for some constant ck := c(k),

‖C(d)‖1/d ≤ ck log2k n ·
(
p1/2nk/4

d(k−2)/4

)
.

The conclusion follows.

Odd k-XOR

In this section, we modify our algorithm for refuting random even k-XOR instances to handle
odd k-XOR instances. The odd k-XOR algorithm is extremely similar to the algorithm for
even k-XOR, save for complications introduced by the fact that an odd-order tensor has no
natural matrix flattening.

The solution is to apply the Cauchy-Schwarz inequality to the objective value.5 Let
k = 2κ+ 1 for some integer κ. For the tensor TΦ formed by the constraints of Φ and for its
nκ × nκ slices Ti ∀i ∈ [n], we have that

〈
x⊗k,TΦ

〉2 ≤

∑
i∈[n]

x2
i

∑
i∈[n]

(
(x⊗κ)>Tix

⊗κ)2

 = n · (x⊗2κ)>

∑
i∈[n]

Ti ⊗ Ti

x⊗2κ .

Now, the first technicality arises–since the entries (Ti ⊗ Ti)(ab),(cd) = Ta,c,i ·Tb,d,i are always
squares when a = b and c = d, we must subtract them from the matrix

∑
i Ti ⊗ Ti, as

otherwise they contribute too much to the norm. Thus, using squares(·) to refer to the part
of the matrix for which a = b and c = d, we instead will use that the number of constraints

m = (x⊗2κ)> squares
(∑

i∈[n] Ti ⊗ Ti
)
x⊗2κ, and that

〈
x⊗k,TΦ

〉2 −mn ≤ n · (x⊗2d)>

∑
i∈[n]

Ti ⊗ Ti − squares(Ti ⊗ Ti)

x⊗2d . (3.4.6)

We can also view this as doing one step of resolution, so that we have gotten a 4κ-XOR
instance starting from a (2κ+ 1)-XOR instance. That is how we will treat our new instance
from now on.

Suppose Φ has ±1-constraint predicates C1, . . . , Cm, so that Ca(x) = ηa ·
∏

j∈Sa xj. We

create a new 2(k − 1)-XOR instance Ψ as follows. For each a, b ∈ [n], a 6= b: if Ca and Cb
both contain the variable i in the kth position, add the ±1 constraint predicate C ′ab(x) =

ηa · ηb ·
(∏

j∈Sa xj

)(∏
j∈Sa xj

)
to Ψ. Let m′ be the number of clauses in Ψ.

5We remark that this idea is not new, and has appeared before (as early as e.g. [FG01])—however it
does introduce some new challenges in our analysis.

CHAPTER 3. STRONG REFUTATION OF CSPS 68

The right-hand side of (3.4.6) is n ·
∑

abC
′
ab(x) = n · 2m′ · (PΨ(x) − 1

2
), where PΨ(x) is

the fraction of clauses of Ψ satisfied by x. Combining this with the above calculations,(
2m

(
PΦ(x)− 1

2

))2

≤ nm+ n · 2m′ ·
(
PΨ(x)− 1

2

)
,

PΦ(x) ≤ 1

2
+

1

2m

√
nm+ 2nm′ ·

(
PΨ(x)− 1

2

)
. (3.4.7)

Now, we will essentially apply our even-k-XOR strategy to Ψ. The only issue is that the
clauses of Ψ are not independent, so we will need to zero out not only rows and columns
indexed by high-multiplicity subsets of [n]2κ, but also get rid of terms that contain the same
slice with too high a multiplicity. So, instead of taking the dth tensor power of the matrix∑

i Ti⊗Ti− squares(Ti⊗Ti), we omit the cross-products in which Ti⊗Ti appears more than
100 log n times for any i ∈ [n].

Formalizing this, we introduce our matrix certificate for the odd case:

Algorithm 3.4.12 (Odd k-XOR certificate at level d).
Input: A k-XOR instance for odd k = 2κ + 1 on n variables with m clauses C1, . . . , Cm,
where Ca(x) = ηa ·

∏
j∈Sa xj for Sj ∈ [n]k and ηa ∈ {±1}.

1. Form the tensor T := TΦ by setting TSa = ba for all a ∈ [m], and setting all other
entries to 0.

2. Initialize an empty n2dκ × n2dκ matrix Γ.

3. For each ordered multiset U ∈ [n]d in which no entry appears with multiplicity >
100 log n:

a) Add the squared tensor of the slices of TΦ corresponding to the indices in U :

Γ := Γ +
⊗
i∈U

(Ti ⊗ Ti − squares(Ti ⊗ Ti))

where squares(·) is the restriction to entries (I, J), (K,L) such that (I,K) = (J, L)
as ordered multisets.

4. Letting Ŝ2dκ be the set of all permutation matrices that perform the index permutations
corresponding to S2dκ on the rows and columns of Γ, form

Γ(d) := E
Π,Σ∈Ŝ2dκ

[ΠΓΣ] .

5. Set to zero all rows and columns of Γ(d) indexed by multisets S ∈ [n]2dκ which contain
some element of [n] with multiplicity > 100 log n.

Output: The value ‖Γ(d)‖.

The following theorem, which is the main theorem of this section, gives a bound on the
value output by Algorithm 3.4.3.

CHAPTER 3. STRONG REFUTATION OF CSPS 69

Theorem 3.4.13. Let k, n, d ∈ N, so that d log n� n, and furthermore let k be odd so that
k = 2κ + 1. Let Φ be a random instance of k-XOR on n variables x1, . . . , xn, with Θ(pnk)
clauses (so each constraint is sampled uniformly and independently with probability p). Let
Γ(d) be the matrix formed from the instance Φ as described in Algorithm 3.4.12. Then if

d(k−2)/2nk/2p > 1, there exists a constant ck depending on k such that with high probability
over the choice of Φ,

‖Γ(d)‖1/d ≤ Õ

(
pnk/2

d(k−2)/2

)
.

We will prove the theorem below, in Section 3.4, and we will now show how to take this
matrix and acquire a certificate from it.

Validity of the Odd Certificate

Again, our strategy will be to work with the polynomial (PΨ(x))d, which is not much altered
by removing terms corresponding to the high-multiplicity rows, columns, or slice cross-
products.

Proposition 3.4.14. Let Φ be a random k-XOR formula in which each clause is sampled
independently with probability p, and let Ψ be the 2(k − 1)-XOR instance obtained from Φ
as described above, where Ψ has m′ clauses {Cab}ab corresponding to pairs of clauses from Φ
sharing the same final variable.

Let Ĉdlow ⊂ [m′]d be the set of all ordered multisets of clauses Ca1b1 , . . . , Cadbd from Ψ with
the property that if we form three multisets of variables, I, J ∈ [n]d(k−1) and S ∈ [n]d, with
I containing the first (k − 1)/2 variables of each Ca` , Cb`, J containing the next (k − 1)/2
variables of each Ca` , Cb`, and S containing the last (shared) variable of Ca` and Cb`, then
I, J are both low-multiplicity multisets, in that both have no element of [n] with multiplicity
> 100 log n.

Let omax be the maximum number of clauses of Ψ any variable appears in. Then if d� n
and d(2k − 1)omax < 200εm′ log n,

PΨ(x) ≤

(
E

a1b1,...,adbd∼Ĉdlow

[
d∏
`=1

1

2
(1− Ca`(x)Cb`(x))

])1/d

+ ε

for all x ∈ {±1}n with high probability. When p ≥ 200 logn
nk−1 , we have that ε = o(1) with high

probability.

Proof. The proof is very similar to that of Proposition 3.4.14. First, let m′ be the number of
clauses in Ψ, and let omax be the maximum number of clauses of Ψ that any variable i ∈ [n]
appears in (even if it the shared variable and is included with multiplicity 2).

By definition, we have that PΨ(x) gives the proportion of satisfied clauses, so

(PΨ(x))d = E
a1b1,...,adbd∼[m′]d

[
d∏
`=1

1

2
(1− Ca`(x)Cb`(x))

]
. (3.4.8)

CHAPTER 3. STRONG REFUTATION OF CSPS 70

Since only a o(1) fraction of the multisets of indices, [n]dk, will not contain any item with
multiplicity more than 100 log n, we will be able to prove that those terms contribute negli-
gibly.

We sample a uniform element C ∼ Ĉdlow, C = (Ca1 , Cb2), . . . , (Cad , Cbd) in the following
way. For t = 1, . . . , d:

• Let At ⊂ I be the set of pairs of clauses such that for any (C ′, C ′′) ∈ A,

(Ca1 , Cb1), . . . , (Cbt−1 , Cbt−1), (C ′, C ′′) ∈ Ĉtlow, that is, the set of clauses from Ψ that
maintain the low-multiplicity conditions.

• Choose a uniformly random (C ′, C ′′) ∼ At and set Cat , Cbt := (C ′, C ′′), adding (C ′, C ′′)
to C.

This sampling process clearly gives a uniformly random element of Ĉtlow.

Claim 3.4.15. At step t+ 1 there are at least m′ − t (2k−1)·omax

R
clauses that can be added.

Proof. In order to exclude any variable i ∈ [n], we must add at least 100 log n copies of i..
Further, to exclude ` distinct variables in [n], we must add at least 100 log n copies of each
variable, for a total of 100` log n variables, which requires adding at least 100` log n/(2k− 1)
pairs (since each pair contains 2k− 1 variables). If ` distinct variables are excluded, then at
most ` · omax pairs of clauses are excluded. The claim now follows.

Now, define the random variable Xt =
∏t

j=1
1
2
(1− Caj(x)Cbj(x))–this is the 0-1 value of

x on Ct. We apply Claim 3.4.15, along with the observation that PΨ(x) can only drop by
1/m′ for each clause pair removed, to conclude that

E[Xt+1|Ca1b1 , . . . , Catbt] ≥
(
PΨ(x)− t(2k − 1) · omax

100m′ log n

)
·Xt .

From this we have that E[Xt] ≥
(
PΨ(x)− t (2k−1)omax

100m′ logn

)
· E[Xt−1] from which we have that as

long as d(2k − 1)omax ≤ ε100m′ log n,

E[Xk] ≥
d∏
t=1

(
PΨ(x)− t(2k − 1)omax

100m′ log n

)
≥ (PΨ(x)− ε)d .

So taking ε = 1/ log n, if we can establish that the inequality d(2k − 1)omax ≤ 100m′ with
high probability when p ≥ Ω(log n/nk−1), then we are done.

A Chernoff bound implies that pnk/2 ≤ m ≤ 2pnk with probability at least 1 −
exp(−Ω(pnk)), and that each variable’s degree mi is pnk−1/2 ≤ mi ≤ 2pnk−1 with prob-
ability at least 1 − exp(−Ω(pnk−1)). We have that m′ = (

∑
im

2
i) −m, and so by a union

bound and using the assumption that pnk−1 ≥ Ω(log n), we have that

m′ ≥ p2n2k−1/4.

Let oi be the degree of variable i in Ψ. To bound omax, we observe that oi is made up of
occurrences of pairs in which i is the shared variable, and of pairs in which i is not the shared

CHAPTER 3. STRONG REFUTATION OF CSPS 71

variable. The contribution of the first category is m2
i , and with high probability by our union

bound m2
i ≤ (2pnk−1)2. In the second category, we have

∑
jmj ·mij, where mij is the number

of clauses containing i and j. By our previous assumption regarding the concentration of
the mi, we have that

∑
jmj ·mij ≤ 2pnk−1

∑
jmij. The quantity

∑
jmij = mi, and so we

can conclude that omax ≤ 4p2n2k−2, so that omax/m
′ ≤ 16/n, yielding our result.

The proof above can be modified to give the following lemma, which gives a lower bound
on the number of low-multiplicity terms.

Lemma 3.4.16. If Φ is a random k-XOR instance, then so long as d � n and d(2k −
1)omax < 200εm′ log n,

|Ĉdlow| ≥ ((1− ε)m′)d · .
Furthermore, ε = o(1) with high probability when p ≥ Ω(n−k+1 log n).

The proof proceeds exactly as the proof of Proposition 3.4.14, but instead of bounding
the decrease in the value as each clause is added, one bounds the probability that a clause
the multiplicity restriction is chosen.

Now, we have that

E
a1b1,...,adbd∈Ĉdlow

[
d∏
`=1

1

2
(1 + Ca`(x)Cb`(x))

]

=
1

2d

∑
S⊆[d]

E
a1b1,...,adbd∈Ĉdlow

[∏
`∈S

Ca`(x)Cb`(x)

]

and by the symmetry of the uniform distribution over Ĉdlow,

=
1

2d

d∑
j=0

(
d

j

)
· E
a1b1,...,ajbj∈Ĉjlow

[
j∏
`=1

Ca`(x)Cb`(x)

]

≤ 1

2d

t∑
j=0

(
d

j

)
+

1

2d

d∑
j=t+1

E
a1b1,...,ajbj∈Ĉjlow

[
j∏
`=1

Ca`(x)Cb`(x)

]

=
1

2d

t∑
j=0

(
d

j

)
+

1

2d

d∑
j=t+1

(
d

j

)
· 1

|Ĉjlow|
(x⊗2jκ)>Γ(j)x

⊗2jκ .

(3.4.9)

Now, we can use the spectral norm of Γ(j) as a certificate, for values of j ∈ [δd, d]–
we stitch together the details below. The following concludes the proof of the refutation
theorem, modulo the proof of the Γ(d) matrix norm bound from Theorem 3.4.13, which we
give in the next subsection.

CHAPTER 3. STRONG REFUTATION OF CSPS 72

Theorem 3.4.17. Let k = 2κ+ 1 be odd, and let d� n. Then for sufficiently large n there
is an algorithm that with high probability certifies that a random k-XOR instance has value

at most 1
2

+ γ+ o(1) for any constant γ > 0 at clause density m/n = Õ
(
n(k−2)/2

d(k−2)/2

)
(where the

Õ hides a dependence on γ and k) in time nO(d).

Proof. As argued in the proof of Proposition 3.4.14, we have that m′ = Θ(p2n2k−1) and
m = Θ(pnk) with high probability, as long as p ≥ Ω(logn

nk−1). Suppose that no variable appears

in more than omax clauses in Ψ. Then for β = d(2k−1)omax

200m′ logn
, from Proposition 3.4.14 and (3.4.9),

(PΨ(x)− β)d ≤ 1

2d

t∑
j=0

(
d

j

)
+

d∑
j=t+1

(
d
j

)
2d
· 1

|Ĉjlow|
(x⊗2jκ)>Γ(j)x

⊗2jκ .

If we choose t = δd for some constant δ > 0, then we can bound the jth term in the second
summation by

1

|Ĉjlow|
(x⊗2jκ)>Γ(d)x

⊗2jκ =
‖x‖2j(k−1)

|Ĉjlow|
· ‖Γ(j)‖

By Lemma 3.4.16 and Theorem 3.4.13

=
nj(k−1)

|Ĉjlow|
· ‖Γ(j)‖

≤ nj(k−1)

(1− β))j(m′)j
· Õ
(
pnk/2

j(k−2)/2

)j
,

≤ Õ

(
1

(1− β)pnk/2j(k−2)/2

)j
, (since m′ = Θ(p2n2k−1) w.h.p.)

where the inequality holds with high probability from the conditions of Theorem 3.4.13, and
therefore also holds with high probability simultaneously for all j ∈ [δk, k] by a union bound.

The term comprised of the sum of binomial coefficients is at most

1

2d

δd∑
j=0

(
d

j

)
≤ 2(H(δ)−1)d,

Where H(·) is the binary entropy function, H(δ) = −δ log δ − (1 − δ) log(1 − δ). Also,
β = o(1) with high probability. Therefore, for some α ∈ [δ, 1],

PΨ(x) ≤

(
2(H(δ)−1)d + Õ

(
1

pnk/2(αd)(k−2)/2

)αd)1/d

+ o(1).

Now, for p ≥ Õ(n−(k/2)d−((k−2)/2)), the latter quantity is o(1), where the Õ hides a polylog n
and a dependence on δ and k. Thus, for n sufficiently large the full term is at most (1 +

CHAPTER 3. STRONG REFUTATION OF CSPS 73

o(1))2H(δ)−1. We can choose δ sufficiently small so as to bound PΨ(x) ≤ 1
2

+ ε for any
constant ε > 0.

Using the fact that c, m′ ≤ 4p2n2k−1 with high probability for sufficiently large p ≥
Õ(n−k+1) (see the proof of Proposition 3.4.14), and that m ≥ pnk/2 with high probability,
combining with (3.4.7) we have that

PΦ(x) ≤ 1

2
+

1

2m

√
nm+ 2nm′ ·

(
PΨ(x)− 1

2

)

≤ 1

2
+

√
Θ

(
1

pnk−1

)
+
εnm′

2m2

≤ 1

2
+

√
o(1) +

ε4p2n2k

2(1
2
)2p2n2k

=
1

2
+

√
Θ

(
1

pnk−1

)
+ 8ε

and we can take the quantity within the square root to be an arbitrarily small constant by
choosing a constant ε sufficiently small.

We can certify this bound in time nO(d) · d, by running Algorithm 3.4.12 to compute the
top eigenvalue of Γ(j) for each j ∈ [δd, d].

Bounding the odd certificate spectral norm

Now, we bound ‖Γ(d)‖ for the matrices Γ(d) defined above in Algorithm 3.4.12. Before
stating our theorem, we describe the hypergraphs corresponding to entries of Γ(d), and to
((Γ(d))(Γ(d))

>)`.
We obtain Γ(d) by averaging over row and column symmetries of the matrix∑

i∈[n]

∑
U∈[n]d

U low-mult

⊕
u∈U

Tu ⊗ Tu − squares(Tu ⊗ Tu) ,

then setting rows and columns indexed by high-multiplicity multisets to 0. Ignoring the
subtracted squares for now, this can in turn be understood as the low-multiplicity restriction
of the matrix (∑

u

Tu ⊗ Tu

)⊗d
,

where the low-multiplicity restriction is occurring on the Cauchy-Schwarz’d mode u, as well
as on the rows and columns. We begin with the hypergraph interpretation of the matrix
(
∑

u Tu ⊗ Tu)⊗k, from which the interpretation for Γ(d) will follow by our understanding of
symmetrization over S2dκ and of low-multiplicity restrictions. Let M := (

∑
u Tu ⊗ Tu)

⊗d

for convenience. We have that the (A,B), (C,D)th entry of M (for A,B,C,D ∈ [n]dκ with
A = a1, . . . , ad with ai ∈ [n]κ, and with similar decompositions defined for B,C,D) has value

M(A,B),(C,D) =
∏
i∈[d]

∑
u∈[n]

Tai,ci,u ·Tbi,di,u

 =
∑
U∈[n]d

∏
i∈[d]

(Tai,ci,ui ·Tbi,di,ui) .

CHAPTER 3. STRONG REFUTATION OF CSPS 74

Interpreting the variables Tai,ci,ui as k = (2κ + 1)-uniform hyperedges, we have that each
entry is a sum over hypergraphs indexed by U ∈ [n]d. For each U ∈ [n]d, we have a
hypergraph on the following vertex configuration: on the left, we have the vertices from the
multiset A,B. On the right, we have the vertices from the multiset C,D. In the center, we
have the vertices from U . On this vertex set, we have 2d hyperedges. Of these hyperedges, d
form a tripartite matching on the vertices in A,C, U , with κ vertices from each of A,C and
one vertex in U . The other d form a similar tripartite matching on the vertices in B,D,U .
Every hyperedge on A,C, U shares exactly one vertex in U with exactly one hyperedge from
B,D,U . See Figure 3.2 for an illustration.

Now, we detail the impact of subtracting the squares, and of removing high-multiplicity
rows, columns, and Kronecker powers.

• The subtraction of the square terms squares(Tu ⊗ Tu) forces us to never have two
hyperedges sharing a vertex in U if they contain vertices of the same type in [n]: that
is, we can never have (ai, ci) = (bi, di) as ordered multisets.

• The deletion of high-multiplicity indices, both in the Cauchy-Schwarz’d mode and in
the rows and columns, forces us to exclude hypergraphs with (A,B), (C,D), or U
containing more than 100 log n repetitions of any one vertex type.

• The averaging operation EΠ,Σ∈Ŝ2dκ
takes each such entry to an average over all allowed

hyperedge configurations on the vertex set (A,B), (C,D), U .

When we take Tr(Γ(d)Γ
>
(d))

`, we are taking a sum over all “cycles” of length 2` in such

hypergraphs, where the vertices in the cycle are given by the (A,B) multisets, and the edges
are given by the average hyperedge configuration between (A,B) and the next (C,D), with
the U vertices in between.

We are now ready to prove our upper bound on Γ(d).

Theorem (Restatement of Theorem 3.4.13). Let k, n, d ∈ N, so that d log n � n, and
furthermore let k be odd so that k = 2κ + 1. Let Φ be a random instance of k-XOR on
n variables x1, . . . , xn, with Θ(pnk) clauses (so each constraint is sampled uniformly and
independently with probability p). Let Γ(d) be the matrix formed from the instance Φ as

described in Algorithm 3.4.12. Then if d(k−2)/2nk/2p > 1, there exists a constant ck depending
on k such that with high probability over the choice of Φ,

‖Γ(d)‖1/d ≤ Õ

(
pnk/2

d(k−2)/2

)
.

Proof. We fix d and take Γ := Γ(d) for convenience. Also, fix R := 100 log n, and call a
multiset S ∈ [n]m R-multilinear if no element of [n] appears with multiplicity more than R
in S. We will apply the trace power method (Proposition 3.2.4) to Γ, for which it suffices to
obtain an upper bound on

E
[
Tr
(
Γ(d)Γ

>
(d))

`
)]
.

As described above, this amounts to bounding the number of hypergraph cycles of length 2`,
where each “vertex” of the cycle is comprised of an R-multilinear multiset (A,B) ∈ [n]2dκ,
and the “edges” in the cycle between (A,B) and (C,D) are the sum over all R-multilinear
U ∈ [n]d of the average over all possible hypergraphs (because of the symmetries) that

CHAPTER 3. STRONG REFUTATION OF CSPS 75

contain a tripartite hypergraph matching with 2d edges between (A,B), U, (C,D) in which
every hyperedge contains d vertices from (A,B), d vertices from (C,D), and one vertex
from U . Hypergraphs that contain two identical hyperedges sharing a vertex from U have
contribution 0 to the sum (due to the subtraction of the “squares”).

Let the set of all valid R-multilinear vertex configurations V comprising V = S1, . . . , S2` ∈
[n]2dκ be denoted VR. Let the set of all R-multilinear center vertex configurations
U = U1, . . . , U2` ∈ [n]d be denoted UR. Let the set of all hyperedge matching se-
quences H = H1, . . . , H2` with Hi a matching between Si, Ui, Si+1 be denoted H. For
H ∈ H, V ∈ VR, U ∈ UR, denote by (V, U,H) the hypergraph given by the hyperedges H on
the vertex configuration V . We think of the elements in the sum Tr(ΓΓ>)` as being indexed
by EH [(V, U,H)], where the expectation over H is a result of our symmetrization/averaging
operation.

Applying the above observations, and recalling that we have assembled Γ from the random
tensor T, we have that

E
T

[Tr(ΓΓ>)`] =
∑
U∈UR

∑
V ∈VR

E
H∈H

E
T

 ∏
(i1,...,id)∈(V,U,H)

Ti1,...,id

 ,

Because TS 6= Tπ(S), our hyperedges are ordered, and so two hyperedge variables are not
identical unless the vertices appear in the same order (in particular, the partition into ai, bi, ui
and the order within each should be the same). The expectation over T of a term is 0 if
any ordered hyperedge in (V, U,H) appears with odd multiplicity or if two identical ordered
hyperedges share the same vertex in some Ui, and is pM if exactly M distinct hyperedges
appear in (V, U,H). Thus,

E
T

[Tr(ΓΓ>)`]

≤
∑
U∈UR

∑
V ∈VR

d∑̀
M=1

pM · E
H∈H

[I((V, U,H) even, nonsharing) · I((V, U,H) has M hyperedges)]

=
∑
U∈UR

∑
V ∈VR

d∑̀
M=1

pM · P
H∈H

[(V, U,H) even, nonsharing with M hyperedges)] . (3.4.10)

To bound this probability, we will sample uniformly U ∈ UR and H ∼ H in a three-step
process.

1. Fix V ∈ VR.

2. Sample a uniformly random perfect matching (with 2-edges rather than hyperedges)
between each set Si, Si+1 ∈ VR–call the edge set sampled in this manner E, so that we
now have the graph (V,E).

3. Sample a hyperedge matching configuration G from E by choosing a uniform random
grouping of the edges between Si, Si+1 into groups of d edges, to obtain the hypergraph
(V,G) (when k = 3 =⇒ κ = 1, this step is skipped).

4. Sample a pairing H of the hyperedges in G, a center vertex for each pair in H and an
order on the center vertices to form U , to obtain the hypergraph (V, U,H).

CHAPTER 3. STRONG REFUTATION OF CSPS 76

For step 2 and 3, we will employ the same Proposition 3.4.11 and Lemma 3.4.10 that we
used in the proof of the even case (Theorem 3.4.4) to bound the probability that we sample
a (V,E) and (V,G) with a certain edge multiplicity and the evenness property. For step 4,
we will need another lemma along the same lines.

We note that if (V, U,H) has every hyperedge appearing an even number of times and
there are M distinct edges, then even if all center vertices are removed to obtain a 2κ-
hypergraph (V,G), every ordered hyperedge must still appear with even multiplicity, and
there can only be at most M distinct hyperedges. Therefore, letting EMH be the event that
(V, U,H) is even with M edges and no square/sharing hyperedges, letting EmG be the event
that (V,G) is even with at most m edges, we have that

P[EMH] =
∑
m≤M

P[EMH , EmG] =
∑
m≤M

P[EMH |EmG] · P[EmG] . (3.4.11)

Now, let E≤m
′

E be the event that (V,E) is a simple graph with the evenness property and at
most m′ distinct edges. We use the asymmetry of T to invoke Lemma 3.4.9 with h ← 2d,
w ← 2`, τ ← M and κ ← κ which gives us that P(EmG | E

≤dm
E) ≥ (κ!)−4d`. From this, we

have

P[EMH] =
∑
m≤M

P[EMH |EmG] · P[EmG] (by (3.4.11))

=
∑
m≤M

P[EMH |EmG] · P[EmG , E
≤κm
E]

P[E≤κmE | EmG]

≤ (κ!)4d`
∑
m≤M

P[EMH |EmG] · P[EmG , E
≤κm
E] (by Lemma 3.4.9)

≤ κ4d`κ
∑
m≤M

P[EMH |EmG] · P[EmG | E
≤κm
E] · P[E≤κmE] . (3.4.12)

We will bound P(EmG |E
≤κm
E), using Lemma 3.4.10 with h ← 2d,w ← 2`, τ ← m, which

gives us that

P(EmG |E
≤dm
E) ≤ P((V,G) even with m edges | (V,E) even) ≤ (4eκκκRκ+1`)4d`

(2dκ)(κ−1)(4d`−m)
.

And so now, combining with (3.4.12), we have that for some constant c1 depending on κ,

P[EMH] ≤ κ4d`κ
∑
m≤M

P[EMH |EmG] ·
(

(4eκκκRκ+1`)4d`

(2dκ)(κ−1)(4d`−m)

)
· P[E≤κmE]

≤ (c1R
d+1`)4d`

d(κ−1)4d`

∑
m≤M

d(κ−1)m · P[EMH |EmG] · P[E≤κmE] (3.4.13)

CHAPTER 3. STRONG REFUTATION OF CSPS 77

And therefore, with (3.4.10),

E[Tr(ΓΓ>)`] =
(c1R

κ+1`)4d`

d(κ−1)4d`
·

d∑̀
M=1

pM ·
∑
m≤M

∑
U∈[n]d

R−multi

d(κ−1)m · P[EMH |EmG]
∑
V ∈VR

·P[E≤κmE]

(3.4.14)

We now bound P(E≤κmE). If we interchange the order of summation, sum over these
probabilities for a fixed value of m, letting M be the set of all possible edge configurations
E, we have ∑

V ∈VR

P
E

(EκmE) =
∑
V ∈VR

|{E | (V,E) even with ≤ κm edges}|
|M|

=
|{E, V | (V,E) even with ≤ κm edges }|

|M|
. (3.4.15)

We will bound this quantity with Proposition 3.4.11, which counts the number of V ∈ VR
that yield and even graph with at most m edges on a fixed E ∈M. From Proposition 3.4.11
with w ← 2`, h ← 2d, t ← m′, we have that for a fixed E ∈ M and for a fixed list of edge
multiplicities a1, . . . , am′ ,

|{V | (V,E) has m′ edges with multiplicities a1, . . . , am′}| ≤ (c2R`)
4dκ` · (d`)2 · nm′+2dκ

for some constant c2 depending on k, where we have used the assumption that d � n to
meet the requirements of Proposition 3.4.11. The number of possible edge multiplicity lists
a1, . . . , am′ for a given value of m′ is at most

(
m′+4dκ`−1

m′−1

)
≤ 24dk`. Thus,

|{E, V | (V,E) even with ≤ κm edges }|
|M|

≤ 1

|M|
·
κm∑
m′=1

∑
a1,...,am′

|M| · |{V | (V,E) has m′ edges with even mult.s a1, . . . , am′}|

≤
κm∑
m′=1

24dk` · (c2R`)
4dκ` · (d`)2 · nm′+2dκ ≤ (c3R`)

4dk` · (d`)2 · nκm+2dκ+1 ,

for some constant c3 depending on k. So there is a constant c4 depending on k so that,

E[Tr(ΓΓ>)`]

≤ (c2R
κ+1`)4d`

d(κ−1)4d`
·

d∑̀
M=1

pM ·
∑
m≤M

∑
U∈[n]k

R−multi

d(κ−1)m · P[EMH |EmG]
(
(c3R`)

4dκ`(d`)2nκm+2dκ+1
)

CHAPTER 3. STRONG REFUTATION OF CSPS 78

=
(c4R`)

4d`(κ+1)

d(κ−1)4d`
(d`)2n2dκ+1 ·

k∑̀
M=1

pM ·
∑
m≤M

d(κ−1)m · nκm
∑
U∈[n]k

R−multi

P[EMH |EmG] .

For a given hypergraph (V,G) and a fixed U , there are
(
d! ·
(

(2d)!
d!2d

))2`

hyperedge group-

ings from which we can sample (V, U,H)–first we choose a matching of the 2d hyperedges
in each column, and then we choose an ordering on the d vertices of U to determine which
belong to each hyperedge pair. We now appeal to the following lemma, which bounds the
number of pairings and choices of U that can result in the evenness property for a given
(V,G):

Lemma 3.4.18. Suppose R,w, h ∈ N such that h ≤ n and h is even. Let G be an even
R-multilinear hypergraph with h hyperedges per column and w columns, and hyperedge mul-
tiplicity profile α = a1, . . . , at. Let H be a hypgergraph we sample from G by matching edges
in a column to each other, then adding a vertex in between with a label from the set [n], with
the additional constraint that the columns of center labels be R-multilinear, and that no two
identical ordered hyperedges from G are matched to the same center vertex. Let τ be a valid
number of distinct hyperedges sampleable from G. Then

(# H even with ≤ τ edges | G) ≤ (
h

2
!)w · (2hw)2(4hR2)hw · (hn)τ/2 .

Applying Lemma 3.4.18 with w ← 2`, h ← 2d,τ ← M , we have that since all of our
U -configurations are R-multilinear, and since we forbid two identical ordered edges to share
a center vertex, we sum over all possible hyperedge multiplicity profiles (at most 24d`) we
divide by the number of possible hyperedge groupings and get that for some constant c5

depending on k,

∑
U∈UR

∑
α

P[EMH | E
≤m
G] ≤ 28d` · (d!)2`(8d`)2(4`R2)4d` · (2dn)M/2(

d! · (2d)!
2dd!

)2`
≤ (c5R

2`)4d` (d`)
2 · (dn)M/2

d2d`

And combining this with the above, there exists a constant c6 depending on k so that

E[Tr(ΓΓ>)`]

≤ (c4R`)
4d`(κ+1)

d(κ−1)4d`
(d`)2n2dκ+1 ·

2d∑̀
M=1

pM ·
∑
m≤M

d(κ−1)m · nκm
(

(d`)2(c5`R
2)4d`(dn)M/2

d2d`

)

≤ (c6R`)
4d`(κ+8)

d(κ−1)4d`
· 1

d2d`
(d`)4 · n2dκ+1

2d∑̀
M=1

pM(dn)M/2 ·
∑
m≤M

d(κ−1)m · nκm

≤ (c6R`)
4d`(κ+8)

d(κ−1/2)4d`
· (d`)4n2dκ+1(2d`)

2d∑̀
M=1

pM · d(κ−1/2)M · n(κ+1/2)M

CHAPTER 3. STRONG REFUTATION OF CSPS 79

And so long as pk(κ−1/2)n(κ+1/2) ≥ 1,

≤ (c6R`)
4d`(κ+8)

d(κ−1/2)4d`
· n2dκ+1(d`)6 · p2d` · d(κ−1/2)2d` · n(κ+1/2)2d`

≤ n2dκ+1(d`)6 ·
(
c6(R`)2(κ+8) · pn

κ+1/2

dκ−1/2

)2d`

,

and now taking ` = O(log n) and recalling that R = 100 log n, with high probability by
Proposition 3.2.4 we have that

‖Γ‖1/d ≤ Õ

(
pnk/2

d(k−2)/2

)
.

This concludes our bound on ‖Γ‖–in the next subsection, we prove the bounds on the
sampling probabilities that we relied upon in the proofs of Theorem 3.4.4 and Theorem 3.4.13.

Bounding probabilities of sampling even hypergraphs

Our first proposition counts the number of vertex configurations with the evenness property
and a given set of edge multiplicities for a fixed edge set E.

Proposition (Restatement of Proposition 3.4.11). Let w, h, n ∈ N. Let α = α1, . . . , αt be a
sequence of t even numbers so that

∑t
i=1 αi = w · h. Let E = M1, . . . ,Mw be a sequence of

perfect matchings between two sets of size h.
Let Gα,Ew×h be the set of all graphs which have a vertex set comprised of w R-multilinear

multisets S1, . . . , Sw ∈ [n]h, and have edges forming the perfect matching Mi between Si, Si+1

(where the indexing is modulo w), so that the labels in [n] assigned to the vertices induce
exactly t distinct labelings for the edges, and the labeled edges have multiplicities α1, . . . , αt.
In words, Gα,Ew×h is the set of w × h matching cycles with matchings specified by E that have
edge multiplicities α when labeled with R-multilinear labels from [n].

If w · h ≤ n,
|Gα,Ew,h | ≤ (5Rw)wh(wh)3 · nt+h .

We remark that this proposition resembles a lemma used in establishing exact bounds
on the order of the deviation of the second eigenvalue of a Wigner matrix, in the work of
[FK81]. Unfortunately, their statement does not directly imply the bounds we require, as
they work in a slightly different setting and wished to precisely bound the constant. Our
proof is similar to the exposition of [FK81] in [Tao].

Proof. We bound the number of such graphs by encoding each graph as a unique string. Since
E is known, it suffices to encode enough information to recover the labels of the vertices.

We will call Mi (the matching in E between Si and Si+1) the ith column of edges. We
choose an ordering on the edges of E: we order them first by column, and within each column

CHAPTER 3. STRONG REFUTATION OF CSPS 80

arbitrarily. Given a G ∈ Gα,Ew×h, we will process the edges one at a time in this pre-specified
order, and for each edge we will record either the labels of its incident vertices, or enough
information to recover the labels from what we have previously recorded. To reduce the
amount of recorded information, it will be helpful to specify several edge types:

• Edges we see for the first time:

– new-endpoint edges : never-before seen edges ei with ai = 2 which take us to a
vertex with a label we have not seen before. Let there be #new such edges.

– reused-endpoint edges : never-before seen edges ei with ai = 2 which take us to a
vertex with a label we have already seen.

• Edges we see for the second (and last) time:

– return edges : edges ei with ai = 2 which we see for the second (and last) time.

– unforced edges : return edges ei with ai = 2 which are not the only possible labeled
edge we can use from the endpoint vertex of the previous edge.

• Edges we see more than twice:

– high-multiplicity edges : edges ei with ai > 2.

Suppose there are #new new-endpoint edges, #reused reused-endpoint edges, #unforced
forced edges, and #high high-multiplicity edges. As we process the edges in our pre-specified
order, we record:

• The labels of each vertex belonging to the first column set S1 (at most n|S1| = nh

choices).

• The edge type of every edge in the graph: whether it is a new-endpoint edge, a reused-
endpoint edge, a high-multiplicity edge, or a forced or unforced return edge (at most
5|E| = 5wh choices).

• For each new-endpoint edge, we record the label of its second endpoint (at most n#new

choices).

• For each reused-endpoint edge, we record the location of the first appearance of its
second endpoint (at most |V |#reused = (wh)#reused choices).

• For each unforced return edge, we record the column index of the first appearance of
that edge, and the index within that column of the label involved in the edge (at most
(Rw)#unforced choices).

• For each high multiplicity edge ei we record the second endpoint of its first appearance
(at most n#high choices). For each consequent appearance of ei, we record the column
index of the first appearance of ei, and the index within that column of the label

involved in the high multiplicity edge (in total, at most (Rw)
∑
ai>2 ai choices).

Claim. The recorded information, along with E and α, suffices to reconstruct G.

Proof. We will prove this by induction. Our inductive claim is that in the ith step, we can
reconstruct the labels of the ith column of vertices, Si.

For the first column, we have recorded all of the labels, so we have S1.
In any subsequent column, assuming we know Si, we will process the edges in order, and

determine their endpoint in Si+1. For each edge, we can the determine from our edge infor-
mation whether it is a new-endpoint, reused-endpoint, high-multiplicity, unforced return, or

CHAPTER 3. STRONG REFUTATION OF CSPS 81

forced return edge. Depending on the type of edge we use different information to discern
the label of its endpoint in Si+1:

• If we traversed a new-endpoint edge: we have recorded the label of the endpoint in
Si+1.

• If we traversed a reused-endpoint edge: we have recorded the position of the first
appearance of the vertex’s label, and we can look it up.

• If we traversed an unforced return edge: we have recorded the column index of the
first appearance of the edge, as well as the index I within that column of the label
corresponding to this edge’s endpoint in Si. We go to the column, and then choose the
label in Si+1 by finding the Ith edge in that column with a label matching our edge’s
known label from Si.

• If we traversed a forced return edge: there is only one choice for the second endpoint.

• If we traversed a high-multiplicity edge: we have recorded the column index of the
other appearances of this edge. If this is the first appearance of the edge, we have
recorded the label of the second endpoint. Otherwise, we have recorded the column in
which this edge first appeared, as well as the index I within that column of the label
corresponding to this edge. We go to the column, and then choose the label in Si+1

by finding the Ith edge in that column with a label matching our edge’s known label
from Si.

This proves the inductive claim.

Thus,

|Gα,Ew×h| ≤
∑

#reused
#new

#unforced

5wh · (wh)#reused · (Rw)
∑
ai>2 ai+#unforced · n#new+#high+h. (3.4.16)

All that remains is for us to translate between the above quantity, which is in terms of edge
types, to our desired quantity in terms of the parameters t, w, h. We do this by observing
that

#new = t−#high−#reused .

This is because there are a total of t distinct labeled edges, and of those, #high are high-
multiplicity, and #reused do not introduce new labels.

We use this observation to simplify n’s exponent, and we use the fact that
∑

αi>2 ai +
#unforced + #reused ≤

∑
i αi = wh to simplify w and R’s exponents, giving us that

|Ĝtα| ≤ (5Rw)wh · nh
∑

#reused
#new

#unforced

(
wh

n

)#reused

· nt. (3.4.17)

The number of possible combinations of values for #new, #unforced, and #reused is at most
(wh)3. Furthermore, because wh ≤ n, from (3.4.17) we may conclude,

|Gα,Ew×h| ≤ (5Rw)wh(wh)3 · nt+h

CHAPTER 3. STRONG REFUTATION OF CSPS 82

as desired.

We now prove Lemma 3.4.10, which gives us a bound on the probability that we sample
an even hypergraph cycle with the correct edge multiplicity from a simple edge cycle. Again,
the proof of Lemma 3.4.10 is different from the proof of Lemma 3.2.8, and is more similar
to the proof of Proposition 3.4.11 (although it is already quite different from the proof of
[FK81]).

Lemma (Restatement of Lemma 3.4.10). Suppose h,w, κ, n, τ ∈ N. Let G = (V,E) be a
graph consisting of w sets of κh vertices each with R-multilinear labels from [n], where E is
a set of w perfect matchings M1, . . . ,Mw, so that Mi is a perfect matching between Si and
Si+1, and α = a1, . . . , at is a list of even edge multiplicities of E on the labeled vertex set V ,
so that

∑
ai = κwh.

Suppose we sample a hyperedge matching configuration H from E by uniformly grouping
the edges in each matching from Si to Si+1 into hyperedges of order 2κ, and let τ be a number
of distinct hyperedges that is possible to sample from (V,E) in this way. Then,

P((V,H) even with τ edges | (V,E) even) ≤ (2eκκκRκ+1w)wh

(κh)(κ−1)(wh−τ)
.

Proof. We will count the number of possible even H one can sample from E with at most τ
unique hyperedges by encoding each such H uniquely as a string, then counting the number
of strings.

First, we fix an ordering on the edges of E, ordering them first by column, then arbitrarily
within each column. Now, define a new hyperedge to be a labeled hyperedge which we have
never seen before, and define an old hyperedge to be a hyperedge which has already been
seen. Let H be some even hypergraph sampled from G with at most M unique labeled
hyperedges. We encode H in a string as follows. We will process the hyperedges of H one
at a time, ordering hyperedges by the first simple edge they contain.

• For every hyperedge encountered in H, record whether it is new or old (2|H| = 2wh

options).

• For every new hyperedge encountered: record the indices of the 2, ..., d simple edges
that it contains (

(
(dh)(d−1)

)τ
options). The identity of the first edge will be obvious

from the edge ordering.

• For every old hyperedge encountered, record the column index j of its first appearance
(wwh−τ choices). If any of the simple edges ei1 , . . . , eid appear with multiplicity > 1
in the old (jth) column, record the indices of those edge within the identical edges in
that column (at most (Rd)wh−τ choices, since no simple edge can appear more than R
times in a column).

We claim that given V,E, and this encoding, we can uniquely recover H. We process the
simple edges in our specified order. If the edge is contained in a new hyperedge, we can
deduce the other simple edges belonging with it from what we recorded. If the edge is
contained in an old hyperedge, we know the column in which the hyperedge first appears,
and we can determine the other edges in the group by looking up the edge in the previous
column–if there are multiple copies of the edge in the old column, we have recorded which

CHAPTER 3. STRONG REFUTATION OF CSPS 83

copy to look up. Furthermore, if the grouping is insufficient due to multiplicities within this
column, we have recorded the relative indices of the relevant edges.

The number of such strings is at most

(# encodings) ≤ 2wh · (dh)(d−1)τ · (Rdw)wh−τ (3.4.18)

giving an upper bound on the number of H we can sample from (V,E) with at most τ
distinct edges. There are a total of

(# sampleable graphs) =

(
1

h!

h−1∏
j=0

(
d(h− j)

d

))w

=

(
(dh)!

(d!)hh!

)w
(3.4.19)

possible hyperedge graphs sampleable from (V,E), and from this we have that

P(H has τ edges |(V,E) even) ≤ (# encodings)

(# sampleable graphs)
≤ (2ddedwRd)hw

(dh)(d−1)(hw−τ)

where we have combined (3.4.18) with (3.4.19) and applied Stirling’s inequality. Our con-
clusion follows.

Now we prove a lemma that bounds the number of even k-hyperedge configurations with
τ hyperedges, each paired and sharing a center vertex, sampleable from an even 2d-hyperedge
configuration by pairing and labeling.

Lemma (Restatement of Lemma 3.4.18). Suppose R,w, h ∈ N such that h ≤ n and h is even.
Let G be an even R-multilinear hypergraph with h hyperedges per column and w columns, and
hyperedge multiplicity profile α = a1, . . . , at. Let H be a hypgergraph we sample from G by
matching edges in a column to each other, then adding a vertex in between with a label from
the set [n], with the additional constraint that the columns of center labels be R-multilinear,
and that no two identical ordered hyperedges from G are matched to the same center vertex.
Let τ be a valid number of distinct hyperedges sampleable from G. Then

(# H even with ≤ τ edges | G) ≤ (
h

2
!)w · (2hw)2(4hR2)hw · (hn)τ/2 .

Proof. We will count the number of such H by encoding each instance uniquely as a string.
Fix an order on the hyperedges, first in column order.

• A new hyperedge is a hyperedge which introduces a new center vertex.

• A reuse hyperedge is a hyperedge which we see for the first time, and whose center
vertex is the first of its type in its column, but which reuses a center vertex from a
previous column.

• A sharing hyperedge is a hyperedge which we see for the first time, but which shares
a center vertex with another hyperedge in its own column.

• A return hyperedge is a hyperedge which we see for the second or later time.

Our encoding is as follows:

CHAPTER 3. STRONG REFUTATION OF CSPS 84

• In the first hw positions, we record the type of every hyperedge we see (4hw choices).

• In the next #new positions, we record the labels of new hyperedges (n#new choices).

• In the next #reused positions, we record the position of the first appearance of the
reused label ((hw/2)#reused choices)

• In the next #share positions, we record the partner of the sharing edge within the
column ((h/2)#share choices, since there cannot be more than h new labels in a column).

• In the next #return positions, we record the column of the first appearance of the
hyperedge (a total of w#return choices), the index of the previous occurrence of the
hyperedge among hyperedges with the same labels in the previous column (a total of
R#return choices), and the index of the hyperedge’s center vertex among center vertices
of the same label within the current column (a total of R#return choices).

• We record the permutation of the middle labels in each column ((h
2
!)w choices).

Given this information, we can uniquely reconstruct an H from G. For every surprise
hyperedge we encounter, we have recorded the center label. For every recycle hyperedge we
encounter, we can determine the center label by looking at the previous occurrence. For
every sharing hyperedge, we can determine its partner. For every return hyperedge, we
can determine the label of the center vertex by looking at the previous occurrence, and we
can determine partnership by knowing the index of the center label’s occurrence within the
column.

We thus have

(#H) ≤
∑
#new

#reused

(
h

2
!

)w
(4w)wh ·R2#return · n#new · h#reused+#share .

We use some observations about these quantities to simplify the above expression. We have
that

τ = #new + #share + #reused ,

since every hyperedge must appear for the first time. Furthermore, we have that #new ≤
#share, since every surprising hyperedge must be paired with a sharing hyperedge, since
it introduces a new vertex label which hasn’t been seen before, so it’s partner must be a
sharing edge since we forbid two hyperedges with the same labels to share a center vertex.
It follows that

#new ≤ τ/2 .

Putting these together,

(#H) ≤
(
h

2
!

)w
(4wR2)hw

∑
#new

#reused

n#new · hτ−#new

=

(
h

2
!

)w
(4wR2)hwhτ ·

∑
#new

#reused

(n
h

)#new

≤
(
h

2
!

)w
(2hw)2(4hR2)hw · (hn)τ/2 ,

CHAPTER 3. STRONG REFUTATION OF CSPS 85

where in the last line we have assumed that h < n, and have used that #new and #reused
take on at most τ < wh/2 values. The conclusion follows.

3.5 Strong Refutation for All CSPs

In this section, we consider the problem of refuting Boolean CSP’s with arbitrary predicates.

Problem 3.5.1 (Refuting CSP’s with predicate P). Let P : {±1}k → {0, 1} be a predicate
on k variables. Then we sample a random instance of CSP-P , Φ, with clauses C1, . . . , Cm,
as follows: for each I ∈ [n]k:

• With probability p, sample a uniformly random σ ∈ {±1}k and add the constraint
P (xI ⊕ σ) = 1 to Φ as clause CI , where ⊕ denotes the entry-wise product and xI
denotes the ordered subset of variables xi for each i ∈ I.

The problem of strongly refuting CSP-P is to devise an algorithm that given an instance Φ
sampled as above, with high probability over Φ, outputs a certificate that

opt(Φ) ≤ 1− γ

for an absolute constant γ > 0.

Our result is the following:

Theorem 3.5.2. Let Φ be a random instance of a k-CSP with predicate P , with clause
density m/n ≥ Õ(n(k/2−1)(1−δ)). Then with high probability over the choice of Φ, there is a
spectral algorithm which strongly refutes Φ in time exp(Õ(nδ)), certifying that

opt(Φ) ≤ E
x∼{±1}k

[P (x)] + ε

for any constant ε > 0. Furthermore, the degree-O(nδ) SoS relaxation also certifies this
bound.

We will employ the framework of Allen et al. [AOW15] to prove that we can strongly
refute any k-CSP with predicate P at densities as low as Õ(1), given sufficient time. The
strategy is as follows: given some random k-CSP on x ∈ {±1}n with clauses C1, . . . , Cm,
Ci : {±1}k → {±1}:
• Expand C1(x), . . . , Cm(x) using the Fourier expansion.

• Split the Fourier expansions of C1, . . . , Cm into XOR instances.

• Refute each XOR instance.

Because a k-CSP predicate has a Fourier expansion of degree at most k, the above strategy
in combination with our k-XOR refutation results will allow us to tightly strongly refute any
k-CSP in time exp(nδ) at densities ≥ Õ(n(k/2−1)(1−δ)). However, as a result of the work of
[AOW15], we are able to show that for predicates satisfying some additional properties, it is
possible to strongly refute more quickly at lower densities. We elaborate further:

CHAPTER 3. STRONG REFUTATION OF CSPS 86

Definition 3.5.3. Let 1 ≤ t ≤ k. A predicate P : {±1}k → {0, 1} is δ-far from t-wise
supporting if every distribution D on {±1}k which has uniform marginals on all subsets of
t variables only satisfies P with probability at most 1− δ, i.e.

E
x∼D

[P (x)] ≤ 1− δ.

Allen et al. give the following characterization of δ-far from t-wise supporting predicates:

Theorem 3.5.4 (Lemma 3.16 and Theorems 4.9 and 6.6 of [AOW15]). Let the predicate
P : {±1}k → {0, 1} be δ-far from t-wise supporting, for 0 ≤ t ≤ k. Then there exists a
multilinear polynomial Q : {±1}t → R such that Ex∼{±}t [Q(x)] = 0 and P (x) ≤ (1−δ)+Q(x)
for any x ∈ {±1}k. Furthermore, Q can be obtained by solving a linear program of constant

size, and there is a degree-k SoS proof that Ẽ[P (x)] � (1− δ) + Ẽ[Q(x)].

We will use this theorem to extend the results of [AOW15] for δ-far from t-wise indepen-
dent predicates below the spectral threshold.

Theorem 3.5.5. Let the predicate P : {±1}k → {0, 1} be δ-far from t-wise supporting, for
0 ≤ t ≤ k and a constant δ > 0. Let Φ be a random instance of a k-CSP with predicate P ,
with clause density m/n ≥ Õ(n(t/2−1)(1−δ)). Then with high probability over the choice of Φ,
there is a spectral algorithm which strongly refutes Φ in time exp(Õ(nδ)), certifying that

opt(Φ) ≤ 1− δ + ε

for any constant ε > 0. Furthermore, the degree-O(nδ) SoS relaxation also certifies this
bound.

We now prove Theorem 3.5.2, and then below we will describe the mild changes needed
to prove Theorem 3.5.5. We will utilize our own Theorem 3.1.3, as well as the following
theorem which has appeared in [AOW15] (and also partially in [BM16]). We cite the exact
form of the theorem given in [AOW15].

Theorem 3.5.6 ([AOW15], Theorem 4.1). For k ≥ 2, q ≥ n−k/2, let {wS}S∈[n]k be indepen-

dent random variables such that for each S ∈ [n]k,

E[wS] = 0, P[wS 6= 0] ≤ q, and |wS| ≤ 1.

Then there is an efficient algorithm certifying that∣∣∣∣∣∣
∑
S∈[n]k

wS
∏
i∈S

xi

∣∣∣∣∣∣ ≤ 2O(k)√qn3k/4 log3/2 n

for all x with ‖x‖∞ ≤ 1 with high probability.

Remark 3.5.7. In [AOW15], the theorem appears without the absolute value–however the
statement for the absolute value is implied by the fact that the negated variables −wS also
satisfy all of the constraints.

CHAPTER 3. STRONG REFUTATION OF CSPS 87

Given the above theorem and our results for refuting XOR instances (Theorem 3.1.3),
the result for arbitrary binary CSPs follows easily.

Proof of Theorem 3.5.2. Let the Fourier expansion of P on y ∈ {±1}k be P (y) =∑
S⊆[k] P̂ (S) · χS(y). Let Φ have constraints C1, . . . , Cm, chosen independently on each

I ∈ [n]k with probability p, so that the constraint CI asserts that P (xI ⊕ σI) = 1 for a
uniformly chosen signing σI ∈ {±1}k. We have that

PΦ(x) =
∑
I∈[n]k

I(CI ∈ Φ) · P (xI ⊕ σI) =
∑
I∈[n]k

I(CI ∈ Φ) ·
∑
S⊆[k]

P̂ (S) ·
∏
i∈I

xi ·
∏
i∈S(I)

σIi ,

where we have used ⊕ to denote the entry-wise product and S(I) to denote the entries of
I corresponding to the subset S of [k]. We will move the sum over ordered subsets S ⊆ k
outwards, then simplify further

=
∑
S⊆k

∑
I∈[n]k

I(CI ∈ Φ) · P̂ (S) ·
∏
i∈S(I)

xi ·
∏
i∈S(I)

σIi

= P̂ (∅) +
∑
S⊆k
|S|≥1

P̂ (S)
∑
I∈[n]k

I(CI ∈ Φ) ·
∏
i∈S(I)

xi ·
∏
i∈S(I)

σIi .

Now, we will see that for each S ⊆ [k], |S| ≥ 1, we have a random weighted XOR instance

ΨS on |S| variables. Letting bIL
def
=
∏

`∈L σ
I
` , we define

ΨS(x)
def
=
∑
I∈[n]k

I(CI ∈ Φ) ·
∏
i∈S(I)

xi ·
∏
i∈S(I)

σIi

=
∑
L∈[n]S

∏
i∈L

xi ·

 ∑
J∈[n]k\S

I(CJ∪L ∈ Φ) · bIL

 ,

where we have abused notation by allowing J ∪ L to denote the ordered multiset with L
in the exact positions corresponding to S and J in the positions corresponding to k \ S.
Furthermore, by definition,

PΦ(x)

m
= P̂ (∅) +

∑
S⊆k
|S|≥1

P̂ (S) · ΨS(x)

m
≤ P̂ (∅) +

∑
S⊆k
|S|≥1

P̂ (S) · |ΨS(x)|
m

and so bounding the values of the ΨS suffices to get a bound on the value of Φ.

We list some properties of ΨS. For convenience, we now use the notation χL(x)
def
=
∏

`∈L x`
and the notation xL to denote a string of elements of x indexed by L. For each S ⊆ k, S 6= ∅,
ΨS is an instance of |S|-XOR with independent constraints on each χL(x) for L ∈ [n]|S|–the
independence is because the constraints for χL(x) depend only on the presence of clauses
in CI ∈ Φ for I ∈ [n]k including xL in the positions corresponding to S. The weight on

CHAPTER 3. STRONG REFUTATION OF CSPS 88

each χL(x) is distributed according to a sum of nk−|S| independent random variables, each of
which is 0 with probability 1−p, and uniformly ±1 with probability p. For convenience, call
the distribution over such sums k̂(nk−|S|, p), so that the coefficient cL of χL(x) is distributed

according to cL ∼ k̂(nk−|S|, p).
We now perform a case analysis on p and |S|, which allows us to bound the contributions

of each ΨS(x) individually.

Case 1: pnk−|S| ≥ 1. If pnk−|S| ≥ 1 then with high probability, every constraint cL has

|cL| ≤ O(
√
pnk−|S| log n) (where we have combined Lemma 3.5.8 with a union bound). Fur-

thermore the cL are distributed symmetrically about 0, and they are nonzero with probability
at most 1 ≤ pnk−|S|.

• If |S| = 1, we have that with high probability,

|Φ(x)|
m

≤
n ·max`∈[n] |c`|

m
≤ n ·O(

√
pnk−1 log n)

Θ(pnk)
≤ O

(√
log n

pnk−1

)
,

where we have applied a Chernoff bound to use that m = Θ(pnk). By our assumption on
the clause density, p ≥ n−(k−1) · polylog n, and therefore it follows that |ΨS(x)|/m = o(1).

• Otherwise, if |S| ≥ 2, we can divide each cL by β = O(
√
pnk−|S| log n) to obtain a poly-

nomial with coefficients bounded in absolute value by 1, with independent symmetrically
distributed coefficients and probability at most 1 ≤ pnk−|S| of being nonzero. We can thus
apply Theorem 3.5.6 to get that with high probability we can certify in polynomial time
that,

|ΨS(x)|
β

≤ O(n3|S|/4 log3/2 n),

Implying that with high probability,

|ΨS(x)|
m

≤ β ·O(n3|S|/4 log3/2 n)

Θ(pnk)
≤ O(

√
pnk−|S| log n) ·O(n3|S|/4 log3/2 n)

Θ(pnk)

≤ O

(
log2 n

p1/2nk/2−|S|/4

)
≤ O

(
log2 n

n|S|/4

)
.

where the last inequality follows by the assumption that pnk−|S| ≥ 1.

Case 2: pnk−|S| < 1. If pnk−|S| < 1, then with high probability all |cL| ≤ O(log n) (where
we have combined Lemma 3.5.8 with a union bound). We now split into cases in which we
can apply Theorem 3.5.6 and cases in which we must apply Theorem 3.1.3.

• If |S| < k and p ≥ n−|S|/2, then again letting β = O(log n), we can divide ΨS by β to
obtain a polynomial with coefficients that are symmetrically distributed about 0, bounded
by 1 in absolute value, and are nonzero with probability at most pnk−|S|. By Theorem

CHAPTER 3. STRONG REFUTATION OF CSPS 89

3.5.6 and by a Chernoff bound on m, it follows that we can certify in polynomial time
that

|ΨS(x)|
m

≤ β ·O(
√
pnk−|S| · n3|S|/4 log3/2 n)

m
≤ O(log n) ·O(

√
pnk−|S| · n3|S|/4 log3/2 n)

Θ(pnk)

≤ O

(
log3/2 n

p1/2nk/2−|S|/4

)

≤ O

(
log3/2 n

n(k−|S|)/2

)
= o(1),

where the second-to-last inequality follows by our assumption that pn|S|/2 ≥ 1.

• If |S| = k, then ΨS is a k-XOR instance with each constraint present with probability p.

By Theorem 3.1.3, we can certify in time exp(Õ(nδ)) that |ΨS |
m
≤ γ for any constant γ > 0.

• If |S| < k and p < n−|S|/2, we must apply Theorem 3.1.3. We must modify the instances
slightly first, since Theorem 3.1.3 applies to unweighted instances.

To obtain an unweighted instance, we split ΨS further into r = log2 n instances,

Ψ
(1)
S , . . . ,Ψ

(r)
S . We split as follows: let c

(i)
L denote the coefficient of χL(x) in Ψ

(i)
S . For

each nonzero cL, we choose |cL| uniformly random indices i1, . . . , i|cL| ∈ [r], and assign

c
(ij)
L = cL

|cL|
for each j = 1, . . . , |cL| (recall that with high probability |cL| ≤ O(log n) < r).

Let mi be the number of constraints in Φ
(i)
S , so that we have m ≥

∑
imi (since cL may be

a sum of negative and positive constraints from the full instance Φ).

First, note that

|ΨS(x)|
m

≤

∣∣∣∑r
i=1 Ψ

(i)
S (x)

∣∣∣∑
imi

≤ max
i∈[r]

|Ψ(i)
S (x)|
mi

.

It remains to argue that each instance Ψ
(i)
S has bounded value with high probability. To-

wards this, consider the properties of Ψ
(i)
S . First, we note that the constraints of Ψ

(i)
S

are independent of one another and are distributed symmetrically about zero–this is be-
cause the cL are independent of one another and symmetrically distributed about zero.

Furthermore, we have that each c
(i)
L is nonzero with probability q̂:

q̂
def
= P[c

(i)
L 6= 0] =

r∑
j=1

P[|cL| = j, i chosen]

=
r∑
j=1

P[i chosen | |cL| = j] · P[|cL| = j]

=
r∑
j=1

j

r
· P[|cL| = j] ,

CHAPTER 3. STRONG REFUTATION OF CSPS 90

where we have taken the sum up to r because we implicitly condition on |cL| ≤ O(log n)
(which occurs with high probability). We thus have that

q̂ =
r∑
j=1

j

r
· P[|cL| = j] ≤ P[|cL| > 0] ≤ pnk−|S|,

and also that

q̂ =
r∑
j=1

j

r
· P[|cL| = j] ≥ 1

r
· P[|cL| > 0] ≥ 1

log2 n
· pn

k−|S|

2
.

The last inequality follows by observing that with probability at least pnk−|S|, at least
one of the chosen constraints in Φ contributes to cL, and conditioned on this event, the
contributions to cL sum to zero with probability at most 1/2. Therefore, q̂ = δ · pnk−|S|
for some δ ∈ [1

2 log2 n
, 1].

Thus, each Φ
(i)
S

′
is a random |S|-XOR instance in which each clause is revealed with

probability q̂.

From Theorem 3.1.3, with high probability we can refute a random |S|-XOR instance
in which each clause is present with probability q̂ in time exp(Õ(nδ)) so long as
q̂n|S|−1 ≥ Õ(n(|S|/2−1)(1−δ)), certifying that the instance satisfies at most 1

2
+ γ + o(1)

clauses for any constant γ > 0. This condition on q̂n|S|−1 holds by our assumption that
p ≥ Õ(n−k(1+δ)/2+δ) (as long as we make the correct adjustments of logarithmic factors
on p to account for the value of q̂). We can also certify with high probability that the
fraction of satisfied constraints is at least 1

2
− γ for any constant γ, by applying the same

argument with the negations of the c
(i)
L .

Thus, in time exp(Õ(nδ)), with high probability we can certify that
|Φ(i)
S (x)|
mj

≤ γ, implying

by a union bound over i ∈ [r] that |ΨS(x)|
m
≤ γ.

Using this case analysis, we have that

PΦ(x)

m
≤ P̂ (∅) + γ ·

∑
S⊆k
|S|≥1

P̂ (S)

and since P̂ (S) can depend only on k, for large enough n, with high probability over Φ we

can certify that PΦ(x)
m
≤ P̂ (∅) + γ′ for any constant γ′ in time exp(Õ(nδ)) when m/n ≥

Õ(n(k/2−1)(1−δ)).
The same conclusion holds in the degree-O(nδ) SoS relaxation, as every step of this proof

holds within the SoS proof system (because Theorem 3.5.6 and Theorem 3.1.3 hold within
the SoS proof system).

The proof of Theorem 3.5.5 proceeds almost identically, except that instead of using the
Fourier expansion of the predicate P , we use the degree-t polynomial Q(x) given by the work

CHAPTER 3. STRONG REFUTATION OF CSPS 91

of Allen et al. [AOW15] (Theorem 3.5.4). Because P (x) ≤ (1 − δ) + Q(x), and since Q(x)
has no constant term, the proof we applied to the degree ≥ 1 terms of the Fourier expansion
of P applies to Q(x), and this completes the proof.

Lemma 3.5.8. For any 0 ≤ q ≤ 1, define k̂(N, q) to be the distribution over scalars such

that X ∼ k̂(N, q) is a sum of N independent variables, each 0 with probability 1− q, −1 with
probability q/2, and 1 with probability q/2. Then if Nq ≥ 1, for any constant c, there exists
a constant c′ such that

P
X∼k̂(N,q)

[|X| ≤
√
c′Nq logN] ≥ 1−N−c ,

and if Nq < 1, for any constant c there exists a constant c′ such that

P
X∼k̂(N,q)

[|X| ≤ c′ logN] ≥ 1−N−c .

Proof. By definition, for X ∼ k̂(N, q), X =
∑N

i=1 xi for xi distributed according to k̂(1, q).
It is easy to see that E[X] = 0, and to calculate that V(X) = qN , and we note also that

|xi| ≤ 1. Therefore when Nq ≥ 1, from a Bernstein inequality we have that

P[|X| ≥ t] ≤ exp

(
−t2/2

t/3 + qN

)
,

and taking t =
√

4cqN logN , and using that qN ≥ 1, we have the desired result.
When qN < 1, we apply the same bound with t = 4c logN to obtain our second result.

3.6 Sum-of-Squares Algorithms

In this section, we use our spectral algorithms to certify SoS upper bounds.

Relaxations for tensor norm and k-XOR

The natural SoS relaxations for computing the tensor norm and for maximizing k-CSPs are
very similar to each other. Both correspond to polynomial maximization problems, where
the constraint is that the maximizing solution x ∈ Rn lie on the unit sphere or on the Boolean
hypercube. Save for these “normalization” constraints and the natural SDP constrains SoSd,
there are no other constraints.

Definition 3.6.1 (d-round SoS relaxation for tensor norm). Given an order-k tensor T, for
any d ≥ dk/2e, the d-round SoS relaxation for the injective tensor norm is

max Ẽ
[
〈T, x⊗k〉

]
s.t. Ẽ

∑
i∈[n]

x2
i

 =
∑
i∈[n]

Xi,i = 1 , (3.6.1)

With the addition of the standard d-round SoS constraints.

CHAPTER 3. STRONG REFUTATION OF CSPS 92

Definition 3.6.2 (d-round SoS relaxation for k-XOR). Given an instance Φ of d-XOR with
constraint tensor TΦ defined as described in Section 3.4, for any d ≥ dk/2e, the d-round SoS
relaxation is given by

max Ẽ
[
〈TΦ, x

⊗k〉
]

s.t. Ẽ
[
x2
i

]
= 1 ∀i ∈ [n] , (3.6.2)

With the addition of the standard d-round SoS constraints.

Bounds for Tensor Norm

In this subsection, we show how bound the objective value of the d-round SoS relaxation for
a polynomial optimization problem when Ẽ(

∑
i x

2
i) is known, in terms of the operator norm

of a specific matrix. We will use � and � to denote inequalities that are sum-of-squares
identities.

Proposition 3.6.3. Let T be an order-k tensor for even k = 2κ. Let R, d ∈ N such that d
is a power of 2, R ≤ dk and k is even. Consider the dk-round SoS relaxation for the problem
P,

max Ẽ
[
〈T, x⊗k〉

]
s.t. Ẽ

[
‖x‖2

2

]
= α , (3.6.3)

Furthermore, let T be the natural flattening of T to an nk/2 × nk/2 tensor, let Ŝdk/2 be the

set of matrices that permute rows and columns of matrices in [n]dk/2 × [n]dk/2 according to
actions of Sdk on the coordinates in [n] Then in the dk-round SoS relaxation,

Ẽ
[〈

T, x⊗k
〉]
≤ αk/2 ·

∥∥∥∥∥ E
Π,Σ∈Ŝdk/2

[
ΠT⊗dΣ

]∥∥∥∥∥
1/d

.

Proof. We have that(
Ẽ
[
〈T, x⊗k〉

])d
≤ Ẽ

[(
〈T, x⊗k〉

)d]
(by Fact 2.5.3)

= Ẽ
[
〈T⊗d, x⊗dk〉

]
(by the symmetry constraints (2.3.2))

= Ẽ
[〈(

E
Π,Σ∈Ŝdk

[
Π(T⊗k)Σ

])
, x⊗dk

〉]
(by (2.3.2))

≤

∥∥∥∥∥ E
Π,Σ∈Ŝdk/2

[
Π(T⊗k)Σ

]∥∥∥∥∥ · Ẽ [‖x‖dk] (by Lemma 2.5.1)

The conclusion follows from (3.6.3).

CHAPTER 3. STRONG REFUTATION OF CSPS 93

As an immediate corollary of the above and of Theorem 3.3.3, we have Theorem 3.1.7
for even k. To get Theorem 3.1.7 for odd k, we can apply Cauchy-Schwarz before applying
Fact 2.5.3, so that we are working with

〈T, x⊗k〉2

�

∑
i∈[n]

x2
i

 ·〈∑
i∈[n]

Ti ⊗ Ti, x⊗2(k−1)

〉

=

∑
i∈[n]

x2
i

 ·
〈∑

i∈[n]

Ti ⊗ Ti − squares(Ti ⊗ Ti), x⊗2(k−1)

〉
+
∑
i∈[n]

∑
A[n]k−1

T 2
A,i

∏
j∈A

x2
j

 ,

where Ti is the ith slice of T, and squares(Ti ⊗ Ti) corresponds to the entries of Ti ⊗ Ti
which are squares of the base variables T. The right-hand term is bounded by obtaining a
high-probability bound of O(log n) on the maximum coefficient T 2

iA, and the left-hand term
is bounded by following the same steps as in the proof of Proposition 3.6.3, then applying
Theorem 3.3.11.

Bounds for k-XOR

For the case of k-XOR, the proof is a bit more complicated than for the case of tensor norms,
because the matrix certificates we used have certain rows and columns deleted. Still, the
arguments are similar to our proof from Section 3.4. All steps in the proofs from Section 3.4
and Section 3.4 we can make into SoS proofs in an analogous way to the tensor norm
SoS proofs above, except for the steps in which the high-multiplicity rows and columns are
deleted. This too is not difficult to see, and we will prove it for the even case. We will require
the following SoS fact:

Claim 3.6.4. Suppose Ẽ is a degree 2d pseudoexpectation functional with Boolean con-
straints, i.e., Ẽ[x2

i · r(x)] = Ẽ[r(x)] for all r(x) with deg(r) ≤ 2d− 2.
Let q =

∑
σ q̂σxσ and r be polynomials such that deg(qr2) ≤ 2d. Then,

Ẽ[q(x)r2(x)] ≤ Ẽ[‖q̂‖1 · r2] .

Proof. Note that for each monomial xσ, Ẽ[(1−xσ)] = Ẽ[(1−xσ)2] ≥ 0. Using this inequality
for each of the monomials in q, the claim follows immediately.

Now, we prove an SoS analogue of Proposition 3.4.5, which allows us to use the low-
multiplicity restrictions of our certificate matrices to get our upper bounds.

Proposition 3.6.5. Let Φ be a random k-XOR formula in which each clause is sampled
independently with probability p. Let Cdlow ⊂ [m]d be the set of all ordered multisets of clauses
Ci1 , . . . , Cid from Φ with the property that if we form two multisets of variables I, J ∈ [n]dk/2

with I containing the first k/2 variables of each Ci` and J containing the last k/2 variables
of each Ci`, then I, J are both low-multipicity multisets, in that both have no element of [n]
with multiplicity ≥ 100 log n.

CHAPTER 3. STRONG REFUTATION OF CSPS 94

Then if p ≥ 200 logn
nk−1 and d � n, and if Ẽ is a pseudoexpectation of degree at least 2dk,

then

Ẽ[PΦ(x)] ≤

(
E

i1,...,id∼Cdlow

[
d∏
`=1

Pi`(x)

])1/d

+ o (1)

for all x ∈ {±1}n with high probability.

Proof. We sample a uniform element C ∼ Cdlow, C = C1, . . . , Cd in the following way:

• For t = 1, . . . , d: Let At ⊂ I be the set of clauses such that for any C ′ ∈ A,
C1, . . . , Ct−1, C

′ ∈ Ctlow. Choose a uniformly random C ∼ At and set Ct := C, adding
C to C.

This sampling process clearly gives a uniformly random element of Cdlow.
Let Pi(x) be the 0 − 1 predicate corresponding to whether x satisfies the clause Ci.

Let mmax be the maximum number of clauses any variable in Φ participates in. Because
Ẽ [(P 2

i (x)− Pi(x))r(x)] = 0 ∀r(x), deg(r) ≤ 2d we can write,

E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

Pi(x)

 = E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

P 2
i (x)


= E

C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x)

 · (PΦ(x) + ∆C1....,Cd−1
(x)
)

where ∆C1,...,Cd−1
(x)

def
= E [P 2

d (x)|C1, . . . , Cd−1]− E[P 2
d (x)] = E [P 2

d (x)|C1, . . . , Cd−1]− PΦ(x).
By definition, the `1-norm of the coefficients of the polynomial ∆C1,...,Ck−1

is at most
dmmax/100m log n < o(1) with high probability, by concentration argument for m and mmax

(see the proof of Proposition 3.4.5) and by our requirement that d� n. Using Claim 3.6.4,
this implies that

E
C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x) ·∆C1....,Cd−1

(x)

 � E
C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x) · ‖∆C1....,Cd−1

(x)‖1


� o(1) · E

C1,...,Cd−1

Ẽ

 ∏
i∈[d−1]

P 2
i (x)


Therefore,

E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

P 2
i (x)

 � E
C1,...,Cd−1

Ẽ

(PΦ(x)− o(1))
∏

i∈[d−1]

·P 2
i (x)



CHAPTER 3. STRONG REFUTATION OF CSPS 95

Repeating the argument d times, we can conclude that for even d,

E
C1,...,Cd∼Cdlow

Ẽ

∏
i∈[d]

P 2
i (x)

 � Ẽ
[
(PΦ(x)− o(1))d

]
≥
(
Ẽ [PΦ(x)− o(1)]

)d
Where the last inequality follows from Fact 2.5.3. This concludes the argument.

This proposition, plugged into the argument from Section 3.4 along with the SoS-ifying
steps used for the tensor norm upper bound, gives Theorem 3.1.3 for the even k case. The
odd k case can be obtained in a similar way.

96

Chapter 4

Degree-4 Sum-of-Squares Lower
Bounds for Planted Clique

4.1 Introduction

Let G(n, p) be the Erdős-Rényi random graph where each edge is present in G with proba-
bility p independently of others. By a standard calculation, the largest clique in G ∼ G(n, 1

2
)

is of size (2 + o(1)) · log (n) with high probability [GM75, Mat76, BE76]. Recovering such a
clique using an efficient algorithm is a long standing open question in theoretical computer
science. As early as 1976, Karp [Kar76] suggested the impossibility of finding cliques of size
even (1 + ε) log (n) for any constant ε > 0 in polynomial time. (A greedy approach growing
a clique from a random vertex finds a clique of size (1 + o(1)) log n.) Karp’s conjecture was
remarkably prescient, and stands its ground after nearly four decades of research.

Lack of algorithmic progress on the question motivated Jerrum [Jer92] and Kucera
[Kuc95] to consider a relaxed version known as the planted clique problem. In this set-
ting, we are given a graph G obtained by planting a clique of size ω on a graph sampled
according to G(n, 1

2
), and we would like to recover the clique efficiently. This variant is also

connected to the question of finding large communities in social networks and the problem
of signal finding in molecular biology [PS000]. The heart of the problem is captured by a
decision version: distinguish this planted distribution from G(n, 1

2
). The goal is to do so via

an efficient algorithm for as small an ω as possible.
For ω > (2+ε) log n, there is a simple quasi-polynomial time algorithm that distinguishes

between the two distributions. The algorithm simply tries all subsets of (2+ε) log n vertices,
looking for a clique. For a random graph G(n, 1

2
), there are no cliques of size (2+ε) log n, but

there is one in the planted distribution. Clearly, the planted clique problem becomes easier as
the clique size ω increases. Yet despite much effort there are no polynomial-time algorithms
known for this problem for any ω < o(

√
n). For ω = Ω(

√
n), the maximum eigenvalue of

the (mean-zero) adjacency matrix suffices to distinguish between the distributions [AKS98].
The Lovász-Schrijver+ (LS+) semi-definite programming hierarchy leads to the state of the
art time/clique-size trade-off: it distinguishes between the distributions for ω ≈

√
n
2d

in time

nO(d) for any d = O(log n).
While algorithmic progress has been slow, there has been success in proving strong lower

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 97

bounds for the planted clique problem within specific algorithmic frameworks. The first
such bound was given by Jerrum, who showed that a class of Markov Chain Monte Carlo
algorithms require a super-polynomial number of steps to find a clique of size (1 + ε) log n,
for any fixed ε > 0, in an instance of G(n, 1

2
) [Jer92]. Feige and Krauthgamer showed that

r-levels of the Lovász-Schrijver semi-definite programming hierarchy are needed to find a
planted clique of size ω ≥ Ω̃(

√
n/2r) [FK00, FK03]. Feldman et al. show (for the planted

bipartite clique problem) that any “statistical algorithm” cannot distinguish in a polynomial
number of queries between the random and planted cases for ω < Õ(

√
n) [FGR+12].

Recently, this difficulty of finding cliques of size ω �
√
n has led to an increasing con-

fidence in planted clique being a candidate for an average case hard problem and has in-
spired new research directions in cryptography [ABW10b], property testing [AAK+07], ma-
chine learning [BR13], algorithmic game theory [HK09, ABC11] and mathematical finance
[ABBG10].

In this chapter, we are interested in understanding the performance of the SoS Hierarchy
for the planted clique problem. There are quite a few examples where SoS provides better
algorithms than the weaker hierarchies—Lovász-Schrijver in particular—to which the best
known lower bounds for planted clique apply. To provide just one, while there are instances of
unique games that are hard for poly(log log n)-rounds of the Lovász-Schrijver SDP hierarchy
[KS09, RS09b], recent work has shown that these instances are resolved by degree-8 SOS
hierarchy [BBH+12].

Moreover, even the degree-4 SOS relaxation proves to be surprisingly powerful in a few
applications:

• First, the work of Barak et al. [BBH+12] shows that a degree-4 SOS relaxation can
certify 2-to-4 hypercontractivity of low-degree polynomials over the hypercube. This
argument is the reason that hard instances for Lovász-Schrijver and other SDP hi-
erarchies constructed via the noisy hypercube gadgets are easily refuted by the SOS
hierarchy.

• A degree-4 SOS relaxation can certify that the 2-to-4 norm of a random subspace of di-
mension at most o(

√
n) is bounded by a constant (with high probability over the choice

of the subspace) [BBH+12]. This average-case problem has superficial similarities to
the planted clique problem.

Thus a natural question is: can the SoS hierarchy can yield improved algorithms for the
planted clique problem? The first published work along these lines was of Meka, Potechin
and Wigderson [MPW15] who showed that for every d ≥ 2, the degree-2d SoS hierarchy

cannot find planted cliques of size smaller than ≈ n
1
2d .1 Deshpande and Montanari [DM15b]

independently proved a tighter lower bound of ≈ n1/3 for the case of degree-4. In the main
result of this chapter, we extend the prior works and show that the degree-4 SoS algorithm
cannot find cliques of size ≈

√
n, a bound optimal within poly log (n) factors. Our lower

bound for degree-4 is obtained by a careful “correction” to the certificate used by [MPW15]
and [DM15b] in their lower bounds.

1We use ≈ to denote equality up to factors polylogarithmic in n (the size of the graph) and with an
arbitrary dependence on the degree parameter d.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 98

Theorem 4.1.1 (Degree Four). The canonical degree-4 SoS relaxation of the planted clique
problem (4.2.1) has an integrality gap of at least Ω̃(

√
n) with high probability.

We note that this lower bound cannot be obtained using the certificate from [MPW15,
DM15b]. An argument of Kelner shows that this certificate fails to show a lower bound on

the degree-4 SoS hierarchy when the size of the planted clique is larger than ≈ n
1
3 so the

analysis of Deshpande and Montanari is tight. To prove our lower bound, we will modify
this certificate to take Kelner’s argument into account.

Remark 4.1.2. We note that both Deshpande and Montanari’s analysis and Kelner’s ar-
gument can be generalized to higher degrees, showing that the degree-2d sum of squares

hierarchy cannot find planted cliques of size smaller than ≈ n
1
d+1 and this is the best that

can be done with this certificate. For details, see the preprint [HKP15].

Other Related Work

The earliest works on proving SoS lower bounds were due to Grigoriev, who showed that
degree-Ω(n) SoS does not beat the random assignment for 3SAT or 3XOR even on random
instances from a natural distribution [Gri01b]. Some of these lower bounds were rediscovered
by Schoenebeck [Sch08]. Lower bounds for SOS generally rely on gadget reductions from
3SAT or 3XOR and this approach has been studied in some detail [Tul09, BCV+12]. An
exception to this methodology is the recent work of Barak et al. in proving SoS lower bounds
for pairwise independent CSPs [BCK15].

Turning now to the planted clique problem, the works [FK08, BV09] show that, if one
were able to efficiently calculate the injective tensor norm of a certain random order-m
tensor, then by extending the spectral algorithm of [AKS98] one would have a polynomial-
time algorithm for k > n1/m. However, there is no known algorithm that efficiently computes
the injective tensor norm of an order-m tensor, and in fact computing the injective tensor
norm is hard to approximate in the general case [HM13].

There has also been recent work on Gaussian variants of the problem showing, for ex-
ample, strong indistinguishability results about the spectrum of the associated matrices
with and without planting [MRZ14]. There has also been a line of recent works improv-
ing the speed and size of the constant C of algorithms finding C

√
n-size planted cliques

[DGGP14, FR10, DM15a].
Finally, the present work builds heavily on independent papers of Meka, Potechin, and

Wigderson [MPW15] and Deshpande and Montanari [DM15b], which we have already thor-
oughly discussed. Since the initial publication of this work, the performance of the SoS
Hierarchy has been fully characterized at every degree-d by [BHK+16]. Their result im-
plies that the SoS Hierarchy cannot solve the planted clique problem with ω �

√
n with

d = o(log n), and they introduce new techniques for constructing SoS certificates for average-
case problems.

Organization of This Chapter

In Section 4.2, we give an intuitive account in the language of pseudo-distributions of the
new feasible solution needed to prove Theorem 4.1.1 and how it fixes the problems with

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 99

previously-constructed feasible solutions. In Section 4.3, we give an overview of the analysis
required for the degree-4 lower bound building on the work of [DM15b]. Finally, in Section 4.4
we give the complete proof deferring some of the more technical lemmas to Section 4.5.

4.2 Sum of Squares, Simple Moments, and Why They
Don’t Work

To show that the degree-4 SoS program fails to solve the planted clique problem with pa-
rameter ω, we show that with high probability there is a solution with objective value at
least ω for the program PG (known as a certificate or witness) even when G is a random
graph from G(n, 1/2) (which in particular will not contain a clique of size � log n).

In previous SoS lower bounds for problems such as random 3XOR/3SAT, Knapsack, and
random constraint satisfaction problems [Gri01a, Gri01b, Sch08, BCK15], the certificate X
was obtained in a fairly natural way, and the bulk of the work was in the analysis. In fact, in
all those cases the certificate used in the SoS lower bounds was the same one that was used
before for obtaining lower bounds for weaker hierarchies. The same holds for the previous
works for the planted clique problem, where the works of [MPW15, DM15b] used a natural
certificate that is a close variant of the certificate used by Feige and Krauthgamer [FK03] for
LS+ lower bounds and showed that it satisfies the stronger conditions of the SoS program.

It can be shown that this “natural” certificate of the previous works does not satisfy the
conditions of the SoS program when ω � n1/3, and thus cannot work to obtain a ≈

√
n

lower bound for an SoS program of degree 4 or higher (see Section 4.2 below). Hence, to
obtain our tight lower bound for the degree 4 SoS program, we introduce and analyze a
more complicated certificate, which can be thought of as making a global “correction” to
the simple certificate of [MPW15, DM15b].

We now give an informal overview of the SoS program for planted clique, the [MPW15,
DM15b] certificate, our correction to it, and our analysis.

The SoS Program for Max Clique

Let G = G([n], E) be any graph with the vertex set [n] and edge set E. The following
polynomial equations ensure that any assignment x ∈ Rn must be the characteristic vector
of an ω-sized clique in G:

x2
i = xi for all i ∈ [n]

xi · xj = 0 for all {i, j} /∈ E
n∑
i=1

xi =ω . (4.2.1)

As described in Chapter 2, Section 2.3, we can take the degree-d SoS relaxation for (4.2.1)
and obtain a pseudodistribution satisfying:

Ẽ satisfies the equations {∀i, x2
i = xi,∀i 6∼ j, xixj = 0,

∑
i≤n

xi = ω} .

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 100

Our subject will be the SoS relaxation with degree d = 4.

The “Simple Moments”

To show a lower bound of ω for the SoS relaxation for planted clique, it suffices to show that
for a random graph G, we can find a degree d pseudo-expectation operator that satisfies
(4.2.1). Both previous papers [MPW15] and [DM15b] utilize essentially the same operator,
which we call here the “simple moments”. It is arguably the most straightforward way to
satisfy the conditions of (4.2.1), and the bulk of the work is then in showing the positivity

constraint that ẼP 2 ≥ 0 for every P of degree≤ 2 (in the degree 4 case). [DM15b] shows that
this will hold as long as ω � n1/3 and an argument of Kelner (see Section 4.2 below) shows
that this is tight and in fact these simple moments fail to satisfy the positivity conditions
for ω � n1/3.

To define a degree d pseudo-expectation operator Ẽ, we need to choose some basis
{P1, . . . , PN} for the set of polynomials of degree at most d and define ẼPi for every i.
The simplest basis is simply the monomial basis. Moreover, since our pseudo-expectation
satisfies the constraints {x2

i = xi}, we can restrict attention to multilinear monomials, of the
form xS =

∏
i∈S xi for some S ⊆ [n]. Note also that the constraints xixj = 0 for {i, j} /∈ E

imply that we must define ẼxS = 0 for every S that is not a clique in G. Indeed, the
pseudo-distribution {x} is supposed to mimic an actual distribution over the characteristic
vectors of ω-sized cliques in G, and note that in any such distribution it would hold that
ẼxS = 0 when S is not a clique.

The simplest form of such a pseudo-distribution is to set

ẼxS =

{
0 S is not a clique

α|S| otherwise

where α|S| is a constant depending only on the size of S. We can compute the value α|S| by

noting that we need to satisfy Ẽ(
∑

i xi)
` =

∑
i1,...,i`

Ẽxi1 · · ·xi` = ω` for every ` = 1, . . . , d.

Since there would be about
(
n
`

)
2−(`2) `-sized cliques in the graph G, the value α` will be

≈
(
ω
n

)`
.2

There is Such a Thing as too Simple

The simple moments are essentially the same ones used by Feige and Krauthgamer [FK03]
for LS+ (a weaker convex hierarchy than SoS), where they were shown to be valid for

the constraints of this problem as long as ω <
√
n/2d+1. Initially, Meka and Wigderson

conjectured that a similar bound holds for the SoS program, or in other words, that the(
n
≤d/2

)
×
(

n
≤d/2

)
matrix X where XS,T = ẼxSxT for every S, T ⊆ [n] of size ≤ d/2 is positive

semidefinite as long as ω �
√
n. However, this conjecture was later shown to be false–an

2These moments must be modified slightly to exactly satisfy the constraint
∑
xi = ω. However, these

corrections have very small magnitudes and so all the observations below apply equally well to the modified
moments, and so we ignore this issue in this informal overview.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 101

argument due to Jonathan Kelner, described in [Bar14], shows that (for d = 4) the matrix
X is not positive semidefinite as long as ω � n1/3. We review this argument below, as it is
instructive for our correction.

The Kelner argument notices that the simple moments turn out to be “too random” in
that they fail to account for some structure that the graph possesses. The idea is as follows.
Intuitively, 4-cliques which have a higher number of common neighbors are more likely to
be in the planted clique, so we should have a higher value for Ẽ[xS] when S has a higher
number of common neighbors. However, the simple moments give the same value of Ẽ[xS]
for all 4-cliques S.

This causes a discrepancy between the simple moments and what we would expect if we
actually had a planted clique. To see this, we define a value rS for each set of vertices S
which measures how S is connected to the other vertices in the graph. Using these values
rS, we will define a polynomial g(x) so that Ẽ g(x)2 � 0, which shows that the matrix X is
not positive semi-definite.

Definition 4.2.1. Define ri,j so that ri,j equals +1 when {i, j} ∈ E, equals −1 when
{i, j} /∈ E, and equals 0 when i = j

Definition 4.2.2. Given a set of vertices S, define rS =
∑

i/∈S
∏

j∈S ri,j

We now consider the expression Ẽ[
∑

S∈(n4)
rSxS]. With our simple moments, this has

expected value 0 over the input graph because for each S, rS is independent of xS and has
mean 0. However, if we instead consider the planted distribution where we plant a clique
of size ω at random, choose the rest of the graph randomly, and then take xS = 1 if S is
part of the planted clique and 0 otherwise, then we obtain a different expected value for this
expression.

To see this, first randomly choose where the planted clique is. There will be
(
ω
4

)
different

S which are part of the planted clique. For each of these S, there are (ω − 4) i /∈ S which
are also part of the planted clique. For each of these i,

∏
j∈S ri,j = 1. For the remaining i,∏

j∈S ri,j has expected value 0 over the remainder of the graph. Thus, the expected value of

rS is ω − 4. Putting everything together,
∑

S∈(n4)
rSxS has expected value (ω − 4)

(
ω
4

)
≈ ω5

This discrepancy can be exploited with the following polynomial. Consider the polyno-
mial gi = Cxi −

∑
j,k:j<k ri,jri,kxjxk where C is a constant that will be chosen later.

g2
i = C2xi − 2C

∑
j,k:j<k

ri,jri,kxixjxk +
∑

j,k,l,m:j<k,l<m

ri,jri,kri,lri,mxjxkxlxm

We now consider the expected value of Ẽ[g2
i] on a random graph. Recall that for the

simple moments, Ẽ[xS] = αS ≈
(
ω
n

)|S|
if S is a clique and 0 otherwise.

1. For all graphs G, Ẽ[C2xi] = C2α1 ≈ C2ω
n

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 102

2. For the second term, note that if i, j, k are distinct, Ẽ[xixjxk] = 0 unless ri,j = ri,k = 1.
Thus, all of the terms in the sum add together and we have that

EG

[
Ẽ[2C

∑
j,k:j<k

ri,jri,kxixjxk]

]
= EG

[
Ẽ[2C

∑
j,k:j<k,j 6=i,k 6=i

xixjxk]

]

= EG [2C(# of 3-cliques containing i)α3] ≈ Cω3

n

3. For the third term, note that when we take the expectation over the randomness of
G, the only terms that don’t have expectation 0 are the ones where l = j 6= i and
m = k 6= i. Thus,

EG

[
Ẽ[

∑
j,k,l,m:j<k,l<m

ri,jri,kri,lri,mxjxkxlxm]

]

= EG

[
Ẽ[

∑
j,k:j<k,j 6=i,k 6=i

xjxk]

]
= EG [(# of 2-cliques in G not containing i)α2]

≈ ω2

Putting everything together, if ω >> n
1
3 then we can take C ≈ ω2 and we will have that

EG

[
Ẽ[g2

i]
]
< 0.

Note that this argument breaks down if xS depends on the variables ri,j. Further note
that if we consider the terms in

∑
j,k,l,m:j<k,l<m ri,jri,kri,lri,mxjxkxlxm where j, k, l,m are all

distinct and sum these terms over all i, we will obtain a multiple of
∑

S∈(ω4)
rSxS. Thus,

the failure of this polynomial to have non-negative expectation for the simple moments is
closely related to the fact that the expected value of Ẽ[

∑
S∈(ω4)

rSxS] is too low for the simple

moments.

Fixing the Simple Moments

Our fix for the simple moments is motivated by the example above. We want to ensure that
Ẽ[
∑

S∈(n4)
rSxS] ≈ ω5 to match what we would expect if there was a planted clique. The

idea is to break the symmetry between different equal-sized cliques and give a significantly
higher pseudo-expectation to 4-cliques S which for which rS is high. Roughly speaking, the
corrected moments will set

Ẽ[xS] = α|S|(1 + rSω/n)

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 103

for every 4-clique S. Note that when ω = ε
√
n, the correction factor would typically be of

the form 1±Θ(ε).3

Computing the expected value of Ẽ[
∑

S∈(n4)
rSxS] under the new moments we obtain that

EG

Ẽ[
∑
S∈(n4)

rSxS]

 = EG

 ∑
S∈(n4)

rS(1 +
ω

n
rS)α|S|1[S is a clique]


= EG

 ∑
S∈(n4)

ω

n
(rS)2α|S|1[S is a clique]


There are ≈ n4 choices for S. For each S, rS is the sum of n−4 independent ±1 variables

so with high probability r2
S ≈ n. α4 ≈

(
ω
n

)4
. Putting everything together, this expression

has expected value ≈ ω5, as desired.
This gives some intuition why the corrected moments might be better than the simple mo-

ments for a particular family of polynomials. In the remainder of the chapter, we turn to the
technical arguments establishing that the correction does in fact yield valid pseudomoments.

4.3 Overview of our Analysis

In this section, we describe the degree-4 SoS relaxation for the max-clique SDP and discuss
the aforementioned simple moments (used by Meka, Potechin, and Wigderson and Deshpande
and Montanari) formally. We then describe our own modified moments, and give an overview
of the proof that they form a feasible solution to the program (the difficult part being showing
that they are PSD).

Recalling our previous informal discussion, we first construct a solution to the relaxation
which satisfies only some of the constraints (we will ignore some aspects of the constraint∑

i xi = ω from (4.2.1)). Then in the final proof we show how to satisfy
∑

i xi = ω as a

constraint for some ω = Ω̃(
√
n).

Degree-4 SoS Relaxation for Max Clique

We consider the following semidefinite program.

max
ω≥0

ω such that there exists a degree-4 Ẽ satisfying

{x2
i = xi for all i ∈ [n], xS = 0 for S not a clique in G, and

∑
i∈[n]

xi = ω} . (4.3.1)

3While it might seem that there is a chance for these pseudo-expectations to be negative, if ω <√
n/ polylog(n) then it is exceedingly unlikely that there will exists an S such that |rS | > n/ω, and so

we ignore this issue in this overview.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 104

If sdpval(G) denotes the optimum value of the SDP relaxation on graph G, then clearly
sdpval(G) is at least the size of the maximum clique in G. In order to prove a lower bound
for degree-4 SoS relaxation on G(n, 1

2
), it is sufficient to argue that with overwhelming

probability, sdpval(G) is significantly larger than the size of the maximum clique in a random
graph. This amounts to exhibiting a feasible SDP solution with large objective value for an
overwhelming fraction of graphs sampled from G(n, 1

2
). Formally, we show the following:

Theorem 4.3.1 (Formal version of Theorem 4.1.1). There exists an absolute constant c ∈ N
such that

P
G∼G(n, 1

2
)

{
sdpval(G) ≥

√
n

logc n

}
≥ 1−O(n−4)

The Simple Moments, Formally

Henceforth, fix a graph G that is sampled from G(n, 1
2
). Both the work of Meka, Potechin and

Wigderson [MPW15] and that of Deshpande and Montanari [DM15b] construct essentially
the same SDP solution for the degree-4 SoS relaxation.

This SDP solution assigns to each clique of size 1, . . . , d, a value that depends only on its
size (in our case, d = 4). More formally, the SDP solution in [DM15b] is specified by four
parameters α = {α}4

i=1 as,

Ẽ[xS] = α|S| · GS ,

where for a set of vertices A ⊆ V , GA is the indicator that the subgraph induced on A
is a clique. The parameters {α}i∈[4] determine the value of the objective function, and the
feasibility of the solution. As a convention, we will define α0 = 1. It is easy to check that this
solution satisfies all the linear constraints of the SoS program (4.3.1) except for

∑
i xi = ω,

which will be handled later, since it assigns non-zero values only to cliques in G. The key
difficulty is in showing positive semi-definiteness for an appropriate choice of α.

For this purpose, we switch notation to explicitly discuss the moment matrix M =
M(G,α) associated to Ẽ:

M(G,α)A,B = ẼxA∪B = α|A∪B| · GA∪B .

In order to show that M(G,α) � 0 it is sufficient to show that N(G,α) � 0, where

NA,B = α|A∪B| ·
∏

i∈A\B,j∈B\A

Gij.

(Here Gij is the indicator for the presence of the edge (i, j).) In words, N is the matrix where
the entry {a, b, c, d} is proportional not to the indicator of whether {a, b, c, d} is a clique, but
to the indicator of whether G has as a subgraph the bipartite clique with bipartitions {a, b}
and {c, d}. It is easy to see that the matrix M is obtained by dropping from N the rows and
columns corresponding {a, b} ∈

(
n
2

)
where (a, b) /∈ E(G). Hence N � 0 =⇒ M � 0. This

avoids the many all-zero rows in M corresponding to non-edges in G. (This removes some
spurious variance in the spectrum of the matrix.)

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 105

Notice that N is a random matrix whose entries depend on the edges in the random graph
G. At the risk of over-simplification, the approach of both the previous works [MPW15] and
[DM15b] can be broadly summarized as follows:

1. (Expectation) Show that the expected matrix E[N] has sufficiently large positive eigen-
values.

2. (Concentration) Show that with high probability over the choice of G, the noise matrix
N − E[N] has bounded eigenvalues, so as to ensure that N = E[N] + (N − E[N]) � 0

Here we will sketch a few key details of the argument in [DM15b]. The matrix N ∈
R(n
≤2)×(n

≤2) can be decomposed in to blocks {Nab}a,b∈{0,1,2} where Na,b ∈ R(na)×(nb). Deshpande
and Montanari use the Schur complements to reduce the problem of proving that N � 0 to
facts about the blocks {Nab}a,b∈{0,1,2}. Specifically, they show the following lemma:4

Lemma 4.3.2. Let A ∈ R(n
≤2)×(n

≤2) be the matrix defined so that AA,B = α|A|α|B|. For

a, b ∈ {0, 1, 2}, let H̃a,b be the submatrix of N(G,α)−A corresponding to moments of order
a+ b. Then N(G,α) is PSD if and only if

H̃11 � 0, (4.3.2)

H̃22 − H̃>12H̃
−1
11 H̃12 � 0 (4.3.3)

The most significant challenge is to argue that (4.3.3) holds with high probability. In fact,
the inequality only holds for the Deshpande-Montanari SDP solution with high probability
for parameters α for which the objective value is ω � n1/3.

Definition 4.3.3 (The matrix H22). We use a somewhat different approach (pioneered in
[MPW15]) to handle the blocks of N corresponding to monomials of degree less than 4.
Departing slightly from [DM15b], we define the matrix H22 as the submatrix of N(G,α)

with rows and columns indexed by size-2 subsets {i, j} ⊆
(

[n]
2

)
.

Our main goal now is to show that H22 � 0 in a robust way. (Some robustness is necessary
to satisfy a condition similar to (4.3.3).)

Expected matrix. The expected matrix E[H22] is symmetric with respect to permutations
of the vertices. It forms an association scheme (see [MPW15, DM15b]), by virtue of which
its eigenvalues and eigenspaces are well understood. In particular, the following proposition
in [DM15b] is an immediate consequence of the theory of association schemes.

Proposition 4.3.4 (Adapted from Proposition 4.16 in [DM15b]). E[H22] has three
eigenspaces, V0, V1, V2 such that

E[H22] = λ0Π0 + λ1Π1 + λ2Π2,

4We will use an alternate approach from [MPW15] for our final PSDness argument, but we use the
analysis of the matrix H22 from [DM15b].

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 106

where Π0,Π1,Π2 are the projections to the spaces V0, V1, V2 respectively. The eigenvalues are
given by,

λ0(α)
def
= α2 + (n− 2)α3 +

(n− 2)(n− 3)

32
· α4 (4.3.4)

λ1(α)
def
= α2 +

(n− 4)

2
α3 −

(n− 3)

16
α4 (4.3.5)

λ2(α)
def
= α2 − α3 +

α4

16
(4.3.6)

Further the eigenspaces are given by,

V0 = Span{1},
V1 = Span{u | 〈u,1〉 = 0, ui,j = xi + xj for x ∈ Rn},

V2 = R(n
≤2) \ (V0 ∪ V1).

where the final subspace V2 we define simply as the subspace of R(n2) orthogonal to V0, V1.

Deviation from Expectation. Given the lower bound on eigenvalues of the expected
matrix E[H22], the next step would be to bound the spectral norm of the noise H22−E[H22].
However, since the eigenspaces of E[H22] are stratified (for the given α), with one large
eigenvalue and several much smaller eigenvalues, standard matrix concentration does not
suffice to give tight bounds. To overcome this, Deshpande and Montanari split H22 and
H>12H

−1
11 H12 along the eigenspaces of E[H22]. (We will use ideas from [MPW15] to avoid

handling H>12H
−1
11 H12 explicitly.)

Before splitting up H22 along eigenspaces of E[H22], we remove all of the entries H22(A,B)
with A ∩B 6= ∅, to make the analysis easier. Let

H22 − E[H22] = Q+K

where Q includes all multilinear entries and K includes all non-multilinear entries, i.e., entries
K(A,B) where A ∩B 6= ∅. Formally,

Q(A,B) =

{
H22(A,B)− E[H22](A,B) if A ∩B = ∅
0 otherwise

The spectral norm of the matrix Q over the eigenspaces V0, V1, V2 is carefully bounded in
[DM15b]. (We reprove this in Section 4.5 for completeness.)

Lemma 4.3.5 (Adapted from Propositions 4.20, 4.25 in [DM15b], reproved with these
parameters in Section 4.5). With probability at least 1−O(n−4), all of the following bounds
hold:

‖ΠaQΠb‖ . α4n
3/2 log3(n) ∀(a, b) ∈ {0, 1, 2}2 (4.3.7)

‖Π2QΠ2‖ . α4n log3(n) (4.3.8)

‖K‖ . α3n
1/2 log3(n) (4.3.9)

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 107

Proposition 4.3.4 and Lemma 4.3.5 are sufficient to conclude that H22 � 0 for parameter
choices of α that correspond to planted clique of size up to ω � n1/3. More precisely, to
argue that with high probability H22 � 0, it is sufficient to argue that E[H22] � E[H22]−H22,
i.e., λ0 0 0

0 λ1 0

0 0 λ2

 �
‖Π0QΠ0‖ ‖Π0QΠ1‖ ‖Π0QΠ2‖
‖Π1QΠ0‖ ‖Π1QΠ1‖ ‖Π1QΠ2‖
‖Π2QΠ0‖ ‖Π2QΠ1‖ ‖Π2QΠ2‖


+ α3n

1/2 log3(n) · Id .

Deshpande and Montanari fix α1 = κ, α2 = 4κ2, α3 = 8κ3 and α4 = 512κ4 for a parameter
κ (we think of κ ≈ ω/n for the clique-size parameter ω). Using Proposition 4.3.4 and
Lemma 4.3.5 to substitute in the corresponding bounds for λ0, λ1, λ2 and ‖Πa(E[H22] −
H22)Πb‖ for all a, b ∈ {0, 1, 2}, the above matrix inequality becomesn2κ4 0 0

0 nκ3 0

0 0 κ2

 � κ4

n3/2 n3/2 n3/2

n3/2 n3/2 n3/2

n3/2 n3/2 n

 , (4.3.10)

which can be shown to hold for κ� n−2/3. Eventually, it is necessary to show (4.3.3), which
is stronger than H22 � 0. This is again achieved by showing bounds on the eigenvalues of
H−1

11 and H12. We refer the reader to [DM15b] for more details of the arguments.

Problematic Subspace

The SDP solution described above ceases to be PSD at κ ' n−2/3, which corresponds to an
objective value of ω = Θ(n1/3). The specific obstruction to H22 � 0 arises out of (4.3.10).
More precisely, the bottom 2× 2 principal minor which yields the constraint[

λ1 −‖Π1QΠ2‖
−‖Π2QΠ1‖ λ2

]
≈
[

nκ3 −n3/2κ4

−n3/2κ4 κ2

]
� 0 ,

forcing κ � n−2/3. When κ is larger than this, the problematic vectors x ∈ R(n2) for which
x>H22x < 0 are precisely those for which |x>Π2QΠ1x| is large, i.e., Π2x aligns QΠ1x. More
generally, Π2x should have large projection into the image of V0⊕V1 under Q. Such a vector
only exists because the eigenspaces of Q are not the same as those of EH22.

In fact, we identify a specific subspace W that is problematic for the [DM15b] solution.
This subspace is the formal counterpart of the bad polynomials gi(x) described in Section 4.2.
To describe the subspace, let us recall some notation. Define the random variable ri(j) to
be −1 if (i, j) 6∈ E, and +1 otherwise. We follow the convention that ri(i) = 0.

Lemma 4.3.6. Let the vectors r⊗2
1 , . . . , r⊗2

n ∈ R(n2) be defined so that r⊗2
i (k, `)

def
= ri(k)ri(`),

and let W
def
= Span{r⊗2

1 , . . . , r⊗2
n }. (Note that the polynomials discussed in Section 4.2 are

given by ri(x)2 = 〈x⊗2, r⊗2
i 〉.) Then with probability at least 1−O(n−4),

‖Π2Q− Π2ΠWQ‖ . α4n log3(n)

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 108

Proof. This is an immediate observation from the various matrix norm bounds in [DM15b].
The full proof is in [RS15].

Since ‖Π2QΠ1‖ � α4n log3(n), the above lemma implies that all the vectors with large
singular values for Q are within the subspace W . Furthermore, we will show the following
lemma, which clearly articulates that W is the sole obstruction to H22 � 0.

Lemma 4.3.7. Suppose α ∈ R4
+ satisfies

min(λ0(α), λ1(α), λ2(α))� α3n
1/2 log3(n) , (4.3.11)

λ0(α) > λ1(α)� α4n
3/2 log3(n) , (4.3.12)

λ2(α)� α4n log3(n) (4.3.13)

then with probability 1−O(n−4),

H22 �
1

4
· E[H22]− 16‖Q‖2

λ1

· Π2ΠWΠ2.

Proof. Fix θ = 16‖Q‖2
λ1

. Recall that H22 − E[H22] = Q+K. We can write the matrix

H22 + θ · Π2ΠWΠ2 = BW⊥ +BW +BK +
1

4
E[H22] ,

where if ΠW⊥
def
= Id−ΠW ,

BW⊥ =
1

4
E[H22] +

 Π0QΠ0 Π0QΠ1 Π0QΠW⊥Π2

Π1QΠ0 Π1QΠ1 Π1QΠW⊥Π2

Π2ΠW⊥QΠ0 Π2ΠW⊥QΠ1 Π2QΠ2


and

BW =
1

4
E[H22] +

 0 0 Π0QΠWΠ2

0 0 Π1QΠWΠ2

Π2ΠWQΠ0 Π2ΠWQΠ1 θ · Π2ΠWΠ2


and BK = K + 1

4
E[H22].

It is sufficient to show that BW⊥ , BW and BK � 0. Using Proposition 4.3.4 and (4.3.9),
BK � (1

4
λ0 − α3n

1/2 log3(n))Π0 + (1
4
λ1 − α3n

1/2 log3(n))Π1 + (1
4
λ2 − α3n

1/2 log3(n))Π2 � 0
when condition (4.3.11) holds. Using Proposition 4.3.4, Lemma 4.3.5, and Lemma 4.3.6 we
can write,

BW⊥ �
1

4
·

λ0 0 0

0 λ1 0

0 0 λ2

− α4 log3(n) ·

n3/2 n3/2 n

n3/2 n3/2 n

n n n



CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 109

which is PSD given the bounds on λ1, λ2, λ3 in conditions (4.3.12) and (4.3.13). To see this,
one shows that all the 2× 2 principal minors are PSD.

Putting everything together, for any x ∈ R(n2), we can write

x>BWx ≥ λ0‖Π0x‖2 +
θ

2
‖ΠWΠ2x‖2 − 2‖Q‖ · ‖ΠWΠ2x‖ · ‖Π0x‖

+ λ1‖Π1x‖2 +
θ

2
‖ΠWΠ2x‖2 − 2‖Q‖ · ‖ΠWΠ2x‖ · ‖Π1x‖

Now we will appeal to the fact that a quadratic f(p, q) = ap2 +2bpq+cq2 ≥ 0 for all p, q ∈ R
if b2 < 4ac and a > 0. Since θλ1, θλ0 ≥ 16‖Q‖2 by condition (4.3.12), it is easily seen that
the above quadratic form is always non-negative, implying that BW � 0.

An immediate corollary of the proof of the above lemma is the following.

Corollary 4.3.8. Under the hypothesis of Lemma 4.3.7, with probability 1−O(n−4),

H22 −K �
1

2
· E[H22]− 16‖Q‖2

λ1

· Π2ΠWΠ2.

The above corollary is a consequence of the fact that H22 −K = BW +BW⊥ + 1
2
E[H22].

The Corrected Witness

We now offer an alternative, more technical motivation for our correction to the witness.
Suppose we have an unconstrained matrix M that we wish to modify as little as possible
so as to ensure M � 0. Given a test vector w so that w>Mw < 0, the natural update to
make is to take M ′ = M + β · ww> for a suitably chosen β. In this way, one would hope to
add enough positive spectral mass in the direction of w to eliminate the negative eigenvalue.
This would suggest creating a new SDP solution by setting H ′22 = H22 +β

∑
i∈[n](r

⊗2
i)(r⊗2

i)>.
Unfortunately, the SoS SDP relaxation has certain hard constraints, namely that the non-

clique entries are fixed at zero. Moreover, Ẽ[xS1xS2] must depend only on S1 ∪ S2. Setting
the SDP solution matrix to H22 + β

∑
i∈[n](r

⊗2
i)(r⊗2

i)> would almost certainly violate both
these constraints. It is thus natural to consider multiplicative updates to the entries of the
matrix, which clearly preserve the zero entries of the matrix.

Specifically, the idea is to consider an update of the form M ′ = M + βDwMDw where
Dw is the diagonal matrix with entries given by the vector w. If the matrix M has a
significantly large eigenvalue along 1 (the vector of all 1 entries), i.e., M � λ0 · 1̃1̃>, then
this multiplicative update has a similar effect as an additive update,

M ′ �M + β · λ0 · ww> .

Recall that, in our setting, the Deshpande-Montanari SDP solution matrix N does have
a large eigenvalue along 1̃. We now formally describe the matrix M ′ which will form the
basis for our final SDP solution Ẽ.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 110

Definition 4.3.9. Let r̂1, . . . , r̂n ∈ R(n
≤2) be defined so that

r̂i(A) =

{
0 |A| < 2

r⊗2
i (A) |A| = 2.

Define D̂i ∈ R(n
≤2) to be the diagonal matrix with r̂i on the diagonal. Define K̂ to be the

restriction of N(G,α) to the non-multilinear entries. Also let

N ′(G,α) = N(G,α) + β ·
∑
i∈[n]

D̂i

(
N(G,α)− K̂

)
D̂i,

where β = 1
100
√
n logn

. Then define the matrix M ′ so that

M ′(G,α) = P
(
N ′(G,α)

)
,

where P is the projection that zeros out rows and columns corresponding to pairs (i, j) 6∈ E.

We will show that N ′(G,α) � 0 in a somewhat strong sense, which will be enough to
establish our final lower bound. Analogous to the submatrix H22, one can consider the
corresponding submatrix H ′22 of N ′. The expression for H ′22 is as follows:

H ′22
def
= H22 + β ·

∑
i∈[n]

Di(H22 −K)Di,

Here Di is the matrix with (r⊗2
i) on the diagonal, and K is the matrix corresponding to the

non-multilinear entries (entries corresponding to monomials like x2
axbxc). For our final lower

bound, we show how to use strong PSDness of H ′22 to produce a witness for (4.3.1).

4.4 Degree 4 Lower Bound: Proof

In this section, we will demonstrate that H ′22 � 0 and use this to prove our final lower bound.

Parameters. Before we proceed further, it will be convenient to set α2 and α3 in terms of
α4. We choose

α3 = α
3/4
4 ·

√
2

4
α2 = α

1/2
4 · 1

8
. (4.4.1)

For now, we leave α4 unset (eventually we will choose it to be 1
n2 log(n)c

for some constant c).

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 111

Proving that H ′22 � 0

Here we will show that H ′22 is PSD in a strong sense.

Theorem 4.4.1. For β = 1
100
√
n logn

there is α4 ≥ 1
n2 log(n)O(1) , so that the following holds

with probability at least 1−O(n−4),

H ′22 �
1

8
E[H22] +

βλ0

16
· ΠW

Proof. Fix θ = 16‖Q‖2
λ1

. By definition of H ′22, we have

H ′22 = H22 + β ·
∑
i∈[n]

Di(H22 −K)Di.

Define PW =
∑

i∈[n] r
⊗2
i (r⊗2

i)>. We can apply Lemma 4.3.7 to the H22 term and Corollary

Corollary 4.3.8 for H22−K (the reader may easily check that our choice of α2, α3, α4 satisfies
their hypotheses) to obtain

H ′22 �
1

4
E[H22]− θ · Π2ΠWΠ2 + β ·

∑
i∈[n]

Di

(1

2
E[H22]− θΠ2ΠWΠ2

)
Di .

which, dropping Π1,Π2, becomes

� 1

4
E[H22]− θ · Π2ΠWΠ2 + β ·

∑
i∈[n]

Di

(
λ0

2
Π0 − θΠ2ΠWΠ2

)
Di .

which, using DiΠ0Di = rir
>
i /
(
n
2

)
, becomes

� 1

4
E[H22]− θ · Π2ΠWΠ2 + β

λ0

4n2
PW − βθ

∑
i∈[n]

DiΠ2ΠWΠ2Di . (4.4.2)

Now we will appeal to a few matrix concentration results (whose proofs may be found in
Section 4.5). First, with probability 1 − O(n−5), the vectors {r⊗2

i } are nearly orthogonal,
and therefore form a well-conditioned basis for the subspace W .

Lemma 4.4.2. If PW
def
=
∑

i r
⊗2
i (r⊗2

i)> then with probability at least 1−O(n−5),

1
n2 (1 + o(1)) · PW � ΠW � (1− o(1)) 1

n2 · PW .

Also, the vectors {r⊗2
i } have negligible projection on to the eigenspaces V0, V1,

Lemma 4.4.3. Let Π01 = Π0 + Π1. With probability at least 1−O(n−ω(logn)),

‖Π01ΠWΠ01‖ ≤ O

(
log2 n

n

)
.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 112

This implies that with overwhelming probability,

ΠW +O

(
log2 n

n

)
· Id � Π2ΠWΠ2 � ΠW −O

(
log2 n

n

)
· Id .

Finally, W has dimension n. Each DiΠ2ΠWΠ2Di has only n non-zero singular values, each
of which is O(1). Moreover, multiplying on the left and right by Di acts as a random linear
transformation/ random change of basis. Intuitively, this suggests that

∑
iDiΠ2ΠWΠ2Di

has n2 eigenvalues all of which are roughly O(1). In fact,

Lemma 4.4.4. With probability 1−O(n−5),∑
w

DwΠ2ΠWΠ2Dw � O(n) · Π0 +O(log2 n) · Idn .

Substituting these bounds into (4.4.2) we get,

H ′22 �
1

4
E[H22] +

(
βλ0

8
− θ
)
· ΠW −O

(
θ log2 n

n
+ βθ log2 n

)
· Id−βθ ·O(n) · Π0 .

By Lemma 4.3.5, with probability at least 1 − O(n−4), ‖Q‖ . α4n
3/2 log3(n). Substituting

this bound for θ = 16‖Q‖2
λ1

along with (4.3.4),(4.3.5),(4.3.6), finishes the proof for our choice

of parameters in (4.4.1).

Putting Things Together

In this section we give our final lower bound for the sum-of-squares SDP (4.3.1). The
following reduction uses standard techniques, appearing first in this context in [MPW15].

Lemma 4.4.5 (Corollary 2.4 in [MPW15]). Suppose L is a real-valued linear function on
n-variate real polynomials of degree at most 4, and suppose that L satisfies the constraint
{
∑

i xi = ω} for some ω ∈ R. If for every homogeneous degree-2 polynomial p it holds that
Lp2 ≥ 0, then for every p of degree at most 2 we have Lp2 ≥ 0.

With this in mind, we define an operator Ẽ on polynomials of degree at most 4 as follows.

Definition 4.4.6. Let G ∼ G(n, 1/2). For a multilinear degree-4 monomial xS where S

is a clique in G, define ẼxS = H ′2,2(S1, S2) for any pair S1, S2 ⊆ [n] of size 2 such that

S = S1 ∪ S2. If S is not a clique in G, set ẼxS = 0. Let ω′ be the greatest real solution to
the following equation ∑

S a 4-clique in G

ẼxS =

(
ω′

4

)
.

For every S ⊆ [n] of size 0 ≤ s ≤ 3, define

ẼxS =
1

ω′ − s
∑

`∈[n]\S

ẼxS∪` .

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 113

Extend Ẽ to non-multilinear polynomials to satisfy the constraints {x2
i = xi} for all i.

Now we state our main theorem of this section.

Theorem 4.4.7 (Final restatement of Theorem 4.3.1). With probability 1 − O(n−4) over

G ∼ G(n, 1/2), the operator Ẽ satisfies the linear constraints 4.3.1 and has Ẽ p2 ≥ 0 for
every p of degree at most 2, for some ω′ = Ω(

√
n/ log(n)O(1)).

By construction, Ẽ satisfies the constraints xi = x2
i and ẼxS = 0 for non-cliques S of

(4.3.1). The next lemma shows that Ẽ 1 = 1; the proof that Ẽ satisfies
∑

i≤n xi = ω′ for ω′

as in the definition above is similar.

Lemma 4.4.8. Ẽ 1 = 1.

Proof. We expand Ẽ 1 as

Ẽ 1 = 1
ω′(ω′−1)(ω′−2)(ω′−3)

∑
i

∑
j 6=i

∑
k 6=i,j

∑
`6=i,j,k

Ẽxixjxkx` .

Recalling that ω′ is the solution to
(
ω′

4

)
= ω′(ω′−1)(ω′−2)(ω′−3)/24 =

∑
S a 4-clique in G ẼxS

reveals that the above must equal 1.

We will need the following concentration result from [MPW15] (similar results appear
elsewhere in the literature, see [MPW15] for references), which bounds the deviation from
expectation of the number of 4-cliques in G containing a particular smaller clique.

Theorem 4.4.9 (Special Case of Theorem 10.1 in [MPW15]). For I ⊆ [n] of size i ≤ 4, let
N4(i) be the number of 4-cliques in G ∼ G(n, 1/2) containing I. For large enough n,

P

{∣∣∣∣∣N4(I)− 2(i2)

64
·
(
n− i
4− i

)∣∣∣∣∣ > 200n4−i−1/2 log(n)
∣∣∣ I is a clique

}
≤ O(n−10) .

The next lemma shows that the objective value ω′ is Ω̃(
√
n/ polylog n).

Lemma 4.4.10. If β � n3/2−δ for some constant δ, then for G ∼ G(n, 1/2) with high

probability ω′ = α
1/4
4 (n

2
√

2
±
√
n log(n)O(1)).

Proof. Let N4 be the number of 4-cliques in G. Then by Theorem 4.4.9, with probability
1−O(n−10),

N4 = n4

1536

(
1±O(log n/

√
n)
)
.

Thus for large enough n, by standard concentration (e.g. the method of bounded differences)
applied to the correction term,∑

S a 4-clique in G

ẼxS = α4N4 + α4β
∑

S a 4-clique in G

∑
i∈n

∏
j∈S

ri(j)

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 114

= α4N4 ± Õ(α4 · β · n5/2)

= α4n4

1536
(1±O(log n/

√
n)) .

Thus, ω′ = α
1/4
4 (n/(2

√
2)±

√
n log(n)O(1)).

To prove Theorem 4.4.7 we just have to ensure that Ẽ p2 ≥ 0 for all degree-2 polynomials
p. In light of Lemma 4.4.5, we can restrict attention to homogeneous degree-2 polynomials.

Let H ∈ R(n2)×(n2) be the matrix with

H(S1, S2) =

{
ẼxS1xS2 if S1 ∪ S2 is a clique in G

H ′2,2(S1, S2) otherwise .

To show that Ẽ p2 ≥ 0 for degree-2 homogeneous polynomials, it will be enough to show that
H � 0.

Let ∆ = H−H ′2,2, so that H = H ′2,2 + ∆. The last lemma we need is a bound on ∆.

Lemma 4.4.11. ‖∆‖ ≤ α3 · O(log(n)O(1)
√
n) + α2 · O(log(n)O(1)/

√
n), with probability 1−

O(n−5),

Before we prove Lemma 4.4.11, we prove Theorem 4.4.7.

Proof of Theorem 4.4.7. Lemma 4.4.8 shows that the constraints 4.3.1 are satisfied by Ẽ. As
long as α ≥ 1

n2 log(n)c
for some c, by Lemma 4.4.10 the operator Ẽ shows the objective value

of (4.3.1) is at least
√
n/ log(n)c

′
for a constant c′. By Lemma 4.4.5, it is enough to show

that H � 0 (since then the submatrix of rows and columns indexed by cliques in G is also

PSD, implying that Ẽ p2 ≥ 0 for all degree-2 polynomials p). By Theorem 4.4.1 and our
choice of parameters, with probability at least 1−O(n−4),

H ′2,2 �
α2

16
· Id

where Id is the identity matrix. By a union bound, with probability 1 − O(n−4), it also
occurs that ‖∆‖ ≤ α2/16 (so long as α4 ≤ 1

n2 log(n)O(1)). In that case, H � 0 as desired.

It remains to prove Lemma 4.4.11.

Proof of Lemma 4.4.11. By definition, ∆(S1, S2) = 0 unless |S1 ∪S2| ∈ {2, 3} and S1 ∪S2 is

a clique in G. Let ∆i ∈ R(n2)×(n2) for i = 2, 3 be given by

∆i(S1, S2) =

{
∆(S1, S2) if |S1 ∪ S2| = i

0 otherwise.

We start by analyzing ∆3. By Theorem 4.4.9 and standard concentration (using either the
moment method or the method of bounded differences), every nonzero entry satisfies

∆3(S1, S2) = ẼxS1xS2 − α3 = 1

α
1/4
4 (n±

√
n log(n)O(1))

· α4 ·
(
n
8
±O(

√
n log(n))

)
− α3

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 115

with probability at least 1 − O(n−7). Our choice of α3 ensures that this is at most
O(α3 log(n)O(1)/

√
n) in magnitude. There are at most n nonzero entries in any row of

∆3, so taking a union bound, with probability at most 1−O(n−5), we get

‖∆3‖ ≤ O(α3 log(n)O(1)
√
n) .

The matrix ∆2 is diagonal, and once again by Theorem 4.4.9 and standard concentration,
each nonzero entry satisfies

|∆2(S, S)| = | ẼxS − α2| = |α2(1±O(log(n)O(1)/
√
n))| − α2 ≤ α2 ·O(log(n)O(1)/

√
n)

with probability at least 1−O(n−7). By a union bound, with probability at least 1−O(n−5),
we get that ‖∆2‖ ≤ α2 ·O(log(n)O(1)/

√
n). This concludes the proof.

4.5 Concentration for Locally Random Matrices over
G(n, 1

2)

The goal of this section is to prove strong concentration bounds for the matrices will en-
counter in our analysis. Some of these bounds are established first in [DM15b], but for
completeness we prove all the bounds we need here. We will begin by establishing a set
of theorems which will give us concentration bounds for a large subset of the matrices we
encounter, then apply these theorems to obtain our bounds.

General Approach and Tools

Our main tool for bounding the spectral norm of random matrices is once again the trace
power method (Proposition 3.2.4). It reduces the question “what is the typical spectral
norm of the random matrix X?” to combinatorial questions about certain labeled graphs
associated to X. Because the bounds we require may be loose by poly-logarithmic factors,
the combinatorics that usually underlie the trace power method will be relatively simple in
our cases.

Fact 4.5.1. Suppose an n×n random matrix M satisfies E[Tr(Mk)] ≤ nαk+β · (γk)! for any
even integer k, where α, β, γ are constants. Then

P
(
‖M‖ . nα · log

n

η

)
≥ 1− η .

Proof. The proof follows from an application of Proposition 3.2.4. We have that for even k,

P[‖M‖ ≥ t] ≤ 1

tk
E[Tr(Mk)] ≤

√
πγk

tk

(
γk

e

)k
nαk+β ,

where we have applied Stirling’s approximation in the last step. Choosing k = O(log n−log η)
and t = O (k · nα) completes the proof.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 116

The expression E[Tr(Xk)] is a sum over products along closed paths of length k in the
entries of X. In our case, the entries of the random matrix X are themselves low-degree
polynomials in random variables {Aij}i∈[n],j∈[n] where Aij is the centered random variable
that indicates whether the edge (i, j) is part of the random graph G. (That is, Aij = 1 if
(i, j) ∈ G and −1 otherwise.) Thus Tr(Xk) can be written out as a polynomial in the random
variables {Aij}i,j∈[n]. Since the random variables {Aij}i,j∈[n] are centered (i.e., E[Aij] = 0),
almost all of the terms in E[Tr(Xk)] vanish to zero. The nonzero terms are precisely those
monomials in which every variable appears with even multiplicity.

Graph-Theoretic Definitions and Lemmas

In this section, we set up some notation and definitions helpful in our proofs of the main
results of this section.

For the purpose of moment calculations, we borrow much of our terminology from the
work of Deshpande and Montanari [DM15b]. Every monomial in random variables {Aij}i,j∈[n]

corresponds to a labeled graph (R = (V,E), F) that consists of a graph R = (V,E) and a
labeling F : V → [n] that maps its vertices to [n]. A labeling of R contributes (is nonzero in
expectation), if and only if every pair {i, j} appears an even number of times as a label of
an edge in R.

The following definitions and notation are generalizations of the ones used in [DM15b]
to general degrees d and are useful in the proof of our first main norm bound for random
matrices, Lemma 4.5.7. (The generalization to higher degrees d is useful in establishing the
improved bounds on the simple moments in the preprint [HKP15], and provides evidence
that obtaining norm bounds is not the main roadblock to obtaining an ≈

√
n lower bound

for higher degrees d.)

Definition 4.5.2. Let U be a bipartite graph on vertices {1, 2, . . . , d} × {1′, 2′, . . . , d′}. A
U -ribbon of length 2` is a graph R on 2`d vertices

a1
1, . . . , a

1
d, . . . , a

`
1, . . . , a

`
d

b1
1′ , . . . , b

1
d′ , . . . , b

`
1′ , . . . , b

`
d′ .

We install edges in R by placing a copy of U on vertices 1, 2, . . . , d and 1′, 2′, . . . , d′ (with the
label i or i′ matching the upper index of as and bs respectively) on ai1, . . . , a

i
d, b

i−1
1 , . . . , bi−1

d
for every i ≤ d. We also place a copy of the mirror image of U on ai1, . . . , a

i
d, b

i
1, . . . , b

i
d For

i = 0, we treat i− 1 as d (modular addition), so that the graph wraps around. Often we will
omit the length parameter 2` when it is clear from context.

Definition 4.5.3. Let G be a graph. A labeled U -ribbon R is a tuple (R,F) where R is a
U -ribbon and F : R→ G is a map labeling each vertex of R with a vertex in G. We require
that for (u, v) an edge in R, F (u) 6= F (v).

Definition 4.5.4. Let (R,F) be a labeled U -ribbon where U has 2d vertices. We say (R,F)
is disjoint if for every i,

|{F (ai1), . . . , F (aid), F (bi1), . . . , F (bid)}| = |{F (ai1), . . . , F (aid), F (bi−1
1), . . . , F (bi−1

d)}| = 2d .

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 117

Definition 4.5.5. Let (R,F) be a labeled U -ribbon where U has 2d vertices. We say that
(R,F) is contributing if no element of the multiset {(F (u), F (v)) : (u, v) ∈ R} occurs with
odd multiplicity.

The following combinatorial lemma will serve as a tool in the proofs of the main results
for this section.

Lemma 4.5.6. Let (R,F) be a contributing labeled U-ribbon of length 2`. Recall that R has
vertex set aij, b

i
j for i ∈ ` and j ∈ [d]. Let k ≤ d. Suppose that the sets

{F (ai1), F (bi1)}i∈[`], . . . , {F (aik), F (bik)}i∈[`], {F (aij), F (bij)}i∈[`],j∈[k+1,d]

are disjoint. Then if U contains the edges {(1, 1), . . . , (k, k)} (where we identify the vertex
set of U with [d]× [d]), {F (u) : u ∈ R} has size at most (2d− k)`+ k.

Proof. The assumption on U implies that R contains the cycles

C1
def
= (a1

1, b
1
1, . . . , b

`
1, a

1
1)

. . .

Ck
def
= (a1

k, b
1
k, . . . , b

`
k, a

1
k) .

In order for (R,F) to be contributing, every edge (u, v) ∈ R must have a partner (u′, v′) 6=
(u, v) so that F (u′) = F (u) and F (v′) = F (v). By our disjointness assumption, every edge
in cycle Ci must be partnered with another edge in Ci. Thus, now temporarily identifying
edges when they are labeled identically, each Ci is a connected graph with at most ` unique
edges (since each of the 2` edges must be partnered). It therefore has at most `+ 1 unique
vertex labels. Among the cycles C1, . . . , Ck, there are thus at most k(` + 1) unique vertex
labels. In the rest of the ribbon R there can be at most 2`(d − k) unique vertex labels,
because once the cycles C1, . . . , Ck are removed there are only that many vertices left in R.
So in total there are at most k(`+ 1) + 2`(d− k) = (2d− k)`+ k unique labels.

Concentration of Bipartite-Patterned Matrices

For a large class of matrices that we encounter, we will be able to prove a general spectral
norm bound. Let U be a bipartite graph with bipartitions Q,P , each of size d, and with
edge set E(U). Let G ∼ G(n, 1

2
), and define the

(
[n]
d

)
×
(

[n]
d

)
matrix M = MU(G) so that for

I, J ∈
(

[n]
d

)
,

M(I, J) =
∏

(i,j)∈E(U)

Aij ,

where the indices of I have been identified with the vertices of Q and the indices of J
have been identified with the vertices of P . We shall call such an M a bipartite-patterned
matrix. For bipartite-patterned matrices, we can obtain a spectral norm bound based on
characteristics of the bipartite graph U :

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 118

Lemma 4.5.7. For d ≥ 2, d = O(1), and a bipartite graph U with bi-partitions of size d,

let M = MU ∈ R([n]
d)×([n]

d) be a bipartite patterned matrix such that for any I, J ∈
(

[n]
d

)
,

M(I, J) =

{∏
(i,j)∈E(B)Aij if I ∩ J = ∅

0 otherwise
,

Then:

1. When U contains a 2-matching, then P(‖M‖ ≥ O(nd−1(log n)2)) ≤ O(n−10).

2. When U is not the empty graph, P(‖M‖ ≥ O(nd−1/2(log n)2)) ≤ O(n−10).

The proof of Lemma 4.5.7 is similar to the proofs via the trace power method for bounding
the norms of matrices as presented in [DM15b]. The general format we present here will
come in handy for multiple applications to various matrices which appear in Section 4.4 and
in Section 4.3.

Useful Tools

We begin by presenting some general-purpose tools that we will employ in our analysis to
reduce bounding ‖M‖ to bounding simpler patterned matrices.

For analyzing the spectral norm of a matrix M ∈ R([n]
d)×([n]

d), the first tool allows us
to analyze instead a related matrix M ′ ∈ Rnd×nd . That is, instead of rows and columns
being indexed by subsets of vertices as in M , M ′ has rows and columns indexed by ordered
tuples of vertices of size d. This transformation is not hard as one can find M as a principal
submatrix of M ′.

Lemma 4.5.8 (Sets to Ordered Tuples). For any M ∈ R([n]
d)×([n]

d) define the matrix

M ′ ∈ Rnd×nd such that for any ordered tuple S = (a1, a2, . . . , ad), T = (b1, b2, . . . , bd) ∈ [n]d,
M ′(S, T) = M({a1, a2, . . . , ad}, {b1, b2, . . . , bd}). Then, ‖M‖ ≤ ‖M ′‖.

Proof. It is enough to show that M ′ occurs as a principal submatrix of M . For this, take
the submatrix of rows and columns of M indexed by tuples (a1, . . . , ad) in sorted order, i.e.,
with a1 ≤ a2 ≤ . . . ad.

We will use the following lemma to break dependencies in certain random matrices by
decomposing them into matrices whose entries, while still dependent, have additional struc-
ture.

Lemma 4.5.9 (Random Partitioning). For d ∈ N, let M ∈ Rnd×nd be indexed by subsets
I, J ∈ [n]d. Suppose M(I, J) = 0 when I ∩ J 6= ∅. Let (S1

1 , . . . , S
1
k), . . . , (S

r
1 , . . . , S

r
k) be a

sequence of partitions of [n] into k bins. Each partition induces a matrix based on M as
follows: for indices A,B ∈ [n]d with A = (a1, . . . , ad) and B = (b1, . . . , bd),

Mi(A,B) =


M(A,B) if aj, bj ∈ Sij for j < k, and aj, bj ∈ Sk for j ≥ k,

and for all i′ < i, Mi′(A,B) = 0 ,

0 otherwise .

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 119

Then, there is a family of partitions (S1
1 , . . . , S

1
k), . . . , (S

r
1 , . . . , S

r
k) such that M =

∑r
i=1Mi

with r ≤ kO(d) log n.

Proof of Lemma 4.5.9. For r to be chosen later, we pick partitions
(S1

1 , . . . , S
1
k), . . . , (S

r
1 , . . . , S

r
k) uniformly at random and independently so that each is

partition of [n] into sets of size n/k each.
Call A,B good at step i if aj, bj ∈ Sij for every j < k and aj, bj ∈ Sik if j ≥ k. It is enough

to show that after r ≤ O(kk log n) steps the probability that every set A ∪ B of size 2d is
good at some step i ≤ r.

Fix some A,B with |A ∪ B| = 2d. It is good at step i with probability at least k−2d.
Since the steps are independent, after r steps

P(A,B is good) ≥ (1− 1
k2d)r

= ((1− 1
k2d)k

2d

)r/k
2d

≤ (1
e
)r/k

2d

which is at most 1/n10d for some r = O(k2d log n).
Taking a union bound over all O(n2d) tuples A,B with |A ∪ B| = 2d completes the

proof.

Proof of Lemma 4.5.7

Proof of Lemma 4.5.7. By Lemma 4.5.8 it is enough to prove the analogous claims for the
nd × nd matrix M with entries given by, for any multisets of indices A = (a1, . . . , ad), B =
(b1, . . . , bd) ∈ [n]d,

M(A,B) =

{∏
(ai,bj)∈E(U) xai,bj if |A ∪B| = 2d

0 otherwise
,

By multiplying M by suitable permutation matrices P, P ′ to give PMP ′, we may assume
in the 2-matching case above that the matching is {(1, 1), (2, 2)} and in the nonempty graph
case that the edge contained is (1, 1) (where we think of the vertex set of B as [d] × [d]).
Note that ‖M‖ = ‖PMP ′‖.

We apply Lemma 4.5.9 to obtain a family of matrices {Mi}i∈[r] for some r = O(log n)
satisfying M =

∑
iMi. On any entry (A,B) on which Mi is nonzero it is equal to M at

that entry, and furthermore for each Mi there is a partition (Si1, S
i
2, S

i
3) of [n] so that if

Mi(A,B) 6= 0 then a1, b1 ∈ Si1, a2, b2 ∈ Si2, and aj, bj ∈ Si3 for all j > 2.
We show that every matrix ‖Mi‖ has bounded spectral norm. To save on indices, let

N = Mi. Let (S1, S2, S3) be the partition of [n] corresponding to N . We bound ETr(NN>)`

for some ` to be chosen later.
Let R(N) be the set of contributing disjoint labeled U -ribbons (R,F) of length 2` with

F (ai1), F (bi1) ∈ S1, F (ai2), F (bi2) ∈ S2 and F (aij), F (bij) ∈ S3 for j > 2. Then ETr(NN>)` ≤
O(``)|R(N)|. (Here we have an inequality rather than an equality because some elements of
R(N) may correspond to entries of N which are zero because they appeared in some other
part of the partitioning scheme and `` ≥ `! accounts for reorderings of the labels.)

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 120

Supposing that U contains a 2-matching, by Lemma 4.5.6, each (R,F) ∈ R(N) contains
at most (2d − 2)` + 2 unique {F (u) : u ∈ R}. So there are at most n2`(d−1)+2 elements of
R(N).

It follows that E[Tr(NN>)`] ≤ (2d`)!n2`(d−1)+2. Now by Fact 4.5.1,

P(‖N‖ . n(d−1) · log
n

η
) ≥ 1− η,

And applying the triangle inequality to ‖M‖ = ‖
∑

iMi‖ and taking a union bound over the
c · log n = O(log n) matrices Mi, we get that

P(‖M‖ . log n · n(d−1) · log
n

η
) ≥ 1− c · log n · η,

and setting η = (n10 log n)−1, we have our desired result.
The case that B contains only a 1-matching is similar, replacing the (2d− 2)`+ 2 unique

vertices in a contributing B-ribbon with (2d− 1)`+ 1, again by Lemma 4.5.6.

Concentration Bounds for Relevant Matrices

In this section, we give bounds on the spectra of the specific random matrices that appear in
our proofs. Several of our bounds will employ the tools developed in the previous subsection.
For others, we will obtain our bounds by employing the trace power method (which we also
used in the previous section’s proofs).

Lemma 4.5.10 (Adapted from Propositions 4.20, 4.25 in [DM15b], Restatement of
Lemma 4.3.5). With probability at least 1−O(n−4), all of the following bounds hold:

‖ΠaQΠb‖ . α4n
3/2 log3(n) ∀(a, b) ∈ {0, 1, 2}2 (4.5.1)

‖Π2QΠ2‖ . α4n log3(n) (4.5.2)

‖K‖ . α3n
1/2 log3(n) (4.5.3)

Proof. Recall that Q is the matrix defined so that for any I, J ∈
(

[n]
2

)
,

Q(I, J) =

{
0 if I ∩ J 6= ∅
α4 ·

(∏
i∈I,j∈J

(1+Aij)

2
−
(

1
2

)4
)

otherwise .

We can further split Q into 15 matrices Q1, . . . , Q15, one for each term in the expansion

of the polynomial in the entries,
(∏

i∈I,j∈J
(1+Aij)

2
−
(

1
2

)4
)

. (Notice that there will be no

constant term.) For any 1 ≤ i ≤ 15, the matrix 1
α4
·Qi is equal to α4 ·MU as in Lemma 4.5.7,

for some U which is not the empty graph. Furthermore, ‖Πa‖ ≤ 1 for all a ∈ {0, 1, 2}.
Together, these imply that that ‖ΠaQΠb‖ ≤

∑7
i=1 ‖ΠaQiΠb‖ ≤ O(α4n

3/2 log3 n) for all
a, b ∈ {0, 1, 2} with probability at least 1−O(n−9), and this proves our first claim.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 121

For the second claim, the strategy is somewhat subtle. Recall that Q is zero on entries
(I, J) with nontrivial intersection |I ∩ J | > 0. Such matrices do not interact well with the
projector Π2. Lemma 4.5.11 analyzes how such matrices behave under projection V2.

Notice first that for any Qi corresponding to MU for U containing a 2-matching, we
already have ‖Π2QiΠ2‖ ≤ O(α4n log3 n) with probability 1 − O(n−9) by Lemma 4.5.7. We
just have to deal with the the Qi’s corresponding to U ’s with only a 1-matching. Let

Z =
∑

i : corresponding U contains only a 1 matching

Qi .

Applying Lemma 4.5.11 to Z, we find that Π2ZΠ2 = Π2DΠ2 for a matrix D as in the
lemma, which is nonzero only on non-multilinear entries. (Here there is an implicit change
of scale by a multiplicative factor α4 to apply the lemma.) We can now afford the bound
‖Π2DΠ2‖ ≤ ‖D‖.

It is straightforward to check that on non-multilinear but non-diagonal entries, D is a
rescaling of K. Our last claim about K can be used to finish the proof of the second claim.

Finally, we prove our last claim, about the matrix K. We split K into n matrices
K(1), . . . , K(4), so that K(1) contains the nonzero entries of K where |I ∩ J | = 1 and fur-
thermore I and J intersect on their lexicographically first element. Similarly, K(2) contains
those entries where I ∩ J = {i} and i is the lexicographically first element of I and the
lexicographically second element of J , and so on.

Each K(s) we now further divide into K
(s)
i = Ki for i ∈ [n] (saving some indices), so

that K
(s)
i (I, J) = K(s)(I, J) if I ∩ J = {i} and is 0 otherwise. Then K(s) =

∑
iKi and the

matrices Ki are nonzero on disjoint sets of rows and columns, so ‖K‖ ≤ maxi ‖Ki‖. Because
H22 is built from the indicator of bipartite cliques in G, each Ki is a scaled copy of the
centered adjacency matrix of G ∼ G(n, 1/2), so it follows that with probability 1−O(n−9),
each Ki satisfies ‖Ki‖ ≤ α3n

1/2 log(n). The lemma follows.

Lemma 4.5.11. Let A be any n × n matrix with ±1 entries. Let M ∈ R([n]
2)×([n]

2) be the
matrix such that for any {a, b}, {c, d} ∈

(
[n]
2

)
with |{a, b, c, d}| = 4,

M(ab, cd) = Aad + Aac + Abc + Abd
+ AacAad + AbcAbd + AadAbd + AacAbc .

Let

R1(ab, cd) = Aac + Aad
C1(ab, cd) = Abc + Abd
C2(ab, cd) = AacAad + AbcAbd
R2(ab, cd) = AacAbc + AadAbd
D(ab, cd) = −1 · I(|{a, b, c, d}| < 4) · ((R1 +R2 + C1 + C2)(ab, cd)) .

Then
Π2MΠ2 = Π2(M≤3 +D)Π2 ,

where M≤3 is the portion of M corresponding to indices with repetition, i.e. |{a, b, c, d}| ≤ 3.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 122

Proof. We will prove that such an M must have rows or columns spanned by V0∪V1. Clearly,
M4 = R1 + C1 + C2 + R2 +D, where M4 is the matrix containing the multilinear entries of
M . Our proof proceeds by noting that for each of these matrices, either the rows or columns
are spanned by V0 ∪ V1.

Consider the (a, b)th row of R1–we can write the (c, d)th entry of the row as R1(ab, cd) =

Aac + Aad. Thus, if we define the vector u
def
= Aa ∈ Rn to be equal to the ith row of A, we

have that R(ab, cd) = uc + ud. It follows that the rows of R1 are spanned by V0 ∪ V1. The
proof for C1 is nearly identical.

Now, consider the (c, d)th column of C2–here, define the vector u ∈ Rn so that ui =
AciAdi , then we have that C2(ab, cd) = ua + ub. Thus, the (c, d)th column of C2 is spanned
by V0∪V1, as desired. Again, the proof for R2 is almost identical. The conclusion follows.

Lemma (Restatement of Lemma 4.4.2). If PW
def
=
∑

i r
⊗2
i (r⊗2

i)> then with probability at least
1−O(n−5),

1
n2 (1 + o(1)) · PW � ΠW � (1− o(1)) 1

n2 · PW .

Proof. For convenience, we write ai = r⊗2
i . Recall also that A is the ±1 adjacency matrix of

the graph G. By definition, the vectors a1, . . . , an form a basis for the subspace W .
Let A be the matrix whose ith row is ai. We will use matrix concentration to analyze

the eigenvalues of AAT , which are identical to the nonzero eigenvalues of PW = ATA.
The (i, j)th entry of AAT is 〈ai, aj〉 = 1

2
〈A⊗2

i , A⊗2
j 〉 = 1

2
〈Ai, Aj〉2. When i = j, this is

precisely 1
2
(n− 1)2, and so 2AAT = (n− 1)2 · Idn +B, where B is a matrix that is 0 on the

diagonal and equal to 〈A⊗2
i , A⊗2

j 〉 in the (i, j)th entry for i 6= j.
Let M = B − E[B] = B − (n − 2)(Jn − Idn). We will use the trace power method to

prove that ‖M‖ = O(n3/2). The (i, j)th entry of M is given by 0 for i = j, and when i 6= j

M(i, j) = 〈Ai, Aj〉2 − (n− 2) =

(∑
p,q

AipAiqAjpAjq

)
− (n− 2) =

∑
p6=q

AipAiqAjpAjq.

The expression Tr(Mk) is a sum over monomial products over variables {Aip}i,p∈[n], where
each monomial product corresponds to a labeling F : R → [n] of a ribbon R. Each entry
in Mij corresponds to a sum over links of the ribbon R, where each link is a cycle of length
4, with the vertices i, j on opposite ends of the cycle, and the necessarily distinct vertices
p, q are on the other opposite ends of a cycle. We will refer to i, j as the center vertices and
p, q as the peripheral vertices of the link. Each edge (u, v) of the link is weighted by Auv.
Since Aii = 0 for all i ∈ [n], for every contributing labeling, it can never be the case that
one of p, q = i. Each monomial product in the summation Tr(Mk) corresponds to a labeling
(F,L) of the graph F , where F is a cycle with k links. F has 4k edges, and in total it has
3k vertices.

p
i

q

p′
j

q′

p′′

q′′

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 123

The quantity Tr(Mk) is equal to the sum over all labelings of R. Taking the expectation,
terms in E[Tr(Mk)] which contain a variable Auv with multiplicity 1 have expectation 0.
Thus, E[Tr(Mk)] is equal to the number of labelings of F in which every edge appears twice.

We prove that any such contributing labeling F : R → [n] has at most 3k/2 + 1 unique
vertex labels. We proceed by induction on k, the length of the cycle. In the base case, we
have a cycle on two links; by inspection no such cycle can have more than 5 labels, and the
base case holds.

Now, consider a cycle of length k. If every label appears twice, then we are done, since
there are 3k vertices in F . Thus there must be a vertex that appears only once.

There can be no peripheral vertex whose label does not repeat, since the two center
vertices neighboring a single peripheral vertex cannot have the same label in a contributing
term, as M(i, i) = 0. Now, if there exists a center vertex i whose label does not repeat, it
must be that there is a matching between its p, q neighbors so that every vertex is matched
to a vertex of the same label. We identify these same-label vertices and remove i and two of
its neighbors from the graph. This leaves us with a cycle of length k− 1, having removed at
most one label from the graph. The induction hypothesis now applies, and we have a total
of at most 3(k − 1)/2 + 2 ≤ 3k/2 + 1 labels, as desired.

Thus, there are at most 3k/2 + 1 unique labels in any contributing term of E[Tr(Mk)].
We may thus conclude that E[Tr(Mk)] ≤ n3k/2+1 · (3k/2 + 1)3k, and applying Fact 4.5.1, we
have that ‖M‖ . (n log n)3/2 with probability at least 1−O(n−5).

Therefore, 2AAT = ((n − 1)2 − n + 2) Idn +(n − 2)Jn + M , and we may conclude that
all eigenvalues of AAT are (1± o(1)) · n2, which implies the same of PW = ATA. Since the
range of PW and ΠW is the same, we finally have that with probability 1− o(1)

(1 + o(1))/n2 · PW � ΠW � (1− o(1))/n2 · PW ,

as desired.

The following proposition will be helpful in one of our norm bounds.

Proposition 4.5.12. Let F = (V,E) be a multigraph and let ` : V → [n] be a labeling such
that each pair (i, j) appears an even number of times as the label of an edge in E. Then,

|{`(v)|v ∈ V }| ≤ |E|
2

+ (# connected components of F)

Proof. From F , we form a new graph F ′ by identifying all the nodes with the same label;
thus, the number of nodes in F ′ is the number of labels in F . We then collapse the parallel
edges in F ′ to form the graph H; since each labeled edge appears at least twice, the number
of edges in H is at most half that in F . The number of nodes in H (and thus labels in F)
is at most the number of edges in H plus the number of connected components; this is tight
when H is a forest. Thus the number of distinct labels in F is at most |E|/2 + c, where c is
the number of components in F .

Lemma (Restatement of Lemma 4.4.3). Let Π01 = Π0 + Π1. With probability at least
1−O(n−ω(logn)),

‖Π01ΠWΠ01‖ ≤ O

(
log2 n

n

)
.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 124

Proof. Call M = Π01ΠWΠ01. We will apply the trace power method to M . By Lemma 4.5.13

and Lemma 4.4.2, we may exchange ΠW for (1+o(1))
n2

∑
i aia

T
i and Π01 for P01, losing only

constant factors. Letting M ′k = ((1+o(1))
n2 P01PW)k, we have by the cyclic property of the

trace that E[Tr(Mk)] ≤ Tr(M ′k).
We consider the expression for E[Tr(M ′k)]. Let a chain consist of a set of quadruples

{a`, b`, c`, d`}`∈[k] ∈ [n]4 such that for each ` ∈ [k], we have ‖{a`, b`}∩{c`−1, d`−1}| ≥ 1 (where
we identify a` with a` mod k). Let Ck denote the set of all chains of size k. We have that

Tr(Mk) ≤ Tr(M ′k) =
∑
i1,...,ik

∑
{a`,b`,c`,d`}`∈[k]∈Ck

k∏
`=1

1 + o(1)

n2
· r` · Ai`,a`Ai`,b`Ai`,c`Ai`,d` ,

where r` = 1
n−1

or 2
n−1

depending on whether one or both of a`, b` are common with the

following link in the chain. The quantity Tr(Mk) consists of a sum over cycles of k links.
Each link is a star on 4 outer vertices a`, b`, c`, d` with center vertex i`, and the non-central
vertices of the link must have at least one vertex in common with the next link. So, each
link has 4 edges and the cycle is a connected graph. See the figure below for an illustration
(dashed lines indicate vertex equality, and are not edges).

d`

i`

c`

b`

a`

d`+1

i`+1

c`+1

b`+1

a`+1

d`−1

i`−1

c`−1

b`−1

a`−1

Each term in the product has a factor of at most 2(1+o(1))
n3 , due to the scaling of the entries

of P01 and PW . Thus we have

E[Tr(M ′k)] ≤
(

3

n3

)k ∑
i1,...,ik

∑
{a`,b`,c`,d`}`∈[k]∈Cn

E

[
k∏
`=1

Ai`,a`Ai`,b`Ai`,c`Ai`,d`

]
.

The only contributing terms correspond to those for which every edge variable in the product
has even multiplicity. Each contributing term is a connected graph and has 4k edges and at
most 5k vertices where every labeled edge appears twice, so we may apply Proposition 4.5.12
to conclude that there are at most 2k + 1 labels in any such cycle. We thus have that

E[Tr(M ′k)] ≤
(

3

n3

)k
· n2k+1 · (5k)!,

and applying Fact 4.5.1, we conclude that ‖M‖ . log2 n
n

with probability 1−O(n−ω(logn)), as
desired.

The following lemma allows us to approximate the projector to V0 ∪ V1by a matrix that
is easy to describe; we will use this matrix as an approximation to the projector in later
proofs.

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 125

Lemma 4.5.13. Let Π01 be the projection to the vector space V0 ∪ V1. Let P01 ∈ R(n2),(
n
2) be

a matrix defined as follows:

P01(ab, cd) =


2

n−1
|{a, b, c, d}| = 2

1
n−1

|{a, b, c, d}| = 3

0 |{a, b, c, d}| = 4.

Then
2Π01 � P01 � (n−2

n−1
) · Π01,

Proof. We will write down a basis for V0 ∪ V1, take a summation over its outer products,

and then argue that this summation approximates Π01. The vectors v1, . . . , vn ∈ R(n2) are a
basis for V1 ∪ V0:

vi(a, b) =

{
1√
n−1

{a, b} = {i, ·}
0 otherwise.

For any two vi, vj with i 6= j, we have 〈vi, vj〉 = 1
n−1

. Let U ∈ Rn2×n be the matrix whose

ith column is given by vi. Notice that the eigenvalues of
∑

i viv
T
i = UUT are equal to the

eigenvalues of UTU , and that UTU = 1
n−1

Jn + n−2
n−1

Idn. Therefore, as both Π01 and UU>

have the same column and row spaces,

2Π01 �
∑
i

viv
T
i � n−2

n−1
Π01,

Now, let P01 =
∑

i viv
T
i ; we can explicitly calculate the entries of P01,

P01(ab, cd) =


2

n−1
|{a, b, c, d}| = 2

1
n−1

|{a, b, c, d}| = 3

0 |{a, b, c, d}| = 4.

The conclusion follows.

Lemma (Restatement of Lemma 4.4.4). With probability 1−O(n−5),∑
w

DwΠ2ΠWΠ2Dw � O(n) · Π0 +O(log2 n) · Idn .

Proof. We begin by replacing Π2 with (1−Π01), as by Lemma 4.4.3, Π01 can be replaced by

P01 which has a convenient form. For any vector x ∈ R(n2),

xT

(∑
i

DiΠ2ΠWΠ2Di

)
x = xT

(∑
i

DiΠWDi

)
x− 2xT

(∑
i

DiΠ01ΠWDi

)
x

+ xT

(∑
i

DiΠ01ΠWΠ01Di

)
x

CHAPTER 4. DEGREE-4 SOS LOWER BOUNDS FOR PLANTED CLIQUE 126

≤
∑
i

(
‖ΠWDix‖2 + 2‖ΠWΠ01Dix‖ · ‖ΠWDix‖+ ‖ΠWΠ01Dix‖2

)
≤ 2xT

(∑
i

DiΠWDi

)
x+ 2

(∑
i

(Dix)TΠ01ΠWΠ01Dix

)

≤ 2xT

(∑
i

DiΠWDi

)
x+ 2n ‖Π01ΠWΠ01‖ · ‖x‖2,

where to obtain the second line we have applied Cauchy-Schwarz, to obtain the third line
we have used the fact that a2 + b2 ≥ 2ab, and to obtain the final line we have used the fact
that ‖Dix‖ = ‖x‖.

Now, the second term is O(log2 n) · ‖x‖2 with overwhelming probability by Lemma 4.4.3.
It remains to bound the first term. To this end, we apply Lemma 4.4.2 to replace ΠW

with 1+o(1)
n2 · PW = 1+o(1)

n2 ·
∑

i aia
T
i . (For convenience we have written ai = r⊗2

i here.) Let

M = 1
n2 ·

∑
iDiPWDi. An entry of M has the form

M(ab, cd) =
1

n2

(
n+

∑
i 6=j

AiaAibAicAidAjaAjbAjcAjb

)
.

Thus we can see that M = 1
n
J(n2)

+ 1+o(1)
n2 BB>, where J(n2)

is the all-ones matrix in R(n2)×(n2)

and B is the matrix whose entries have the form

B(ab, ij) = AiaAibAjaAjb.

The matrix B corresponds to a patterned matrix with a 2-matching, meeting the conditions
of Lemma 4.5.7. Thus we have ‖B‖ . n log3 n with probability 1 − O(n−5). We can thus

conclude that with probability 1 − O(n−5), ‖M − 1
n
J(n2)
‖ ≤ 1+o(1)

n2 ‖B‖2 ≤ Õ(1), and so

xTMx ≤ 1+o(1)
n
〈x,1(n2)

〉2 + xT (M − n−1J)x ≤ O(n) · ‖Π0x‖2 + Õ(1) · ‖x‖2, which gives the

desired result.

127

Chapter 5

Fast Spectral Algorithms from
Sum-of-Squares Analyses

5.1 Introduction

A sequence of recent works applies the sum-of-squares method to basic problems that arise in
unsupervised machine learning: in particular, recovering sparse vectors in linear subspaces
and decomposing tensors in a robust way [BKS14, BKS15, HSS15, BM16, GM15]. For a
wide range of parameters of these problems, SoS achieves significantly stronger guarantees
than other methods, in polynomial or quasi-polynomial time. Unfortunately, even when the
SDP has size polynomial in the input (when d = O(1)), solving the underlying semidefinite
programs is prohibitively slow for large instances.

In this chapter, we introduce spectral algorithms for planted sparse vector, tensor decom-
position, and tensor principal components analysis (PCA) that exploit the same high-degree
information as the corresponding sum-of-squares algorithms without relying on semidefinite
programming, and achieve the same (or close to the same) guarantees. The resulting al-
gorithms are quite simple (a couple of lines of matlab code) and have considerably faster
running times—quasi-linear or close to linear in the input size.

A surprising implication of our work is that for some problems, spectral algorithms can
exploit information from larger values of the degree parameter d without spending time nO(d).
For example, our algorithm for the planted sparse vector problem runs in nearly-linear time
in the input size, even though it uses properties that the sum-of-squares method can only
use for degree parameter d ≥ 4. (In particular, the guarantees that the algorithm achieves
are strictly stronger than the guarantees that SoS achieves for values of d < 4.)

The initial successes of SoS in the machine learning setting gave hope that techniques
developed in the theory of approximation algorithms, specifically the techniques of hierarchies
of convex relaxations and rounding convex relaxations, could broadly impact the practice
of machine learning. This hope was dampened by the fact that in general, algorithms that
rely on solving large semidefinite programs are too slow to be practical for the large-scale
problems that arise in machine learning. Our work brings this hope back into focus by
demonstrating for the first time that with some care SoS algorithms can be made practical
for large-scale problems.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 128

In the following subsections we describe each of the problems that we consider, the prior
best-known guarantee via the SoS hierarchy, and our results.

Planted Sparse Vector in Random Linear Subspace

The problem of finding a sparse vector planted in a random linear subspace was introduced by
Spielman, Wang, and Wright as a way of learning sparse dictionaries [SWW12]. Subsequent
works have found further applications and begun studying the problem in its own right
[DH14, BKS14, QSW14]. In this problem, we are given a basis for a d-dimensional linear
subspace of Rn that is random except for one planted sparse direction, and the goal is to
recover this sparse direction. The computational challenge is to solve this problem even
when the planted vector is only mildly sparse (a constant fraction of non-zero coordinates)
and the subspace dimension is large compared to the ambient dimension (d ≥ nΩ(1)).

Several kinds of algorithms have been proposed for this problem based on linear program-
ming (LP), basic semidefinite programming (SDP), sum-of-squares, and non-convex gradient
descent (alternating directions method).

An inherent limitation of simpler convex methods (LP and basic SDP) [SWW12, dGJL04]
is that they require the relative sparsity of the planted vector to be polynomial in the subspace
dimension (less than n/

√
d non-zero coordinates).

Sum-of-squares and non-convex methods do not share this limitation. They can recover
planted vectors with constant relative sparsity even if the subspace has polynomial dimension
(up to dimension O(n1/2) for sum-of-squares [BKS14] and up to O(n1/4) for non-convex
methods [QSW14]).

We state the problem formally:

Problem 5.1.1 (Planted sparse vector problem with ambient dimension n ∈ N, subspace
dimension d ≤ n, sparsity ε > 0, and accuracy η > 0). Given an arbitrary orthogonal basis of
a subspace spanned by vectors v0, v1, . . . , vd−1 ∈ Rn, where v0 is a vector with at most εn non-
zero entries and v1, . . . , vd−1 are vectors sampled independently at random from the standard
Gaussian distribution on Rn, output a unit vector v ∈ Rn that has correlation 〈v, v0〉2 ≥ 1−η
with the sparse vector v0.

Our Results. Our algorithm runs in nearly linear time in the input size, and matches the
best-known guarantees up to a polylogarithmic factor in the subspace dimension [BKS14].

Theorem 5.1.2 (Planted sparse vector in nearly-linear time). There exists an algorithm
that, for every sparsity ε > 0, ambient dimension n, and subspace dimension d with
d ≤
√
n/(log n)O(1), solves the planted sparse vector problem with high probability for some

accuracy η ≤ O(ε1/4) + on→∞(1). The running time of the algorithm is Õ(nd).

We give a technical overview of the proof in Section 5.2, and a full proof in Section 5.3.
Previous work also showed how to recover the planted sparse vector exactly. The task of

going from an approximate solution to an exact one is a special case of standard compressed
sensing (see e.g. [BKS14]).

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 129
Table 5.1: Comparison of algorithms for the planted sparse vector problem with ambient dimension n,
subspace dimension d, and relative sparsity ε.

Reference Technique Runtime Largest d Largest ε

[DH14] linear programming poly any Ω(1/
√
d)

[BKS14] SoS, general SDP poly Ω(
√
n) Ω(1)

[QSW14] alternating minimization Õ(n2d5) Ω(n1/4) Ω(1)

this work SoS, partial traces Õ(nd) Ω̃(
√
n) Ω(1)

Overcomplete Tensor Decomposition

Tensors naturally represent multilinear relationships in data. Algorithms for tensor decom-
positions have long been studied as a tool for data analysis across a wide-range of disciplines
(see the early work of Harshman [Har70] and the survey [KB09]). While the problem is
NP-hard in the worst-case [H̊as90, HL13], algorithms for special cases of tensor decomposi-
tion have recently led to new provable algorithmic results for several unsupervised learning
problems [AGH+14, BCMV14, GVX14, AGHK14] including independent component analy-
sis, learning mixtures of Gaussians [GHK15], Latent Dirichlet topic modeling [AFH+15] and
dictionary learning [BKS15]. Some previous learning algorithms can also be reinterpreted in
terms of tensor decomposition [Cha96, MR06, NR09].

A key algorithmic challenge for tensor decompositions is overcompleteness, when the
number of components is larger than their dimension (i.e., the components are linearly de-
pendent). Most algorithms that work in this regime require tensors of order 4 or higher
[LCC07, BCMV14]. For example, the FOOBI algorithm of [LCC07] can recover up to Ω(d2)
components given an order-4 tensor in dimension d under mild algebraic independence as-
sumptions for the components—satisfied with high probability by random components. For
overcomplete 3-tensors, which arise in many applications of tensor decompositions, such a
result remains elusive.

Researchers have therefore turned to investigate average-case versions of the problem,
when the components of the overcomplete 3-tensor are random: Given a 3-tensor T ∈ Rd3

of the form

T =
n∑
i=1

ai ⊗ ai ⊗ ai ,

where a1, . . . , an are random unit or Gaussian vectors, the goal is to approximately recover
the components a1, . . . , an.

Algorithms based on tensor power iteration—a gradient-descent approach for tensor
decomposition—solve this problem in polynomial time when n ≤ C · d for any constant
C ≥ 1 (the running time is exponential in C) [AGJ15]. Tensor power iteration also admits
local convergence analyses for up to n ≤ Ω̃(d1.5) components [AGJ15, AGJ14]. Unfortu-
nately, these analyses do not give polynomial-time algorithms because it is not known how
to efficiently obtain the kind of initializations assumed by the analyses.

Recently, Ge and Ma [GM15] were able to show that a tensor-decomposition algo-
rithm [BKS15] based on sum-of-squares solves the above problem for n ≤ Ω̃(d1.5) in quasi-
polynomial time nO(logn). The key ingredient of their elegant analysis is a subtle spectral

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 130
Table 5.2: Comparison of decomposition algorithms for overcomplete 3-tensors with n components in di-
mension d.

Reference Technique Runtime Largest n Components

[AGJ15]a tensor power iteration poly C · d incoherent

[GM15] SoS, general SDP nO(logn) Ω̃(d3/2) N (0, 1
d

Idd)

this workb SoS, partial traces Õ(nd1+ω) Ω̃(d4/3) N (0, 1
d

Idd)
a The analysis shows that for every constant C ≥ 1, the running time is polynomial for
n ≤ C ·d components, assuming that the components also satisfy other random-like prop-
erties besides incoherence. b Here, ω ≤ 2.3729 is the constant so that d × d matrices
can be multiplied in O(dω) arithmetic operations.

concentration bound for a particular degree-4 matrix-valued polynomial associated with the
decomposition problem of random overcomplete 3-tensors.

We state the problem formally:

Problem 5.1.3 (Random tensor decomposition with dimension d, rank n, and accuracy
η). Let a1, . . . , an ∈ Rd be independently sampled vectors from the Gaussian distribution
N (0, 1

d
Idd), and let T ∈ (Rd)⊗3 be the 3-tensor T =

∑n
i=1 a

⊗3
i .

Single component: Given T sampled as above, find a unit vector b that has
correlation maxi〈ai, b〉 ≥ 1− η with one of the vectors ai.

All components: Given T sampled as above, find a set of unit vectors
{b1, . . . , bn} such that 〈ai, bi〉 ≥ 1− η for every i ∈ [n].

Our Results. We give the first polynomial-time algorithm for decomposing random over-
complete 3-tensors with up to ω(d) components. Our algorithms works as long as the number
of components satisfies n ≤ Ω̃(d4/3), which comes close to the bound Ω̃(d1.5) achieved by the
aforementioned quasi-polynomial algorithm of Ge and Ma. For the single-component version
of the problem, our algorithm runs in time close to linear in the input size.

Theorem 5.1.4 (Fast random tensor decomposition). There exist randomized algorithms
that, for every dimension d and rank n with d ≤ n ≤ d4/3/(log n)O(1), solve the random tensor

decomposition problem with probability 1 − o(1) for some accuracy η ≤ Õ(n3/d4)1/2. The

running time for the single-component version of the problem is Õ(d1+ω), where dω ≤ d2.3279

is the time to multiply two d-by-d matrices. The running time for the all-components version

of the problem is Õ(n · d1+ω).

We give a technical overview of the proof in Section 5.2, and a full proof in Section 5.4.
We remark that the above algorithm only requires access to the input tensor with some

fixed inverse polynomial accuracy because each of its four steps amplifies errors by at most
a polynomial factor (see Algorithm 5.4.17). In this sense, the algorithm is robust.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 131
Table 5.3: Comparison of algorithms for principal component analysis of 3-tensors in dimension d and with
signal-to-noise ratio τ .

Reference Technique Runtime Smallest τ

[RM14] spectral Õ(d3) n

[HSS15] SoS, spectral Õ(d3) O(n3/4)

this work SoS, partial traces O(d3) Õ(n3/4)

Tensor Principal Component Analysis

The problem of tensor principal component analysis is similar to the tensor decomposition
problem. However, here the focus is not on the number of components in the tensor, but
about recovery in the presence of a large amount of random noise. We are given as input a
tensor τ · v⊗3 + A, where v ∈ Rn is a unit vector and the entries of A are chosen iid from
N (0, 1). This spiked tensor model was introduced by Montanari and Richard [RM14], who
also obtained the first algorithms to solve the model with provable statistical guarantees.
The spiked tensor model was subsequently addressed by a subset of the present authors
[HSS15], who applied the SoS approach to improve the signal-to-noise ratio required for
recovery from odd-order tensors.

We state the problem formally:

Problem 5.1.5 (Tensor principal components analysis with signal-to-noise ratio τ and ac-
curacy η). Let T ∈ (Rd)⊗3 be a tensor so that T = τ · v⊗3 + A, where A is a tensor with
independent standard Gaussian entries and v ∈ Rd is a unit vector. Given T, recover a unit
vector v′ ∈ Rd such that 〈v′, v〉 ≥ 1− η.

Our results. For this problem, our improvements over the previous results are more
modest—we achieve signal-to-noise guarantees matching [HSS15], but with an algorithm
that runs in linear time rather than near-linear time (time O(d3) rather than O(d3 polylog d),
for an input of size d3).

Theorem 5.1.6 (Tensor principal component analysis in linear time). There is an algorithm
which solves the tensor principal component analysis problem with accuracy η > 0 whenever
the signal-to-noise ratio satisfies τ ≥ O(n3/4 ·η−1 · log1/2 n). Furthermore, the algorithm runs
in time O(d3).

Though for tensor PCA our improvement over previous work is modest, we include the
results here as this problem is a pedagogically poignant illustration of our techniques. We
give a technical overview of the proof in Section 5.2, and a full proof in Section 5.5.

Related Work

Foremost, this work builds upon the SoS algorithms of [BKS14, BKS15, GM15, HSS15]. In
each of these previous works, a machine learning decision problem is solved using an SDP

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 132

relaxation for SoS. In these works, the SDP value is large in the yes case and small in the
no case, and the SDP value can be bounded using the spectrum of a specific matrix. This
was implicit in [BKS14, BKS15], and in [HSS15] it was used to obtain a fast algorithm as
well. In our work, we design spectral algorithms which use smaller matrices, inspired by
the SoS certificates in previous works, to solve these machine-learning problems much faster,
with almost matching guarantees.

A key idea in our work is that given a large matrix with information encoded in the
matrix’s spectral gap, one can often efficiently “compress” the matrix to a much smaller
one without losing that information. This is particularly true for problems with planted
solutions. In this way, we are able to improve running time by replacing an nO(d)-sized SDP
with an eigenvector computation for an nk × nk matrix, for some k < d.

The idea of speeding up LP and SDP hierarchies for specific problems has been investi-
gated in a series of previous works [dlVK07, BRS11, GS12], which shows that with respect
to local analyses of the sum-of-squares algorithm it is sometimes possible to improve the
running time from nO(d) to 2O(d) · nO(1). However, the scopes and strategies of these works
are completely different from ours. First, the notion of local analysis from these works does
not apply to the problems considered here. Second, these works employ the ellipsoid method
with a separation oracle inspired by rounding algorithms, whereas we reduce the problem to
an ordinary eigenvector computation.

Since the publication of our results, our methods have been extended to speed up some
of the other recent successful applications of SoS to machine-learning type problems, such
as [BM16] in the work of [MS16], and the application of [MSS16] to tensor decomposition
with components that are orthogonal in the presence of noise in [SS17].

Finally, we would be remiss not to mention that SoS lower bounds exist for several of
these problems, specifically for tensor principal components analysis, tensor prediction, and
sparse PCA [HSS15, BM16, MW15]. The lower bounds in the SoS framework are a good
indication that we cannot expect spectral algorithms achieving better guarantees.

5.2 Techniques

Sum-of-Squares Method (for Polynomial Optimization over the Sphere). The
problems we consider are connected to optimization problems of the following form: Given
a homogeneous n-variate real polynomial f of constant degree, find a unit vector x ∈ Rn

so as to maximize f(x). The sum-of-squares method allows us to efficiently compute upper
bounds on the maximum value of such a polynomial f over the unit sphere.

For the case that k = deg(f) is even, the most basic upper bound of this kind is the
largest eigenvalue of a matrix representation of f . A matrix representation of a polynomial
f is a symmetric matrix M with rows and columns indexed by monomials of degree k/2 so
that f(x) can be written as the quadratic form f(x) = 〈x⊗k/2,Mx⊗k/2〉, where x⊗k/2 is the
k/2-fold tensor power of x. The largest eigenvalue of a matrix representation M is an upper
bound on the value of f(x) over all unit vectors x ∈ Rn because

f(x) = 〈x⊗k/2,Mx⊗k/2〉 ≤ λmax(M) · ‖x⊗k/2‖2
2 = λmax(M) .

As explained in Chapter 2, the sum-of-squares methods improves on this basic spectral
bound systematically by associating a large family of polynomials (potentially of degree

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 133

higher than deg(f)) with the input polynomial f and computing the best possible spectral
bound within this family of polynomials.

Our approach for faster algorithms based on SoS algorithms is to construct specific ma-
trices (polynomials) in the family, then compute their top eigenvectors. By designing our
matrices carefully, we ensure that our algorithms have access to the same higher degree
information that the sum-of-squares algorithm can access, and this information affords an
advantage over the basic spectral methods for these problems. At the same time, our al-
gorithms avoid searching for the best polynomial and matrix representation, which gives us
faster running times since we avoid semidefinite programming. This approach is well suited
to average-case problems where we avoid the problem of adversarial choice of input; in par-
ticular it is applicable to machine learning problems where noise and inputs are assumed to
be random.

Compressing Matrices with Partial Traces. A serious limitation of the above ap-
proach is that the representation of a degree-d, n-variate polynomial requires size roughly
nd. Hence, even avoiding the use of semidefinite programming, improving upon running time
O(nd) requires additional ideas.

In each of the problems that we consider, we have a large matrix (suggested by a SoS
algorithm) with a “signal” planted in some amount of “noise”. We show that in some
situations, this large matrix can be compressed significantly without loss in the signal by
applying partial trace operations. In these situations, the partial trace yields a smaller matrix
with the same signal-to-noise ratio as the large matrix suggested by the SoS algorithm, even
in situations when lower degree sum-of-squares approaches are known to fail (as for the
planted sparse vector and tensor PCA problems).1

The partial trace TrRd : Rd2×d2 → Rd×d is the linear operator that satisfies TrRd A⊗B =
(TrA) · B for all A,B ∈ Rd×d. To see how the partial trace can be used to compress large
matrices to smaller ones with little loss, consider the following problem: Given a matrix
M ∈ Rd2×d2

of the form M = τ · (v ⊗ v)(v ⊗ v)> + A ⊗ B for some unit vector v ∈ Rd and
matrices A,B ∈ Rd×d, we wish to recover the vector v. (This is a simplified version of the
planted problems that we consider in this paper, where τ · (v ⊗ v)(v ⊗ v)> is the signal and
A⊗B plays the role of noise.)

It is straightforward to see that the matrix A ⊗ B has spectral norm ‖A ⊗ B‖ = ‖A‖ ·
‖B‖, and so when τ � ‖A‖‖B‖, the matrix M has a noticeable spectral gap, and the top
eigenvector ofM will be close to v⊗v. If |TrA| ≈ ‖A‖, the matrix TrRdM = τ ·vv>+Tr(A)·B
has a matching spectral gap, and we can still recover v, but now we only need to compute
the top eigenvector of a d× d (as opposed to d2 × d2) matrix.2

If A is a Wigner matrix (e.g. a symmetric matrix with iid ±1 entries), then both
Tr(A), ‖A‖ ≈

√
n, and the above condition is indeed met. In our average case/machine

1 For both problems we use matrices with dimensions corresponding to degree-4 SoS programs. An
argument of Spielman et al. ([SWW12], Theorem 9) shows that degree-2 sum-of-squares can only find sparse

vectors with sparsity k ≤ Õ(
√
n), whereas we achieve sparsity as large as k = Θ(n). For tensor PCA, the

degree-2 SoS program cannot even express the objective function.
2In some of our applications, the matrix M is only represented implicitly and has size super-linear in

the size of the input, but nevertheless we can compute the top eigenvector of the partial trace TrRd M in
nearly-linear time.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 134

learning settings the “noise” component is not as simple as A ⊗ B with A a Wigner ma-
trix. Nonetheless, we are able to ensure that the noise displays a similar behavior under
partial trace operations. In some cases, this requires additional algorithmic steps, such as
random projection in the case of tensor decomposition, or centering the matrix eigenvalue
distribution in the case of the planted sparse vector.

It is an interesting question if there are general theorems describing the behavior of
spectral norms under partial trace operations. In the current work, we compute the partial
traces explicitly and estimate their norms directly. Indeed, our analyses boil down to con-
centrations bounds for special matrix polynomials. A general theory for the concentration
of matrix polynomials is a notorious open problem (see [MW13]).

Partial trace operations have previously been applied for rounding SoS relaxations.
Specifically, the operation of reweighing and conditioning, used in rounding algorithms for
sum-of-squares such as [BRS11, RT12, BKS14, BKS15, LR15], corresponds to applying a
partial trace operation to the moments matrix returned by the sum-of-squares relaxation.

We now give a technical overview of our algorithmic approach for each problem, and
some broad strokes of the analysis for each case. Our most substantial improvements in
runtime are for the planted sparse vector and overcomplete tensor decomposition problems
(Section 5.2 and Section 5.2 respectively). Our algorithm for tensor PCA is the simplest
application of our techniques, and it may be instructive to skip ahead and read about tensor
PCA first (Section 5.2).

Planted Sparse Vector in Random Linear Subspace

Recall that in this problem we are given a linear subspace U (represented by some basis)
that is spanned by a k-sparse unit vector v0 ∈ Rd and random unit vectors v1, . . . , vd−1 ∈ Rd.
The goal is to recover the vector v0 approximately.

Background and SoS Analysis. Let A ∈ Rn×d be a matrix whose columns form an
orthonormal basis for U . Our starting point is the polynomial f(x) = ‖Ax‖4

4 =
∑n

i=1(Ax)4
i .

Previous work showed that for d �
√
n the maximizer of this polynomial over the sphere

corresponds to a vector close to v0 and that degree-4 sum-of-squares is able to capture this
fact [BBH+12, BKS14]. Indeed, typical random vectors v in Rn satisfy ‖v‖4

4 ≈ 1/n whereas
our planted vector satisfies ‖v0‖4

4 ≥ 1/k � 1/n, and this degree-4 information is leveraged
by the SoS algorithms.

The polynomial f has a convenient matrix representation M =
∑n

i=1(aia
>
i)⊗2, where

a1, . . . , an are the rows of the generator matrix A. It turns out that the eigenvalues of this
matrix indeed give information about the planted sparse vector v0. In particular, the vector
x0 ∈ Rd with Ax0 = v0 witnesses that M has an eigenvalue of at least 1/k because M ’s
quadratic form with the vector x⊗2

0 satisfies 〈x⊗2
0 ,Mx⊗2

0 〉 = ‖v0‖4
4 ≥ 1/k. If we let M ′ be the

corresponding matrix for the subspace U without the planted sparse vector, M ′ turns out to
have only eigenvalues of at most O(1/n) up to a single spurious eigenvalue with eigenvector
far from any vector of the form x⊗ x [BBH+12].

It follows that in order to distinguish between a random subspace with a planted sparse
vector (yes case) and a completely random subspace (no case), it is enough to compute
the second-largest eigenvalue of a d2-by-d2 matrix (representing the 4-norm polynomial over

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 135

the subspace as above). This decision version of the problem, while strictly speaking easier
than the search version above, is at the heart of the matter: one can show that the large
eigenvalue for the yes case corresponds to an eigenvector which encodes the coefficients of
the sparse planted vector in the basis.

Improvements. The best running time we can hope for with this basic approach is O(d4)
(the size of the matrix). Since we are interested in d ≤ O(

√
n), the resulting running time

O(nd2) would be subquadratic but still super-linear in the input size n · d (for representing
a d-dimensional subspace of Rn). To speed things up, we use the partial trace approach
outlined above. We will begin by applying the partial trace approach naively, obtaining
reasonable bounds, and then show that a small modification to the matrix before the partial
trace operation allows us to achieve even smaller signal-to-noise ratios.

In the planted case, we may approximate M ≈ 1
k
(x0x

>
0)⊗2 + Z, where x0 is the vector

of coefficients of v0 in the basis representation given by A (so that Ax0 = v0), and Z is the
noise matrix. Since ‖x0‖ = 1, the partial trace operation preserves the projector (x0x

>
0)⊗2 in

the sense that TrRd(x0x
>
0)⊗2 = x0x

>
0 . Hence, with our heuristic approximation for M above,

we could show that the top eigenvector of TrRdM is close to x0 by showing that the spectral
norm bound ‖TrRd Z‖ ≤ o(1/k).

The partial trace of our matrix M =
∑n

i=1(aia
>
i)⊗ (aia

>
i) is easy to compute directly,

N = TrRdM =
n∑
i=1

‖ai‖2
2 · aia>i .

In the yes case (random subspace with planted sparse vector), a direct computation shows
that

λyes ≥ 〈x0, Nx0〉 ≈ d
n
·
(
1 + n

d
‖v0‖4

4

)
≥ d

n

(
1 + n

dk

)
.

Hence, a natural approach to distinguish between the yes case and no case (completely
random subspace) is to upper bound the spectral norm of N in the no case.

In order to simplify the bound on the spectral norm of N in the no case, suppose that
the columns of A are iid samples from the Gaussian distribution N (0, 1

d
Id) (rather than an

orthogonal basis for the random subspace)–Lemma 5.3.6 establishes that this simplification
is legitimate. In this simplified setup, the matrix N in the no case is the sum of n iid matrices
{‖ai‖2 · aia>i }, and we can upper bound its spectral norm λno by d/n · (1 +O(

√
d/n)) using

standard matrix concentration bounds. Hence, using the spectral norm of N , we will be able
to distinguish between the yes case and the no case as long as√

d/n� n/(dk) =⇒ λno � λyes .

For linear sparsity k = ε · n, this inequality is true so long as d � (n/ε2)1/3, which is
somewhat worse than the bound

√
n bound on the dimension that we are aiming for.

Recall that TrB =
∑

i λi(B) for a symmetric matrix B. As discussed above, the partial
trace approach works best when the noise behaves as the tensor of two Wigner matrices, in
that there are cancellations when the eigenvalues of the noise are summed. In our case, the
noise terms (aia

>
i) ⊗ (aia

>
i) do not have this property, as in fact Tr aia

>
i = ‖ai‖2 ≈ d/n.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 136

Thus, in order to improve the dimension bound, we will center the eigenvalue distribution of
the noise part of the matrix. This will cause it to behave more like a Wigner matrix, in that
the spectral norm of the noise will not increase after a partial trace. Consider the partial
trace of a matrix of the form

M − α · Id⊗
∑
i

aia
>
i ,

for some constant α > 0. The partial trace of this matrix is

N ′ =
n∑
i=1

(‖ai‖2
2 − α) · aia>i .

We choose the constant α ≈ d/n such that our matrix N ′ has expectation 0 in the no case,
when the subspace is completely random. In the yes case, the Rayleigh quotient of N ′ at
x0 simply shifts as compared to N , and we have λyes ≥ 〈x0, N

′x0〉 ≈ ‖v0‖4
4 ≥ 1/k (see

Lemma 5.3.5 and sublemmas). On the other hand, in the no case, this centering operation
causes significant cancellations in the eigenvalues of the partial trace matrix (instead of just
shifting the eigenvalues). In the no case, N ′ has spectral norm λno ≤ O(d/n3/2) for d �√
n (using standard matrix concentration bounds; again see Lemma 5.3.5 and sublemmas).

Therefore, the spectral norm of the matrix N ′ allows us to distinguish between the yes and
no case as long as d/n3/2 � 1/k, which is satisfied as long as k � n and d�

√
n. We give

the full formal argument in Section 5.3.

Overcomplete Tensor Decomposition

Recall that in this problem we are given a 3-tensor T of the form T =
∑n

i=1 a
⊗3
i ∈ Rd3

,
where a1, . . . , an ∈ Rd are independent random vectors from N (0, 1

d
Id). The goal is to find

a unit vector a ∈ Rd that is highly correlated with one3 of the vectors a1, . . . , an.

Background. The starting point of our algorithm is the polynomial f(x) =
∑n

i=1〈ai, x〉3.
It turns out that for n � d1.5 the (approximate) maximizers of this polynomial are close
to the components a1, . . . , an, in the sense that f(x) ≈ 1 if and only if maxi∈[n]〈ai, x〉2 ≈ 1.
Indeed, Ge and Ma [GM15] show that the sum-of-squares method already captures this fact
at degree 12, which implies a quasipolynomial time algorithm for this tensor decomposition
problem via a general rounding result of Barak, Kelner, and Steurer [BKS15].

The simplest approach to this problem is to consider the tensor representation of the
polynomial T =

∑
i∈[n] a

⊗3
i , and flatten it, hoping the singular vectors of the flattening are

correlated with the ai. However, this approach is doomed to failure for two reasons: firstly,
the simple flattenings of T are d2×d matrices, and since n� d the a⊗2

i collide in the column
space, so that it is impossible to determine Span{a⊗2

i }. Secondly, even for n ≤ d, because the
ai are random vectors, their norms concentrate very closely about 1. This makes it difficult
to distinguish any one particular ai even when the span is computable.

3 We can then approximately recover all the components a1, . . . , an by running independent trials of our
randomized algorithm repeatedly on the same input.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 137

Improvements. We will try to circumvent both of these issues by going to higher dimen-
sions. Suppose, for example, that we had access to

∑
i∈[n] a

⊗4
i .4 The eigenvectors of the

flattenings of this matrix are all within Spani∈[n]{a⊗2
i }, addressing our first issue, leaving us

only with the trouble of extracting individual a⊗2
i from their span. If furthermore we had

access to
∑

i∈[n] a
⊗6
i , we could perform a partial random projection (Φ ⊗ Id⊗ Id)

∑
i∈[n] a

⊗6
i

where Φ ∈ Rd×d is a matrix with independent Gaussian entries, and then taking a partial
trace, we end up with

TrRd

(Φ⊗ Id⊗ Id)
∑
i∈[n]

a⊗6
i

 =
∑
i∈[n]

〈Φ, a⊗2
i 〉a⊗4

i .

With reasonable probability (for exposition’s sake, say with probability 1/n10), Φ is closer
to some a⊗2

i than to all of the others so that 〈Φ, a⊗2
i 〉 ≥ 100〈Φ, a⊗2

j 〉 for all j ∈ [n], and then

a⊗2
i is distinguishable from the other vectors in the span of our matrix, taking care of the

second issue . As we show, a much smaller gap is sufficient to distinguish the top ai from
the other aj, and so the higher-probability event that Φ is only slightly closer to ai suffices

(allowing us to recover all vectors at an additional runtime cost of a factor of Õ(n)). This
discussion ignores the presence of a single spurious large eigenvector, which we address in
the technical sections.

Of course, we do not have access to the higher-order tensor
∑

i∈[n] a
⊗6
i . Instead, we

can obtain a noisy version of this tensor. Our approach considers the following matrix
representation of the polynomial f 2,

M =
∑
i,j

aia
>
j ⊗ (aia

>
i)⊗ (aja

>
j) ∈ Rd3×d3

.

Alternatively, we can view this matrix as a particular flattening of the Kronecker-squared
tensor T⊗2. It is instructive to decompose M = Mdiag + Mcross into its diagonal terms
Mdiag =

∑
i(aia

>
i)⊗3 and its cross terms Mcross =

∑
i 6=j aia

>
j ⊗(aia

>
i)⊗(aja

>
j). The algorithm

described above is already successful for Mdiag; we need only control the eigenvalues of the
partial trace of the “noise” component, Mcross. The main technical work will be to show
that ‖TrRdMdiag‖ is small. In fact, we will have to choose Φ from a somewhat different
distribution—observing that TrRd(Φ⊗ Id⊗ Id) =

∑
i,j〈ai,Φaj〉 · (ai ⊗ aj)(ai ⊗ aj)>, we will

sample Φ so that 〈ai,Φai〉 � 〈ai,Φaj〉. We give a more detailed overview of this algorithm
in the beginning of Section 5.4, explaining in more detail our choice of Φ and justifying
heuristically the boundedness of the spectral norm of the noise.

Connection to SoS Analysis. To explain how the above algorithm is a speedup of SoS,
we give an overview of the SoS algorithm of [GM15, BKS15]. There, the degree-t SoS

4 As the problem is defined, we assume that we do not have access to this input, and in many machine
learning applications this is a valid assumption, as gathering the data necessary to generate the 4th order
input tensor requires a prohibitively large number of samples.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 138

SDP program is used to obtain an order-t tensor χt (or a pseudodistribution). Informally
speaking, we can understand χt as a proxy for

∑
i∈[n] a

⊗t
i , so that χt =

∑
i∈[n] a

⊗t
i +N , where

N is a noise tensor. While the precise form of N is unclear, we know that N must obey
a set of constraints imposed by the SoS hierarchy at degree t. For a formal discussion of
pseudodistributions, see [BKS15].

To extract a single component ai from the tensor
∑

i∈[n] a
⊗t
i , there are many algorithms

which would work (for example, the algorithm we described for Mdiag above). However,
any algorithm extracting an ai from χt must be robust to the noise tensor N . For this it
turns out the following algorithm will do: suppose we have the tensor

∑
i∈[n] a

⊗t
i , taking

t = O(log n). Sample g1, . . . , glog(n)−2 random unit vectors, and compute the matrix M =∑
i(
∏

1≤j≤log(n)−2〈gj, ai〉) · aia>i . If we are lucky enough, there is some ai so that every gj
is a bit closer to ai than any other ai′ , and M = aia

>
i + E for some ‖E‖ � 1. The proof

that ‖E‖ is small can be made so simple that it applies also to the SDP-produced proxy
tensor χlogn, and so this algorithm is robust to the noise N . This last step is very general
and can handle tensors whose components ai are less well-behaved than the random vectors
we consider, and also more overcomplete, handling tensors of rank up to n = Ω̃(d1.5).5

Our subquadratic-time algorithm can be viewed as a low-degree, spectral analogue of
the [BKS15] SoS algorithm. However, rather than relying on an SDP to produce an object
close to

∑
i∈[n] a

⊗t
i , we manufacture one ourselves by taking the Kronecker square of our

input tensor. We explicitly know the form of the deviation of T⊗2 from
∑

i∈[n] a
⊗6
i , unlike in

[BKS15], where the deviation of the SDP certificate χt from
∑

i∈[n] a
⊗t
i is poorly understood.

We are thus able to control this deviation (or “noise”) in a less computationally intensive
way, by cleverly designing a partial trace operation which decreases the spectral norm of the
deviation. Since the tensor handled by the algorithm is much smaller—order 6 rather than
order log n—this provides the desired speedup.

Tensor Principal Component Analysis

Recall that in this problem we are given a tensor T = τ · v⊗3 + A, where v ∈ Rd is a unit
vector, A has iid entries from N (0, 1), and τ > 0 is the signal-to-noise ratio. The aim is to
recover v approximately.

Background and SoS Analysis. A previous application of SoS techniques to this prob-
lem discussed several SoS or spectral algorithms, including one that runs in quasi-linear time
[HSS15]. Here we apply the partial trace method to a subquadratic spectral SoS algorithm
discussed in [HSS15] to achieve nearly the same signal-to-noise guarantee in only linear time.

Our starting point is the polynomial T(x) = τ · 〈v, x〉3 + 〈x⊗3,A〉. The maximizer of
T(x) over the sphere is close to the vector v so long as τ �

√
n [RM14]. In [HSS15], it was

shown that degree-4 SoS maximizing this polynomial can recover v with a signal-to-noise

ratio of at least Ω̃(n3/4), since there exists a suitable SoS bound on the noise term 〈x⊗3,A〉.
5 It is an interesting open question whether taking t = O(log n) is really necessary, or whether this heavy

computational requirement is simply an artifact of the SoS proof.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 139

Specifically, let Ai be the ith slice of A, so that 〈x,Aix〉 is the quadratic form∑
j,k Aijkxjxk. Then there is a SoS proof that T(x) is bounded by |T(x) − τ · 〈v, x〉3| ≤

f(x)1/2 · ‖x‖, where f(x) is the degree-4 polynomial f(x) =
∑

i〈x,Aix〉2. The polynomial
f has a convenient matrix representation: f(x) = 〈x⊗2, (

∑
iAi ⊗ Ai)x⊗2〉: since this matrix

is a sum of iid random matrices Ai ⊗ Ai, a matrix Chernoff bound shows that this matrix
spectrally concentrates to its expectation. So with high probability one can show that the
eigenvalues of

∑
iAi⊗Ai are at most ≈ d3/2 log(d)1/2 (except for a single spurious eigenvec-

tor), and it follows that degree-4 SoS solves tensor PCA so long as τ � d3/4 log(d)1/4.
This leads the authors to consider a slight modification of f(x), given by g(x) =∑
i〈x, Tix〉2, where Ti is the ith slice of T. Like T, the function g also contains information

about v, and the SoS bound on the noise term in T carries over as an analogous bound on
the noise in g. In particular, expanding Ti ⊗ Ti and ignoring some negligible cross-terms
yields ∑

i

Ti ⊗ Ti ≈ τ 2 · (v ⊗ v)(v ⊗ v)> +
∑
i

Ai ⊗ Ai .

Using v ⊗ v as a test vector, the quadratic form of the latter matrix can be made at least
τ 2 −O(d3/2 log(d)1/2). Together with the boundedness of the eigenvalues of

∑
iAi ⊗Ai this

shows that when τ � d3/4 log(d)1/4 there is a spectral algorithm to recover v. Since the

matrix
∑

i Ti ⊗ Ti is d2 × d2, computing the top eigenvector requires Õ(d4 log n) time, and
by comparison to the input size d3 the algorithm runs in subquadratic time.

Improvements. In this work we speed this up to a linear time algorithm via the partial
trace approach. As we have seen, the heart of the matter is to show that taking the partial
trace of τ 2 · (v ⊗ v)(v ⊗ v)> +

∑
iAi ⊗ Ai does not increase the spectral noise. That is, we

require that ∥∥∥∥∥TrRd
∑
i

Ai ⊗ Ai

∥∥∥∥∥ =

∥∥∥∥∥∑
i

Tr(Ai) · Ai

∥∥∥∥∥ ≤ O(d3/2 log(d)1/2) .

The Ai have iid Gaussian entries, and so as in the case of Wigner matrices, it is roughly
true that |Tr(Ai)| ≈ ‖Ai‖. Thus the situation is very similar to our toy example of the
application of partial traces in Section 5.2.

Heuristically, because
∑

i∈[n] Ai⊗Ai and
∑

i∈[n] Tr(Ai)·Ai are random matrices, we expect
that their eigenvalues are all of roughly the same magnitude. This means that their spectral
norm should be close to their Frobenius norm divided by the square root of the dimension,

since for a matrix M with eigenvalues λ1, . . . , λn, ‖M‖F =
√∑

i∈[n] λ
2
i . By estimating the

sum of the squared entries, we expect that the Frobenius norm of
∑

i Tr(Ai) · Ai is less

than that of
∑

iAi ⊗ Ai by a factor of
√
d after the partial trace, while the dimension

decreases by a factor of d, and so assuming that the eigenvalues are all of the same order, a
typical eigenvalue should remain unchanged. We formalize these heuristic calculations using
standard matrix concentration arguments in Section 5.5.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 140

5.3 Planted Sparse Vector in Random Linear
Subspace

In this section we give a nearly-linear-time algorithm to recover a sparse vector planted in a
random subspace.

Problem 5.3.1. Let v0 ∈ Rn be a unit vector such that ‖v0‖4
4 ≥ 1

εn
. Let v1, . . . , vd−1 ∈ Rn

be iid from N (0, 1
n

Idn). Let w0, . . . , wd−1 be an orthogonal basis for Span{v0, . . . , vd−1}.
Given: w0, . . . , wd−1 Find: a vector v such that 〈v, v0〉2 ≥ 1− o(1).

Sparse Vector Recovery in Nearly-Linear Time

Algorithm 5.3.2. Input: w0, . . . , wd−1 as in Problem 5.3.1. Goal: Find v with 〈v̂, v0〉2 ≥
1− o(1).

• Compute leverage scores ‖a1‖2, . . . , ‖an‖2, where ai is the ith row of the n× d matrix
S :=

(
w0 · · · wd−1

)
.

• Compute the top eigenvector u of the matrix

A
def
=
∑
i∈[n]

(‖ai‖2
2 − d

n
) · aia>i .

• Output Su.

Remark 5.3.3 (Implementation of Algorithm 5.3.2 in nearly-linear time). The leverage scores
‖a1‖2, . . . , ‖an‖2 are clearly computable in time O(nd). In the course of proving correctness
of the algorithm we will show that A has constant spectral gap, so by a standard analysis
O(log d) matrix-vector multiplies suffice to recover its top eigenvector. A single matrix-
vector multiply Ax requires computing ci := (‖ai‖2− d

n
)〈ai, x〉 for each i (in time O(nd)) and

summing
∑

i∈[n] cixi (in time O(nd)). Finally, computing Su requires summing d vectors of

dimension n, again taking time O(nd).

The following theorem expresses correctness of the algorithm.

Theorem 5.3.4. Let v0 ∈ Rn be a unit vector with ‖v0‖4
4 ≥ 1

εn
. Let v1, . . . , vd−1 ∈ Rn be iid

from N (0, 1
n

Idn). Let w0, . . . , wd−1 be an orthogonal basis for Span{v0, . . . , vd−1}. Let ai be

the i-th row of the n× d matrix S :=
(
w0 · · · wd−1

)
.

When d ≤ n1/2/ polylog(n), for any sparsity ε > 0, w.ov.p. the top eigenvector u of∑n
i=1(‖ai‖2 − d

n
) · aia>i has 〈Su, v0〉2 ≥ 1−O(ε1/4)− o(1).

We have little control over the basis vectors the algorithm is given. However, there is a
particularly nice (albeit non-orthogonal) basis for the subspace which exposes the underlying
randomness. Suppose that we are given the basis vectors v0, . . . , vd, where v0 is the sparse
vector normalized so that ‖v0‖ = 1, and v1, . . . , vd−1 are iid samples from N (0, 1

n
Idn). The

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 141

following lemma shows that if the algorithm had been handed this good representation of
the basis rather than an arbitrary orthogonal one, its output would be the correlated to
the vector of coefficients giving of the planted sparse vector (in this case the standard basis
vector e1).

Lemma 5.3.5. Let v0 ∈ Rn be a unit vector. Let v1, . . . , vd−1 ∈ Rn be iid from N (0, 1
n

Id).

Let ai be the ith row of the n × d matrix S :=
(
v0 · · · vd−1

)
. Then there is a universal

constant ε∗ > 0 so that for any ε ≤ ε∗, so long as d ≤ n1/2/ polylog(n), w.ov.p.

n∑
i=1

(‖ai‖2 − d
n
) · aia>i = ‖v0‖4

4 · e1e
>
1 +M ,

where e1 is the first standard basis vector and ‖M‖ ≤ O(‖v0‖3
4 ·n−1/4 + ‖v0‖2

4 ·n−1/2 + ‖v0‖4 ·
n−3/4 + n−1).

The second ingredient we need is that the algorithm is robust to exchanging this good
basis for an arbitrary orthogonal basis.

Lemma 5.3.6. Let v0 ∈ Rn have ‖v0‖4
4 ≥ 1

εn
. Let v1, . . . , vd−1 ∈ Rn be iid from N (0, 1

n
Idn).

Let w0, . . . , wd−1 be an orthogonal basis for Span{v0, . . . , vd−1}. Let ai be the ith row of
the n × d matrix S :=

(
v0 · · · vd−1

)
. Let a′i be the ith row of the n × d matrix S ′ :=(

w0 · · · wd−1

)
. Let A :=

∑
i aia

>
i . Let Q ∈ Rd×d be the orthogonal matrix so that

SA−1/2 = S ′Q, which exists since SA−1/2 is orthogonal, and which has the effect that a′i =
QA−1/2ai. Then when d ≤ n1/2/ polylog(n), w.ov.p.∥∥∥∥∥

n∑
i=1

(‖a′i‖2 − d
n
) · a′ia′>i −Q

(
n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
Q>

∥∥∥∥∥ ≤ O

(
1

n

)
+ o(‖v‖4

4)

Last, we will need the following fact, which follows from standard concentration. The
proof is in Section 5.6.

Lemma 5.3.7. Let v ∈ Rn be a unit vector. Let b1, . . . , bn ∈ Rd−1 be iid from N (0, 1
n

Idd−1).

Let ai ∈ Rd be given by ai := (v(i) bi). Then w.ov.p. ‖
∑n

i=1 aia
>
i − Idd ‖ ≤ Õ(d/n)1/2. In

particular, when d = o(n), this implies that w.ov.p. ‖(
∑n

i=1 aia
>
i)−1− Idd ‖ ≤ Õ(d/n)1/2 and

‖(
∑n

i=1 aia
>
i)−1/2 − Idd ‖ ≤ Õ(d/n)1/2.

We are ready to prove Theorem 5.3.4.

Proof of Theorem 5.3.4. Let b1, . . . , bn be the rows of the matrix S ′ :=
(
v0 · · · vd−1

)
.

Let B =
∑

i bib
>
i . Note that S ′B−1/2 has columns which are an orthogonal basis for

Span{w0, . . . , wd−1}. Let Q ∈ Rd×d be the rotation so that S ′B−1/2 = SQ.
By Lemma 5.3.5 and Lemma 5.3.6, we can write the matrix A =

∑n
i=1(‖ai‖2

2 − d
n
) · aia>i

as
A = ‖v0‖4

4 ·Qe1e
>
1 Q
> +M ,

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 142

where w.ov.p.

‖M‖ ≤ O(‖v0‖3
4 · n−1/4 + ‖v0‖2

4 · n−1/2 + ‖v0‖4 · n−3/4 + n−1) + o(‖v‖4
4) .

We have assumed that ‖v0‖4
4 ≥ (εn)−1, and so since A is an almost-rank-one matrix

(Lemma A.1.3), the top eigenvector u of A has 〈u,Qe1〉2 ≥ 1−O(ε1/4), so that 〈Su, SQe1〉2 ≥
1−O(ε1/4) by column-orthogonality of S.

At the same time, SQe1 = S ′B−1/2e1, and by Lemma 5.3.7, ‖B−1/2 − Id ‖ ≤ Õ(d/n)1/2

w.ov.p., so that 〈Su, S ′e1〉2 ≥ 〈Su, SQe1〉2 − o(1). Finally, S ′e1 = v0 by definition, so
〈Su, v0〉2 ≥ 1−O(ε1/4)− o(1).

Algorithm Succeeds on Good Basis

We now prove Lemma 5.3.5. We decompose the matrix in question into a contribution from
‖v0‖4

4 and the rest: explicitly, the decomposition is
∑

(‖ai‖2
2 − d

n
) · aia>i =

∑
v(i)2 · aia>i +∑

(‖bi‖2
2 − d

n
· aia>i). This first lemma handles the contribution from ‖v0‖4

4.

Lemma 5.3.8. Let v ∈ Rn be a unit vector. Let b1, . . . , bn ∈ Rd−1 be random vectors iid
from N (0, 1

n
· Idd−1). Let ai = (v(i) bi) ∈ Rd. Suppose d ≤ n1/2/ polylog(n). Then

n∑
i=1

v(i)2 · aia>i = ‖v‖4
4 · e1e

>
1 +M ′ ,

where ‖M ′‖ ≤ O(‖v‖3
4n
−1/4 + ‖v‖2

4n
−1/2) w.ov.p..

Proof of Lemma 5.3.8. We first show an operator-norm bound on the principal submatrix∑n
i=1 v(i)2 · bib>i using the truncated matrix Bernstein inequality Proposition A.3.3. First,

the expected operator norm of each summand is bounded:

E v(i)2‖bi‖2
2 ≤ (max

j
v(j)2) ·O

(
d

n

)
≤ ‖v‖2

4 ·O
(
d

n

)
.

The operator norms are bounded by constant-degree polynomials in Gaussian variables, so
Lemma A.3.4 applies to truncate their tails in preparation for application of a Bernstein
bound. We just have to calculate the variance of the sum, which is at most∥∥∥∥∥E

n∑
i=1

v(i)4‖bi‖2
2 · bib>i

∥∥∥∥∥ = ‖v‖4
4 ·O

(
d

n2

)
.

The expectation E
∑n

i=1 v(i)2 · bib>i is ‖v‖
2

n
· Id. Applying a matrix Bernstein bound (Propo-

sition A.3.3) to the deviation from expectation, we get that w.ov.p.,∥∥∥∥∥
(

n∑
i=1

v(i)2 · bib>i

)
− 1

n
· Id

∥∥∥∥∥ ≤ ‖v‖2
4 · Õ

(
d

n

)
≤ O(‖v‖2

4n
−1/2)

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 143

for appropriate choice of d ≤ n−1/2/ polylog(n). Hence, by triangle inequality, ‖
∑n

i=1 v(i)2 ·
bib
>
i ‖ ≤ ‖v‖2

4n
−1/2 w.ov.p..

Using a Cauchy-Schwarz-style inequality (Lemma A.1.1) we now show that the bound on
this principal submatrix is essentially enough to obtain the lemma. Let pi, qi ∈ Rd be given
by

pi
def
= v0(i) ·


v0(i)

0
...

0

 qi
def
= v0(i) ·

(
0

bi

)
.

Then
n∑
i=1

v(i)2 · bib>i = ‖v‖4
4 +

n∑
i=1

piq
>
i + qip

>
i + qiq

>
i .

We have already bounded
∑n

i=1 qiq
>
i =

∑n
i=1 v(i)2 · bib>i . At the same time, ‖

∑n
i=1 pip

>
i ‖ =

‖v‖4
4. By Lemma A.1.1, then,∥∥∥∥∥

n∑
i=1

piq
>
i + qip

>
i

∥∥∥∥∥ ≤ O(‖v‖3
4n
−1/4)

w.ov.p.. A final application of triangle inequality gives the lemma.

Our second lemma controls the contribution from the random part of the leverage scores.

Lemma 5.3.9. Let v ∈ Rn be a unit vector. Let b1, . . . , bn ∈ Rd−1 be random vectors iid
from N (0, 1

n
· Idd−1). Let ai = (v(i) bi) ∈ Rd. Suppose d ≤ n1/2/ polylog(n). Then w.ov.p.∥∥∥∥∥
n∑
i=1

(‖bi‖2
2 − d

n
) · aia>i

∥∥∥∥∥ ≤ ‖v‖2
4 ·O(n−3/4) + ‖v‖4 ·O(n−1) +O(n−1) .

Proof. Like in the proof of Lemma 5.3.8,
∑n

i=1(‖bi‖2
2− d

n
) ·aia>i decomposes into a convenient

block structure; we will bound each block separately.

n∑
i=1

(‖bi‖2
2 − d

n
) · aia>i =

n∑
i=1

(‖bi‖2
2 − d

n
) ·
(

v(i)2 v(i) · b>i
v(i) · bi bib

>
i

)
. (5.3.1)

In each block we can apply a (truncated) Bernstein inequality. For the large block∑n
i=1(‖bi‖2

2 − d
n
)bib

>
i , the choice d

n
ensures that E(‖bi‖2

2 − d
n
)bib

>
i = O(1

n2) · Id. The expected
operator norm of each summand is small:

E ‖(‖bi‖2
2 − d

n
)bib

>
i ‖ = E |(‖bi‖2

2 − d
n
)|‖bi‖2

2

≤ (E(‖bi‖2
2 − d

n
)2)1/2(E ‖bi‖4

2)1/2 by Cauchy-Schwarz

≤ O

(
d1/2

n

)
·O
(
d

n

)
variance of χ2 with k degrees of freedom is O(k)

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 144

= O

(
d3/2

n2

)
.

The term-wise operator norms are bounded by constant-degree polynomials in Gaussian
variables, so Lemma A.3.4 applies to truncate the tails of the summands in preparation for a
Bernstein bound. We just have to compute the variance of the sum, which is small because
we have centered the coefficients:∥∥∥∥∥∑

i

E(‖bi‖2
2 − d

n
)2‖bi‖2

2 · bib>i

∥∥∥∥∥ ≤ O

(
d2

n3

)
by direct computation of E(‖bi‖2

2 − d
n
)2‖bi‖2

2bib
>
i using Fact A.2.3. These facts together

are enough to apply the matrix Bernstein inequality (Proposition A.3.3) and conclude that
w.ov.p. ∥∥∥∥∥

n∑
i=1

(‖bi‖2
2 − d

n
) · bib>i

∥∥∥∥∥ ≤ Õ

(
d

n3/2

)
≤ O

(
1

n

)
for appropriate choice of d ≤ n/ polylog(n).

We turn to the other blocks from (5.3.1). The upper-left block contains just the scalar∑n
i=1(‖bi‖2

2 − d
n
)v(i)2. By standard concentration each term is bounded: w.ov.p.,

(‖bi‖2
2 − d

n
)v(i)2 ≤ (max

i
v(i)2) · Õ

(
d1/2

n

)
≤ ‖v‖2

4 · Õ
(
d1/2

n

)
.

The sum has variance at most
∑n

i=1 v(i)4 E(‖bi‖2
2 − d

n
)2 ≤ ‖v‖4

4 · O(d/n2). Again using
Lemma A.3.4 and Proposition A.3.3, we get that w.ov.p.∣∣∣∣∣

n∑
i=1

(‖bi‖2
2 − d

n
)v(i)2

∣∣∣∣∣ ≤ ‖v‖2
4 · Õ

(
d1/2

n

)
.

It remains just to address the block
∑n

i=1(‖bi‖2
2 − d

n
)v(i) · bi. Each term in the sum has

expected operator norm at most

(max
i
v(i)2)1/2 ·O

(
d

n3/2

)
≤ ‖v‖4 ·O

(
d

n3/2

)
· ,

and once again the since the summands’ operator norms are bounded by constant-degree
polynomials of Gaussian variables Lemma A.3.4 applies to truncate their tails in preparation
to apply a Bernstein bound. The variance of the sum is at most ‖v‖2

2 · O(d2/n3), again by
Fact A.2.3. Finally, Lemma A.3.4 and Proposition A.3.3 apply to give that w.ov.p.∥∥∥∥∥

n∑
i=1

(‖bi‖2
2 − d

n
)v(i) · bi

∥∥∥∥∥ ≤ ‖v‖4 · Õ
(

d

n3/2

)
+ Õ

(
d

n3/2

)
= ‖v‖4 · n−1 + n−1

for appropriate choice of d ≤ n1/2/ polylog(n). Putting it all together gives the lemma.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 145

We are now ready to prove Lemma 5.3.5

Proof of Lemma 5.3.5. We decompose ‖ai‖2
2 = v0(i)2 + ‖bi‖2

2 and use Lemma 5.3.8 and
Lemma 5.3.9.

n∑
i=1

(‖ai‖2
2 − d

n
) · aia>i =

(
n∑
i=1

v0(i)2 · aia>i

)
+

(
n∑
i=1

(‖bi‖2
2 − d

n
) · aia>i

)
= ‖v0‖4

4 · e1e
>
1 +M ,

where
‖M‖ ≤ O(‖v0‖3

4 · n−1/4 + ‖v0‖2
4 · n−1/2) +O(‖v0‖4 · n−1 + n−1) .

Since ‖v0‖4
4 ≥ (εn)−1, we get ‖v0‖4

4/‖M‖ ≥ 1
ε1/4

, completing the proof.

Closeness of Input Basis and Good Basis

We turn now to the proof of Lemma 5.3.6. We recall the setting. We have two matrices:
M , which the algorithm computes, and M ′, which is induced by a basis for the subspace
which reveals the underlying randomness and which we prefer for the analysis. M ′ differs
from M by a rotation and a basis orthogonalization step (the good basis is only almost
orthogonal). The rotation is easily handled. The following lemma gives the critical fact
about the orthogonalization step: orthogonalizing does not change the leverage scores too
much. 6

Lemma 5.3.10 (Restatement of Lemma 5.6.4). Let v ∈ Rn be a unit vector and let
b1, . . . , bn ∈ Rd−1 be iid from N (0, 1

n
Idd−1). Let ai ∈ Rd be given by ai := (v(i) bi). Let

A :=
∑

i aia
>
i . Let c ∈ Rd−1 be given by c :=

∑
i v(i)bi. Then for every index i ∈ [n],

w.ov.p., ∣∣‖A−1/2ai‖2 − ‖ai‖2
∣∣ ≤ Õ

(
d+
√
n

n

)
· ‖ai‖2 .

The proof again uses standard concentration and matrix inversion formulas, and can be
found in Section 5.6. We are ready to prove Lemma 5.3.6.

Proof of Lemma 5.3.6. The statement we want to show is∥∥∥∥∥
n∑
i=1

(‖a′i‖2 − d
n
) · a′ia′>i −Q

(
n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
Q>

∥∥∥∥∥ ≤ O

(
1

n

)
+ o(‖v‖4

4) .

Conjugating by Q and multiplying by −1 does not change the operator norm, so that this
is equivalent to∥∥∥∥∥

n∑
i=1

(‖ai‖2 − d
n
) · aia>i −Q>

(
n∑
i=1

(‖a′i‖2 − d
n
) · a′ia′>i

)
Q

∥∥∥∥∥ ≤ O

(
1

n

)
+ o(‖v‖4

4) .

6Strictly speaking the good basis does not have leverage scores since it is not orthogonal, but we can
still talk about the norms of the rows of the matrix whose columns are the basis vectors.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 146

Finally, substituting a′i = QA−1/2ai, and using the fact that Q is a rotation, it will be
enough to show∥∥∥∥∥

(
n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
− A−1/2

(
n∑
i=1

(‖A−1/2ai‖2 − d
n
) · aia>i

)
A−1/2

∥∥∥∥∥
≤ O

(
1

n

)
+ o(‖v‖4

4) . (5.3.2)

We write the right-hand matrix as

A−1/2

(
n∑
i=1

(‖A−1/2ai‖2 − d
n
) · aia>i

)
A−1/2

= A−1/2

(
n∑
i=1

(‖A−1/2ai‖2 − ‖ai‖2) · aia>i

)
A−1/2 + A−1/2

(
n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
A−1/2 .

The first of these we observe has bounded operator norm w.ov.p.:∥∥∥∥∥A−1/2

(
n∑
i=1

(‖A−1/2ai‖2 − ‖ai‖2) · aia>i

)
A−1/2

∥∥∥∥∥
≤

∥∥∥∥∥A−1/2

(
n∑
i=1

|‖A−1/2ai‖2 − ‖ai‖2| · aia>i

)
A−1/2

∥∥∥∥∥
≤ Õ

(
d+
√
n

n

)
·

∥∥∥∥∥
n∑
i=1

‖ai‖2 · aia>i

∥∥∥∥∥
where we have used Lemma 5.3.7 to find that A1/2 is close to identity, and Lemma 5.3.10 to
simplify the summands

= Õ

(
d+
√
n

n

)
·

(∥∥∥∥∥
n∑
i=1

v0(i)2 · aia>i

∥∥∥∥∥+

∥∥∥∥∥
n∑
i=1

‖bi‖2
2 · aia>i

∥∥∥∥∥
)

≤ Õ

(
d+
√
n

n

)
·
(
O(‖v‖4

4) + Õ

(
d

n

))
,

using in the last step Lemma 5.3.8 and standard concentration to bound
∑n

i=1 ‖bi‖2
2 · aia>i

(Lemma 5.3.7). Thus, by triangle inequality applied to (5.3.2), we get∥∥∥∥∥
(

n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
− A−1/2

(
n∑
i=1

(‖A−1/2ai‖2 − d
n
) · aia>i

)
A−1/2

∥∥∥∥∥
≤ Õ

(
d+
√
n

n

)
·
(
O(‖v‖4

4) + Õ

(
d

n

))

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 147

+

∥∥∥∥∥
(

n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
− A−1/2

(
n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
A−1/2

∥∥∥∥∥ .
Finally, since w.ov.p. ‖A−1/2 − Id ‖ = Õ(d/n)1/2, we get∥∥∥∥∥

(
n∑
i=1

(‖ai‖2 − d
n
) · aia>i

)
− A−1/2

(
n∑
i=1

(‖A−1/2ai‖2 − d
n
) · aia>i

)
A−1/2

∥∥∥∥∥
≤ Õ

(
d+
√
n

n

)
·
(
O(‖v‖4

4) + Õ

(
d

n

))
+ Õ

(
d

n

)1/2

·

∥∥∥∥∥
n∑
i=1

(‖ai‖2
2 − d

n
) · aia>i

∥∥∥∥∥
≤ Õ

(
d+
√
n

n

)
·
(
O(‖v‖4

4) + Õ

(
d

n

))
+ Õ

(
d

n

)1/2

·O(‖v‖4
4) .

using Lemma 5.3.5 in the last step. For appropriate choice of d ≤ n−1/2/ polylog(n), this is
at most O(n−1) + o(‖v‖4

4).

5.4 Overcomplete Tensor Decomposition

In this section, we give a polynomial-time algorithm for the following problem when n ≤
d4/3/(polylog d):

Problem 5.4.1. Given an order-3 tensor T =
∑n

i=1 ai ⊗ ai ⊗ ai, where a1, . . . , an ∈ Rd are
iid vectors sampled from N (0, 1

d
Id), find vectors b1, . . . , bn ∈ Rn such that for all i ∈ [n],

〈ai, bi〉 ≥ 1− o(1) .

We give an algorithm that solves this problem, so long as the overcompleteness of the
input tensor is bounded such that n� d4/3/ polylog d.

Theorem 5.4.2. Given as input the tensor T =
∑n

i=1 ai ⊗ ai ⊗ ai where ai ∼ N (0, 1
d

Idd)

with d ≤ n ≤ d4/3/ polylog d,7 there is an algorithm which may run in time Õ(nd1+ω) or

Õ(nd3.257), where dω is the time to multiply two d×d matrices, which with probability 1−o(1)
over the input T and the randomness of the algorithm finds unit vectors b1, . . . , bn ∈ Rd such
that for all i ∈ [n],

〈ai, bi〉 ≥ 1− Õ
(
n3/2

d2

)
.

7The lower bound d ≤ n on n, is a matter of technical convenience, avoiding separate concentration
analyses and arithmetic in the undercomplete (n < d) and overcomplete (n ≥ d) settings. Indeed, our
algorithm still works in the undercomplete setting (tensor decomposition is easier in the undercomplete
setting than the overcomplete one), but here other algorithms based on local search also work [AGJ15].

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 148

We remark that this accuracy can be improved from 1 − Õ(n3/2/d2) to an arbitrarily
good precision using existing local search methods with local convergence guarantees—see
Corollary 5.4.23.

As discussed in Section 5.2, to decompose the tensor
∑

i a
⊗6
i (note we do not actually

have access to this input!) there is a very simple tensor decomposition algorithm: sample

a random g ∈ Rd2
and compute the matrix

∑
i〈g, a

⊗2
i 〉(aia>i)⊗2. With probability roughly

n−O(ε) this matrix has (up to scaling) the form (aia
>
i)⊗2 +E for some ‖E‖ ≤ 1− ε, and this

is enough to recover ai.
However, instead of

∑
i a
⊗6
i , we have only

∑
i,j(ai ⊗ aj)⊗3. Unfortunately, running the

same algorithm on the latter input will not succeed. To see why, consider the extra terms
E ′ :=

∑
i 6=j〈g, ai ⊗ aj〉(ai ⊗ aj)⊗2. Since |〈g, ai ⊗ aj〉| ≈ 1, it is straightforward to see that

‖E ′‖F ≈ n. Since the rank of E ′ is clearly d2, even if we are lucky and all the eigenvalues
have similar magnitudes, still a typical eigenvalue will be ≈ n/d� 1, swallowing the

∑
i a
⊗6
i

term.
A convenient feature separating the signal terms

∑
i(ai ⊗ ai)

⊗3 from the crossterms∑
i 6=j(ai ⊗ aj)

⊗3 is that the crossterms are not within the span of the ai ⊗ ai. Although

we cannot algorithmically access Span{ai ⊗ ai}, we have access to something almost as
good: the unfolded input tensor, T =

∑
i∈[n] ai(ai ⊗ ai)

>. The rows of this matrix lie in

Span{ai ⊗ ai}, and so for i 6= j, ‖T (ai ⊗ ai)‖ � ‖T (ai ⊗ aj)‖. In fact, careful computation

reveals that ‖T (ai ⊗ ai)‖ ≥ Ω̃(
√
n/d)‖T (ai ⊗ aj)‖.

The idea now is to replace
∑

i,j〈g, ai⊗ aj〉(ai⊗ aj)⊗2 with
∑

i,j〈g, T (ai⊗ aj)〉(ai⊗ aj)⊗2,

now with g ∼ N (0, Idd). As before, we are hoping that there is i0 so that 〈g, T (ai0 ⊗ ai0)〉 �
maxj 6=i0〈g, T (aj ⊗ aj)〉. But now we also require ‖

∑
i 6=j〈g, T (ai⊗ aj)〉(ai⊗ aj)(ai⊗ aj)>‖ �

〈g, T (ai0 ⊗ ai0)〉 ≈ ‖T (ai ⊗ ai)‖. If we are lucky and all the eigenvalues of this cross-term
matrix have roughly the same magnitude (indeed, we will be lucky in this way), then we can
estimate heuristically that∥∥∥∥∥∑

i 6=j

〈g, T (ai ⊗ aj)〉(ai ⊗ aj)(ai ⊗ aj)>
∥∥∥∥∥

≈ 1
d

∥∥∥∥∥∑
i 6=j

〈g, T (ai ⊗ aj)〉(ai ⊗ aj)(ai ⊗ aj)>
∥∥∥∥∥
F

≤ 1
d
·
√
n
d
|〈g, T (ai0 ⊗ ai0)〉|

∥∥∥∥∥∑
i 6=j

(ai ⊗ aj)(ai ⊗ aj)>
∥∥∥∥∥
F

≤ n3/2

d2 |〈g, T (ai0 ⊗ ai0)〉| ,

suggesting our algorithm will succeed when n3/2 � d2, which is to say n� d4/3.
The following theorem, which formalizes the intuition above, is at the heart of our tensor

decomposition algorithm.

Theorem 5.4.3. Let a1, . . . , an be independent random vectors from N (0, 1
d

Idd) with

d ≤ n ≤ d4/3/(polylog d) and let g be a random vector from N (0, Idd). Let Σ :=

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 149

Ex∼N (0,Idd)(xx
>)⊗2 and let R :=

√
2 · (Σ+)1/2. Let T =

∑
i∈[n] ai(ai ⊗ ai)

>. Define the

matrix M ∈ Rd2×d2
,

M =
∑
i,j∈[n]

〈g, T (ai ⊗ aj)〉 · (ai ⊗ aj)(ai ⊗ aj)> .

With probability 1− o(1) over the choice of a1, . . . , an, for every polylog d/
√
d < ε < 1, the

spectral gap of RMR is at least λ2/λ1 ≤ 1−O(ε) and the top eigenvector u ∈ Rd2
of RMR

satisfies, with probability Ω̃(1/nO(ε)) over the choice of g,

max
i∈[n]
〈Ru, ai ⊗ ai〉2/

(
‖u‖2 · ‖ai‖4

)
≥ 1− Õ

(
n3/2

εd2

)
.

Moreover, with probability 1 − o(1) over the choice of a1, . . . , an, for every polylog d/
√
d <

ε < 1 there are events E1, . . . , En so that Pg Ei ≥ Ω̃(1/n1+O(ε)) for all i ∈ [n] and when Ei

occurs, 〈Ru, ai ⊗ ai〉2/‖u‖2 · ‖ai‖4 ≥ 1− Õ
(
n3/2

εd2

)
.

We will eventually set ε = 1/ log n, which gives us a spectral algorithm for recovering

a vector (1 − Õ(n/d3/2))-correlated to some a⊗2
i . Once we have a vector correlated with

each a⊗2
i , obtaining vectors close to the ai is straightforward. We will begin by proving this

theorem, and defer the algorithmic details to Section 5.4.
The rest of this section is organized as follows. In Section 5.4 we prove Theorem 5.4.3

using two core facts: the Gaussian vector g is closer to some ai than to any other with good
probability, and the noise term

∑
i 6=j〈g, T (ai⊗ aj)〉(ai⊗ aj)(ai⊗ aj)> is bounded in spectral

norm. In Section 5.4 we prove the first of these two facts, and in Section 5.4 we prove the
second. In Section 5.4, we give the full details of our tensor decomposition algorithm, then
prove Theorem 5.4.2 using Theorem 5.4.3. Finally, Section 5.7 contains proofs of elementary
or long-winded lemmas we use along the way.

Proof of Theorem 5.4.3

The strategy to prove Theorem 5.4.3 is to decompose the matrix M into two parts M =
Mdiag +Mcross, one formed by diagonal terms Mdiag =

∑
i∈[n]〈g, T (ai⊗ai)〉 · (ai⊗ai)(ai⊗ai)>

and one formed by cross terms Mcross =
∑

i 6=j〈g, T (ai⊗ aj)〉 · (ai⊗ aj)(ai⊗ aj)>. We will use

the fact that the top eigenvector Mdiag is likely to be correlated with one of the vectors a⊗2
j ,

and also the fact that the spectral gap of Mdiag is noticeable.
The following two propositions capture the relevant facts about the spectra of Mdiag and

Mcross, and will be proven in Section 5.4 and Section 5.4.

Proposition 5.4.4 (Spectral gap of diagonal terms). Let R =
√

2 · ((E(xx>)⊗2)+)1/2 for
x ∼ N (0, Idd). Let a1, . . . , an be independent random vectors from N (0, 1

d
Idd) with d ≤ n ≤

d2−Ω(1) and let g ∼ N (0, Idd) be independent of all the others. Let T :=
∑

i∈[n] ai(ai ⊗ ai)>.

Suppose Mdiag =
∑

i∈[n]〈g, Ta
⊗2
i 〉 · (aia>i)⊗2. Let also vj be such that vjv

>
j = 〈g, Ta⊗2

j 〉 ·

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 150

(aja
>
j)⊗2. Then, with probability 1 − o(1) over a1, . . . , an, for each ε > polylog d/

√
d and

each j ∈ [n], the event

Ej,ε
def
=
{∥∥RMdiagR− ε ·Rvjv>j R

∥∥ ≤ ‖RMdiagR‖ −
(
ε− Õ

(√
n/d
))
·
∥∥Rvjv>j R∥∥}

has probability at least Ω̃(1/n1+O(ε)) over the choice of g.

Second, we show that when n� d4/3 the spectral norm of Mcross is negligible compared
to this spectral gap.

Proposition 5.4.5 (Bound on crossterms). Let a1, . . . , an be independent random vectors
from N (0, 1

d
Idd), and let g be a random vector from N (0, Idd). Let T :=

∑
i∈[n] ai(ai⊗ ai)>.

Let Mcross :=
∑

i 6=j∈[n]〈g, T (ai ⊗ aj)〉aia>i ⊗ aja>j . Suppose n ≥ d. Then with w.ov.p.,

‖Mcross‖ ≤ Õ

(
n3

d4

)1/2

.

Using these two propositions we will conclude that the top eigenvector of RMR is likely
to be correlated with one of the vectors a⊗2

j . We also need two simple concentration bounds;
we defer the proof to the appendix.

Lemma 5.4.6. Let a1, . . . , an be independently sampled vectors from N (0, 1
d

Idd), and let g

be sampled from N (0, Idd). Let T =
∑

i ai(ai ⊗ ai)>. Then with overwhelming probability,
for every j ∈ [n], ∣∣〈g, T (aj ⊗ aj)〉 − 〈g, aj〉‖aj‖4

∣∣ ≤ Õ

(√
n

d

)
.

Fact 5.4.7 (Simple version of Fact 5.7.1). Let x, y ∼ N (0, 1
d

Id). With overwhelming proba-

bility, |1− ‖x‖2| ≤ Õ(1/
√
d) and 〈x, y〉2 = Õ(1/d).

As a last technical tool we will need a simple claim about the fourth moment matrix of
the multivariate Gaussian:

Fact 5.4.8 (simple version of Fact 5.7.4). Let Σ = Ex∼N (0,Idd)(xx
>)⊗2 and let R =√

2 (Σ+)1/2. Then ‖R‖ = 1, and for any v ∈ Rd,

‖R(v ⊗ v)‖2
2 =

(
1− 1

d+2

)
· ‖v‖4.

We are prepared prove Theorem 5.4.3.

Proof of Theorem 5.4.3. Let d ≤ n ≤ d4/3/(polylog d) for some polylog d to be chosen later.
Let a1, . . . , an be independent random vectors from N (0, 1

d
Idd) and let g ∼ N (0, Idd) be

independent of the others. Let

Mdiag :=
∑
i∈[n]

〈g, T (ai ⊗ ai)〉 · (aia>i)⊗2 and Mcross :=
∑

i 6=j∈[n]

〈g, T (ai ⊗ aj)〉 · aia>i ⊗ aja>j .

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 151

Note that M := Mdiag +Mcross.
Proposition 5.4.5 implies that

P{ ‖Mcross‖ ≤ Õ(n3/2/d2)} ≥ 1− d−ω(1) . (5.4.1)

Recall that Σ = Ex∼N (0,Idd)(xx
>)⊗2 and R =

√
2 · (Σ+)1/2. By Proposition 5.4.4, with

probability 1− o(1) over the choice of a1, . . . , an, each of the following events Ej,ε for j ∈ [n]

and ε > polylog(d)/
√
d has probability at least Ω̃(1/n1+O(ε)) over the choice of g:

E0
j,ε :

∥∥R (Mdiag − ε〈g, Ta⊗2
j 〉(aja>j)⊗2

)
R
∥∥

≤ ‖RMdiagR‖ −
(
ε− Õ

(
n1/2

d

))
· |〈g, Taj⊗2〉| ·

∥∥Raj⊗2
∥∥2
.

Together with (5.4.1), with probability 1− o(1) over the choice of a1, . . . , an, each of the

following events E∗j,ε has probability at least Ω̃(1/n1+O(ε))− d−ω(1) ≥ Ω̃(1/n1+O(ε)) over the
choice of g,

E∗j,ε :
∥∥R (M − ε〈g, Ta⊗2

j 〉(aja>j)⊗2
)
R
∥∥

≤ ‖R ·M ·R‖ −
(
ε− Õ

(
n1/2

d

))
· |〈g, Taj⊗2〉| ·

∥∥Raj⊗2
∥∥2

+ Õ(n3/2/d2)

Here, we used that M = Mdiag + Mcross and that ‖R ·Mcross · R‖ ≤ ‖Mcross‖ as ‖R‖ ≤ 1
(Fact 5.4.8).

By standard reasoning about the top eigenvector of a matrix with a spectral gap (recorded
in Lemma A.1.3), the event E∗j,ε implies that the top eigenvector u ∈ Rd2 of R ·M ·R
satisfies 〈

u,
Ra⊗2

j

‖Ra⊗2
j ‖

〉2

≥ 1− Õ(
√
n/d)

ε‖Ra⊗2
j ‖2

− Õ(n3/2/d2)

ε‖Ra⊗2
j ‖2|〈g, Ta⊗2

j 〉|
.

Since ‖Raj⊗2‖2 ≥ Ω(‖aj‖4) (by Fact 5.4.8), and since ‖aj‖ ≥ 1− Õ(1/
√
d) (by Fact 5.4.7),

≥ 1− Õ
(√

n

εd

)
− Õ(n3/2/d2)

ε · |〈g, Ta⊗2
j 〉|

Now, by Lemma 5.4.6 we have that for all j ∈ [n], |〈g, Ta⊗2
j 〉 − 〈g, aj〉‖aj‖4| ≤ Õ(

√
n/d)

with probability 1 − n−ω(1). By standard concentration (see Fact 5.7.1 for a proof)

|〈g, aj〉‖aj‖4 − 1| ≤ Õ(1/
√
d) for all j ∈ [n] with probability 1 − n−ω(1). Therefore with

overwhelming probability, the final term is bounded by Õ(n3/2/εd2). A union bound now
gives the desired conclusion.

Finally, we give a bound on the spectral gap. We note that the second eigenvector w has
〈u,w〉 = 0, and therefore〈

w,
Ra⊗2

j

‖Ra⊗2
j ‖

〉
=

〈
w,

Ra⊗2
j

‖Ra⊗2
j ‖
− u

〉
≤

∥∥∥∥∥ Ra⊗2
j

‖Ra⊗2
j ‖
− u

∥∥∥∥∥ ≤ Õ(n3/2/εd2).

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 152

Thus, using our above bound on ‖R(M − ε〈g, Ta⊗2
j 〉(aja>j)⊗2)R‖ and the concentration

bounds we have already applied for ‖aj‖, 〈g, Ta⊗2
j 〉, and ‖Ra⊗2

j ‖, we have that

λ2(RMR) = w>RMRw

= w>R
(
M − ε〈g, Ta⊗2

j 〉 · (aja>j)⊗2
)
Rw + ε〈g, Ta⊗2

j 〉〈w,Ra⊗2
j 〉2

≤
∥∥R (M − ε〈g, Ta⊗2

j 〉 · (aja>j)⊗2
)
R
∥∥+ Õ(n3/2/εd2)

≤ 1− Õ(ε) + Õ(n3/2/εd2) .

We conclude that the above events also imply that λ2(RMR)/λ1(RMR) ≤ 1−O(ε).

Spectral Gap for Diagonal Terms: Proof of Proposition 5.4.4

We now prove that the signal matrix, when preconditioned by R, has a noticeable spectral
gap:

Proposition (Restatement of Proposition 5.4.4). Let R =
√

2 · ((E(xx>)⊗2)+)1/2 for x ∼
N (0, Idd). Let a1, . . . , an be independent random vectors from N (0, 1

d
Idd) with d ≤ n ≤

d2−Ω(1) and let g ∼ N (0, Idd) be independent of all the others. Let T :=
∑

i∈[n] ai(ai ⊗ ai)>.

Suppose Mdiag =
∑

i∈[n]〈g, Ta
⊗2
i 〉 · (aia>i)⊗2. Let also vj be such that vjv

>
j = 〈g, Ta⊗2

j 〉 ·
(aja

>
j)⊗2. Then, with probability 1 − o(1) over a1, . . . , an, for each ε > polylog d/

√
d and

each j ∈ [n], the event

Ej,ε
def
=
{∥∥RMdiagR− ε ·Rvjv>j R

∥∥ ≤ ‖RMdiagR‖ −
(
ε− Õ

(√
n/d
))
·
∥∥Rvjv>j R∥∥}

has probability at least Ω̃(1/n1+O(ε)) over the choice of g.

The proof has two parts. First we show that for a1, . . . , an ∼ N (0, Idd) the matrix
P :=

∑
i∈[n](aia

>
i)⊗2 has tightly bounded spectral norm when preconditioned with R: more

precisely, that ‖RPR‖ ≤ 1 + Õ(n/d3/2).

Lemma 5.4.9. Let a1, . . . , an ∼ N (0, 1
d

Idd) be independent random vectors with d ≤ n. Let

R :=
√

2 · ((E(aa>)⊗2)+)1/2 for a ∼ N (0, Idd). For S ⊆ [n], let PS =
∑

i∈S(aiai
>)⊗2 and

let ΠS be the projector into the subspace spanned by {Ra⊗2
i | i ∈ S}. Then, with probability

1− o(1) over the choice of a1, . . . , an,

∀S ⊆ [n].
(

1− Õ(n/d3/2)
)
· ΠS � RPSR �

(
1 + Õ(n/d3/2)

)
· ΠS .

Remark 5.4.10. In [GM15, Lemma 5] a similar lemma to this one is proved in the context
of the SoS proof system. However, since Ge and Ma leverage the full power of the SoS
algorithm their proof goes via a spectral bound on a different (but related) matrix. Since
our algorithm avoids solving an SDP we need a bound on this matrix in particular.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 153

The proof of Lemma 5.4.9 proceeds by standard spectral concentration for tall matrices
with independent columns (here the columns are Ra⊗2

i). The arc of the proof is straightfor-
ward but it involves some bookkeeping; we have deferred it to Section 5.7.

We also need the following lemma on the concentration of some scalar random variables
involving R; the proof is straightforward by finding the eigenbasis of R and applying standard
concentration, and it is deferred to the appendix.

Lemma 5.4.11. Let a1, . . . , an ∼ N (0, 1
d

Idd). Let Σ, R be as in Fact 5.4.8. Let ui =

ai ⊗ ai. With overwhelming probability, every j ∈ [n] satisfies
∑

i 6=j〈uj, R2ui〉2 = Õ(n/d2)

and |1− ‖Ruj‖2| ≤ Õ(1/
√
d).

The next lemma is the linchpin of the proof of Proposition 5.4.4: one of the inner products
〈g, Taj⊗2〉, is likely to be a ≈ (1 + 1/ log(n))-factor larger than the maximum of the inner
products 〈g, Tai⊗2〉 over i 6= j. Together with standard linear algebra these imply that
the matrix Mdiag =

∑
i∈[n]〈g, Ta

⊗2
i 〉(aia>i)⊗2 has top eigenvector highly correlated or anti-

correlated with some ai.

Lemma 5.4.12. Let a1, . . . , an ∈ Rd be independent random vectors from N (0, 1
d

Idd), and

let g be a random vector from N (0, Idd). Let T =
∑

i∈[n] ai(ai ⊗ ai)>. Let ε > 0 and j ∈ [n].

Then with overwhelming probability over a1, . . . , an, the following event Êj,ε has probability

1/n1+O(ε)+Õ(1/
√
d) over the choice of g,

Êj,ε =

{
〈g, Ta⊗2

j 〉 ≥ (1 + ε)(1− Õ(1/
√
d)) ·max

i 6=j

∣∣〈g, Ta⊗2
i 〉
∣∣} .

Now we can prove Proposition 5.4.4.

Proof of Proposition 5.4.4. Let ui := a⊗2
i . Fix j ∈ [n]. We begin by showing a lower bound

on the spectral norm ‖RMdiagR‖.
‖RMdiagR‖ = max

‖v‖=1
|〈v,RMdiagRv〉|

≥ 〈Ruj, (RMdiagR)Ruj〉
‖Ruj‖2

=
1

‖Ruj‖2

(
〈g, Tuj〉‖Ruj‖4 + 〈Ruj,

∑
i 6=j

〈g, Ti〉Ruiu>i R ·Ruj〉

)
From Lemma 5.4.12, the random vector g is closer to Tuj than to all Tui for i 6= j, i ∈ [n]
with reasonable probability. More concretely there is some polylog d so that as long as

ε > polylog d/
√
d there is some α = Θ(ε) with 1 − ε = 1/[(1 + α)(1 − Õ(d−1/2))] so that

with w.ov.p. over a1, . . . , an the following event (a direct consequence of Êj,ε) has probability

Ω̃(1/n1+O(α)+Õ(d−1/2)) = Ω̃(1/n1+O(ε)) over g:

−(1−ε)|〈g, Tuj〉|·

(∑
i 6=j

Ruiu
>
i R

)
�
∑
i 6=j

〈g, Tui〉·Ruiu>i R � (1−ε)|〈g, Tuj〉|·

(∑
i 6=j

Ruiu
>
i R

)
.

(5.4.2)

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 154

When (5.4.2) occurs,

‖RMdiagR‖ ≥
1

‖Ruj‖2

(
|〈g, Tuj〉|‖Ruj‖4 − (1− ε)|〈g, Tuj〉|〈Ruj,

∑
i 6=j

Ruiu
>
i R ·Ruj〉

)

=
|〈g, Tuj〉|
‖Ruj‖2

(
‖Ruj‖4 − (1− ε)

∑
i 6=j

〈uj, R2ui〉2
)

≥
|〈g, Tuj〉|

(
1− Õ(1/

√
d)− (1− ε)Õ(n/d2)

)
1 + Õ(1/

√
d)

w.ov.p. over a1, . . . , an (Lemma 5.4.11)

≥ |〈g, Tuj〉| · (1− ηnorm) , (5.4.3)

where we have chosen some 0 ≤ ηnorm ≤ Õ(1/
√
d) + Õ(n/d2) (since for any x ∈ R, (1 +

x)(1− x) ≤ 1).
Next we exhibit an upper bound on ‖RMdiagR− ε〈g, Tuj〉Ruju>j R‖. Again when (5.4.2)

occurs,

‖RMdiagR− ε〈g, Tuj〉Ruju>j R‖ (5.4.4)

=

∥∥∥∥∥(1− ε)〈g, Tuj〉Ruju>j R +
∑
i 6=j

〈g, Tui〉Ruiu>i R

∥∥∥∥∥
≤ (1− ε)|〈g, Tuj〉|

∥∥∥∥∥∥
∑
i∈[n]

Ruiu
>
i R

∥∥∥∥∥∥ when (5.4.2) occurs

≤ (1− ε)|〈g, Tuj〉|(1 + Õ(n/d1.5)) w.p. 1− o(1) over a1, . . . , an by Lemma 5.4.9

≤ (1− ε)|〈g, Tuj〉|(1 + ηgap) (5.4.5)

where we have chosen some 0 ≤ ηgap ≤ Õ(n/d1.5).
Putting together (5.4.3) and (5.4.5) with our bounds on ηnorm and ηgap and recalling the

conditions on (5.4.2), we have shown that

P
a1,...,an

{
P
g
{‖RMdiagR−ε〈g, Tuj〉Ruju>j R‖ ≤ ‖RMdiagR‖ − (ε− Õ(

√
n/d)) · |〈g, Tuj〉| · ‖Ruj‖2}

≥ Ω̃(1/n1+O(ε))
}
≥ 1− o(1) .

This concludes the argument.

We now turn to proving that with reasonable probability, g is closer to some Ta⊗2
j than

all others.

Proof of Lemma 5.4.12. To avoid proliferation of indices, without loss of generality fix j = 1.
We begin by expanding the expression 〈g, Ta⊗2

i 〉,

〈g, Ta⊗2
i 〉 =

∑
`∈[n]

〈g, a`〉〈a`, ai〉2 = ‖ai‖4〈g, ai〉+
∑
`6=i

〈g, a`〉〈a`, ai〉2.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 155

The latter sum is bounded by∣∣∣∣∣∑
6̀=i

〈g, a`〉〈a`, ai〉2
∣∣∣∣∣ ≤ Õ

(√
n

d

)
,

with overwhelming probability for all i and choices of g; this follows from a Bernstein bound,
given in Lemma 5.4.6.

For ease of notation, let âi
def
= ai/‖ai‖2. We conclude from Fact 5.4.7 that with over-

whelming probability, 1 − Õ(1/
√
d) ≤ ‖ai‖2 ≤ 1 + Õ(1/

√
d) for all i ∈ [n]. Thus ‖ai‖2 is

roughly equal for all i, and we may direct our attention to 〈g, âi〉.
Let G1 be the event that

√
2α log1/2 n ≤ |〈g, â1〉| ≤ d1/4 for some α ≤ d1/2−Ω(1) to be

chosen later. We note that 〈g, â1〉 is distributed as a standard Gaussian, and that g is
independent of a1, . . . , an. Thus, we can use standard tail estimates on univariate Gaussians
(Lemma A.2.1) to conclude that

P
(
|〈g, â1〉| ≥

√
2α log1/2 n

)
= Θ̃(n−α) and P

(
|〈g, â1〉| ≥ d1/4

)
= Θ

(
exp(−

√
d/2)

d1/4

)
.

So by a union bound, P(G1) ≥ Ω̃(n−α)−O(e−d
1/2/3) = Ω̃(n−α).

Now, we must obtain an estimate for the probability that all other inner products with g
are small. Let Gi>1 be the event that |〈g, âi〉| ≤

√
(2 + ρ) log1/2 n for all i ∈ [n], i > 1 and for

some ρ to be chosen later. We will show that conditioned on G1, Gi>1 occurs with probability
1 − O(n1−(2+ρ)/2). Define g1 := 〈g, â1〉â1 to be the component of g parallel to a1, let g⊥ :=
g−g1 be the component of g orthogonal to â1, and similarly let â⊥2 , . . . , â

⊥
n be the components

of â2, . . . , ân orthogonal to a1. Because g⊥ is independent of g1, even conditioned on G1 we
may apply the standard tail bound for univariate Gaussians (Lemma A.2.1), concluding that
for all i > 1,

P
(
|〈g⊥, âi〉| ≥

√
(2 + ρ) log1/2 n

∣∣G1

)
= Θ̃(n−(2+ρ)/2).

Thus, a union bound over i 6= 1 allows us to conclude that conditioned on G1, with probability

1− Õ(n−ρ/2) every i ∈ [n] with i > 1 has |〈g⊥, â⊥i 〉| ≤
√

(2 + ρ) log1/2 n.

On the other hand, let â
‖
2, . . . , â

‖
n be the components of the âi parallel to â1. We compute

the projection of âi onto â1. With overwhelming probability,

〈â1, âi〉 =
〈a1, ai〉

‖a1‖2 · ‖ai‖2

= (1± Õ(1/
√
d)) · 〈a1, ai〉 w.ov.p. by ‖ai‖, ‖a1‖ = 1± Õ(1/

√
d) (Fact 5.4.7)

= (1± Õ(1/
√
d)) · Õ(1/

√
d) w.ov.p. by 〈a1, ai〉 = Õ(1/

√
d) (Fact 5.4.7),

Thus w.ov.p.,

〈g1, â
‖
i 〉 = 〈g, â1〉 · 〈â1, âi〉 ≤ 〈g, â1〉 · Õ(1/

√
d),

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 156

for all i ∈ [n]. Now we can analyze Gi>1. Taking a union bound over the overwhelmingly

probable events (including ‖ai‖ ≤ 1 + Õ(1/
√
d)) and the event that 〈g⊥, ai〉 is small for all

i, we have that with probability 1− Õ(n−ρ/2), for every i ∈ [n] with i > 1,

|〈g, âi〉| ≤ |〈g⊥, âi〉|+ |〈g1, âi〉|√
(2 + ρ) log1/2 n+ Õ(1/

√
d) · 〈g, â1〉

≤
√

(2 + ρ) log1/2 n+ Õ(1/d1/4).

We conclude that

P (G1,Gi>1) = P (Gi>1|G1) · P (G1)

≥ (1−O(n−ρ/2)) · Ω̃(n−α)

Setting ρ = 2 log logn
logn

and α = (1 + ε)2(1 + log log n/ log n+ Õ(1/
√
d)), the conclusion follows.

Bound for Cross Terms: Proof of Proposition 5.4.5

We proceed to the bound on the cross terms Mcross.

Proposition (Restatement of Proposition 5.4.5). Let a1, . . . , an be independent random vec-
tors from N (0, 1

d
Idd), and let g be a random vector from N (0, Idd). Let T :=

∑
i∈[n] ai(ai ⊗

ai)
>. Let Mcross :=

∑
i 6=j∈[n]〈g, T (ai ⊗ aj)〉aia>i ⊗ aja>j . Suppose n ≥ d. Then with w.ov.p.,

‖Mcross‖ ≤ Õ

(
n3

d4

)1/2

.

The proof will use two iterations of Matrix Rademacher bounds. The first step will
be to employ a classical decoupling inequality that has previously been used in a tensor
decomposition context [GM15].

Theorem 5.4.13 (Special Case of Theorem 1 in [dlPMS95]). Let {si}, {ti} be independent
iid sequences of random signs. Let {Mij} be a family of matrices. There is a universal
constant C so that for every t > 0,

P

∥∥∥∥∥∑
i 6=j

sisjMij

∥∥∥∥∥
op

> t

 ≤ C · P

C ∥∥∥∥∥∑
i 6=j

sitjMij

∥∥∥∥∥
op

> t

 .

Once the simplified cross terms are decoupled, we can use a matrix Rademacher bound
on one set of signs.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 157

Theorem 5.4.14 (Adapted from Theorem 4.1.1 in [Tro12]8). Consider a finite sequence
{Mi} of fixed m×m Hermitian matrices. Let si be a sequence of independent sign variables.
Let σ2 := ‖

∑
iM

2
i ‖. Then for every t ≥ 0,

P

∥∥∥∥∥∑
i

siMi

∥∥∥∥∥
op

≥ t

 ≤ 2m · e−t2/2σ2

.

Also,

E

∥∥∥∥∥∑
i

siMi

∥∥∥∥∥ ≤√8σ2 log d .

Corollary 5.4.15. Let s1, . . . , sn be independent signs in {−1, 1}. Let A1, . . . , An and
B1, . . . , Bn be Hermetian matrices. Then w.ov.p.,∥∥∥∥∥∑

i

si · Ai ⊗Bi

∥∥∥∥∥ ≤ Õ

max
i
‖Bi‖ ·

∥∥∥∥∥∑
i

A2
i

∥∥∥∥∥
1/2
 .

Proof. We use a matrix Rademacher bound and standard manipulations:∥∥∥∥∥∑
i

si · Ai ⊗Bi

∥∥∥∥∥ w.ov.p.

≤ Õ

(∥∥∥∥∥∑
i

A2
i ⊗B2

i

∥∥∥∥∥
)1/2

≤ Õ

(∥∥∥∥∥∑
i

‖Bi‖2 · (A2
i ⊗ Id)

∥∥∥∥∥
)1/2

since A2
i is PSD for all i

≤ Õ

(
max
i
‖Bi‖2 ·

∥∥∥∥∥∑
i

A2
i

∥∥∥∥∥
)1/2

since A2
i ⊗ Id is PSD for all i .

We also need a few further concentration bounds on matrices which will come up as parts
of Mcross. These can be proved by standard inequalities for sums of independent matrices.

Lemma 5.4.16 (Restatement of Fact 5.7.2 and Lemma 5.7.3). Let a1, . . . , an be indepen-

dent from N (0, 1
d

Idd) with n ≥ d polylog(d). With overwhelming probability, Ω̃(n/d) · Id �∑
i∈[n] aia

>
i � Õ(n/d) · Id. Additionally, if g ∼ N (0, Idd) is independent of the rest, for every

j ∈ [n] w.ov.p. ∥∥∥∥∥∥∥∥
∑
i∈[n]
i 6=j

〈g, ai〉‖ai‖2〈ai, aj〉 · aia>i

∥∥∥∥∥∥∥∥ ≤ Õ(n/d2)1/2 .

8We remark that Tropp’s bound is phrased in terms of λmax
∑
i siMi. Since λmax

∑
i siMi =

λmin
∑
i−siMi, and the distribution of siMi is negation-invariant, the result we state here follows from

an easy union bound.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 158

Proof of Proposition 5.4.5. We expand Mcross:

Mcross =
∑
i 6=j

〈g, T (ai ⊗ aj)〉 · aia>i ⊗ aja>j

=
∑
i 6=j

∑
`∈[n]

〈a`, ai〉〈a`, aj〉〈g, a`〉

 · aia>i ⊗ aja>j .
Since the joint distribution of (a1, . . . , an) is identical to that of (s1a1, . . . , snan), this is
distributed identically to

M ′
cross =

∑
`∈[n]

∑
i 6=j

sisjs`〈g, a`〉〈a`, ai〉〈a`, aj〉 · aia>i ⊗ aja>j ,

(where we have also swapped the sums over ` and i 6= j). We split M ′
cross into Mdiff , for

which i 6= ` and j 6= `, and Msame, for which ` = i or ` = j, and bound the norm of each of
these sums separately. We begin with Msame.

Msame
def
=
∑
i 6=j

s2
i sj〈g, ai〉〈ai, ai〉〈ai, aj〉 · aia>i ⊗ aja>j +

∑
i 6=j

s2
jsi〈g, aj〉〈aj, aj〉〈ai, aj〉 · aia>i ⊗ aja>j .

By a union bound and an application of the triangle inequality it will be enough to show

that just one of these two sums is Õ(n3/d4)1/2 w.ov.p.. We rewrite the left-hand one:∑
i 6=j

s2
i sj〈g, ai〉〈ai, ai〉〈ai, aj〉 · aia>i ⊗ aja>j =

∑
j∈[n]

sjaja
>
j ⊗

(∑
i 6=j

〈g, ai〉‖ai‖2〈ai, aj〉 · aia>i

)
.

Define
Mj

def
=
∑
i 6=j

〈g, ai〉‖ai‖2〈ai, aj〉 · aia>i

so that now we need to bound
∑

j∈[n] sjaja
>
j ⊗Mj. By Corollary 5.4.15,∥∥∥∥∥∥

∑
j∈[n]

sjaja
>
j ⊗Mj

∥∥∥∥∥∥ w.ov.p.

≤ Õ(max
j
‖Mj‖) · Õ


∥∥∥∥∥∥
∑
j∈[n]

‖aj‖2aja
>
j

∥∥∥∥∥∥
1/2


≤ Õ(max
j
‖Mj‖) ·max

j
‖aj‖ · Õ


∥∥∥∥∥∥
∑
j∈[n]

aja
>
j

∥∥∥∥∥∥
1/2


In Lemma 5.4.16, we bound maxj ‖Mj‖ ≤ Õ(n/d2)1/2 w.ov.p. using a matrix Bernstein
inequality. Combining this bound with the concentration of ‖aj‖ around 1 (Fact 5.4.7), we
obtain

w.ov.p.

≤ Õ(n/d2)1/2 · Õ(n/d)1/2

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 159

= Õ(n/d1.5) .

Having finished with Msame, we turn to Mdiff .

‖Mdiff‖ =

∥∥∥∥∥∑
6̀=i 6=j

sisjs`〈g, a`〉〈a`, ai〉〈a`, aj〉 · aia>i ⊗ aja>j

∥∥∥∥∥
=

∥∥∥∥∥∑
`

s`〈g, a`〉

(∑
i 6=`

si〈a`, ai〉aia>i ⊗

(∑
j 6=`,i

sj〈a`, aj〉aja>j

))∥∥∥∥∥ .
Letting t1, . . . , tn and r1, . . . , rn be independent uniformly random signs, by Theorem 5.4.13,
it will be enough to bound the spectral norm after replacing the second and third occurrences
of si for ti and ri. To this end, we define

M ′
diff

def
=
∑
`

s`〈g, a`〉

(∑
i 6=`

ti〈a`, ai〉aia>i ⊗

(∑
j 6=`,i

rj〈a`, aj〉aja>j

))
.

Let

N`
def
=
∑
i 6=`

ti〈a`, ai〉aia>i ⊗

(∑
j 6=`,i

rj〈a`, aj〉aja>j

)

so that we are to bound
∥∥∥∑`∈[n] s`〈g, a`〉 ·N`

∥∥∥. By a matrix Rademacher bound and ele-

mentary manipulations,∥∥∥∥∥∥
∑
`∈[n]

s`〈g, a`〉 ·N`

∥∥∥∥∥∥ w.ov.p.

≤ Õ

∥∥∥∥∥∥
∑
`∈[n]

〈g, a`〉2 ·N2
`

∥∥∥∥∥∥
1/2

≤ Õ(
√
n) ·max

`∈[n]
|〈g, a`〉| ·max

`∈[n]
‖N`‖

w.ov.p.

≤ Õ(
√
n) ·max

`∈[n]
‖N`‖ since |〈g, ai〉| ≤ Õ(1) (Fact 5.4.7) .

The rest of the proof is devoted to bounding ‖N`‖.
We start with Corollary 5.4.15 to get

‖N`‖
w.ov.p.

≤ Õ

(max
i

∥∥∥∥∥∑
j 6=`,i

rj〈a`, aj〉 · aja>j

∥∥∥∥∥
)
·

∥∥∥∥∥∑
i 6=`

〈a`, ai〉2‖ai‖2 · aia>i

∥∥∥∥∥
1/2


We use a matrix Rademacher bound for the left-hand matrix,∥∥∥∥∥∑
j 6=`,i

rj〈a`, aj〉 · aja>j

∥∥∥∥∥ w.ov.p.

≤ Õ

(∥∥∥∥∥∑
j 6=`,i

〈a`, aj〉2‖aj‖2 · aja>j

∥∥∥∥∥
)1/2

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 160

≤ Õ

(
max
j 6=`
〈a`, aj〉2‖aj‖2

∥∥∥∥∥∑
j

aja
>
j

∥∥∥∥∥
)1/2

w.ov.p.

≤ Õ

(√
n

d

)
,

where we have used that 〈a`, ai〉2 concentrates around 1
d

(Fact 5.4.7), that ‖ai‖2 concentrates

around 1 (Fact 5.4.7), and that
∥∥∑

i aia
>
i

∥∥ concentrates around n
d

(Lemma 5.4.16) within
logarithmic factors all with overwhelming probability.

For the right-hand matrix, we use the fact that the summands are PSD to conclude that∥∥∥∥∥∑
i 6=`

〈a`, ai〉2‖ai‖2 · aia>i

∥∥∥∥∥ ≤ max
i 6=`
〈a`, ai〉2‖ai‖2 ·

∥∥∥∥∥∑
i 6=`

aia
>
i

∥∥∥∥∥
w.ov.p.

≤ Õ(1/d) · Õ(n/d) ,

using the same concentration facts as earlier.
Putting these together, w.ov.p.

‖N`‖ ≤ Õ(
√
n/d) · Õ(

√
n/d) = Õ(n/d2) .

Now we are ready to make the final bound on M ′
diff . With overwhelming probability,

‖M ′
diff‖ ≤ Õ(

√
n) ·max

`∈[n]
‖N`‖ ≤ Õ(n3/d4)1/2

and hence by Theorem 5.4.13, ‖Mdiff‖ ≤ Õ(
√
n) ·max`∈[n] ‖N`‖ ≤ Õ(n3/d4)1/2 w.ov.p..

Finally, by triangle inequality and all our bounds thus far, w.ov.p.

‖Mcross‖ ≤ ‖Msame‖+ ‖Mdiff‖ ≤ Õ(n/d1.5) + Õ(n3/d4)1/2 ≤ Õ(n3/d4)1/2 .

Full Algorithm and Proof of Theorem 5.4.2

In this subsection we give the full details of our tensor decomposition algorithm. As discussed
above, the algorithm proceeds by constructing a random matrix from the input tensor, then
computing and post-processing its top eigenvector.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 161

Spectral Tensor Decomposition (One Attempt)

This is the main subroutine of our algorithm—we will run it Õ(n) times to recover all of the
components a1, . . . , an.

Algorithm 5.4.17. Input: T =
∑n

i=1 ai ⊗ ai ⊗ ai. Goal: Recover ai for some i ∈ [n].

• Compute the matrix unfolding T ∈ Rd2×d of T. Then compute a 3-tensor S ∈ Rd2×d2×d2

by starting with the 6-tensor T ⊗ T, permuting indices, and flattening to a 3-tensor.
Apply T in one mode of S to obtain M ∈ Rd⊗d2⊗d2

, so that:

T =
∑
i∈[n]

ai(ai ⊗ ai)> , S = T⊗2 =
n∑

i,j=1

(ai ⊗ aj)⊗3 ,

M = S(T, Idd2 , Idd2) =
∑
i,j∈[n]

T (ai ⊗ aj)⊗ (ai ⊗ aj)⊗ (ai ⊗ aj) .

• Sample a vector g ∈ Rd with iid standard gaussian entries. Evaluate M in its first
mode in the direction of g to obtain M ∈ Rd2×d2

:

M := M(g, Idd2 , Idd2) =
∑
i,j∈[n]

〈g, T (ai ⊗ aj)〉 · (ai ⊗ aj)(ai ⊗ aj)> .

• Let Σ
def
= E[(aa>)⊗2] for a ∼ N (0, Idd). Let R

def
=
√

2 · (Σ+)1/2. Compute the top

eigenvector u ∈ Rd2
of RMR, and reshape Ru to a matrix U ∈ Rd×d.

• For each of the signings of the top 2 unit left (or right) singular vectors ±u1,±u2 of
U , check if

∑
i∈[n]〈ai,±uj〉3 ≥ 1− c(n, d) where c(n, d) = Θ(n/d3/2) is an appropriate

threshold. If so, output ±uj. Otherwise output nothing.

Theorem 5.4.3 gets us most of the way to the correctness of Algorithm 5.4.17, proving
that the top eigenvector of the matrix RMR is correlated with some a⊗2

i with reasonable
probability. We need a few more ingredients to prove Theorem 5.4.2. First, we need to show
a bound on the runtime of Algorithm 5.4.17.

Lemma 5.4.18. Algorithm 5.4.17 can be implemented in time Õ(d1+ω) ≤ Õ(d3.3729), where
dω is the runtime for multiplying two d× d matrices.

Proof. To run the algorithm, we only require access to power iteration using the matrix
RMR. We first give a fast implementation for power iteration with the matrix M , and
handle the multiplications with R separately.

Consider a vector v ∈ Rd2
, and a random vector g ∼ N (0, Idd), and let V,G ∈ Rd×d be

the reshapings of v and gT respectively into matrices. Call Tv = T(Idd, V,G), where we

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 162

have applied V and G in the second and third modes of T, and call Tv the reshaping of Tv

into a d× d2 matrix. We have that

Tv =
∑
i∈[n]

ai(V ai ⊗Gai)> .

We show that the matrix-vector multiply Mv can be computed as a flattening of the following
product:

TvT
> =

∑
i∈[n]

ai(V ai ⊗Gai)>
∑

j∈[n]

(aj ⊗ aj)a>j


=
∑
i,j∈[n]

〈aj, V ai〉 · 〈aj, Gai〉 · aia>j

=
∑
i,j∈[n]

〈ai ⊗ aj, v〉 · 〈gT, ai ⊗ aj〉 · aia>j .

Flattening TvT
> from a d× d matrix to a vector vTT ∈ Rd2

, we have that

vTT =
∑
i,j∈[n]

〈gT, ai ⊗ aj〉 · 〈ai ⊗ aj, v〉 · ai ⊗ aj = Mv .

So we have that Mv is a flattening of the product TvT
>, which we will compute as a proxy

for computing Mv via direct multiplication.
Computing Tv = T(Id, V,G) can be done with two matrix multiplication operations, both

times multiplying a d2× d matrix with a d× d matrix. Computing TvT
> is a multiplication

of a d × d2 matrix by a d2 × d matrix. Both these steps may be done in time O(d1+ω), by
regarding the d×d2 matrices as block matrices with blocks of size d×d. The asymptotically
fastest known algorithm for matrix multiplication gives a time of O(d3.3729) [Gal14].

Now, to compute the matrix-vector multiply RMRu for any vector u ∈ Rd2
, we may first

compute v = Ru, perform the operation Mv in time O(d1+ω) as described above, and then
again multiply by R. The matrix R is sparse: it has O(d) entries per row (see Fact 5.7.4),
so the multiplication Ru requires time O(d3).

Performing the update RMRv a total of O(log2 n) times is sufficient for convergence,
as we have that with reasonable probability, the spectral gap λ2(RMR)/λ1(RMR) ≤ 1 −
O(1

logn
), as a result of applying Theorem 5.4.3 with the choice of ε = O(1

logn
).

Finally, checking the value of
∑

i〈ai, x〉3 requires O(d3) operations, and we do so a con-
stant number of times, once for each of the signings of the top 2 left (or right) singular
vectors of U .

Next, we need to show that given u with 〈Ru, ai ⊗ ai〉2 ≥ (1− Õ(n3/2/εd2)) · ‖u‖2 · ‖ai‖4

we can actually recover the tensor component ai. Here Algorithm 5.4.17 reshapes Ru to a
d × d matrix and checks the top two left- or right-singular vectors; the next lemma shows
one of these singular vectors must be highly correlated with ai. (The proof is deferred to
Section A.1.)

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 163

Lemma 5.4.19. Let M ∈ Rd2×d2
be a symmetric matrix with ‖M‖ ≤ 1, and let v ∈ Rd and

u ∈ Rd2
be vectors. Furthermore, let U be the reshaping of the vector Mu ∈ Rd2

to a matrix
in Rd×d. Fix c > 0, and suppose that 〈Mu, v ⊗ v〉2 ≥ c2 · ‖u‖2 · ‖v‖4. Then U has some left
singular vector a and some right singular vector b such that

|〈a, v〉|, |〈b, v〉| ≥ c · ‖v‖ .

Furthermore, for any 0 < α < 1, there are a′, b′ among the top b 1
αc2
c singular vectors of U

with
|〈a′, v〉|, |〈b′, v〉| ≥

√
1− α · c · ‖v‖ .

If c ≥
√

1
2
(1 + η) for some η > 0, then a, b are amongst the top b (1+η)

ηc2
c singular vectors.

Since here c2 = 1 − o(1), we can choose η = 1 − o(1) and check only the top 2 singular
vectors.

Next, we must show how to choose the threshold c(n, d) so that a big enough value∑
i∈[n]〈ai, uj〉3 is ensures that uj is close to a tensor component. The proof is at the end

of this section. (A very similar fact appears in [GM15]. We need a somewhat different
parameterization here, but we reuse many of their results in the proof.)

Lemma 5.4.20. Let T =
∑

i∈[n] ai⊗ai⊗ai for normally distributed vectors ai ∼ N (0, 1
d

Idd).

For all 0 < γ, γ′ < 1,

1. With overwhelming probability, for every v ∈ Rd such that
∑

i∈[n]〈ai, v〉3 ≥ 1− γ,

max
i∈[n]
|〈ai, v〉| ≥ 1−O(γ)− Õ(n/d3/2) .

2. With overwhelming probability over a1, . . . , an if v ∈ Rd with ‖v‖ = 1 satisfies 〈v, aj〉 ≥
1− γ′ for some j then

∑
i〈ai, v〉3 ≥ 1−O(γ′)− Õ(n/d3/2).

We are now ready to prove Theorem 5.4.2.

Proof of Theorem 5.4.2. By Theorem 5.4.3, with probability 1 − o(1) over a1, . . . , an there

are events E1, . . . , En so that Pg(Ei) ≥ Õ(1/n1+O(ε)) such that when event Ei occurs the top
eigenvector u of RMR satisfies

〈Ru, ai ⊗ ai〉2

‖u‖2 · ‖ai‖4
≥ 1− Õ

(
n3/2

εd2

)
.

For a particular sample g ∼ N (0, Idd), let ug be this eigenvector.
The algorithm is as follows. Sample g1, . . . , gr ∼ N (0, Idd) independently for some r to

be chosen later. Compute Rug1 , . . . , Rugr , reshape each to a d× d matrix, and compute its
singular value decomposition. This gives a family of (right) singular vectors v1, . . . , vdr. For
each, evaluate

∑
i〈ai, vj〉3. Let c(n, d) be a threshold to be chosen later. Initialize S ⊂ Rd to

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 164

the empty set. Examining each 1 ≤ j ≤ dr in turn, add vj to S if
∑

i〈ai, vj〉3 ≥ 1− c(n, d)
and for every v already in S, 〈v, vj〉2 ≤ 1/2. Output the set S.

Choose ε = 1/ log n. By Lemma 5.4.19, when Ei occurs for gj one of v ∈
{±vjr, . . . ,±v(j+1)r} has 〈v, ai〉 ≥ (1 − Õ(n3/2/d2))(‖uj‖2 · ‖aj‖4). Then by Lemma 5.4.20,

when Ei occurs for gj, this v we will have
∑

i〈ai,±v〉3 ≥ 1 − Õ(n/d3/2). Choose

c(n, d) = Θ̃(n3/2/d2) so that when Ei occurs for gj, so long as it has not previously oc-
curred for some j′ < j, the algorithm adds ±v to S.

The events E
(t)
i and E

(t′)
i are independent for any two executions of the algorithm t and

t′ and have probability Ω̃(1/n). Thus, after r = Õ(n) executions of the algorithm, with high
probability for every i ∈ [n] there is j ∈ [r] so that Ei occurs for gj. Finally, by Lemma 5.4.20,

the algorithm can never add to S a vector which is not (1− Õ(n/d3/2))-close to some ai.

It just remains to prove Lemma 5.4.20.

Proof of Lemma 5.4.20. We start with the first claim. By [GM15, Lemma 2, (proof of)
Lemma 8, Theorem 4.2], the following inequalities all hold w.ov.p..∑

i∈n

〈ai, x〉4 ≤ 1 + Õ(n/d3/2) for all ‖x‖ = 1 , (5.4.6)

∑
i∈[n]

〈ai, x〉6 ≥ 1−O

∑
i∈[n]

〈ai, x〉3 − 1

− Õ(n/d3/2) for all ‖x‖ = 1 , (5.4.7)

∣∣∣∣∣∣
∑
i∈[n]

〈ai, x〉3
∣∣∣∣∣∣ ≤ 1 + Õ(n/d3/2) for all ‖x‖ = 1 . (5.4.8)

To begin, ∑
i∈[n]

〈ai, v〉6 ≤
(

max
i∈[n]
〈ai, v〉2

)
·

∑
i∈[n]

〈ai, v〉4
 .

By (5.4.6), this implies

max
i∈[n]
〈ai, v〉2 ≥ (1− Õ(n/d3/2)) ·

∑
i∈[n]

〈v, ai〉6. (5.4.9)

Now combining (5.4.7) with (5.4.9) we have

max
i∈[n]
〈ai, v〉2 ≥ (1− Õ(n/d3/2)) · (1−O(1−

∑
i

〈ai, v〉3)− Õ(n/d3/2)) .

Together with (5.4.8) this concludes the of the first claim.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 165

For the second claim, we note that by (5.4.8), and homogeneity, |
∑

i 6=j〈ai, x〉3| ≤ ‖x‖3(1+

Õ(n/d3/2) w.ov.p.. We write v = 〈aj, x〉aj + x⊥, where 〈x⊥, aj〉 = 0. Now we expand∑
i

〈ai, v〉3 ≥ (1− γ′)3 +
∑
i 6=j

〈〈aj, x〉aj + x⊥, ai〉3

= (1− γ′)3 +
∑
i 6=j

〈aj, x〉3〈aj, ai〉3 + 3〈aj, x〉2〈aj, ai〉2〈x⊥, ai〉

+ 3〈aj, x〉〈aj, ai〉〈x⊥ai〉2 + 〈x⊥, ai〉3 .
We estimate each term in the expansion:∣∣∣∣∣∑

i 6=j

〈aj, x〉3〈aj, ai〉3
∣∣∣∣∣ ≤ |〈aj, x〉3|∑

i 6=j

|〈aj, ai〉|3 ≤ Õ
(n

d3/2

)
w.ov.p. by Cauchy-Schwarz and standard concentration.∣∣∣∣∣∑

i 6=j

〈aj, x〉2〈aj, ai〉2〈x⊥, ai〉

∣∣∣∣∣ ≤
(∑

i 6=j

〈aj, x〉4〈aj, ai〉4
)1/2(∑

i 6=j

〈x⊥, ai〉2
)1/2

by Cauchy-Schwarz

≤ O(
√
n) ·max

i 6=j
〈aj, ai〉2 · Õ

(n
d

)1/2

w.ov.p. by standard concentration.

≤ Õ
(n

d3/2

)
w.ov.p. by standard concentration∣∣∣∣∣∑

i 6=j

〈aj, x〉〈aj, ai〉〈x⊥, ai〉2
∣∣∣∣∣ ≤ O(1) ·max

i 6=j
|〈aj, ai〉| ·

∑
i 6=j

〈x⊥, ai〉2

w.ov.p. by standard concentration

≤ Õ

(
1√
d

)
· Õ
(n
d

)
w.ov.p. by standard concentration

≤ Õ
(n

d3/2

)
∣∣∣∣∣∑
i 6=j

〈x⊥, ai〉3
∣∣∣∣∣ ≤ γ′ + Õ

(n

d3/2

)
w.ov.p. by (5.4.8) and homogeneity .

Now we estimate∑
i

〈ai, v〉3 ≥ (1− γ′)3 +
∑
i 6=j

〈ai, x〉3 ≥ (1− γ)3 − γ′ − Õ(n/d3/2) ≥ 1−O(γ′)− Õ(n/d3/2) .

since γ′ < 1.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 166

Boosting Accuracy with Local Search

We remark that Algorithm 5.4.17 may be used in conjunction with a local search algorithm to
obtain much greater guarantees on the accuracy of the recovered vectors. Previous progress
on the tensor decomposition problem has produced iterative algorithms that provide local
convergence guarantees given a good enough initialization, but which leave the question of
how to initialize the procedure up to future work, or up to the specifics of an implementa-
tion. In this context, our contribution can be seen as a general method of obtaining good
initializations for these local iterative procedures.

In particular, Anandkumar et al. [AGJ15] give an algorithm that combines tensor power
iteration and a form of coordinate descent, which when initialized with the output of Algo-
rithm 5.4.17, achieves a linear convergence rate to the true decomposition within polynomial
time.

Theorem 5.4.21 (Adapted from Theorem 1 in [AGJ15]). Given a rank-n tensor T =∑
i ai ⊗ ai ⊗ ai with random Gaussian components ai ∼ N (0, 1

d
Idd). There is a constant

c > 0 so that if a set of unit vectors {xi ∈ Rd}i satisfies

〈xi, ai〉 ≥ 1− c, ∀i ∈ [n],

then there exists a procedure which with overwhelming probability over T and for any ε > 0,
recovers a set of vectors {âi} such that

〈âi, ai〉 ≥ 1− ε, ∀i ∈ [n],

in time O(poly(d) + nd3 log ε).

Remark 5.4.22. Theorem 1 of Anandkumar et al. is stated for random asymmetric tensors,
but the adaptation to symmetric tensors is stated in equations (14) and (27) in the same
paper.

The theorem of Anandkumar et al. allows for a perturbation tensor Φ, which is just
the zero tensor in our setting. Additionally, the weight ratios specifying the weight of each
rank-one component in the input tensor are wmax = wmin = 1. Lastly, the initialization
conditions are given in terms of the distance between the intialization vectors and the true
vectors |xi−ai|, which is related to our measure of closeness 〈xi, ai〉 by the equation |xi−ai|2 =
|xi|2 + |ai|2 − 2〈xi, ai〉.

The linear convergence guarantee is stated in Lemma 12 of Anandkumar et al.

Corollary 5.4.23 (Corollary of Theorem 5.4.2). Given as input the tensor T =
∑n

i=1 ai ⊗
ai ⊗ ai where ai ∼ N (0, 1

d
Idd) with d ≤ n ≤ d4/3/ polylog d, there is a polynomial-time

algorithm which with probability 1 − o(1) over the input T and the algorithm randomness
finds unit vectors â1, . . . , ân ∈ Rd such that for all i ∈ [n],

〈âi, ai〉 ≥ 1−O
(
2−n
)
.

Proof. We repeatedly invoke Algorithm 5.4.17 until we obtain a full set of n vectors as
characterized by Theorem 5.4.2. Apply Theorem 5.4.21 to the recovered set of vectors until
the desired accuracy is obtained.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 167

5.5 Tensor Principal Component Analysis

The Tensor PCA problem in the spiked tensor model is similar to the setting of tensor
decomposition, but here the goal is to recover a single large component with all smaller
components of the tensor regarded as random noise.

Problem 5.5.1 (Tensor PCA in the Order-3 Spiked Tensor Model). Given an input tensor
T = τ · v⊗3 + A, where v ∈ Rn is an arbitrary unit vector, τ ≥ 0 is the signal-to-noise
ratio, and A is a random noise tensor with iid standard Gaussian entries, recover the signal
v approximately.

Using the partial trace method, we give the first linear-time algorithm for this problem
that recovers v for signal-to-noise ratio τ = O(n3/4/ poly log n). In addition, the algorithm
requires only O(n2) auxiliary space (compared to the input size of n3) and uses only one
non-adaptive pass over the input.

Spiked Tensor Model

This spiked tensor model (for general order-k tensors) was introduced by Montanari and
Richard [RM14], who also obtained the first algorithms to solve the model with provable
statistical guarantees. Subsequently, the SoS approach was applied to the model to improve
the signal-to-noise ratio required for odd-order tensors [HSS15]; for 3-tensors reducing the
requirement from τ = Ω(n) to τ = Ω(n3/4 log(n)1/4).

Using the linear-algebraic objects involved in the analysis of the SoS relaxation, the
previous work has also described algorithms with guarantees similar to those of the SoS
SDP relaxation, while requiring only nearly subquadratic or linear time [HSS15].

The algorithm here improves on the previous results by use of the partial trace method,
simplifying the analysis and improving the runtime by a factor of log n.

Linear-Time Algorithm

Linear-Time Algorithm for Tensor PCA

Algorithm 5.5.2. Input: T = τ · v⊗3 + A. Goal: Recover v′ with 〈v, v′〉 ≥ 1− o(1).

• Compute the partial trace M := TrRn
∑

i Ti ⊗ Ti ∈ Rn×n, where Ti are the first-mode
slices of T.

• Output the top eigenvector v′ of M .

Theorem 5.5.3. When A has iid standard Gaussian entries and τ ≥ Cn3/4 log(n)1/2/ε for
some constant C, Algorithm 5.5.2 recovers v′ with 〈v, v′〉 ≥ 1 − O(ε) with high probability
over A.

Theorem 5.5.4. Algorithm 5.5.2 can be implemented in linear time and sublinear space.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 168

These theorems are proved by routine matrix concentration results, showing that in the
partial trace matrix, the signal dominates the noise.

To implement the algorithm in linear time it is enough to show that this (sublinear-sized)
matrix has constant spectral gap; then a standard application of the matrix power method
computes the top eigenvector.

Lemma 5.5.5. For any v, with high probability over A, the following occur:∥∥∥∥∥∑
i

Tr(Ai) · Ai

∥∥∥∥∥ ≤ O(n3/2 log2 n)∥∥∥∥∥∑
i

v(i) · Ai

∥∥∥∥∥ ≤ O(
√
n log n)∥∥∥∥∥∑

i

Tr(Ai)v(i) · vv>
∥∥∥∥∥ ≤ O(

√
n log n) .

The proof may be found in Appendix 5.8.

Proof of Theorem 5.5.3. We expand the partial trace TrRn
∑

i Ti ⊗ Ti.

TrRn
∑
i

Ti ⊗ Ti =
∑
i

Tr(Ti) · Ti

=
∑
i

Tr(τ · v(i)vv> + Ai) · (τ · v(i)vv> + Ai)

=
∑
i

(τv(i)‖v‖2 + Tr(Ai)) · (τ · v(i)vv> + Ai)

= τ 2vv> + τ

(∑
i

v(i) · Ai +
∑
i

Tr(Ai)v(i)vv>

)
+
∑
i

Tr(Ai) · Ai .

Applying Lemma 5.5.5 and the triangle inequality, we see that∥∥∥∥∥τ
(∑

i

v(i) · Ai +
∑
i

Tr(Ai)v(i)vv>

)
+
∑
i

Tr(Ai) · Ai

∥∥∥∥∥ ≤ O(n3/2 log n)

with high probability. Thus, for appropriate choice of τ = Ω(n3/4
√

(log n)/ε), the matrix
TrRn

∑
i Ti ⊗ Ti is close to rank one, and the result follows by standard manipulations.

Proof of Theorem 5.5.4. Carrying over the expansion of the partial trace from above and
setting τ = O(n3/4

√
(log n)/ε), the matrix TrRn

∑
i Ti ⊗ Ti has a spectral gap ratio equal to

Ω(1/ε) and so the matrix power method finds the top eigenvector in O(log(n/ε)) iterations.
This matrix has dimension n× n, so a single iteration takes O(n2) time, which is sublinear
in the input size n3. Finally, to construct TrRn

∑
i Ti ⊗ Ti we use

TrRn
∑
i

Ti ⊗ Ti =
∑
i

Tr(Ti) · Ti

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 169

and note that to construct the right-hand side it is enough to examine each entry of T just
O(1) times and perform O(n3) additions. At no point do we need to store more than O(n2)
matrix entries at the same time.

5.6 Concentration Bounds for Planted Sparse Vector
in Random Linear Subspace

Proof of Lemma 5.3.7. Let c :=
∑n

i=1 v(i)bi. The matrix in question has a nice block struc-
ture:

n∑
i=1

aia
>
i =

(
‖v‖2

2 c>

c
∑n

i=1 bib
>
i

)
.

The vector c is distributed asN (0, 1
n

Idd−1) so by standard concentration has ‖c‖ ≤ Õ(d/n)1/2

w.ov.p.. By assumption, ‖v‖2
2 = 1. Thus by triangle inequality w.ov.p.∥∥∥∥∥

n∑
i=1

aia
>
i − Idd

∥∥∥∥∥ ≤ Õ

(
d

n

)1/2

+

∥∥∥∥∥
n∑
i=1

bib
>
i − Idd−1

∥∥∥∥∥ .
By [Ver12, Corollary 5.50] applied to the subgaussian vectors nbi, w.ov.p.∥∥∥∥∥

n∑
i=1

bib
>
i − Idd−1

∥∥∥∥∥ ≤ O

(
d

n

)1/2

and hence ‖
∑n

i=1 aia
>
i − Idd ‖ ≤ Õ(d/n)1/2 w.ov.p.. This implies ‖(

∑n
i=1 aia

>
i)−1 − Idd ‖ ≤

Õ(d/n)1/2 and ‖(
∑n

i=1 aia
>
i)−1/2 − Idd ‖ ≤ Õ(d/n)1/2 when d = o(n) by the following facts

applied to the eigenvalues of
∑n

i=1 aia
>
i . For 0 ≤ ε < 1,

(1 + ε)−1 = 1−O(ε) and (1− ε)−1 = 1 +O(ε) ,

(1 + ε)−1/2 = 1−O(ε) and (1− ε)−1/2 = 1 +O(ε) .

These are proved easily via the identity (1 + ε)−1 =
∑∞

k=1 ε
k and similar.

Orthogonal Subspace Basis

Lemma 5.6.1. Let a1, . . . , an ∈ Rd be independent random vectors from N (0, 1
n

Id) with

d ≤ n and let A =
∑n

i=1 aia
>
i . Then for every unit vector x ∈ Rd, with overwhelming

probability 1− d−ω(1),

∣∣〈x,A−1x〉 − ‖x‖2
∣∣ ≤ Õ

(
d+
√
n

n

)
· ‖x‖2 .

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 170

Proof. Let x ∈ Rd. By scale invariance, we may assume ‖x‖ = 1.
By standard matrix concentration bounds, the matrix B = Id−A has spectral norm

‖B‖ ≤ Õ(d/n)1/2 w.ov.p. [Ver12, Corollary 5.50]. Since A−1 = (Id−B)−1 =
∑∞

k=0B
k, the

spectral norm of A−1− Id−B is at most
∑∞

k=2‖B‖k (whenever the series converges). Hence,

‖A−1 − Id−B‖ ≤ Õ(d/n) w.ov.p..
It follows that it is enough to show that |〈x,Bx〉| ≤ Õ(1/n)1/2 w.ov.p.. The random

variable n−n〈x,Bx〉 =
∑n

i=1〈
√
n ·ai, x〉2 is χ2-distributed with n degrees of freedom. Thus,

by standard concentration bounds, n|〈x,Bx〉| ≤ Õ(
√
n) w.ov.p. [LM00].

We conclude that with overwhelming probability 1− d−ω(1),

∣∣〈x,A−1x〉 − ‖x‖2
∣∣ ≤ |〈x,Bx〉|+ Õ(d/n) ≤ Õ

(
d+
√
n

n

)
.

Lemma 5.6.2. Let a1, . . . , an ∈ Rd be independent random vectors from N (0, 1
n

Id) with

d ≤ n and let A =
∑n

i=1 aia
>
i . Then for every index i ∈ [n], with overwhelming probability

1− dω(1), ∣∣〈aj, A−1aj〉 − ‖aj‖2
∣∣ ≤ Õ

(
d+
√
n

n

)
· ‖aj‖2 .

Proof. Let A−j =
∑

i 6=j aia
>
i . By Sherman–Morrison,

A−1 = (A−j + aja
>
j)−1 = A−1

−j −
1

1 + a>j A
−1
−jaj

A−1
−jaja

>
j A
−1
−j

Thus, 〈aj, A−1aj〉 = 〈aj, A−1
−jaj〉 − 〈aj, A−1

−jaj〉2/(1 + 〈aj, A−1
−jaj〉). Since ‖ n

n−1
A−j − Id‖ =

Õ(d/n)1/2 w.ov.p., we also have ‖A−1
−j‖ ≤ 2 with overwhelming probability. Therefore,

w.ov.p., ∣∣〈aj, A−1aj〉 − 〈aj, A−1
−jaj〉

∣∣ ≤ 〈aj, A−1
−jaj〉2 ≤ 4‖aj‖4 ≤ Õ(d/n) · ‖aj‖2 .

At the same time, by Lemma 5.6.1, w.ov.p.,

∣∣〈aj, n
n−1

A−1
−jaj〉 − ‖aj‖2

∣∣ ≤ Õ

(
d+
√
n

n

)
· ‖aj‖2 .

We conclude that, w.ov.p.,∣∣〈aj, A−1aj〉 − ‖aj‖2
∣∣ ≤ ∣∣〈aj, A−1aj〉 − 〈aj, A−1

−jaj〉
∣∣+
∣∣〈aj, A−1

−jaj〉 − n−1
n
‖aj‖2

∣∣+ 1
n
‖aj‖2

≤ Õ

(
d+
√
n

n

)
.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 171

Lemma 5.6.3. Let A be a block matrix where one of the diagonal blocks is the 1×1 identity;
that is,

A =

(
‖v‖2 c>

c B

)
=

(
1 c>

c B

)
.

for some matrix B and vector c. Let x be a vector which decomposes as x = (x(1) x′) where
x(1) = 〈x, e1〉 for e1 the first standard basis vector.

Then

〈x,A−1x〉 = 〈x′,
(
B−1 +

B−1cc>B−1

1− c>B−1c

)
x′〉+2x(1)〈

(
B−1 +

B−1cc>B−1

1− c>B−1c

)
c, x′〉+(1−c>B−1c)−1x(1)2 .

Proof. By the formula for block matrix inverses,

A−1 =

(
(1− c>B−1c)−1 cT (B − cc>)−1

(B − cc>)−1c (B − cc>)−1

)
.

The result follows by Sherman-Morrison applied to (B − cc>)−1 and the definition of x.

Lemma 5.6.4. Let v ∈ Rn be a unit vector and let b1, . . . , bn ∈ Rd−1 have iid entries from
N (0, 1/n). Let ai ∈ Rd be given by ai := (v(i) bi). Let A :=

∑
i aia

T
i . Let c ∈ Rd−1 be given

by c :=
∑

i v(i)bi. Then for every index i ∈ [n], w.ov.p.,

∣∣〈ai, A−1ai〉 − ‖ai‖2
∣∣ ≤ Õ

(
d+
√
n

n

)
· ‖ai‖2 .

Proof. Let B :=
∑

i bib
T
i . By standard concentration, ‖B−1 − Id ‖ ≤ Õ(d/n)1/2 w.ov.p.

[Ver12, Corollary 5.50]. At the same time, since v has unit norm, the entries of c are iid
samples from N (0, 1/n), and hence n‖c‖2 is χ2-distributed with d degrees of freedom. Thus

w.ov.p. ‖c‖2 ≤ d
n

+ Õ(dn)−1/2. Together these imply the following useful estimates, all of
which hold w.ov.p.:

|c>B−1c| ≤ ‖c‖2‖B−1‖op ≤
d

n
+ Õ

(
d

n

)3/2

‖B−1cc>B−1‖op ≤ ‖c‖2‖B−1‖2
op ≤

d

n
+ Õ

(
d

n

)3/2

∥∥∥∥B−1cc>B−1

1− c>B−1c

∥∥∥∥
op

≤ d

n
+ Õ

(
d

n

)3/2

,

where the first two use Cauchy-Schwarz and the last follows from the first two.
We turn now to the expansion of 〈ai, A−1ai〉 offered by Lemma 5.6.3,

〈ai, A−1ai〉 =〈bi,
(
B−1 +

B−1cc>B−1

1− c>B−1c

)
bi〉 (5.6.1)

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 172

+ 2v(i)〈
(
B−1 +

B−1cc>B−1

1− c>B−1c

)
c, bi〉 (5.6.2)

+ (1− c>B−1c)−1v(i)2 . (5.6.3)

Addressing (5.6.1) first, by the above estimates and Lemma 5.6.2 applied to 〈bi, B−1bi〉,∣∣∣∣〈bi,(B−1 +
B−1cc>B−1

1− c>B−1c

)
bi〉 − ‖bi‖2

∣∣∣∣ ≤ Õ

(
d+
√
n

n

)
· ‖bi‖2

w.ov.p.. For (5.6.2), we pull out the important factor of ‖c‖ and separate v(i) from bi:
w.ov.p.,∣∣∣∣2v(i)〈

(
B−1 +

B−1cc>B−1

1− c>B−1c

)
c, bi〉

∣∣∣∣ =

∣∣∣∣2‖c‖v(i)〈
(
B−1 +

B−1cc>B−1

1− c>B−1c

)
c

‖c‖
, bi〉
∣∣∣∣

≤
∣∣∣∣‖c‖2

(
v(i)2 + 〈

(
B−1 +

B−1cc>B−1

1− c>B−1c

)
c

‖c‖
, bi〉2

)∣∣∣∣
≤ Õ

(
d

n

)
(v(i)2 + ‖bi‖2)

= Õ

(
d

n

)
‖ai‖2 ,

where the last inequality follows from our estimates above and Cauchy-Schwarz.

Finally, for (5.6.3), since (1− c>B−1c) ≥ 1− Õ(d/n) w.ov.p., we have that

|(1− c>B−1c)−1v(i)2 − v(i)2| ≤ Õ

(
d

n

)
v(i)2 .

Putting it all together,∣∣〈ai, A−1ai〉 − ‖ai‖2
∣∣ ≤ ∣∣∣∣〈bi,(B−1 +

B−1cc>B−1

1− c>B−1c

)
bi〉 − ‖bi‖2

∣∣∣∣
+

∣∣∣∣2v(i)〈
(
B−1 +

B−1cc>B−1

1− c>B−1c

)
c, bi〉

∣∣∣∣
+ |(1− c>B−1c)−1v(i)2 − v(i)2|

≤ Õ

(
d+
√
n

n

)
· ‖ai‖2 .

5.7 Concentration Bounds for Overcomplete Tensor
Decomposition

We require some facts about the concentration of certain scalar-and matrix-valued random
variables, which generally follow from standard concentration arguments. We present proofs
here for completeness.

The first lemma captures standard facts about random Gaussians.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 173

Fact 5.7.1. Let a1, . . . , an ∈ Rd be sampled ai ∼ N (0, 1
d

Id).

1. Inner products |〈ai, aj〉| are all ≈ 1/
√
d:

P
{
〈ai, aj〉2 ≤ Õ

(
1

d

) ∣∣∣∣ ∀i, j ∈ [n], i 6= j

}
≥ 1− n−ω(1).

2. Norms are all about ‖ai‖ ≈ 1± Õ(1/
√
d):

P
{

1− Õ(1/
√
d) ≤ ‖ai‖2

2 ≤ 1 + Õ(1/
√
d)

∣∣∣∣ ∀i ∈ [n]

}
≥ 1− n−ω(1) .

3. Fix a vector v ∈ Rd. Suppose g ∈ Rd is a vector with entries identically distributed
gi ∼ N (0, σ). Then 〈g, v〉2 ≈ σ2 · ‖v‖2

2:

P
{∣∣∣∣〈g, v〉2 − σ2 · ‖v‖4

2

∣∣∣∣ ≤ Õ(σ2 · ‖v‖2
4)

}
≥ 1− n−ω(1) .

Proof of Fact 5.7.1. We start with Item 1. Consider the quantity 〈ai, aj〉2. We calculate the
expectation,

E
[
〈ai, aj〉2

]
=
∑
k,`∈[d]

E [ai(k)ai(`)aj(k)aj(`)] =
∑
k∈[d]

E
[
ai(k)2

]
· E
[
aj(k)2

]
= d · 1

d2
=

1

d
.

Since this is a degree-4 square polynomial in the entries of ai and aj, we may apply
Lemma A.2.2 to conclude that

P
(
〈ai, aj〉2 ≥ t · 1

d

)
≤ exp

(
−O(t1/2)

)
.

Applying this fact with t = polylog(n) and taking a union bound over pairs i, j ∈ [n] gives
us the desired result.

Next is Item 2. Consider the quantity ‖ai‖2
2. We will apply Lemma A.2.2 in order to

obtain a tail bound for the value of the polynomial (‖ai‖2
2 − 1)2. We have

E
[
(‖ai‖2

2 − 1)2
]

= O

(
1

d

)
,

and now applying Lemma A.2.2 with the square root of this expectation, we have

P
(∣∣‖ai‖2

2 − 1
∣∣ ≥ Õ(1√

d
)
)
≤ n− logn .

This gives both bounds for a single ai. The result now follows from taking a union bound
over all i.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 174

Moving on to Item 3, we view the expression f(g) := (〈g, v〉2− σ2‖v‖2)2 as a polynomial
in the Gaussian entries of g. The degree of f(g) is 4, and E[|f(g)|] = 3σ4 · ‖v‖4

4, and so we
may apply Lemma A.2.2 to conclude that

P
(
|f(g)| ≥ t · 3σ4 · ‖v‖4

4

)
≤ exp(−c4t

1/2),

and taking t = polylog(n) the conclusion follows.

We also use the fact that the covariance matrix of a sum of sufficiently many Gaussian
outer products concentrates about its expectation.

Fact 5.7.2. Let a1, . . . , an ∈ Rd be vectors with iid Gaussian entries such that E [‖ai‖2
2] = 1,

and n = Ω(d). Let E be the event that the sum
∑

i∈[n] aia
>
i is close to n

d
· Id, that is

P

Ω̃(n/d) · Id ≤
∑
i∈[n]

aia
>
i ≤ Õ(n/d) · Id

 ≥ 1− n−ω(1) .

Proof of Fact 5.7.2. We apply a truncated matrix Bernstein inequality. For convenience,
A :=

∑
i∈[n] aia

>
i and let Ai := aia

>
i be a single summand. To begin, we calculate the first

and second moments of the summands,

E [Ai] =
1

d
· Id

E
[
AiA

>
i

]
= O

(
1

d

)
· Id .

So we have E [A] = n
d
· Id and σ2(A) = O

(
n
d

)
.

We now show that each summand is well-approximated by a truncated variable. To
calculate the expected norm ‖Ai‖op, we observe that Ai is rank-1 and thus E [‖Ai‖op] =
E [‖ai‖2

2] = 1. Applying Lemma A.3.4, we have

P
(
‖Ai‖op ≥ Õ(1)

)
≤ n− logn,

and also
E
[
‖Ai‖op · I{‖Ai‖op ≥ Õ(1)}

]
≤ n− logn.

Thus, applying the truncated matrix Bernstein inequality from Proposition A.3.3 with

σ2 = O(n
d
), β = Õ(1), p = n− logn, q = n− logn, and t = Õ

(
n1/2

d1/2

)
, we have that with

overwhelming probability, ∥∥∥A− n

d
· Id
∥∥∥
op
≤ Õ

(
n1/2

d1/2

)
.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 175

We now show that among the terms of the polynomial 〈g, Ta⊗2
i 〉, those that depend on

aj with j 6= i have small magnitude. This polynomial appears in the proof that Mdiag has a
noticeable spectral gap.

Lemma (Restatement of Lemma 5.4.6). Let a1, . . . , an be independently sampled vectors
from N (0, 1

d
Idd), and let g be sampled from N (0, Idd). Let T =

∑
i ai(ai ⊗ ai)>. Then with

overwhelming probability, for every j ∈ [n],∣∣〈g, T (aj ⊗ aj)〉 − 〈g, aj〉‖aj‖4
∣∣ ≤ Õ

(√
n

d

)
.

Proof. Fixing ai and g, the terms in the summation are independent, and we may apply a
Bernstein inequality. A straightforward calculation shows that the expectation of the sum

is 0 and the variance is Õ(n
d2) · ‖g‖2‖ai‖4. Additionally, each summand is a polynomial in

Gaussian variables, the square of which has expectation Õ(1
d2 ·‖g‖2‖ai‖4). Thus Lemma A.2.2

allows us to truncate each summand appropriately so as to employ Proposition A.3.3. An
appropriate choice of logarithmic factors and the concentration of ‖g‖2 and ‖ai‖2 due to
Fact 5.7.1 gives the result for each i ∈ [n]. A union bound over each choice of i gives the
final result.

Finally, we prove that a matrix which appears in the expression for Msame has bounded
norm w.ov.p.

Lemma 5.7.3. Let a1, . . . , an be independent from N (0, 1
d

Idd). Let g ∼ N (0, Idd). Fix
j ∈ [n]. Then w.ov.p. ∥∥∥∥∥∥∥∥

∑
i∈[n]
i 6=j

〈g, ai〉‖ai‖2〈ai, aj〉 · aia>i

∥∥∥∥∥∥∥∥ ≤ Õ(n/d2)1/2 .

Proof. The proof proceeds by truncated matrix Bernstein, since the summands are indepen-
dent for fixed g, aj. For this we need to compute the variance:

σ2 =

∥∥∥∥∥∥∥∥
∑
i∈[n]
i 6=j

E〈g, ai〉2‖ai‖6〈ai, aj〉2 · aia>i

∥∥∥∥∥∥∥∥ ≤ O(1/d) ·

∥∥∥∥∥∥∥∥
∑
i∈[n]
i 6=j

E aia>i

∥∥∥∥∥∥∥∥ ≤ O(1/d) · n/d ≤ O(n/d2) .

The norm of each term in the sum is bounded by a constant-degree polynomial of Gaussians.
Straightforward calculations show that in expectation each term is O(1

d
〈g, ai〉) in norm;

w.ov.p. this is O(σ). So Lemma A.2.2 applies to establish the hypothesis of truncated
Bernstein Proposition A.3.3. In turn, Proposition A.3.3 yields that w.ov.p.∥∥∥∥∥∥∥∥

∑
i∈[n]
i 6=j

〈g, ai〉‖ai‖2〈ai, aj〉 · aia>i

∥∥∥∥∥∥∥∥ ≤ Õ(σ) = Õ(n/d2)1/2 .

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 176

Proof of Fact 5.7.4

Here we prove the following fact.

Fact 5.7.4. Let Σ = Ex∼N (0,Idd)(xx
>)⊗2 and let Σ̃ = Ex∼N (0,Idd)(xx

>)⊗2/‖x‖4. Let Φ =∑
i e
⊗2
i ∈ Rd2

and let Πsym be the projector to the symmetric subspace of Rd2
(the span of

vectors of the form x⊗2 for x ∈ Rd). Then

Σ = 2 Πsym + ΦΦ> , Σ̃ = 2
d2+2d

Πsym + 1
d2+2d

ΦΦ> ,

Σ+ = 1
2
Πsym − 1

2(d+2)
ΦΦ> , Σ̃+ = d2+2d

2
Πsym − d

2
ΦΦ> .

In particular,

R =
√

2 (Σ+)1/2 = Πsym − 1
d

(
1−

√
2
d+2

)
ΦΦ> has ‖R‖ = 1

and for any v ∈ Rd,
‖R(v ⊗ v)‖2

2 =
(
1− 1

d+2

)
· ‖v‖4.

We will derive Fact 5.7.4 as a corollary of a more general claim about rotationally sym-
metric distributions.

Lemma 5.7.5. Let D be a distribution over Rd which is rotationally symmetric; that is,
for any rotation R, x ∼ D is distributed identically to Rx. Let Σ = Ex∼D(xx>)⊗2, let

Φ =
∑

i e
⊗2
i ∈ Rd2

and let Πsym be the projector to the symmetric subspace of Rd2
(the span

of vectors of the form x⊗2 for x ∈ Rd). Then there is a constant r so that

Σ = 2rΠsym + rΦΦ> .

Furthermore, r is given by

r = E〈x, a〉2〈x, b〉2 = 1
3
E〈x, a〉4

where a, b are orthogonal unit vectors.

Proof. First, Σ is symmetric and operates nontrivially only on the symmetric subspace (in
other words ker Πsym ⊆ ker Σ). This follows from Σ being an expectation over symmetric
matrices whose kernels always contain the complement of the symmetric subspace.

Let â, b̂, ĉ, d̂ ∈ Rd be any four orthogonal unit vectors. Let R be any rotation of Rd that
takes â to −â, but fixes b̂, ĉ, and d̂ (this rotation exists for d ≥ 5, but a different argument
holds for d ≤ 4). By rotational symmetry about R, all of these quantities are 0:

E〈â, x〉〈b̂, x〉〈ĉ, x〉〈d̂, x〉 = 0,

E〈â, x〉〈b̂, x〉〈ĉ, x〉2 = 0, E〈â, x〉〈b̂, x〉3 = 0.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 177

Furthermore, let Q be a rotation of Rd that takes â to (â + b̂)/
√

2. Then by rotational
symmetry about Q,

E〈â, x〉4 = E〈â, Qx〉4 = E 1
4
〈â+ b̂, x〉4 = E 1

4
[〈â, x〉4 + 〈b̂, x〉4 + 6〈â, x〉2〈b̂, x〉2]

Thus, since E〈â, x〉4 = E〈b̂, x〉4 by rotational symmetry, we have

E〈â, x〉4 = 3E〈â, x〉2〈b̂, x〉2.

So let r := E〈â, x〉2〈b̂, x〉2 = 1
3
E〈â, x〉4. By rotational symmetry, r is constant over choice

of orthogonal unit vectors â and b̂.
Since Σ operates only on the symmetric subspace, let u ∈ Rd2

be any unit vector in the
symmetric subspace. Such a u unfolds to a symmetric matrix in Rd×d, so that it has an
eigendecomposition u =

∑d
i=1 λiui ⊗ ui. Evaluating 〈u,Σu〉,

〈u,Σu〉 =
d∑

i,j=1

Eλiλj〈x, ui〉2〈x, uj〉2 other terms are 0 by above

= 3r
d∑
i=1

λ2
i + r

∑
i 6=j

λiλj

= 2r
d∑
i=1

λ2
i + r

(
d∑
i=1

λi

)2

= 2r ‖u‖2 + r

(
d∑
i=1

λi

)2

Frobenius norm is sum of squared eigenvalues

= 2r ‖u‖2 + r

(∑
i

ui,i

)2

trace is sum of eigenvalues

= 2r 〈u,Πsymu〉+ r 〈u,ΦΦ>u〉 ,

so therefore Σ = 2rΠsym + rΦΦ>.

Proof of Fact 5.7.4. When x ∼ N (0, Idd), the expectation E〈x, a〉2〈x, b〉2 = 1 is just a
product of independent standard Gaussian second moments. Therefore by Lemma 5.7.5,
Σ = 2 Πsym + ΦΦ>.

To find Σ̃ where x is uniformly distributed on the unit sphere, we compute

1 = E ‖x‖4 =
∑
i,j

Ex2
ix

2
j = d Ex4

1 + (d2 − d) Ex2
1x

2
2

and use the fact that Ex4
1 = 3 Ex2

1 (by Lemma 5.7.5) to find that Ex2
1x

2
2 = 1

d2+2d
, and

therefore by Lemma 5.7.5, Σ̃ = 2
d2+2d

Πsym + 1
d2+2d

ΦΦ>.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 178

To verify the pseudoinverses, it is enough to check that MM+ = Πsym for each matrix
M and its claimed pseudoinverse M+.

To show that
‖R(v ⊗ v)‖2

2 =
(
1− 1

d+2

)
· ‖v‖4 ,

for any v ∈ Rd, we write ‖R(v⊗v)‖2
2 = (v⊗v)>R2(v⊗v) and use the substitution R2 = 2Σ+,

along with the facts that Πsym(v ⊗ v) = v ⊗ v and 〈Φ, v ⊗ v〉 = ‖v‖2.

Now we can prove some concentration claims we deferred:

Lemma (Restatement of Lemma 5.4.11). Let a1, . . . , an ∼ N (0, 1
d

Idd). Let Σ, R be as
in Fact 5.4.8. Let ui = ai ⊗ ai. With overwhelming probability, every j ∈ [n] satisfies∑

i 6=j〈uj, R2ui〉2 = Õ(n/d2) and |1− ‖Ruj‖2| ≤ Õ(1/
√
d).

Proof of Lemma 5.4.11. We prove the first item:∑
i 6=j

〈uj, R2ui〉2 =
∑
i 6=j

〈uj, 2Σ+ui〉2

=
∑
i 6=j

〈uj, (Πsym − 1
d+2

ΦΦ>)ui〉2 by Fact 5.7.4

=
∑
i 6=j

(〈aj, ai〉2 − 1
d+2
‖uj‖2‖ui‖2)2

=
∑
i 6=j

Õ(1/d)2 w.ov.p. by Fact 5.7.1

= Õ(n/d2) .

And one direction of the second item, using Fact 5.7.4 and Fact 5.7.1 (the other direction is
similar):

‖Ruj‖2 = 〈uj, R2uj〉 = 〈uj, (Πsym + 1
d+2

ΦΦ>)uj〉 = (1−Θ(1/d))‖aj‖4 = 1− Õ(1/
√
d)

where the last equality holds w.ov.p..

Proof of Lemma 5.4.9

To prove Lemma 5.4.9 we will begin by reducing to the case S = [n] via the following.

Lemma 5.7.6. Let v1, . . . , vn ∈ Rd. Let AS have columns {vi}i∈S. Let ΠS be the projector
to Span{vi}i∈S. Suppose there is c ≥ 0 so that ‖A>[n]A[n]− Idn ‖ ≤ c. Then for every S ⊆ [n],

‖ASA>S − ΠS‖ ≤ c

Proof. If the hypothesized bound ‖A>[n]A[n] − Idn ‖ ≤ c holds then for every S ⊆ [n] we get

‖A>SAS − Id|S| ‖ ≤ c since A>SAS is a principal submatrix of A>[n]A[n]. If ‖A>SAS − Id|S| ‖ ≤ c,

then because ASA
>
S has the same nonzero eigenvalues as A>SAS, we must have also ‖ASA>S −

ΠS‖ ≤ c.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 179

It will be convenient to reduce concentration for matrices involving ai ⊗ ai to analogous
matrices where the vectors ai ⊗ ai are replaced by isotropic vectors of constant norm. The
following lemma shows how to do this.

Lemma 5.7.7. Let a ∼ N (0, 1
d

Idd). Let Σ̃ := Ex∼N (0,Idd)(xx
>)⊗2/‖x‖4. Then u :=

(Σ̃+)1/2a ⊗ a/‖a‖2 is an isotropic random vector in the symmetric subspace Span{y ⊗ y |
y ∈ Rd} with ‖u‖ =

√
dim Span{y ⊗ y | y ∈ Rd}.

Proof. The vector u is isotropic by definition so we prove the norm claim. Let Φ̃ = Φ/‖Φ‖.
By Fact 5.7.4,

Σ̃+ = d2+2d
2

Πsym − d
2
ΦΦ>

Thus,
‖u‖2 = 〈 a⊗a‖a‖2 , Σ̃

+ a⊗a
‖a‖2 〉 = d2+2d

2
− d

2
= d2+d

2
= dim Span{y ⊗ y | y ∈ Rd} .

The last ingredient to finish the spectral bound is a bound on the incoherence of inde-
pendent samples from (Σ̃+)1/2.

Lemma 5.7.8. Let Σ̃ = Ea∼N (0,Idd)(aa
> ⊗ aa>)/‖a‖4. Let a1, . . . , an ∼ N (0, Idd) be inde-

pendent, and let ui = (Σ̃+)1/2(ai⊗ai)/‖ai‖2. Let d′ = dim Span{y⊗ y | y ∈ Rd} = 1
2
(d2 +d).

Then
1
d′
Emax

i

∑
j 6=i

〈ui, uj〉2 ≤ Õ(n) .

Proof. Expanding 〈ui, uj〉2 and using Σ̃+ = d2+2d
2

Πsym − d
2
ΦΦ>, we get

〈ui, uj〉2 =
(
d2+2d

2
〈ai⊗ai‖ai‖2 ,

aj⊗aj
‖aj‖2 〉 −

d
2

)2

=
(
d2+2d

2
· 〈ai,aj〉

2

‖ai‖2‖aj‖2 −
d
2

)2

From elementary concentration, Emaxi 6=j〈ai, aj〉2/‖ai‖2‖aj‖2 ≤ Õ(1/d), so the lemma fol-
lows by elementary manipulations.

We need the following bound on the deviation from expectation of a tall matrix with
independent columns.

Theorem 5.7.9 (Theorem 5.62 in [Ver12]). Let A be an N × n matrix (N ≥ n) whose

columns Aj are independent isotropic random vectors in RN with ‖Aj‖2 =
√
N almost surely.

Consider the incoherence parameter

m
def
=

1

N
Emax

i∈[n]

∑
j 6=i

〈Ai, Aj〉2 .

Then E ‖ 1
N
ATA− Id ‖ ≤ C0

√
m logn
N

.

We are now prepared to handle the case of S = [n] via spectral concentration for matrices
with independent columns, Theorem 5.7.9.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 180

Lemma (Restatement of Lemma 5.4.9). Let a1, . . . , an ∼ N (0, 1
d

Idd) be independent random

vectors with d ≤ n. Let R :=
√

2 · ((E(aa>)⊗2)+)1/2 for a ∼ N (0, Idd). For S ⊆ [n], let
PS =

∑
i∈S(aiai

>)⊗2 and let ΠS be the projector into the subspace spanned by {Ra⊗2
i | i ∈ S}.

Then, with probability 1− o(1) over the choice of a1, . . . , an,

∀S ⊆ [n].
(

1− Õ(n/d3/2)
)
· ΠS � RPSR �

(
1 + Õ(n/d3/2)

)
· ΠS .

Proof of Lemma 5.4.9. By Lemma 5.7.6 it is enough to prove the lemma in the case of
S = [n]. For this we will use Theorem 5.7.9. Let A be the matrix whose columns are given
by ai ⊗ ai, so that P[n] = P = AA>. Because RAA>R and A>RRA have the same nonzero

eigenvalues, it will be enough to show that ‖A>R2A − Id ‖ ≤ Õ(
√
n/d) + Õ(n/d3/2) with

probability 1− o(1). (Since n ≤ d we have
√
n/d = Õ(n/d3/2) so this gives the theorem.)

The columns of RA are independent, given by R(ai ⊗ ai). However, they do not quite
satisfy the normalization conditions needed for Theorem 5.7.9. Let D be the diagonal matrix
whose i-th diagonal entry is ‖ai‖2. Let Σ̃ = Ex∼N (0,Id)(xx

>)⊗2/‖x‖4. Then by Lemma 5.7.7

the matrix (Σ̃+)1/2D−1A has independent columns from an isotropic distribution with a fixed
norm d′. Together with Lemma 5.7.8 this is enough to apply Theorem 5.7.9 to conclude that

E ‖ 1
(d′)2A

>D−1Σ̃+D−1A− Id ‖ ≤ Õ(
√
n/d). By Markov’s inequality, ‖ 1

(d′)2A
>D−1Σ̃+D−1A−

Id ‖ ≤ Õ(
√
n/d) with probability 1− o(1).

We will show next that ‖A>R2A − 1
(d′)2A

>D−1Σ̃+D−1A‖ ≤ Õ(n/d3/2) with probability

1 − o(1); the lemma then follows by triangle inequality. The expression inside the norm
expands as

A>(R2 − 1
(d′)2D

−1Σ̃+D−1)A .

and so
‖A>R2A− 1

(d′)2A
>D−1Σ̃+D−1A‖ ≤ ‖A‖2‖R2 − 1

(d′)2D
−1Σ̃+D−1‖

By Fact 5.7.1, with overwhelming probability ‖D−Id ‖ ≤ Õ(1/
√
d). So ‖(1/d′)2D−1Σ̃+D−1−

(1/d′)2Σ̃+‖ ≤ Õ(1/
√
d) w.ov.p.. We recall from Fact 5.7.4, given that R =

√
2 · (Σ+)1/2, that

R2 = Πsym − 1
d+2

ΦΦ> and 1
(d′)2 Σ̃+ = d+2

d+1
Πsym − 1

d+1
ΦΦ> .

This implies that ‖R2 − (1/d′)2Σ̃+‖ ≤ O(1/d). Finally, by an easy application of

Proposition A.3.3, ‖A‖2 = ‖
∑

i(aia
>
i)⊗2‖ ≤ Õ(n/d) w.ov.p.. All together, ‖A>R2A −

1
(d′)2A

>D−1Σ̃+D−1A‖ ≤ Õ(n/d3/2).

5.8 Concentration Bounds for Tensor Principal
Component Analysis

For convenience, we restate Lemma 5.5.5 here.

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 181

Lemma 5.8.1 (Restatement of Lemma 5.5.5). For any v, with high probability over A, the
following occur: ∥∥∥∥∥∑

i

Tr(Ai) · Ai

∥∥∥∥∥ ≤ O(n3/2 log2 n)∥∥∥∥∥∑
i

v(i) · Ai

∥∥∥∥∥ ≤ O(
√
n log n)∥∥∥∥∥∑

i

Tr(Ai)v(i) · vvT
∥∥∥∥∥ ≤ O(

√
n log n) .

Proof of Lemma 5.5.5. We begin with the term
∑

i Tr(Ai) · Ai. It is a sum of iid matrices
Tr(Ai) ·Ai. A routine computation gives ETr(Ai) ·Ai = Id. We will use the truncated matrix
Bernstein’s inequality (Proposition A.3.3) to bound ‖

∑
i Tr(Ai)Ai‖.

For notational convenience, let A be distributed like a generic Ai. By a union bound, we
have both of the following:

P
(
‖Tr(A) · A‖ ≥ tn

)
≤ P

(
|Tr(A)| ≥

√
tn
)

+ P
(
‖A‖ ≥

√
tn
)

P
(
‖Tr(A) · A− Id ‖ ≥ (t+ 1)n

)
≤ P

(
|Tr(A)| ≥

√
tn
)

+ P
(
‖A‖ ≥

√
tn
)
.

Since Tr(A) the sum of iid Gaussians, P(|Tr(A)| ≥
√
tn) ≤ e−c1t for some constant c1.

Similarly, since the maximum eigenvalue of a matrix with iid entries has a subgaussian tail,
P(‖A‖ ≥

√
tn) ≤ e−c2t for some c2. All together, for some c3, we get P(‖Tr(A) ·A‖ ≥ tn) ≤

e−c3t and P(‖Tr(A) · A− Id ‖ ≥ (t+ 1)n) ≤ e−c3t.
For a positive parameter β, let Iβ be the indicator variable for the event ‖Tr(A) ·A‖ ≤ β.

Then

E ‖Tr(A) · A‖ − E ‖Tr(A) · A‖ Iβ =

∫ ∞
0

[
P(‖TrA · A‖ > s)− P(‖TrA · A‖ Iβ > s)

]
ds

= β P(‖TrA · A‖ > β) +

∫ ∞
β

P(‖TrA · A‖ > s) ds

≤ βe−c3β/n +

∫ ∞
β

P(‖TrA · A‖ > s) ds

= βe−c3β/n +

∫ ∞
β/n

P(‖TrA · A‖ ≥ tn)n dt

≤ βe−c3β/n +

∫ ∞
β/n

ne−c3t dt

= βe−c3β/n + n
c3
e−c3β/n .

Thus, for some β = O(n log n) we may take the parameters p, q of Proposition A.3.3 to be
O(n−150). The only thing that remains is to bound the parameter σ2. Since (ETr(A) ·A)2 =

CHAPTER 5. FAST SPECTRAL ALGORITHMS FROM SOS ANALYSES 182

Id, it is enough just to bound ‖ETr(A)2AAT‖. We use again a union bound:

P(‖Tr(A)2AAT‖ > tn2) ≤ P(|Tr(A)| > t1/4
√
n) + P(‖A‖ > t1/4

√
n) .

By a similar argument as before, using the Gaussian tails of TrA and ‖A‖, we get

P(‖Tr(A)2AAT‖ > tn2) ≤ e−c4
√
t. Then starting out with the triangle inequality,

σ2 = ‖n · ETr(A)2AAT‖
≤ n · E ‖Tr(A)2AAT‖

= n ·
∫ ∞

0

P(Tr(A)2AAT > s) ds

= n ·
∫ ∞

0

P(Tr(A)2AAT > tn2)n2 dt

≤ n ·
∫ ∞

0

e−c4
√
t n2 dt

= n ·
[
−2n2(c4

√
t+ 1)

c2
4

e−c4
√
t

]t=∞
t=0

≤ O(n3) .

This gives that with high probability,∥∥∥∥∥∑
i

Tr(Ai) · Ai

∥∥∥∥∥ ≤ O(n3/2 log2 n) .

The other matrices are easier. First of all, we note that the matrix
∑

i v(i) · Ai has
independent standard Gaussian entries, so it is standard that with high probability ‖

∑
i v(i)·

Ai‖ ≤ O(
√
n log n). Second, we have∑

i

v(i) Tr(Ai)vv
T = vvT

∑
i

v(i) Tr(Ai).

The random variable Tr(Ai) is a centered Gaussian with variance n, and since v is a unit
vector,

∑
i v(i) Tr(Ai) is also a centered Gaussian with variance n. So with high probability

we get ∥∥∥∥∥vvT∑
i

v(i) Tr(Ai)

∥∥∥∥∥ =

∣∣∣∣∣∑
i

v(i) Tr(Ai)

∣∣∣∣∣ ≤ O(
√
n log n)

by standard estimates. This completes the proof.

183

Appendix A

Additional Technical Underpinnings

A.1 Linear Algebra

Here we provide some linear algebraic lemmas which we will need to make use of in proving
our results.

This first lemma is closely related to the SoS Cauchy-Schwarz from [BKS14], and the
proof is essentially the same.

Lemma A.1.1 (PSD Cauchy-Schwarz). Let M ∈ Rd×d, M � 0 and symmetric. Let
p1, . . . , pn, q1, . . . , qn ∈ Rd. Then

〈M,
n∑
i=1

piq
>
i 〉 ≤ 〈M,

n∑
i=1

pip
>
i 〉1/2〈M,

n∑
i=1

qiq
>
i 〉1/2 .

In applications, we will have
∑

i piqi as a single block of a larger block matrix containing
also the blocks

∑
i pip

>
i and

∑
i qiq

>
i .

Proof. We first claim that

〈M,
n∑
i=1

piq
>
i 〉 ≤

1

2
〈M,

n∑
i=1

pip
>
i 〉+

1

2
〈M,

n∑
i=1

qiq
>
i 〉 .

To see this, just note that the right-hand side minus the left is exactly

〈M,

n∑
i=1

(pi − qi)(pi − qi)>〉 =
∑
i

(pi − qi)>M(pi − qi) ≥ 0 .

The lemma follows now be applying this inequality to

p′i =
pi

〈M,
∑n

i=1 pip
>
i 〉1/2

q′i =
qi

〈M,
∑n

i=1 qiq
>
i 〉1/2

.

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 184

Lemma A.1.2 (Operator Norm Cauchy-Schwarz for Sums). Let A1, . . . , Am, B1, . . . , Bm be
real random matrices. Then∥∥∥∥∥∑

i

EAiBi

∥∥∥∥∥ ≤
∥∥∥∥∥∑

i

EA>i Ai

∥∥∥∥∥
1/2 ∥∥∥∥∥∑

i

EB>i Bi

∥∥∥∥∥
1/2

.

Proof. We have for any unit x, y,

x>
∑
i

EAiBix =
∑
i

E〈Aix,Biy〉

≤
∑
i

E ‖Aix‖‖Biy‖

≤
∑
i

(E ‖Aix‖2)1/2(E ‖Bix‖2)1/2

≤
√∑

i

E ‖Aix‖2

√∑
i

E ‖Biy‖2

=

√
Ex>

∑
i

A>i Aix

√
E y>

∑
i

B>i Biy

≤

∥∥∥∥∥∑
i

EA>i Ai

∥∥∥∥∥
1/2 ∥∥∥∥∥∑

i

EB>i Bi

∥∥∥∥∥
1/2

.

where the nontrivial inequalities follow from Cauchy-Schwarz for expectations, vectors and
scalars, respectively.

The following lemma allows to argue about the top eigenvector of matrices with spectral
gap.

Lemma A.1.3 (Top eigenvector of gapped matrices). Let M be a symmetric r-by-r matrix
and let u, v be a vectors in Rr with ‖u‖ = 1. Suppose u is a top singular vector of M so that
|〈u,Mu〉| = ‖M‖ and v satisfies for some ε > 0,

‖M − vv>‖ ≤ ‖M‖ − ε · ‖v‖2

Then, 〈u, v〉2 ≥ ε · ‖v‖2.

Proof. We lower bound the quadratic form of M − vv> evaluated at u by

|〈u, (M − vv>)u〉| ≥ |〈u,Mu〉| − 〈u, v〉2 = ‖M‖ − 〈u, v〉2 .

At the same time, this quadratic form evaluated at u is upper bounded by ‖M‖ − ε · ‖v‖2.
It follows that 〈u, v〉2 ≥ ε · ‖v‖2 as desired.

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 185

The following lemma states that a vector in Rd2
which is close to a symmetric vector v⊗2,

if flattened to a matrix, has top eigenvector correlated with the symmetric vector.

Lemma (Restatement of Lemma 5.4.19). Let M ∈ Rd2×d2
be a symmetric matrix with

‖M‖ ≤ 1, and let v ∈ Rd and u ∈ Rd2
be vectors. Furthermore, let U be the reshaping of

the vector Mu ∈ Rd2
to a matrix in Rd×d. Fix c > 0, and suppose that 〈Mu, v ⊗ v〉2 ≥

c2 · ‖u‖2 · ‖v‖4. Then U has some left singular vector a and some right singular vector b such
that

|〈a, v〉|, |〈b, v〉| ≥ c · ‖v‖ .
Furthermore, for any 0 < α < 1, there are a′, b′ among the top b 1

αc2
c singular vectors of U

with
|〈a′, v〉|, |〈b′, v〉| ≥

√
1− α · c · ‖v‖ .

If c ≥
√

1
2
(1 + η) for some η > 0, then a, b are amongst the top b (1+η)

ηc2
c singular vectors.

Proof. Let v̂ = v/‖v‖. Let (σi, ai, bi) be the ith singular value, left and right (unit) singular
vectors of U respectively.

Our assumptions imply that∣∣v̂>Uv̂∣∣ = |〈Mu, v̂ ⊗ v̂〉| ≥ c · ‖u‖.

Furthermore, we observe that ‖U‖F = ‖Mu‖ ≤ ‖M‖ · ‖u‖, and that therefore ‖U‖F ≤ ‖u‖.
We thus have that,

c · ‖u‖ ≤
∣∣v̂>Uv̂∣∣ =

∣∣∣∣∣∣
∑
i∈[d]

σi · 〈v̂, ai〉〈v̂, bi〉

∣∣∣∣∣∣ ≤ ‖u‖ ·
√∑

i∈[d]

〈v̂, ai〉2〈v̂, bi〉2,

where to obtain the last inequality we have used Cauchy-Schwarz and our bound on ‖U‖F .
We may thus conclude that

c2 ≤
∑
i∈[d]

〈v̂, ai〉2〈v̂, bi〉2 ≤ max
i∈[d]
〈ai, v̂〉2 ·

∑
i∈[d]

〈bi, v̂〉2 = max
i∈[d]
〈ai, v̂〉2 , (A.1.1)

where we have used the fact that the left singular values of U are orthonormal. The argument
is symmetric in the bi.

Furthermore, we have that

c2 · ‖u‖2 ≤
∣∣v̂>Uv̂∣∣2

=

∣∣∣∣∣∣
∑
i∈[d]

σi · 〈v̂, ai〉〈v̂, bi〉

∣∣∣∣∣∣
2

≤

∑
i∈[d]

σ2
i 〈v̂, ai〉2

 ·
∑
i∈[d]

〈v̂, bi〉2
 =

∑
i∈[d]

σ2
i 〈v̂, ai〉2,

where we have applied Cauchy-Schwarz and the orthonormality of the bi. In particular,∑
i∈[d]

σ2
i 〈v̂, ai〉2 ≥ c2‖u‖2 ≥ c2‖U‖2

F .

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 186

On the other hand, let S be the set of i ∈ [d] for which σ2
i ≤ αc2‖U‖2

F . By substitution,∑
i∈S

σ2
i 〈v̂, ai〉2 ≤ αc2‖U‖2

F

∑
i∈S

〈v̂, ai〉2 ≤ αc2‖U‖2
F ,

where we have used the fact that the right singular vectors are orthonormal. The last two
inequalities imply that S 6= [d]. Letting T = [d] \ S, it follows from subtraction that

(1− α)c2‖U‖2
F ≤

∑
i∈T

σ2
i 〈v̂, ai〉2 ≤ max

i∈T
〈v̂, ai〉2

∑
i∈T

σ2
i = max

i∈T
〈v̂, ai〉2‖U‖2

F ,

so that maxi∈T 〈v̂, ai〉2 ≥ (1− α)c2. Finally,

|T | · αc2‖U‖2
F ≤ |T | ·min

i∈T
σ2
i ≤

∑
i∈[d]

σ2
i = ‖U‖2

F ,

so that |T | ≤ b 1
αc2
c. Thus, one of the top b 1

αc2
c right singular vectors a has correlation

|〈v̂, a〉| ≥
√

(1− α)c. The same proof holds for the b.
Furthermore, if c2 > 1

2
(1 + η) for some η > 0, and (1− α)c2 > 1

2
, then by (A.1.1) it must

be that maxi∈T 〈v̂, ai〉2 = maxi∈[d]〈v̂, ai〉2, as v̂ cannot have square correlation larger than 1
2

with more than one left singular vector. Taking α = η
1+η

guarantees this. The conclusion

follows.

A.2 Concentration of Scalar Random Variables

We require a number of tools from the literature on concentration of measure.

For scalar-valued polynomials of Gaussians

We need the some concentration bounds for certain polynomials of Gaussian random vari-
ables.

The following lemma gives standard bounds on the tails of a standard Gaussian variable—
somewhat more precisely than other bounds in this paper. Though there are ample sources,
we repeat the proof here for reference.

Lemma A.2.1. Let X ∼ N (0, 1). Then for t > 0,

P (X > t) ≤ e−t
2/2

t
√

2π
,

and

P (X > t) ≥ e−t
2/2

√
2π
·
(

1

t
− 1

t3

)
.

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 187

Proof. To show the first statement, we apply an integration trick,

P (X > t) =
1√
2π

∫ ∞
t

e−x
2/2dx

≤ 1√
2π

∫ ∞
t

x

t
e−x

2/2dx

=
e−t

2/2

t
√

2π
,

where in the third step we have used the fact that x
t
≤ x for t ≥ x. For the second statement,

we integrate by parts and repeat the trick,

P (X > t) =
1√
2π

∫ ∞
t

e−x
2/2dx

=
1√
2π

∫ ∞
t

1

x
· xe−x2/2dx

=
1√
2π

[
−1

x
e−x

2/2·
]∞
t

− 1√
2π

∫ ∞
t

1

x2
· e−x2/2dx

≥ 1√
2π

[
−1

x
e−x

2/2·
]∞
t

− 1√
2π

∫ ∞
t

x

t3
· e−x2/2dx

=
1√
2π

(
1

t
− 1

t3

)
e−t

2/2.

This concludes the proof.

The following is a small modification of Theorem 6.7 from [Jan97] which follows from
Remark 6.8 in the same.

Lemma A.2.2. For each ` ≥ 1 there is a universal constant c` > 0 such that for every f a
degree-` polynomial of standard Gaussian random variables X1, . . . , Xm and t ≥ 2,

P(|f(X)| > tE |f(X)|) ≤ e−c`t
2/`

.

The same holds (with a different constant c`) if E |f(x)| is replaced by (E f(x)2)1/2.

In our concentration results, we will need to calculate the expectations of multivariate
Gaussian polynomials, many of which share a common form. Below we give an expression
for these expectations.

Fact A.2.3. Let x be a d-dimensional vector with independent identically distributed Gaus-
sian entries with variance σ2. Let u be a fixed unit vector. Then setting X = (‖x‖2 −
c)p‖x‖2mxxT , and setting U = (‖x‖2 − c)p‖x‖2muuT , we have

E[X] =

(∑
0≤k≤p

(
p

k

)
(−1)kck(d+ 2) · · · (d+ 2p+ 2m− 2k)σ2(p+m−k+1)

)
· Id,

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 188

and

E[U] =

(∑
0≤k≤p

(
p

k

)
(−1)kckd(d+ 2) · · · (d+ 2p+ 2m− 2k − 2)σ2(p+m−k)

)
· uuT

Proof.

E[X] = E[(‖x‖2 − c)p‖x‖2mx2
1] · Id

= Id ·
∑

0≤k≤p

(
p

k

)
(−1)kck E


∑
`∈[d]

x2
i

p+m−k

x2
1


Since

(∑
i∈[d] x

2
i

)p+m−k
is symmetric in x1, . . . , xd, we have

= Id ·1
d

∑
0≤k≤p

(
p

k

)
(−1)kck E


∑
i∈[d]

x2
i

p+m−k+1


We have reduced the computation to a question of the moments of a Chi-squared variable
with d degrees of freedom. Using these moments,

= Id ·1
d

∑
0≤k≤p

(
p

k

)
(−1)kckd(d+ 2) · · · (d+ 2p+ 2m− 2k)σ2(p+m−k+1)

= Id ·

(∑
0≤k≤p

(
p

k

)
(−1)kck(d+ 2) · · · (d+ 2p+ 2m− 2k)σ2(p+m−k+1)

)
.

A similar computation yields the result about E[U].

A.3 Concentration of Matrix-Valued Random
Variables

The following proposition relates the top eigenvalue of a matrix to its expected trace.

Proposition (Restatement of Proposition 3.2.4). Let n, ` ∈ N, let c ∈ R, and let M be an
n× n random matrix. Then

E
M

[Tr((MM>)`)] ≤ β =⇒ P
(
‖M‖ ≥ c · β1/2`

)
≥ 1− c−2` .

Proof. For a positive semidefinite matrix P , ‖P‖ ≤ Tr(P). We apply this along with
Markov’s inequality:

P[‖M‖ ≥ t] = P[‖(MM>)`‖ ≥ t2`] ≤ P[Tr((MM>)`) ≥ t2`] ≤ 1

t2`
E[Tr((MM>)`)] ≤ β

t2`
,

and the conclusion follows from taking t = cβ1/2`

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 189

Bound on the norm of a Rademacher matrix

Here, we prove an upper bound on the norm of a Rademacher matrix. Although tighter
bounds are known (see e.g. [AKV02], we are off by a constant factor), we include this
simpler, looser proof here in an effort to be self-contained.

The following lemma gives a bound on the size of an epsilon net needed to cover the unit
sphere.

Lemma A.3.1 (see Lemma 5.2 in [Ver12]). For every ε > 0, the unit Euclidean sphere Sn−1

equipped with the Euclidean metric has an ε-net with volume at most
(
1 + 2

ε

)n
.

We are ready to prove our bound.

Theorem A.3.2. Let A be an n×n symmetric matrix with i.i.d. Rademacher entries. Then
for all s ≥ 0,

P
(
|‖A‖ − 12

√
n| ≥ s

)
≤ exp(−t2/16).

Proof. Let Λ be an ε-net over Sn−1, with ε to be chosen later. By Lemma A.3.1, we can
choose |Λ| ≤ (1 + 2

ε
)n. For any fixed x ∈ Λ,

x>Ax =
∑
i<j

2xixjAij +
∑
i

x2
iAii .

Each xixjAij is an independent random variable. We have absolute bounds on the values of
each variable, so we can apply a Hoeffding bound to this sum,

P
(
x>Ax ≥ t

)
≤ exp

(
−2t2∑

i<j(4xixj)
2 +

∑
i(2x

2
i)

2

)
= exp

(
−2t2

8‖x‖4
2 − 4‖x‖4

4

)
≤ exp

(
−t2

4

)
.

Taking a union bound over Λ, we have

P
(

max
x∈Λ

x>Ax ≥ t

)
≤ (1 +

2

ε
)n · exp

(
−t2

4

)
.

To extend the bound to any point y ∈ Sn−1, let y be the maximizer of y>Ay. We note that
there must exist some x ∈ Λ so that ‖x− y‖ ≤ ε by assumption. We have∣∣y>Ay − x>Ax∣∣ =

∣∣y>A(y − x)− x>A(x− y)
∣∣ ≤ 2ε‖A‖ ,

which by the triangle inequality implies

‖A‖ = y>Ay ≤ max
x∈Λ
{x>Ax}+ 2ε‖A‖ =⇒ ‖A‖ ≤ 1

1− 2ε
max
x∈Λ
{x>Ax}.

Taking ε = 1/4 and t = 2
√
n log(1 + 2

ε
) + s concludes the proof.

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 190

Matrix Chernoff Bounds for Gaussian Matrices

On several occasions we will need to apply a Matrix-Bernstein-like theorem to a sum of
matrices with an unfortunate tail. To this end, we prove a “truncated Matrix Bernstein
Inequality.” Our proof uses an standard matrix Bernstein inequality as a black box. The
study of inequalities of this variety—on tails of sums of independent matrix-valued random
variables— was initiated by Ahlswede and Winter [AW02]. The excellent survey of Tropp
[Tro12] provides many results of this kind.

In applications of the following the operator norms of the summands X1, . . . , Xn have
well-behaved tails and so the truncation is a routine formality. Two corollaries following the
proposition and its proof capture truncation for all the matrices we encounter in the present
work.

Proposition A.3.3 (Truncated Matrix Bernstein). Let X1, . . . , Xn ∈ Rd1×d2 be independent
random matrices, and suppose that

P
[
‖Xi − E[Xi]‖op ≥ β

]
≤ p for all i ∈ [n].

Furthermore, suppose that for each Xi,

‖E[Xi]− E[Xi I [‖Xi‖op < β]]‖ ≤ q.

Denote

σ2 = max


∥∥∥∥∥∥
∑
i∈[n]

E
[
XiX

T
i

]
− E [Xi]E

[
XT
i

]∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
∑
i∈[n]

E
[
XT
i Xi

]
− E [Xi]

T E [Xi]

∥∥∥∥∥∥
op

 .

Then for X =
∑

i∈[n] Xi, we have

P [‖X − E[X]‖op ≥ t] ≤ n · p+ (d1 + d2) · exp

(
−(t− nq)2

2(σ2 + β(t− nq)/3)

)
.

Proof. For simplicity we start by centering the variables Xi. Let X̃i = Xi − EXi and
X̃ =

∑
i∈[n] X̃i The proof proceeds by a straightforward application of the noncommutative

Bernstein’s Inequality. We define variables Y1, . . . , Yn, which are the truncated counterparts
of the X̃is in the following sense:

Yi =

{
X̃i ‖X̃i‖op < β,

0 otherwise.

Define Y =
∑

i∈[n] Yi. We claim that∥∥∥∥∥∑
i

EYiY T
i − E[Yi]E[Yi]

T

∥∥∥∥∥
op

≤

∥∥∥∥∥∑
i

E X̃iX̃
T
i

∥∥∥∥∥
op

≤ σ2 and (A.3.1)

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 191

∥∥∥∥∥∑
i

EY T
i Yi − E[Yi]

T E[Yi]

∥∥∥∥∥
op

≤

∥∥∥∥∥∑
i

E X̃T
i X̃i

∥∥∥∥∥
op

≤ σ2 , (A.3.2)

which, together with the fact that ‖Yi‖ ≤ β almost surely, will allow us to apply the non-
commutative Bernstein’s inequality to Y . To see (A.3.1) ((A.3.2) is similar), we expand
EYiY T

i as

EYiY T
i = P

[∥∥∥X̃i

∥∥∥
op
< β

]
E
[
X̃iX̃

T
i

∣∣∣∣ ∥∥∥X̃i

∥∥∥
op
< β

]
.

Additionally expanding E
[
X̃iX̃

T
i

]
as

E
[
X̃iX̃

T
i

]
= P

[∥∥∥X̃i

∥∥∥
op
< β

]
E
[
X̃iX̃

T
i

∣∣∣∣ ∥∥∥X̃i

∥∥∥
op
< β

]
+ P

[∥∥∥X̃i

∥∥∥
op
≥ β

]
E
[
X̃iX̃

T
i

∣∣∣∣ ∥∥∥X̃i

∥∥∥
op
≥ β

]
,

we note that E[X̃iX̃
T
i |

∥∥∥X̃i

∥∥∥
op
≥ β] is PSD. Thus, E[YiY

T
i] � E[XiX

T
i]. But by definition

E[YiY
T
i] is still PSD (and hence

∥∥∑
i E[YiY

T
i]
∥∥
op

is given by the maximum eigenvalue of

E[YiY
T
i]), so ∥∥∥∥∥∑

i

EYiY T
i

∥∥∥∥∥
op

≤

∥∥∥∥∥∑
i

E X̃iX̃
T
i

∥∥∥∥∥
op

.

Also PSD are E[Yi]E[Yi]
T and E[(Yi − E[Yi])(Yi − E[Yi])

T] = E[YiY
T
i] − E[Yi]E[Yi]

T . By
the same reasoning again, then, we get

∥∥∑
i EYiY T

i − E[Yi]E[Yi]
T
∥∥
op
≤
∥∥∑

i E[YiY
T
i]
∥∥
op

.

Putting this all together gives (A.3.1).
Now we are ready to apply the non-commutative Bernstein’s inequality to Y . We have

P [‖Y − E[Y]‖op ≥ α] ≤ (d1 + d2) · exp

(
−α2/2

σ2 + β · α/3

)
.

Now, we have

P [‖X − E[X]‖op ≥ t] = P [‖X − E[X]‖op ≥ t | X = Y] · P [X = Y]

+P [‖X − E[X]‖op ≥ t | X 6= Y] · P [X 6= Y] ,

≤ P [‖X − E[X]‖op ≥ t | X = Y] + n · p

by a union bound over the events {Xi 6= Yi}. It remains to bound the conditional probability
P [‖X − E[X]‖op ≥ t | X = Y]. By assumption, ‖E[X]−E[Y]‖op ≤ nq, and so by the triangle
inequality,

‖X − E[X]‖op ≤ ‖X − E[Y]‖op + ‖E[Y]− E[X]‖op ≤ ‖X − E[Y]‖op + nq.

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 192

Thus,

P [‖X − E[X]‖op ≥ t | X = Y] ≤ P [‖X − E[Y]‖op + nq ≥ t | X = Y]

= P [‖Y − E[Y]‖op ≥ t− nq | X = Y] .

Putting everything together and setting α = t− nq,

P[‖X − E[X]‖op ≥ t] ≤ n · p+ (d1 + d2) · exp

(
−(t− nq)2/2

σ2 + β(t− nq)/3

)
,

as desired.

The following lemma helps achieve the assumptions of Proposition A.3.3 easily for a
useful class of thin-tailed random matrices.

Lemma A.3.4. Suppose that X is a matrix whose entries are polynomials of constant degree
` in unknowns x, which we evaluate at independent Gaussians. Let f(x) := ‖X‖op and
g(x) := ‖XXT‖op, and either f is itself a polynomial in x of degree at most 2` or g is a

polynomial in x of degree at most 4`. Then if β = R · α for α ≥ min{E [|f(x)|] ,
√

E [g(x)]}
and R = polylog(n),

P (‖X‖op ≥ β) ≤ n− logn, (A.3.3)

and

E [‖X · I{‖X‖op ≥ β}‖op] ≤ (β + α)n− logn . (A.3.4)

Proof. We begin with (A.3.3). Either f(x) is a polynomial of degree at most 2`, or g(x) is
a polynomial of degree at most 4` in Gaussian variables. We can thus use Lemma A.2.2 to
obtain the following bound,

P (|f(x)| ≥ tα) ≤ exp
(
−ct1/(2`)

)
, (A.3.5)

where c is a universal constant. Taking t = R = polylog(n) gives us (A.3.3).
We now address (A.3.4). To this end, let p(t) and P (t) be the probability density function

and cumulative density function of ‖X‖op, respectively. We apply Jensen’s inequality and
instead bound

‖E [X I{‖X‖op ≥ β}] ‖ ≤ E [‖X‖op I{‖X‖op ≥ β}] =

∫ ∞
0

t · I{t ≥ β}p(t)dt

since the indicator is 0 for t ≤ β,

=

∫ ∞
β

(−t)(−p(t))dt

APPENDIX A. ADDITIONAL TECHNICAL UNDERPINNINGS 193

integrating by parts,

= −t · (1− P (t))

∣∣∣∣∞
β

+

∫ ∞
β

(1− P (t))dt

and using the equality of 1− P (t) with P(‖X‖op ≥ t) along with (A.3.3),

≤ βn− logn +

∫ ∞
β

P(‖X‖op ≥ t)dt

Applying the change of variables t = αs so as to apply (A.3.5),

= βn− logn + α

∫ ∞
R

P(‖X‖op ≥ αs)ds

≤ βn− logn + α

∫ ∞
R

exp(−cs1/(2`))ds

Now applying a change of variables so s = (u logn
c

)2`,

= βn− logn + α

∫ ∞
cR1/(2`)

logn

n−u · 2`
(

log n

c

)2`

u2`−1du

≤ βn− logn + α

∫ ∞
cR1/(2`)

logn

n−u/2du ,

where we have used the assumption that ` is constant. We can approximate this by a
geometric sum,

≤ βn− logn + α
∞∑

u=
cR1/(2`)

logn

n−u/2

≤ βn− logn + α · n−cR1/(2`)/(2 logn)

Evaluating at R = polylog n for a sufficiently large polynomial in the log gives us

E [‖X · I{‖X‖op ≥ β}‖op] ≤ (β + α)n− logn,

as desired.

194

Bibliography

[AAK+07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld,
and Ning Xie, Testing k-wise and almost k-wise independence, STOC, ACM,
2007, pp. 496–505.

[AAM+11] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri
Weinstein, Inapproximability of densest κ-subgraph from average case hardness,
Unpublished manuscript (2011).

[ABBG10] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge, Computa-
tional complexity and information asymmetry in financial products (extended
abstract), ICS, Tsinghua University Press, 2010, pp. 49–65.

[ABC11] Per Austrin, Mark Braverman, and Eden Chlamtac, Inapproximability of np-
complete variants of nash equilibrium, APPROX-RANDOM, Lecture Notes in
Computer Science, vol. 6845, Springer, 2011, pp. 13–25.

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer, Subexponential algorithms for
unique games and related problems, J. ACM 62 (2015), no. 5, 42:1–42:25.

[ABW10a] Benny Applebaum, Boaz Barak, and Avi Wigderson, Public-key cryptography
from different assumptions, STOC, ACM, 2010, pp. 171–180.

[ABW10b] , Public-key cryptography from different assumptions, STOC, ACM,
2010, pp. 171–180.

[Ach09] Dimitris Achlioptas, Random satisfiability, Handbook of Satisfiability (Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, eds.), Frontiers in
Artificial Intelligence and Applications, vol. 185, IOS Press, 2009, pp. 245–270.

[AFH+15] Anima Anandkumar, Dean P. Foster, Daniel J. Hsu, Sham M. Kakade, and
Yi-Kai Liu, A spectral algorithm for latent dirichlet allocation, Algorithmica 72
(2015), no. 1, 193–214.

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and
Matus Telgarsky, Tensor decompositions for learning latent variable models,
Journal of Machine Learning Research 15 (2014), no. 1, 2773–2832.

BIBLIOGRAPHY 195

[AGH+15] Anima Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, and Matus
Telgarsky, Tensor decompositions for learning latent variable models (A survey
for ALT), ALT, Lecture Notes in Computer Science, vol. 9355, Springer, 2015,
pp. 19–38.

[AGHK14] Animashree Anandkumar, Rong Ge, Daniel J. Hsu, and Sham M. Kakade, A
tensor approach to learning mixed membership community models, Journal of
Machine Learning Research 15 (2014), no. 1, 2239–2312.

[AGJ14] Anima Anandkumar, Rong Ge, and Majid Janzamin, Analyzing tensor power
method dynamics: Applications to learning overcomplete latent variable models,
CoRR abs/1411.1488 (2014).

[AGJ15] Animashree Anandkumar, Rong Ge, and Majid Janzamin, Learning overcom-
plete latent variable models through tensor methods, COLT, JMLR Workshop
and Conference Proceedings, vol. 40, JMLR.org, 2015, pp. 36–112.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov, Finding a large hidden
clique in a random graph, Random Struct. Algorithms 13 (1998), no. 3-4, 457–
466.

[AKV02] Noga Alon, Michael Krivelevich, and Van H. Vu, On the concentration of eigen-
values of random symmetric matrices, Israel Journal of Mathematics 131 (2002).

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer, How to refute a random
CSP, FOCS, IEEE Computer Society, 2015, pp. 689–708.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani, Expander flows, geometric
embeddings and graph partitioning, J. ACM 56 (2009), no. 2, 5:1–5:37.

[AW02] Rudolf Ahlswede and Andreas J. Winter, Strong converse for identification via
quantum channels, IEEE Trans. Information Theory 48 (2002), no. 3, 569–579.

[Ban10] Nikhil Bansal, Constructive algorithms for discrepancy minimization, FOCS,
IEEE Computer Society, 2010, pp. 3–10.

[Bar14] Boaz Barak, Sum of squares upper bounds, lower bounds, and open questions,
Lecture Notes (2014), http://www.boazbarak.org/sos/files/all–notes.pdf.

[BB02] Eli Ben-Sasson and Yonatan Bilu, A gap in average proof complexity, Electronic
Colloquium on Computational Complexity (ECCC) (2002), no. 003.

[BBH+12] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A.
Kelner, David Steurer, and Yuan Zhou, Hypercontractivity, sum-of-squares
proofs, and their applications, STOC, ACM, 2012, pp. 307–326.

[BCK15] Boaz Barak, Siu On Chan, and Pravesh K. Kothari, Sum of squares lower bounds
from pairwise independence, in Servedio and Rubinfeld [SR15], pp. 97–106.

BIBLIOGRAPHY 196

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaragha-
van, Smoothed analysis of tensor decompositions, STOC, ACM, 2014, pp. 594–
603.

[BCV+12] Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Gu-
ruswami, and Yuan Zhou, Polynomial integrality gaps for strong SDP relaxations
of densest k-subgraph, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, 2012, pp. 388–405.

[BE76] Bella Bollobas and Paul Erdös, Cliques in random graphs, Mathematical Pro-
ceedings of the Cambridge Philosophical Society 80 (1976), 419–427.

[BGL16] Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee, Certifying ran-
dom polynomials over the unit sphere via sum-of-s uares hierarchy, preprint,
2016.

[BHK+16] Boaz Barak, Samuel B. Hopkins, Jonathan A. Kelner, Pravesh Kothari, Ankur
Moitra, and Aaron Potechin, A nearly tight sum-of-squares lower bound for the
planted clique problem, FOCS, IEEE Computer Society, 2016, pp. 428–437.

[BKPS98] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks, On the
complexity of unsatisfiability proofs for random k-cnf formulas, STOC, ACM,
1998, pp. 561–571.

[BKS13] Boaz Barak, Guy Kindler, and David Steurer, On the optimality of semidefinite
relaxations for average-case and generalized constraint satisfaction, ITCS, ACM,
2013, pp. 197–214.

[BKS14] Boaz Barak, Jonathan A. Kelner, and David Steurer, Rounding sum-of-squares
relaxations, STOC, ACM, 2014, pp. 31–40.

[BKS15] , Dictionary learning and tensor decomposition via the sum-of-squares
method, STOC, ACM, 2015, pp. 143–151.

[BM16] Boaz Barak and Ankur Moitra, Noisy tensor completion via the sum-of-
squares hierarchy, COLT, JMLR Workshop and Conference Proceedings, vol. 49,
JMLR.org, 2016, pp. 417–445.

[BMH12] N.W. Bauer, P.J.H. Maas, and W.P.M.H. Heemels, Stability analysis of net-
worked control systems: A sum of squares approach, Automatica 48 (2012),
no. 8, 1514 – 1524.

[BMMN11] Mark Braverman, Konstantin Makarychev, Yury Makarychev, and Assaf Naor,
The grothendieck constant is strictly smaller than krivine’s bound, FOCS, IEEE
Computer Society, 2011, pp. 453–462.

[BR13] Quentin Berthet and Philippe Rigollet, Complexity theoretic lower bounds for
sparse principal component detection, Conference on Learning Theory, 2013,
pp. 1046–1066.

BIBLIOGRAPHY 197

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer, Rounding semidefinite
programming hierarchies via global correlation, FOCS, IEEE Computer Society,
2011, pp. 472–481.

[BV04] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge Uni-
versity Press, New York, NY, USA, 2004.

[BV09] S. Charles Brubaker and Santosh Vempala, Random tensors and planted cliques,
APPROX-RANDOM, Lecture Notes in Computer Science, vol. 5687, Springer,
2009, pp. 406–419.

[CCF10] Amin Coja-Oghlan, Colin Cooper, and Alan M. Frieze, An efficient sparse reg-
ularity concept, SIAM J. Discrete Math. 23 (2010), no. 4, 2000–2034.

[CGL07] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka, Strong refutation
heuristics for random k-sat, Combinatorics, Probability & Computing 16
(2007), no. 1, 5–28.

[Cha96] J. T. Chang, Full reconstruction of markov models on evolutionary trees: Iden-
tifiability and consistency, Math Biosci. 137 (1996), 51–73.

[CLP02] Andrea Crisanti, Luca Leuzzi, and Giorgio Parisi, The 3-sat problem with
large number of clauses in the ∞-replica symmetry breaking scheme, Journal
of Physics A: Mathematical and General 35 (2002), 481.

[CS88] Vašek Chvátal and Endre Szemerédi, Many hard examples for resolution, J.
ACM 35 (1988), no. 4, 759–768.

[Dan16] Amit Daniely, Complexity theoretic limitations on learning halfspaces, STOC,
2016, pp. 105–117.

[DGGP14] Yael Dekel, Ori Gurel-Gurevich, and Yuval Peres, Finding hidden cliques in
linear time with high probability, Combinatorics, Probability and Computing
23 (2014), no. 01, 29–49.

[dGJL04] Alexandre d’Aspremont, Laurent El Ghaoui, Michael I. Jordan, and Gert R. G.
Lanckriet, A direct formulation for sparse PCA using semidefinite programming,
NIPS, 2004, pp. 41–48.

[DH14] Laurent Demanet and Paul Hand, Scaling law for recovering the sparsest element
in a subspace, Information and Inference 3 (2014), no. 4, 295–309.

[dlPMS95] Victor H de la Peña and Stephen J Montgomery-Smith, Decoupling inequalities
for the tail probabilities of multivariate u-statistics, The Annals of Probability
(1995), 806–816.

[DLS13] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz, More data speeds up train-
ing time in learning halfspaces over sparse vectors, NIPS, 2013, pp. 145–153.

BIBLIOGRAPHY 198

[DLS14a] , The complexity of learning halfspaces using generalized linear methods,
COLT, JMLR Workshop and Conference Proceedings, vol. 35, JMLR.org, 2014,
pp. 244–286.

[DLS14b] , From average case complexity to improper learning complexity, STOC,
ACM, 2014, pp. 441–448.

[dlVK07] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu, Linear program-
ming relaxations of maxcut, SODA, SIAM, 2007, pp. 53–61.

[DM15a] Yash Deshpande and Andrea Montanari, Finding hidden cliques of size\ sqrt
{N/e} in nearly linear time, Foundations of Computational Mathematics
(2015), 1–60.

[DM15b] Yash Deshpande and Andrea Montanari, Improved sum-of-squares lower bounds
for hidden clique and hidden submatrix problems, COLT, JMLR Workshop and
Conference Proceedings, vol. 40, JMLR.org, 2015, pp. 523–562.

[DSS15] Jian Ding, Allan Sly, and Nike Sun, Proof of the satisfiability conjecture for
large k, in Servedio and Rubinfeld [SR15], pp. 59–68.

[Fei02] Uriel Feige, Relations between average case complexity and approximation com-
plexity, Proceedings of the 17th Annual IEEE Conference on Computational
Complexity, Montréal, Québec, Canada, May 21-24, 2002, IEEE Computer So-
ciety, 2002, p. 5.

[FG01] Joel Friedman and Andreas Goerdt, Recognizing more unsatisfiable random 3-
sat instances efficiently, Automata, Languages and Programming, 28th Inter-
national Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings
(Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, eds.), Lecture Notes
in Computer Science, vol. 2076, Springer, 2001, pp. 310–321.

[FGK05] Joel Friedman, Andreas Goerdt, and Michael Krivelevich, Recognizing more
unsatisfiable random k-sat instances efficiently, SIAM J. Comput. 35 (2005),
no. 2, 408–430.

[FGR+12] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying
Xiao, Statistical algorithms and a lower bound for planted clique, Electronic
Colloquium on Computational Complexity (ECCC) 19 (2012), 64.

[FK81] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Com-
binatorica 1 (1981), no. 3, 233–241.

[FK00] Uriel Feige and Robert Krauthgamer, Finding and certifying a large hidden
clique in a semirandom graph, Random Struct. Algorithms 16 (2000), no. 2,
195–208.

[FK03] , The probable value of the lovasz-schrijver relaxations for maximum in-
dependent set, SIAM Journal on Computing 32 (2003), 2003.

BIBLIOGRAPHY 199

[FK08] Alan M. Frieze and Ravi Kannan, A new approach to the planted clique problem,
IARCS Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science, FSTTCS 2008, December 9-11, 2008, Bangalore, India,
2008, pp. 187–198.

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek, Witnesses for non-satisfiability of
dense random 3cnf formulas, FOCS, IEEE Computer Society, 2006, pp. 497–
508.

[FR10] Uriel Feige and Dorit Ron, Finding hidden cliques in linear time, DMTCS Pro-
ceedings (2010), no. 01, 189–204.

[Fu98] Xudong Fu, On the complexity of proof systems, Ph.D. thesis, University of
Toronto, 1998.

[Gal14] François Le Gall, Powers of tensors and fast matrix multiplication, ISSAC,
ACM, 2014, pp. 296–303.

[GHK15] Rong Ge, Qingqing Huang, and Sham M. Kakade, Learning mixtures of Gaus-
sians in high dimensions [extended abstract], STOC’15—Proceedings of the 2015
ACM Symposium on Theory of Computing, ACM, New York, 2015, pp. 761–
770. MR 3388256

[GK01] Andreas Goerdt and Michael Krivelevich, Efficient recognition of random un-
satisfiable k-sat instances by spectral methods, STACS 2001, 18th Annual Sym-
posium on Theoretical Aspects of Computer Science, Dresden, Germany, Febru-
ary 15-17, 2001, Proceedings (Afonso Ferreira and Horst Reichel, eds.), Lecture
Notes in Computer Science, vol. 2010, Springer, 2001, pp. 294–304.

[GM75] Geoffrey R. Grimmett and Colin J. H. McDiarmid, On colouring random graphs,
Mathematical Proceedings of the Cambridge Philosophical Society 77 (1975),
313–324.

[GM15] Rong Ge and Tengyu Ma, Decomposing overcomplete 3rd order tensors us-
ing sum-of-squares algorithms, APPROX-RANDOM, LIPIcs, vol. 40, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 829–849.

[Gri01a] Dima Grigoriev, Complexity of positivstellensatz proofs for the knapsack, Com-
putational Complexity 10 (2001), no. 2, 139–154.

[Gri01b] , Linear lower bound on degrees of positivstellensatz calculus proofs for
the parity, Theor. Comput. Sci. 259 (2001), no. 1-2, 613–622.

[GS12] Venkatesan Guruswami and Ali Kemal Sinop, Faster SDP hierarchy solvers for
local rounding algorithms, FOCS, IEEE Computer Society, 2012, pp. 197–206.

[GVX14] Navin Goyal, Santosh Vempala, and Ying Xiao, Fourier PCA and robust tensor
decomposition, STOC, ACM, 2014, pp. 584–593.

BIBLIOGRAPHY 200

[GW94] Michel X. Goemans and David P. Williamson, .879-approximation algorithms
for MAX CUT and MAX 2sat, STOC, ACM, 1994, pp. 422–431.

[Har70] Richard A Harshman, Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multi-modal factor analysis, UCLA Working
Papers in Phonetics 16 (1970), 1–84.

[H̊as90] Johan H̊astad, Tensor rank is np-complete, J. Algorithms 11 (1990), no. 4,
644–654.

[H̊as96] , Clique is hard to approximate within n1-epsilon, FOCS, IEEE Com-
puter Society, 1996, pp. 627–636.

[HK09] Elad Hazan and Robert Krauthgamer, How hard is it to approximate the best
nash equilibrium?, SODA, SIAM, 2009, pp. 720–727.

[HKP15] Samuel B. Hopkins, Pravesh K. Kothari, and Aaron Potechin, Sos and planted
clique: Tight analysis of mpw moments and an optimal lower bound at degree
four, Manuscript (2015).

[HKZ12] Daniel J. Hsu, Sham M. Kakade, and Tong Zhang, A spectral algorithm for
learning hidden markov models, J. Comput. Syst. Sci. 78 (2012), no. 5, 1460–
1480.

[HL13] Christopher J. Hillar and Lek-Heng Lim, Most tensor problems are NP-hard, J.
ACM 60 (2013), no. 6, 45.

[HM13] Aram Wettroth Harrow and Ashley Montanaro, Testing product states, quantum
merlin-arthur games and tensor optimization, J. ACM 60 (2013), no. 1, 3.

[HSS15] Samuel B. Hopkins, Jonathan Shi, and David Steurer, Tensor principal compo-
nent analysis via sum-of-square proofs, COLT, JMLR Workshop and Conference
Proceedings, vol. 40, JMLR.org, 2015, pp. 956–1006.

[HSSS16] Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer, Fast
spectral algorithms from sum-of-squares proofs: tensor decomposition and
planted sparse vectors, STOC, ACM, 2016, pp. 178–191.

[Jan97] Svante Janson, Gaussian hilbert spaces, Cambridge Tracts in Mathematics,
Cambridge University Press, 1997.

[Jer92] Mark Jerrum, Large cliques elude the metropolis process., Random Struct. Al-
gorithms 3 (1992), no. 4, 347–360.

[Kar76] Richard Karp, The probabilistic analysis of some combinatorial search algo-
rithms, Algorithms and Complexity: New Directions and Recent Results (1976),
1–19.

[Kar10] Richard M. Karp, Reducibility among combinatorial problems, 50 Years of Inte-
ger Programming, Springer, 2010, pp. 219–241.

BIBLIOGRAPHY 201

[KB09] Tamara G. Kolda and Brett W. Bader, Tensor decompositions and applications,
SIAM Review 51 (2009), no. 3, 455–500.

[Kho02] Subhash Khot, On the power of unique 2-prover 1-round games, STOC, ACM,
2002, pp. 767–775.

[KKMO04] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell, Optimal
inapproximability results for max-cut and other 2-variable csps?, FOCS, IEEE
Computer Society, 2004, pp. 146–154.

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer, Sum of
squares lower bounds for refuting any CSP, CoRR abs/1701.04521 (2017).

[KS09] Subhash Khot and Rishi Saket, SDP integrality gaps with local ell 1-
embeddability, 50th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, 2009, pp. 565–
574.

[Kuc95] Ludek Kucera, Expected complexity of graph partitioning problems, Discrete Ap-
plied Mathematics 57 (1995), no. 2-3, 193–212.

[Las01] Jean B. Lasserre, Global optimization with polynomials and the problem of mo-
ments, SIAM Journal on Optimization 11 (2001), no. 3, 796–817.

[LCC07] Lieven De Lathauwer, Joséphine Castaing, and Jean-François Cardoso, Fourth-
order cumulant-based blind identification of underdetermined mixtures, IEEE
Trans. Signal Processing 55 (2007), no. 6-2, 2965–2973.

[LM00] B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by
model selection, Ann. Statist. 28 (2000), no. 5, 1302–1338.

[LR15] Elaine Levey and Thomas Rothvoss, A lasserre-based (1 + ε)-approximation for
Pm | pj = 1, prec | Cmax, CoRR abs/1509.07808 (2015).

[Mat76] David Matula, The largest clique size in a random graph, Tech. report, Southern
Methodist University, Dallas, 1976.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz, Noise stability
of functions with low in.uences invariance and optimality, FOCS, IEEE Com-
puter Society, 2005, pp. 21–30.

[MPW15] Raghu Meka, Aaron Potechin, and Avi Wigderson, Sum-of-squares lower bounds
for planted clique, STOC, ACM, 2015, pp. 87–96.

[MR06] Elchanan Mossel and Sébastien Roch, Learning nonsingular phylogenies and
hidden markov models, Ann. Appl. Probab. 16 (2006), no. 2, 583–614.

[MRZ14] Andrea Montanari, Daniel Reichman, and Ofer Zeitouni, On the limitation of
spectral methods: From the gaussian hidden clique problem to rank one pertur-
bations of gaussian tensors, Arxiv:1411.6149 (2014).

BIBLIOGRAPHY 202

[MS16] Andrea Montanari and Nike Sun, Spectral algorithms for tensor completion,
CoRR abs/1612.07866 (2016).

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer, Polynomial-time tensor decompo-
sitions with sum-of-squares, FOCS, IEEE Computer Society, 2016, pp. 438–446.

[MW13] Raghu Meka and Avi Wigderson, Association schemes, non-commutative poly-
nomial concentration, and sum-of-squares lower bounds for planted clique, Elec-
tronic Colloquium on Computational Complexity (ECCC) 20 (2013), 105.

[MW15] Tengyu Ma and Avi Wigderson, Sum-of-squares lower bounds for sparse PCA,
NIPS, 2015, pp. 1612–1620.

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss, On spectral clustering: Anal-
ysis and an algorithm, Advances in Neural Information Processing Systems 14
[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001,
December 3-8, 2001, Vancouver, British Columbia, Canada], 2001, pp. 849–856.

[NR09] Phong Q. Nguyen and Oded Regev, Learning a parallelepiped: Cryptanalysis of
GGH and NTRU signatures, J. Cryptology 22 (2009), no. 2, 139–160.

[O’D16] Ryan O’Donnell, SOS is not obviously automatizable, even approximately, Elec-
tronic Colloquium on Computational Complexity (ECCC) 23 (2016), 141.

[Par00] Pablo A Parrilo, Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization, Ph.D. thesis, California Institute of
Technology, 2000.

[PP02] A. Papachristodoulou and S. Prajna, On the construction of lyapunov functions
using the sum of squares decomposition, Proceedings of the 41st IEEE Confer-
ence on Decision and Control, 2002., vol. 3, Dec 2002, pp. 3482–3487 vol.3.

[PS000] Combinatorial approaches to finding subtle signals in dna sequences., vol. 8,
2000.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial optimization:
Algorithms and complexity, Prentice-Hall, 1982.

[QSW14] Qing Qu, Ju Sun, and John Wright, Finding a sparse vector in a subspace:
Linear sparsity using alternating directions, NIPS, 2014, pp. 3401–3409.

[Rag08] Prasad Raghavendra, Optimal algorithms and inapproximability results for every
csp?, STOC, ACM, 2008, pp. 245–254.

[RM14] Emile Richard and Andrea Montanari, A statistical model for tensor PCA,
NIPS, 2014, pp. 2897–2905.

[RS09a] Prasad Raghavendra and David Steurer, How to round any CSP, FOCS, IEEE
Computer Society, 2009, pp. 586–594.

BIBLIOGRAPHY 203

[RS09b] , Integrality gaps for strong SDP relaxations of UNIQUE GAMES, 50th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA, 2009, pp. 575–585.

[RS15] Prasad Raghavendra and Tselil Schramm, Tight lower bounds for planted clique
in the degree-4 sos program, Preprint (2015).

[RT12] Prasad Raghavendra and Ning Tan, Approximating csps with global cardinality
constraints using SDP hierarchies, SODA, SIAM, 2012, pp. 373–387.

[RW17] Prasad Raghavendra and Benjamin Weitz, On the bit complexity of sum-of-
squares proofs, CoRR abs/1702.05139 (2017).

[Sch08] Grant Schoenebeck, Linear level lasserre lower bounds for certain k-CSPs,
FOCS, IEEE Computer Society, 2008, pp. 593–602.

[Sho87] N. Z. Shor, A class of estimates for the global minimum of polynomial functions,
Kibernetika (Kiev) (1987), no. 6, 9–11, 133. MR 940145

[SM00] Jianbo Shi and Jitendra Malik, Normalized cuts and image segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000), no. 8,
888–905.

[SR15] Rocco A. Servedio and Ronitt Rubinfeld (eds.), Proceedings of the forty-seventh
annual ACM on symposium on theory of computing, STOC 2015, portland, or,
usa, june 14-17, 2015, ACM, 2015.

[SS17] Tselil Schramm and David Steurer, Fast and robust tensor decomposition with
applications to dictionary learning, Proceedings of The 30th Conference on
Learning Theory, COLT 2017, Amsterdam, Netherlands, July 3-6, 2017, 2017.

[SWW12] Daniel A. Spielman, Huan Wang, and John Wright, Exact recovery of sparsely-
used dictionaries, COLT, JMLR Proceedings, vol. 23, JMLR.org, 2012, pp. 37.1–
37.18.

[Tao] Terence Tao, Topics in random matrix theory, Graduate studies in mathematics,
American Mathematical Soc.

[Tro12] Joel A. Tropp, User-friendly tail bounds for sums of random matrices, Founda-
tions of Computational Mathematics 12 (2012), no. 4, 389–434.

[TS14] Ryota Tomioka and Taiji Suzuki, Spectral norm of random tensors, arXiv
preprint arXiv:1407.1870 (2014).

[Tul09] Madhur Tulsiani, CSP gaps and reductions in the lasserre hierarchy, Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, 2009, pp. 303–312.

BIBLIOGRAPHY 204

[Ver12] Roman Vershynin, Introduction to the non-asymptotic analysis of random ma-
trices, Compressed sensing, Cambridge Univ. Press, Cambridge, 2012, pp. 210–
268. MR 2963170

[Wei17] Benjamin Weitz, Polynomial proof systems, effective derivations, and their ap-
plications in the sum-of-squares hierarchy, Ph.D. thesis, UC Berkeley, 2017.

	Contents
	Introduction
	Sum-of-Squares Algorithms
	Why Study SoS Algorithms?
	Average-Case Problems and Random Matrix Theory as a Lens
	Results
	Organization

	Preliminaries
	Notation and Conventions
	Optimization and Semidefinite Programming
	The Sum-of-Squares SDP Hierarchy: Polynomial Optimization
	The Sum-of-Squares SDP Hierarchy: Sum-of-Squares Proofs
	Common Sum-of-Squares Proofs and Feasible Dual Points

	Strong Refutation of CSPs
	Introduction
	Main Ideas: Proof for Random 4-Tensors
	Injective Tensor Norm for Subgaussian Random Tensors
	Refuting Random k-XOR Instances
	Strong Refutation for All CSPs
	Sum-of-Squares Algorithms

	Degree-4 SoS Lower Bounds for Planted Clique
	Introduction
	Sum of Squares, Simple Moments, and Why They Don't Work
	Overview of our Analysis
	Degree 4 Lower Bound: Proof
	Concentration for Locally Random Matrices over G(n,12)

	Fast Spectral Algorithms from SoS Analyses
	Introduction
	Techniques
	Planted Sparse Vector in Random Linear Subspace
	Overcomplete Tensor Decomposition
	Tensor Principal Component Analysis
	Concentration Bounds for Planted Sparse Vector in Random Linear Subspace
	Concentration Bounds for Overcomplete Tensor Decomposition
	Concentration Bounds for Tensor Principal Component Analysis

	Additional Technical Underpinnings
	Linear Algebra
	Concentration of Scalar Random Variables
	Concentration of Matrix-Valued Random Variables

	Bibliography

