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ABSTRACT

We propose a generalizable strategy for planning the sit to stand movement of a powered lower limb orthosis and its user.
Modeling the system as a three rigid link planar robot, we rely on its kinematic equations to obtain a set of transformations
that allows us to compute reference trajectories for the angular positions of the links, starting from a desired kinematic
behavior for the center of mass of the robot and the angular position of link 2 relative to link 1; as we consider them more
suitable to de�ne for achieving a safe sit to stand transition. We then proceed to design a tracking controller via feedback
linearization and solve a constrained least-squares program to address the control allocation problem from including the loads
applied by the arms of the user as inputs. We simulate two relevant STS movements to illustrate the system tracking the
reference trajectories generated with our strategy, in the presence of parameter uncertainty.

BACKGROUND

Wearable robots are complex biomechatronics systems that must work in synchrony with the body of its user in order to
perform a mechanical task. They can be worn in series to replace missing extremities (powered prostheses), or in parallel
to provide power augmentation or rehabilitation (powered orthoses) [1]. Powered lower limb orthoses are wearable robots
designed as medical devices that aid the mobility and enhance the strength of the legs or their individual joints to assist
standing and/or walking. We study a class of these orthoses (sometimes referred to as medical exoskeletons) whose purpose
is to restore the gait of people with complete paralysis of the lower part of the body, by providing physical support and load
transfer to the ground with externally coupled rigid links. Their users, who interact with the ground by means of crutches,
must have good mobility in hands, arms, and shoulders; as well as healthy enough skeletal, cardiovascular, vestibular and
visual systems to tolerate standing.

State of the art powered lower limb orthoses such as EksoGT [2], Indego [3], ReWalk [4] and Roki [5] provide actuation
at the knees. In contrast, inspired by the gait of bilateral transfemoral amputees with passive knee prostheses [6], the Steven
Exoskeleton (commercially available as PhoeniX [7]) has passive brake mechanisms at the knees and relies solely on the
control of the motors at the hips to achieve adequate toe clearance for level ground walking. This architecture is a key
feature to reduce mass, design complexity and ultimately cost [8].

The Sit to Stand (STS) movement is the sequence of actions that are executed for rising from a chair. Biomechanically,
it is a complex activity that requires adequate position and torque control at each joint of the legs, precise spatial and
temporal coordination of all body segments with feedback from the equilibrium sense [9], and can be more demanding than
other activities of daily living because it requires more leg strength and greater ranges of joint motion than walking or stair
climbing [10].

While powered lower limb orthoses without actuation at the knees allow dynamically stable gait cycles that look more
natural when compared to fully-actuated ones, the trade o� is that they demand more e�ort to perform the STS movement.
Not only do the users need to compensate the lack of torque at the knees applying greater forces with their arms but they
also �nd it more challenging to stabilize in the upright posture. This paper presents an approach to plan the motion of these
devices, regarding the kinematics of the angular position of the thighs relative to the shanks and the Center of Mass (CoM)
as good criteria to guarantee a safe transition from sitting to standing.
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Figure 1: Representation of a subject about to perform a STS movement, assisted by a powered lower limb orthosis without
actuation at the knees. Sagittal symmetry is assumed.

INTRODUCTION

Based on the evidence that three rigid link dynamic models have been used to accurately describe the STS movement of
di�erent subjects [11], we model the system comprised of a powered lower limb orthosis and its wearer as a three-link planar
robot, where the interaction of the subject with the ground using crutches is represented by reactive loads acting on the
location of the shoulder joints. The Euler-Lagrange equations for such system are compactly written in terms of the vector
of joint angles θ, its time derivatives and input u as

θ̈ = f
(
θ, θ̇, u

)
Nevertheless, biomechanical studies measure the kinematics of the Center of Mass (CoM) to classify and assess dynamic

balance of the STS movement [12] rather than joint angles. Therefore, we consider the angular position of the thighs relative
to the shanks, θ2, and the position coordinates of the CoM of the three-link planar robot in an intertial frame, (xCoM , yCoM ),

to de�ne z :=
[
θ2 xCoM yCoM

]T
and show that a transformation of the form[

θ θ̇ θ̈
]T

= h (z, ż, z̈) (1)

can be obtained, in order to plan adequate STS movements in the space of z.
With the reference trajectories for the angular positions of the links and their �rst and second time derivatives, we proceed

to design a tracking controller via feedback linearization of the Euler-Lagrange equations of the system. Due to our choice of
inputs, this will also require to use a control allocation algorithm. To show the behaviour of the system under the proposed
tracking nonlinear feedback controller, we present the simulation of two di�erent STS movements designed with our motion
planning approach, including uncertainties in the parameters of the system in order to perform a basic assessment of its
robustness.

We only found one detailed STS motion planning and control algorithm for a comparable medical device in the literature,
[13]. In contrast to our strategy, the STS movement of the Robot Suit HAL is planned in terms of the Center of Pressure
(CoP), hip and knee angles. The reference trajectory of the knee is tuned from data of the motion of a healthy person,
the desired CoP is �xed in front of the ankles and the reference for the hip is calculated online with measurements of the
knee and ankle angles. The PD controller for the torques at the joints of the ankles, knees and hips does not assume sagital
symmetry. A monitor can display the position of the CoP estimated with �oor reaction force sensors, so that the wearer can
better interact with parallel bars to cooperate with the suit.

THREE-LINK ROBOT MODEL FOR STS MOVEMENT

Assuming sagittal symmetry, no movement of the head relative to the torso, and that feet are �xed to the ground; we will
model the dynamics of the system comprised of the user, crutches and orthosis in Figure 1 as those of the three-link planar

2



Figure 2: Three-link planar robot for modeling the powered lower limb orthosis and the interaction with its user.

robot with revolute joints coaxial to the ankles, knees and hips of the user, shown in Figure 2. The origin of the inertial
frame is chosen at the joint of the ankles, θ1 (t) is the angular position of link 1 measured from the x axis at time t, θ2 (t)
is the angular position of link 2 relative to link 1, and θ3 (t) is the angular position of link 3 relative to link 2. The length
of link 1, l1, is equal to the distance between the knees and the ankles, the length of link 2, l2, is the distance between the
knees and the hips and the length of link 3, l3, is the distance between the hips and the shoulders, all of them measured in
the sagittal plane. The mass of link 1, m1, comprises the masses of the shanks of the user and the corresponding assemblies
of the orthosis in that segment, the mass of link 2, m2, is the mass of the thighs plus the components of the orthosis holding
them, and the mass of link 3, m3, includes the mass of the head, trunk and all parts of the orthosis attached to it. I1, I2
and I3 are the moments of inertia of the links about their respective CoMs. The CoM of link 1 is a distance lc1 from the
ankles, the CoM of link 2 is a distance lc2 from the knees and the CoM of link 3 is a distance lc3 from the hips. In addition
to the weights of the links, there are four external loads acting on the robot: the actuators of the orthosis exert the torque
τ1 (t) about the hips; while the torque τ2 (t), the horizontal force Fx (t) and the vertical force Fy (t) capture the inertial and
gravitational forces of the arms and, most importantly, the loads applied on the shoulders of the user by its interaction with
the ground when using the crutches. There is no torque applied at the knees in compliance with the class of orthoses under
study.

For notational convenience, denote

ci := cos θi (t)

cij := cos (θi (t) + θj (t))

cijk := cos (θi (t) + θj (t) + θk (t))

and similarly for sin.

EULER-LAGRANGE EQUATIONS OF THE THREE-LINK ROBOT

The standard equations of motion for the three-link planar robot described in the previous section were obtained by using
the symbolic multibody dynamics package PyDy (short for Python Dynamics) [14]. In terms of the joint angles θ, input u,

θ =
[
θ1 θ2 θ3

]T
u =

[
τ1 τ2 Fx Fy

]T
and the constants

k0 := (m1 +m2 +m3)
−1

k1 := lc1m1 + l1m2 + l1m3

k2 := lc2m2 + l2m3 k3 := lc3m3

the Euler-Lagrange equations can be written as

M (θ) θ̈ + F
(
θ, θ̇
)

= Aτ (θ)u (2)
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where M (θ) ∈ R3×3, M (θ) � 0 is the symmetric mass matrix of the system with entries

M11 = I1 + I2 + I3 + l2c1m1 +m2

(
l21 + 2l1lc2c2 + l2c2

)
+m3

(
l21 + 2l1l2c2 + 2l1lc3c23 + l22 + 2l2lc3c3 + l2c3

)
M12 = I2 + I3 + lc2m2 (l1c2 + lc2)

+m3

(
l1l2c2 + l1lc3c23 + l22 + 2l2lc3c3 + l2c3

)
M13 = I3 + lc3m3 (l1c23 + l2c3 + lc3)

M22 = I2 + I3 + l2c2m2 +m3

(
l22 + 2l2lc3c3 + l2c3

)
M23 = I3 + lc3m3 (l2c3 + lc3)

M33 = I3 + l2c3m3

F
(
θ, θ̇
)
∈ R3 is the vector of energy contributions due to the acceleration of gravity g = 9.81 [m/s2] and Coriolis forces

F
(
θ, θ̇
)

= Ω (θ)


θ̇21(

θ̇1 + θ̇2

)2(
θ̇1 + θ̇2 + θ̇3

)2
+ g

 k1c1 + k2c12 + k3c123
k2c12 + k3c123

k3c123


with

Ω (θ) =

 l1 (k2s2 + k3s23) −k2l1s2 + k3l2s3 −k3l1s23 − k3l2s3
l1 (k2s2 + k3s23) k3l2s3 −k3l2s3

l1k3s23 k3l2s3 0


Aτ (θ) ∈ R3×4 is the generalized forces matrix

Aτ (θ) =

 0 −1 −l1s1 − l2s12 − l3s123 l1c1 + l2c12 + l3c123
0 −1 −l2s12 − l3s123 l2c12 + l3c123
1 −1 −l3s123 l3c123


KINEMATICS OF THE CoM OF THE THREE-LINK ROBOT

In this section we show that a transformation of the form (1) can be found from the kinematic equations of the CoM of the
three-link robot.

The position, velocity and acceleration coordinates of the CoM are

xCoM = k0 (k1c1 + k2c12 + k3c123) (3)

yCoM = k0 (k1s1 + k2s12 + k3s123) (4)

ẋCoM = −θ̇1yCoM − θ̇2k0 (k2s12 + k3s123)− θ̇3k0k3s123 (5)

ẏCoM = θ̇1xCoM + θ̇2k0 (k2c12 + k3c123) + θ̇3k0k3c123 (6)

ẍCoM = −θ̇21xCoM − θ̇22k0 (k2c12 + k3c123)− θ̇23k0k3c123
−2θ̇1θ̇2k0 (k2c12 + k3c123)− 2

(
θ̇1 + θ̇2

)
θ̇3k0k3c123

−θ̈1yCoM − θ̈2k0 (k2s12 + k3s123)− θ̈3k0k3s123 (7)

ÿCoM = −θ̇21yCoM − θ̇22k0 (k2s12 + k3s123)− θ̇23k0k3s123
−2θ̇1θ̇2k0 (k2s12 + k3s123)− 2

(
θ̇1 + θ̇2

)
θ̇3k0k3s123

+θ̈1xCoM + θ̈2k0 (k2c12 + k3c123) + θ̈3k0k3c123 (8)

From equations (3) and (4), the position vector of the CoM of the three-link robot can be expressed as a sum of three
vectors whose geometric representation is shown in Figure 3.[

xCoM
yCoM

]
= k0k1

[
c1
s1

]
+ k0k2

[
c12
s12

]
+ k0k3

[
c123
s123

]
= r1 + r2 + r3 (9)
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Figure 3: Geometric representation of vectors and angles used for expressing θ1 and θ3 as a function of (xCoM , yCoM ) and
θ2.

According to the angles drawn in Figure 3, we can establish the following relationships

α = θ2 − π

β = arctan

(
yCoM
xCoM

)
(10)

θ1 = β − φ+ ϕ (11)

θ3 = β + ψ − (θ1 + θ2) (12)

where for feasible and realistic STS movements (such as the ones studied in the following sections) φ ≥ 0 and ϕ,ψ ∈ [−π/2, π/2].
From applying the law of cosines to the triangle formed by vectors r1 + r2, r3,

[
xCoM yCoM

]T
, and using the

trigonometric identity c2 = c12c1 + s12s1 we have

φ (z) = arccos

(
‖r3‖2 − ‖r1 + r2‖2 −

(
x2CoM + y2CoM

)
−2 ‖r1 + r2‖

√
x2CoM + y2CoM

)

= arccos

(
(k0k3)

2 − k20
(
k21 + k22 + 2k1k2c2

)
−
(
x2CoM + y2CoM

)
−2k0

√
k21 + k22 + 2k1k2c2

√
x2CoM + y2CoM

)

From the law of sines for the triangle of vectors r1, r2 and r1 + r2 we know

ϕ (z) = arcsin

(
‖r2‖ sinα

‖r1 + r2‖

)
= arcsin

(
k2 sin (θ2 − π)√
k21 + k22 + 2k1k2c2

)

ψ (z) = arcsin

(
‖r1 + r2‖ sinφ (z)

‖r3‖

)
= arcsin

(√
k21 + k22 + 2k1k2c2 sinφ (z)

k3

)

Plugging these expressions for β,φ, ϕ and ψ in equations (11) and (12), we de�ne the transformation h1 : z → θ

θ =


arctan

(
yCoM

xCoM

)
− φ (z) + ϕ (z)

θ2

arctan
(
yCoM

xCoM

)
+ ψ (z)− (θ1 (z) + θ2)


=: h1 (z)

It is important to note that this transformation relies on the triangulation of the vectors in equation (9), so it does not hold
in the vertical position, when θ1 = π/2 and θ2 = θ3 = 0.
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Let

V (z, θ) : =

[
−yCoM −k0k3s123
xCoM k0k3c123

]

q
(
θ, θ̇, z̈

)
: = −

[
xCoM k0 (k2c12 + k3c123) k0k3c123
yCoM k0 (k2s12 + k3s123) k0k3s123

] θ̇21
θ̇22
θ̇23


−2θ̇1θ̇2

[
k0 (k2c12 + k3c123)
k0 (k2s12 + k3s123)

]
−2
(
θ̇1 + θ̇2

)
θ̇3

[
k0k3c123
k0k3s123

]
+

[
−k0 (k2s12 + k3s123)
k0 (k2c12 + k3c123)

]
θ̈2

From equations (5) and (6), the velocity vector of the CoM of the three-link robot is[
ẋCoM
ẏCoM

]
= θ̇2

[
−k0 (k2s12 + k3s123)
k0 (k2c12 + k3c123)

]
+ V (z, h1 (z))

[
θ̇1
θ̇3

]
V (z, h1 (z)) is singular if θ1 + θ2 + θ3 = arctan

(
yCoM

xCoM

)
, and according to expressions (10) and (12) this condition will hold

i� ψ = 0; which requires vectors r1 + r2 and r3 to be aligned. In the case of feasible and realistic STS movements, this will
only occur in the vertical position. For all other con�gurations, we calculate the angular velocities of links 1 and 3 as[

θ̇1
θ̇3

]
= V (z, h1 (z))

−1

([
ẋCoM
ẏCoM

]
− θ̇2

[
−k0 (k2s12 + k3s123)
k0 (k2c12 + k3c123)

])
=: p (z, ż)

so that a transformation h2 : z, ż → θ̇ is de�ned

θ̇ =

 1 0
0 0
0 1

 p (z, ż) +

 0

θ̇2
0


=: h2 (z, ż)

From equations (7) and (8), the acceleration vector of the CoM is[
ẍCoM
ÿCoM

]
= q (h1 (z) , h2 (z, ż) , z̈) + V (z, h1 (z))

[
θ̈1
θ̈3

]
Thus [

θ̈1
θ̈3

]
= V −1 (z, h1 (z))

([
ẍCoM
ÿCoM

]
− q (h1 (z) , h2 (z, ż) , z̈)

)
and we can de�ne the transformation h3 : z, ż, z̈ → θ̈ as

θ̈ =

 1 0
0 0
0 1

V −1 (z, h1 (z))

([
ẍCoM
ÿCoM

]
− q (h1 (z) , h2 (z, ż) , z̈)

)
+
[

0 θ̈2 0
]T

=: h3 (z, ż, z̈)

For notational compactness, we use

h (z, ż, z̈) :=

 h1 (z)
h2 (z, ż)
h3 (z, ż, z̈)

 (13)

to denote the transformation from z coordinates to θ coordinates.
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REFERENCE TRAJECTORIES FOR THE STS MOVEMENT

The reference trajectories z =
[
θ2 (t) xCoM (t) yCoM (t)

]T
in the z coordinates, on the interval t ∈ [0, tf ], are param-

eterized as

θ̄2 (t) = θ̄2 (0) +
(
θ̄2 (tf )− θ̄2 (0)

)
Φ1 (t, tf )

x̄CoM (t) = x̄CoM (0) + (x̄CoM (tf )− x̄CoM (0)) Φ2 (t, tf )

ȳCoM (t) = ȳCoM (0) + (ȳCoM (tf )− ȳCoM (0)) Φ3 (t, tf )

where Φi (t, tf ) with i = 1, 2, 3 are polynomial functions satisfying Φi (0, tf ) = 0 and Φi (tf , tf ) = 1. This formulation is
taken from [15]. Once ż and z̈ are computed, substitution into the transformation (13) yields the reference trajectories in

the θ coordinates
[
θ (t) θ̇ (t) θ̈ (t)

]T
= h

(
z (t) , ż (t) , z̈ (t)

)
.

FEEDBACK LINEARIZATION WITH CONTROL ALLOCATION

If the input u satis�es

Aτ (θ)u = M (θ)
(
−Kp

(
θ − θ̄ (t)

)
−Kd

(
θ̇ − ˙̄θ (t)

)
+ θ̈ (t)

)
+F

(
θ, θ̇
)

(14)

then the dynamics described by M (θ) θ̈ + F
(
θ, θ̇
)

= Aτ (θ)u result in a linear di�erential equation governing the tracking

error of the form
θ̈ − ¨̄θ (t) +Kd

(
θ̇ − ˙̄θ (t)

)
+Kp

(
θ − θ̄ (t)

)
= 0

With the synthetic input v (t), de�ned as

v (t) := −Kp

(
θ − θ̄ (t)

)
−Kd

(
θ̇ − ˙̄θ (t)

)
the feedback linearized [16] equations are θ̈ − ¨̄θ (t) = v (t). The gain matrices Kp,Kd ∈ R3×3 can be chosen from a LQR
optimal gain for the system [

θ̇ − ˙̄θ (t)

θ̈ − ¨̄θ (t)

]
=

[
0 I3
0 0

] [
θ − θ̄ (t)

θ̇ − ˙̄θ (t)

]
+

[
0
I3

]
v (t)

which achieves asymptotically zero tracking error of the reference trajectories. For notational purposes de�ne

b
(
t, θ, θ̇

)
: = M (θ)

(
−Kp

(
θ − θ̄ (t)

)
−Kd

(
θ̇ − ˙̄θ (t)

)
+ θ̈ (t)

)
+F

(
θ, θ̇
)

Since the system of equations (14) is underdetermined, at every time t we solve the control allocation [17] with the constrained
least-squares program

u (t) = arg min
ξ

1

2
‖Wξ‖22

subject to Aτ (θ (t)) ξ = b
(
t, θ (t) , θ̇ (t)

)
lb ≤ ξ ≤ ub

where W ∈ R3×3 and lb, ub ∈ R4 are user-speci�ed weights and box constraints, respectively.

SIMULATION OF TWO STS MOVEMENTS

To illustrate the behaviour of the three-link robot system under the nonlinear feedback controller, we present results from the
simulation of the system tracking two di�erent STS movements in Figures 7 to 20. The dashed lines represent the evolution
of the variables when the parameters of the system take the nominal values registered in Table 1. The collection of continuous
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Table 1: Nominal Parameters of the System and their Uncertainties

Link mi [kg] Ii
[
kg ·m2

]
li [m] lci [m]

1 9.68± 0.1 1.16± 0.1 0.53± 0.01 l1
2 ± 0.01

2 12.59± 0.1 0.52± 0.1 0.41± 0.01 l2
2 ± 0.01

3 44.57± 0.1 2.56± 0.1 0.52± 0.01 l3
2 ± 0.01

lines represent the evolution of the variables when the 12 parameters of the system are randomly chosen, within the domain
of their uncertainties, by latin hypercube sampling of 200 experiments.

The �rst movement (STS 1) starts with the shank and torso segments parallel to the vertical, and the thigh segment parallel
to the horizontal (Figure 4) setting θ1 (0) = 90°, θ2 (0) = −90° and θ3 (0) = 90° (xCoM (0) = 0.309 and yCoM (0) = 0.6678).
The second movement (STS 2) vertically aligns the CoM and the ankle joint prior to seat-o� (Figure 5) with the initial
conditions θ1 (0) = 120°, θ2 (0) = −120°, θ3 (0) = 110.87° (xCoM (0) = 0 and yCoM (0) = 0.590). For both movements, the
�nal con�guration of the system shown in Figure 6 places de CoM directly above the origin of the inertial frame with the values
θ̄2 (tf ) = −5°, xCoM (tf ) = 0 and yCoM (tf ) = 0.974. STS 1 and STS 2 are respectively referred in the biomechanical literature
as dynamic and quasi-static strategies [9]. Most healthy people use the quasi-static strategy because it is safer and reduces
the overall work; however, people with reduced knee strength tend to use a dynamic strategy. To complete the design of a

rest-to-rest maneuver, de�ne Φi (t, tf ) := −2 t
3

t3f
+ 3 t

2

t2f
, which is the only cubic polynomial satisfying Φ̇ (0, tf ) = Φ̇ (tf , tf ) = 0

(and Φ (0, tf ) = 0 and Φ (tf , tf ) = 1). Due to the lack of data on comfortable STS duration for subjects with complete
spinal cord injuries, we picked one reported in [18] for stroke patients; leading to a simulation time of tf = 3.5 [s] for both
movements.

In this study the LQR weight matrices are Q := I6 and R := 1
100I3. When solving the control allocation problem, we

want to re�ect that the contributions from the torque at the hips τ1 (t), the torque at the shoulders τ2 (t) and the vertical
force Fy (t) outweigh the horizontal force Fx (t); we do this by considering the matrix W = diag

([
1 1 10 1

])
and,

because the user always pushes the crutches down to propel upwards, we specify the constraint Fy (t) ≥ 0. All other inputs
are unconstrained.

We plan the STS motion in the z space instead of the θ space because it is not apparent how one would naturally arrive
at the θ1 and θ3 trajectories shown in Figures 11 and 13. By contrast the trivial cubic expressions that de�ne the reference
trajectories in Figures 7, 8 and 12 are very natural, merely connecting starting and �nal points with zero slope boundary
conditions. This is the prime motivation for having derived the transformation (13).

Because the controller operates with the nominal values of the parameters, the deviation of the the solid curves in Figures
7 to 16 from the reference trajectories was expected; nevertheless, it is a positive feature of the controller to �nd that the
observed o�sets do not lead to sit-back or step failures [11] nor to a condition of hyperextension of the knees, since all
trajectories end in a small neighborhood of the �nal desired state and keep θ2 (t) ≤ 0. Based solely on the observed variance
from the reference trajectories, STS 2 appears to be more sensitive to parameter uncertainty than STS 1, this is more
noticeable in �gure 9.

From Figures 17 to 20, we can tell that STS 1 signi�cantly reduces Fy (t) when compared to STS 2, which in turn
requires a greater magnitude of τ1 (t). The values of Fx (t) di�er by one order of magnitude from Fy (t) and remain within
approximmately the same range in both movements, what is also observed for τ2 (t). It is interesting to see that while Fy (t)
for every STS 2 trajectory decreases from a maximum value observed at lift o�, STS 1 trajectories peak over the period
t ∈ [0.75, 2.25].

CONCLUSIONS AND FURTHER WORK

From the conducted simulations, our STS motion planning strategy in the z space reduces the task to only choosing initial and
�nal points with zero slope boundary conditions. Although the proposed feedback linearization controller achieves acceptable
tracking errors in the presence of parameter uncertainties, the high sensitivity in the variability of τ2 (t), Fx (t) and Fy (t)
demands a more careful study of its robustness; especially because these represent actions that must be performed by the user
for successfully completing the movements and there is no feedback control/computer authority over them. A key concern is
to enhance the control of τ1 (t) for making the system less sensitive to upper body loads.

The motion planning and control approaches of this paper focused on powered lower limb orthosis without actuation
at the knees, but the same ideas could be extended to control fully actuated ones by applying the proper changes in the
generalized forces matrix Aτ (θ) and the control allocation program.

Our current feedback approach has an explicit time dependance on the reference trajectories; however, in practice, the
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Figure 4: Initial position for STS 1. The dashed line represents the reference trajectory in the xy plane for the CoM.

Figure 5: Initial position for STS 2. The dashed line represents the reference trajectory in the xy plane for the CoM.

Figure 6: Final position for both STS movements.

9



Figure 7: x axis coordinate of the three-link robot CoM.

Figure 8: y axis coordinate of the three-link robot CoM.

Figure 9: x axis coordinate of the velocity of the three-link robot CoM.
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Figure 10: y axis coordinate of the velocity of the three-link robot CoM.

Figure 11: Angular position of link 1 relative to the horizontal.

Figure 12: Angular position of link 2 relative to link 1.
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Figure 13: Angular position of link 3 relative to link 2.

Figure 14: Angular velocity of link 1.

Figure 15: Angular velocity of link 2.

12



Figure 16: Angular velocity of link 3.

Figure 17: Torque applied at the hips by the powered lower limb orthosis.

Figure 18: Torque at the shoulders of the user.
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Figure 19: Horizontal force at the shoulders of the user.

Figure 20: Vertical force at the shoulders of the user.
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user of an orthosis might pause or act at a di�erent time scale, which motivates path dependant controllers such as that
proposed in [19]. In order to make our model more realistic, we also aim to add more links to represent the arms of the user
and crutches.
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