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Abstract

Towards Predictive Medicine – On Remote Monitoring, Privacy and Scientific Bias

by

Daniel Aranki

Doctor of Philosophy in Computer Science

and the Designated Emphasis

in Communication, Computation, and Statistics

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

The current healthcare model in the United States of America (US) is reactive in nature. That
is, individuals usually seek medical attention after symptoms manifest. In 2015, the total cost of
healthcare in the US was $3.2 trillion (17.8% of US Gross Domestic Product), which amounts to
$9,990 per capita. In the same year, the 30-days all-condition rate of unplanned rehospitalizations
in patients in the Medicare fee-for-service program was around 17.9%; and between October 1,
2003 and December 31, 2003, 3.5% of patients in the same program died within 30 days of initial
discharge.
Alternatively, a healthcare model that utilizes medical intervention based on personalized predic-
tions of the patient’s clinical status and possible deterioration could potentially decrease costs,
unplanned rehospitalizations and mortality rates. This model also has the potential to improve
the overall quality of care. We refer to this model as the predictive healthcare model.
In this dissertation, we examine three outstanding challenges towards fully realizing the predic-
tive healthcare model as the prevalent care model. Namely, i) we investigate means to streamline
the costly longitudinal epidemiological studies using remote mobile monitoring and introduce the
Berkeley Telemonitoring project; ii) we investigate the privacy challenge that is particular to the
remote monitoring model and introduce the Private Disclosure of Information (PDI) semantic pri-
vacy model; and iii) we investigate the problem of publication bias in empirical sciences (including
biomedicine) that hinders the credibility of empirical scientific findings and introduce a statistical
test that detects bias in a sample of scientific publications which utilize the Student t-test.
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An apple a day keeps the doctor away.
– cf. Welsh proverb, c. 1860

1.1 Genesis

In most regards, the nature of the healthcare model in the United States of America (US) is
reactive. That is, we usually seek medical advice or care only after we perceive a deterioration in
our health status. In other words, we first get sick, then go see a doctor. The general workflow
of this healthcare model is depicted in Figure 1.2a. More generally, under the current healthcare
model in the US, there is little encouragement for people to invest into their health before notable
symptoms indicating a serious condition take place, with a few exceptions. Two of these exceptions
concern two of the most common cancers in the US. Specifically, i) prostate cancer, which is the
most common cancer in men in the US, aside from skin cancer; and ii) breast cancer, which is the
most common cancer in women in the US [US Cancer Statistics Working Group et al., 2016].

According to the National Cancer Institute (NCI), many healthcare professionals encourage
yearly prostate cancer screening for men starting from the age of 40 for high prostate-cancer
risk groups (such as African American men) and 50 for others [National Cancer Insitite, 2012].
Prostate-specific antigen (PSA) screening is one of the two common preemptive prostate cancer
screening procedures (the other being the digital rectal exam). Even though the accuracy of
the PSA screening as a procedure for detecting prostate cancer has been in question since its
introduction [Thompson et al., 2003], the literature provides some evidence to its efficacy. Welch
and Albertsen estimated that as a result of introducing PSA screening in 1987, an additional 1.3
million men in the US were diagnosed with prostate cancer; with more than 1 million treated [Welch
and Albertsen, 2009]. Moreover, there has been a reduction of about 33 % in the prostate cancer
mortality rate in the US from 1992 to 2004 [Centers for Disease Control and Prevention, 1979-1998,
1999-2015; Jemal et al., 2008]. A survey by Etzioni et al. predicted that the plausible contribution
of PSA screening to this decline is between 45 % and 70 % [Etzioni et al., 2008]. More recently,
the prostate cancer mortality rates in the US have dropped by more than half in 2015, compared
to 1992 [Centers for Disease Control and Prevention, 1979-1998, 1999-2015]. The mortality rates
caused by prostate cancer in the US from 1968 until 2015 are depicted in Figure 1.1.

Similarly, The United States Preventive Services Task Force and NCI encourage women to
regularly get screened for breast cancer after turning 50 years of age, even before any symptoms
arise [National Cancer Insitite, 2017]. Women who are 40 to 49 years old are also encouraged to
consult with their doctors regarding when to start and how often to get a breast cancer screening.
Mammography is the most common screening modality for breast cancer, which in essence utilizes
an X-ray image of the breast [Egan, 1962]. The use of mammography as a breast screening
technique became widely adopted after Shapiro et al. demonstrated its impact on breast-cancer
caused mortality in 1966 [Shapiro et al., 1966]. Shapiro et al. later reported the 10 to 14 year
survival rates of breast cancer based on the same longitudinal study, with about 30 % lower 10-year
mortality in subjects that underwent screening with mammography as opposed to those who didn’t
[Shapiro et al., 1982]. Since 1968, the breast cancer mortality rate dropped by about 37 % [Centers
for Disease Control and Prevention, 1968-1978, 1979-1998, 1999-2015]. Figure 1.1 also depicts the
mortality rates caused by breast cancer in the US from 1968 until 2015.

To generalize these two examples, one can entertain the idea of a general proactive healthcare
model. Under such a model, intervention is provided upon a reasonable expectation of a deteriora-
tion in the health status of a person. In other words, medical care is sought before symptoms arise,
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Figure 1.1: Age-adjusted mortality rates for prostate cancer (men) and breast cancer (women)
between the years 1968 and 2015. The data were obtained from the Center for Disease Con-
trol and Prevention (CDC) [Centers for Disease Control and Prevention, 1968-1978, 1979-1998,
1999-2015].

or before getting sick. Throughout this dissertation we will refer to this healthcare model as the
predictive healthcare model or simply predictive medicine. As the name suggests, in the predictive
healthcare model, predictive models are employed to forecast deteriorations in the health status of
an individual. The predictive models can be calibrated and tailored to each person or a group of
people with similar characteristics. If a deterioration is predicted, intervention can be provided to
the person in question.

Other names for the described healthcare model exist in the literature (with possibly some nu-
anced differences), including precision medicine, personalized medicine and preventative healthcare.
In a way, the prostate and breast cancer examples given above follow the preventative healthcare
model. In general, the predictive healthcare model has the potential to i) improvement in indi-
viduals’ well being; ii) reduction in healthcare costs; iii) reduction in readmission rates in chronic
health conditions; and ultimately iv) reduction in all-cause mortality.

The generic workflow in the predictive healthcare model–depicted in Figure 1.2b–follows a
feedback loop as follows. A patient’s health data are submitted to a server that contains data
about other individuals, data about the environment and clinical predictive models. The predictive
models are used to assess the clinical risk of deterioration of the patient in question using the
patient’s data and the data about the environment. Medical personnel can then view the data
and the clinical risk assessment results (from the predictive models) and provide further input.
If the output of this cycle of clinical risk assessment deems that the patient is in high risk of
clinical deterioration, a medical intervention is sought in an effort to circumvent this predicted
deterioration. Simply put, in this model, medical attention is provided before the patient’s health
status worsens.

The predictive healthcare model is not yet realized as the standard of care. In this dissertation,
we examine 3 outstanding challenges in the realization of an effective predictive healthcare model.
Namely, these challenges are i) attaining accurate medical predictive models; ii) unbiased validation
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Figure 1.2: (a) The general workflow of the current healthcare model; and (b) the general work-
flow in the predictive healthcare model.

of said models; and iii) privacy in the predictive healthcare model. Before we delve into these
challenges, we motivate the predictive healthcare model by looking at some of the current problems
in the existing healthcare model in the US; problems that the predictive healthcare model can help
address.

The rest of this chapter is organized as follows. We first examine rehospitalization rates in
the US in Section 1.1.1, mortality rates in the US in Section 1.1.2 and the cost of healthcare in
the US in Section 1.1.3. Afterwards, we introduce some of the challenges in realizing an effective
predictive healthcare model in Section 1.2, laying the grounds for the rest of the dissertation. In
Section 1.3, we list the original contributions of this work and we close this chapter by describing
the organization of the rest of this dissertation in Section 1.4.

1.1.1 Readmission Rates

Unplanned reshopitalization carry an extra and often preventable cost to the healthcare system in
the US [Keenan et al., 2008]. The most common discharge diagnosis for beneficiaries of Medicare
who get rehospitalized (for any reason) is congestive heart failure (CHF) [Centers for Medicare &
Medicaid Services, 2006].1 Some of the possible factors for unplanned rehospitalization in the US
include i) premature hospital discharge; ii) complications that manifest after discharge; iii) poor
care transitions; and iv) underutilization of medical interventions [Keenan et al., 2008]. In this
section, we look at the phenomenon of unplanned rehospitalization in the US in more detail.

We refer to unplanned rehospitalization after discharge by readmissions. Readmission rate is

1The Medicare program, which is funded by taxpayers, covered 46 million people of age 65 or older, and 9 million
younger people with disabilities in the year 2015.
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Figure 1.3: Medicare 30-Day, all-condition hospital readmission rate. Data were provided by the
CMS in written communication to President Obama. The plotted series reflects a 12-month
moving average of the hospital readmission rates reported for discharges occurring in each
month [Obama, 2016].

defined as the percentage of patients who, within a pre-defined period of time of initial discharge,
get rehospitalized without prior scheduling. Keenan et al. derived a model for hospital risk-
standardized 30-day all-cause readmission rate for patients hospitalized with heart failure model
[Keenan et al., 2008]. A generalized version of this model was later adopted by the Centers for
Medicare & Medicaid Services (CMS) as the standard for measuring and reporting readmission
data [Horwitz et al., 2011]. Moreover, the Patient Protection and Affordable Care Act (PPACA)
passed under President Obama added the Readmissions Reduction Program, which also uses the
risk-standardized readmission rate as the standard for measuring and reporting readmission data
[US Congress, 2010].

To provide some concrete numbers for readmission rates, we focus on the older population
in the US, who are covered by and large by the Medicare program. In Figure 1.3, we present
the 12-month moving average of all-condition readmission rates, within a window of 30 days, for
patients covered by Medicare [Obama, 2016]. The plot in Figure 1.3 presents a data point per
month. Despite the improvement in the average all-condition readmission rates, within a window
of 30 days, following the enactment of PPACA in 2010, we believe that there is still room for
improvement.

According to a survey by Jencks et al., 26.9 % of patients in Medicare Fee-for-Service program
with CHF were readmitted within 30 days of the initial discharge between October 1, 2003 and
December 31, 2003; 24.6 % of patients with psychosis in Medicare, 22.6 % of patients with chronic
obstructive pulmonary disease (COPD) in Medicare and 20.1 % of patients with pneumonia in
Medicare were readmitted within 30 days of discharge in the same period [Jencks et al., 2009].
Table 1.1 depicts the readmission rates for the most frequent conditions and the most frequent
reason for rehospitalization for patients in Medicare fee-for-service program in the same period
[Jencks et al., 2009]. In another analysis, Giamouzis et al. report that approximately 50 % of
patients with CHF are readmitted within 6 months of discharge [Butler and Kalogeropoulos, 2008],
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Condition
at Index

Discharge

30-Day
Rehospi-
talization
Rate (%)

Proportion of
All Rehospi-

talizations (%)

Most Frequent Reason for
Rehospitalization (Percent-
age of Rehospitalization)

Meidcal
All 21.0 77.6 Heart failure (8.6)

CHF 26.9 7.6 CHF (37.0)
Pneumonia 20.1 6.3 Pneumonia (29.1)

COPD 22.6 4.0 COPD (36.2)
Psychoses 24.6 3.5 Psychoses (67.3)
Gastroin-
testinal

problems

19.2 3.1 Psychoses (21.1)

Surgical
All 15.6 22.4 CHF (6.0)

Cardiac stent
placement

14.5 1.6 Cardiac stent placement (19.7)

Major hip or
knee surgery

9.9 1.5 Aftercare (10.3)

Other
vascular
surgery

23.9 1.4 Other vascular surgery (14.8)

Major bowel
surgery

16.6 1.0 Gastrointestinal problems (15.9)

Other hip or
femur surgery

17.9 0.8 Pneumonia (9.7)

Table 1.1: Readmission rates for most frequent conditions and most frequent reason for rehos-
pitalization for patients in Medicare Fee-for-service program; data for patients first discharged
between October 1, 2003 and December, 31 2003 [Jencks et al., 2009].

and 70 % of these rehospitalizations are associated with worsening of the previously diagnosed CHF
[Gheorghiade et al., 2005; Giamouzis et al., 2011]. Although the readmission rates reported here
are primarily for Medicare patients, we argue that there is room for improvement. We argue that
the predictive healthcare model can reduce these readmission rates by enabling intervention before
the need for rehospitalization in the cases of clinical deterioration [for example Aranki et al., 2016b,
for CHF readmission rates].

1.1.2 Mortality Rates

The mortality rates measure can serve as yet another gauge for the quality of healthcare. In
this section, we examine this measure in the US. The survey by Jencks et al. reports that 3.5 %
of patients in Medicare fee-for-service program died within 30 days of initial discharge–without
rehospitalization–between the dates October 1, 2003 and December 31, 2003. Among the same
patients in the same time period, the death rates–without rehospitalization–within 60 days, 90
days, 180 days and 365 days were 4.5 %, 5.1 %, 6.0 % and 6.8 %, respectively [Jencks et al., 2009].
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Figure 1.4: Age-adjusted mortality rates for i) deaths not caused by external causes; and ii)
deaths caused by CHF in men and women between the years 1968 and 2015 in the US. The data
were obtained from the CDC [Centers for Disease Control and Prevention, 1968-1978, 1979-1998,
1999-2015].

Another way to look at mortality rates is to examine the number of deaths per 100,000 people.
To get a general picture, we first look at deaths resulting from any cause that is not external,
irrespective of hospitalization. External causes of death are reasons that are associated with events
that occurred outside of the body. These causes include, for example, assault, self harm, accidents
and legal intervention. Since 1968, these mortality rates in the US have dropped by about 49 %
and 41 % for men and women, respectively. Even thought the non-external cause mortality rates
have decreased since 1968, it is not a trend that is shared by all non-external causes, separately.
For instance, since 1968, the CHF mortality rates in the US have increased by 86 % and 110 % for
men and women, respectively [Centers for Disease Control and Prevention, 1968-1978, 1979-1998,
1999-2015]. Figure 1.4 depicts the age-adjusted mortality rates in the US for men and women,
between the years 1968 and 2005, for deaths resulting from i) any cause that is not external; and
ii) CHF. The example given above, for deaths caused by CHF, serves as evidence that there is
some room for improvement in the healthcare system from the mortality rates perspective. We
argue that the predictive healthcare model can reduce mortality rates in conditions like CHF by
assessing risk of clinical deterioration and providing intervention in a timely fashion [Aranki et al.,
2016b].

1.1.3 Cost of Healthcare

In addition to mortality rates and readmission rates, the cost of care in the US is high and in-
creasing, and we argue that there is room for improvement in this category too. According to a
report by CMS, the total spending on healthcare in the US was $3.2 trillion in 2015. That is, the
average healthcare cost to a person living in the US was $9,990 in 2015 [Centers for Medicare &
Medicaid Services, 2015]. This constitutes an increase of 5.8 % compared to the $3 trillion total
spending on healthcare in the preceeding year. These numbers amount to 17.8 % and 17.4 % of
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Figure 1.5: The national health expenditure in the US (total and per capita) since 1960, ad-
justed to 2015 USD.

the overall US gross domestic product (GDP), respectively. For example, Jencks et al. estimated
that financial burden of readmissions on Medicare is $17 billion annually [Jencks et al., 2009].
Furthermore, Commonwealth Fund estimated in 2006 that Medicare could save $1.9 billion annu-
ally, if national readmission rates were brought down to the levels achieved by the top-performing
regions [Commonwealth Fund, 2006]. As late as 2011, Commonwealth Fund reported that based
on an analysis by the Medicare Payment Advisory Commission, Medicare can save $12 billion by
reducing hospital readmissions, with additional savings possible from reductions in hospitalizations
among the under-65 population [Commonwealth Fund, 2011]. More broadly, Figure 1.5 depicts
i) the total national health expenditure in the US; and ii) the average healthcare expenditure to a
person living in the US, between the years 1960 and 2015 (adjusted to 2015 United States Dollar
(USD)).

In 2015, the national health expenditure in the US was almost 15 times that of 1965–adjusted to
inflation. In contrast, in 2015, the national health expenditure per capita was about 8.5 times that
of 1965–adjusted to inflation. To give perspective to the magnitude of the healthcare spending,
compared to the 17.8 % in 2015, the national health expenditures in 1965 amounted to 5 % of the
US GDP in that year. The plot of the proportion of the US national health expenditure from the
GDP, since 1960, is depicted in Figure 1.6.

The cost of healthcare in the US has a lot of room for improvement. We believe that the
predictive healthcare model can significantly lower the cost of healthcare in the US. Particularly,
this can be achieved by reducing readmission rates through early prediction of clinical deterioration
and subsequent medical intervention as discussed earlier.

1.2 The Gaps Towards Predictive Medicine

The predictive healthcare model is not yet fully realized. The burning question is what is standing
in the way of fully realizing an effective predictive healthcare model? This question is the core
question that we try to address in this dissertation. Unfortunately, as it turns out, the full potential
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Figure 1.6: The proportion of the US national health expenditure from the GDP, since 1960.

of this question is larger than any single dissertation can address. The reason is that there are many
outstanding challenges in achieving this model in the US. Particularly, these challenges include ones
in the i) regulation; ii) scientific; iii) engineering; and iv) social realms. As a result, we will focus
on only some challenges. In this section, we describe the challenges that we will address in this
dissertation.

In general, achieving improvements in clinical and financial outcomes in the healthcare domain
can take place on multiple fronts. For starters, the role of regulation in tackling these challenges is
important. For instance, in an effort to reduce the rising cost of healthcare in the US and improve
healthcare coverage, the US legislature passed PPACA in March 2010 under President Barack
Obama. For instance, in order to achieve reduction in cost, one of the main mechanisms was to
reduce the rates of readmission in chronic health conditions [US Congress, 2010; Obama, 2016].

Complementary to regulation, the role of science in improving clinical outcomes is primary. We
argue that a predictive healthcare model can help realize better improvements to i) cost of care;
ii) readmission rates; iii) mortality rates; and iv) overall quality of care. First, a key component
in the predictive healthcare is the ability to make predictions about the clinical status of a patient
[Aranki et al., 2016b]. As a result, there is a need to obtain accurate clinical predictive models,
preferably tuned and calibrated to each patient or group of patients separately (see Figure 1.2b).
Devising and validating these predictive models often require longitudinal studies that are expen-
sive and challenging to design. The classical example of such a study is the Framingham Heart
Study, which aims to unveil risk factors and the epidemiology of cardiovascular diseases. The
study began in 1948 and, among many findings, revealed the effects of diet, exercise and aspirin
on heart disease. Moreover, the study resulted in a score that estimates the 10-year cardiovascular
risk of individuals, including those without known cardiovascular disease; which in our terms is a
predictive model [D’Agostino et al., 2008]. The Framingham Heart Study serves as an example for
i) the need for long-term longitudinal studies in order to devise predictive models and clinically
validate them; ii) the complexity of such long-term longitudinal studies (in terms of cost, admin-
istration, etc.); and iii) the potential side benefits of such studies (e.g., revealing effect of diet on
heart disease).
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There are two factors in epidemiological studies that make them harder to implement. Con-
cretely, these studies require observing health-related data and clinical outcomes i) of a large sample
of people, ii) for a long period of time. In order to achieve a ubiquitous predictive healthcare model,
the cost of research and validation is going to be high. Alternatively, we can rethink the process
of monitoring large number of subjects for long periods of time for health-related data and clinical
outcomes. Therefore, the first challenge that we address in this dissertation is

Devising a streamlined and affordable process for data collection and monitoring of
subjects applicable for epidemiological studies.

An extended abstract of this part of the dissertation is presented in Section 1.2.1.
Second, in order to achieve a reliable predictive healthcare model, we have to validate the

devised predictive models and the scientific findings. For starters, it is vital that any results that
are deemed scientifically valid be reproducible. Complementary to reproducibility, in order to draw
the correct conclusions about scientific hypotheses, it is vital to see an unbiased image of all studies
and experiments attempting to validate a hypothesis. In particular, it is as important to publish
studies that did not yield a statistically significant effect size (studies where the p-value is higher
than the significance level) as it is to publish studies yielding statistically significant effect sizes.
There is a longstanding belief in the scientific community that the scientific literature is biased
against publications not yielding statistically significant effect sizes. Therefore, the third challenge
that we address in this dissertation is

Devising a meta-validation process for scientific literature that tests for publication
bias.

An extended abstract of this part of the dissertation is presented in Section 1.2.2.
Lastly, in order to achieve a prevalent predictive healthcare model, we have to consider consumer

privacy. Ensuring that consumer privacy is protected will, among other things, allow researchers
to reach a larger sample of people in epidemiological studies. Furthermore, we argue that ensuring
consumer privacy will result in more unbiased sample of subjects and a more unbiased sample of
data for epidemiological studies [Warner, 1965]. Therefore, the second challenge that we address
in this dissertation is

What privacy models are applicable for the predictive healthcare model depicted in
Figure 1.2b? Particularly, what privacy models are applicable for the devised process
of data collection and monitoring in the first challenge?

An extended abstract of this part of the dissertation is presented in Section 1.2.3.

1.2.1 The Need for Reliable Data

In order to make a feasible predictive healthcare model, there is a need for accurate models capable
of predicting clinical deterioration. In order to develop those predictive models, there is a need of a
process to measure human physical variables in an accurate, unobtrusive, non-invasive, continuous
and cost-effective manner. The process needs to be designed in a way that is compatible with
longitudinal epidemiological studies, allowing a large number of subjects to be monitored for long
periods of time.

We are seeing an influx of consumer fitness, health and medical devices that enable the collection
of human physical variables including activity levels, blood pressure, heart rate and others. In
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the presence of such measurement devices, consumers can ultimately be remotely monitored by
healthcare providers and decisions on intervention can be derived from predictions made using
these measurements. Unfortunately, many of these devices are currently inaccurate for medical
purposes. Furthermore, developing research systems that utilize such sensors in order to collect
and ultimately predict health status is not an easy task as it requires knowledge in both the medical
sciences and in engineering. We address the challenge of creating a research-oriented remote health
monitoring framework in Chapter 2.

In this part of the dissertation, we examine the notion of telemonitoring as means of collecting
health-related data about subjects in longitudinal epidemiological studies. Telemonitoring can
be further used as a system for risk-assessment of clinical deterioration, once predictive models
are devised. This is because the general workflow of telemonitoring systems follows the same
workflow of the predictive healthcare model presented in Figure 1.2b, allowing it to fit nicely in
this healthcare model. The advantage of telemonitoring is that it is relatively cheap to deploy to
a large sample of subjects in studies [McConnell et al., 2017, for example]. The challenge with
telemonitoring, on the other hand, is to design the system to collect reliable data for medical
purposes. We present a feasibility study that we conducted in collaboration with Northwestern
Medical Faculty Foundation and New York University in which we remotely monitored 15 patients
with CHF using a custom smartphone application [Aranki et al., 2014, 2016b].

We draw the lessons learned from that study and argue the need for systematic treatement of
these issues, giving birth to the Berkeley Telemonitoring project [Aranki et al., 2016a].2 We first
describe the design objectives of a general-purpose, research-oriented framework for mobile-based
remote monitoring. We then describe the resulting modular design of the Berkeley Telemonitoring
framework and some of its implementation details. Finally, we provide a taxonomy of the existing
solutions for remote monitoring, including the Berkeley Telemonitoring framework.

As empirical evidence of the usability and practicality of the Berkeley Telemonitoring frame-
work, we present the RunningCoach app that was built using the Berkeley Telemonitoring frame-
work. RunningCoach aims at candence-oriented training for long-distance runners [Aranki et al.,
2017b]. We close this part of the dissertation by describing the findings from the field study
conducted using the RunningCoach app.

1.2.2 The Need for Reliable Science

Validating the predictive power of any model requires empirical studies. The main purpose of
these studies is to measure the accuracy of these models. Primarily, these studies consist of a
limited number of subjects (compared to the whole population) and attempt to derive estimates
of the model’s accuracy on the whole population by observations and measurements made on the
participating subjects. The backbone of these extrapolations is the assumption of reproducibility.
That is, if the study were to be run by other groups of independent researchers on different groups
of subjects, similar findings would be found up to a probability of error.

In addition to reproducibility–and complementary to it, in order to draw a decisive conclusion
on the efficacy of any treatement or the predictive power of any model, it is vital that all successful
and unsuccessful trials concerning the same hypothesis be reported. Otherwise, the drawn con-
clusions are merely anectodal due to inadvertent cherry-picking of results. The case where some
of the unsuccessful attempts are not reported (more so than those which were successful) is often
dubbed as publication bias. Unfortunately, there is a strong belief in the scientific community that

2The Berkeley Telemonitoring project: https://telemonitoring.berkeley.edu

https://telemonitoring.berkeley.edu
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publication bias exists in the literature of empirical research. Therefore, if this problem indeed ex-
ists, it hinders scientific progress in many fields, including the advancement of predictive medicine.
We address the identification of publication bias and discuss efforts to limit it in Chapter 4.

In this part of the dissertation, we address the problem of detecting publication bias in the
literature of empirical and experimental sciences. Publication bias is the phenomenon where the
scientific literature contains publications showing statistically significant results more than their
actual proportions in reality. In another view, studies showing statistically significant results are
more likely to be published than studies with statistically insignificant, or even null results.

To illustrate this problem, consider the following example. If one were to test the (false)
hypothesis that Daniel Aranki has psychic abilities in that he could tell the color of any playing
card merely by looking at its back, one can design the following protocol. Draw N playing cards
at random with replacement, and each time have Daniel guess the color of the card. There is
a 1

2N
> 0 chance that Daniel can guess the colors of all N cards under the null hypothesis that

Daniel doesn’t possess psychic powers. Now let us say that 2N different people ran that study,
independently, and only one succeeded to show that Daniel guessed all N card colors correctly
(The expected number of such studies is 1). If all 2N studies reported their findings, we are most
likely going to dispute that Daniel has psychic powers (for large N). However, if only successful
trials were to report their findings (in this case, the lone successful study), we would have a very
limited and biased view on the truth of the matter; and are more likely to consider the possibility
that Daniel has psychic powers. The latter case depicts an extreme case of publication bias.

In this dissertation, we describe the problem in a quantitative way. We use this description
to define a measure on datasets under the null hypothesis that no publication bias exists. This
measure in turn leads to a statistical test that yields an upper bound on the probability of observing
the data set under the null hypothesis.

The derived theory is verified empirically using a dataset of 3,721 publications (with 23,117
hypothesis tests) from 12 journals of the American Psychologists Association between the years
2002 and 2012. We find that the probability of observing that dataset under the hypothesis of
absence of publication bias is lower than 1

500
.

1.2.3 Privacy in Predictive Healthcare

Consumers are voicing increasing concerns regarding their health-related privacy, especially with
the rise of electronic health records and health information technology in general [Bishop et al.,
2005; Hsiao and Hing, 2012; Hussain et al., 2015]. Therefore, it is vital to address privacy in the
new age of technologies for predictive medicine; particularly because a) it is hard to develop and
test predictive models without wide and unbiased adoption of these technologies in the research
stages; b) such technologies collect health and behavioral data in a continuous manner; and c) such
technologies disclose said data with healthcare providers. In Chapter 3, we address the issue of
preserving consumer privacy in predictive medicine in general and in technologies of mobile health
(mHealth) telemonitoring in particular.

In this part of the dissertation, we claim that privacy by design is essential for consumer
protection and wider adoption of such technology. We show preliminary evidence that consumers
trust health technology researchers with their health information at similar levels to their healthcare
providers, and at a significantly higher level than insurance companies, for example [Aranki et al.,
2016b].

We then present the view of privacy under which data about an individual may be used to infer
other undisclosed pieces of information about the same individual or even others. For example, in
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a telemonitoring scenario, a patient may be disclosing continuous respitory rate data. If such data
may be later used to infer whether the patient is a smoker or not, then the patient may consider that
to be intrusive from a privacy point of view (assuming the patient considers smoking status to be a
private piece of information). We claim that this is true regardless of whether the patient considers
respitory rate information to be inherently private on its own right. Under this view of privacy,
where unauthorized interpretation of data needs to be prevented, we present the framework for
Private Disclosure of Information (PDI), a semantic privacy model that is applicable in mHealth
telemonitoring settings. PDI aims at limiting the ability of a third-party to infer sensitive pieces
of information about the patient while still allowing the healthcare provider to interpret and use
the data in an accurate way [Aranki and Bajcsy, 2015]. We derive the theory of PDI, prove some
of its properties and demonstrate its effectiveness empirically on health data obtained from the
CDC.

1.3 Main Contributions

The research presented herein provides several contributions in the fields of evidence-based science,
precision medicine, and privacy. Concretely, there are three main contributions of the research pre-
sented in this dissertation. First, we introduce a general-purpose framework for mHealth telemon-
itoring, designed in order to facilitate and streamline the process of remote monitoring of patients
after their discharge. This framework is part of the Berkeley Telemonitoring project [Aranki et al.,
2016a, 2017a]. The framework, however, may be used to collect data for longitudinal epidemiolog-
ical studies, streamlining their design and roll-out. A more detailed discussion of the framework is
presented in Chapter 2.

The second main contribution of this work is a privacy framework that is applicable to tele-
monitoring systems, named PDI. The PDI framework treats the communicated data as private
information not because they are inherently secret, but because that data can be used to infer
some private information about the subjects, that is not communicated through the telemonitor-
ing system. We present the framework, prove some of its properties and present a general-purpose
MATLAB toolbox that can be used to train the PDI framework from data. A more detailed
discussion of the PDI framework is presented in Chapter 3.

The third main contribution of this work is a statistical test for detecting publication bias in
scientific publications employing the Student t-test. The method defines a bias test statistic for a
set of observed publications, based on their effect sizes and Degrees of Freedom (DOFs). Given a
bias test statistic b, the method yields an upper bound on the probability of observing a dataset
with a bias test statistic at least as extreme as b, under the null hypothesis that no publication
bias exists. We further present a MATLAB implementation of the test. A more detailed discussion
of this statistical test is presented in Chapter 4.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. We start by addressing the challenge of
obtaining reliable health data in a streamlined fashion in Chapter 2, and introduce the Berkeley
Telemonitoring framework. In Chapter 3, we address the issue of consumer privacy in predictive
medicine and in mHealth telemonitoring; and introduce the PDI framework. We then address the
question of detecting publication bias in the literature of empirical research in Chapter 4. We close
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the dissertation in Chapter 5 by presenting some final thoughts on predictive medicine, privacy
and bias in the scientific literature.

The dissertation is written in a manner that allows the reader to read each chapter separately,
immediately after the introduction. That is, all the chapters in this book are self-contained and
require reading only Chapter 1. The only possible exception to this is Chapter 5, which is still
self-contained but benefits from reading the rest of the dissertation for context.
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Chapter 2

Telemonitoring for Predctive Medicine
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The doctor of the future will give no medicine, but will instruct his
patient in the care of the human frame, in diet and in the cause and
prevention of disease.

– Thomas Edison, 1903

2.1 Introduction

One of the core building blocks of predictive medicine is accurate predictive models for diseases and
health deterioration. In order to construct such predictive models, we need to understand the risk
factors and causes of disease. The field of science that is concerned with the discovery, study and
analysis of these causes and risk factors is called epidemiology. By nature, most epidemiological
studies are longitudinal studies that span over a long period of time. As such, a major roadblock
in achieving a predictive healthcare model is the prohibitive cost of epidemiological studies.

Some of the other building blocks of the predictive healthcare model, as depicted in Figure 2.1,
are i) health-related data collection; ii) submission of such data to data-analysis data centers;
iii) the analysis of such data, including assessment of risks by employing predictive models and
input from healthcare professionals; and iv) medical intervention based on these predictions.

In light of this context, we address the following question in this chapter.

How can technology alleviate the prohibitive cost of epidemiological studies without com-
promising the reliability and integrity of these studies and the data collected therein?

The key observation that we make is that a technology that implements the predictive healthcare
model from Figure 2.1, apart from the prediction loop, can be used to streamline and standardize
epidemiological studies. In addition, the same technology can serve as a building block for a
complete system for predictive medicine. This can be done by complementing it with the predictive
models that are extracted from the epidemiological studies. In essence, a technology that enables
the collection and submission of health-related data in epidemiological studies, can later be used
in the deployment of predictive medicine.

To be concrete, we consider a ubiquitous system that implements the highlighted parts of
the predictive healthcare model depicted in Figure 2.1. In particular, this system enables i) the
collection and submission of health-related data; ii) allowing healthcare professionals to view the
data and provide input; and iii) delivering some forms of medical intervention. Throughout this
dissertation, we call such a system a telemonitoring system. Once predictive models are developed,
based on epidemiological findings, they can be incorporated in telemonitoring systems. Therefore,
telemonitoring can be used to both i) streamline and standardize epidemiological studies in a cost-
effective way; and ii) implement a full predictive healthcare model, once predictive models are
incorporated. In this chapter, we study the design, implementation and efficacy of telemonitoring
systems in general, and mobile health (mHealth) in particular.

The rest of this chapter is organized as follows. We start by investigating the feasibility,
acceptability and requirements of telemonitoring. In our efforts to better understand those, we
conducted a study of telemonitoring patients with congestive heart failure (CHF) in collaboration
with Northwestern Medical Faculty Foundation (NMFF), Chicago, IL and New York University
(NYU), New York, NY. The study, its findings and the lessons learned from it are described
in Section 2.4. We then survey the literature for related work in the field of telemonitoring in
general, and mHealth in particular in Section 2.2. The literature survey is followed by a survey
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Figure 2.1: The general workflow in the predictive healthcare model. This model also coincides
with the workflow of telemonitoring systems.

of commercial solutions, which attempt to address and implement telemonitoring and mHealth
in Section 2.5. Afterwards, we briefly visit the concept of medical intervention in Section 2.3.
We then summarize the challenges in the fields of mHealth and telemonitoring in Section 2.6.
Subsequently, we present the Berkeley Telemonitoring project and the Berkeley Telemonitoring
framework in Section 2.7 followed by a second study in Section 2.8, RunningCoach, which tested
the usability of the Berkeley Telemonitoring framework and served as a proof-of-concept for it in
fitness applications. Finally, we summarize the chapter and discuss its key points in Section 2.9.

The contributions of this chapter are i) providing evidence for proof-of-concept for the feasibility
of telemonitoring in health and fitness applications with two studies (Sections 2.4 and 2.8); and
ii) introducing the Berkeley Telemonitoring project and the Berkeley Telemonitoring framework
(Section 2.7).

2.2 Feasibility and Related Work

In this section, we briefly survey the literature in three topics relevant to our discussion in this
chapter: (a) clinical telemonitoring in patients with CHF; (b) use of smartphone apps in mHealth;
and (c) measurement of physical activity. This survey provides us the context, motivation and
background information for the Berkeley Telemonitoring framework, the telemonitoring solution
presented in this chapter.

2.2.1 Telemonitoring in Patients with CHF

Since the predictive healthcare model is not quite achieved, we instead examine several examples
of telemonitoring for proactive healthcare. In proactive healthcare, patients are encouraged to take
proactive actions to reduce risks based on their health data, without necessarily having accurate
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predictive models in place. These studies and systems gave rise to mHealth-based telemonitoring,
which we examine in great detail in this chapter. In particular, we focus on CHF as a significant
example for the benefits of telemonitoring and medical intervention, including reduction of cost of
care and reduction of readmission rates. It is an impossible job to give justice to all the studies on
telemonitoring while remaining brief. Therefore, we elected to summarize the findings of several
systematic review studies in the field. We refer interested readers to the cited papers, and the
references therein, for more details.

Telemonitoring in general, and for CHF purposes in particular, is older the inception of mHealth
as a field. For example, In a randomized clinical trial that spanned from 2006 to 2009, Chaudhry
et al. [2007] accomplished telemonitoring using a voice-response system that called patients with
CHF, daily, to inquire about their symptoms and weight. There were 826 patients in the treatment
group (to which telemonitoring was provided) and 827 patients in the control group (which received
the usual care). The treatment group patients’ physicians then proceeded to review the collected
data to assess the risk of clinical deterioration and subsequently decide on medical intervention.
Chaudhry et al. [2010] reported no significant differences in readmission or mortality rates within
180 days of enrollment, between the two groups.

As stated earlier, in the interest of brevity, we will focus mostly on systematic reviews of
randomized clinical trials of telemonitoring in patients with CHF. Clark et al. [2007] published a
systematic review of 14 of such randomized controlled trials. In these trials, 4262 total patients
with CHF participated. The review reported an average reduction in CHF-caused readmission by
21% and an average reduction in all-cause mortality by 20%. The 95% confidence intervals were
11% − 31% and 8% − 31%, respectively. It is noteworthy to mention that only 1 study collected
information about daily physical activity, self-reported through means of telephone contact by
a nurse. Moreover, only five of the reviewed studies collected daily information about vital signs
(such as blood pressure, heart-beat rate and/or periodic electrocardiogram, or weight), for of which
collected symptoms-related information as well (such as fatigue or shortness of breath).

In another review, Inglis [2010] reported on the findings of 30 studies of telemonitoring in
patients with CHF. Similar to the trends observed from the previous reviews, only two studies
contained a notion of activity monitoring in their protocol. In one of them, the activity monitoring
of subjects was achieved through provided activity monitors that were only used for self-monitoring
by subjects. That is, the activity data were never submitted to the medical team for analysis or
intervention-decision-making [Galbreath et al., 2004]. The other study, a structured telephone
support study that was included in the systematic review by Clark et al. [2007], only collected
self-reported daily physical activity about the participating patients.

In yet another review, Giamouzis et al. [2012] analyzed 12 trials of telemonitoring in patients
with CHF. Two of the studies analyzed by Giamouzis et al. were included in the review by Clark
et al.. The review reported on these studies, discussing their characterestics and the significance of
their findings. We note that although some of the reviewed studies by Giamouzis et al. collected
self-reported physical activity data, no reviewed study collected quantitative activity data (such
as energy expenditures (EE)) [Giamouzis et al., 2012].

In a more recent randomized clinical trial, Ong et al. [2016] reported no significant differences
in 180 or 30-day readmission rates or 180-days mortality rates. The trial was conducted with
1437 patients with CHF, where 715 patients were assigned to the treatment group and 722 were
assigned to the usual care group. The patients in the treatment group were subject to interventions
that combined health coaching telephone calls and telemonitoring through electronic equipment
that collected daily information about blood pressure, heart rate, symptoms and weight. The
study further reported significant improvements in 180-days quality of life for the patients in the
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treatment groups [Ong et al., 2016].
We note from our literature review, that although physical activity is an important marker in

assessing the risk of clinical deterioration in CHF, no study from the surveyed above included a
continuous and quantitative way to remotely monitor patients’ physical activity levels. We review
various means of continuously measuring of physical activity, that can be applied to mHealth
telemonitoring systems in Section 2.2.3. We also note that many of the studies surveyed above relied
on structured telephone support to accomplish telemonitoring, perhaps indicating the difficulty to
build reliable means of autonomous telemonitoring, which is the issue we address in this chapter.

2.2.2 Mobile Health (mHealth)

In this chapter, we are interested in the design of telemonitoring systems in general, and those
that are implemented on top of mobile systems in particular. Therefore, we briefly review the field
of mHealth and some of the advancements in smartphone-related technologies related to health
and fitness monitoring and coaching. Similar to the field of clinical telemonitoring in patients with
CHF, this field is also very comprehensive in contributions. Therefore, we elected to summarize
the findings of a comprehensive review by Hussain et al. [2015], which included 133 articles in the
field of mHealth from IEEE Xplore, MEDLINE, ScienceDirect and Web of Science [Hussain et al.,
2015]. Interested readers are referred to the paper and the references therein for more details.

Hussain et al. surveyed the trends of using smartphone apps for clinical, medical and fitness
purposes, since the beginning of 2010. They found that the majority of articles in the field (68
out of 133) either addressed specific medical apps or provided an overview of apps dedicated to
a specific disease area, or a specific clinical specialty or tool. Examples of these specific areas
include i) anesthesia, ii) asthma, iii) cardiology, iv) cardiopulmonary resuscitation (CPR), v) den-
tistry, vi) dermatology, vii) endocrinology, viii) family medicine, ix) infectious diseases, x) internal
medicine, xi) oncology, xii) ophthalmology, xiii) palliative medicine, xiv) pediatrics, xv) pharmacy,
xvi) psychiatry, xvii) public health, xviii) rehabilitation, xix) sports medicine. xx) surgery (in-
cluding plastic surgery) and xxi) women’s health. It is clear, from the list above, that the field of
mHealth is gaining traction and is becoming ubiquitous in terms of its applications.

Hussain et al. identified that a large group of surveyed articles (43 out of 133) were concerned
in reporting on the design aspects and usability of clinical, medical and fitness apps. The methods
used in these articles included evaluating existing apps or identifying requirements and features
of mHealth applications. In a similar category, 17 articles (out of 133) were found to report on
the lessons learned in the process of developing and implementing new clinical, medical and fitness
apps. The rest of the reviewed articles (5 out of 133) were focused on general frameworks aiming
to address mHealth development and operation.

To situate this chapter in the aforementioned categories, it essentially fall under all of these
categories. We discuss specific medical and fitness apps for a specific purposes–the CHF study app
and the RunningCoach app. We report on the design and usability of these apps and we discuss
the lessons learned in the process of developing these apps. Finally, we focus on systematically
addressing the challenges faced during the design of these apps in a general mHealth framework,
the Berkeley Telemonitoring framework.

Finally, we note that Hussain et al. emphasized in their report that i) the development of
medical apps is not standardized, resulting in a relatively small number of researchers developing
medical apps; and ii) medical apps need clinical validation. We also believe that mHealth systems
need to be standardized in order to ignite further progress in the field. Furthermore, we believe
that standardization will assist in the effort of clinical validation. In Section 2.5, we discuss several
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commercial platforms that attempt to standardize the development and operation of mHealth
systems. Afterwards, we outline the outstanding challenges and introduce our contribution to the
efforts of standardization, the Berkeley Telemonitoring project.

2.2.3 Quantitative Measurement of Physical Activity

Physical activity is an important factor in preventing several chronic diseases, including CHF,
hypertension, diabetes, obesity, cancer, osteoporosis and depression [Warburton et al., 2006]. From
our review of studies of telemonitoring in Section 2.2.1, it was evident that many studies don’t
collect objective data on physical activity. The few studies that attempted to collect some form
of physical activity data, did so through self-reported means. This approach, as simple as it is,
suffers from major issues when it comes to the reliability of the collected data. For instance, an
expert report by Dhurandhar et al. [2014] argued that such self-reported data on physical activity
are too inaccurate to be used for clinical purposes [Dhurandhar et al., 2014].

As such, it is vital for telemonitoring systems to incorporate means for the collection of objective
measures of physical activity. It has been demonstrated in a range of health and fitness applications
that an objective measure of physical activity has the potential to encourage individuals to initiate
and maintain a healthy lifestyle for a longer periods of time [Klaassen et al., 2013]. In general,
physical activity can be quantified by estimating EE. In this section, we review the different efforts
in the field of measuring activity levels quantitatively. One line of research efforts attempts to
incorporate physical activity sensing capabilities in daily-use products such as clothing [Axisa
et al., 2003; Lee and Chung, 2009].

In the commercial domain, various products for EE data collection are available for use. Some
examples include Fitbit Activity Wristbands and Trackers1, Nike+ FuelBand2 and others. In the
realm of validating these devices, multiple research studies argued that many of these devices are
accurate only in step-counting, but are inaccurate in estimating EE [Pande et al., 2013; Dannecker
et al., 2011]. In a more recent study, Case et al. found that smartphone apps can be more
accurate even in counting steps than some of the wearable devices [Case et al., 2015]. We conclude
that it is vital to include sensor-accuracy models in any system for predictive medicine such as
telemonitoring.

In addition, many of the commercial wearable devices for EE measurement require the use of a
smartphone. Therefore, if they are to be used in telemonitoring systems, their use would likely not
eliminate the use of a smartphone. Since smartphones are now ubiquitous (at least in the developed
world), we argue that it is feasible to achieve an objective and accurate continuous measurement
of EE using a smartphone only [Patel et al., 2015]. With that in mind, it is still important to
design such a measuring module without incurring a heavy cost on battery life, because it would
otherwise be a limiting factor in adopting such a technology [Alshurafa et al., 2015].

In particular, most (if not all) modern smartphones are equipped with accelerometers that
are used in a range of applications and studies for the purposes of physical activity monitoring,
recognition and classification [see Donaire-Gonzalez et al., 2013; Pande et al., 2013, for example].
These applications and studies have provided evidence to the reliability of EE estimation using
a smartphone only [Pande et al., 2013]. In the next section of this chapter, we describe a study
that we conducted, in collaboration with NMFF, in order to understand the requirements of
telemonitoring systems [Aranki et al., 2016b]. In this study, we included continuous EE estimation

1http://www.fitbit.com/
2http://www.nike.com/us/en_us/e/nike-plus-membership

http://www.fitbit.com/
http://www.nike.com/us/en_us/e/nike-plus-membership
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using a smartphone only; an algorithm developed by Chen and Sun [1997] and validated by Donaire-
Gonzalez et al. [2013]. The aforementioned algorithm relies entirely on the built-in accelerometer
sensor available on the smartphone.

2.3 Intervention

One of the key aspects of the predictive healthcare model is the ability to act based on the
predictions made. Therefore, we now turn to discuss the notion of medical intervention. There are
two main categories of medical intervention. First, health-behavioral interventions are intended
to motivate patients to start and maintain health-improving activities. The second category of
interventions are preventive interventions, which are geared towards discouraging behaviors that
are detrimental to the patient’s health [Spring et al., 2013]. The origins of health-behavioral
interventions stem from theories in social sciences (c.f. positive reinforcement). These theories
relied, for the most part, on observational studies and self-reported data.

The type of medical intervention relies on the health-risk assessment that is extracted from the
data by using health-behavioral and predictive models [Chih et al., 2014]. Because of that, moni-
toring is key to the efficacy of the intervention. this monitoring should not only consist of initial
observations to initiate medical intervention, but also to monitor the effects of the intervention for
further refinement. Spring et al. [2013] characterized this process by 4 Ms : monitoring, modeling,
motivating, and modifying [Spring et al., 2013].

We argue that real-time telemonitoring through mobile technologies enables us to revisit the
notion of health-behavioral modeling. Now more than ever, we are able to collect objective esti-
mates of health-related parameters, such as vital signs, EE and phone usage. In addition, we can
fuse these objective measurements with more subjective pieces of information, such as emotion-
al/mental state, pain and energy level. This mixture can help us better understand and construct
health-behavioral and predictive models, and better assess the effectiveness of a given medical
intervention. It is important to note that such models have to be dynamically adapted since the
patient’s behavior changes over time. Given this dynamic nature of behavioral changes, motivation
becomes a stronger aspect of changing and maintaining healthier behaviors [Spring et al., 2013].
Including aspects from personalized medicine are also important in the intervention process This
is because each individual is motivated in a particular way.

Evaluating health and medical interventions as delivered through smartphones has been the
subject of various studies in various applications. These applications include i) physical activity
[Burns et al., 2011]; ii) depression [Burns et al., 2011]; iii) promoting weight loss [Martin et al.,
2015]; and iv) schizophrenia [Ben-Zeev et al., 2015].

2.4 CHF Study

2.4.1 Introduction

Given the vast potential of telemonitoring, we wanted to better understand the requirements and
usability of such a technology, and elected CHF as a field with a large potential benefit. Therefore,
in 2012, we designed a pilot study for telemonitoring in patients with CHF, for that purpose.
Moreover, given the lack of telemonitoring studies collecting objective measures of physical activity,
we decided to include a collection of EE estimates in the telemonitoring application. This study,
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Figure 2.2: (a) The architecture of the CHF study system; (b) the CHF study dashboard main
menu; (c) The CHF telemonitoring app; (d) minute-by-minute EE estimates, overlaid by the
classified state of the phone; and (e) daily average EE estimates, bars depict daily averages while
the line depicts moving 7-day averages.

to our knowledge, was the first in the field of telemonitoring in patients with CHF to collect
continuous measurements of EE.

The architecture of the designed telemonitoring system is depicted in Figure 2.2a. Note that
the system design conforms to the workflow of the predictive healthcare model, as depicted in
Figure 2.1. In short, the workflow of the designed system consists of i) data collection, using a
smartphone telemonitoring app (EE, vital signs and symptoms); ii) submission of the collected data
from the smartphone to a central server; iii) analysis of the data to provide risk assessment, using
a simple predictive model designed by the cardiologists in the team; and iv) medical intervention,
delivered through the telemonitoring app.

The telemonitoring app was designed for Android phones running API level 9 or above (Android
2.3 GINGERBREAD or above).3 A screenshot of the app is depicted in Figure 2.2c. The backend
consisted of a server running a MySQL database for data storage. A screenshot of the backend’s
dashboard, available to the medical staff, is depicted in Figure 2.2b. The communication between
the telemonitoring app and the server was carried over Secure Sockets Layer (SSL) for encryption.
In this section, we summarized the challenges faced in the design of this system and the findings
of the study. We will elaborate more on the privacy and acceptability aspects of this study in
Section 3.2.2. For more details on this study, we refer the reader to [Aranki et al., 2016b].

The study was approved by the Institutional Review Board at NMFF and was carried out
between July 2013 and May 2014. During that time, 34 patients with CHF were approached
for enrollment in the study, and 15 patients accepted to participate. The demographics of the
participating subjects are reported in Table 2.1. Our protocol was designed to monitor each
patient for a period of 3 months. In practice, some patients elected to participate for a longer
period of time, and others elected to quit the study before the end of that period.

3https://developer.android.com/guide/topics/manifest/uses-sdk-element.html

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
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Count

Gender
Male 8

Female 7

Race/Ethnicity
Black or African-American 12

White, non-Hispanic 3

Education

High-school or less 3
Beyond high-school, < 4 years of college 8

4 year college graduate 1
Graduate school 3

Household income

Prefer not to say 5
< $5000 2

$5000− $14999 4
$20000− $49999 2
$50000− $59999 1
$60000− $99999 1

Table 2.1: The demographics of the subjects.

2.4.2 Collected Data

To give context to the reporting on this study, we first iterate over the different types of data
collected in this study. The first category of collected data is health-related data. In this category,
we collected minute-by-minute EE estimates, based on an algorithm developed by Chen and Sun
[1997]. Example plots of EE data are depicted in Figures 2.2d and 2.2e. Moreover, we collected, in a
self-reported fashion, daily information about the subjects’ symptoms (dizziness, fatigue, shortness
of breath, chest discomfort and activity level) and vital signs (heart-beat rate, blood pressure and
weight).

In order to better understand the usability of the telemonitoring app, we also collected minute-
by-minute phone-related data such as the battery level, whether the phone is charging and whether
the screen light is on. The list of variables collected in this study are listed in table Table 2.2.

Among other things, the phone-related data were used to assess the status of the phone in
order to tag the EE data for reliability. That is, we were interested to be able to tell when the
phone is actually on the subject’s body versus when it is not, in order to know when the EE data
are reliable. The health-related data, on the other hand, were used to assess the level of risk of
clinical deterioration.

This assessment was done through calculating a risk score based on the health-related data,
once a day. The design of this risk score formula was done by cardiologists who were part of
the research project. The risk score captures the presence and severity of the symptoms collected
[Remme and Swedberg, 2001; Swedberg et al., 2005]. It also captures the absolute values of systolic
blood pressure and heart-beat rate, and the relative weight compared to the day before.

Depending on the range of the resultant risk score, the patients received a message, daily. The
messages ranged from encouraging the patient when the estimated risk is low to urging the patient
to take immediate action, including calling 911, if the estimated risk is too high. The way the
risk score calculation was designed, the higher the score the higher the estimated risk of clinical
deterioration is. The different messages of intervention, depending on the different ranges of risk
scores, are reported in Table 2.3.
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Health EE estimate (aggregated)

Phone

Tri-axial magnetic field (averaged)
Gravity pointer (averaged)
Tri-axial phone orientation (averaged)
Tri-axial phone rotation (averaged)
Battery level (averaged)
Screen light (% of minute with light on)
Proximity (% of minute with an object close to the phone)
Call status (% of minute a call was in session)
Charging status (% of minute with phone charging)
GPS, longitude is shifted
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Symptoms

Level of fatigue
Level of shortness of breath
Level of dizziness
Level of chest discomfort

Activity Level of activity

Vital signs
Heart-beat rate
Blood pressure
Weight

Table 2.2: Data collected by the CHF telemonitoring app.

2.4.3 Study Findings

In this section, we briefly report on the findings of the CHF study. The full details of these findings
can be found in [Aranki et al., 2016b]. After enumerating the study findings, we will summarize
them, in conjunction with the challenges faced while designing the telemonitoring system. This
summary (Section 2.4.4), in essence, serves as a set of lessons learned that will guide our design of
the general telemonitoring framework, the Berkeley Telemonitoring framework.

Reaction to Intervention One of the findings of the study was that subjects’ behavior as a
result of intervention is neither uniform nor static. In other words, different patients react to
the same intervention differently under similar circumstances, and the same patient may react
differently to the same intervention. In the case of this study, we observed that some subjects
complied and called for medical attention when prompted to do so, while others did not. Moreover,
we observed, in the case of one subject, that she or he did not originally take the suggested action
in the intervention. The patient was readmitted to the emergency room shortly after her or his risk
score came too high. Afterwards, the same subject started better following the suggested action
in the intervention after high risk scores. These observations are in line with our discussion from
Section 2.3.

Adoption and Usage Fatigue Another interesting result from the CHF study is that the
patients’ willingness to use the technology wears off with time. We refer to this phenomenon by
usage fatigue. To be precise, we consider usage fatigue to be the decrease in the proper usage of
the technology over time. In the study, we devised a quantitative measure for usage fatigue and
used it to quantify this phenomenon.
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Score
Range

Feedback Text

≥ 4 Please page the on-call cardiologist at 312-695-XXXX or call 911
for immediate attention if needed. Your responses suggest a need
for quick evaluation.

3 Please contact the Heart Failure Clinic at 312-695-XXXX. Your
responses suggest the need to check in now.

1− 2 Thank you for your response! If you are feeling worse, please con-
tact the Heart Failure Clinic at 312-695-XXXX.

≤ 0 Thank you for your response! Your results appear stable, overall.
Please remember your diet and exercise goals!

Table 2.3: The intervention message, depending on the estimated risk of clinical deterioration.

Data Plan Consumption Identifying that excessive cellular data plan consumption may be a
prohibitive factor in adopting an mHealth technology, we designed the telemonitoring to be mindful
of its use of cellular data. We validated our design in a laboratory test, which had the following
setting. The telemonitoring app embedded packets of 30 data points per transmission. Each data
point is 1 minute worth of telemonitoring data. The size of each transmission (including failure
recoveries) had a mean of 19.15 kB and a standard deviation of 1.6 kB. There are at most 1488
packets a month (assuming full-time monitoring for 31 days). If we assume all transmission sizes
are independent, we get that the monthly data consumption (sum of all individual transmission
sizes) is normally distributed with a mean of 27.82 MB and a standard deviation of 2.33 MB. From
this we conclude that the probability of consuming more than 35 MB in a month is less than 1%.

Battery Consumption Battery consumption is a key aspect for adoption. During the study,
some subjects complained about short battery life due to the telemonitoring app. Other subjects
reported no battery consumption issues when asked. It is important to mention i) that all subjects
were provided the same phone make and model by the study; and ii) that we had tested battery
consumption before the deployment of the study. During these tests, we found that the phone’s
battery consistently lasted more than 20 in standby mode. Our hypotheses for the reported
high battery consumption issues included i) low cellular signal coverage, which increases battery
consumption; ii) multiple sessions of non-full battery recharging a day may give the impression of
high battery consumption; and iii) high usage of the phone for purposes that are not related to
the study (such as, surfing the web or playing multimedia). As examples of the different charging
and usage behaviors, we display two of the patterns of charging and battery consumption from the
subjects of the study in Figures 2.3a and 2.3b. “Phone in use” indicates that the phone is currently
being actively used (either a phone call, or the screen is on).

2.4.4 Challenges and Lessons Learned

Proper Authorship Perhaps the largest leap in designing ubiquitous systems in general, and
telemonitoring systems in particular, is that they operate in real-world conditions. That is, the
users will use these technologies in their home, commute, workplace, etc. Many of the assumptions
made during the design phases of these systems are primarily validated in laboratory conditions
only. For example, in this study, the EE estimation algorithm used in our system assumes that
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Figure 2.3: Excerpts of battery recharging and consumption patterns of (a) subject 1012 over
the course of three days; and (b) subject 1013 over the course of 17 days.

the phone is worn at the waistline, on the right hip [Chen and Sun, 1997; Donaire-Gonzalez et al.,
2013].

When the system is deployed, however, this assumption needs to be validated, so that the
reliability of the collected data can be assessed. For example, if the phone is left on the table, the
resulting EE estimates should not be trusted. This is particularly important when such data are
used to assess risk of hospitalization or take decisions about medical intervention. Therefore, we
argue that proper authorship is a challenge that needs to be addressed systematically. For instance,
when designing a vital sign estimation algorithm, we need to design validation algorithms that can
detect when the design assumptions of the estimation algorithm are violated.

Compliance and Usage Fatigue As discussed earlier, patients’ compliance is another challenge
in deploying telemonitoring systems. Their willingness to use the technology tends to decrease over
time. We refer to this phenomenon by usage fatigue. We observed that patients started using the
technology less and less as time passed by. From the subjects’ feedback in this study, it became clear
that the technology is passive. Therefore, we argue that a better understanding of incentives, user
interfaces and user feedback can greatly benefit long-term compliance for telemonitoring systems.

Reliability and Objectiveness of Data Health-related markers that are to be used in risk
assessment and intervention decision making have to be as reliable and objective as possible. This
resonates with the expert report published by Dhurandhar et al. [2014], which argued that subjec-
tive, self-reported data on activity levels are too unreliable for clinical use. Instead, telemonitoring
systems have to incorporate estimation algorithms that rely on sensory data. Moreover, reliability
and objectiveness models are vital, particularly if these systems are to be scaled for a large number
of patients. These models have to be incorporated in the predictive models that are responsible
for the intervention decision making process.

Physio-behavioral Models During the study, we observed that the reaction of patients to
medical intervention is neither uniform nor static. As discussed earlier, this means that different
subjects may react differently to the same intervention even under similar circumstances. Moreover,
the same subject may behave differently, in response to a medical intervention, under different
circumstances.
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Therefore, models that rely solely on physical parameters are not sufficient for predictive models
and the intervention decision-making process. In addition to physical parameters, behavioral
markers should be incorporated into these models and processes. We refer to these models as
physio-behavioral models. These models can greatly assist in increasing the efficacy of medical
intervention, as discussed in Section 2.3. These models are not trivial to construct and validate
and will require large behavioral studies.

In summary, in order to scale telemonitoring systems, manual intervention decision making
will not be sufficient, and autonomous expert systems have to replace them. For those to work
effectively, physio-behavioral models have to be developed.

Privacy Perhaps one of the most challenging aspects of developing health technologies, and
certainly one of the ethical issues involved, is the protection of privacy. Telemonitoring technologies
have to be minimally intrusive to the monitored user and to other individuals this user interacts
with (e.g., co-workers and family members). That is, telemonitoring should in general only collect,
analyze and retain data in order to achieve its set medical goals, and not more.

We believe that a firm understanding of the privacy requirements of telemonitoring systems
and implications of their design is vital to its ethics and success. We discuss this challenge in great
detail in Chapter 3.

2.5 Commercial Solution

2.5.1 Introduction

As a result of the CHF study, we now turn to systematically address the challenges faced in its
design and the lessons learned as a result of conducting it. Before we move to describing our
solution to standardizing mHealth telemonitoring, we first survey the field for similar attempts
to standardize mHealth and/or telemonitoring. In Sections 2.5.2 to 2.5.5, we briefly describe the
key platforms in this realm and then move to summarizing the challenges that remain open in
Section 2.6. This will provide us the necessary context to describe the Berkeley Telemonitoring
project and its resultant framework.

2.5.2 Samsung Digital Health and S Health

In July 2012, Samsung released their health platform S Health alongside the release of their Android
phone, Galaxy S III. S Health was later renamed to Samsung Health in April 2017. Originally,
their intention was to provide a compatible wellness platform that is able to communicate with
blood pressure monitors, glucose meters and body composition scales. Samsung later released
the Samsung Digital Health software development kit (SDK) to third-party developers for the
development of wellness apps, compatible with Samsung Health.

The core features of Samsung Health are as follows. First, the platform provides mechanisms
for sharing data between sensors and various consumer applications for a multitude of uses, includ-
ing coaching, and social interaction. In its dashboard, depicted in Figure 2.4a, Samsung Health
summarizes the data obtained from the various wellness apps and provides different visualizations
including graphs and tables.

Samsung Health was originally limited to Samsung Galaxy devices. However, Samsung ex-
tended the support of Samsung Health in September 2015 to include all devices running Andorid
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(a) (b) (c)

Figure 2.4: (a) A screenshot of the Samsung Health summary screen; (b) a screenshot of the
Apple Health activity tracking screen; and (c) a screenshot of the Google Fit activity tracking
screen.

4.4 (KitKat) or newer. Moreover, Samsung has built multiple collaborations with academic re-
searchers in the field that aim to “accelerate the validation and commercialization of new sensors,
algorithms, and digital health technologies” for preventive medicine.4 For example, in 2014, Sam-
sung and University of California San Francisco (UCSF) establishing the UCSF-Samsung Digital
Health Innovation Lab. As part of the announcement of establishing this lab, Samsung released
their open hardware platform Simband, which aims to enable developers to design their own wear-
ables that include measurements of electrocardiogram (ECG), heart-beat rate and other variables.
These sensors were also being validated in collaboration with UCSF [Bloss, 2015].

As for the server side, Samsung Health takes advantage of Samsung ARTIK Cloud 5 (formerly
known as SAMI), which would enable large-scale clinical trials and epidemiological studies. This
framework can provide researchers with capabilities to collect, securely store, view, and analyze
data in real-time. However, at the time of writing this dissertation, Samsung does not have a
platform designed for clinical trials specifically.

2.5.3 Apple Health, ResearchKit, and CareKit

In September 2014, Apple released the Health app, with the HealthKit application programming
interface (API). This is, in a way, Apple’s response to Samsung Health. Apple Health provides
users access controls for allowing or denying apps from accessing health and fitness data. Apple
Health is designed to collect health and fitness data including calories burned, blood pressure,
heart-beat rate and blood sugar. Similar to Samsung Health, Apple Health provides a dashboard,
depicted in Figure 2.4b, that summarizes the collected data and visualizes them in a user-friendly
manner.

As opposed to Samsung, Apple did release an open-source framework, ResearchKit, for the col-
lection of health-related data targeting clinical and medical research [Apple Inc, 2016]. ResearchKit
was released in March 2015, with the release of Apple Watch. The framework is designed to enable
researchers to develop their own apps for data collection from i) surveys and self-reported vital

4https://www.ucsf.edu/news/2014/02/111976/samsung-ucsf-partner-accelerate-new-innovations-

preventive-health-technology
5https://artik.cloud/

https://www.ucsf.edu/news/2014/02/111976/samsung-ucsf-partner-accelerate-new-innovations-preventive-health-technology
https://www.ucsf.edu/news/2014/02/111976/samsung-ucsf-partner-accelerate-new-innovations-preventive-health-technology
https://artik.cloud/
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signs; ii) Apple Health, provided the user’s permission; and iii) movement, based on the phone’s
internal sensors and/or wearable devices [Jardine et al., 2015]. Given the ubiquity of smartphones
in the developed world, ResearchKit aims to streamline health-related data collection in an effort
to accelerate medical research, such as epidemiology.

With the release of ResearchKit, Apple simultaneously announced five studies that utilize
ReseachKit-built apps. The first apps based on ResearchKit were (1) mPower app (University of
Rochester and Sage Bionetworks) for tracking symptoms in Parkinson’s Diseases, (2) GlucoSuccess
app (Massachusetts General Hospital) to track diet, physical activity, and medication in persons
with diabetes, and (3) Asthma Health app (Mt. Sinai, Weill Cornell Medical College, and LifeMap)
for collecting asthma related markers, (4) Share the Journey app (Dana-Farber Cancer Institute,
UCLA Fielding School of Public Health, Penn Medicine, and Sage Bionetworks) to study quality
of life of patients treated for breast cancer, (5) MyHeart Counts app (Stanford University and
American Heart Association) to study risk factors for cardiovascular disease [Taylor, 2015]. More
studies have been announced since then, including CTracker that aims to understand the impacts
of hepatitis C in daily life, the Autism & Beyond ResearchKit app for autism and the Mind Share
app that aims to study Alzheimer’s disease.

An important aspect of ResearchKit is its ability to provide an electronic version of consent for
research studies. We will elaborate further on the consent issues in general in Chapter 3, but in
essence, this enables ResearchKit to allow researchers a greater outreach to subjects. For example,
within 24 of its release in March 2015, the MyHeart Counts app gained over 10,000 participants
[AppleInsider Staff, 2015]. On the other hand, this has raised a multitude of ethical concerns,
including research on minors, privacy and potential issues with the consent being an informed
consent process [Hunter, 2015]. It is important to note that even though ResearchKit provides
encryption for data storage and transmission, the onus of complying with health regulations–such
as Health Insurance Portability and Accountability Act (HIPAA) in the United States of America
(US)–falls on the researchers conducting the study [Ritter, 2015].

Finally, Apple released CareKit, in March 2016, an open-source framework targeting self-
management of diseases by the patients. CareKit enables developers to build apps that allows
patients to actively monitor their conditions and share relevant data with their caregivers. Two
of the early examples of apps designed using CareKit include i) Parkinson’s Central (by National
Parkinson Foundation, Inc.) that allows patients with Parkinson’s disease and their physicians to
track symptoms and medications; and ii) One Drop (Informed Data Systems, Inc.) app for dia-
betes management. More recently, other apps that are built over CareKit have been announced for
conditions including mental health management, post-surgery progress management and maternal
health management.

2.5.4 Google Fit

In October 2014, Google released Google Fit, a health-tracking platform for the Android oper-
ating system Similar to Samsung Health and Apple Health, Google Fit addresses the collection
and aggregation of health and fitness-related data from popular trackers and health-related apps.
Google Fit utilizes both internal smartphone sensors and external wearable devices to count steps
and classify exercise activities, such as running, walking and cycling. Google Fit also provides a
dashboard, depicted in Figure 2.4c, which allows the user to view her or his data in a centralized
location by visualizing the data in a user-friendly way.

Ensuing Samsung and Apple’s announcements regarding their interest in clinical research,
Google announced, in June 2015, that its research division has developed a health-tracking wrist-
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band that is designed for clinical and drug trials [Chen and Womack, 2015]. The wristband is
designed to measure minute-by-minute markers including skin temperature, heart-beat rate, noise
levels and light exposure. At the time of writing this dissertation, no further information has been
released regarding this effort.

2.5.5 Other Commercial Platforms

Several other (and smaller, in market share) commercial mHealth frameworks exist in the market.
In October 2014, Microsoft released Microsoft Band and Microsoft Health, the company’s wearable
device and health-tracking platform, respectively. Microsoft Band, in conjunction with Microsoft
Health, allows users to collect and view their fitness and health data, including sleep quality,
workouts and step counts. Since 2014, Microsoft Health has broadened its support to include
other wearables. Moreover, Microsoft Health is now able to connect to partner apps, such as
i) MyFitnessPal, ii) Strava, iii) RunKeeper, and iv) MapMyFitness. Microsoft released an SDK
for developers, that takes advantage of the Microsoft Health Cloud API. This, in turn, allows
developers to access the measurements collected by the smartband by utilizing Microsoft’s cloud
and the tools therein.

Another examples of a mHealth and mobile fitness platform is Under Armour’s Under Armour
Connected Fitness6 and its app UA Record. This platform enables the collection of data related
to activity, workouts, and sleep from third party devices and internal smartphone sensors. Under
Armour Connected Fitness also includes social networking features that enable users to share and
compare their data with their friends, as well as participating in customized fitness and health
challenges. This platform is accompanied by an SDK for developers. In addition to the software
platform, Under Armour also released a hardware bundle, called UA HealthBox, which includes a
wristband, a scale and a chest heart-beat rate monitor that allows users to collect sleep, nutrition
and activity related data.

Boiling down to apps with specific purposes, several wearable manufacturers designed apps
that aim to extract data from their wearables, enabling users to track their progress over time,
and share collected data with other users. Although these apps are standalone apps, some of them
can also connect to all or some of the major framework, such as Samsung Health, Apple Health
and Google Fit. Three such examples are i) FitBit7, ii) Nike FuelBand8, iii) Pebble watch9, and
iv) JawBone10.

A taxonomy summary of the different mHealth frameworks presented in this section can be
found in Table 2.4. We include the Berkeley Telemonitoring framework that will be presented
in Section 2.7, for completeness. Next, we survey the open challenges in the field of mHealth
in general, and mHealth telemonitoring in particular, providing context to our framework, the
Berkeley Telemonitoring framework.

2.6 Challenges

The commercial platforms and frameworks described in Section 2.5 constitute a step forward
towards achieving the full potential of mHealth telemonitoring. However, many challenges remain

6https://www.underarmour.com/en-us/ua-record
7https://www.fitbit.com/
8https://www.nike.com/us/en_us/c/nike-plus
9https://www.pebble.com/

10https://jawbone.com/

https://www.underarmour.com/en-us/ua-record
https://www.fitbit.com/
https://www.nike.com/us/en_us/c/nike-plus
https://www.pebble.com/
https://jawbone.com/
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open in this realm. In this section, we describe some of these challenges, in order to give context
to the Berkeley Telemonitoring project and its framework (Section 2.7).

Clinical Challenges There is currently a lack of involvement of qualified healthcare professionals
in the design, development and deployment of mHealth systems in general, and telemonitoring
systems in particular [Hussain et al., 2015]. As a result, there is also a lack of validation for
the clinical efficacy and effectiveness of such systems. Moreover, more research in evaluating the
clinical outcomes of mHealth systems is also needed [Eng and Lee, 2013; Aranki et al., 2016b].
Most research projects focus on the benefits and positive effects of mHealth systems, but not
as many focus on the negative effects of such systems. These studies can greatly contribute to
building predictive models that incorporate behavioral trends and markers (what we called physio-
behavioral models in Section 2.4.3), which are necessary for the effectiveness of mHealth systems
[Eng and Lee, 2013; Hussain et al., 2015; Aranki et al., 2016b].

Even though there seems to be a vast amount of mHealth systems, frameworks and devices
that enable the collection of data, there is a noticeable gap in clinically verified autonomous expert
systems that can provide timely feedback and decide on clinical intervention, based on the such
data [Aranki et al., 2016b,a]. Particular to mobile-based systems, but also applicable to general
ubiquitous-like telemonitoring systems, there is a challenge of validating that the data indeed apply
to the intended monitoring subject, and not someone else who happens to be in the vicinity of the
telemonitoring system (we referred to this challenge by the challenge of proper authorship). Tools
that can enable us to identify such scenarios and avoid them are needed [Aranki et al., 2016b]. We
provide more context to this challenge in Chapter 3.

Systems and Standardization Challenges There is a need for a regulatory framework that
standardizes the design and development of telemonitoring and mHealth systems [Hussain et al.,
2015]. The lack of standardization results in a noticeable change in interfaces between mHealth
platforms and existing healthcare systems, such as electronic health records systems and databases
[Hussain et al., 2015]. The lack of smooth integration, particularly in user interfaces, results in a
bad user experience that affects the usability of mHealth systems for patients. These challenges
include (a) patients interest in using these systems wears off over time (we called this challenge
“usage fatigue” in Section 2.4.3); (b) patients have to climb through a learning curve with each
new mHealth systems; and (c) lack of seamless integration creates a bias against patients in rural
areas due to poor cellular coverage [Hussain et al., 2015; Aranki et al., 2016b]. For example, in
practice, a roadblock in adopting such systems by healthcare providers is the lack of integration
with existing reimbursement and healthcare delivery systems; a problem that can be, in part, due
to the lack of standardization [Eng and Lee, 2013; Hussain et al., 2015].

As a result of many of these challenges, most mHealth frameworks and systems, including
telemonitoring ones, enable consumers to collect data related to a specific task, but do not deliver
standard medical quantities that are based on the collected data. As an example, many frameworks
allow developers to estimate step counts from accelerometer data, but do not provide estimation
algorithms that output medical quantities such as EE based on the same data. Most often the time,
whenever a commercial platform supplies such an estimation ability, they do it in a proprietary
manner, which results in i) making its use limited to the company’s products; and ii) making it hard
to clinically validate and compare different means to estimate the same medical parameter due to
lack of transparency. This lack of transparency and standardization also limits the unification of
data collection and sharing data between different studies that use different estimation mechanisms
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because it would otherwise hinder drawing reliable conclusions if one is not careful. These problems
are not confined only to estimates of complex health parameters and are present in even simpler
ones like step counting [Case et al., 2015].

Legal and Ethical Challenges Some of the challenges in deploying an effective mHealth frame-
work span beyond scientific or technological boundaries. For instance, the delivery of informed
consent through mobile means is a challenging aspect of designing mHealth technologies, specially
for clinical research purposes. This challenge is even magnified when these clinical studies target
a large number of subjects, as is the case with those conducted using Apple ResearchKit [Hussain
et al., 2015; Hunter, 2015]. As of July 2017, a clinical study by Duke University is being designed
aiming to compare the standard informal consent process to the modular consent process offered
in Apple ResearchKit.11 There are also concerns, in the scientific community, that some mHealth
frameworks, such as Apple ResearchKit, come with an inherent bias due to the demographics of
people using specific smartphones in general, and specific smartphone platforms in particular (such
as Apple iOS, in the given example) [Jardine et al., 2015]. We elaborate more on some of these
issues in more detail in Chapter 3.

Administrative Challenges When developing new mHealth systems or interfacing them to
existing health systems, the financial cost is often a discouraging factor that impedes their de-
velopment and adoption [Hussain et al., 2015; Boulos et al., 2014]. This magnifies the need for
standardization in the field, which may allow faster and cheaper development and integration of
such systems, thus alleviating this challenge. Security and privacy-protection constitute another
challenge in deploying mHealth systems. Hussain et al. argue that there is little research being
done on privacy of mHealth systems relative to the amount of research being carried on the privacy
of more traditional healthcare technologies, such as electronic health records [Boulos et al., 2014;
Hunter, 2015; Hussain et al., 2015; Aranki et al., 2016b]. Most mechanisms currently adopted in
mHealth systems to protect consumer privacy revolve around access control and granting or re-
voking permissions (e.g., Apple HealthKit and ResearchKit). Although control over who accesses
one’s data is a necessary pillar for privacy protection, it alone does not protect against more so-
phisticated types of privacy leaks, such as statistical inference attacks [Aranki and Bajcsy, 2015].
We will address the issue of privacy in mHealth and telemonitoring in Chapter 3. Finally, mHealth
systems need to comply with local and federal regulations–such as HIPAA in the US. The system-
atic deployment of mechanisms that ensure or audit such compliance of mHealth systems remains
an open challenge.

2.7 The Berkeley Telemonitoring Project

2.7.1 Introduction

In light of the lessons drawn from the CHF study in 2013 (Section 2.4), we took an endeavor
to systematically study and address some of the challenges that we faced in designing the CHF
telemonitoring system [Aranki et al., 2016b,a]. At the time, no similar open-source framework
existed, to the best of our knowledge. This was the inception of the Berkeley Telemonitoring
framework, from the Berkeley Telemonitoring project.12 Even today, to the best of our knowledge,

11https://clinicaltrials.gov/ct2/show/NCT02799407
12The Berkeley Telemonitoring project: https://telemonitoring.berkeley.edu

https://clinicaltrials.gov/ct2/show/NCT02799407
https://telemonitoring.berkeley.edu
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there are no other similar general frameworks for telemonitoring research currently available for
Android OS.

We first provide context to the goals of the Berkeley Telemonitoring project. Due to vari-
ous factors including regulatory challenges, technical obstacles and the complexity of healthcare,
mHealth remains largely limited to fitness and wellness applications [Aranki et al., 2017b]. On
the other hand, mHealth has the potential to greatly benefit the treatment of chronic health con-
ditions, including CHF, hypertension, diabetes and depression [Rickles et al., 2005; Paré et al.,
2010]. Although such studies provided preliminary evidence to the effectiveness of mHealth and
telemonitoring technologies to these conditions, most of them were only observational and limited
to laboratory environment.

Moreover, telemonitoring technologies have the potential to reduce the prohibitive cost of long
epidemiological studies, a thing that may expedite the realization of a full predictive health-
care model. This effort will require continued collaborations between technology and medical
researchers, which may pose an extra challenge in the process. Hussain et al. [2015] argues that
there is a lack in the involvement of healthcare professionals and researchers in the development
of mHealth systems in general, and telemonitoring systems in particular. Therefore, it was evi-
dent in 2013 that there is a need for a framework that would allow easy development of health
telemonitoring systems for clinical research purposes.

We chose to implement this framework for Android systems for the following reasons. First,
Android OS has the highest share in the smartphone market, allowing our effort to have the highest
impact. As of July 2017, Android market share was 85% (versus 14.7% for Apple iOS). Moreover,
Android OS is an open-source platform; a fact that allows transparency in our efforts and allows
independent contributions to our project. Finally, Hussain et al. [2015] state that the majority of
the early mHealth apps targeted Apple iOS (since its release predated Android OS). Hussain et al.
[2015] continue to assert that today, however, most of the mHealth research apps, either target
Android OS alone or both Android OS and Apple iOS.

Identifying privacy as a key challenge in health telemonitoring, one of the core principles of
the Berkeley Telemonitoring framework is privacy-aware design. In this section, we focus on the
design aspects, and the features, of the Berkeley Telemonitoring framework. We detail the general
privacy aspects of telemonitoring in Chapter 3. However, since privacy is part of the core design
principles of the Berkeley Telemonitoring framework, we will also touch on some of the design
decisions that were inspired by privacy considerations.

The Berkeley Telemonitoring framework provides libraries for the development of Android
telemonitoring apps (client) as well as telemonitoring servers. The client can be any Android-
enabled device, such as a smartphone, a tablet or a smartphone. For simplicity, we will assume
that the telemonitoring client is a smartphone, for the remainder of this section. We note that
the choice to support Android devices brings clinical research support to that platform, in a
complementary way to that of Apple ResearchKit to Apple iOS.

The design objectives of the Berkeley Telemonitoring framework are as follows. First, smart-
phones have limited computational, connectivity and energy resources. As such, systems built on
top of smartphones are more vulnerable to interruptions than systems that are built for personal
computers. To be concrete, Android OS may elect to stop the running of an app in the back-
ground if it needs to free resources. As a result, telemonitoring apps (being background apps by
nature) have to be designed with this in mind, and have to recover gracefully from faults without
losing any collected data that were not yet submitted to the server at the time of the interruption.
Therefore, the first objective in designing the Berkeley Telemonitoring framework is to relocate
the responsibility of fault-tolerance from the app to the framework.
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Second, because of the limitation of smartphones in their energy resources, telemonitoring apps
should be careful not to consume too much power. Being careless with battery consumption may
lead to poor adoption of telemonitoring systems because users may ultimately uninstall the tele-
monitoring apps from their smartphone [Aranki et al., 2016b]. Thus, the second design objective of
the Berkeley Telemonitoring framework is to i) design the framework in an energy-preserving man-
ner; and ii) design tools that enable telemonitoring apps to delegate computationally-demanding
tasks to remote servers where energy consumption is a less pressing issue.

Third, we acknowledge that the main purpose of telemonitoring nodes is to collect health-related
data. Because of that, telemonitoring systems become privacy-sensitive systems. It is therefore
essential to design the Berkeley Telemonitoring framework in a privacy-preserving manner. To give
a concrete example, assessing a patient’s risk of clinical deterioration may require access to the data
submitted by the rest of the monitored population (for relative comparison, for example). Granting
the patient’s smartphone access to population data, or statistics of them, will incur unwanted
privacy leaks that needs to be prevented. Alternatively, by allowing the patient’s telemonitoring
app to delegate the risk assessment computation to the server may alleviate this risk. This is
because the server already possesses access to the data submitted by the rest of the monitored
population and can perform this task without needing to send statistical extracts of such data to
the smartphone of the patient in question. We note, however, that this delegation of computation,
in addition to data access and encryption controls and mechanisms, will not be sufficient to protect
patients from more complex privacy attacks, such as statistical inference attacks. We address the
topic of privacy in telemonitoring, in light of statistical inference attacks, in Chapter 3.

Fourth, on the same topic of collecting health-related data, we recognize that such collection
is one of the main goals of telemonitoring systems. As a result, the Berkeley Telemonitoring
framework needs to allow developers access to measured and estimated vital signs from i) inter-
nal smartphone sensors (such as EE estimation); ii) external health and fitness devices (such as
blood pressure monitors); and iii) self-reported means through survey-like instruments (such as
symptoms).

Finally, one of our goals in the Berkeley Telemonitoring project is to engage with healthcare
researchers and professionals in designing mHealth systems. As such, the API of the Berkeley
Telemonitoring framework has to be simple to use, such that non-technical developers are able to
utilize it. In contrast, the Berkeley Telemonitoring framework needs to be modular and flexible in
order to allow more seasoned software developers to extend its functionality. Therefore, the design
of the Berkeley Telemonitoring framework needs to conform with proper software engineering
design practices such as the Object-Oriented Programming (OOP) principles.

We summarize the design objectives of the Berkeley Telemonitoring framework in Table 2.5.

2.7.2 Framework Structure

There are three libraries shipped with the Berkeley Telemonitoring framework: i) client library ;
ii) server library ; and iii) core library. The client library provides tools for telemonitoring apps, the
server library provides tools for telemonitoring servers while the core library contains the common
data structures and infrastructures that are shared by both other libraries. The breakdown of the
Berkeley Telemonitoring framework is depicted in Figure 2.5.

All libraries are written in Java, for the following reasons. It is a natural decision to implement
the client library in Java since it is geared towards Android systems. In order to create a uniform
framework, we decided to implement the server library in Java as well, which allows us to i) share
data structures between the libraries; and ii) utilize the data serialization mechanisms provided by
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Identified
Issue

Design Objective

Faults The framework has to provides modules that are fault tolerant.

Battery con-
sumption

Design the framework in an energy-mindful way and provide tools that enable devel-
opers to delegating computationally-intensive tasks to the server.

Privacy The framework needs to be designed with privacy in mind. It should provide access
controls, privacy-preserving data structures and protocols for privacy-preserving com-
munication and data analysis.

Health-related
data

The framework provide the necessary tools to developers to facilitate collecting
health-related data by i) providing verified estimation algorithms relying on internal
sensors; ii) providing the necessary APIs to access health data from external devices,
wearables and sensors; and iii) providing mechanisms to collect self-reported data by
means of survey-like instruments.

Ease of use The framework needs to supply an easy-to-use API that hides the non-medically-
related technical details.

Flexibility In an effort to allow more advanced developers to extend its functionality, the frame-
work’s design needs to comply with software engineering design principles, such as
the OOP principles.

Table 2.5: The design objectives and principles in designing the Berkeley Telemonitoring frame-
work.

Java for client-server communication. As a result, the core library was also written in Java, since
it is, intuitively speaking, the intersection of client and server tools and infrastructures.

To be concrete, the core library provides the necessary data structures for storage, fault tol-
erance, security and privacy, and surveys deployment. In contrast, the client library provides
tools to i) connect to external wearables, sensors and devices for health data collection; ii) esti-
mate health-related parameters and vital signs from internal sensors; iii) communicate with the
server; iv) delegate computation; and v) render surveys on the smartphone screen. Finally, the
server library provides tools to i) manage the collection and retention of data; ii) analyze data;
iii) communicate with the smartphones; and iv) perform the requested delegated computation.

We now turn to describe the inner details of the Berkeley Telemonitoring framework. For more
technical details about its implementation, we refer the reader to [Aranki et al., 2016a, 2017a].

Event-based Programming

We designed the Berkeley Telemonitoring framework to conform to the event-based programming
paradigm. This paradigm allows software modules to request to be “updated” when certain events
occur, similar to the concept of “hardware interrupts” from computer architecture. This translates
to the telemonitoring app making requests to the framework, and immediately regaining CPU
control. The framework will service that request and inform the telemonitoring app whenever the
status of the request changes. The instances of updating the telemonitoring app about these status
changes are referred to as events. The software constructs that implement the behavior of the app
when events occur are called listeners.

Data Storage Paradigm

Given the fault-prone nature of mobile systems, such as Android OS killing background services and
apps in order to free resources, we designed resilient, fault-tolerant, data storage structures in the
Berkeley Telemonitoring framework. That is, when Android OS elects to kill the telemonitoring



CHAPTER 2. TELEMONITORING FOR PREDCTIVE MEDICINE 40

Figure 2.5: The architectural breakdown of the Berkeley Telemonitoring framework.

app, instead of dismissing the collected data that were not yet submitted to the server, these
structures make sure that the data are retained and restored whenever the telemonitoring app
resumes to operate. This is done through retaining a copy of the data on non-volatile storage and
updating it as new datapoints are collected. In regular scenarios, the telemonitoring app itself has
to design such fault tolerance, which can be complex and requires a careful implementation.

Instead, the Berkeley Telemonitoring framework provides this fault-tolerance in the library
level so that telemonitoring apps don’t have to implement it themselves. The framework, therefore,
provides data-structures that are immediately backed up on resilient storage in any event of change
in their content. These data structures are called backables. The mechanism that performs this

Algorithm 2.1 A code snippet to create backables for heart-beat rate and cadence data, and
registering them with a backup cabinet.

1 // Start a backup cabinet
2 BackableEncapsulatorBackupCabinet cabinet = new

BackableEncapsulatorBackupCabinet("/path/to/storage");
3 // Create an identifier for the heart-beat rate backable
4 StringIdentifier hrDataID = new StringIdentifier("heart rate data");
5 // Create the encapsulator for heart-beat rate data
6 BackableEncapsulator<HeartRateContainer> hrEnc = new

BackableEncapsulator<HeartRateContainer>(hrDataID);
7 // Create an identifier for the cadence backable
8 StringIdentifier cadenceDataID = new StringIdentifier("cadence data");
9 // Create the encapsulator for cadence data

10 BackableEncapsulator<CadenceContainer> cadenceEnc = new
BackableEncapsulator<CadenceContainer>(cadenceDataID);

11 // Register the backables with the cabinet
12 cabinet.registerBackable(hrEnc);
13 cabinet.registerBackable(cadenceEnc);
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Algorithm 2.2 A code snippet to create a backup cabinet located in the private app storage
area.

1 // Start a backup cabinet in the private app area
2 BackableEncapsulatorBackupCabinet cabinet = new

BackableEncapsulatorBackupCabinet(new
File(getApplicationContext().getFilesDir(), "/my_backup"));

bookkeeping is called a backup cabinet. A backup cabinet is assigned a storage location for its
operation. Once a backable data structure registers to be backed up by a backup cabinet, the
cabinet checks whether it has an old copy of that backable in storage. If the answer is positive,
the backup cabinet restores the old copy into the backable and the telemonitoring app resumes
operation. From this point onwards, the backup cabinet updates its storage to reflect the changes
occurring in the backable. Algorithm 2.1 lists an example code snippet that creates two backables,
one for heart-beat rate data and another for cadence data, and registers them with a backup
cabinet that stores the data at "/path/to/storage".13

Privacy and Security

Multiple measures are designed in place to ensure that the Berkeley Telemonitoring framework is
privacy-aware and has adequate security standards. First, to ensure that the stored backups of the
data stored in backables are secure from unauthorized access or tampering, backup cabinets utilize
the storage options provided by the Android OS to store the data in an area that is accessible
only by the same app that generated them. This can be achieved by initializing the backup
cabinet as listed in Algorithm 2.2. Furthermore, we incorporate privacy-preserving mechanisms
that are implemented on top of backables so that telemonitoring systems developers benefit from
them without the burden of implementing them by themselves. In particular, some of these
mechanisms are designed to protect the telemonitoring users from statistical inference attacks.
These mechanisms are based on Private Disclosure of Information (PDI), which is presented in
great detail in Section 3.4.

Bluetooth and BLE

As stated in the design objectives of the Berkeley Telemonitoring framework, on the primary
objectives of telemonitoring is collecting health-related data. As such, the Berkeley Telemonitoring
framework provides tools to access and collect such data from external sensors, wearblaes and
devices. These tools are implemented on top of Bluetooth and Bluetooth Low Energy (BLE), as
most of the consumer wearables and devices are BLE enabled.

In order to be consistent with the event-based programming paradigm that the framework
adopts, the Berkeley Telemonitoring framework extended the Android Bluetooth and BLE capa-
bilities in a manner that unifies their behavior [Azar et al., 2015]. The original Bluetooth stack
in Android follows a polling, busy-wait paradigm. This means that the telemonitoring app would
have to actively and regularly check for updates in the status of the connections it maintains. For
example, the app would have to manually check to identify events of establishing a new connection,
receiving a message, etc. BLE, on the other hand, is event-based by design; and Android’s stack

13Cadence is defined as the number of steps taken per minute.
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Algorithm 2.3 An example listener for heart-beat rate and blood pressure data.

1 public class MyHealthDataListener implements
2 BluetoothHeartRateListenerInterface,
3 BluetoothBloodPressureListenerInterface {
4

5 public void heartRateDataPointReceived(BluetoothHealthDevice device,
6 HeartRateContainer datapoint) {
7 // code to run when a heart rate datapoint is received (because this

implements BluetoothHeartRateListenerInterface)
8 }
9

10 public void bloodPressureDataReceived(BluetoothHealthDevice device,
11 BloodPressureContainer datapoint) {
12 // code to run when a blood pressure datapoint is received (because

this implements BluetoothBloodPressureListenerInterface)
13 }
14

15 public void updateConnectionState(BluetoothHealthDevice device,
16 boolean connected) {
17 // code to run when the connection state changes
18 }
19 }

for it follows the same paradigm. As a result of this lack of uniformity, the Berkeley Telemonitoring
framework extended both stacks in an effort to unify them both under the event-based paradigm.
With the extended stack, telemonitoring apps place Bluetooth or BLE requests with the framework
and continue to perform other tasks. The framework will invoke the appropriate listener(s) in the
app whenever an event pertaining to these requests occurs, as discussed earlier. It is important
to mention that these extended stacks also supply embedded fault-tolerance mechanisms that deal
with interruptions in the connections, without the involvement of the app layer itself. Figure 2.6a
depicts a screenshot of an app using the Bluetooth stack to scan for nearby devices.

Using the extended Bluetooth and BLE stacks described above, the Berkeley Telemonitor-
ing framework provides native access to devices that are compliant with the PHD standard
[EMB/11073, 2012]. In practice, the app implements the desired listener(s) for the different types
of health data. The app indicates what data it wishes to handle in that listener by stating which

Algorithm 2.4 A standard snippet for communicating with ISO/IEEE 11073 Personal Health
Device (PHD) enabled devices.

1 // Initialize the health device, you don 't need to specify the type, make or
model of the device

2 BluetoothHealthDevice mHealthDevice = new BluetoothHealthDevice(bleDevice);
3 // Register any health data listeners
4 mHealthDevice.addHealthListener(new MyHealthDataListener());
5 // Request to connect and start receiving data
6 mHealthDevice.connect();
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(a) (b) (c)

Figure 2.6: (a) A screenshot of Bluetooth/BLE stack scanning for nearby devices; (b) a demon-
stration of the finger-based heart rate estimator (top: an external photo of the setting, bottom:
the interface in the telemonitoring app); and (c) a demonstration of the face-based heart rate
estimator.

interfaces that listener implements. Algorithm 2.3 lists a snippet sample for an implementation
of a listener (MyHealthDataListener) that handles heart-beat rate data as well as blood pres-
sure data. At this point, in order to connect to a PHD-enabled device, the telemonitoring app
needs to only define an object representing the PHD device, register any listener(s) to it to indi-
cate the behavior when these devices collect new datapoints, and request to connect to it. After
this point, the framework will proceed to connect to the device and start extracting data. Al-
gorithm 2.4 lists a snippet sample for connecting to a PHD-enabled device and registering the
listener MyHealthDataListener with it. These snippets demonstrate the ease-of-use of the frame-
work’s API in communicating with PHD-enabled devices from telemonitoring apps, without the
need to implement complex and detailed protocols, and deal with fault tolerance.

The Berkeley Telemonitoring framework currently supports the following PHD standards:
i) IEEE/ISO 11073-10404: pulse oximeters; ii) IEEE/ISO 11073-10407: blood pressure moni-
tors; iii) IEEE/ISO 11073-10408: thermometers; iv) IEEE/ISO 11073-10415: weighing scales; and
v) IEEE/ISO 11073-10417: glucose meters [EMB/11073, 2012].

Estimators and Extractors

Another potential source of health-related data is the internal smartphone sensors. This can be
achieved by estimating health-related markers from sensors such as accelerometers. Therefore, the
Berkeley Telemonitoring framework provides algorithms that can i) extract raw sensory data from
the smartphone, which we call extractors ; and ii) estimate health and fitness related parameters
from internal sensors, which we call estimators. Backables are used by extractors and estimators
to store the data they produce. Extractors and estimators start producing datapoints whenever
the telemonitoring app requests that they start and continue to do so in the background, filling
the provided backable, until the app requests them to stop.

At the time of writing this dissertation, the Berkeley Telemonitoring framework supported the
following extractors and estimators: i) GPS extractor, which allows the telemonitoring app to reg-
ularly learn the smartphone GPS location; ii) call status extractor, which allows the telemonitoring
app to regularly learn whether a phone call is in session or not; iii) battery extractor, which allows
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Algorithm 2.5 A code snippet that uses a cadence estimator, requesting an update every 3
seconds.

1 int msPeriod = 3 ∗ 1000; // Three Seconds
2 // Initialize the cadence backable
3 StringIdentifier cadenceId = new StringIdentifier("Cadence data");
4 BackableEncapsulator<TimeZonedTimestampedObject<CadenceContainer>> cadenceData

= new BackableEncapsulator<>(cadenceId);
5 // Initialize the cadence estimator with 3 seconds period of updates
6 CadenceEstimator cadenceEstimator = new CadenceEstimator(cadenceData, msPeriod,

this.getApplicationContext());
7 // Start the estimator
8 cadenceEstimator.start();

the telemonitoring app to regularly learn the smartphone battery level and whether the phone is
charging or not; iv) screen light extractor, which allows the telemonitoring app to regularly learn
whether the smartphone screen is on or off; v) EE estimator, which allows the telemonitoring app
to get regular estimates of EE from accelerometer data [Chen and Sun, 1997; Donaire-Gonzalez
et al., 2013]; vi) heart-beat rate estimator from a finger video, which allows the telemonitoring
app to get real-time estimates of the heart-beat rate from a video feed of the subject’s index finger
that is placed over the camera [Azar et al., 2015]. Figure 2.6b depicts an example of using this
estimator; vii) heart rate estimator from a face video, which allows the telemonitoring app to get
real-time estimates of the heart-beat rate from a video feed of the subject’s face [Poh et al., 2011;
Azar et al., 2015]. Figure 2.6c depicts an example of using this estimator; viii) accelerometer-based
speed estimator, which allows the telemonitoring app to get regular estimates of the smartphone’s
travel speed from accelerometer data [Park et al., 2012; Azar et al., 2015]; ix) GPS-based speed
estimator, which allows the telemonitoring app to get regular estimates of the smartphone’s travel
speed from GPS data [Aranki et al., 2017a]; x) GPS-based distance estimator, which allows the
telemonitoring app to get regular estimates of the smartphone’s traveled distance from GPS data
[Aranki et al., 2017a]; xi) cadence estimator, which allows the telemonitoring app to get regular es-
timates of the subject’s cadence (steps per minute) from accelerometer data [Mladenov and Mock,
2009; Asuncion et al., 2016]; Algorithm 2.5 lists an example code snippet that obtains and starts
a cadence estimator.

Surveys

The last source of health-related data in our design objectives is self-reported data. The Berkeley
Telemonitoring framework provides tools to deploy surveys in telemonitoring apps. These tools
include the ability to codify surveys, gather the subject responses to the surveys and render surveys
on the smartphone. We represent a survey as a list of survey nodes. Each survey node consists
of a pair of a question and an answer. The survey node question represents the question portion,
which can be a text question, a picture question, etc. Similarly, the survey node answer represents
the answer portion, which can be a text answer, a check list answer, a radio list answer, etc.
Figure 2.7a visually labels the different components of a survey, whereas Figures 2.7b and 2.7c
depict examples of different combinations of question/answer survey nodes.

In order to simplify the deployment of surveys, we provide an easy-to-use API that can be used
to render the survey objects on the smartphone screen. We call these constructs survey renderers.
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(a) (b) (c)

Figure 2.7: (a) The different components of the survey; (b) an example of a text question/an-
swer survey node; and (c) an example of a text question and radio answer survey node.

Survey renderers convert the different components of a survey into Android fragments that can
be placed anywhere. This design a) is modular and allows telemonitoring apps to deploy surveys
with any combination of question and answer types; b) simplifies the deployment of these surveys
by providing automatic rendering capabilities; and c) allows developers to implement new types
of questions and/or answers for further support. Algorithm 2.6 lists an example code snippet that
renders the survey nodes in a given survey.

Client-Server Communication

The Berkeley Telemonitoring framework also provides tools to facilitate the communication be-
tween the telemonitoring app and server. Traditionally, the burden of implementing such a com-
munication protocol falls on the developer of the telemonitoring system, with all the fault tolerance
that it entails. In this module, we intend to elevate that responsibility to the framework level. To do
so, we break down the communication to units of jobs. In particular, the Berkeley Telemonitoring
framework defines two central types of jobs.

Data Jobs Data jobs encapsulate the app’s intent to transmit data to the server. These jobs
can be used to submit the collected health-related data from the telemonitoring app, such as vital
signs and surveys.

Algorithm 2.6 A code snippet to render all survey nodes in a given survey.

1 // Given a survey object "survey," create a SurveyRenderer object from it
2 SurveyRenderer surveyRenderer = new SurveyRenderer(survey, new

SurveyConverter());
3 // Iterate over the nodes
4 for (SurveyNode<?,?> sn: surveyRenderer) {
5 // Render the current survey node
6 Fragment currFragment = ((SurveyNodeRenderer<?,?>) sn).render();
7 }
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Figure 2.8: The finite state machine description of the TI protocol.

Request Jobs Request jobs encapsulate the app’s intent to request that some computation be
carried on the server. As outlined in our discussion on the design objectives of the framework in
Section 2.7.1, such delegation of computation have the following benefits:

1. Battery consumption: computationally-intensive tasks may incur a high load on the smart-
phone’s batter, which may hinder adoption. Instead, requesting that such computational
tasks be carried on the server alleviates this problem; and

2. Privacy: certain jobs, including some predictive analysis of the monitored subject’s clinical
deterioration risk may require access to data pertaining to other individuals than the subject
in question. Allowing the subject’s phone to get access to such data, or statistics of them,

Algorithm 2.7 A code snippet to start a telemonitoring server that handles one job using the
MyJobListener job listener.

1 // server listens or port 9999
2 int port = 9999;
3 // the allowed TLS ciphers
4 String[] ciphers = {"TLS_RSA_WITH_AES_128_CBC_SHA"};
5 // the TLS keystore path and password
6 String ksPath = "/path/to/keystore";
7 String ksPassword = "password";
8 // Obtain a TI protocol object
9 TIProtocol tiProtocol = new TIProtocol(ciphers, port, ksPassword, ksPath);

10 // Obtain a client handler, the module for communication fault tolerance
11 ClientHandler ch = new ClientHandler(tiProtocol);
12 // Register listeners that handle the jobs from the client
13 MyJobListener listener = new MyJobListener();
14 ch.addRespondingJobListener(listener);
15 // Start the server
16 ch.start();
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may cause a privacy leak that needs to be avoided [Dwork, 2006; Aranki et al., 2017b].
Instead, requesting that this analysis be performed by the server, which already has access
to such privacy-sensitive data (and is authorized to have such access), is a safer approach
from a privacy point of view.

The Berkeley Telemonitoring framework provides the necessary definitions to allow developers
to implement specific protocols that can communicate in the units of these jobs. This breakdown
allows the framework to implement fault-tolerant mechanisms on top of these specific protocols,
without knowing their implementation details. We refer to these specifications as the communi-
cation meta-protocol, which is the set of requirements for any communication protocol to benefit
from the fault-tolerance tools in the framework. Any communication protocol satisfying these
specifications is considered a valid telemonitoring communication protocol.

This design allows developers to implement their own protocols or adapt their existing protocols
to benefit from the fault-tolerance mechanisms that are supplied by the framework [Aranki et al.,
2016a]. This addresses the design objective of flexibility, as discussed in Section 2.7.1. In addition
to this, and in order to satisfy our design objective of ease-of-use, the Berkeley Telemonitoring
framework also provides a ready-to-use telemonitoring communication protocol, Tele-interfacing
(TI) protocol, which is implemented on top of Transport Layer Security (TLS), or its predecessor,
SSL, over Transmission Control Protocol (TCP). The finite state machine description of the TI
protocol is depicted in Figure 2.8. Algorithm 2.7 lists a code snippet that demonstrates the
simplicity of starting a server using the TI protocol. Algorithm 2.8 lists a code snippet that
demonstrates the simplicity of communicating with the telemonitoring server from the app, using
ServerHandler.

Algorithm 2.8 A code snippet to obtain a ServerHandler for the telemonitoring app to com-
municate with the server in a fault tolerant way; and an example of sending a data job.

1 // My user identifier
2 BasicUserIdentifier uid = new BasicUserIdentifier("My user ID");
3 // My version identifier
4 VersionIdentifier vid = new VersionIdentifier(1,0,0); // Version identifier
5 // Where do the servers physically reside?
6 TIServerAddress[] serverAddresses = {
7 new TIServerAddress("server.address.one", 9999),
8 new TIServerAddress("server.address.two", 9999)
9 // etc...

10 };
11 // Define a server identifier, using the matching TLS keystore
12 TIServerIdentifier si = new TIServerIdentifier(keyStore, "keyStorePassword",

serverAddresses);
13 // Obtain a TI protocol object
14 TIProtocol protocol = new TIProtocol(si, vid, uid);
15 // Obtain a server handler, for fault-tolerant communication handling
16 ServerHandler sh = new ServerHandler(context, protocol, connectionInterval,

pathForBackupCabinet); // Create a server handler
17 // From this point, we can use this server handler to send request and data

jobs.
18 // Request that some data be sent to the server, all events pertaining to this

job will be delivered to jobListener
19 sh.sendData(dataID, jobListener);
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Server Tools

Finally, the Berkeley Telemonitoring framework provides tools for the server side of any telemon-
itoring system. The first major category of tools that the framework supplies on the server side
is job handling capabilities. These tools allow servers to handle jobs (data jobs, request jobs,
etc.). The main construct in this category is a job listener. There are two types of job listeners,
a responding job listener and a non-responding job listener. The responding job listeners indicate
that once they process the job, they wish to provide a reply to the client (e.g., return value). The
non-responding job listeners simply process the job without having anything to reply back to the
client (and so the ClientHandler does not wait for those before it replies to the client).

The second category of server tools provided by the framework is data curation capabilities.
The basic building block of this category is called a table modifier. For each type of health-related
data that the framework natively supports, it pairs it with a SQL table structure that can store it
and a corresponding table modifier that can be used to alter the contents of that table. This allows

Algorithm 2.9 A code snippet that implements a job listener MyJobListener (see Algo-
rithm 2.7) that stores EE data in a Structured Query Language (SQL) database, using a
EETableModifier.

1 public class MyJobListener extends AbstractNonrespondingClientJobListener {
2 // Checks, per job, whether this handler wants to handle it
3 @Override
4 public boolean isJobHandled(AbstractServerJob<?, ?> job) {
5 if (job instanceof DataJob) {
6 DataJob dataJob = (DataJob) job;
7 return dataJob.getJobIdentifier().getStringId().equals(eeJobName);
8 }
9 return false;

10 }
11 // The method that gets invoked to handle the job
12 @Override
13 public void processJob(UserIdentifierInterface userID, AbstractServerJob<?,

?> job) {
14 // Get a table modifier
15 EETableModifier eeMod = new EETableModifier(eeTableName);
16 // Cast to data job
17 DataJob dataJob = (DataJob) job;
18 // Expecting a job with encapsulator data of type

TimeZonedTimestampedObject<EEDataContainer>
19 for (DataSerialPair<? extends Serializable> dataPoint :

dataJob.getData()) {
20 // Cast to the expected data type
21 TimeZonedTimestampedObject<EEDataContainer> dp =

(TimeZonedTimestampedObject<EEDataContainer>)
dataPoint.getDatapoint();

22 // Store the data point in the SQL database.
23 eeMod.insertRecord(dp.getObject(), dp.getTimeZonedTimestamp(),

userID);
24 }
25 }
26 }
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us to provide mechanisms to store, retrieve, edit and/or delete records from these tables without
exposing the developer to SQL queries. Algorithm 2.9 lists a code snippet that implements the
non-responding job listener MyJobListener (see Algorithm 2.7) to store the EE data contained in
a data job that contains EE data.

The third category of server tools provided by the framework is data analysis tools. These
include statistical and machine learning tools that may be used to construct models from the
collected data. We are currently working on expanding the base of algorithms in this category.

2.8 RunningCoach Study

2.8.1 The Premise

In an effort to test the feasibility of the Berkeley Telemonitoring framework, we designed a study
for telemonitoring of long-distance runners. The aim of the monitoring is to help the runners
optimize their cadence in order to minimize their risk of injury.14 The study was approved by
the Institutional Review Board at UC Berkeley. The premise for this intervention is as follows.
Connections have been demonstrated between running at a proper cadence and i) the reduction of
impact forces on joints [Heiderscheit et al., 2011]; ii) the reduction of fatigue and muscle soreness
[Rowlands et al., 2001]; and iii) the increase of efficiency of oxygen use [Hamill et al., 1995].

As such, we designed RunningCoach, a telemonitoring system that collects running-related
data from the runners, during their runs, and provides periodic interventions, based on such data.
We will briefly describe the design of the system and the study, but we refer the reader to [Aranki
et al., 2017a] for more details. RunningCoach is implemented using the Berkeley Telemonitoring
framework, including both the telemonitoring smartphone app and the telemonitoring server. In
the next section, we briefly describe the design of the telemonitoring system.

2.8.2 System and Study Design

As mentioned earlier, RunningCoach was built using the Berkeley Telemonitoring framework. This
allows us to take advantage of all the functionalities describes in Section 2.7. Moreover, this will
allow us to test the usability of the framework with a real research application. RunningCoach
aims to help long-distance runners achieve a target cadence within a provided time frame. In order
to achieve that, the app collects data about the physical parameters of the runner, as depicted in
Figure 2.9a. The runner sets her or his initial cadence as part of the inquiry, and sets the desired
target cadence to be achieved by a set date. As a result, the app produces a training regimen for
the runner that follows the following exponentially decaying form

C(d) =
CN · eαN − C0

eαN − 1
− C0 − CN
e−αN − 1

· e−αd

where C(d) is the cadence training regimen as a function of day d; C0 and CN are the initial and
target cadence values, respectively (steps/minute); α is the decay factor in the training regimen;
and N is the duration of the training regimen (in days). Note that this model is the solution to
the function C(d) = A+B · e−αd with initial conditions C(0) = C0 and C(N) = CN . We also note
that when α approaches 0, the training regimen approaches a linear curve [Aranki et al., 2017a].
An example of such a training regimen is depicted in Figure 2.9b. The rationale behind a gradual

14Cadence is defined as the number of steps taken per minute.
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(a) (b) (c)

Figure 2.9: Screenshots from the RunningCoach app: (a) the runner’s physical parameters
screen; (b) an example cadence training regimen; and (c) the app’s home screen.

convergence to the target cadence is to minimize any risk that may occur due to a sudden change
in the runner’s routine.

The home screen of RunningCoach, depicted in Figure 2.9c, displays a list of past runs and
statistics about them, such as the length and duration. From the home screen, the runner can
access the app settings, allowing her or him to select which data she or he wishes to share with the
study team, and which she or he wishes to keep private. Also from the home screen, the runner
can start a run, by clicking on the START button. After that, the app asks the runner whether
she or he wishes to take two heart-beat rate measurements, one from a video of her or his index
finger (as discussed earlier and depicted in Figure 2.6b), and another one from a video of her or
his face (as discussed earlier and depicted in Figure 2.6c). The runner may choose to take or skip
either or both of these measurements.

During the run, the app is designed to collect regular updates about the runner’s performance
and health status, complying with her or his privacy settings as discussed earlier. The collected
data variables include i) GPS location; ii) cadence; iii) EE; iv) heart-beat rate (through a provided
PHD enabled chest-strap heart monitor); v) speed; vi) distance covered; vii) battery information;
and viii) screen light information. The screen that is displayed on the screen during the run
is depicted in Figure 2.10a. It is important to mention that the monitoring actually runs in the
background, meaning that it will continue to run even if the runner“minimized”the RunningCoach
app or even locked her or his phone. During the run, RunningCoach provides intervention to the
runner whenever her or his cadence falls far from the target cadence for the day, according to the
training regimen. RunningCoach will only provide the intervention if the runner is not running
within 10% of the target cadence for some period of time (20 to 30 seconds, depending on the the
settings). The intervention is delivered through auditory and haptic means (vibration).

The run continues until the runner terminates it by clicking on the STOP button. Once this
event occurs, the app prompts the runner to take two other measurements of heart rate using
the video-based estimation algorithms as described earlier. Also in this instance, the runner may
choose to take or skip either or both measurements. After these measurements, the app prompts
the runner with a post-run survey that inquires about the usability of the app. An example of
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(a) (b) (c)

Figure 2.10: Screenshots from the RunningCoach app: (a) the screen that is displayed during
the run; (b) a sample post-run survey question; and (c) a sample post-run summary.

a survey screen is depicted in Figure 2.10b. The runner may choose to skip any question in the
survey. Once the survey part is completed, the app displays the summary statistics of the run, as
depicted in Figure 2.10c.

The telemonitoring server is designed to receive all the collected data from the RunningCoach
app, store them, and provide visualization for them. Figure 2.11 depicts various screenshots of the
collected data from the server visualizations.

The design of RunningCoach was easy and bump-free, compared to the design of the CHF tele-
monitoring app from the CHF study described in Section 2.4. We believe that this is due, by large,
to the existence of and wide range of tools supplied by the Berkeley Telemonitoring framework.
During the design of RunningCoach, our full attention and focus was on the study aspects of the
system, and less on the systems considerations, such as fault-tolerance, communication protocols
and estimation algorithms implementation. This was only possible because these aspects are all
provided natively by the Berkeley Telemonitoring framework. We will report on the privacy and
acceptability of RunningCoach as a result of this study in Section 3.2.3.

2.9 Summary and Discussion

In this chapter we addressed the question of streamlining and standardizing health-related data
collection. Streamlining health-related data collection has the potential to drop the prohibitive cost
of long-term epidemiological studies, which are necessary for achieving the predictive healthcare
model. We identified a system architecture that can both serve as a standardized means for health-
related data collection, and as a system that can implement mHealth-based predictive medicine.
This architecture is telemonitoring.

We then presented a study of telemonitoring in patients with CHF. We drew conclusions from
the study regarding the design of telemonitoring systems, and identified the need for a general and
standardized framework for telemonitoring. As a result, the Berkeley Telemonitoring project was
born and the work to build the Berkeley Telemonitoring framework began. We further described
the inner workings of the Berkeley Telemonitoring framework, and provided examples of its ease-
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(d) (e) (f)

Figure 2.11: Sample plots from the server dashboard: (a) cadence plot; (b) distance-covered plot;
(c) EE plot; (d) heart-beat rate plot; (e) speed plot; and (f) GPS plot showing the path of run
22.

of-use and its flexibility. As an example of its ease of use, we presented a study, RunningCoach,
that was designed on top of the Berkeley Telemonitoring framework. We described the study and
system design of RunningCoach and presented examples of its features.

Even though the work on the Berkeley Telemonitoring framework preceded the release of similar
commercial frameworks, we surveyed the market for other solutions in order to provide a complete-
picture context for our work. We discussed the notion of medical intervention, and discussed the
challenges in the fields of mHealth and telemonitoring. Some of these challenges were addressed in
the Berkeley Telemonitoring framework, but some others remain open. More research is necessary
to resolve these challenges and get us closer to a fully working predictive healthcare model. We
address two of these challenges in the next two chapters of this dissertation. One challenge that
spans beyond predictive medicine is assessing the reliability of scientific findings from scientific
literature. We address this challenge and present a mathematical treatement for it in Chapter 4.
But first, let us discuss the challenge of privacy in telemonitoring in Chapter 3.
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“The real danger is the gradual erosion of individual liberties through
automation, integration, and interconnection of many small, separate
record-keeping systems, each of which alone may seem innocuous, even
benevolent, and wholly justifiable.”

– US Privacy Study Commission, 1977

3.1 Introduction

The study of privacy dates back to at least the ancient Greek philosophy, when Aristotle made the
distinction between the polis–the public sphere of political activity, and the oikos–the private sphere
of domestic life. Since the years of ancient Greece until our present day, the concept of privacy
has gone through major remodeling due to changes in the ways of life. Two of the most recent
updates to our collective understanding of privacy are i) the emergence of modern photography
and the printed press in the 19th century; and ii) the integration of information systems into our
daily lives in the 20th century. In each one of these two events, the collective view of privacy has
shifted to adapt to the new technological advancements.

For instance, before modern photography, one had to be still for a significant period of time
for the photographer to take one’s photo. After modern photography, reporters and journalists
started taking pictures of people without their consent, giving rise to then-new privacy questions.
In light of the new realities imposed by modern photography and the printed press, Samuel D.
Warren and Louis D. Brandeis wrote “The Right to Privacy,” in 1890. In it, Warren and Brandeis
attempted to define privacy, and wrote that privacy is “the right to be let alone.” They further
contrast how the law had broadened from the confined view of physical harm to include notions
that were emotional, intellectual and of the “spiritual nature.” Under that comparative narrative,
they discuss the question of whether the law at the time afforded principles that can be invoked
to protect the privacy of an individual. It was clear then that a new notion of invasion of privacy
has emerged, and that the law had to develop in order to capture these developments.

Not 80 years later, another wave of questions regarding how the law protected our privacy
emerged. In 1968, Alan Westin published his book “Privacy and Freedom,” focusing on the then-
new question of privacy in the age of information systems and databanks [Westin, 1968]. The wave
of changes to the law as a result of introducing information systems to our lives is conceivably still
happening until our present day. We will elaborate further on these changes in Section 3.3.

We are arguably living on the brink of yet another wave of brand-new privacy concerns. It is
true that the information age transformed our view on privacy in a major way, but perhaps what
this age is enabling us to do is an even bigger privacy challenge. In light of the ever-advancing
fields of machine learning and statistical inference, more and more technologies are making use
of the data we disclose in order to infer information about us that we did not disclose, and
perhaps did not want to disclose. This, on its own right, would not constitute a major privacy
concern except for the fact that these inferences are becoming accurate to a point where it is hard
to ignore their influence on the privacy of the individual. To give an example of such intrusive
inference, our (undisclosed) political affiliation can be inferred from our (disclosed) TV show ratings
and viewing habits [Salamatian et al., 2013]. Some research that attempts to reduce the risk of
information leakage through inference attacks has been done but we are far from home [see Reed,
1973; Yamamoto, 1983; Evfimievski et al., 2003; Dwork, 2006; Rebollo-Monedero et al., 2010;
du Pin Calmon and Fawaz, 2012; Sankar et al., 2013, for such examples].
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In our view, one reason privacy-aware technologies are not gaining much positive momentum
among top companies in the industry is the inherent trade-off between privacy and utility. It
is often the case that increasing privacy protection–in statistical inference settings–translates to
lower utility of data. This result has even been formalized in the context of statistical databases to
argue that full privacy can only be achieved when no utility is obtained from the database [Dwork,
2006]. To explain this result intuitively, if a statistical database wants to preserve full privacy,
it can answer every query completely randomly, independent of the data stored inside it (e.g.,
flip a coin and answer 0 if heads and 1 if tails, regardless of the query or the content of the
database). Alternatively, the database can answer deterministically, also independent of the data
stored within (e.g., output−3 to every query regardless of the query or the content of the database).
Both of these strategies obtain full privacy because they reveal absolutely nothing about the data
stored inside the database. However, in the same breath, these strategies eliminate any utility the
database may have had. It is then desirable to design privacy frameworks and mechanisms, that
offer a good privacy-utility tradeoff.

Since inference algorithms are the backbone of the predictive healthcare model, it is important
to systematically understand this privacy threat and attempt to mitigate it. In this chapter, we
address this very question. The rest of this chapter is organized as follows. In Section 3.2, we
introduce preliminary evidence that consumers trust technology researchers with their health data
to comparable level of trust that they hold towards their physicians. We argue that this positions
technology researchers in a unique spot of power and responsibility that they need to harness in
order to build privacy-aware predictive medicine systems. Then, we survey the existing privacy
design principles and practices in Section 3.3 and argue for the need of an additional principle.
Afterwards, we introduce the framework for Private Disclosure of Information (PDI), which aims at
preserving the privacy of individuals in the process of disclosing their information against Man-In-
The-Middle (MITM) inference attacks. We show that, in our setting, full privacy can be achieved
while maintaining full utility of the data to its intended recipient. Although PDI is a general
framework that may be applied in applications other than predictive medicine, we describe it in
a language consistent with predictive medicine, the theme of this dissertation. Finally, we discuss
our findings and summarize this chapter in Section 3.5.

The contributions of this chapter are i) preliminary evidence to the acceptability of telemon-
itoring technologies in different applications (Section 3.2); ii) introducing the Inference privacy
design principle (Section 3.3.2); and iii) introducing the framework for PDI, alongside a MATLAB
toolbox that implements its learning mechanism (Section 3.4).

3.2 User Privacy and Acceptability of Telemonitoring

3.2.1 Introduction

In each of the protocols of the studies that we conducted for the Berkeley Telemonitoring framework–
discussed in Chapter 2–we administered a privacy and acceptability survey. In the survey, we
attempt to understand i) the level of acceptability of these technologies to the consumer; ii) the
perceived efficacy of these technologies by the consumer; iii) the consumers’ privacy-related con-
cerns regarding these technologies; and iv) the privacy requirements of these technologies. One of
the dimensions of interest concerns the trust level of the target population in technology researchers
that are studying telemonitoring technologies.

This marker is important because it allows us to assess the feasibility of designing telemonitoring
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Figure 3.1: Pre-study acceptability survey results for the CHF study (N=15).

systems with high efficacy. Understanding this trust level is also important because it embodies
within it a level of responsibility that we, as technology researchers, carry on our shoulders. It is
our responsibility to design privacy-aware systems and technologies, and whatever level of trust
we may receiver, we shall not lose. With this background, we present excerpts from the results of
the privacy and acceptability surveys from two of our studies.

3.2.2 CHF – Privacy and Acceptability Study

In this section, we discuss the acceptability and privacy findings of the congestive heart failure
(CHF) study that we discussed in detail in Section 2.4 [Aranki et al., 2016]. Although this part of
the dissertation is self-contained, we refer the reader to Section 2.4 for more context and details
about the study. The study remotely monitored 15 patients with CHF for a period of 3 months.
The study was conducted in collaboration with the Northwestern Medical Faculty Foundation in
Chicago, IL. All 15 subjects were patients of Northwestern Memorial Hospital in Chicago, IL.

As part of the study, we wanted to assess the acceptability of telemonitoring for CHF pur-
poses. In order to achieve this assessment, the protocol included a survey that would be taken
by the participating subjects before (pre) and after (post) the study. The survey instrument that
was used in this study was designed in collaboration with Heather M. Patterson, Martin French
and Helen Nissenbaum. The framework for contextual integrity was utilized in the design of the
instrument [Nissenbaum, 2009].

All 15 participating subjects took part in the pre-study acceptability survey. The responses of
the acceptability portion of the pre-study survey are summarized in Figure 3.1. In the figure, we
present the number of subjects who selected each one of the five possible answers to each of the
acceptability questions. From the results, there is evidence that the majority of the participating
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Figure 3.2: The acceptability survey results, in pre- and post-study surveys, for the 5 subjects
who completed the CHF post-study survey.

subjects were receptive and accepting of telemonitoring for CHF purposes prior to the study.
The post-study survey was administered with the same questions as in the pre-study version.

Only 5 subjects took part in the post-study survey. In Figure 3.2 we present the responses of these
5 subjects to the same acceptability questions, in both pre- and post-study surveys. Similar to
before, we present the number of subjects who selected each of the five possible responses to each
of the questions. We note that even though the number of subjects that participated in both the
pre- and post-study surveys is too small to make any general deductions, there is a minor trend of
lower acceptability after the study. Such a trend is expected since the study was exploratory and
was less focused on user experience. It is also worth noting that most changes in the acceptability
answers are small (one level up or down) and that the post-study results still indicate positive
acceptability levels.

As for the privacy side of the survey, the following statement was presented to the subjects:
“Sometimes the cell phone might automatically record, or ask you to report, specific kinds of infor-
mation about your health or behavior, such as your weight, your mood, or your blood pressure. The
following questions will help us understand how comfortable you are with the idea of other people
knowing these things about you.”The subjects were specifically asked to indicate their comfort level
in sharing their weight, level of physical activity, exact location and blood pressure with i) their
doctors or nurses who treat their heart failure; ii) researchers who study health care telemonitoring
technologies; iii) public health professionals who study the causes of heart diseases; iv) insurance
companies that set their health insurance policies; and v) their close family members who take care
of them at home [Nissenbaum, 2009; Aranki et al., 2016]. We present the 15 subjects’ responses
to this question, in the pre-study survey, in Figure 3.3.

Perhaps unsurprisingly, from Figure 3.3 we observe that the subjects’ level of comfort in sharing
their data with their doctors or nurses is high. Perhaps more interestingly, the subjects’ responses
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Figure 3.3: The subjects’ responses to the pre-CHF-study survey privacy-related questions
administered, inquiring about how comfortable they are when sharing their data on weight,
physical activity levels, location, and blood pressure (N = 15).

regarding their level of comfort in sharing data with technology researchers is comparable to those
of sharing their data with doctors and nurses (and to those of sharing data with public health
researchers). The subjects’ comfort levels in sharing data with technology researchers is also
comparable to this of close family members in all cases except for sharing exact location. Finally,
we observe that the subjects’ level of comfort in sharing data with technology researchers is higher
than the level of comfort in sharing the same data with insurance companies. In conclusion, the
results in Figure 3.3 indicate that the subjects are comfortable using the proposed telemonitoring
technology from a privacy point of view.

Moreover, these results load some responsibility on our shoulders as technology researchers.
First, there is the inherent responsibility of not losing this trust. Perhaps not any less importantly,
with this level of trust, not only do we have a main role in shaping the technology in a privacy-
aware manner, but we also have the means to achieve it by having direct access to consumers who
trust us to do so.

Next, we provide similar evidence of consumer trust from a later but smaller study that we
conducted, called RunningCoach.

3.2.3 RunningCoach – Privacy and Acceptability Study

In this section, we discuss the acceptability and privacy findings of the RunningCoach study that
we discussed in detail in Section 2.8 [Aranki et al., 2017]. This part of the dissertation is also
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Figure 3.4: Post-study acceptability survey results for the RunningCoach study (N=6).

self contained; nevertheless, we refer the reader to Section 2.8 for more context and details about
the study. The study remotely monitored 6 long-distance runners for a period of 3 months. The
study was conducted as part of the Berkeley Telemonitoring project’s efforts to demonstrate the
proof-of-concept of the Berkeley Telemonitoring framework. All 6 subjects were students at UC
Berkeley. The survey instrument that was used in this study was inspired by and adapted from
the survey instrument in the CHF study.

In this study, the subjects only took the survey after they finished the study. In Figure 3.4
we present the subjects’ responses to the acceptability portion of the survey. We observe that the
acceptability of telemonitoring for long-distance running coaching is lower than the acceptability of
telemonitoring for CHF. There are multiple factors that could have played a role in this difference.
First, from interviews with the subjects, it was evident that they prefer a smaller form factor
monitoring device than a smartphone. One subject stated: “I’m a big fan of using running watches
instead of phone apps because the form factor is much more comfortable. That’s the main reason
I was so negative about using a phone-based athletic trainer.” It is important to mention here
that we are able to avert the challenge of a large form factor because the Berkeley Telemonitoring
framework supports Android devices in general. As such, a telemonitoring application for, say an
Android smart watch, can be implemented using the Berkeley Telemonitoring framework. Second,
it is not a stretch to hypothesize that the higher the perceived utility, the higher the price people
are willing to pay for it. From that point of view, CHF telemonitoring application has a potentially
higher perceived utility and value, which encourages people to be more willing to adopt it.

The highlight of the survey results, though, lie in the privacy part of it. Similar to the CHF
study, the survey asked subjects the following question. “Sometimes the smartphone might auto-



CHAPTER 3. PRIVACY IN TELEMONITORING 65

Figure 3.5: The responses to privacy related question administered after to the RunningCoach
study, inquiring about how comfortable the users are sharing their data on weight, physical
activity levels, location, and heart-beat rate values (N=6).
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matically record, or ask you to report, specific kinds of information about your health or behavior,
such as your weight, your mood, or your blood pressure. The following questions will help us
understand how comfortable you are with the idea of other people knowing these things about you.”

We show here the subject’s level of comfort in giving regular updates about their i) weight;
ii) level of physical activity; iii) exact physical location at any point in time; iv) heart-beat rate;
v) types of physical activity she or he does; and vi) mood at any point in time to i) doctors and
nurses who provide her or his healthcare; ii) researchers who study athletic training technology;
iii) public health professionals who study the effects of exercise and athleticism; iv) insurance
companies that set her or his health insurance prices; and v) close family members who care about
her or his health.

In particular, Figure 3.5 shows findings that are consistent with our preliminary evidence from
the CHF study. The data suggest that i) the subjects here also trust technology researchers with
their health, fitness, GPS and mood data at a comparable level to their trust in their physician;
and ii) there is a general privacy acceptability of telemonitoring for fitness and coaching purposes.

3.2.4 What’s Next?

First, we showed that the telemonitoring technologies are acceptable from a privacy point of view
in two applications. Moreover, we showed data from our studies that suggest consumers’ have
trust in technology researchers when it comes to sensitive data. This preliminary evidence was
corroborated in a second study with a different application. But what does this mean? We argue
that this puts a heightened responsibility on the shoulders of technology researchers but also gives
them a unique opportunity to develop privacy-aware technologies. So what can we do? We will
first survey the popular principles in design of privacy-aware systems and augment these principles
to include newer threats that need to be addressed. Afterwards, we will introduce the framework
for Private Disclosure of Information that aims at defending the subject from a MITM passive
inference attack.

3.3 The Inference Design Principle

We have established that privacy is an important factor in designing any system, in particular
those applicable to predictive medicine. We have also outlined preliminary evidence that in a
range of applications of telemonitoring, the level of trust in technology researchers is comparable
to that in medical personnel. This puts technology researchers and designers at a unique place,
given the access they have to such sensitive data. We turn to discuss two important questions.
Namely, i) what design principles should we adopt in designing telemonitoring applications? And
ii) what are the privacy threats in telemonitoring settings?

We will answer the first question by identifying a new design principle for privacy-aware systems
that addresses the new privacy threats of statistical inference. We introduce this Inference principle
in Section 3.3.2. But before we do, we need to provide context by first outlining the existing
principles and practices in privacy-aware system design, which we do in Section 3.3.1.

3.3.1 Existing Privacy Design Principles and Practices

What principles should technology researchers and designers adopt when designing and implement-
ing predictive medicine technologies in general, and telemonitoring systems in particular? In order
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to answer this question, we must first review and understand some of the established principles in
privacy protection as laid out by privacy scholars and adopted by different regulatory agencies. A
whole book can be written to review such efforts; therefore, for the sake of brevity and conciseness,
we will briefly review 4 of the more prominent and relevant efforts in that realm. These are, i) the
works of Westin [1968]; ii) the United States of America (US) Privacy Act of 1974; iii) the Eu-
ropean Union (EU)’s Directive 95/46/EC of 1995; and iv) the Federal Trade Commission (FTC)
Fair Information Practice Principles of 1998.

Afterwards, we will describe 2 examples of distilled engineering practices, based on the afore-
mentioned principles. These efforts are i) the World Wide Web Consortium (W3C) Privacy Pref-
erences Platform (P3P) specification, which allows Web developers to write their privacy policies
in a machine readable way, using Extensible Markup Language (XML) tags; and ii) Privacy by
Design, which outlines a set of practices for designing privacy-aware ubiquitous systems. In what
follows, we will elaborate briefly on these principles and practices.

Alan Westin’s Framework for Privacy in Personal Information

Ever since information technology systems started entrenching in our daily lives, the collection,
analysis, retention and dissemination of personal information has become ubiquitous at an ever
decreasing cost. This led scholars and legislative bodies to examine the desired principles that are
to be followed in the then-new realm of unprecedented data collection in ever growing quantity and
detail. One of the pioneers of data privacy research was Alan Westin, whose study of data privacy
prompted US privacy legislation [Privacy Act, 1974] as well as other privacy-advocacy movements
around the world [Westin, 1968]. Therefore, no modern privacy textbook relevant to information
technology can be complete without visiting, even if briefly, the distilled framework that is based
on Westin’s work.

Westin’s contributions include 30 privacy-related surveys that were conducted between the years
1974 and 2004 [Westin and The Staff of The Center for Social & Legal Research, 2003]. Among
these, Westin surveyed public opinion on health-related privacy, credit reporting and privacy, and
e-commerce related privacy.

His scholarly work further resulted in shaping a framework of principles for the collection,
use, retention and dissemination of personal information. These principles are often called “fair
information practices.” They were later adopted, in an adapted form, by the FTC in the Fair
Information Practice Principles which will be discussed further in this section [Pitofsky et al.,
1998, 2000]. Before we get to that, let us first examine an earlier effect of Westin’s work, the US
Privacy Act of 1974 [Privacy Act, 1974].

The US Privacy Act of 1974

There are two historical contexts that are relevant to the enactment of the US Privacy Act of
1974. First, in light of the Watergate scandal, the US Congress was eager to restrain the illegal
investigation and surveillance of individuals by federal agencies [Department of Justice’s Office
of Privacy and Civil Liberties (OPCL), 2015]. Second, there was a general concern of potential
abuse given the increasing use of computer systems and databanks to retain and disseminate
information about individuals. As a result, in an effort to regulate the collection, use, retention
and dissemination of personal information, the US enacted the Privacy Act in 1974 that sets
forth principles for federal government agencies regarding their collection of information about
individuals.
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It is important to note that although the US Privacy Act of 1974 protects every individual
subject to the collection of personal information, it only applies to records held by government
agencies. We first highlight that an individual in this context refers only to persons who are US
citizens or “aliens lawfully admitted for permanent residence” [Privacy Act, 1974]. Second, since
the US Privacy Act of 1974 only applies to federal agencies, it lacks coverage in the commercial
arena. As a result, the US Privacy Act of 1974 does not offer protection for consumers from the
reach of corporation data collection that is very prominent in our days. The FTC has attempted
to fill this gap in their Fair Information Practice Principles that will be discussed further in this
section.

In spite of its failure at home, the US Privacy Act of 1974 scored some important feats. First,
in its statement of purpose, the US Privacy Act of 1974 declares that “the right to privacy is
a personal and fundamental right protected by the Constitution of the United States” [Privacy
Act, 1974]. Not only is it a major step to explicitly identify privacy as a right protected by the
US Constitution, but this statement also extends the scope of privacy protection to the age of
information systems.1

In order to understand the second important contribution of the US Privacy Act of 1974, we
need to describe its principles. These principles, called the fair information practices, are based
on the work of Westin. They can be summarized as follows [Langheinrich, 2001].

1. Openness and transparency: neither the collection of personal information, nor the types
and nature of data collected, may be done in secret.

2. Individual participation: any person who is the subject of data collection should be able to
view the records pertaining to her or him, and be able to correct such records.

3. Collection limitation: the extent of the collection of personal information should be propor-
tional to the purpose of such collection.

4. Data quality: the collected personal information should remain up to date for the purposes
of the collection.

5. Use limitation: access to the collected personal information should be limited to authorized
personnel; and the use of the collected personal information should be limited to the specific
purpose of its collection.

6. Reasonable security: records of personal information should be safeguarded by proper and
adequate security measures.

7. Accountability: the collectors and curators of personal information are accountable for com-
pliance with the law and other principles.

Even though the coverage of these principles was limited in the US, the fair information practices
affected every other major privacy legislation in the democratic world [Langheinrich, 2001]. Sector-
specific laws were subsequently passed in the US for very limited and specific needs. Examples
include the US Video Privacy Protection Act of 1988, the US Computer Matching and Privacy
Protection Act of 1988 and the US Family Education Rights and Privacy Act of 1994. However,
it wasn’t until 1995 that another world-wide influential legislative action was taken. This is EU
Directive 95/46/EC on the protection of individuals with regard to the processing of personal data
and on the free movement of such data (“Data Protection Directive”).

1The first information technology data protection act, Bundesdatenschutzgesetz (BDSG), was actually first
enacted in the German state of Hessen in 1970.
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The EU Directive 95/46/EC of 1995

The EU Data Protection Directive of 1995 contained in essence a refined version of the principles
of fair information practices that the US Privacy Act of 1974 introduced [European Parliament,
1995]. However, article 7(a) of the EU Data Protection Directive of 1995 dictates that personal
data may be processed only if “the data subject has unambiguously given his consent.” In this
context, consent means “any freely given specific and informed indication of his wishes by which
the data subject signifies his agreement to personal data relating to him being processed.” In
contrast, the notion of consent in the US Privacy Act of 1974 is a weaker requirement because
i) it is subject to more exceptions than the EU Data Protection Directive of 1995 permits; and
ii) it is not as explicit as its counterpart in the EU Data Protection Directive of 1995 (e.g., does
not require that consent be informed). In essence, this requirement in the EU Data Protection
Directive of 1995 prevents all types of personal data collection, unless the subject has provided
unambiguous informed consent to the processing of data; except for contractual and legal purposes
as outlined in article 7 [European Parliament, 1995].

In addition to the the notion of unambiguous and informed consent, it is important to note
that the scope of the EU Data Protection Directive of 1995 shields all natural persons, including
non-EU citizens or legal residents, from the reach of any data collector, processor, recipient or third
party, including a “natural or legal person, public authority, agency, or any other body” [European
Parliament, 1995]. Even more, article 25(1) of the EU Data Protection Directive of 1995 dictates
that personal data collected within the EU can be shared with non-EU third countries only if “the
third country in question ensures an adequate level of protection.” In contrast with the US Privacy
Act of 1974, the EU Data Protection Directive of 1995 is far more protective and inclusive.

The EU Data Protection Directive of 1995 proved successful as it prompted many countries
around the world to update their privacy legislation in order to comply with its provisions; an
effect that the US failed to achieve. Subsequently, there has been some effort in the US to include
broad consumer-level privacy protection practices. This effort, undertaken primarily by the FTC,
is the subject of our next discussion.

The FTC Fair Information Practice Principles of 1998

In an effort to keep up with the technological advancement and the updated means of conducting
business through virtual mediums, the FTC started studying online privacy in 1995. Compared to
the EU, the US legislative attitude towards online consumer privacy protection has largely been
i) against imposing a blanket regulation on the industry; and ii) in favor of a more industry-
driven self-regulatory approach. This attitude was also originally supported by the FTC in their
report to US Congress on Online Privacy in 1998. The FTC’s report in 1998 found that the
federal government has limited authority over online personal data collection and dissemination.
Furthermore, in the report, the FTC encouraged the use of self-regulation in the industry as means
to address consumer concerns regarding their online privacy; even though it had reported that no
such “effective self-regulatory system” was emerging in the industry, at that time. The FTC did
recommend that US Congress use legislation the area of children’s online privacy [Pitofsky et al.,
1998].

However, in the FTC report to US Congress on online privacy of 2000, there was a major twist
and shift in the FTC’s view and recommendation, in light of the lack of progress the industry
had taken in self-regulating personal data collection. The report recommended legislative action,
citing the “industry’s limited success in implementing fair information practices online, as well
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as [the] ongoing consumer concerns about Internet privacy.” The report was issued with a 3-2
Commission vote, with one commissioner (Swindle) strongly dissenting and another concurring in
part and dissenting in part. Commissioner Swindle’s dissent indicates his disagreement with the
recommendation for legislative action, citing“an unwarranted reversal of [the Commission’s] earlier
acceptance of a self-regulatory approach.” [Pitofsky et al., 2000] This split somewhat signifies the
Byzantine nature of the debate on regulating consumer online privacy in the US. Although the
FTC has had successes in the past bringing legal action in cases relating to online privacy, it has
primarily done so relying on the FTC Act of 1914 and its prohibition of unfair and deceptive
practices [US Congress, 1914]. It seems unfair that the FTC is only given old weapons to fight
modern battles: in a way this resembles “bringing a knife to a gun fight.”

Despite all of that, the FTC had presented, since its 1998 report, the set of fair information
practice principles of i) notice/awareness; ii) choice/consent; iii) access/participation; iv) integri-
ty/security; and v) enforcement/redress. These principles are adapted from the framework of the
US Privacy Act of 1974, which are in turn based on the work of Westin. The difference is that
these principles are not limited to government agencies as data collectors, as is the case in the US
Privacy Act of 1974. The fair information practice principles can be defined as follows [Pitofsky
et al., 1998].

Notice/Awareness Consumers need to be notified and aware of any collection of their personal
information online. Furthermore, consumers need to be aware of the collector’s information prac-
tices, including but not limited to i) who is collecting the data; ii) how are the data being used;
iii) who is receiving the data; iv) the means of the data collection; v) whether data collection is
voluntary or required; and vi) the measures taken to ensure confidentiality, integrity and quality
of the data.

Choice/Consent These principles revolve around giving the consumers choice regarding the
sharing of their personal information, and the uses thereof. Particularly, consumers should have
the choice to allow or deny secondary uses of the information that surpass the declared immediate
purpose of the collection. Typically, these choice options are ’opt-in’ and ’opt-out’. In an ’opt-in’
worldview, consumers need to affirmatively accept the secondary uses of their personal information
(i.e., the secondary use is not permitted by default); whereas ’opt-out’ requires that consumers
affirmatively decline the secondary uses of their personal information (i.e., the secondary use is
permitted by default). It is worth noting that even though these principles were introduced by
the FTC after the EU Data Protection Directive of 1995, the FTC consent principle is relatively
less powerful than its counterpart from the EU Data Protection Directive of 1995. For example,
according to the FTC Fair Information Practice Principles, consumers may have an unfair say in
the consent process. Consider the following scenario for illustration. Consumers often consent to
having their personal information shared with third-parties under certain circumstances. It is rare
that these certain conditions are explicitly specified in the agreement. Moreover, once the third-
parties gain access to such personal information, they may share it with their subsidiaries. This
fundamentally nullifies the ability of the consumer to control access to their data in an informed
manner [Tavani and Bottis, 2010].

Access/Participation The consumers should have access to not only view the collected data
pertaining to them, but to also verify and contest its accuracy and/or completeness. The principle
also dictates that for access to be meaningful, it must be available in a timely and inexpensive
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manner. In addition, contesting and correcting inaccurate and/or incomplete information must be
allowed through a simple mechanism that also allows the data collector to validate it. Finally, any
such edits to personal information due to a subject contesting the accuracy and/or completeness
of her or his data has to be then communicated to all recipients of such data.

Integrity/Security The integrity of the data means that the data be accurate for the purposes
of its collection. The FTC Fair Information Practice Principles dictate that information collectors
must take reasonable steps in order to ensure the integrity of the data they collect, including but
not limited to: using reputable sources of data, providing consumers access to their data, and
removing out-of-date data or anonymizing them.

Enforcement/Redress In order to ensure the effectiveness of any set of principles, including
the aforementioned Fair Information Practice Principles, there needs to be a mechanism to enforce
them. In addition, redress protocols and policies also need to be present in order to correct
violations. The FTC report of 1998 enumerates 3 possible mechanisms of enforcement and redress:
i) self-regulation; ii) private remedies; and iii) government enforcement.

We argue that enforcement is the pillar upon which the effectiveness of rest of these principles
rests. For example, Langheinrich [2001] writes that “if certain legal requirements are simply not
enforceable, technological or procedural solutions need to be found, or the law changed.” The views
taken in this dissertation will be discussed in more detail in Section 3.3.2. However, we observe
that like is so often the case, the answer to the enforcement mechanism probably lies between the
different options. However, in retrospect it seems that the approach taken by EU Data Protection
Directive of 1995 is closer to the answer than the approach currently taken in the US regarding
consumer privacy protection and online privacy protection.

In light of the different regulatory frameworks for consumer privacy, we now turn to survey the
principles that drive the design of privacy-sensitive systems. For this purpose, we first describe
two such frameworks, and then augment them with a new principle that is applicable to the new
threats of statistical inference.

The W3C Privacy Preferences Platform

Given the slow adaptation of many regulatory bodies, the onus of making progress of any tangible
effect now lies on the shoulders of technology developers and the privacy advocates in the industry.
One trial of such effort is the World Wide Web Consortium (W3C) Privacy Preferences Platform
(P3P), which is a specification that enables websites to describe their privacy policies in a machine
readable manner. This enables Web browsers to parse these policies. In this scenario, Web browsers
can allow users to set what policies are acceptable to them and which are not. The Web browsers
can check visited website policies against these preferences, and alert the user if the website has
privacy policies that are not acceptable to the user. For example, the user can request to reject
any privacy policy that shares her or his shopping preferences with third parties.

Designing the P3P specification was carried by a W3C working group that included represen-
tation from privacy advocates, industry partners and universities [Cranor et al., 2006]. The P3P
specification defines the syntax and semantics of a set of XML tags and elements that can be
used to define policies regarding i) subjects’ access to their data; ii) resolving disputes regarding
the collected data (e.g., court, independent organization, etc.); iii) the purposes of data collection
(e.g., telemarketing, contact, research and development, etc.); iv) the recipients of the collected
data; v) the retention of the collected data (e.g., indefinitely, as long as needed for legal purposes,
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etc.); and vi) the types and categories of collected data (e.g., financial, purchase, health, etc.) and
whether each collected data variable is required or optional.

This effort did not achieve its full potential due to two enforcement-related issues. The first
enforcement issue lies in incentivizing websites (or forcing them, through legislation) to use this
mechanism to communicate their policies. The second complication of enforcement is ensuring the
accuracy of these policies with respect to the actual handling and use of the data.

Let us examine a more promising privacy-aware design framework, called Privacy by Design.

Privacy by Design

The notion of Privacy by Design [Langheinrich, 2001; Schaar, 2010] and the related notion of
privacy-enhancing technologies [van Rossum, 1995] came to life in response to rapid deployment of
seemingly innocuous information technologies in our lives. Such systems range in their form factors,
from large databases to small and almost invisible systems (e.g., ubiquitous systems, Internet of
Things (IoT)). Both of these efforts attempt to set-forth a framework for the design of information
systems in a privacy-aware manner. In this discussion we will focus on the framework for Privacy
by Design since it was devised and refined in the field of ubiquitous computing, which is relevant
for predictive medicine systems in general and telemonitoring systems in particular. It is important
to note that Privacy by Design is still a design framework that is applicable to systems other than
in ubiquitous computing and IoT.

In order to better describe Privacy by Design, we need to provide the context of ubiquitous
computing. Ubiquitous computing is a branch of computer sciences where computing is designed
to be seamless. The goal of this paradigm of computing is generally sensing for the purposes
of automating tasks in our daily lives (as well as in industrial applications). As a byproduct of
this sensing, ubiquitous computing allows memory amplification by essentially recording more and
more of our environments and our lives in a way that may leave a permanent record of our physical
and mental worlds. Langheinrich [2001] summarizes the 4 properties of ubiquitous computing, that
make it a prime area for the study of designing privacy-aware system:

Ubiquity Ubiquity is the explicit goal of this branch of computing, being everywhere. From even
the first principle of ubiquitous computing, it is clear that any decision made during the design
of such artifacts will have a broad affect on our privacy. The reach of this effect includes i) our
lives in the public sphere–such as driving or walking in public; ii) our lives in shared, semi-public
spheres–such as the workplace or school; and iii) our lives in the private sphere–such as our homes
or even ultimately, our emotional states.

Sensing One of the primary tasks of a ubiquitous system or artifact is its ability to sense some
aspects of the environment accurately. For example, think about an artifact that is able to record
humidity, temperature, carbon monoxide and carbon dioxide levels. As technology and research
progresses, so does our ability to i) to increase the accuracy of the sensing abilities of ubiquitous
systems; and ii) to sense new variables in the environment (e.g., mood, stress, emotions). If any-
thing, this principle is the atomic reason for the privacy concerns in this field, for this principle
dictates that ubiquitous computing needs to be able to collect data about the environment, includ-
ing us. Even if the collected data are not, in their own right, privacy sensitive, inferences based
on them may be.
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Invisibility In addition to being everywhere, ubiquitous artifacts should become invisible i) by
becoming smaller and smaller (in form factor); and ii) by requiring less and less active input from
the people in the environment (ultimately none). Once again, this principle magnifies even more
the privacy concerns and the importance of being sensitive to these issues in the design of such
systems. This is primarily because it is easy to imagine a scenario where ubiquitous systems are
so invisible that individuals don’t even know about their existence; much like how data collection
on the Web is hard to quantify accurately because it is invisible to us to a large extent.

Memory amplification Memory and storage are becoming cheaper and cheaper. Since ubiqui-
tous systems should have sensing abilities and are designed to be everywhere, they can eventually
result in prolonging the lifetime of events in our lives. For instance, it is not a science fiction
exercise to picture the world where it is impossible for someone to do something without being
recorded, with this record potentially being retained for a time longer than one’s life expectancy.
This amplification of the collective memory in turn amplifies the privacy concerns in ubiquitous
computing even more.

It is important to highlight that telemonitoring is an example of a ubiquitou system, and
therefore potentially suffer from all of the aforementioned privacy concerns, and more. Moreover,
it is vital to understand that decisions made in the design process will have their effects on viable
policies that can be legislated. The primary reason for this entanglement is that these design
decisions dictate what later can be enforced (e.g., by law). For example, passive Global Positioning
System (GPS) tracking devices rely on estimating their distances from known satellites. These
devices achieve that by passively listening to signals coming from these satellites. This design
implies that a company–say, the deploys satellites–cannot later charge you a regular service fee for
using their satellites, because they cannot know that you are using their satellites. In this example,
it is clear that the specific design decisions made during the design of GPS affected what policies
can later be enforced.

If we combine the importance of enforcement with the fact that design decisions and choices
affect enforceability, then we arrive at the conclusion that technology designers have to consider
privacy and enforceability when they design information systems in general, and ubiquitous systems
in particular (including those applicable for predictive medicine such as telemonitoring). The
previous statement is the essence of the framework for Privacy by Design and its vitality.

With this context in mind, we enumerate the 6 principles of Privacy by Design as described by
Langheinrich [2001].

Notice/Openness According to Langheinrich, the most fundamental principle of any data col-
lection system is openness (or notice). This principle dictates that a data collection system should
notify the subjects of such collection that their information is being collected. We note that P3P
is a system that is designed, in part, to enable websites to achieve this principle in a fair manner.
Ideally, such an effort needs to happen during the design of the system, not as a post-hoc effort to
patch an existing system like in the case of the Web and P3P [Cranor et al., 2006].

Choice and Consent The EU Data Protection Directive of 1995 introduced for the first time a
strong notion of consent in consumer privacy protection legislation. After its enactment, it was no
longer sufficient to simply notify the subjects of data collection of such collection, but required the
unambiguous, free, specific and informed consent before such collection occurs. Following the same
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philosophy, Privacy by Design identifies this type of explicit consent as an important principle to
consider during the design of systems. Note that here also, P3P assists achieving this principle in
the web. This is because P3P enables browsers to act on behalf of the user, based on the user’s
preferences which can arguably be considered as some level of explicit, free and informed consent
(or lack thereof, in case the privacy policy violates the user preferences).

Anonymity and Pseudonymity The principle of anonymity argues that since obtaining an
explicit and informed consent is a difficult goal to achieve, then systems should consider collecting
information in an anonymized and pseudonymized way so that consent will not be needed in that
case.

Dissenting Opinion Even though this principle is seemingly innocent, we believe that it con-
stitutes a dangerous slippery slope. It has been demonstrated once and over again that anonymized
databases can be de-anonymized by multiple means including data fusion and/or exploiting spe-
cial structures of these databases (e.g., sparsity) [Sweeney, 2002; Narayanan and Shmatikov, 2006,
2008]. To be fair, our understanding of the extent of this danger was only solidified after the
publication of these principles in 2001; however, if anything, this demonstrates the difficulty of
devising a fixed set of principles that will stand the test of time, because it is hard to foresee future
dangers and risks.

Proximity and Locality The proximity principle states that in the absence of the ability to
obtain explicit and informed consent, data collection should only occur whenever the owner of the
ubiquitous artifact is in the proximity of that artifact. This should minimize the invasion of the
privacy of individuals other than the owner of the device. For example, consider a sensor that
collects heart rate in a non-contact manner [Poh et al., 2011, for example] for the purposes of
assessing the risk of CHF. In this case, the sensor should only collect heart-rate data when the
intended subject of such collection is in the proximity of the sensor. In contrast, the principle of
locality attempts to alleviate the difficulty of identifying when the intended subject of the data
collection is around, which could be a difficult problem for some sensors. In these cases, the locality
principle dictates the collection of data only whenever the sensor is in the intended locality of data
collection. For example, the non-contact heart rate monitor can alternatively only collect data
whenever it is inside the emergency room of the hospital. Both of these principles are trying to
deal with the difficulty that is inherent in obtaining informed and explicit consent from individuals
in the setting of ubiquitous systems.

Partially Dissenting Opinion We believe that much like the principle of anonymity and
pseudonymity, the inception of a whole new principle just for the sake of solving our inability
to achieve another–more fundamental–principle, is a wrong and excessive approach that may end
up backfiring. The main issue here is that an ad-hoc solution to a more fundamental problem is
being declared a principle. While in this case, this ad-hoc solution is acceptable as a temporary
solution, it does not address the fundamental issue at hand. In addition, to label this solution as
a principle of equal value to the consent principle gives the impression that an adequate solution
to the original fundamental issue has been reached. Instead, one should temporarily adopt the
ad-hoc solution, but continue to work towards mitigating the gaps in achieving the fundamental
principle. To give an analogy, if there is a pothole in the street (the fundamental issue), warning
drivers with a sign that there is a pothole ahead is a temporary solution (the ad-hoc solution) until
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the more fundamental issue is resolved (that is, closing the pothole). It would be almost comical
to transform the real fundamental issue of closing the pothole into the question of how to present
the warning to the drivers while accepting that this pothole will be there forever.

Adequate Security It is almost impossible to achieve an adequate level of privacy without an
adequately secure infrastructure. However, it is important to note here that privacy and security
are not interchangeable. You cannot replace one with another, but need both to operate in a
coherent fashion in order to achieve the highest level of consumer protection possible. With this
in mind, this principle is not necessarily easily achievable in general systems. Ubiquitous systems
introduce a new set of security challenges given their form factor and computation power. Some of
the more traditional and established storage and communication security technologies may not be
applicable in ubiquitous computing. Therefore, special consideration to security needs to be given
in the design phase of any system.

Access and Recourse This principle states that adequate access to the system details (not
necessarily to the collected data) needs to be provided in order to be able to detect violations
and enforce penalties or other remedies if necessary. This, in essence is trying to address the hard
question of enforcement. In other words, in the design phase of a system, technology designers
need to think about ways to allow audit of their systems by independent bodies and eventually
enforcement of applicable policies, regulations and/or laws. Langheinrich argues that both of these
topics belong more to the field of legal practice. He further argues that there is a need to revise
or establish new laws and codes of conduct in order to address the special needs of ubiquitous
computing. Nevertheless, part of the responsibility to enable enforcement, as discussed earlier,
falls on the designers of such systems, and so this principle is a necessary one for the design of
systems.

To summarize, Privacy by Design is a promising framework in which system designers incor-
porate privacy considerations into the design phase of their systems. We believe that this type
of incorporation is necessary in order to effectively protect consumers’ privacy. However, we do
think that some fundamental gaps in achieving explicit and informed consent are present, and they
need to be bridged. One potential way to achieve this is as follows. First, systems need to clearly
communicate their policies in an unambiguous language that can be parsed by machines. This can
be thought as being similar to the efforts carried out by the W3C P3P for websites. Once this is
done, one can think of a universal privacy policy compliance system that reads all of these privacy
policies, whether online or in the ubiquitous systems setting, and alerts the consumers whenever
they are entering a space that doesn’t comply with their preferences. The preferences need to be
set once by the consumer in a manner that she or he understands (i.e., in a high-level language,
for example: reject a policy that uses my home address for marketing purposes). To some extent,
under this view, one can think of the world of privacy as if consumer were the ones writing their
own privacy policies, and data collection agencies fall in different categories depending on their
level of compliance with the consumer’s privacy policy; based on these categories, consumers can
decide whether or not to consent to the requested data collection. Even further, if data collectors
can get access to the consumer’s privacy policy, they may want to adapt their data collection
pertaining to that consumer in order to comply with the consumer and not lose their business.

We believe that other gaps are present in protecting the privacy of consumers while commu-
nicating their data to curators or between curators. Specifically, we adopt a view of privacy that
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indicates that privacy-breaches can still occur even if the data is secured in traditional means. This
is possible through statistical reasoning about the data. Therefore, we feel that there is a need to
introduce a new design principle that captures this threat. We elaborate more on this view in the
next section.

3.3.2 Our Philosophical View on Privacy – The Inference Threat

Although Westin defines privacy as “the claim of individuals, groups, or institutions to deter-
mine for themselves when, how, and to what extent information about them is communicated
to others,” [Westin, 1968] Langheinrich argues that privacy is a notion that cannot be accurately
defined [Langheinrich, 2001]. There is truth in both arguments, depending on what one wishes to
distill from a definition. For instance, privacy is a social notion that gets refined with time, much
like almost every other social notion; therefore, a single definition that will withstand the test of
time will have to be generic in order to still apply after privacy concerns adapt with newer ways
of life.

For actionable engineering purposes, it may be more useful to define a set of privacy goals that
one wants to achieve, which is commonly referred to as a privacy framework. By identifying a
privacy framework, system designers can then design their systems in a manner that is compliant
to the adopted privacy framework. In this section, we identify a privacy framework that is relevant
for the topic of this dissertation, predictive medicine.

By large we adopt the Privacy by Design framework, with the reservations described in Sec-
tion 3.3.1. We argue that Privacy by Design as described lacks an important principle that is a
product of modern techniques. In order to understand this proposed principle, let’s conduct a
thought experiment that is relevant to telemonitoring in particular and to predictive medicine in
general.

A subject Bob is participating in an epidemiological study that aims at identifying risk factors
for prostate cancer. The study utilizes telemonitoring technologies for the data collection. Among
other health-related variables, the epidemiologists are interested in Bob’s continuous respiratory
rate. Bob consents in an informed fashion to this data collection. Some time later, it is discovered
that respiratory rate can be used to accurately determine whether a person smokes marijuana or
not. Bob would like to keep the information regarding his marijuana use private. Should Bob
continue sharing continuous respiratory rate?

There are many possible answers to this nuanced question. For instance, in a setting where Bob
trusts the medical researchers conducting the epidemiological study, it is sufficient for Bob to not
consent for his data to be used for the purposes of predicting whether he smokes marijuana or not.
In another scenario where Bob doesn’t necessarily trust the doctors beyond his projected level
of risk of harm (e.g., losing his job and/or increased insurance premium if the prediction came
positive), Bob would most likely prefer to stop sharing the respiratory rate data with anyone.
Regardless of the specific answer that each individual may take, this thought experiment demon-
strates that there is a notion beyond the traditional collection, use, retention and dissemination
of data. This notion is more nuanced, and has to do with what other pieces of information can be
inferred from the collected data. From this, we propose the following principle of Inference.

Inference Data and information flows should be understood so that the privacy preferences of
the consumer are taken into account when it comes to inference of undisclosed information from
the collected data. Mechanisms need to be instilled in systems in order to audit and monitor such
inferences and prevent or limit them in case they don’t comply with the privacy preferences of
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the subject of the inference. This principle also exemplifies the importance of solving the consent
problem in a systematic way, because the notion of consent in the realm of inference should be
updated to adapt to the new realities (e.g., consent to respiratory rate getting collected, but do not
consent to using such data for the purposes of inferring whether Bob smokes marijuana or not).
By considering this principle, it is easier to see why exchanging the roles of who dictates and who
follows privacy policies has the potential to provide a stable data ecosystem.

The principle of Inference can also be viewed by contrasting privacy to traditional security. In
traditional encryption approaches to maintaining privacy, it is often implicitly assumed that the
data themselves are the private information. However, in some scenarios, the data can be used to
infer certain private information about the subjects from the given data. For example, respiration
rate by itself might not be considered private information. However, if the data from the collected
respiration rate are used to infer whether the individual is a marijuana smoker or not, they become
sensitive information. One can argue that because the information about whether someone smokes
marijuana is private, the respiration rate data become private by extension.

Finally, we advocate the guideline that the specific privacy concerns need to be studied before
the deployment of any system. In this context, we propose a guideline for privacy-aware system
design that helps achieve that, the 2.0 from Scratch guideline (note that we don’t call it a principle
but merely a guideline).

2.0 from Scratch This guideline advises system designers to implement a first version of their
system for the purposes of privacy and acceptability studies, similar to those presented in Sec-
tion 3.2. Based on the findings of such studies, it is advised to start the second major version of
the system from scratch. There are similar guidelines in traditional systems design for building
large robust systems. In those guidelines, software engineers are advised to build the second version
of a large system from scratch, incorporating all the lessons learned from the first version.

With the views set forth in this section, we developed a framework for information disclosure
that protects consumers against inference by unauthorized entities in a MITM attack setting.
We introduce this framework in the following section. Note that even though this framework is
applicable to any passive MITM inference-based attacks, we introduce it in a language that is
consistent with telemonitoring for coherency.

3.4 Private Disclosure of Information (PDI)

3.4.1 Introduction

Telemonitoring can be considered a health-related ubiquitous systems, which implies that it comes
with all of the privacy concerns that we discussed thus far. Not only is privacy-awareness an
important ethical consideration to make during the design of telemonitoring systems, but it has
serious implications on the reliability of the collected data. For instance, Warner argued, in 1965,
that individuals would be unwilling to share their data, or simply share false information (if
possible), in the absence of privacy guarantees [Warner, 1965]. Therefore, lack of privacy protection
could result in bias due to the choice of some individuals to not share their information, or simply
because of the accuracy of the collected information, which in turn hinders our ability to draw
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conclusions from such data.2 As a result, we need to understand the privacy threats specific to
telemonitoring, and design mechanisms to protect the privacy of the users of such technology. In
addition, such an effort would greatly promote the adoption of telemonitoring.

Let us start by identifying the life-cycle stages of information curated and handled in telemon-
itoring systems. These stages include i) the collection and disclosure of health-related data by the
users; ii) the processing and analysis of the data by the telemonitoring servers; iii) the publishing
of results based on the data, which may include publishing a subset of the dataset, statistics of it,
a sanitized version of it, or a combination of those.

In this section, we focus on defending against inference threats that are present in the first
stage of the information’s life-cycle described above. Concretely, we aim to reduce the ability
of an eavesdropper to infer certain privacy-sensitive information about the patient, such as the
diagnosis, from the information that the patient discloses to their doctors, through telemonitoring.
This threat is usually called an inference attack. As such, we adopt the Inference point of view
described in Section 3.3.2 and design a telemonitoring system that conforms with the Inference
principle presented therein. The framework that is designed for this purpose, and presented in this
section, is called Private Disclosure of Information (PDI) [Aranki and Bajcsy, 2015].

By focusing on the Inference design principle, we aim to sanitize the transmitted (disclosed)
information in a way that leaks as little as possible about other private (undisclosed) pieces of
information to an eavesdropper. In summary, the objective is to sanitize the disclosed data in
order to hide other private pieces of information, which can be infered from these data. As
discussed earlier in this chapter, privacy and security are not interchangeable. As Sweeney wrote,
“computer security is not privacy protection” [Sweeney, 2002]. The converse is also true, privacy
does not replace security. This is an important observation; therefore, we emphasize that PDI is
complementary to, not a replacement of, classical security approaches. For instance, encryption
can be applied to the PDI-sanitized data.

3.4.2 Problem Formulation

Notation

Until the end of this chapter, we use the notation convention described below. We denote a
random variable by a capital letter (say X), and denote a realization of a random variable by
the corresponding small letter (i.e., x). In order to reduce notational overload, we infer which
probability density (mass) function we refer to by the letter(s) used inside. For instance, for the
conditional density (mass) function of Y given X, we simply write p(y|x), and for the marginal
density (mass) function of X we write p(x).

Setting and Threat Model

We introduce the setting and the threat model through the following scenario. A patient, Bob,
is diagnosed by his physician, Alice, with a health condition c. Alice, in turn, would like to get
regular updates about Bob’s health status. As such, she utilizes telemonitoring in order to get
regular updates about Bob’s symptoms, vital signs and other health-related variables. For the
purposes of the discussion on PDI, the objective is not to perform a diagnosis, but to remotely
monitor Bob’s health after a diagnosis is obtained (e.g., for prognosis purposes).

2We elaborate, in detail, on the dangers of bias in Chapter 4.
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Figure 3.6: The PDI threat model: a statistical inference attack by a passive eavesdropper.

The data, x, that Bob sends through telemonitoring, is sensitive from a privacy point of view,
and subjects Bob to statistical inference threats. For instance, an eavesdropper, Eve, can use x
to infer Bob’s diagnosis, c, through statistical reasoning. As a result, we aim to formulate an
information disclosure process, in which Bob is protected from Eve’s inference attack. Moreover,
the process should be compatible with security techniques that protect the disclosed message x
itself (e.g., cryptography). We achieve this protection by encoding the data, x, that Bob wishes to
disclose, and sending that instead. The encoded information, which Bob actually sends to Alice
through telemonitoring, is denoted by z (i.e., the sanitized version of x).

Consequently, the threat model we are considering, depicted in Figure 3.6, is as follows. Bob
wishes to disclose his health-related information x to Alice. Alice already knows the diagnosis, c, of
Bob. Eve, who does not originally know Bob’s diagnosis c, wishes to learn it from Bob’s disclosed
information through telemonitoring (which does not include c itself). To protect himself from this
threat, Bob discloses a sanitized version of the information, z.

As such, Eve treats the diagnosis as a random variable, C, and reasons about it in a probabilistic
manner. Concretely, Eve updates her belief regarding Bob’s diagnosis after observing z. Namely,
Eve updates p(C|Bob) to p(C|Bob, z). Note that in this setting, we are assuming that the identity
of the sender is known to Alice and Eve. Hence, the threat model is an inference attack by a
passive eavesdropper.

The objective is therefore to find a way to encode x to z such that Eve’s ability to gain
information about Bob’s diagnosis, c, from z is minimized. In contrast, cryptography aims to
limit Eve’s ability to infer the original message x–not c–from z. Using the notation we introduced,
cryptography aims to limit Eve’s ability to update her belief P (X|Bob) to p(X|Bob, z), where X is
a random variable describing the original information Bob wants to send. We note that these two
goals are related, but are also different. Several inference attacks, based on encrypted messages,
were demonstrated in the literature [see White et al., 2011; Miller et al., 2014, for example].

To summarize, let s be the identifier of the patient disclosing information using telemonitoring
(Bob in the scenario above). We aim to formulate a process of information disclosure that satisfies
the following premises:

DECODING The physician (Alice) is able to fully utilize the disclosed information z by being
able to retrieve the original message x from z; and

HIDING CLASS The eavesdropper’s (Eve’s) ability to perform statistical inferences on c (given
s), based on the disclosed information, z, is minimized.

Definitions

Formally, we denote the set of identifiers of the patients who use the telemonitoring system by S.
Moreover, I denotes the information space of health data. The set of all diagnoses that patients
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wish to keep private is denoted by C.
Similarly, we denote the random variables of the patient’s identity by S and the random variable

of the (private) diagnosis by C. Moreover, we denote the random variable of the piece of information
that the patient would like to disclose by X. Finally, we denote the random variable of the disclosed
piece of information, after encoding, by Z. Z is often referred to as the sanitized information.

Consider the following form of encoding schemes.

Definition 3.1. A Privacy Mapping Function (PMF) is a function R : C→ II, where II is the set
of injective functions I→ I.

A PMF, R, works as follows. Given a diagnosis c ∈ C, [R(c)](·) is an injective encoding
function that sanitizes information generated by patients with diagnosis c. Concretely, a patient s
with diagnosis c sanitizes her or his data by calculating z = [R(c)](x) (encode(·) from Figure 3.6).

Since Alice alredy knows the diagnosis, c, of the patient s, she can indeed retrieve back x from
z by calculating x = [R (c)]l (z) (decode(·) from Figure 3.6). Here, [R (c)]l (·) is a left inverse of
[R (c)] (·).3 This means that the premise (DECODING) is satisfied by construction.

From the discussion above, we conclude that the random variables Z,X and C are related
by Z = [R (C)] (X). The statistical graphical model relating the random variables is depicted
in Figure 3.7.

Illustrating Example

We demonstrate the definitions and concepts presented thus far by the following example. In this
example, we simulate a telemonitoring system that tracks the Body Mass Index (BMI) and weight
of subjects who are 19 years of age or younger.4 The collection of all patients constitutes the set S.
In our example, the information space is defined as I , {(bmi, w) ∈ R2}, where bmi is the patient’s
BMI [ kg

m2 ] and w is the patient’s weight [kg].

In this example, we consider the following diagnoses C , {UW,HW,OW,OB} denoting un-
derweight, health weight, overweight and obese, respectively. The Center for Disease Control and
Prevention (CDC) defines these as weight categories, where each child or teen is classified based on
her or his BMI percentile among the same gender and age group. These percentiles are described
in Table 3.1.

Based on the definitions in Table 3.1, Eve’s prior belief of diagnoses for any patient s ∈ S
(from our monitored subjects), assuming she doesn’t have extra information about any particular
patient, are

p(C = UW |s) = 0.05, p(C = HW |s) = 0.8, p(C = OW |s) = 0.1 and p(C = OB|s) = 0.05.

Intuitively, Eve’s ability to infer the subject’s weight category from the the information x ∈ I is
not perfect (even if she observes it plainly), since the age and gender are not disclosed.

However, Eve may gain some knowledge regarding the diagnosis by observing the communicated
messages. For example, assume that a subject s discloses the message x = (50 kg

m2 , 120 kg) ∈ I
without encoding (i.e., z = x). This datapoint implies that s weighs 120 kg and measures about
155 cm tall.5

3We say that g : D2 → D1 is a left inverse of a function f : D1 → D2 if for all x ∈ D1 we have g (f (x)) = x.
4BMI is a measure of relative weight based on an individual’s mass and height. Defined as bmi , mass[kg]

height2[m2]
.

5The height can be calculated as

√
mass

BMI
=

√
120

50
≈ 1.55 m = 155 cm.
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Figure 3.7: The statistical graphical model of
PDI. S and C are the patient’s identity and
diagnosis, respectively; X is the information
intended for disclosure; and Z is the sanitized
(encoded) information that gets disclosed.

Weight Category BMI Percentile
Range

Underweight BMI < 5%
Healthy Weight 5% ≤ BMI < 85%
Overweight 85% ≤ BMI < 95%
Obese 95% ≤ BMI

Table 3.1: The different weight categories
defined by the corresponding BMI percentiles
within the same age and gender group for
individuals of age 19 or less. This definition is
consistent with the one provided by the CDC.

Even without observing the subject’s gender or age, Eve’s posterior belief p(C = OB|s, Z =
(50, 120)) will increase (compared to the prior 0.05). Intuitively speaking, this is because it is more
likely that such BMI and weight correspond to a subject diagnosed with obesity than it is the case
that they correspond to a subject with an unknown diagnosis.

Formally, Eve’s probabilistic reasoning relies on Bayes’ rule

p(c|s, Z = (50, 120)) =
p(Z = (50, 120)|c, s)
p(Z = (50, 120)|s)

p(c|s)

for the different diagnoses c ∈ C. Since p(Z = (50, 120)|C = OB, s) is higher than p(Z =

(50, 120)|s), the ratio p(Z=(50,120)|C=OB,s)
p(Z=(50,120)|s) is higher than 1 and therefore the posterior p(C =

OB|s, Z = (50, 120)) will be higher than the prior p(C = OB|s) = 0.05. Alternatively, if we
encode the message x = (50, 120) ∈ I to ẑ in a way that yields

p(ẑ|c, s)
p(ẑ|s)

≈ 1,∀c ∈ C,

we limit Eve’s ability to update her belief about the diagnosis of patient s because her posterior
belief will be approximately equal to her prior belief. PDI’s objective is to generalize this intuition
for every message, diagnosis and subject.

Satisfying the HIDING CLASS Premise

Since the premise (DECODING) is guaranteed by construction, we now move to discuss the (HID-

ING CLASS) premise. Generally speaking, in order to fully describe the statistical graphical model
depicted in Figure 3.7, we have to provide the following distributions.

• p(s), the distribution of patients transmitting messages in the telemonitoring system.

• p(c|s), Eve’s prior of patients’ diagnoses, based on auxiliary knowledge.

• p(x|c, s), the generative model of health data given a diagnosis and a patient.

Based on the definition of PMF, p(z|x, c) be simply described by

P (Z = z|X = x,C = c) =

{
1 if z = [R(c)] (x)

0 otherwise
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for all z, x ∈ I and c ∈ C.
Given the statistical model described in Figure 3.7, we now turn to generalize the intuition

we built in the illustrating example. To generalize that intuition, we aim to find a PMF, R, that
makes the posterior belief p(C|s, z) as close as possible to the prior belief p(C|s) for all s ∈ S and

z ∈ I. This can be done through a choice of R that makes the ratio p(z|c,s)
p(z|s) as close to 1 as possible

for all s ∈ S, c ∈ C and z ∈ I.
In order to achieve this, we have to introduce some mathematical tools and build to that result.

In that journey, we first introduce the notion of Conditional Mutual Information.

Definition 3.2. [Cover and Thomas, 2006, c.f. Definition 8.49] Let X, Y and Z be random
variables. The conditional mutual information of X and Y given Z, I(X, Y |Z), is defined as

I(X, Y |Z) , Ep(x,y,z)
[
log

p(x, y|z)

p(x|z)p(y|z)

]
We will use conditional mutual information to measure the quality of our PMF, R, by consid-

ering the value of I(Z,C|S;R). This notation implies that the conditional mutual information,
in our case, is a function of R. Intuitively, I(Z,C|S;R) is a measure of the expected amount of
information Z carries about C (and vice versa). If the log base in Definition 3.2 is 2, then the
(conditional) mutual information outputs a measure in bits. As such, it is desirable to find a PMF,
R, that minimizes I(Z,C|S;R). In order to see this, we present the following known result that
ties conditional mutual information to conditional independence of random variables.

Lemma 3.1. [Cover and Thomas, 2006, c.f. Corollary 2.92; c.f. Theorem 8.6.1] I(Z,C|S;R) ≥
0 for any PMF, R. Furthermore, I(Z,C|S;R) = 0 if and only if Z and C are conditionally
independent given S; using the PMF, R.

Jiao et al. axiomatically justified the use of (conditional) mutual information as a measure of
privacy for side information, a result that is applicable to our setting [Jiao et al., 2014]. Tying this
intuition together and formalizing it mathematically, we attempt to satisfy (HIDING CLASS) by
finding a PMF that minimizes the conditional mutual information between Z and C, given S as
follows.

R∗ = arg min
R is a PMF

I(Z,C|S;R) (3.1)

Finally, once this PMF is found (and can be made public), we describe the process of Private
Disclosure of Information (PDI) as follows:

Sending In order for a patient, diagnosed with condition c ∈ C, to disclose a piece of information
x ∈ I, she or he first sanitizes x by applying z ← [R(c)] (x) and then sends z (or some
encrypted version of it).

Receiving In order to interpret a message z ∈ I, the intended recipient (who knows the diagnosis
c of the patient), applies x← [R (c)]l (z), where [R (c)]l (·) is a left inverse of [R(c)](·).

Two questions now arise. First, why does minimizing the conditional mutual information mea-
sure as described in Equation (3.1) protect against the inference attack described in our threat
model? Second, given the appropriate data, how do we compute a solution to the problem de-
scribed in Equation (3.1), noting that it is not a convex optimization problem? In the next two
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sections, we address these two questions in detail. In Section 3.4.3 we formally tie Equation (3.1)
to our main objective, and present a few theoretical results in that regard. Afterwards, in Sec-
tion 3.4.4, we present a MATLAB6 toolbox was developed by the Berkeley Telemonitoring project
that implements the learning problem described in Equation (3.1), from data [Aranki and Bajcsy,
2016].

3.4.3 Further Analysis and PDI Properties

First, let us we relate the value of the objective function in Equation (3.1) to what we are trying to
defend against in the following lemma. Concretely, we will relate the value of conditional mutual
information to the ability to perform Bayesian updates, the backbone of Bayesian inference.

Lemma 3.2. If a PMF, R, yields I(Z,C|S;R) = 0 then Bayesian updates for the belief of C based
on observing Z, given S, are prevented for the eavesdropper. Formally, p(c|s, z;R) = p(c|s) for all
c ∈ C, s ∈ S and z ∈ I.

Proof. From Lemma 3.1 we know that by using this PMF, R, we get that Z is conditionally
independent of C given S which means p(c|s, z;R) = p(c|s) for all c ∈ C, s ∈ S and z ∈ I. This
reads that the posterior of the diagnosis is equal to the prior of the diagnosis that the eavesdropper
already possesses, which is precisely what needs to be shown. Therefore, the disclosure of Z does
not change the eavesdropper’s belief regarding diagnosis C given the patient identifier S.

Let us explain why such a PMF is desirable by intuition. If a PMF, R, satisfies the hypothesis
of Lemma 3.2, then

p(c|s)
Lemma 3.2︷︸︸︷

= p(c|s, z;R)
Bayes’ rule︷︸︸︷

=
p(z|c, s)
p(z|s)

p(c|s), ∀c ∈ C, s ∈ S, z ∈ I

=⇒ p(z|c, s)
p(z|s)

= 1, whenever p(c|s) 6= 0 (3.2)

First, this says that whatever prior belief the eavesdropper, Eve, possesses that subject s has
diagnosis c, will remain the same after observing the sanitized message z that s sent. In other
words, the the information contained in the sanitized message z that s discloses will not change
how Eve perceives the odds of s having diagnosis c (i.e., Eve did not learn anything new regarding
the diagnosis of s by observing the disclosed message z). Moreover, recalling our intuition from

the illustrating example in Sections 3.4.2 and 3.4.2, it is desirable to have a ratio p(z|c,s)
p(z|s) as close

to 1 as possible, which this lemma ensures.7 However, Lemma 3.2 is merely a statement, which is
conditioned on the existence of such a PMF, R, and does not speak to its existence.

Therefore, the next question that we need to ask is whether a PMF, R, satisfying I(Z,C|S;R) =
0 is ever attainable. There are two reasons to be suspicious of the existence of such PMF, R.
First, if such a PMF, R, exists, then it means that by knowing S (which is always attached to
the message), Z provides no extra information to inferring C to an eavesdropper, which sounds
surprising. Second, as discussed earlier, there is generally a trade-off between information utility
and privacy, where optimal privacy is usually only attained at the cost of no (or very little)

6https://www.mathworks.com/products/matlab/
7When the prior belief of Eve p(c|s) = 0, no information will “change her mind”. As in, she will always believe

that s doesn’t have diagnosis c regardless of the disclosed information z she observes. This can easily be seen from

applying Bayes’ rule: if p(c|s) = 0 then p(c|s, z;R) = p(z|c,s)
p(z|s) p(c|s) = 0.

https://www.mathworks.com/products/matlab/
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utility [Dwork, 2006]. However, in our case, the utility of the information Z to the doctor is always
fully preserved, irrespective of the choice of R (as long as it is a PMF), since [R (c)] (·) is injective
for all c ∈ C, which allows the doctor to always decode z back to the original message x. From
this, it follows that the scenario of perfect privacy seems to be unattainable.8 All that said, if such
a PMF, R, exists, it would assure optimality of Equation (3.1), so it would be desirable to show its
existence, if it does exist. Fortunately (and somewhat unintuitively), such a PMF can be attained
as shown in the following sequence of results.

Lemma 3.3. If there exists a function f(z, s) such that p(z|c, s) = f(z, s) for all c ∈ C, z ∈ I and
s ∈ S then p(z|s) ≡ f(z, s).

Proof.

p(z|s)
marginalize︷︸︸︷

=
∑
c∈C

p(z, c|s)
conditional
probability︷︸︸︷

=
∑
c∈C

p(z|s, c) · p(c|s)
hypothesis︷︸︸︷

=
∑
c∈C

f(z, s) · p(c|s)
factor out︷︸︸︷

= f(z, s) ·
∑
c∈C

p(c|s)
probability

axioms︷︸︸︷
= f(z, s)

Using Lemma 3.3, we prove the following theorem, which is a sufficient condition for the optimal-
ity of Equation (3.1). This theorem, comes intuitively from our discussion following Equation (3.2).

Theorem 3.1. If there exists a function f(z, s) such that p(z|c, s) = f(z, s) for all c ∈ C, z ∈ I
and s ∈ S, then DKL (p(c|z, s)||p(c|s)) = 0 for all z ∈ I and s ∈ S.9

Proof. Since p(z|c, s) = f(z, s) then using Lemma 3.3 we know that p(z|s) ≡ f(z, s). Therefore,
for any z ∈ I and s ∈ S such that f(z, s) = p(z|c, s) = p(z|s) 6= 0 we get

p(c|z,s)
p(c|s)

Bayes’ rule on
p(c|z,s)︷︸︸︷

= p(z|c,s)·p(c|s)
p(c|s)·p(z|s)

Cancel terms︷︸︸︷
= p(z|c,s)

p(z|s)
Lemma 3.3︷︸︸︷

= f(z,s)
f(z,s)

= 1

This implies, by the definition of Kullback-Leibler divergence, that DKL (p(c|z, s)||p(c|s)) = 0, as
requested.

8Since we are treating the setting of Bayesian inference, we consider“perfect privacy”to be that the eavesdropper’s
belief about C given S doesn’t change after observing Z, in line with Lemma 3.2.

9DKL (p||q) is the Kullback-Leibler divergence from q to p.
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Figure 3.8: Demonstrating the “folding” intuition. (a) The data distribution, before sanitizing;
and (b) the sanitized data distribution (“folded”).

Corollary 3.1. If a PMF, R, achieves p(z|c, s) = f(z, s) for some function f(z, s), for all c ∈
C, z ∈ I and s ∈ S, then R is the optimal solution to Equation (3.1).

Proof. The result follows from Theorem 3.1 and the fact that

I(Z,C|S;R) = Ep(z,s)[DKL(p(c|z, s;R)||p(c|s;R))].

Lemma 3.3, Theorem 3.1, and Corollary 3.1 enforce and formalize the intuition that we de-
veloped in Section 3.4.2. The intuition is that the closer p(z|c, s) is to p(z|s), the more privacy-
preserving the PMF, R, is. An alternative and complementary intuition is that the aim is to devise
a PMF, R, that statistically“folds” the information Z for all diagnosis such that they look the same
irrespective of c ∈ C. That is, Corollary 3.1 dictates that if the distributions p(z|c, s;R) = f(z, s)
are the same, irrespective of c (the “folding”), then R is an optimal PMF.

To illustrate the “folding” intuition, consider the toy example depicted in Figure 3.8. In this
toy example, we are considering one subject only S = {s}, the information space is the reals
I = R, and C = {c1, c2, c3}. In Figure 3.8a, the distributions of the raw (not sanitized) data are
depicted, for the subject, under the assumption that the subject is diagnosed with each one of
the three diagnoses (since the eavesdropper doesn’t know the subject’s diagnosis). For example,
if the subject transmits the datapoint z = x = 1

2
(i.e., without sanitizing) then the eavesdropper

can know for sure that the subject is diagnosed with c3. However, if we can find a PMF, R,
that sanitizes the data so that their distributions for all 3 diagnoses look the same (“folding”), as
depicted in Figure 3.8b, then we can completely defend against inference attacks. This is because,
if the subject now transmits the sanitized datapoint z = 0.5 that was sanitized using R, the
eavesdropper will not become any more or less confident about his prior belief of the diagnosis of s,
because the class that generated this datapoint is statistically indistinguishable from the rest. This
intuition will be further demonstrated and discussed more thoroughly with a real-world example
in Section 3.4.5.

Note that Theorem 3.1 is irrespective of the model of p(c|s) (and p(s)). This is a very important
observation since it means that in cases where a PMF, R, satisfies the condition of the theorem,
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modeling the eavesdropper’s prior knowledge about patients’ diagnoses is not needed. This is
important because it is often hard to model the eavesdropper’s auxiliary knowledge, and that
sometimes different eavesdroppers have different auxiliary knowledges. Furthermore, such PMF
achieves perfect privacy against any eavesdropper, regardless of her auxiliary knowledge p(c|s) (or
p(s)). In the following theorems we provide examples of using Theorem 3.1 that also serve as cases
proving that such PMFs, achieving perfect privacy, are attainable.

Theorem 3.2. If X|C = c, S = s ∼ N(µc,Σc) (Normal distribution) for every c ∈ C and s ∈ S,

then [R(c)] (x) = Σ
− 1

2
c · (x− µc) is an optimal solution to Equation (3.1), and achieves perfect

privacy.

Proof. It is easy to verify that Z|C = c, S = s ∼ N(~0, I) for every s ∈ S and c ∈ C, where ~0 is the
origin in the information space (vector of zeros) and I is the identity matrix (of the appropriate
dimensions). This means that p(z|c, s) ≡ f(z, s) (not a function of c). By using Corollary 3.1, we
therefore know that R is the optimal solution to Equation (3.1), and achieves perfect privacy.

This is proof, by construction, that such PMFs are attainable. Similarly, we show the following
results.

Theorem 3.3. If X|C = c, S = s ∼ Exp(λc) (Exponential distribution) for every c ∈ C and
s ∈ S, then [R(c)] (x) = λcx is an optimal solution to Equation (3.1), and achieves perfect privacy.

Proof. It is easy to verify that Z|C = c, S = s ∼ Exp(1) for every s ∈ S and c ∈ C. This means
that p(Z = z|C = c, S = s) ≡ f(z, s) (not a function of c). By using Corollary 3.1, we therefore
know that R is the optimal solution to Equation (3.1), and achieves perfect privacy.

Theorem 3.4. If X|C = c, S = s ∼ Gamma(k, θc) (Gamma distribution with shape and scale pa-
rameters) for every c ∈ C and s ∈ S, then [R(c)] (x) = x

θc
is an optimal solution to Equation (3.1),

and achieves perfect privacy.

Proof. It is easy to verify that Z|C = c, S = s ∼ Gamma(k, 1) for every s ∈ S and c ∈ C. This
means that p(Z = z|C = c, S = s) ≡ f(z, s) (not a function of c). By using Corollary 3.1, we
therefore know that R is the optimal solution to Equation (3.1), and achieves perfect privacy.

Theorem 3.5. If X|C = c, S = s ∼ U(ac, bc) (Continuous Uniform distribution) for every c ∈ C
and s ∈ S, then [R(c)] (x) = x−ac

bc−ac is an optimal solution to Equation (3.1), and achieves perfect

privacy.10

Proof. It is easy to verify that Z|C = c, S = s ∼ U(0, 1) for every s ∈ S and c ∈ C. This means
that p(Z = z|C = c, S = s) ≡ f(z, s) (not a function of c). By using Corollary 3.1, we therefore
know that R is the optimal solution to Equation (3.1), and achieves perfect privacy.

The intuition set forth here is further empirically demonstrated in Section 3.4.5 where the data
from each diagnosis, after sanitization, are mapped onto a distribution that is similar to that of
the data from the other diagnoses (Figure 3.10) to limit inference attacks.

10Note that the example demonstrated in Figure 3.8 is a direct application of Theorem 3.5.
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3.4.4 Learning the Privacy Mapping Function

As mentioned earlier, the problem from Equation (3.1) is not a convex optimization problem.
Moreover, it is often the case that the models for p(x|c, s) and p(c|s) are not explicit. Instead,
data can be available for x and c. In this section, we discuss our implementation of learning a
PMF from such data. Our implementation takes the form of a MATLAB toolbox that is publicly
available in open source [Aranki and Bajcsy, 2016].

Given a dataset D =
{

(xi, ci)
N
i=1|xi ∈ I, ci ∈ C

}
with the data xi corresponding to a patient with

diagnosis ci, the problem at hand is to learn an optimal PMF, R, according to Equation (3.1), from
D. We first note, that our treatment in this implementation doesn’t include the subject identifiers
si. This simplifying assumption of ignoring the modeling of the random variable S for the learning
problem has the following implications on the full model from Figure 3.7.

First, this simplifying assumption implies that S is treated as a uniform random variable. That
is, p(s) = 1

|S| for all s ∈ S. Informally, this means that the subjects are equally likely to disclose
information using the telemonitoring system.

The second implication is that S is treated as an independent random variable of C. That, in
turn, implies p(c|s) = p(c) for all s ∈ S, c ∈ C. Informally, this means that Eve has no special
prior knowledge about the diagnosis of any specific subject and that her prior belief about the
subjects’ diagnoses is equal for all subjects. We note here that for the cases of perfect privacy
discussed in Theorem 3.1 and Corollary 3.1, this implication does not degrade the quality of the
learned PMF R. This is because, per the discussion in Section 3.4.3, the solution for R in such
cases is irrespective of Eve’s prior belief p(c|s). Further study is needed to assess and quantify the
privacy-degradation incurred by this simplifying assumption in cases of imperfect privacy.

Third, this assumption implies that, given C, X and S become independent. That is, p(x|c, s) =
p(x|c) for all s ∈ S, c ∈ C and x ∈ I. Informally, this means that the generative distribution of
the disclosed telemonitoring data, X, is not a function of the subject, once the diagnosis is known.
In our example, this means that once we know the BMI category of the subject, the distribution
of the subject’s weight and BMI becomes known, irrespective of which subject is being reasoned
about.

Finally, this assumption implies that I(Z,C|S;R) = I(Z,C;R), which simplifies the learning
problem of R.

We now turn to discuss the search space of Equation (3.1). This is the space of all PMFs
F =

{
R : C→ II

}
. Note that performing computation over this space is intractable. Therefore,

for our implementation, we limit the search space to a smaller subset of F that can be characterized
parametrically. In the toolbox, the user can define any parametric subset of F for the search
space. Once this parametric characterization is provided, Equation (3.1) can be rewritten using
the corresponding parameter space, Θ, as follows:

θ∗ = arg min
θ∈Θ

I(Z,C;R(·; θ)) (3.3)

For example, the following space is a parametric space of all PMFs, R, that yield injective
affine transformations for all c ∈ C.

Faffine ,
{
R : C→ II

∣∣∣ [R(c)](x)=Ac·(x−bc),
Ac∈Rn×n,Ac is invertible,bc∈Rn,∀c∈C

}
(3.4)

where n is the number of elements in the vector x. This yields the following parameter space

Θaffine ,
{

(Ac, bc)c∈C|Ac ∈ Rn×n, Ac is invertible, bc ∈ Rn,∀c ∈ C
}
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Algorithm 3.1 calcMI (R,D, p(c)) – the objective function

Input: R : C→ II: PMF.
Input: D = {(xi, ci)i}: the input dataset.
Input: p(c): the prior belief of the random variable C.
Output: I(Z,C;R)

1: for c ∈ C do
2: Xc ← {xi|ci = c}
3: Zc ← {[R (c)] (x) |x ∈ Xc}
4: hc ← hist(Zc)
5: p(z|c)← hc

|Zc|
6: end for
7: p(z)←

∑
c∈C p(z|c) · p(c)

8: return
∑

z∈I,c∈C p(z|c) · p(c) ·
[
log p(z|c)

p(z)

]

We are now ready to describe the inner workings of our learning procedure. Given a dataset D,
the toolbox models p(c) non-parametrically using a histogram. Using this histogram, and provided
a parameter θ ∈ Θ (which defines a realization of a PMF, R(·; θ)), calculating I(Z,C,R(·; θ)) is
straightforward. This can be done by setting zi = [R (ci)] (xi) for all (xi, ci) ∈ D, and using (zi, ci)
to construct high dimensional histograms modeling p(z|c) and p(z) non-parametrically. Using this
histogram and p(c), the value of the mutual information I(Z,C;R) can be computed as follows

I(Z,C;R(·; θ)) = Ep(z,c)
[
log

p(z, c)

p(z)p(c)

]
=

= Ep(z,c)
[
log

p(z|c)
p(z)

]
=

=
∑

z∈I,c∈C

p(z, c) ·
[
log

p(z|c)
p(z)

]
=

=
∑

z∈I,c∈C

p(z|c) · p(c) ·
[
log

p(z|c)
p(z)

]
(3.5)

The algorithm that computes the value of the mutual information in Equation (3.5) is listed
in Algorithm 3.1. Note that this approach, while simple to implement, suffers from the curse of
dimensionality as its complexity grows exponentially with the dimension of the information space.

The rest of the learning procedure is optimizing the value of the mutual information provided
by the procedure calcMI() with respect to θ ∈ Θ. The learning procedure is described in Algo-
rithm 3.2. Step 4 of the algorithm is carried as follows. Since the problem is non-convex, in order
to optimize the objective function, we first employ the genetic algorithm with the fitness func-
tion equal to the objective function. The chosen selection policy is fitness-proportional while the
chosen transformations (evolution/genetic) operators are both mutations and crossovers [Banzhaf
et al., 1998]. After the genetic algorithm terminates, the toolbox engine runs a local optimization
algorithm (fmincon()) starting from the parameters that were found by the genetic algorithm for
further refinement.
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Algorithm 3.2 learnPMF (Θ, Rgen, D) – the learning procedure

Input: Θ: parameter space.
Input: Rgen : Θ→ F : generator of PMFs from the parameter space.
Input: D = {(xi, ci)i}: the input dataset.
Output: (θ∗, R∗): an optimal PMF.

1: Dc ← {ci}
2: hc ← hist (Dc)
3: p(c)← hc

|Dc|
4: θ∗ ← arg minθ∈Θ calcMI (Rgen (θ) , D, p (c))
5: R∗ ← Rgen (θ∗)
6: return (θ∗, R∗)

3.4.5 Experimentation

We now turn to to demonstrate the performance of PDI and the presented MATLAB toolbox, on
a real-world dataset. for this purpose, we use a subset of the data collected in the National Health
and Nutrition Examination Survey of 2012, carried out and published by the CDC.11 Specifically,
we utilize the Body Mass Measures subset of the survey.12

Setting

The Body Mass Measures dataset includes data pertaining to BMI and weight of individuals of
both genders that are 19 years of age or younger. Therefore, this dataset is consistent with the
illustrating example presented in Section 3.4.2. To recap the definitions:

• The information space, I = {(bmi, w) ∈ R2}, consists of pairs of BMI and weight, respectively.

• The set of diagnoses is C = {UW,HW,OW,OB} for i) underweight; ii) healthy weight;
iii) overweight; and iv) obese, respectively (Table 3.1).

• The dataset D =
{

(xi, ci)
N
i=1|xi ∈ I, ci ∈ C

}
includes N = 3355 data points.

The data distribution, per weight category c ∈ C, is depicted in Figure 3.9. Since the clas-
sification of each diagnosis depends on the age and gender of the subject, and since the subject
doesn’t send her or his age and gender as part of the disclosed information (I is limited to BMI
and weight), Eve can’t perfectly infer the weight category c of a subject simply from the disclosed
message x. That said, Eve can still learn some information about the diagnosis if she gets to
observe the original message sent by the subject, x, as shown in the next section.

Inference Based on Original Data

To demonstrate Eve’s ability to perform inference, based on the raw (not sanitized) data, we trained
3 Support Vector Machine (SVM) classifiers with Gaussian (Radial Basis Function) kernels.13 The
first classifier considers {UW} to be the “positive” class, and the rest of the weight categories to

11National Health and Nutrition Examination Survey: https://wwwn.cdc.gov/nchs/nhanes/search/

nhanes11_12.aspx.
12Body Mass Measures: https://wwwn.cdc.gov/nchs/nhanes/2011-2012/BMX_G.htm.
13The Radial Basis Function kernel is of the form K(x, y) = exp

(
− ||x−y||

2

2σ2

)
.

https://wwwn.cdc.gov/nchs/nhanes/search/nhanes11_12.aspx
https://wwwn.cdc.gov/nchs/nhanes/search/nhanes11_12.aspx
https://wwwn.cdc.gov/nchs/nhanes/2011-2012/BMX_G.htm
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Figure 3.9: The distribution of the raw (not
sanitized) data, p(x|c), per weight category,
c ∈ C. Note that the weight categories are not
perfectly separable in I.

True Category
UW HW OW OB

P
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ic

te
d

C
a
te

g
o
ry UW 47 20 0 0

HW 14 1203 66 1
OW 0 45 194 47
OB 0 2 37 308

Table 3.2: The confusion matrix of
the classification of the raw (not sani-
tized) data. UW = Underweight, HW =
Healthy Weight, OW = Overweight, OB
= Obese.

be the “negative” class. The second classifier, considers {UW,HW} to be the “positive” class,
and the rest of the weight categories to be the “negative” class. The last classifier, considers
{UW,HW,OW} to be the“positive”class, and {OB} to be the“negative”class. Given a datapoint
x ∈ I, we predict the weight category by taking a majority vote of these 3 classifiers.

We randomly divided the dataset, by a 40 : 60 split, for training : testing, respectively. The
resultant training subset included 1371 datapoints, and the resultant testing subset included 1984
datapoints. Based on the training subset, 10-fold cross-validation was utilized to optimized for the
parameters of the classifiers, including the choice of each kernel’s free parameter, σ. As mentioned
earlier, the classification phase is performed by taking a majority vote from the 3 classifiers. The
confusion matrix of the classification (on the test set) is presented in Table 3.2. As a quick measure
of accuracy, the total accuracy of the classification is 88.31%.14

This measure indicates that about 88% of the time, Eve will guess the weight category of a
subject correctly, based on a single message x ∈ I that is not sanitized. If Eve gets to see more
messages from the same subject, she may be able to do even better than than this. Therefore, it
is advisable to defend against this inference threat. Next section, we employ PDI to achieve that,
and use the accuracy presented in this section as a benchmark to assess the performance of PDI
in limiting this threat.

Inference Based on Sanitized Data

In order to sanitize the BMI and weight information that is being disclosed against the inference
threat we demonstrated, we utilize PDI. In order to learn the PMF, R, we use the MATLAB
toolbox presented in Section 3.4.4 (using the training subset only) [Aranki and Bajcsy, 2016]. We
limit the search for a PMF, R, to the following search space that is a subset of the affine encoding
functions presented in Section 3.4.4.

F ,

{
R : C→ II

∣∣∣∣∣[R(c)](x)=

ac,1 0
0 ac,2

·(x−bc),
bc∈R2,ac,i≥0.1,∀c∈C,i∈1,2

}
.

14The adopted total accuracy measure is trace(M)/N where M is the confusion matrix and N is the cardinality of
the test set. This is the percentage of true classifications over the test set. Note that other classification performance
parameters can be calculated directly from the confusion matrix.
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Algorithm 3.3 The MATLAB code for learning the PMF from the BMX G data using the PDI
toolbox.

1 pdi_begin % Begin the definition of a PDI problem
2 % Declare data dimensions of the data
3 pdi_dimension BMI 0:2:60; % BMI is discretized by 2 kg/m2

4 pdi_dimension weight 0:5:180; % Weight is discretized by 5 kg
5

6 % Declare diagnoses
7 pdi_class UW HW OW OB % Underweight; Healthy Weight; Overweight; Obese
8 % Provide data for the different diagnoses
9 pdi_datapoints UW UW_DATA

10 pdi_datapoints HW HW_DATA
11 pdi_datapoints OW OW_DATA
12 pdi_datapoints OB OB_DATA
13

14 % Declare parameters for PMF (affine transformations)
15 pdi_var shift(pdi_nrdimensions, pdi_nrclasses); % Shift parameters
16 pdi_var scale(pdi_nrdimensions, pdi_nrclasses); % Scale parameters
17

18 % Constraints on the parameters
19 scale(:,1) == 1; % Don 't scale the data from the Underweight diagnosis
20 shift(:,1) == 0; % Don 't shift the data from the Underweight diagnosis
21 scale >= 0.1; % Don 't scale by 0 (to ensure left inverse)
22

23 % PMF: function of the parameters and diagnosis (affine transformations)
24 pdi_reference f(x, c) bsxfun(@times, ...
25 bsxfun(@minus, x, shift(:,c)), scale(:,c));
26 pdi_end % End the definition of the PDI problem and solve

In order to eliminate multiple solutions that sanitize in a statistically equivalent way, we also fix
the encoding of the UW diagnosis to be the identity (i.e., aUW,1 = aUW,2 = 1 and bUW = ~0).15 This
yields the following parameter space

Θ ,
{

(ac,1, ac,2, bc)c∈C\{UW}|bc ∈ R2, ac,i ≥ 0.1,∀c ∈ C \ {UW} , i ∈ 1, 2
}
, (3.6)

for a total of 12 real-numbered parameters in the search space.
The MATLAB code that learns this PMF, R ∈ F , is listed in Algorithm 3.3. We start by

declaring a block of PDI toolbox code in line 1. The code defines the two dimensions of our
information space I in lines 3− 4, then defines the set C (weight categories) in line 7. Afterwards,
the code provides the data, per weight category, to the PDI toolbox in lines 9− 12 (the data, per
category, are stored in the variables UW_DATA, HW_DATA, OW_DATA and OB_DATA). The code then
moves to describe the parametric search space, as described in Equation (3.6). This is done by
first defining the parameters of the search space in lines 15−16, and then providing the constraints
over these parameters in lines 19− 21.16 Finally, the code ties the parameters together by defining
the PMF generator function in lines 24− 25, and close the PDI toolbox code block in line 26.

15We regularize the sanitization of one class because if we have two PMFs, R1 and R2, satisfying [R1(c)](x) =
A ·([R2 (c)] (x)− b), we will get I(C,Z|S;R1) = I(C,Z|S;R2), yielding some degrees of freedom in our search space.

16Note that in an effort to make Algorithm 3.3 more uniform and easier to read, we also defined parameters for
the UW weight category, and constrained them to represent the identity encoding function.
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Figure 3.10: The distribution of the sanitized
data, p(z|c), per weight category, c ∈ C.
Note that the different weight categories are
now less distinguishable than before.

True Category
UW HW OW OB

P
re

d
ic

te
d

C
a
te

g
o
ry UW 48 14 0 5

HW 13 1217 276 290
OW 0 25 13 29
OB 0 14 0 32

Table 3.3: The confusion matrix of the
classification of the sanitized data. UW
= Underweight, HW = Healthy Weight,
OW = Overweight, OB = Obese.

Using the resultant PMF, R ∈ F , we move to sanitize the whole dataset. The distribution
of the sanitized data, per weight category, is depicted in Figure 3.10. Note how the different
weight categories are now less distinguishable from the sanitized data. That is, the distributions
of sanitized data, per weight class category are roughly “folded,” in line with our intuition from
Sections 3.4.2 and 3.4.3.

In order to evaluate the goodness of the resultant sanitization, we pursue to emulate Eve by
attempting to classify the weight category, using the sanitized information. For that purpose, we
train 3 SVM classifiers with Gaussian (Radial Basis Function) kernels on the sanitized training
subset using 10-fold cross-validation in a similar fashion to the ones described earlier. Also, similar
to earlier, we use a majority vote from these classifiers to predict the weight category. The results
of the classification on the sanitized test subset are presented in Table 3.3.

The total classification accuracy dropped from 88.31% to 66.03%. As would be expected, when
classes are not distinguishable, it is natural to default the classification to the class with the highest
number of datapoints. This intuition is verified in Table 3.3, where the classifier predicts “healthy
weight” for most datapoints. Simply speaking, if a classifier would want to make a “bet” about
the weight category of a subject, without any additional information, it would want to bet on the
class with the highest number of subjects.

The question is, how good is this degradation from a privacy point of view, and how far is it from
the best possible privacy protection? Formally, we can devise a tight lower bound on the accuracy of
classifiers for our data as follows. Consider a deterministic classifier that outputs “healthy weight”
for every input, regardless of what that input may be. This classifier can always be built, regardless
of what sanitization process the data undergo. It’s accuracy would be 1270/1984 = 64.01%, which
is very close to our result of 66.03%. In other words, our achieved privacy protection is not very
far from the best privacy protection possible.

We note that the classification results for the “underweight” category, before and after sani-
tization, are comparable in accuracy. This can be explained by the the choice of modeling the
data distributions in the MATLAB toolbox, which is non-parametric, based on high-dimensional
histograms. This type of modeling can make it hard to capture the nature of data that are rare.
This is the case for the “underweight” category, where 126 datapoints (3.76%) in the dataset repre-
sent subjects from that weight category. This difficulty can be addressed by employing parametric
modeling techniques for the distribution of data in different classes.

Finally, to demonstrate, in an alternative way, how this inference threat is thwarted, we take a
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piece of (sanitized) information at random from our dataset, z = [77.17, 296.45]T . This emulates
the scenario of z being intercepted by an eavesdropper. Given that we don’t know what class this
datapoint came from (in order to decode it), we endeavor to try to reason about the weight category,
by elimination, as follows. We will iteratively assume a weight category, c; decode the datapoint,
z, under that hypothesis, and eliminate the hypothesis if the decoded datapoint x = [R (c)]l (z) is
unlikely under hypothesized category c.

Healthy weight By decoding z under the assumption of c = HW , we retrieve x = [21, 53.8]T ,
which is a legitimate “healthy weight” BMI and weight datapoint. Therefore, we don’t elim-
inate the option that this datapoint came from a subject diagnosed with healthy weight.

Overweight By decoding z under the assumption of c = OW , we retrieve x = [25.12, 62.4]T ,
which is also a legitimate “overweight” BMI and weight datapoint. Therefore, we don’t
eliminate the option that this datapoint came from a subject diagnosed with overweight.

Obese By decoding z under the assumption of c = OB, we retrieve x = [30.42, 69.08]T , which
is also a legitimate “obese” BMI and weight datapoint. Therefore, we don’t eliminate the
option that this datapoint came from a subject diagnosed with obesity.

In other words, Eve will not be able to rule out any c as diagnosis, since the decoded message
under the assumption of diagnosis c, x = [R (c)]l (z), will be a valid datapoint from the class c,
according to the generative model p(x|c, s). This intuition, is the essence of how the inference
threat is defended against in PDI.

3.5 Summary and Discussion

We started off by outlining the acceptability and privacy findings from two of our studies in the
Berkeley Telemonitoring project: the CHF study and the RunningCoach study. We argued that
the the subjects surveyed reported a level of trust towards technology researchers. That level of
trust was also comparable to how much subjects trusted their physicians.

Consequently, we asked the following question in light of the responsibility that technology
researchers now have when it comes to designing privacy-aware systems. What are the design
principles that they technology researchers need to adopt in order to build privacy-aware systems?
After reviewing the literature for existing principles and practices, we identified a new principle
that is applicable to our applications in predictive medicine. Specifically, we introduced the design
principle of Inference in an effort to encourage designers to think about the new threats to privacy
as a product of machine learning and statistical inference. Simply speaking, the Inference principle
states that the data themselves need not be the private object, but rather can be used to infer
private information.

Adopting the Inference principle, we derived a framework that protects the individual from hav-
ing their private information from being inferred from the communicated messages. We provided
theoretical analysis and properties of the devised framework. We have shown, against intuition,
that in our setting, one could achieve complete privacy while maintaining full utility. We stated
a theorem that provides sufficient conditions for this perfect privacy-utility trade-off to occur.
Moreover, we showed that such conditions are achievable by providing closed-form solutions to
some cases of data generative models. It is important to observe that the perfect privacy-utility
trade-off scenario is not a function of the modeling of the eavesdropper’s auxiliary knowledge. This
observation is important because modeling eavesdropper’s auxiliary knowledge is generally a hard
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problem; also, the PMF that achieves perfect privacy is the same for any eavesdropper because of
the same observation. In summary, in the case of perfect privacy, the same sanitization protects
patients from all eavesdroppers, regardless of their auxiliary knowledge.

Subsequently, we discussed our implementation of the learning problem resulting from the
framework in a form of an open source MATLAB toolbox. We demonstrated its use with a data
set published by the CDC using data about individuals’ BMIs, weights and their weight categories.
The experimentation shows that after sanitizing the data set, the classification accuracy drops
significantly, near a lower bound of guaranteed classification accuracy, thus achieving our set goal.
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As for the search for truth, I know from my own painful search-
ing, with its many blind alleys, how hard it is to take a reliable step,
be it ever so small, towards the understanding of that which is truly
significant.

– Albert Einstein, 1934

4.1 Preface – Thought Experiment

Let us entertain the following thought experiment. We consider the following hypothesis.

Hypothesis 4.1 (H). Daniel Aranki can tell the color of any face-down playing card, merely by
looking at its back.

First, let me assure you that I, Daniel Aranki, have no psychic abilities whatsoever. In par-
ticular, I cannot tell the color of a random face-down card with a probability higher than pure
luck.

The psychic community decides that they’re willing to empirically accept hypothesis H, if a
study protocol is devised, and carried out, such that it can distinguish the truthfulness of this
hypothesis, up to a “benchmark” probability of Type I error of at most 0.001.1 This benchmark
probability is often called the significance level.

They come up with the following test protocol.

Study Protocol 4.1. Draw 10 playing cards, face down, at random, with replacement. For each
drawn card, have Daniel assert its color. Declare that hypothesis H is accepted if all of Daniel’s
assertions about the colors are correct.

Let us understand whether Study Protocol 4.1 satisfies the community’s standard of accepting
hypothesis H. In order to do so, we devise the following opposite hypothesis (the hypothesis of
the skeptical).

Hypothesis 4.2 (H0). Daniel Aranki cannot tell the color of any face-down playing card merely
by looking at its back.

Hypothesis H0 is often called the null hypothesis, and is the logical negation of the original
hypothesis H. We note that hypothesis H is accepted if and only if hypothesis H0 is rejected.
Now we ask ourselves, what is the chance that Study Protocol 4.1 yields acceptance of hypothesis
H even if it is false (i.e., Type I error)? The answer to this question dictates whether the psychic
community will adopt Study Protocol 4.1 as their protocol for accepting/rejecting hypothesis H.
If we denote the output of Study Protocol 4.1 by O (accept H or reject H), our question translates
into calculating the probability p(O = accept H|H0), the probability of accepting H when it is
the case that H0 is the true hypothesis.

This probability is easy to calculate. If we assume the null hypothesis H0 is the correct hypoth-
esis, then the probability of a correct guess of a card’s color by Daniel is 0.5 (since the deck has
equal number of red and black cards). Moreover, because of replacement, each guess constitutes
an independent event from the rest of the guesses. Formally, if Gi is the correctness of the ith

1Type I error is commonly referred to as the “false positive” error. That is, accepting a hypothesis when it is
actually false.
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guess by Daniel, we have p(Gi = correct |H0) = 0.5 for all i ∈ {1, . . . , 10}. Moreover, Gi⊥Gj|H0

for all 1 ≤ i < j ≤ 10. The event {O = accept H} is equivalent to the event
⋂10
i=1 {Gi = correct}.

Therefore, we conclude that p(O = accept H|H0) = p(G1 = correct, . . . , G10 = correct |H0) =∏10
i=1 p(Gi = correct |H0) = 0.510 = 1/1024.
Since this probability is smaller than the benchmark probability of 0.001 (significance level),

the community adopts Study Protocol 4.1 as the protocol for accepting/rejecting hypothesis H.
Even though everything may seem to be in order, according to the scientific method, we identify
an issue that has serious implications on the reliability of empirical findings in science and their
interpretations.

4.1.1 Selection Bias

The issue of selection bias can be explained using the following series of scenarios. Say now that
different groups of people from the community implement Study Protocol 4.1, and Daniel happily
obliges. You are now trying to assess for yourself, whether you want to accept hypothesis H from
their reports about their trials (you are not necessarily running Study Protocol 4.1 yourself, you
are now simulating a curious reader). You read the psychic literature exhaustively to count the
number of successful trials of Study Protocol 4.1 (a successful run means that Daniel succeeded
to guess the colors of all 10 cards in the trial). You find that 3 groups of people succeeded in
their trials of Study Protocol 4.1. Would you accept H, if you wanted to adopt the benchmark
probability of Type I error of at most 0.001 (significance level)? We argue that you did not gather
sufficient information to make that determination. Let us see why.

Assuming the null hypothesis H0, each run of Study Protocol 4.1 is a Bernoulli experiment
with success probability of p = 1/1024. Moreover, under the null hypothesis H0, different runs of
Study Protocol 4.1 are independent. Therefore, in order to determine the probability of Type I
error, incorrectly accepting H (equivalently, incorrectly rejecting H0), you rely on the probability
of a Bernoulli trial. That is, assuming the null hypothesis H0, the probability of k successful
experiments of Study Protocol 4.1 out of a total of n trials can be calculated by p(k out of n|H0) =(
n
k

)
pk(1− p)(n−k), where

(
n
k

)
is the Bernoulli coefficient (n choose k).

If you are adopting the benchmark probability of Type I error of at most 0.001 (signifi-
cance level), you will reject the null hypothesis, H0, and accept the original hypothesis, H, if
p(k out of n|H0) ≤ 0.001. In the current setting, you only know that k = 3. In order to evaluate
this probability, you need to either know i) the total number of trials, n; or ii) the number of
unsuccessful trials, n− k. Therefore, you need to go back to the psychic literature and count the
total number of trials (or the number of unsuccessful trials), as well.

After going back to the literature, you find that there is a total of 100 reported studies (3 of
which were successful). You now calculate p(3 out of 100|H0) =

(
100
3

)
p3(1−p)97 ∼= 0.00014 ≤ 0.001

and determine that you want to accept hypothesis H. Alright, now everything must be dandy, no?
Unfortunately, there is no clear yes/no answer just yet. The answer to this question depends on
the answer to the another, more fundamental, question.

Question 4.1. Was every trial, successful or unsuccessful, reported in the psychic literature?

If the answer to this question is yes, then your conclusion is consistent with your significance
level. On the other hand, if the answer is no, then the conclusion may not be valid, depending
on a few factors. To demonstrate this, let’s ask ourselves, what would be our determination as
to the acceptance of hypothesis H (equivalently, rejection of H0) if we had an oracle that can
tell us exactly how many trials were there (including unreported ones) and how many of them
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True number of trials
Total (n) Successful (k) Type I error Reject H0?

100 3 ∼= 0.00014 Yes
200 3 ∼= 0.00101 No

400 6 ∼= 3.2× 10−6 Yes

Table 4.1: Different scenarios of true number of trials and true number of successful ones, with
the Type I error in each scenario and whether we reject H0 with significance level 0.001.

were successful (including unreported ones)? We summarize the answer to this question under
different scenarios in Table 4.1. The first row in the table describes the scenario where all trials
were reported and you discovered them all (when the answer to Question 4.1 is yes).

Clearly, our determination depends on the true number of trials and the true number of success-
ful trials. For example, the second row in Table 4.1 describes a scenario, in which there are 200 trials
total, with only the 3 you discovered being successful and the rest being unsuccessful. In this sce-
nario, our determination would actually be reversed and we would not accept hypothesis H (equiv-
alently, not reject H0). This is because p(3 out of 200|H0) =

(
200
3

)
p3(1− p)197 ∼= 0.00101 > 0.001.

Therefore, if some trials go unreported, our determination based only on reported trials may be
wrong.

The third row in Table 4.1 demonstrates a counter-example to a common, and dangerous,
misconception in this realm. The misconception is that if reports from both categories (successful
and unsuccessful) are censored in equal proportions, then unbiased conclusions can be drawn
from the censored set. Note that the number of true total trials and true successful trials in the
third row are double of the corresponding numbers in the second row (which implies that the true
number of unsuccessful trials is also doubled). However, the conclusion drawn from each scenario is
different. In simple words, even though the difference between the second and third rows simulates
“proportional” censorship (successful and unsuccessful trials were each censored by the same factor
of 50%), the resulting conclusions are opposites (and the probabilities of Type I error are orders
of magnitude apart).

Question 4.1 is a dialed-down version of the question of selection bias in general, and publication
bias in the case of publishing scientific results. In this chapter, we deal with the issue of detecting
when such bias exists in a set of published empirical results. We devise a statistical test that can
quantify the probability of observing a dataset of publications “at least as extreme as the one in
hand” under the hypothesis of no bias. The lower this probability is, the less confident we are that
the given dataset is a result of unbiased publications, and the more we need to be cautious when
drawing conclusions from it.

4.2 Introduction

We demonstrated, albeit with a rather comical example, the implications of publication bias on
the correctness of the conclusions drawn from published empirical studies. As mentioned earlier,
in this chapter we examine the problem of publication bias in the reporting of scientific empirical
studies. In particular, we tackle the question of detecting publication bias in a set of publications
that utilize the Student t-test [Student, 1908]. Given a dataset of such publications, we quantify
the likelihood that this dataset was generated through an unbiased process of publishing. This
likelihood, in turn, can serve as a measure for us to understand the reliability of any conclusion
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we may draw from these publications. But first, let us examine why this problem is relevant to
predictive medicine.

This chapter, although self contained, assumes some basic knowledge in probability theory and
statistical hypothesis testing (including statistical significance analysis). Some basic introduction
of the premises of statistical significance analysis is presented in Section 4.2.2.

4.2.1 Predictive Medicine

So far, we have identified some of the necessary building blocks of predictive medicine. In par-
ticular, we argued that in order to realize the predictive healthcare model, we need to devise a
technology for reliable health-related data collection, which can streamline the costly epidemiolog-
ical studies. This lead us to the notion of health telemonitoring (Chapter 2). Then, we endeavored
to understand the privacy implications and requirements of technologies pertaining to predictive
medicine, particularly telemonitoring (Chapter 3).

In essence, the premise of devising such privacy-preserving technologies is to enable the discov-
ery of risk factors of diseases and means for their prevention. In short, risk factors can be combined
in predictive models that aim to estimate the risk of clinical deterioration, while the means for
prevention can be used to devise effective medical intervention protocols. These interventions may
be applied once such a risk is deemed to be too high. All of this is contingent on the reliability of
our scientific findings, a feat that is often wrongfully and dangerously taken for granted. Ensuring
the validity of scientific findings requires careful thought, study, planning, design and uncensored
discourse.

Publication bias is one of the hurdles that threatens our ability to identify such risk factors and
prevention means. This is because such bias distorts the image of science in a way that makes this
it nonrepresentative of the truth. Therefore, it is vital to correct such misgiving if it exists; and
the first step in solving a problem is identifying and acknowledging it. As a result, we attempt
to first identify the problem of publication bias. To be clear, there is a wide acknowledgment in
the scientific community that this problem exists; however, some gaps exist in utilizing formal
and objective means to unequivocally verify its existence, once and for all. An analogy to this
problem, without reading too much into it, is the question in computational theory of whether the
two computational classes P and NP are equal.2 Even though there is a strong belief that the
answer to this question is that P 6= NP , there is no formal mathematical answer to this question
yet.

Because of the importance of the publication bias problem and its impact on science in gen-
eral, not only the branch of predictive medicine, we elect to treat this problem in its generality.
Therefore, the rest of this chapter is written in that language. The reader is encouraged to draw
analogies applicable to predictive medicine from the discussion.

4.2.2 Significance Analysis – Setting

A scientific hypothesis (hereafter: hypothesis) is a verifiable claim that may be used to explain or
predict a certain phenomenon. One method of verifying hypotheses is by conducting experiments
and obtaining data. The field of statistical hypothesis testing deals with the question of verifying

2P (deterministic, polynomial time) is the complexity class of decision problems that are solvable in polynomial
time (in the size of the input) by a deterministic Turing machine. NP (non-deterministic, polynomial time) is
the complexity class of decision problems that are solvable in polynomial time (in the size of the input) by a
non-deterministic Turing machine.
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a given hypothesis, through statistical methods. More concretely, given a hypothesis H, statistical
hypothesis testing deals with the question of quantifying the likelihood of obtaining a dataset “at
least as extreme as the obtained one in a given experiment,” given that the hypothesis H is false.
Before we explain why we are assuming, in the analysis, that H is false, let us explain what we
mean by “at least as extreme.” In the statistical hypothesis testing method, we measure a test
statistic (call it t) from a given dataset (the measured effect size in the experiment). This test
statistic t is itself a result of a random process, and therefore is susceptible to randomness, because
of many factors, including but not limited to sampling error (because one wouldn’t generally be
running the experiment on the whole target population). If we understand the distribution of the
test statistic (or bounds on its distribution) under the assumption that H is false, we can reason
about the likelihood of observing any dataset that yields a test statistic at least as extreme as the
observed one t, assuming H is false. In layman terms, this quantifies the likelihood of observing
an effect size, in any experiment, that is at least as large as the measured one in the current
experiment, even though no actual effect exists (Type I error).

Let us now explain why we assume, in the analysis, that H is false. One strong argument for this
is a somewhat philosophical one. Before proving thatH is true, we can only assume that the world is
unchanged and that H is not necessarily true. More formally, we attempt to prove H by a statistical
analogy of the “proof by contradiction.” In the traditional sense, you’d assume that H is not true,
and then reach a logical contradiction. Then, relying on the soundness of your underlying theory
(logic, for example), you’d have to arrive at the conclusion that H has to be true. This is because,
your proof essentially showed, through logical tautologies, that (¬H =⇒ (true ⇐⇒ false)) is
a true statement; and if your underlying theory is sound, (true ⇐⇒ false) has to be a false
statement (otherwise, you’d have a paradox, and your underlying theory would not be sound after
all). The statement (¬H =⇒ false) can only be true if (¬H) is false, which is if and only if H
is true.

In the statistical analogy of the proof by contradiction, one would start by defining the null
hypothesis H0 to be the logical negation of H. Then, one would assume that H0 is true (which is
equivalent to assuming H is false). Then, if one arrives at a result that is very improbable (usually,
with a probability lower than some predefined significance level α), one can draw the conclusion
that, with statistical significance α, H0 can be rejected and therefore H can be accepted. Results
rejecting the null hypothesis H0 are often called statistically significant or simply significant.

With this in mind, the general process of statistical hypothesis testing is as follows.3

1. Fix a hypothesis H.

2. Define the null hypothesis H0, the logical negation of H.

3. Select a significance level, α, that defines the (upper) threshold of rejecting H0 by mistake
(Type I error). A few popular values, for reference, are 0.05, 0.01 and 0.001.

4. Conduct the experiment and collect data.

5. Calculate a test statistic t from the data.

6. Calculate the p-value p = p(T ≥ t|H0) (or p = p(|T | ≥ |t||H0), depending on the design of
the experiment) through statistical significance analysis.

3Some statistical tests may require adjustments to the presented general process. The presented process is
consistent with the method that utilizes the Student t-test.



CHAPTER 4. A DATA-DRIVEN APPROACH TO DETECTING PUBLICATION BIAS 104

7. If p ≤ α, reject the null hypothesis H0, with significance level α.

8. Otherwise, draw no conclusion.

9. Either way, report your results by reporting at least your number of subjects and the value
of your test statistic.

4.2.3 Publication Bias in General

Publication bias against publications of experiments resulting in non-significant results and mis-
leading representation of Type I error in published studies can distort the perceptions of both the
scientific world and the public. The importance of the issue of publication bias has been identi-
fied almost four decades ago. Rosenthal famously described “the extreme view of the ’file drawer
problem’ is that journals are filled with the 5% of the studies that show Type I errors, while the
drawers are filled with the 95% of the studies that show non-significant results” [Rosenthal, 1979].

The ability to replicate and reproduce experimental results is arguably the most important tenet
of the experimental science. In a 2013 article, Nature News reported that the National Institutes of
Health (NIH) was contemplating changes to their grant applications that would require applicants
to validate some experimental procedures and results “in certain types of sciences, such as the
foundational work that leads to costly clinical trials”[Wadman, 2013]. NIH convened two workshops
in 2012 to examine the issue of reproducibility. Furthermore, the leaders of NIH, and others,
published a call for higher standards in reporting preclinical research in order to optimize their
predictive value. Even though their call primarily targeted the animal-related research community,
they noted that the life sciences community in general “often lack[s] adequate reporting on the
design, conduct and analysis of the experiments” [Landis et al., 2012]. Of the many dangers of lack
of reproducibility in experimental research is that “some non-reproducible preclinical papers had
spawned an entire field with hundreds of secondary publications that expanded on elements of the
original observation.” Even more seriously, “some of the research has triggered a series of clinical
studies – suggesting that many patients had subjected themselves to a trial of a regimen or agent
that probably wouldn’t work” [Begley and Ellis, 2012].

More recently, the American Statisticians Association published a statement outlining the prin-
ciples governing the use and interpretation of p-values [Wasserstein and Lazar, 2016; Baker, 2016].
The statement came as a result of the association’s concern about issues of reproducibility and
replicability of scientific conclusions, and the misunderstanding and misuse of statistical inference
as a cause of the “reproducibility crisis” [Peng, 2015].

Confirming and estimating publication bias is a non-trivial task. Many of the studies conducted
to confirm publication bias were based on surveying researchers. For example, in an effort to
estimate publication bias–either by choosing not to submit or getting the submission rejected for
publication, Dickersin et al. surveyed 318 authors to inquire whether they had participated in any
unpublished randomized clinical trials. They concluded that the major reasons for non-publication
were “negative” results and lack of interest [Dickersin et al., 1987].

Some others attempt to confirm (and estimate) publication bias by estimating the extent of
bias and/or correct for it. In particular, many methods propose ways to test for the significance of
publication bias based on their estimates of selection, provided that the underlying assumptions
of their methods are satisfied. Copas argues that “correcting for this bias is not possible with-
out making untestable assumptions” [Copas, 1999]. Therefore, methods for detecting publication
bias that are based on estimating or correcting for publication bias will suffer from the curse of
unverifiable assumptions.
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In contrast, in this chapter we tackle the problem of directly detecting publication bias in a
formal, data-driven way without the need to estimate such bias. We devise a statistical test aimed
at detecting publication bias in a set of observed publications reporting p-values that are results of
applying the Student t-test [Student, 1908]. We demonstrate the method by applying the test to a
set of 3,721 publications in the field of experimental psychology, collected from nineteen journals
from the American Psychological Association (APA), published between the years 2002 and 2012.

4.2.4 Chapter Organization and Contributions

The rest of this chapter is organized as follows. In Section 4.3, we review the literature for
related work in the field. We then present, in Section 4.4, our formal method for quantifying the
probability of observing a dataset of publications of Student t-test that is “at least as extreme as
the one in hand,” assuming an unbiased publication process. This quantification can, in turn, serve
as a detection tool for publication bias in a set of publications. We follow this by presenting the
implementation details of this method through computational means in Section 4.5. In Section 4.6,
we apply our method to a large dataset of publications from the APA journals and follow this by
a discussion of our results in Section 4.7.

The contributions of this chapter are i) the presentation of a formal data-driven method for
the detection of publication bias; and ii) the presentation of a MATLAB toolbox that implements
the aforementioned method.

4.3 Related Work

As mentioned earlier, many methods attempt to verify or estimate publication bias by surveying
authors and researchers. For example, Easterbrook et al. conducted a study in which they con-
tacted and surveyed (by interview or a questionnaire) 216 principal investigators of 487 studies.
According to their findings, the authors “confirm a systematic selection bias in the publication pro-
cess according to study results. Studies with a statistically significant result for the main outcome
of interest were more likely to be submitted for publication and more likely to be published than
studies with null results” [Easterbrook et al., 1991]. Even more research has been conducted with
that emphasis. A survey of literature concerning these studies include Smith [1980], Coursol and
Wagner [1986], Dickersin et al. [1987] and others.

In the area of estimating the extent of publication bias, or estimating the true effect size by
accounting for publication bias, many methods were proposed. The trim and fill method is widely
used in adjusting for publication bias [Egger et al., 1997; Sutton et al., 2000; Terrin et al., 2003].
This methods is appealing for its simplicity to non-statisticians, and is based on a popular graphical
tool called the funnel plot. The trim and fill method makes a strong unverifiable assumption of
symmetry [Egger et al., 1997; Copas, 1999; Sutton et al., 2000].

Other techniques for estimating publication bias and/or the true effect size are based on max-
imum likelihood estimates of selection (or selectivity) models for publication, based on the sig-
nificance of the reported results [Hedges, 1992; Iyengar and Zhao, 1994; Hedges and Vevea, 1996;
Copas, 1999; Ioannidis and Trikalinos, 2007]. These methods impose modeling assumptions on the
distribution of the underlying effect sizes [Hedges, 1992; Iyengar and Zhao, 1994; Copas, 1999],
homogeneity of studies in question [Ioannidis and Trikalinos, 2007], the underlying publication
selection model [Iyengar and Zhao, 1994; Copas, 1999; Ioannidis and Trikalinos, 2007], the set of
possible outcomes of each study [Ioannidis and Trikalinos, 2007] and others.
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Selection models take publication bias into account by weighing the different end points based
on the p-value obtained by the statistical test run on them. Hedges argued that, based on the psy-
chological research on the interpretation of the results of statistical analyses [Rosenthal and Gaito,
1963, 1964; Nelson et al., 1986, for example], “researchers’ perceptions about the conclusiveness of
research results is [sic] strongly related to the p-value” [Hedges, 1992]. Hedges further argued that
“a third finding is that the relationship between perceived conclusiveness of studies and p-values
is not smooth but is subject to ’cliff effects’ near conventionally used a priori levels of significance
such as α = 0.05 and α = 0.01” [Hedges, 1992].

Based on these observations, Hedges introduced a selection model as a step function of the p-
value, with potentially multiple discontinuities (steps) at points determined a priori. This weight
function has its value between each two consecutive steps constant, and these constants are learned
in a maximum likelihood manner, based on a probabilistic model of the true effect of studies (mainly
studies concerned with the same underlying condition) [Hedges, 1992]. Numerical and convergence
issues arise by using this, and similar, methods [Terrin et al., 2003].

Begley and Ellis published an article calling to raise the standards. The article included the
findings of a study on the reproducibility of 53 preclinical cancer studies that were “deemed land-
mark studies”. The papers “were deliberately selected that described something completely new,
such as fresh approaches to targeting cancers or alternative clinical uses for existing therapeutics.”
They found that only 6 of them (11%) were reproducible [Begley and Ellis, 2012]. The definition
of reproducibility, in their report, is based on whether the findings are sufficiently robust to drive
a drug-development program.

In a 2011 study, researchers from Bayer HealthCare reported on their trials to reproduce 67
projects. Their findings are consistent with those of Begley and Ellis [2012]. The authors report
that only 14 of the 67 findings in question were completely reproducible, 43 were inconsistent
with their in-house experiments, 5 had main datasets that were reproducible, 3 were partially
reproducible and 2 that “were almost exclusively based on in-house data.” The authors estimate
the complete reproducibility of the findings included in their study to be ∼ 20− 25% [Prinz et al.,
2011]. Of the methods used to reproduce results, the original models were exactly copied in 12
cases, in 38 cases the models were adapted to internal needs, the “published data was transferred
to models for other indications” in 2 cases, and in 5 other cases the general hypotheses of the
projects could not be verified.

Pocock et al. surveyed 45 reports of comparative trials published in the British Medical Journal,
Lancet and the New England Journal of Medicine. The survey focused on studying some of the
procedures in conducting and designing clinical trials and reporting their results, such as, multiple
end points, subgroup analysis, repeated measurements over time, multiple treatment groups, the
excessive use of significance testing, the lack of reporting measured effect sizes (test statistics) and
confidence intervals, the choice of the number of subjects and rules of early termination of trials,
the potential selectivity over which significance tests to even report and the biased selection of
results for the summary [Pocock et al., 1987].

4.4 Formal Method

Setting We treat hypotheses tests that utilize the Student t-test [Student, 1908]. In our setting,
we assume that a set of M hypotheses tests D = (Ti, ni, Pi)

M
i=1 is observed. For each test i ∈

{1, . . . ,M}, there exists a true (but hidden) effect size ei. Given that effect size and the Degrees of
Freedom (DOF) in the experiment, ni, the measured t statistic of the experiment, Ti, is distributed
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according to the non-central Student t distribution Ti|ni, ei ∼ NCT (ni, ei) [Johnson and Welch,
1940]. Moreover, given the effect sizes and DOFs of any two experiments, i and j (i 6= j), Ti
and Tj become independent. The reported p-value, Pi, of the experiment i follows the following
relationship

Pi = 2P (T ≥ Ti;ni) (4.1)

where T is distributed according to the Student t distribution (with ni DOF). Note that the p-
value as defined here ranges from 0 to 2. We elect to use this definition because it allows us to
differentiate between positive and negative effect sizes directly from the p-values domain.

Null hypothesis Fix the values 0 ≤ p̄1 < p̄2 < p̄3 < p̄4 < p̄5 ≤ 2. We formalize the hypothesis,
H0 (p̄1, p̄2, p̄3, p̄4, p̄5) (in short H0) as the absence of bias against publications with p-values in the
range [p̄3, p̄5) as opposed to the range [p̄1, p̄3) with emphasis on relative amounts of publication of
p-values in the range [p̄3, p̄4) to [p̄2, p̄3).

Note that fixing the null hypothesis H0 needs to be done before performing the test or the
analysis, for validity. As such, fixing the values of p̄j, j = 1, . . . , 5 needs to be done prior to the
rest of the analysis, including exploring the data to be tested. One may elect to extract a random
subsample of the dataset for exploration purposes, which should not be included in the actual test.

Test statistic design We start with some intuition regarding publication bias. Consider the
probability density function (PDF) of p-values, f(p). Bias against publications with p-values in
the range [p̄3, p̄5) relative to publications with p-values in the range [p̄1, p̄3) is manifested in a
significantly smaller area

∫ p̄5
p̄3
f(p)dp compared to

∫ p̄3
p̄1
f(p)dt (Figure 4.1).

The goal is to design a test statistic that can measure this effect in a manner that yields
a probabilistic bound on observing a dataset at least as extreme as dataset D, under the null
hypothesis H0.

We define the filter

F(p) , −1 · I[p̄1,p̄2) (p) + 3 · I[p̄2,p̄3) (p)− 3 · I[p̄3,p̄4) (p) + 1 · I[p̄4,p̄5) (p)

where IS (x) =

{
1 if x ∈ S
0 otherwise

For intuition, this filter is a step function approximation of the third derivative of the Gaussian
filter centered at p̄3 (Figure 4.1). Using the filter F , we define the test statistic

S ,
M∑
i=1

F(Pi).

Intuitively, the filter F acts as follows. Datasets with bias against publications with p-values
in the range [p̄3, p̄5) relative to those with p-values in the range [p̄1, p̄3) are likely to yield a higher
value of the test statistic S than datasets without such bias. For intuition, the test statistic, acting
on the PDF f(p), can be calculated as s = M ·

∫ p̄5
p̄1
f(p) · F(p)dp. PDFs that are a result of such

publication bias are likely to yield a higher test statistic s than PDFs that are a result of no bias.
This scenario is depicted in Figure 4.1.
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F(p) – Filter response
f1(p) – Unbiased p-values
f2(p) – Biased p-values

Figure 4.1: Visualization of the filter F(·) with illustrative plots of p-values’ PDFs f1(·) and
f2(·) demonstrating cases of no bias and bias, respectively.

The statistical test We now turn to calculating an upper bound on the likelihood that we
observe a dataset at least as extreme as D under the null hypothesis H0. We calculate a bound on
the tail probabilities of the random variable S. To do so, consider the random variables

Xi(Ti, ni, Pi) ,



−1 Pi ∈ [p̄1, p̄2)

3 Pi ∈ [p̄2, p̄3)

−3 Pi ∈ [p̄3, p̄4)

1 Pi ∈ [p̄4, p̄5)

0 otherwise

=



−1 Ti ∈ (t̄2,i, t̄1,i]

3 Ti ∈ (t̄3,i, t̄2,i]

−3 Ti ∈ (t̄4,i, t̄3,i]

1 Ti ∈ (t̄5,i, t̄4,i]

0 otherwise

, i ∈ {1, . . . ,M} (4.2)

where t̄j,i is the t-score that yields a two-tailed p-value p̄j given the DOF ni. Formally, the t̄j,i that
achieves 2P (T ≥ t̄j,i;ni) = p̄j, j ∈ {1, . . . , 5}. Equivalently, t̄j,i = − tinv(

p̄j
2

;ni), where tinv(·) is
the inverse t-distribution cumulative distribution function (CDF).

From the definition in Equation (4.2) and the fact that Ti|ni, ei ∼ NCT (ni, ei), the probability
distributions of Xi are as follows:

P (Xi = x|ni, ei) =



∫ t̄1,i
t̄2,i

NCT (t;ni, ei)dt x = −1∫ t̄2,i
t̄3,i

NCT (t;ni, ei)dt x = 3∫ t̄3,i
t̄4,i

NCT (t;ni, ei)dt x = −3∫ t̄4,i
t̄5,i

NCT (t;ni, ei)dt x = 1

1−
∫ t̄1,i
t̄5,i

NCT (t;ni, ei)dt x = 0

(4.3)

Note that the test statistic random variable can be written as S =
∑M

i=1Xi. We denote the
probability distribution in Equation (4.3) by XD(ni, ei); as such, Xi|ni, ei ∼ XD(ni, ei). Note that
given DOFs and effect sizes, Xi and Xj are independent for any i 6= j.
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Using the Chernoff bound, we have, for all θ ≥ 0,

p(S ≥ s|H0) ≤ E exp (θS)

exp (θs)
=

E exp
(
θ
∑M

i=1Xi

)
exp (θs)

=

∏M
i=1 E exp (θXi)

exp (θs)

Note that the effect sizes ei are latent and as such, it is desirable to find a global bound that
is not sensitive to the true values of the ei. This is because, otherwise, we would have to make
assumptions about the distribution of ei, which are, by large, unverifiable. In order to alleviate
this difficulty, we consider the following analysis.

We denote the set of DOFs in the datapoints in the set D as N . For any given θ ≥ 0 and n ∈ N ,

we define X̃(θ, n) ∼ XD(n, ·) to be a random variable such that E exp (θXi) ≤ E exp
(
θX̃(θ, n)

)
for all i ∈ {1, . . . ,M} with ni = n. Formally, if we define

X̃(θ, n) , arg max
X∈{Z∼XD(n,e)|e∈R}

E exp (θX) ,

we achieve that for all n, E exp (θXi) ≤ E exp
(
θX̃(θ, n)

)
for all i ∈ {1, . . . ,M} with ni = n, as

desired.
Furthermore, we define M(n) to be the number of datapoints in D with DOF n. That is,

M(n) ,
∑M

i=1 I{n} (ni) , ∀n ∈ N . Now we can write,

p(S ≥ s|H0) ≤
∏M

i=1 E exp (θXi)

exp (θs)
≤

∏M
i=1 E exp

(
θX̃(θ, ni)

)
exp (θs)

=

∏
n∈N

(
E exp

(
θX̃(θ, n)

))M(n)

exp (θs)

This bound is valid for every θ ≥ 0. Therefore, we can write

p(S ≥ s|H0) ≤ min
θ≥0

∏
n∈N

(
E exp

(
θX̃(θ, n)

))M(n)

exp (θs)
.

By plugging in our definition for X̃(θ, n), we conclude that

p(S ≥ s|H0) ≤ min
θ≥0

∏
n∈N max

Xn∈{Z∼XD(n,e)|e∈R}
(E exp (θXn))M(n)

exp (θs)
, (4.4)

which gives us an upper bound on the probability that we observe any set of M publications–
which includes M(n) publications with DOF n for each n ∈ N , yielding a test statistic S at least
as extreme as s under the null hypothesis H0. Note that the bound in Equation (4.4) is no longer
sensitive to the latent effect sizes ei, and can be calculated only using observed variables.

4.5 Implementation

Last section, we devised a statistical test that, given a dataset D = (Ti, ni, Pi)
M
i=1, yields a bound on

the probability of observing any other dataset at least as extreme as D, under the null hypothesis
H0. That bound is described in Equation (4.4). In this section, we discuss an implementation of
this calculation, which we have done in MATLAB. That is, we describe a MATLAB toolbox that,
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given a dataset D = (Ti, ni, Pi)
M
i=1, it i) calculates the test statistic s; and ii) calculates an upper

bound on the probability of observing a dataset at least as extreme as D, under the null hypothesis
H0; namely, p(S ≥ s|H0).

There are two details to address in implementing the bound described in Equation (4.4).
The first detail is devising a method that, given a Chernoff parameter θ, calculates the value
of E exp (θX(n, e)).

Second, we note that for large datasets, the inner optimization problem described as∏
n∈N

max
Xn∈{Z∼XD(n,eθ)|eθ∈R}

(E exp (θXn))M(n) (4.5)

may be computationally expensive. Therefore, we address the question of an efficient implemen-
tation of it.

We will start off by describing our method for calculating the expected value E exp (θX) in
Section 4.5.1. Afterwards, we tackle the issue of efficient implementation, proving that it still
yields a valid upper bound in Section 4.5.2.

4.5.1 Computing E exp (θX(n, e))

The first step is to be able to calculate the expected value

E exp (θX(n, e))

given the DOF n, some value for the effect size e and a value for the Chernoff free parameter θ.
We note that the random variable X(n, e) ∼ XD(n, e), and, as such, is a discrete random

variable. Therefore, the expected value of it should simply be

E exp (θX(n, e)) =
∑

x∈{−1,3,−3,1,0}

exp (θx) p(X = x|n, e) =

=
∑

x∈{−1,3,−3,1,0}

exp (θx) px (4.6)

where

p−1 =

∫ t̄1

t̄2

NCT(t;n, e)dt, p3 =

∫ t̄2

t̄3

NCT(t;n, e)dt,

p−3 =

∫ t̄3

t̄4

NCT(t;n, e)dt, p1 =

∫ t̄4

t̄5

NCT(t;n, e)dt

and
p0 = 1−

∑
x∈{−1,3,−3,1}

px,

where t̄j = − tinv(
p̄j
2

;n), ∀j ∈ {1, . . . , 5}.
The procedure implementing Equation (4.6) is listed in Algorithm 4.1.
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Algorithm 4.1 calcExpExp (θ, n, e,H0) – Calculates Equation (4.6).

Input: θ: the value of the free parameter in Chernoff bound.
Ensure: θ ≥ 0.
Input: n: a DOF.
Ensure: n > 0.
Input: e: a value for the effect size.
Ensure: e ∈ R.
Input: H0 (p̄1, p̄2, p̄3, p̄4, p̄5): the null hypothesis.
Ensure: 0 ≤ p̄1 < p̄2 < p̄3 < p̄4 < p̄5 ≤ 2.

1: for all j ∈ {1, . . . , 5} do
2: t̄j ← − tinv(

p̄j
2

;n)
3: end for
4: p−1 ←

∫ t̄1
t̄2

NCT(t;n, e)dt

5: p3 ←
∫ t̄2
t̄3

NCT(t;n, e)dt

6: p−3 ←
∫ t̄3
t̄4

NCT(t;n, e)dt

7: p1 ←
∫ t̄4
t̄5

NCT(t;n, e)dt
8: p0 ← 1−

∑
x∈{−1,3,−3,1} px

9: r ←
∑

x∈{−1,3,−3,1,0} exp(θ · x) · px
10: return r

4.5.2 Partitioning the DOFs

We first note that in order to implement Equation (4.5) in MATLAB, as is, we either have to
implement it through a loop, which impedes its convergence, or translate this into one large
vectorized optimization problem as follows.

max
(Xn)n∈N s.t.

Xn∈{Z∼XD(n,e)|e∈R},∀n∈N

∏
n∈N

(
EeθXn

)M(n)

which is an optimization problem with |N | optimization variables (one variable for effect size e, for
each Xn, n ∈ N). For large datasets, convergence of this optimization problem can be very slow,
as will be demonstrated in Section 4.6.

We will develop a method that drops this complexity down, while still yielding a valid Chernoff
bound, with the potential cost of its tightness. The reason we say potential, is because this method
covers the original optimization problem described above as a special case; which means that the
user can elect to not lose tightness in the bound, if she or he wishes.

First, let us generalize a previous definition. For any given θ ≥ 0 and N̂ ⊂ N , we define

X̃(θ, N̂) ∼ XD(n, ·) to be a random variable such that E exp (θXi) ≤ E exp
(
θX̃(θ, N̂)

)
for all

i ∈ {1, . . . ,M} with ni ∈ N̂ . Formally, if we define

X̃(θ, N̂) , arg max
X∈{Z∼XD(n,e)|e∈R,n∈N̂}

E exp (θX)

we achieve that for any N̂ ⊂ N , E exp (θXi) ≤ E exp
(
θX̃(θ, N̂)

)
for all i ∈ {1, . . . ,M} with

ni ∈ N̂ , as desired. Now our X̃(θ, N̂) is a maximizer of E exp (θX) for all n ∈ N̂ , instead of just
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a single DOF like before. Note that we can reproduce the old definition of X̃ by simply having
N̂ = {n} ⊂ N be a singleton.

Second, we also generalize M(·) to count the number of datapoints in D for which the DOF
is in a subset, N̂ , of the degrees of freedom. Formally, we define M(N̂) ,

∑M
i=1 IN̂ (ni) for any

N̂ ⊂ N . We now move to rewrite our bound Equation (4.4), but first introduce a definition from
set theory.

Definition 4.1 (Set Partition). Let N be a set, and Np = {N1, . . . , Nk} be a collection of sets.
We call Np a partition of N if

1. Ni 6= ∅ for all i ∈ {1, . . . , k};

2. Ni ∩Nj = ∅ for all 1 ≤ i < j ≤ k; and

3.
⋃k
i=1Ni = N .

Moreover, the sets Ni, ∀i ∈ {1, . . . , k} are called the partition blocks.

Given any partition Np of the observed DOF N , we can rewrite our bound Equation (4.4) as

p(S ≥ s|H0) ≤
∏M

i=1 E exp (θXi)

exp (θs)
≤

∏M
i=1 E exp

(
θX̃(θ, ni)

)
exp (θs)

=

=

∏
N̂∈Np

(
E exp

(
θX̃(θ, N̂)

))M(N̂)

exp (θs)
.

Just like before, since this bound is valid for all θ ≥ 0, we can write

p(S ≥ s|H0) ≤ min
θ≥0

∏
N̂∈Np

(
E exp

(
θX̃(θ, N̂)

))M(N̂)

exp (θs)
.

By plugging in our definition for X̃(θ, N̂), we conclude that

p(S ≥ s|H0) ≤ min
θ≥0

∏
N̂∈Np max

X̃∈{Z∼XD(n,e)|e∈R,n∈N̂}

(
E exp

(
θX̃
))M(N̂)

exp (θs)
. (4.7)

The inner product in Equation (4.7) is now

∏
N̂∈Np

max
X̃∈{Z∼XD(n,e)|e∈R,n∈N̂}

(
E exp

(
θX̃
))M(N̂)

,

which can be vectorized, just like before, as

max
(XN̂)

N̂∈Np
s.t.

XN̂∈{Z∼XD(n,e)|e∈R,n∈N̂},∀N̂∈Np

∏
N̂∈Np

(E exp (θXN̂))M(N̂) , (4.8)
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Algorithm 4.2 calcProdMaxExpExp (θ,D,H0,Np) – Calculates Equation (4.8) using a parti-
tion of N .
Input: θ: the value of the free parameter in Chernoff bound.
Ensure: θ ≥ 0.
Input: D = (Ti, ni, Pi)

M
i=1: the dataset of the Student t-test.

Input: H0 (p̄1, p̄2, p̄3, p̄4, p̄5): the null hypothesis.
Ensure: 0 ≤ p̄1 < p̄2 < p̄3 < p̄4 < p̄5 ≤ 2.
Input: Np: a collection of sets.

Ensure: Np a partition of the set of degrees of freedom N =
⋃M
i=1 {ni}.

1: r ← 1
2: for all N̂ ∈ Np do

3: c←
∑M

i=1 IN̂ (ni)
4: p← max

e∈R,n∈N̂
calcExpExp (θ, n, e,H0)

5: r ← r · pc
6: end for
7: return r

and has at most 2|Np| variables (one e effect size per partition block and one n DOF per partition
block that is not a singleton). This can greatly reduce the total number of variables in the
optimization problem from |N |, which can be in the order of 103 to as low as 2 optimization
variables (if the partition is Np = {N}), or almost anything in between.

The procedure that calculates the vectorized optimization problem described in Equation (4.8)
is listed in Algorithm 4.2. For legibility, we elected to write the procedure in this document using a
loop, instead of vectorizing it, but we note that the procedure in the MATLAB toolbox is actually
vectorized.

Obviously, the resulting bound in Equation (4.7) is still a valid Chernoff bound, however it may
be less tight than the original bound in Equation (4.4), depending on the choice of the partition,
Np. For example, we note that by picking the partition Np = {{n} |n ∈ N}, the partition of
singleton blocks, the bound in Equation (4.7) reduces back to the bound in in Equation (4.4), so
that there is no loss of generality. Finally, the full procedure implementing the general bound in
Equation (4.7) is listed in Algorithm 4.3.

Algorithm 4.3 ttestDatasetBound (D,H0,Np) – Calculates an upper bound of p(D|H0)

Input: D = (Ti, ni, Pi)
M
i=1: the dataset of the Student t-test.

Input: H0 (p̄1, p̄2, p̄3, p̄4, p̄5): the null hypothesis.
Ensure: 0 ≤ p̄1 < p̄2 < p̄3 < p̄4 < p̄5 ≤ 2.
Input: Np: a collection of sets.

Ensure: Np a partition of the set of degrees of freedom N =
⋃M
i=1 {ni}.

1: s←
∑M

i=1Xi (calculate the test statistic)

2: p← minθ≥0
calcProdMaxExpExp(θ,D,H0,Np)

exp(θ·s)
3: return p
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4.6 Experiment

Significance level Before we start with any analysis, we set our significance level α = 0.01 (1
in 100). As mentioned in Section 4.2.2, this sets the probability of Type I error at 0.01. We reject
the null hypothesis H0 (which states that there is no publication bias) whenever the bound is less
than α. Therefore, the probability that we falsely reject H0 (i.e., falsely declare publication bias)
is at most 0.01.

Data collection The dataset used in this analysis was collected by automatically crawling all
publications of the nineteen journals from the APA between the years 2002 and 2012.4 Consistent
with the method, we only considered publications reporting p-values that were resulted of using
the Student t-test [Student, 1908]. We extracted, for each reported Student t-test, the t-score, the
degrees of freedom and the reported p-value.

The APA publication manual has a strict format of reporting a Student t-test resulting p-value
in a publication. The format is t(ni) = Ti, p [≤ | = | ≥] P̂i. The bold sysmbols correspond to
the actual values of DOF, t-score and reported p-value, respectively. The expression [≤ | = | ≥]
denotes a choice of either one of the three signs: i) less than, ii) equals or iii) greater than,
respectively. Finally, P̂i can be either an exact p-value or a bound on the p-value depending on
the [≤ | = | ≥] sign used [Association, 2009]. We only considered unique p-values from each
publication by removing all duplicates of datapoints that have the same values of the triplet
(Ti, ni, P̂i) as another datapoint in the same publication, with the same equality/inequality sign.
By inspection, these were always duplicate reports of the same hypothesis test results.

Subsequently, in the reports collected, some of the datapoints were reported with exact p-values
(i.e. t(ni) = ti, p = P̂i), and others were reported with either a lower bound or an upper bound
(i.e., t(ni) = ti, p ≥ P̂i or t(ni) = ti, p ≤ P̂i, respectively). Therefore, in order to perform the
analysis as described in the methods section, we recomputed the p-values Pi from the reported
t-scores and degrees of freedom using Equation (4.1).

There are a total of 26,119 datapoints in the collected dataset. We used a random 10% :
90% split of the dataset for purposes of exploration (primarily for fixing the null hypothesis
H0 (p̄1, p̄2, p̄3, p̄4, p̄5)) and analysis, respectively. The absolute number of datapoints used in the
split are 2,614 for exploration and 23,505 for analysis. The analysis portion of the dataset will
serve as the dataset D from the methods section, yielding M = 23,505.

Figure 4.2 depicts the number of occurrences of reported p-values in the exploration part of
the dataset in the range p ∈ [0.001, 2] (note the logarithmic scale on the x axis). An interesting
observation to notice from Figure 4.2 is that there is a sudden drop in the number of occurrences
of p-values around p = 0.05, which is widely used as a significance level for statistical tests. We
therefore set p̄3 = 0.05 for the null hypothesis. From the exploration dataset, we set the values
p̄1 = 0.03, p̄2 = 0.04, p̄4 = 0.06 and p̄5 = 0.07.

Results The null hypothesis H0 is now set and states that bias against publications with p-values
in the range [0.05, 0.07) relative to publications with p-values in the range [0.03, 0.05) doesn’t exist.
We use the described methods to calculate an upper bound on the probability of observing a dataset
least as extreme as the collected dataset D.

For mode detailed insight, we calculate this bound for multiple subsets of the complete dataset,
each differing by the choice of limiting the reports by the DOFs to a different range. Moreover, we

4The list of crawled journals can be found in Appendix .1.
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Figure 4.2: Distribution of reported p-values in the exploration dataset.

choose three different mechanisms for partitioning the total set of DOFs, in an effort to understand

1. the loss in tightness in the bound; and

2. the gain in efficiency in computing the bound.

For that purpose, we elected to use the following partitioning mechanisms.

Fine partitioning In this mechanism, given a set, N , of DOFs, we partition it using blocks that
are singletons, one per actual observed degree of freedom in N . That is, we create one block
per actual degree of freedom. Formally, Np , {{n} |n ∈ N}. As discussed in Section 4.5.2,
this yields the tightest bound but the slowest convergence. We will use this bound as a
benchmark, measuring the loss in tightness in the other partitioning mechanisms.

Crude partitioning In this mechanisms, given a set, N , of DOFs, we partition it using one block
that contains all of N . Formally, Np , {N}. This partitioning mechanisms, yields the fastest
convergence, as discussed in Section 4.5.2. However, this partitioning mechanisms yields the
loosest bound, and as such can be used as a measure of the largest loss in tightness, compared
to the fine partitioning mechanism.

Reasonable partitioning In this, more gracious, mechanism, given a set, N , of DOFs, we par-
tition it using two types of blocks. The first type of blocks treats the degrees of freedom
that are smaller than 30, and is constructed using blocks, each including a range of DOFs
of length at most 1. Concretely, each one of these blocks is of the form ([n, n+ 1) ∩N) for
n = bnlc, . . . , 29, where nl , min(N). The second type is a single block that contains all
DOFs that are at least 30. Concretely, this block is simply (N \ [0, 30)). Combining these

two types of blocks, we formally defineNp ,
(⋃29

n=bnlc {[n, n+ 1) ∩N} ∪ {N \ [0, 30)}
)
\{∅}.



CHAPTER 4. A DATA-DRIVEN APPROACH TO DETECTING PUBLICATION BIAS 116

We subtract the empty set from the union of these two types of blocks for correctness, since
we defined partitions to exclude empty sets (think, for example, if there are no datapoints
with DOF in the range [10, 11), which would yield [10, 11) ∩ N = ∅, which is not a valid
block). This partitioning mechanism is a reasonable middle ground between the fine and
crude mechanisms, which has the potential to balance the tightness of the bound and the
efficiency of the computation.

The results for different subsets of datapoints, under the different partitioning mechanisms, are
compiled in Table 4.2.

Discussing the results As expected, the computations performed with the fine partitioning
mechanism were the slowest to converge, and yielded the tightest bounds (smallest). For instance,
when we computed the bound for all DOFs of size 2 or larger using fine partitioning (first row in
Table 4.2), the computation took more than 24 hours on MATLAB 2016b, running on a laptop
with the specs i) 16 GB of memory (1,600 MHz DDR3); ii) 3 GHz Intel core i7 (dual core) central
processing unit; iii) 256 kB L2 cache, per core; iv) 4 MB L3 cache; and v) macOS 10.12.5 (Sierra).
The computation also utilized MATLAB’s parallel computing toolbox, using 2 local workers (one
per core).

The same dataset, running under the same conditions described above, but using the crude
partitioning mechanism, converged in less than 2 minutes. When using the reasonable partitioning
mechanism, the test on same dataset, under the same conditions described above, converged in
less than 21 minutes.

It can also be seen that these significant speedups do not come with an expensive price. The
tightness of the bound did not suffer a heavy price, as the bound increased from 5× 10−6 to
6.4× 10−6 on the same dataset, between the fine and reasonable partitioning mechanisms, respec-
tively. The speedup offered by using the crude partitioning mechanism, compared to the reasonable
partitioning mechanism is not as significant, and as such, does not justify the loss in the bound’s
tightness. Therefore, the choice for reasonable partitioning seems to be a good middle ground,
balancing tightness of the bound with the efficiency of computation; therefore, this or similar par-
titioning mechanisms should be considered when using the toolbox. The conclusions drawn are
also applicable for the other subsets described in Table 4.2.

As for the rejection of H0, in a nutshell, for all subsets of publications that we considered, we
reject H0 since the probability of Type I error is lower than the preset significance level α = 0.01
(based on the fine partitioning results). This means that for all subsets of publications that
we considered in Table 4.2, we accept the alternative hypothesis that there exists bias against
publications with p-values in the range [0.05, 0.07) relative to publications with p-values in the
range [0.03, 0.05). This demonstrates the strength of this test. For instance, the same analysis can
be performed on a limited set of publications that test the same hypothesis one is trying to study,
in order to identify publication bias and move cautiously, if it exists. That said, the probability
bound this analysis outputs may be used as a measure of skepticism for drawing conclusions from
any set of publications.

Important disclaimer One also needs to be careful when applying this test and interpreting its
outcome. The test is designed to identify scenarios of publication bias, not the converse. In other
words, this test is not designed to prove that a certain set of publication comes without publication
bias. In particular, if one calculates the bound this toolbox outputs on a set of publications
and it comes, say p(S ≥ s|H0) ≤ 0.8, it does not mean that conclusions can be drawn with
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Parameters Partition Mechanism
DOF Statistics Fine Reasonable Crude

min max M s θ p θ p θ p

2 ∞ 23,093 634 0.037198 0.000005 0.036294 0.000006 0.019018 0.002130
5 20 8,521 296 0.042914 0.001363 0.043199 0.001365 0.035773 0.004051
5 30 11,965 341 0.036535 0.001495 0.036542 0.001495 0.029690 0.004986
5 35 8,521 296 0.036509 0.000892 0.036071 0.000959 0.029139 0.003629
5 100 8,521 296 0.038230 0.000017 0.038197 0.000018 0.030078 0.000176

Table 4.2: The results using partitions with singleton blocks. Each row describes the results for
a subset of the dataset corresponding to the set of DOF stated in the first column.

confidence. This said, this tool may be used as a measure of skepticism, but not as a measure
of confidence. Using this analysis to the contrary (i.e., claiming absence of publication bias)
is analogous to claiming that a mathematical assertion is incorrect simply because one couldn’t
prove it by contradiction.

4.7 Summary

Publication bias is a serious problem that distorts the image of science. In its presence, our
ability to draw objective conclusions regarding the correctness of scientific hypotheses becomes
handicapped. This problem will also affect our ability to correctly identify risk factors of diseases
and prevention mechanisms. This, in turn, will unnecessarily delay the realization of a predictive
healthcare model. Publication bias, however, is not particular to predictive medicine; it affects all
branches of the empirical sciences.

As such, it is important to, first and foremost, eliminate this problem. However, until that
happens, we need tools to cope with the problem. One set of tools deals with estimating the level
of publication bias in an effort to help correct for it. Unfortunately, these methods suffer from
the curse of making unverifiable assumptions. Some of these estimates may be used to detect bias
by checking the magnitude of estimated bias and calculating its significance. Again, since the
estimates suffer from unverifiable assumptions, any conclusion drawn from them also suffers from
the same fate.

In this chapter, we tackled this very problem. We identified the need for a statistical test that
can detect publication bias without making unverifiable assumptions. We devised a statistical
significance analysis method that, given a dataset of publications (with results from the Student
t-test), outputs an upper bound on the probability of observing a dataset at least as extreme as
the one in hand. This probability bound can be used to reject the (null) hypothesis that there is
no publication bias, and in turn accept the (alternative) hypothesis that the dataset in hand is a
result of a biased publication process.

Caution needs to be taken when using this test; this test can be thought of as a gauge for
skepticism, not confidence. That is, a high upper bound on the probability of observing a dataset
at least as extreme as the one in hand does not imply a high level confidence in that the dataset
is a product of an unbiased publication process; nor does it imply that one may necessarily draw
conclusions with high confidence. This test was designed to detect publication bias, not to affirm
the lack thereof.

Afterwards, we discussed the implementation details of a MATLAB toolbox that performs this
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test on a given dataset. We showed that, if one is willing to pay in the level of tightness of the
bound, then one can gain in efficiency (without losing the property that the bound is correct).
That is, this does not come at the expense of calculating an approximate bound; the bound will
remain correct even if the relaxation in tightness is chosen.

Using this implementation, we demonstrated the test on a dataset of 23,505 publications re-
porting results using the Student t-test from APA journals. In our analysis, we showed that all
the subsets considered for this demonstration resulted in the same conclusion of accepting pub-
lication bias. That is, for every publications subset we considered, we arrived at the conclusion
that these publications are a product of a biased publication process. In the same experiment,
we demonstrated the aforementioned trade-off of bound tightness versus computational efficiency.
We concluded that some partitioning techniques can be used to drastically speed up computation,
without incurring a high loss in the tightness of the bound.

We believe that detecting publication bias must become a standard not only in scientific re-
search, but also in the scientific publishing business. Journals and other publication agencies should
conduct regular audits of their substrate of publications and take measures to minimize bias in
publications. In addition to their usefulness to researchers, statistical tests that can detect publica-
tion bias–like the one presented in this chapter–can help publishers implement the aforementioned
audit protocols.
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We shall not cease from exploration, and the end of all our exploring
will be to arrive where we started and know the place for the first time.

– Thomas Stearns Eliot OM, 1943

Currently, the healthcare model in the United States of America (US) has a reactive nature.
Simply speaking, we usually seek medical advice or care only after we perceive a deterioration in our
health status. In other words, we first get sick, then go see a doctor. Instead, it would be desirable
to move towards a more proactive healthcare model. A particular model that we examined in this
dissertation, is the predictive healthcare model (also known as predictive medicine).

The road to predictive medicine, however, is long. In this dissertation, we have only taken one
step forward in this journey. The realization of the predictive healthcare model has the potential
to save lives, improve quality of care and reduce costs for many. More work remains to be done.
In particular, we need to prioritize the efforts of discovering risk factors of diseases and their
prevention. These risk factors can be incorporated in predictive models, which may be used to
predict clinical deterioration before it occurs. If the risk of such deterioration is found to be high,
medical intervention can be delivered, before the symptoms manifest.

Medical intervention, on the other hand, relies on understanding means of disease prevention.
The revelations of disease risk factors and prevention mechanisms come as a result of expensive,
longitudinal, empirical research. There is therefore a need to study means to streamline these
studies in a manner that reduces their cost. Telemonitoring is one promising technology that not
only can reduce the cost of epidemiological studies, but can also serve as an implementation of
the predictive healthcare model. Telemonitoring, though, is not the only option; more research is
encouraged to further refine existing protocols or create new ones in order to make long, costly,
epidemiological studies more feasible.

Whatever the technology may be, ethical thinking has to be involved in the design process of
that technology. One burning ethical issue, when it comes to health-related data, is privacy. We
presented a semantic model that has the potential to achieve perfect privacy protection, without
costing in utility. The research, however, should not stop there. Instead, we should further inves-
tigate the special privacy requirements of predictive medicine. Beyond privacy, other fundamental
ethical issues need to be addressed. This line of research is long and takes dedication, not only
from academics and entrepreneurs, but also from decision and policy makers. For example, health
insurers in the US currently don’t require their coverage applicants to go through genetic testing
or profiling. However, these ideas have floated by insurers. The ethical repercussions of such
requirement, for example, are vast.

This is just one example of the many important matters we need to attend to. Unfortunately,
policy has consistently lagged behind technological innovation. We argue that this may be danger-
ous in the realm of predictive medicine. Inherent to this model are predictions that estimate our
health status. Whenever predictions become accurate, we start getting the same types of privacy
risks we usually consider when disclosing sensitive information. Except in this case, we are not dis-
closing sensitive information, they are rather inferred about us. In simpler terms, we understand,
only a little better, the risks involved by disclosing a certain piece of private information. But do
we understand the risks involved in disclosing pieces of information that seem innocuous?

For instance, rating movies on movie streaming services, such as Netflix, may seem innocent,
in a privacy sense. However, what if these ratings become the input to a very accurate predictor
of sexual orientation? These questions have to be asked, and we have to get ahead of them. The
traditional approaches to privacy will start to break if we do not tackle the risks from statistical
inference.
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Going back to health insurers, who in the backbone of their profit analysis, assess the risk
of someone needing medical attention in the future. Given that it is acceptable for insurers to
profile the risk of different applicants to cost them money, where does the line cross? Are they
allowed to use accurate disease predictors to assess that risk as well (since these conditions are not
really disclosed, but predicted)? Note that in this scenario, the health insurer tries to assess the
risk of, say cancer, from whatever markers they are allowed to use by law. But what if now, their
prediction of cancer, based on data that they may use for risk assessment, becomes highly accurate?
If they choose to deny insurance to applicants based on very accurate predictions, wouldn’t that
be comparable to denying coverage based on prior medical conditions?

But these issues aren’t the only ethical issues involved. We, scientists, have an ethical obliga-
tion to represent an uncensored and undistorted image of science and reality. As such, we have
an obligation, that has ethical implications, to report about our failed trials and experiments.
Although we discussed, in this dissertation, a statistical method that can detect such censorship
through the mechanism of bias, this is hardly sufficient. We truly need to eliminate any mechanism
of censorship to begin with. We need protocols that would incentivize researchers to disclose all
empirical studies they perform (including ones that are viewed as unsuccessful). Devising these
protocols, although requires fluency in statistical theory, is a task that we collectively bear on
our shoulders; including laymen, the media and policy makers. For instance, media coverage of
“sensational” scientific findings has to become responsible reporting so to not distort the public
opinion as to what is a true scientific fact versus what is false or unverified. Moreover, publishers
need to address this issue as well; but by large, more effort needs to be taken in this area.

In summary, although we have taken a small step forward towards functional predictive medicine,
we need to accelerate our collective steps, but without losing our north. We need to never cease
to wonder, question, explore and be skeptical. Moreover, we need to change the culture of under-
valuing the so-called “unsuccessful” experiments for they may teach us more about the truth than
what is perceived to be successful (or what is perceived to be the truth). In short, stay thirsty and
keep exploring.

Fiat lux!
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Glossary

AI Artificial Intelligence. ii

APA American Psychological Association. 104, 105, 113, 117, 138

API application programming interface. 31, 33, 38, 42, 45

BDSG Bundesdatenschutzgesetz. 68

Berkeley Telemonitoring is an effort to study and develop telemonitoring systems. The ef-
fort resulted in a framework for mobile health (mHealth)-based telemonitoring designed for
Android devices. 11, 13, 20, 22, 23, 27, 30, 33, 36–47, 49–52, 60, 63, 64, 82, 93, 94, see
telemonitoring & mHealth

BLE Bluetooth Low Energy. 41–43

BMI Body Mass Index. 80, 89, 90, 92, 93

CDC Center for Disease Control and Prevention. 3, 7, 13, 80, 89, 93

CDF cumulative distribution function. 108

CHF congestive heart failure. 4–7, 11, 19–27, 30, 36, 50, 52, 61–64, 66, 74, 93, 94

CLTC Center for Long-Term Cybersecurity. iii, 53, 94, 118

CMS Centers for Medicare & Medicaid Services. 4, 5, 7

COPD chronic obstructive pulmonary disease. 5, 6

DOF Degrees of Freedom. 13, 106, 108–116

ECG electrocardiogram. 31

EE energy expenditures. 21, 23–28, 35, 38, 43, 48, 50, 51

EECS the department of Electrical Engineering and Computer Sciences. ii

EU European Union. 67–71, 73

FTC Federal Trade Commission. 67, 69–71

GDP gross domestic product. 8, 9
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GPS Global Positioning System. 27, 43, 44, 50, 73

HART the Human-Assistive Robotic Technologies lab. ii

HHS Department of Health and Human Services. iii, 53, 94, 117

HIPAA Health Insurance Portability and Accountability Act. 32, 36

IoT Internet of Things. 72

mammography is the most common breast cancer screening modality. 2

MATLAB matrix laboratory; a numerical computing programming language developed by Math-
Works, Inc. 13, 91, 105, 109, 110, 112, 115, 117

Medicare is a US national social insurance program administered by the federal government since
1965. The program mainly covers individuals that are 65 years old and older; and younger
individuals with disabilities. 4–8

mHealth mobile health. 12, 13, 19–22, 27, 30, 33, 35–38, 52

MITM Man-In-The-Middle. 60, 66, 77

NCI National Cancer Institute. 2

NIH National Institutes of Health. 104

NMFF Northwestern Medical Faculty Foundation. 19, 23, 25

NSF National Science Foundation. iii, 53, 94, 117

NYU New York University. 19

oikos is the private sphere of domestic life (greek philosophy; Aristotle). 59

OM The Order of Merit, recognizing distinguished service in the armed forces, science, art, liter-
ature, or for the promotion of culture. 121

OOP Object-Oriented Programming. 38

P3P is Privacy Preferences Platform. A specification–endorsed by World Wide Web Consortium
(W3C)–for machine-readable privacy policies, designed for Web resources. 67, 71, 73, 75

PDF probability density function. 107

PDI Private Disclosure of Information. 13, 41, 60, 66, 77–82, 88, 90, 91, 93, 94

personalized medicine is a healthcare model under which medical practices and decisions are
tailored to the individual patient. 3, 24, see precision medicine

PHD ISO/IEEE 11073 Personal Health Device. 42, 43, 50
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PMF is Privacy Mapping Function, the sanitization mechanism that is learned and used in Private
Disclosure of Information (PDI). 79, 81–88, 90, 91, 93

polis is the public sphere of political activity (greek philosophy; Aristotle). 59

PPACA Patient Protection and Affordable Care Act. 4, 5, 9

precision medicine is a healthcare model under which medical practices and decisions are tai-
lored to the individual patient. 3, 13

predictive healthcare is a healthcare model under which raliable predictions about the risk of
clinical deterioration are sought and interventions are performed in cases where this risk is
deemed high. 2–5, 7–13, 19, 20, 23, 24, 36, 52, 60, 66, 72, 73, 76, 93, 101, 102, 116, 121, 122,
see precision medicine & personalized medicine

preventative healthcare is a healthcare model under which actions are sought in order to pre-
vent deteriorations in health before they occur. 3

privacy is the right of an individual or group to keep certain information about themselves from
the public sphere. 13, 66

Privacy by Design is a systems design paradigm in which privacy is incorporated in the design
phase of the system. 67, 71–73, 75, 76

PSA is prostate-specific antigen. A glycoprotein enzyme often elevated in the presence of prostate
cancer. 2

readmission is the act of unplanned rehospitalization after an initial discharge. 4, 5

RunningCoach is a remote monitoring and coaching Android app that was designed on top of
the Berkeley Telemonitoring framework. 20, 22, 49–52, 63–65, 93, 94

SDK software development kit. 30, 33

SHARP Strategic Health IT Advanced Research Projects. iii

SQL Structured Query Language. 48

SSL Secure Sockets Layer. 25, 47, see TLS

Student t-test is a statistical hypothesis test often used to determine significant difference be-
tween two (or more) groups in empirical studies. 13, 101, 103–106, 112, 113, 117

SVM Support Vector Machine. 89, 91

TCP Transmission Control Protocol. 47

telemonitoring is a process in which subjects are remotely monitored for clinical progress. 11–13,
19–30, 33, 35–47, 49, 50, 52, 60–64, 66, 72, 73, 76–81, 86, 87, 102, 121

TLS Transport Layer Security. 47, see SSL
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TRUST Team for Research in Ubiquitous Secure Technology. iii, 53, 94, 117

Type I error is the probability of incorrectly rejecting a true null hypothesis, the probability of
a “false positive”. 99–101, 103, 104, 113, 115

US United States of America. 2–5, 7–9, 32, 36, 59, 67–71, 121

USD United States Dollar. 8

W3C World Wide Web Consortium. 67, 71, 75

XML Extensible Markup Language. 67, 71
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The list of American Psychological Association (APA) journals, which were crawled for the
purposes of the experiment in Section 4.6 are listed in the table below.

Journal Code Journal Name

60935 Journal of experimental psychology: Human perception and performance
60934 Journal of Experimental Psychology: Learning, Memory, and Cognition
60945 Journal of Consulting and Clinical Psychology
60909 Behavioral Neuroscience
60948 The Journal of Abnormal Psychology
60937 Journal of Experimental Psychology: General
60946 Journal of Comparative Psychology
60979 Psychological Assessment
60938 Journal of Experimental Psychology: Applied
60943 Journal of Counseling Psychology
60939 Journal of Experimental Psychology: Animal Behavior Processes
60983 Professional Psychology: Research and Practice
60986 Personality Disorders: Theory, Research, and Treatment (2009-)
60929 American Psychologist
60912 Training and Education in Professional Psychology (2006-)
60951 International Journal of Play Therapy
726353 Sport, Exercise, and Performance Psychology (2011-)
60990 Journal Of Psychotherapy Integration
726355 Couple and Family Psychology: Research and Practice (2011-)

Table 1: List of the nineteen journals surveyed from APA. Some journals published their first
issue after the year 2002, in which case we mention in parentheses the year of the first issue pub-
lished by that journal. The journals list is sorted according to the number of publications with
experiments surveyed in our analysis.
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